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Abstract—To facilitate applications in IoT, 5G, and beyond,
there is an engineering need to enable high-rate, low-latency
communications. Errors in physical channels typically arrive in
clumps, but most decoders are designed assuming that channels
are memoryless. As a result, communication networks rely on
interleaving over tens of thousands of bits so that channel
conditions match decoder assumptions. Even for short high rate
codes, awaiting sufficient data to interleave at the sender and
de-interleave at the receiver is a significant source of unwanted
latency. Using existing decoders with non-interleaved channels
causes a degradation in block error rate performance owing to
mismatch between the decoder’s channel model and true channel
behaviour.

Through further development of the recently proposed Guess-
ing Random Additive Noise Decoding (GRAND) algorithm,
which we call GRAND-MO for GRAND Markov Order, here
we establish that by abandoning interleaving and embracing
bursty noise, low-latency, short-code, high-rate communication is
possible with block error rates that outperform their interleaved
counterparts by a substantial margin. Moreover, while most
decoders are twinned to a specific code-book structure, GRAND-
MO can decode any code. Using this property, we establish
that certain well-known structured codes are ill-suited for use in
bursty channels, but Random Linear Codes (RLCs) are robust to
correlated noise. This work suggests that the use of RLCs with
GRAND-MO is a good candidate for applications requiring high
throughput with low latency.

Index Terms—Ultra Low Latency, Short Codes, Burst Errors,
Interleaver, BSC, Markov, BCH, Reed-Muller, Random Linear
Codes, Hard Detection Decoders, GRAND

I. INTRODUCTION

Raw communication channels are never memoryless. Chan-
nel fading, inter-symbol interference, multi-user interference,
and external noise sources all have inherent time-scales that
result in time-dependent correlations in instantaneous Signal to
Interference plus Noise Ratio (SINR). Essentially all forward
error correction decoders assume, however, that channels are
memoryless [1], [2] and, as we shall demonstrate, their per-
formance degrades significantly if they are not.

Fig. 1. Interleavers in communication systems introduce significant latency.

As illustrated in Fig. 1, the engineering solution to this
mismatch is to employ interleaving. The transmitter takes data,
adds forward error correction, and buffers a large number of
the resulting code-words. The interleaver permutes the location
of bits across the code-words prior to their transmission. On
the receiver side, the permutation of bits is first inverted by the
de-interleaver, resorting the original bit order, and the resulting
signals are passed to a decoder for error detection and correc-
tion. In this way, errors that are clumped in the transmitted
bit order are separated and distributed across multiple code-
words, giving noise on the medium the appearance of having
less memory.

Even if short codes, such as the CA-Polar codes proposed
for 5G-NR control communications [3]–[5], are employed,
owing to the requirement to permute bits across a large spac-
ing, transmitters need to wait for a sufficient volume of data
before interleaving, resulting in undesirable delays of the order
of those experienced by large packet transmissions consisting
of thousands of bits. There are many emerging applications,
however, where this latency is particularly unwelcome. Ex-
amples include machine communications in IoT systems [6]–
[8], telemetry, tracking, and command in satellite communica-
tions [9], [10], all control channels in mobile communication
systems, and Ultra-Reliable Low Latency Communications
(URLLC) as proposed in 5G-NR [11]–[13].

The only solution to this conundrum is to develop codes
and decoders that can provide effective error correction in
correlated noise channels without resorting to interleaving. By
further developing the recently introduced Guessing Random
Additive Noise Decoding (GRAND) [14], [15] algorithm to
avail of the correlation in noise, here we propose one such
solution.

While it has long-since been known that it is computa-
tionally infeasible to create a universal decoder that works
with all arbitrary long codes [16], [17], which necessitated
the co-design of code-books and code-specific decoders [18]
for long codes, the same is not true for short codes. In
particular, GRAND is a universal decoding scheme that can
work efficiently with any short, high-rate code. GRAND’s
universality stems from its effort to identify the effect of the
noise, from which the code-word is deduced.

The original design established mathematical properties of
a class of Maximum Likelihood hard-detection decoders [14],
[15], but omitted important practical implementation details
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that we complete here for Markovian channels (to be described
in section II-B). For soft detection with increasing levels of
quantization and memoryless channels, a series of variants
have been proposed: SRGRAND [19], [20], ORBGRAND
[21] and SGRAND [22]. In the current work, we adapt
GRAND to make it suitable for channels that induce Markov
correlated error bursts in a hard-detection setting, establishing
that significant gains in Block Error Rate (BLER) performance
are possible for short, high-rate code, obviating the need to use
interleaving and thus enabling URLLC.

Fig. 2. Performance of BCH(127,106) with the Berlekamp-Massey (B-M)
and GRAND-MO decoders in BSC and Markov channels.

While GRAND-MO is a universal decoder, its BLER per-
formance depends on the code book structure used and its
code rate. In general, we observe that it works best in bursty
channels with code books that have limited structure. Fig.
2 provides on example of the GRAND-MO as applied to a
BCH(127,106) code in Markov channels where the average
error burst length is 1/g. GRAND-MO’s decoding perfor-
mance improves for channels with increasing memory, i.e.
as g decreases. In contrast, the performance of the standard
BCH Berlekamp-Massey (B-M) decoder [23] is also presented,
which degrades quickly with increasing average error burst
length. For highly correlated bursts, at a target BLER of 10−3

GRAND-MO sees a greater than 3dB gain when compared
to the B-M decoder. This dramatic difference results from the
fact that GRAND-MO can exploit the structure of error bursts,
instead of dumping them, as standard decoders require.

Notably, even with GRAND-MO, the BCH(127,106) code
loses its robustness in a channel where the lengths of the bursts
are comparable to that of the code-word, e.g. g = 0.025,
so that the average error burst length is 40 bits. This arises
because the structure of BCH code-words clashes with typical
burst patterns. Using GRAND-MO’s universality, later we
shall demonstrate that Random Linear Codes (RLCs) do not
possess this shortcoming.

The rest of the paper is organized as follows. Section II
introduces GRAND and the Markov channel model. Section
III provides an algorithmic description of our GRAND-MO

error pattern generator, which matches the Markov channel.
Section IV provides simulated performance evaluation for
Reed-Muller, BCH and RLC codes, and assesses the impact of
interleavers on performance. Section V summarizes the paper.

II. GRAND FOR MARKOV CHANNELS

A. Guessing Random Additive Noise Decoding

Unlike most deployed decoders, GRAND focuses on iden-
tifying the noise that impacted a communication rather than
the code-word itself. Consider a transmitted binary code-word
Xn ∈ C draw from an arbitrary rate R code-book C, i.e. a
set of 2nR strings in {0, 1}n. Assume independent channel
noise, Nn, which also takes values from {0, 1}n, additively
alters Xn between transmission and reception. The resulting
sequence is Y n = Xn ⊕ Nn, where ⊕ represents addition
modulo 2.

From Y n, GRAND attempts to determine Xn indirectly
by identifying Nn through sequentially taking putative noise
sequences, zn, which we sometimes term patterns, subtracting
them from the received signal and querying if what remains,
Y n ⊕ zn, is in the code-book C. If transmitted code-words
are all equally likely and zn are queried in order from most
likely to least likely based on the true channel statistics, the
first instance where a code-book element is found is an optimal
maximum likelihood decoding [15]. GRAND’s premise is that
for short, high-rate codes, there are much fewer potential noise
sequences than code-words. In addition, it is established in
[15] that one need not query all possible noise patterns for the
decoder to be capacity-achieving, and instead can determine a
threshold number of queries, termed abandonment threshold,
at which a failure to decode can be reported without unduly
impacting error correction performance.

Central to GRAND’s theoretical performance is the query-
ing of putative noise sequences with a likelihood order that
matches the channel statistics. Core to its practical realisation
is the ability to do so efficiently, but that is not described
in the original paper [15]; for Markov channels, this is what
GRAND-MO achieves.

B. Markov Channel and GRAND-MO

We consider a classic two-state Markov chain to model a
binary channel with bursty errors [24]. When in the good state,
G, the channel is error-free and the corresponding entry in
Nn is to a 0, and whenever the channel is in the bad state,
B, there is an error and the corresponding entry in Nn is to a
1. The transition probability from G to B is b and from B to
G is g. An error burst is a set of consecutive 1s in Nn with
its length following geometry distribution of mean 1/g and
variance (1−g)/g2. Same to the length of an error-free run (a
set of consecutive 0s in Nn) with mean of 1/b. The stationary
bit-flip probability of the Markov channel is p = b/(b+g) and
its correlation is 1− b− g. Note that if b = 1− g, the Markov
channel is a memoryless BSC with p = b. Both b and g are
assumed known and can be estimated in practice.

We seek to understand the likelihood of error sequences so
that in Section III we can identify an algorithm that efficiently
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produces the zn patterns sequentially from most likely to least
likely for use with GRAND. Consider that Nn has m bursts
of errors, with l total flipped bits. Three cases arise:
• Case 0: Nn begins and ends with 0s. The probability of
this case is

P0(m, l) =
g

1− b

(1− b)n

b+ g

(
bg

(1− b)(1− g)

)m (
1− g

1− b

)l

.

(1)
• Case 1: Nn either begins or ends with a 1. The probability
of this event is

P1(m, l) =
1− b

g
P0(m, l) (2)

• Case 2: Nn begins and ends with 1s, which occurs with
probability

P2(m, l) =

(
1− b

g

)2

P0(m, l) (3)

In all operating regimes, p = b/(b + g) < 1/2 and we
therefore assume that b < g. If the occurrence of errors is
positively correlated, 0 < 1− b− g, so that 1 < (1− b)/g and
hence

P0(m, l) < P1(m, l) < P2(m, l), (4)

while the reverse is true if the chain is negatively correlated.
For fixed m, the probability decreases as l increases as b <
g. If there is no memory so that the channel is a BSC, i.e.
0 = 1 − b − g, it can be directly confirmed that P0(m, l) =
P1(m, l) = P2(m, l) = (1− p)n−lpl and that m, the number
of bursts, has no relevance.

III. GRAND-MO PATTERN GENERATOR

In order to complete the ordering we need to understand
when, for a current m and lm, the next most likely pattern
has the same m and lm 7→ lm+1 or we need to interlace with
a pattern having an extra burst, m 7→ m+1 with lm+1 ≥ m+
1. For bursty channels the chain will be positively correlated
and so we make this determination by setting P0(m, lm) =
P2(m+ 1, lm+1), from which we obtain

∆l = lm − lm+1 =
log

(
b
g

)
log

(
1−g
1−b

) − 1, 0 ≤ ∆l ≤ n. (5)

When patterns with m bursts contain lm > ∆l + m + 1
flipped bits, patterns with m + 1 bursts are interlaced into
the generative order, starting with an initial lm+1 = m + 1
flipped bits. For clarity, we illustrate the operation of the
pattern generation algorithm in Fig. 3.

Fig. 4 provides a visualization of the Markov query order
for strings of length n = 6 with ∆l = 2 where each column
corresponds to a putative noise sequence, a dot corresponds
to a flipped bit, i.e. a 1, and the absence of a dot corresponds
to a 0. Sequences are ordered in terms of likelihood from left
to right. If the channel was memoryless, i.e. ∆l = 0), these
sequences would have non-decreasing numbers of bit flipped
from left to right, as illustrated in Fig. 5. In a Markov channel,

Fig. 3. Illustration of Markov noise sequence generator

however, due to the bursty structure of the noise, note that
sometimes sequences of higher Hamming weight are queried
before those with less. This important feature explains why the
minimum Hamming distance of a code, which is an essential
metric in a BSC, has significantly less relevance for bursty
channels.

Fig. 4. Order of patterns generated for use in GRAND-MO for a code word
of length n = 6, ∆l = 2, maximum m = 3 bursts, and last number of
flipped bits l = 3. Columns indicate patterns, which are ordered left to right
in decreasing likelihood.

Fig. 5. GRAND-MO pattern order for BSC channel, corresponding to ∆l =
0, for a code word of length n = 6, maximum m = 3 bursts, and final
number of flipped bits l = 3.

For a query abandonment criterion, let the maximum burst
number be mmax and the number of flipped bits when
m = mmax be llast, then we abandon querying and report
a decoding error when

mmax = llast = ⌊d/2⌋ (6)

where d is the minimum Hamming weight of the codewords in
C. With this abandonment condition, one may verify that the
sequences checked by GRAND-MO for Markov channels with
∆l > 0 is a super-set of the set of testing patterns for a BSC
channels (∆l = 0) with the same abandonment conditions, as
can be seen in Fig. 4 and Fig. 5. Since BSC is the channel that
interleavers seek to emulate, such a guarantee is important in
the context of this work.

Finally, having determined the appropriate order in which to
query Markov noise sequences in decreasing probability with
respect to Nn, pseudo code for GRAND-MO is presented in
Algorithm 1. The decoder terminates when either Y n ⊕ zn is
in the codebook or the abandonment criterion is reached.

Generally ∆l increases with channel memory via (5). For a
channel that is memoryless, ∆l = 0, corresponding to a BSC.
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Algorithm 1 GRAND-MO Pseudo-Code
Input: Y n , b, g, C
Output: x̂n or ABANDON

1: ∆l← ⌊ log(b/g)

log( 1−b
1−g )

− 1⌋
2: zn ← 0
3: d← minHamming weight(C)
4: m0 ← 1
5: m1 ← 1
6: l[1]← 1, l[2]← 2, . . . , l[⌊d/2⌋]← ⌊d/2⌋
7: if Y n ∈ C then
8: return Y n

9: end if
10: while m1 ≤ ⌊d/2⌋ AND l[⌊d/2⌋] ≤ ⌊d/2⌋ do
11: for m = m0 TO m1 do
12: Z[m, l[m]]← array of binary strings of length n with

m bursts and l[m] ones
13: for all zn in Z[m, l[m]] do
14: x̂n ← Y n ⊕ zn

15: if x̂n ∈ C then
16: return x̂n

17: end if
18: end for
19: l[m]← l[m] + 1
20: end for
21: if l[m0] = n then
22: m0 ← m0 + 1
23: end if
24: if l[m1] = ∆l +m1 + 1 then
25: m1 ← m1 + 1
26: end if
27: end while
28: return ABANDON

=0

IV. APPLICATIONS AND SIMULATIONS

In the simulations, we map the stationary bit flip probability
of the channel energy per transmitted information bit via the
usual AWGN BPSK formula:

p =
b

b+ g
= erfc

(√
2REb/N0

)
,

where R is the coding rate.

A. Comparison with standard decoders

We first evaluate the performance of GRAND-MO in a
memoryless BSC setting corresponding to idealized infinite
interleaving, i.e. b = 1−g. We use two distinct, standard code-
book constructions, BCH and Reed-Muller (RM), for which
there exists well-established BSC hard detection algorithms:
Berlekamp-Massey for BCH and Majority-Logic [25] for RM.
Fig. 6 reports their performance along with standard theoretical
bounds and GRAND-MO with an abandonment condition of
lmax = 4. Note that the random-error-correcting capabilities

Fig. 6. Performance of GRAND-MO in an idealized BSC channel compared
to standard decoders, and with reference to theoretical random-error-correcting
capability

of Berlekamp-Massey decoding for BCH(127,106) and of
Majority-Logic decoding for the RM(128,99) code are both 3
bit flips, [18]. As GRAND-MO is an optimal maximum like-
lihood decoder, in this setting it marginally outperforms both
well-known decoders by going slightly further and correctly
decoding some transmissions that experienced 4 bit flips.

When channels have memory, however, as seen for the
BCH(127,106) code in Fig. 2, the B-M decoder’s performance
degrades rapidly as the channel becomes more bursty. As B-M
expects a BSC, that is not surprising. In contrast, GRAND-
MO, which is adapted to the channel, instead gains sub-
stantially from additional structure of bursty noise. GRAND-

Fig. 7. Empirical CDF of Hamming weights of noise patterns of successful
GRAND-MO decoding of a BCH(127,106) code in a Markov channel.

MO’s performance improvement is the result of its capa-
bility of decoding noise patterns far beyond the random-
error-correcting capability of standard decoders. To illustrate
this effect, we provide the empirical cumulative distribution
function of Hamming weights of noise patterns that resulted
in successful decodings in Fig. 7 for a single value of Eb/N0.
While the llast = 3, in bursty channels, GRAND-MO regularly
consistently corrects transmission errors with more than many
bit flips, and occasionally more that 100. In bursty channels,
intuition from the BSC does not carry over.

In RM codes, code words contain groups of 1s akin to bursts
in noise. One expects this mean that RM codes are not robust
in bursty channels as adding a putative noise sequence that
is as a burst of 1s may map to an existing, but incorrect,
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codeword. Fig. 8, illustrates the performance of both GRAND-
MO and Majority-Logic decoders for RM(128,99) in Markov
channels. A slight decease of value of g from 1 to 0.8 results
in more than 1.5dB loss in Majority-Logic decoder at a target
BLER of 10−3. GRAND-MO performs slightly better, but still
incurs almost a 1dB loss. With more memory in channels,
corresponding to lower values of g, both decoders suffer
performance degradation. This demonstrates that codes that are
well-structured for BSC channels are not equal when used in
bursty channels, even with an optimal decoder that is matched
to the channel conditions.

Fig. 8. Performance of RM(128,99) with Majority-Logic decoder in BSC and
Markov channels, and with GRAND-MO decoder in Markov channels

B. Performance of Random Linear Codes

The above arguments suggest that the structure of BCH
codes, which have fairly even distribution of 1s, is able to
benefit from decoding that takes into account channel memory
but that the structure of RM codes, which exhibit groupings
of 1s, is ill-suited to such decoding. In effect, RM codes are
highly tailored to the BSC assumption, whereas BCH codes,
which bear some resemblance in their distribution to random
codes, are well suited to Markov channels and can be taken
advantage of by GRAND-MO.

In this vein, we explore the use of Random Linear Code
(RLCs). RLCs are linear block codes that have long been used
for proofs of capacity achievability, but have been heretofore
not considered practical in terms of decodability. That is
entirely understandable as one requires a universal decoder
to be able to decode random codes. For GRAND-MO, RLCs
are no more challenging to decode than any other linear code.

Unlike structured codes that only exist for certain (n, k)
combinations and so provide a limited set of rates, RLCs
inherently provide complete flexibility of n and k by adjusting
dimensions of the generator matrix. This desirable property
allows complete flexibility in rate-matching to channel condi-
tions. For the results in Fig. 9, we randomly produced a single

Fig. 9. Performance of RLC(127,106) with GRAND-BSC (GRAND-MO with
∆l = 0, red lines) and channel adapted GRAND-MO (blue lines)

generator matrix creating a RLC(127,106), which enabled
performance comparison with the BCH(127,106) code used
for Fig. 2. Unlike the RM code, the RLC, which inherently
has limited structure, proves to be robust to bursty noise.
Moreover, it provides near identical error protection to the
same rate BCH code, apart from when bursts are sufficiently
long on average that the BCH code’s performance degrades
and the RLC outperforms it. This suggests that RLCs, which
have been overlooked for long codes due to the computational
impracticality of their decoding, may well be suited for
URLLC.

C. Latency of Interleavers

Interleavers effectively construct long code-words by group-
ing shorter code-words, resulting in significant, undesirable ad-
ditional latency. Moreover, by seeking to emulate the behavior
of a BSC channel, using interleavers precludes the decoding
benefits, shown in Section IV, that taking into account memory
can provide. Here we investigate the extent of interleaving
required to make a Markov-channel look sufficiently BSC-
like so that a standard decoder can perform acceptably and
evaluate the cost, in terms of loss of Eb/N0, that comes with
it.

In theory, interleaving is best achieved by a random permu-
tation, but, in practice, matrix interleavers are most commonly
employed. By that method, a square matrix is created where
stored coded bits awaiting transmission are written into the
matrix as columns and then read out by rows. The result is
that bits that are close to each other in the original order are
well separated before transmission. The de-interleaver awaits
receipt of all interleaved data, and then undoes the permutation
before passing the correctly ordered bits to the decoder.

As a function of the number of BCH(127,106) coded pack-
ets collected by the interleaver, Fig. 10 presents performance
in term of the loss of Eb/N0 experienced by the B-M decoder
in the Markov channel at a BLER of 10−3 with respect to
the corresponding BSC. The gain of GRAND-MO’s channel-
matching performance is presented under the same condition.
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Fig. 10. Performance of B-M decoders with random and matrix interleavers
in Markov channels relative to the BSC and un-interleaved GRAND-MO
decoding. Plotted is Eb/N0 at BLER = 10−3 for a BCH(127,106).

By not interleaving, GRAND-MO sees a consistent 1-4dB
gain over the highly interleaved B-M decoder. Moreover, to
obtain that BSC performance it is necessary to interleave over
hundreds of packets, amounting to tens of thousands of bits,
which necessitates substantial unwanted delays. By ditching
interleavers and using GRAND-MO, we gain both improved
BLER performance and have eliminated an unwanted source
of delay in the process.

V. SUMMARY

The drive to enable ultra reliable low latency communica-
tions for modern applications is hindered by the assumption
common to standard decoders that channels are memoryless.
To match that assumption, interleavers buffer large volumes of
data before transmission and deinterleavers must wait for all
of that data to be delivered before decoding can begin, result-
ing in unwanted delays. To circumvent interleavers requires
decoders that can directly manage channels subject to burst
errors.

As one potential solution, here we further develop the
Guessing Random Additive Noise Decoding (GRAND)
methodology to make it suitable for use with channels ex-
periencing correlated errors. By analysing a Markov model
of channel noise, we develop an efficient algorithm for se-
quentially producing putative noise patterns in order of their
likelihood. When used in GRAND, it results in GRAND-MO,
a hard detection decoder that can accurately decode any short,
high-rate code. Using GRAND-MO we establish that not only
are their latency reductions to be had by ditching interleavers,
but there are also significant BLER performance gains to be
availed of by the retention and use of statistical structure within
the noise.

Using GRAND-MO’s ability to decode any code, we find
that performance with structured Reed-Muller and BCH codes
ultimately degrades as channels become more bursty. Random
Linear Codes, which have been little investigated outside of
theory, however, appear to be robust to channel conditions.
As a result, one possible way forward is to ditch interleavers,

and use RLCs decoded by GRAND-MO to enable accurate,
high-rate ultra-low latency communications.
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