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Abstract—Two main problems arise in the Multiple Access
Channel (MAC): interference from different users, and addi-
tive noise channel noise. Maximum A-Posteriori (MAP) joint
decoding or successive interference cancellation are known to
be capacity-achieving for the MAC when paired with appro-
priate codes. We extend the recently proposed Soft Guessing
Random Additive Noise Decoder (SGRAND) to guess, using soft
information, the effect of noise on the sum of users’ transmitted
codewords. Next, we manage interference by applying ZigZag
decoding over the resulting putative noiseless MAC to obtain
candidate codewords. Guessing continues until the candidate
codewords thus obtained pertain to the corresponding users’
codebooks. This MAC SGRAND decoder is a MAP decoder that
requires no coordination between users, who can use arbitrary
moderate redundancy short length codes of different types and
rates.

Index Terms—MAC, MAP decoding, GRAND, ZigZag decod-
ing.

I. INTRODUCTION

The non-orthogonal Multiple Access Channel (MAC) is a
commonly used communications model [1]. In MAC, users
transmit simultaneously over a shared channel. The users’
modulated codewords are added to each other and to channel
noise. The receiver must thus resolve two effects: interference
and noise. The approach for doing so that was first proposed
by Ahlswede [2] and by Liao [3], which attempts to solve the
problem of interference and the noise concurrently, is the fol-
lowing: when decoding one user’s message, the receiver treats
undecoded modulated codewords as noise, with attendant
effects on that user’s rate [1]. It can achieve capacity, i.e. reach
the boundary of the Cover-Wyner region [1], with some level
of coordination in users’ transmission. Types of coordination
include separating different users into orthogonal channel in
time through Time Division Multiplexing Access (TDMA), in
frequency through Frequencey Division Multiplexing Access
(FDMA), or through code selection Code Division Multiple
Access (CDMA) [4], possibly with rate splitting Rate Splitting
Multiple Access (RSMA) [5]).

The approach we propose requires no coordination whatso-
ever from different users. Different users can transmit using
different codes, lengths, rates, etc. In effect, the method lets
users operate as if they use orthogonal channels. Its core is
to deal separately with additive interference and with noise.
Let us consider the former first. If we have interference in
the absence of noise, the resulting noiseless MAC, sometimes
termed additive MAC, has a capacity region, for any given

input discrete signal alphabets, that matches that of a TDMA
channel [6]–[10]. When noise is absent or negligible, one may
instantiate the noiseless MAC by the use of ZigZag decoding
[11]. In this case, users send packets, possibly uncoded. Each
packet corresponds to a codeword. We can expect distinct
packet transmissions to experience slightly different delays.
Such differences will tend to happen naturally in MAC without
further coordination, or we may introduce them. When packets
are transmitted multiple times with different delays over a
noiseless channel, the receiver observes different collision
events, leading to different summations of packets in the
channel, with different time offsets. Using ZigZag decoding,
the receiver can then perform interference cancellation by
considering the offsets as providing different equations. An
example of ZigZag decoding is shown in Figure 1. This decod-
ing method has been shown to, in effect, resemble orthogonal
channels for different users in the noiseless regime [12], [13].

Let us now envisage the issue of noise in the channel. A
natural candidate for dealing with noise is the recently pro-
posed Guessing Random Additive Noise Decoder (GRAND)
decoder [14]. GRAND based decoders attempt to identify the
additive noise that corrupted the channel input, rather than
identifying the channel input directly. From most likely to least
likely based on a channel model and soft information, if it is
available, GRAND schemes sequentially invert putative noise
effect sequences from the received signal and query whether
the remainder is a member of the codebook. The first time
a member of the codebook is identified, GRAND terminates
and returns that word as its output. GRAND based decoders
are code-agnostic and noise-centric. If noise is additive and
GRAND’s noise effect query order is consistent with the
channel, it provably identified a Maximum Likelihood (ML)
decoding.

When paired with Random Linear Code (RLC)s, GRAND
has been shown to be capacity achieving in the hard Single-
Input Single-Output (SISO) setting [14]. Several GRAND
variants for SISO channels have been proposed that use soft
information: 1) Symbol Reliability GRAND (SRGRAND),
which uses one bit of soft information per channel output [15],
[16]; 2) Soft GRAND (SGRAND), a soft detection variant of
GRAND that uses (potentially) real-valued soft information
per channel symbol, and is a ML decoder in the soft detection
SISO scenario [17]; and 3) Ordered Reliability Bits GRAND
(ORBGRAND), which serves as a middle ground between
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the two, as it uses dlog2 ne soft information bits per channel
symbol [18]. Abbas et al. demonstrated hardware architectures
for both GRAND [19] and ORBGRAND [20].

In the spirit of GRAND decoders, we wish to guess
the effect of the noise added by the channel, and remove
that effect to obtain an equivalent noise-free MAC channel.
GRAND based decoders exploit the fact that the entropy of
the noise is substantially lower than the entropy of the inputs,
hence guessing the noise effect is easier than guessing the
codeword. Treating signals from the modulated codewords of
undecoded users as noise, as is done in the Ahlswede and
the Liao frameworks, is undesirable for GRAND, since those
signals would generally have high entropy. We instead tailor
SGRAND to fit MAC in order to remove the effects of the
noise, followed by ZigZag decoding, described earlier. We
prove that the suggested algorithm is a Maximum A-Posteriori
(MAP) decoder, which is known to be optimal.

II. MODEL AND BACKGROUND

A. Definitions and Notation

Let x, ~x,X, ~X denote a scalar, vector, matrix, and a random
vector respectively. All vectors are row vectors unless stated
otherwise, and xi denotes the i-th element of ~x. Composition
of functions is denoted by ◦, i.e. f ◦ g (x) = f (g (x)). Non-
subscript/superscript i denotes

√
−1.

B. System Model

We consider a standard MAC model where s transmitters
attempt to send modulated codewords of length ni, i.e. the
i-th transmitter transmits ~xi ∈ Cni , to be sent over an analog
channel. To focus on the novel aspects of the work, we assume
that ni = n for all i, but this assumption can be dropped in
practice. A codebook is the set of all possible codewords, and
is denoted by Xi ⊆ Cn. The j-th element of ~xi may take
values from X j

i , where Xi ⊆ X 1
i × . . . × Xn

i . All messages
are added together in the channel into ~x =

∑s
i=1 ~xi. The

codebook of the sum is denoted by X ⊆ Cn. Similarly, the j-
th element of X is an element of X j , where X ⊆ X 1×. . .Xn.
Note that X j is different from the individual codebooks X j

i ,
and specifically, of a higher constellation. For example, when
s = 2 transmitters use a Binary Phase Shift Keying (BPSK)
modulation, with a phase shift of π/2 radians, ~x has 4
constellation points, which constitute a Quadrature Phase Shift
Keying (QPSK) modulation [21], as shown in Figure 1. In
addition, the memoryless channel adds random additive noise
~Z, to the channel input, resulting in channel output ~Y = ~x+ ~Z.
The noise is independent of the transmitted information.

A soft decoder is a mapping Cn → X1 ×
. . . × Xs. A soft detection MAP decoder outputs

argmax
~x1,...,~xs∈X1×...×Xs

p
(
~x1, . . . , ~xs | ~y(1), . . . ~y(s)

)
, where

p denotes the likelihood function. A demodulator is a
function θ : Cn → X 1 × . . . × Xn that returns the
MAP modulated version of the channel input, namely

argmax
x1∈X 1,...,xn∈Xn

∏n
i=1 p (xi | yi), where the maximum is

taken on each element individually, and not on X . Note that

a ML demodulation does not suffice, as ~x may not to be
uniformly distributed, even if {~xi}i are, depending on the
modulation.

C. Transmission delays

In ZigZag decoding, transmitters send the same codewords,
or, equivalently, packets s times. As different users are not
coordinated and transmit codewords at uncoordinated times,
there is a delay between transmission of different messages.
We denote the delay of the i-th message in the j-th transmis-
sion, relative to the first transmission, by d(j)i . A negative delay
means that the first codeword is delayed with respect to the j-
th message. A delay operator, denoted by D (~xi, di), is an op-
erator that delays ~xi by d(j)i units, and pads it with zeros so all
messages in the same transmission are of the same length. By
definition, d(j)1 = 0 for all j. The first ~xi input of D

(
~xi, d

(j)
i

)
may be omitted, if it is clear from context which codeword is
delayed. Elements of the j-th transmission are denoted by a
(j) superscript. The channel input of the j-th transmission is
denoted by ~x(j) =

∑s
i=1D

(
~xi, d

(j)
i

)
. The channel output in

the j-th transmission is ~Y (j) = ~x(j) + ~Z(j), where
{
~Z(j)

}
j

are mutually independent, as the channel is memoryless. Note
that different elements of ~x(j) may have different modulations,
as a result of edge-effects. This phenomenon is illustrated
in Figure 1, where both transmitters use BPSK modulation
with a phase shift of π/2 radians. The second message is
delayed by one/two time units in the first/second transmission,
respectively. Observing ~x(1), we notice that x1,1 ∈ {i,−i},
while x1,2 + x2,1 ∈ {1 + i, 1− i,−1 + i,−1− i}. As com-
mon in MAC literature, we assume that the channel responses,
including delays, are perfectly known to the receiver. Kazemi
et al. [22] have studied the effect on ZigZag decoding of
imperfectly known channel responses.

D. SGRAND

In the soft detection setting, SGRAND provides a means
to generate error effect sequences in order, on the fly, from
most likely to least likely for any arbitrary memoryless chan-
nel [17]. In Section III-B, we modify SGRAND to rank order
error sequences on the fly for MAC. To check for codebook
membership, we use ZigZag decoding to cancel interference,
as we explain in Section III-A. We then check whether each
of the individual putative codewords are a members of their
codebook. An efficient way of doing so for linear codes would
be to test whether the syndrome of said remainder is zero [23,
Chapter 2].

III. MAC SGRAND

A. Noise free transmission

In order to better understand the decoding strategy proposed
in this paper, we first discuss the case where no noise is added
to the channel input, i.e. ~Z(j) = ~0, so ~Y (j) = ~x(j). The goal is
to recover the transmitted channel inputs ~x1, . . . , ~xs. Decod-
ability is not guaranteed in this case: we need to ensure that
the mapping from ~x1, . . . , ~xs to ~x(1), . . . , ~x(s) is invertible.
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Ԧ𝑥1 = 𝑥1,1, 𝑥1,2, 𝑥1,3
𝐷(0)

Ԧ𝑥2 = 𝑥2,1, 𝑥2,2, 𝑥2,3
𝐷(1)

+

Ԧ𝑥 1 = 𝑥1,1, 𝑥1,2 + 𝑥2,1, 𝑥1,3 + 𝑥2,2, 𝑥2,3

𝐷(0)

𝐷(2)

+

Ԧ𝑥 2 = 𝑥1,1, 𝑥1,2, 𝑥1,3 + 𝑥2,1, 𝑥2,2, 𝑥2,3

Ԧ𝑥1 = 𝑥1,1, 𝑥1,2, 𝑥1,3

Ԧ𝑥2 = 𝑥2,1, 𝑥2,2, 𝑥2,3

𝑥1,1, 𝑥1,2, 𝑥1,3, 0

0, 𝑥2,1, 𝑥2,2, 𝑥2,3

𝑥1,1, 𝑥1,2, 𝑥1,3, 0,0

0,0, 𝑥2,1, 𝑥2,2, 𝑥2,3

Ԧ𝑥𝑐𝑜𝑙 =

𝑥1,1
𝑥1,2
𝑥1,3
𝑥2,1
𝑥2,2
𝑥2,3

𝐴 =

1 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Ԧ𝑦𝑐𝑜𝑙 =

𝑥1,1
𝑥1,2 + 𝑥2,1
𝑥1,3 + 𝑥2,2

𝑥2,3
𝑥1,1
𝑥1,2

𝑥1,3 + 𝑥2,1
𝑥2,2
𝑥2,3

I

Q

Fig. 1: Multiple Access Channel example. There are s = 2 transmitters, that send their messages twice. The delays of the
second transmitter in the first/second transmissions are 1 and 2, respectively. The modulated messages are ~x1 = x1,1, x1,2, x1,3
and ~x2 = x2,1, x2,2, x2,3. Both messages are delayed and summed up into ~x(1) = x1,1, x1,2 + x2,1, x1,3 + x2,2, x2,3 and
~x(2) = x1,1, x1,2, x1,3 +x2,1, x2,2, x2,3. Upon receiving a noiseless version of ~x(1), ~x(2), the decoder, which knows the delays,
can recover ~x1, ~x2, as suggested by the blue arrows. In the example, the first/second transmitter use BPSK modulation with
a phase shift of π/2 radians, which are shown as the red/blue points, respectively. The effective constellation of the sum is a
QPSK modulation, which is illustrated by the black points. The column stack vectors and the participation matrix A are also
shown in the figure.
For example, consider a case with s = 2 transmitters and two
transmissions. Suppose in both transmissions, the delay be-
tween the two transmitters is the same. In this case, the receiver
gets in the second transmission a message that is linearly
dependent on the first message, hence it cannot recover ~x1, ~x2.
To define the problem formally, we define ~xcol, ~ycol a column
stack of ~x1, . . . , ~xs, and all the transmissions of ~y, respectively,
i.e. ~xcol = (~x1, . . . , ~xs)

T
, ~ycol =

(
~y(1), . . . , ~y(s)

)T
. The col

superscript indicates a column stack vector. The length of ~ycol,
denoted by n′, satisfies

n′ = sn+

s∑
j=1

(
max

i:d
(j)
i ≥0

d
(j)
i − min

i:d
(j)
i <0

d
(j)
i

)
The codebook spanned by the elements of ~xcol is denoted by
X col = X1 × . . . × Xs. We define as Ycol as the noiseless
codebook of ~ycol, and for each element of ~ycol, we define
Ycol,i, i ∈ {1, . . . , n′} as a set of all possible options for
noiseless version of ycoli . Similarly, Ycol ⊆ Ycol,1 × . . . ×
Ycol,n′ . Note that Ycol,i 6= Ycol,j may occur, as a result of
edge effects. Let A be the participation matrix, defined as
follows: Ai,j = 1 if element j of ~xcol participates in the
sum of the i-th element of ~ycol, and 0 otherwise. Figure 1
demonstrates these definitions. When applying the definitions
of a demodulator from Section II-B, we get θ

(
~ycol

)
=

argmax
(A·~xcol)1∈Ycol,1,...,(A·~xcol)n′∈Ycol,n′

∏n′

i=1 p
((
A · ~xcol

)
i
| ycoli

)
The ZigZag decoder attempts to recover ~xcol from A, ~ycol. In
the noiseless case, this is equivalent to solving the following
system of linear equations ~ycol = A·~xcol, which can be solved
efficiently e.g. with Gaussian Elimination [24]. In the noise-
free case We say that the code is decodable if such solu-
tion exists. By construction of ~xcol, recovering ~x1, . . . , ~xs is
equivalent to recovering ~xcol. In MAC SGRAND, decodability
serves as a part of the codebook membership check.

B. MAC SGRAND - noisy channel

We now modify SGRAND to fit an additive MAC. The
channel output in this case is given by ~Y col = A ·~xcol+ ~Zcol,

where as explained in Section II, channel inputs are not nec-
essarily distributed uniformly. We first prove that determining
the MAP noise sequence ~zcol is equivalent to finding the MAP
channel input ~xcol, then we present MAC SGRAND that finds
the MAP error sequence, hence it is an optimal decoder.

Theorem III.1. Let ~xcol ∈ X col be a transmitted message
on an additive memoryless MAC, such that ~Y = A · ~xcol +
~Zcol, and A, ~xcol are decodable (as defined in Section III-A).
Then finding argmax

~xcol∈X col

p
(
~xcol | ~ycol

)
is equivalent to finding

argmax
~zcol:~ycol−~zcol∈Ycol

p
(
~zcol | ~ycol

)
.

Proof. Note that
argmax
~xcol∈X col

p
(
~xcol | ~ycol

)
= argmax

~xcol∈X col

p
(
~ycol | ~xcol

)
p
(
~xcol

)
(1)

= argmax
~xcol∈X col

p
(
~zcol

)
p
(
~xcol

)
(2)

= argmax
~xcol∈X col

p
(
~zcol

)
p
(
A · ~xcol

)
(3)

= argmax
~xcol∈X col

p
(
~zcol

)
p
(
A · ~xcol + ~zcol | ~zcol

)
(4)

= argmax
~zcol:~ycol−~zcol∈Ycol

p
(
~zcol | ~ycol

)
(5)

where (1) and (5) follow from Bayes rule, (2) and (4) follow
since ~Xcol and ~Zcol are independent, and (3) follows since the
code is decodable. In (5), we also use the fact that ~xcol ∈ X col

iff ~ycol − ~zcol ∈ Ycol, as the code is decodable.

To implement any GRAND algorithm, we need to check for
codebook membership and rank order all noise sequences from
most likely to least likely. For MAC SGRAND, we use ZigZag
decoding, as explained in Section III-A, to cancel interference,
and check whether the interference-free vector ~xcol is in the
code X col, for example by checking the syndromes for linear
codes [23, Chapter 2]. We now present a method that rank
orders all noise sequences from most likely to least likely.
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We first define for each symbol i of ~ycol the Ordered
Symbol Indices (OSI) as a vector that ranks order, from most
likely to least likely, the error element that affected the i-
th demodulated symbol. Formally speaking, ~si ∈ C|Y

col,i| is
an OSI vector, where the j-th element satisfies θ

(
ycoli

)
−

sij ∈ Ycol,i. A vector ~si is an OSI of the i-th symbol if it
satisfies the following: 1) si1 = 0; 2) p

(
θ
(
ycoli

)
− sij | ycoli

)
≥

p
(
θ
(
ycoli

)
− sil | ycoli

)
∀j < l; and 3) ~si does not contain du-

plicate elements. The OSI of each symbol is a function of ycoli ,
the modulation and the channel statistics, but this dependency
is left implicit for notational simplicity. An OSI is unique
almost surely for continuous memoryless channels. To demon-
strate the definition of OSI, let us consider the example of Fig-
ure 1, assuming the transmission power is 1 and the channel is
an Additive White Gaussian Noise (AWGN) channel. Suppose
that ycoli =

√
3/2 +

√
1/2i, and ycoli does not suffer from

an edge effect, i.e. Ycol,i = {1 + i, 1− i,−1− i,−1 + i}.
Then θ

(
ycoli

)
= 1 + i, and ~si = (0, 2i, 2, 2 + 2i), so

θ
(
ycoli

)
− ~si = (1 + i, 1− i,−1 + i,−1− i), which lists all

possible channel inputs, from most likely to least likely. We
define the previous function, denoted by φ (·), as a function
that returns the previous element in the OSI vector, namely:

φ
(
sij
)
=

{
sij−1, if j > 1
⊥, j = 1

and φ−1 (·) as the inverse of φ (·), where φ−1
(
si|Ycol

i |

)
=⊥.

For example, φ
(
θ
(
ycoli

))
=⊥, as θ

(
ycoli

)
is the MAP demod-

ulated symbol.
Using the definitions of OSI, φ (·) and φ−1 (·), pseudocode

for MAC SGRAND with ABandonment (SGRANDAB) is
given in Algorithm 1. We prove that Algorithm 1 is a MAP
decoder for a memoryless MAC.

C. Main Theorem

Theorem III.2. Algorithm 1 satisfies the following, for an
additive memoryless MAC:

1) Correctness: Error vectors are queried in non increasing
order of likelihood, hence a returned codeword is a MAP
codeword.

2) Progress: Each error vector is queried at most once.

Proof. The proof carries similar flavor of the SISO SGRAND
proof [17]. Let the parent of ~zcol 6= ~0T , denoted by π

(
~zcol

)
,

be defined as the follows:(
π
(
~zcol

))
j
=

{
φ
(
zcolj

)
, if j = j∗,

zcolj , otherwise

where j∗ is defined as in Algorithm 1. A vector ~zcol is called
a child of π

(
~zcol

)
. Note that a child is not unique, while a

parent is. Moreover, while every non-zero error vector has a
unique parent, not all vectors have children: an error vector
where j∗ = n′ and φ−1 (zj∗) =⊥ has no children. Any error
vector has up to n′ children. Observe that Algorithm 1 adds
to S all the children of ~z, after removing it from S. To prove
the theorem, we first prove the following lemma:

Algorithm 1: MAC SGRANDAB

Input: ~ycol, A, b,X col . max #queries b, SGRAND: b =∞
Output: ~xcol

1: g ← 0 . g counts queries performed
2: S ←

{
~0T
}

. S contains candidate error vectors
3: while g ≤ b do
4: ~zcol ← argmax

~vcol∈S
p
(
θ
(
~ycol

)
− ~vcol | ~ycol

)
5: ~̂ycol ← θ

(
~ycol

)
− ~zcol

6: S = S \
{
~zcol

}
7: g ← g + 1

8: ~xcol ← ZigZagDecoder
(
~̂ycol, A,X col

)
9: if ~xcol 6=⊥ then

10: return . MAP codeword found
11: else . Update S for the next query
12: if ~zcol = ~0T then
13: j∗ ← 0
14: else
15: j∗ ← max {j : zj 6= 0} . j∗ > 0
16: end if
17: j ← j∗
18: while j ≤ n′ do
19: if j > 0 then
20: if φ−1

(
zcolj

)
6=⊥ then

21: zcolj = φ−1
(
zcolj

)
22: S = S ∪

{
~zcol

}
23: zcolj = φ

(
zcolj

)
24: end if
25: end if
26: j ← j + 1
27: end while
28: end if
29: end while
30: ~xcol ←⊥ . Codeword not found in b queries; failure
31: return

procedure ZIGZAGDECODER(~̂ycol, A,X col)
if ∃~xcol s.t. A · ~xcol = ~̂ycol & ~xcol ∈ X col then

return ~xcol

else
return ⊥

end if
end procedure

Lemma III.3. Let ~zcol 6= ~0T be an error vector. Define m ∈
{1, . . . , n′} to be the codebook with most elements, i.e. m =
argmax
i∈{1,...,n′}

∣∣Ycol
i

∣∣. The following hold for a memoryless MAC:

1) π
(
~zcol

)
6= ~zcol

2) p
(
θ
(
~ycol

)
− ~zcol | ~ycol

)
≤ p

(
θ
(
~ycol

)
− π

(
~zcol

)
| ~ycol

)
3) π ◦ . . . ◦ π

(
~zcol

)
= ~0T after at most

∣∣Ycol
m

∣∣ · j∗
compositions.

Proof. Let ~zcol 6= ~0T , and j∗ (with respect to ~zcol) be defined
as in Algorithm 1. Note that j∗ > 0. We prove each of the
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properties:
1) Let ~zcol 6= ~0T . By definition π

(
~zcol

)
j∗

= φ
(
zcolj∗

)
, and

zcolj∗
6= 0. By property 3 of OSI, φ

(
zcolj∗

)
6= zcolj∗

.

2) Let qj (w) = p
(
θ
(
~ycol

)
j
− w | ycolj

)
and

q (~w) =
∏n

j=1 qj (wj). The claim is established if
exists j such that q

(
~zcol

)
= 0. Otherwise, assume

q
(
~zcol

)
> 0. Then q

(
~zcol

)
= qj∗

(
zcolj∗

)∏
j 6=j∗

qj
(
zcolj

)
, and

q
(
π
(
~zcol

))
= qj∗

(
φ
(
zcolj∗

))∏
j 6=j∗

qj
(
zcolj

)
. Observe that

q
(
π
(
~zcol

))
/q
(
~zcol

)
= qj∗

(
φ
(
zcolj∗

))
/qj∗

(
zcolj∗

)
≥ 1, by the

definition of OSI, which completes the proof.
3) Let ~zcol 6= ~0T , and j∗ be defined as in Algorithm 1. Let
rj∗ denote the position of zcolj∗

at the OSI. After applying π,
rj∗ ≤

∣∣Ycol
m

∣∣ times, j∗ decreases by at least 1. By iterating
this argument at most j∗ times, we get the zero vector.

We now prove Theorem III.2. Note that in order to prove
Property 2, it is enough to show that an error vector can be
added to S at most once. We prove the theorem by induction
on the number of queries performed g, which is evaluated at
the end of the while loop. To prove the base case of g = 1,
we notice that S is initialized to contain only ~0T , which is the
most likely error vector, so Property 1 is satisfied. We also
notice that in the while loop, ~0T is removed from S, and all
of its children, which are different than ~0T (by Lemma III.3.1)
and one from another, so Property 2 is satisfied. Assume now
that the theorem holds after g queries, and we establish that
it holds after g + 1 queries. Suppose the algorithm queries
the error vector ~zcol in query number g. To prove Property 2,
suppose by contradiction that ~vcol, an error vector that was
previously added to S, is added to S for the second time.
An error vector is added to S only when its unique parent
(by Lemma III.3.1) is queried, so ~zcol = π

(
~vcol

)
. As a

result, we conclude that ~zcol has been queried more than once
within g queries, which contradicts the induction assumption.
To prove Property 1, suppose by contradiction that it is
not satisfied, and there exists another error vector ~vcol that
has not been queried before and is more likely than ~zcol,
namely p

(
θ
(
~ycol

)
− ~zcol | ~ycol

)
< p

(
θ
(
~ycol

)
− ~vcol | ~ycol

)
.

If there exists more than one such vector, let us pick the
most likely one. Notice that ~vcol 6∈ S must hold for each
of the first g + 1 queries. Otherwise, Algorithm 1 would
pick ~vcol as its queried error vector. If π

(
~vcol

)
∈ S ever

held, then ~vcol would be contained at S at some point, since
Algorithm 1 adds the children of the queried noise vector to
S, which contradicts our assumption. Therefore, assume that
π
(
~vcol

)
6∈ S at any point. By Lemma III.3.2, we know that

p
(
θ
(
~ycol

)
− π

(
~vcol

)
| ~ycol

)
≥ p

(
θ
(
~ycol

)
− ~vcol | ~ycol

)
. If

p
(
θ
(
~ycol

)
− π

(
~vcol

)
| ~ycol

)
> p

(
θ
(
~ycol

)
− ~vcol | ~ycol

)
, we

contradict the assumption that ~vcol is the most likely noise
sequence that should have been queried in query number
g+1. Otherwise, assume that p

(
θ
(
~ycol

)
− π

(
~vcol

)
| ~ycol

)
=

p
(
θ
(
~ycol

)
− ~vcol | ~ycol

)
. By repeating this argument at most∣∣X col

m

∣∣ · j∗ times, we conclude that the zero vector was never
added S (by Lemma III.3.3), which is false, since S is
initialized to contain only the zero vector.

D. Complexity

At each iteration of the algorithm, we remove the most
likely vector from S, perform one membership test, and add
at most n′ new vectors to S, hence |S| = O (n′g) after
g queries. An efficient way of implementing S for these
operations is via a Max-Heap [25]. The complexity of the
membership test, denoted by f

(
n′, s,X col

)
, is twofold. At

first, Gaussian elimination [24] has to be performed, and
also a codebook membership test. For linear codes, syndrome
check is a simple mechanism of checking for codebook
membership [23], which boils down to matrix multiplication,
whose complexity depends on implementation, e.g. [26], [27].
When S is implemented as a Max-Heap, the complexity after g
queries is O

(
n′gf

(
n′, s,X col

)
log (n′g)

)
. Hence, the worst-

case complexity is O
(
n′bf

(
n′, s,X col

)
log (n′b)

)
, where b is

the querying thershold. It is worth noting that in practice, we
expect the average case to be significantly lower, as we can
anticipate that the total number of queries until a codeword is
found is significantly lower than b. Also worth mentioning
is the fact that as Signal to Noise Ratio (SNR) improves,
the expected number of queries until a codeword is found
reduces, as is the case with all GRAND-based decoders. MAC
SGRAND is therefore suitable for high-rate short-length codes
in the high SNR regime.

IV. CONCLUSION AND DISCUSSION

In this paper, we presented MAC SGRAND, a MAP al-
gorithm for noisy MAC channels, which is known to be
optimally accurate. It requires no coordination between users.
This algorithm opens a new route for handling MAC: one
that addresses interference cancellation and noise separately,
where a dedicated algorithm that specializes in each of the
problems is applied (SGRAND for the noise, ZigZag decoding
for interference cancellation), without user coordination.

For future work, we plan to show a simple capacity achiev-
ing scheme which involves MAC SGRAND. In particular, non
capacity-achieving approaches for transmitting over MAC are
based on ALOHA and related protocols [28], where transmit-
ters send their packets sporadically, without any coordination
Future directions would consider an ALOHA based protocol,
where users transmit packets whenever they are available.
When one user is idle, a single user may transmit without
interference. Unlike traditional ALOHA relying on backoff,
a MAC SGRAND based scheme may request that colliding
users collide anew.
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