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Abstract — We present a Mean Shift algorithm for fitting shape models. This al-
gorithm maximises a posterior density function where the likelihood is defined as the
Euclidean distance between two Gaussian mixture density functions, one modelling the
observations while the other corresponds to the shape model. We explore the role of
the covariance matrix in the Gaussian kernel for encoding the shape of the model in the
density function. Results show that using non-isotropic covariance matrices improve
the efficiency of the algorithm and allow to reduce the number of kernels to use in the
mixture without compromising the robustness of the algorithm.
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I Introduction

Shape models have been widely used in image anal-
ysis for detection, reconstruction and recognition.
Algorithms for fitting these shape models aim at
being robust, accurate and automatic. In our pre-
vious work [1] we introduced a robust Mean-shift
algorithm that fits a morphable shape model with-
out correspondences. The cost function is defined
in a Bayesian framework where the likelihood is
chosen proportional to the Euclidean distance be-
tween two density functions, one modelling the
observations and the other corresponding to the
shape model. Both density functions were mod-
elled as mixtures of Gaussians with isotropic co-
variance matrices. In this paper, we explore the
role of the covariance matrices when modelling the
density function of the shape model. We show that
the shape model with non-isotropic covariance ma-
trices better represents the class of shapes of inter-
est. Moreover the resulting fitting algorithm im-
proves robustness. Finally we show that the num-
ber of Gaussians in the model can be reduced effi-
ciently without loss of accuracy.

II Related work

It has been argued that algorithms for recon-
struction and recognition of shapes improve their

performance when using prior knowledge such as
shape models. Cootes et al. [2], for instance, have
proposed the 2D Active Shape Model for feature
detection and image segmentation. Blanz et al.
[3] have introduced a 3D Model of faces. This 3D
model has been successfully used as a prior for in-
ferring 3D faces from images [4, 5, 6]. The problem
of fitting the model to a set of observations is often
solved by maximising the posterior probability in a
Bayesian framework where the likelihood requires
a known correspondence between the shape model
and the observations [7, 8]. We recently proposed a
new algorithm [1] that does not require correspon-
dence for fitting a shape model to a point cloud.
It is also based on a Bayesian framework but uses
a robust likelihood [9] that is defined as the Eu-
clidean distance between two mixtures of Gaus-
sian density functions modelled using the observa-
tions and the shape model respectively. Each ker-
nel is centred at each point of the data set and uses
an isotropic covariance matrix. While the frame-
work is robust and automatic, the computational
time for the fitting is proportional to the number
of kernels used for modelling both density func-
tions O(nm) (for n observation and m vertices in
the model). Jian et al. [10] have previously used
the Euclidean distance between density functions
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for robust registration. They have proposed to re-
duce the computation time by approximating the
analytical solution of the Euclidean distance by
the Gauss Transform. However, this approxima-
tion affects the robustness of the algorithm since
it is only accurate when the points in the obser-
vation sets are uniformly sampled. In this paper,
we extend our Bayesian framework by changing
from isotropic Gaussian kernels to non-isotropic
covariance matrices. This new modelling approach
allows us to reduce the number of kernels to use
and therefore to improve efficiency of the algorithm
without compromising robustness. The paper is
organised as follows: section III a) presents the
Bayesian framework for robust shape fitting [1].
In section III b), we define the new approach for
modelling the density function of the shape model.
In section III c), we present the cost function and
the Mean Shift Algorithm used for optimisation.
Results and discussion are presented in section IV
where a 2D hand model is fitted to point clouds
extracted from images.

III Mean Shift for Bayesian shape
fitting

a) Bayesian framework for model fitting using a
robust likelihood

Let us define a shape model by its mean shape
μμμ and a set of J eigenvectors {Tj}j=1,..,J associ-
ated with the eigenvalues {σj}j=1,..,J computed by
Principal Component Analysis using a representa-
tive set of exemplar shapes. We assume that any
shape from the same class can be well approxi-
mated as a linear combination of (μμμ, {Tj}j=1,..,J):

y(α) = μμμ+
J∑

j=1

αj Tj (1)

The reconstructed shape y(α) depends on the la-
tent parameters α = {αj}j=1,..,J . Given a set of
observations U = {uk}k=1,··· ,n, we aim at estimat-
ing the parameters {αj}j=1,..,J such that y(α) best
fits the observations. Using a Bayesian framework
the parameters are estimated by maximising the
posterior:

α̂ = argmax
α

p(U|α) p(α) (2)

with p(α) the prior and p(U|α) the likelihood. The
prior is chosen here as a multivariate Gaussian and
it is expressed as follows:

p(α = (α1, · · · , αJ)) ∝ exp

⎛
⎝−1

2

J∑
j=1

α2
j

σ2
j

⎞
⎠ (3)

We have proposed in [1] to model the likelihood
using the distance between two density function.

Here, one density function is modelled using the
shape model fα and the other using the obser-
vations fu. Loosely speaking, fu and fα can be
understood as infinite dimensional vectors and the
likelihood can be expressed using the Euclidean
distance between those two density functions:

p(U|α) = p(fu|fα) ∝ exp

(
− (‖fu − fα‖)2

2σ2
d

)
(4)

The Euclidean distance is here defined by:

‖fu − fα‖2 =
∫
RD (fu(x)− fα(x))

2 dx

=
∫
RD

(
fu(x)

2 − 2fu(x)fα(x)

+fα(x)
2
)
dx

(5)

Using equation (4) in equation (2), our parameter
estimation is formulated as:

α̂ = argmin
α

⎧⎨
⎩‖fu − fα‖2

2σ2
d

+
J∑

j=1

α2
j

2σ2
j

⎫⎬
⎭ (6)

The variance σ2
d is set experimentally and allows

us to control the influence of the likelihood with
the prior.

b) Modelling the density functions fu and fα

We previously modelled the density function of the
shape model fα as a Gaussian mixture where each
kernel is centred at each point of the data set with
an isotropic bandwidth (see Figure 1b) [1]. Since
the shape model is a set of connected points, the
density function can be redefined by using the spa-
tial relation between vertices. Therefore, changes
in direction of the contour shape can be modelled
by adapting Gaussian kernels according to the di-
rection given by consecutive points. We propose
to model the density function using m − 1 non-
isometric Gaussian kernels as follows.

fα(x) ∝
m−1∑
k=1

wk G(x, rk(α),
∑

k) (7)

where rk(α) =
y(α)k+y(α)k+1

2 . The covariance ma-
trix

∑
k of each kernel is a positive definite ma-

trix that can be decomposed into the form
∑

k =
QAQT . Where Q is the matrix containing the
eigenvectors and A is a diagonal matrix of eigen-
values. The eigenvectors represent the principal
direction −→n 1 and its normal −→n 2. The eigenvalues
control the fuzziness of the kernel in both direc-
tions:

∑
k = ( −→n 1|−→n 2 )

(
a2 0
0 b2

)
( −→n 1|−→n 2 )

T
(8)

From Figure 2a, we can compute −→n 1 and −→n 2 as
follows:

−→n 1 =

(
cos(θ)
sin(θ)

)
and, −→n 2 =

(
sin(θ)

− cos(θ)

)
(9)
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(a) Shape Model (b) Isotropic (c) Non-isotropic

Fig. 1: Exemplar shape (a) when modelling isotropic
Kernels (b) and when using non-isotropic kernels (c)

with,

cos(θ) =
y
(x)
k (α)− y

(x)
k+1(α)

d
(10)

sin(θ) =
y
(y)
k (α)− y

(y)
k+1(α)

d
(11)

where d = ‖yk(α) − yk+1(α)‖. The parameter a
controls the overlap between consecutive kernels
and it can be defined as a function of the distance
d, such as a = τd, with τ controlled by the user.
The fuzziness along the normal (−→n 2) is defined as
b = h, where h is the bandwidth we choose for all
the kernels and it is related to the error we are
willing to tolerate in the optimisation problem.
In order to achieve a homogeneous shape for
the density function, we defined the weight of
each kernel as wk =

√
(2π)D |∑k| and the final

density function is normalised by
∑m−1

k−1 wk. The
resulting density function of the shape model is
now defined over the mean of consecutive points.
The mean of the model becomes rk(α = 0) and
the eigenvectors are updated as follows:

vjk =
Tjk +Tjk+1

2
, ∀j and for k = 1, ....n− 1

(12)

Reducing the number of kernels in the mod-
elling of fα: Thanks to the introduction of the
non-isotropic covariance in the model, we can re-
duce the number of vertices (number of kernels to
use) without altering the shape of the density func-
tion (see figure 2b). The modelling for each ker-
nel given a set of vertices to consider {yl}l=l1,..,l2

is then defined by its mean rk(α) and the covari-
ance matrix (

∑
k). The mean is computed as the

mean of the set of points ({yj}j=l1,..,l2). The co-
variance matrix follows the same definition given
in equation (8). Where −→n 1 and −→n 2 correspond
to the eigenvectors of the sets of points {yl} and
can be found using PCA. The eigenvector of the
model vjk associates with the new vertex rk(α)

(a) Geometry (b) Reducing Kernels

Fig. 2: In (a) an scheme of the geometry used for
computing the main direction of the ellipse and its normal
is shown. Figure (b) shows an example of reducing number
of kernels to represent the encoded shape in the data set

is updated as the mean of the contribution of the
eigenvector of each point in the set {yl}. This can
be expressed as follows:

vjk =

l=l2∑
l=l1

Tjl

(l2 − l1 + 1)
(13)

Figure 3 shows a set of density functions mod-
elled using the average shape when reducing the
number of Gaussian kernels. In the top row as
reference we compute the density function using
isometric covariance matrix for bandwidths of
30, 20, 10 and 5. In the second row and for the
same bandwidths, we have the density function
of the model computed using non-isometric
covariance matrix and considering all the vertices
of the model (72 vertices, 71 kernels). From the
third row until the bottom, we show the density
function computed when using 56, 39 and 31
kernels respectively (for bandwidth of 30, 20, 10
and 5).

Modelling fu: The density function computed
from the observations U = {uk}k=1,··· ,n is mod-
elled with isotropic kernels centred at each data
point. Indeed the connections between vertices
are unknown in the observations and some obser-
vations are outliers (points that do not belong to
the shape of interest). The density function fu is
modelled using n Gaussian kernels centred at each
point of the data set, with the isotropic covariance

matrix
∑′

i = h2
i I (I the identity matrix):

fu(x) =
n∑

i=1

w′
i G(x,ui,

∑′
i), ∀i w′

i =
1
n (14)
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(a)h = 30 (b)h = 20 (c)h = 10 (d)h = 5

Fig. 3: Density functions computed from the hand model
when using a isotropic kernels (top row) and using a

non-isotropic kernels (second row). From the third row to
the bottom, density functions modelled when using 56, 39

and 31 kernels respectively.

c) Mean Shift Algorithm for Gaussian Mixtures

The integral of the product of two Gaussian den-
sity function modelled using non-isotropic covari-
ance matrix has a closed form solution. This solu-
tion is given by the following expression:

∫
RD

G(x, μA,
∑

A)G(x, μB ,
∑

B)dx =

1

(2π)
D
2

√|∑A +
∑

B|
exp

(
−q(μA, μB)

2

)
(15)

where,

q(μA, μB) = μT

A
∑−1

A
μA + μT

B
∑−1

B
μB − μT

C
∑−1

C
μC

∑−1
C = (

∑−1
A +

∑−1
B )

μC =
∑

C(
∑−1

A
μA + ∑−1

B
μB)

(16)

Using these expressions (15 and 16), we can solve
the Euclidean distance between fu(x) and fα(x)

proposed in equation (5) as follows:

‖fu − fα‖2 =
n∑

i=1

n∑
p=1

w′
iw

′
p

(2π)
D
2

√|∑′
i +

∑′
p|

exp
(
− q(ui,up)

2

)
︸ ︷︷ ︸

E1(ui,up)

−2
m−1∑
k=1

n∑
i=1

wkw
′
i

(2π)
D
2

√|∑k +
∑′

i|
exp

(
− q(r(α)k,ui)

2

)
︸ ︷︷ ︸

E2(r(α)k,ui)

+
m−1∑
k=1

m−1∑
p=1

wkwp

(2π)
D
2

√|∑k +
∑

p|
exp

(
− q(r(α)k,r(α)p)

2

)
︸ ︷︷ ︸

E3(r(α)k,r(α)p)

(17)

Replacing the Euclidean distance (17) in equation
(6) we rewrite the energy function E(α) as follows:

E(α) =
n∑

i=1

n∑

p=1

E1(ui,up)− 2
m−1∑

k=1

n∑

i=1

E2(r(α)k,ui)

+
m−1∑

k=1

m−1∑

p=1

E3(r(α)k, r(α)p) + λσ2
d

J∑

j=1

α2
j

2σ2
j

(18)

where the parameter λ is introduced to let the
user control the influence of the likelihood with the
prior. The parameters α of the model that best fit
the observation can then be estimated by minimis-
ing equation (18). The Mean Shift Algorithm is
computed by differentiating the energy function E
with respect to α and equalling the result to zero.
Starting from an initial guess α(t), the update is
computed by:

α(t+1) = A(α(t))−1b(α(t)) (19)

with A a J × J matrix defined as:

Aj,s(α) =

{
Lj,s(α), if j �= s

Lj,s(α) +
λσ2

d

σ2
j
, if j = s

(20)

The expression for L and b are presented in
Table 1. For simplicity E2(r(α)k,ui) and

E3(r(α)k, r(α)p) are expressed as Eki
2 and Ekp

3 re-
spectively. The parameter ro corresponds to the
average shape of the model r(α = 0) and the co-
variance matrices

∑
c(ki) are computed for each pair

of distributions (k, i) as it was illustrated in equa-
tion (16).
The Mean Shift algorithm is presented in algo-
rithm 1 with its annealing strategy. We use the
parameter h defined for fα and fu in section b)
as temperature. Starting from a maximum value
hmax, the bandwidth is decreased using a geomet-
ric rate β until the minimum value hmin is reached.
Note that the covariance matrix of each kernel in
the density function of the model is updated at
each iteration.
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Table 1: Expressions for computing L(j,s) and b(j)

L(j,s)

= 2
m−1∑

k=1

n∑

i=1
Eki

2 (vT
jk

∑−1
k

− vT
jk

∑−1
k

∑−1T
c(ki)

∑−1T
k

)vsk

−
m−1∑

k=1

m−1∑

p=1
Ekp

3 (vT
jk

∑−1
k

vsk + vT
jp

∑−1
p vsp)

+
m−1∑

k=1

m−1∑

p=1
Ekp

3 (vT
jk

∑−1
k

+ vT
jp

∑−1
p )

∑−1T
c(kp)

∑−1T
p vsp

+
m−1∑

k=1

m−1∑

p=1
Ekp

3 (vT
jk

∑−1
k

+ vT
jp

∑−1
p )

∑−1T
c(kp)

∑−1T
k

vsk

b(j)

= −2
m−1∑

k=1

n∑

i=1
Eik

2 (rTok
∑−1

k
)vjk

+2
m−1∑

k=1

n∑

i=1
Eik

2 ((uT
i
∑′−1

i + rTok
∑−1

k
)
∑−1

k

∑−1T
c(ki)

)vjk

−
m−1∑

k=1

m−1∑

p=1
Ekp

3 (rTok
∑−1

k
+ rTop

∑−1T
p )

∑−1T
c(kp)

∑−1T
k

vjk

−
m−1∑

k=1

m−1∑

p=1
Ekp

3 (rTok
∑−1

k
+ rTop

∑−1T
p )

∑−1T
c(kp)

∑−1T
p vjp

+
m−1∑

k=1

m−1∑

p=1
Ekp

3 (rTok
∑−1

k
vjk + rTop

∑−1T
p vjp)

Algorithm 1 Estimation of α

Require: α
(0)
j = 0, ∀j, hmin, hmax, eo, τ = 0.5

λ = 0.05 and β = 0.8
h = hmax

repeat
σ2
d = ‖fu − fα‖2

repeat
Compute A(α(t)) and b(α(t))
α(t+1) = A(α(t))−1b(α(t))
Compute

∑
k ∀k

until |α(t+1) − α(t)| ≤ eo
h ← βh

until h ≤ hmin

IV Experimental results

a) Experimental setting

A hand model has been trained using the an-
notated data sets of 18 hands provided by Tim
Cootes1. Using our Mean Shift algorithm, the
model is fitted to 2D point clouds extracted from
images using an edge detector (e.g. figure 5). The
rigid registration between the observations and the
model is first performed as a pre-process [11] in all
experiments.

b) Non-Isotropic Vs Isotropic Kernels

The 2D point cloud used as observation consists in
120 points taken randomly from the edge map of
2D images of hands. The isotropic shape model
uses 72 isotropic kernels and the non-isotropic
shape model uses 71 non-isotropic kernels. The

1http://personalpages.manchester.ac.uk/staff/

timothy.f.cootes/data/hand_data.html

settings for the MS algorithm are hmax = 25 and
hmin = 5. Figure 4 compares the fitting using both
shape models on two examples. The estimated
shapes (red line) are better using the non-isotropic
model as they are closer to the observations (blue
dots).

(a) (b)

Fig. 4: Estimated shapes (in red solid line) using the
isotropic shape model (a) and the non-isotropic shape
model (b). The observations are shown as blue dots.

c) Impact of the number of kernels in the models

The performance of the algorithm is assessed when
reducing the number of kernels in the shape mod-
els. Figure 5 shows the estimated shapes using the
isotropic and non-isotropic shape models with 71,
54 and 43 kernels. As can be seen the non-isotropic
shape model performs better than the isotropic
one, as its solution is closer to the observations.
As the number of kernels decrease, the isotropic
shape model loses robustness. We compute the
Euclidean distance between the estimated shapes
and the observations as a quantitative measure for
similarity in between the shapes. Results are re-
ported in figure 6. The non-isotropic model min-
imises better the Euclidean distance. The robust-
ness of the algorithm is improved by using non-
isotropic kernels, and the number of kernels can
be chosen to reduce the computation time without
loss of accuracy.

V Conclusions

We have presented a Mean Shift Algorithm that
fits a shape model to a point cloud in a Bayesian
framework. The likelihood is defined with the Eu-
clidean distance between two Mixtures of Gaus-
sians corresponding to the model and the ob-
servation. While the observation uses Gaussians
with isotropic covariance matrices, we have shown
that the model can be better represented by non-
isotropic covariances. This non isotropic modelling
increases the robustness of the fitting algorithm.
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71 kernels

54 kernels

43 kernels

Fig. 5: From top to bottom: colour images, extracted
edges (observations appearing as blue dots next),

estimated shapes (in solid red line) using 71, 54 and 43
kernels. Solutions from the non isotropic shape model are
shown on top of the ones from the isotropic shape model

in each case.

Fig. 6: Average and standard deviation of the Euclidean
distance between the estimated shape and the

observations computed using the three examples shown in
Figure 5. The green line correspond to the non-isotropic
model and the blue dots when using the isotropic model.
The abscissa corresponds to number of kernels used in the

model.
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