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ABSTRACT

In this article, a novel method to accurately estimate 3D sur-

face of objects of interest is proposed. Each ray projected

from 2D image plane to 3D space is modelled with the Gaus-

sian kernel function. Then a mean shift algorithm with an an-

nealing scheme is used to find maximums of the probability

density function and recovers the 3D surface. Experimental

results show that our method is more accurate to estimate 3D

surface than the Radon transform-based approach.

Index Terms— 3D shape estimation, 3D shape recovery,

3D shape reconstruction, shape from silhouettes, mean shift

1. INTRODUCTION

3D shape estimation from 2D images has been widely stud-

ied in the field of computer vision. One of the most popular

methods to compute 3D shape of interest objects is silhou-

ette volume intersection [1]. Each 2D silhouette of the object

is segmented from an image, and creates a cone to the 3D

world. The intersection of these cones from all camera views

gives an estimation of the 3D object volume and shape. This

approach is called Visual Hull [2] or Shape from Silhouettes.

According to [3], most methods regarding Shape from Sil-

houettes can be categorized into a volume-based and surface-

based approaches. The volume-based approach focuses on

the volume of the visual hull which is discretized as vox-

els. This approach generally suffers from a heavy compu-

tation and memory requirement. The surface-based approach

focuses on surface representation of the visual hull. The sur-

face vertices and faces are estimated by intersecting the gen-

eralized cones from the occluding contours of the silhouettes.

This method requires less computation and memory than the

volume-based approach. However, the intersection in the 3D

space is sensitive to numerical instabilities, especially in com-

plicated objects.

Similarly, tomographic reconstruction is an important and

active research topic in the field of medical image processing,

for example Computed Tomography (CT) and Magnetic Res-

onance Imaging (MRI). The context of tomographic recon-

struction is similar to the volume-based approach in terms of

a back-projection technique. However, 3D medical image is

represented in three dimensions as a stack of two-dimensional

images reconstructed from tomographic projections. Each

slice in the stack is calculated by the Radon transform, which

was first introduced by J. Radon in 1917 and referred to as

the x-ray transform or the projection transform. The Radon

transform is now a mathematical basis of medical image pro-

cessing. An explicit and computationally efficient inversion

algorithm exists for 2D Radon transforms called filtered back-

projection [4, 5]. Tomographic reconstruction reconstructs

3D volume from density data, and silhouette images are a

rough approximation of it. Consequently, similarly to the vi-

sual hull, using the inverse Radon transform on silhouette im-

ages of an object taken from different points of view, allows

to reconstruct an approximation of the 3D shape [6].

The visual hull approach can be understood as estimating

a 3D histogram describing the probability of a point in space

to be part of the object. Instead of a histogram formalism,

we propose here a kernel density estimate to reconstruct 3D

shape of objects more accurately than the Radon transform

based approach [6] (see section 2.2). This new modelling re-

constructs each slice of the object with a smooth probabil-

ity density function (p.d.f.) defined over the spatial domain

and the surface of the object is then estimated using the gra-

dient ascent Mean-shift algorithm to find the maxima of the

p.d.f [7, 8, 9]. This new algorithm is presented in paragraph

2.3. Advantages of our method are that it does not need any

camera calibration parameters since orthographic projection

is assumed, it has a light memory requirement and it is numer-

ically stable. We compare the accuracy of our new method to

the Radon Transform (see section 3).

2. MEAN-SHIFT FOR 3D SHAPE INFERENCE

2.1. Hypotheses and Notations

The 3D shape is recovered by first reconstructing the 2D slices

of the object from each lines of the silhouette images. For

simplification, the camera matrix is chosen as an orthogonal

projection: each foreground pixel on the 2D silhouette im-

ages is projected from the 2D image plane to 3D space as a

ray using an orthographic projection. We use a polar coordi-

nate system to define the ray created by the foreground pixel

1430978-1-4244-4296-6/10/$25.00 ©2010 IEEE ICASSP 2010

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 19,2022 at 12:12:41 UTC from IEEE Xplore.  Restrictions apply. 



𝑖:

𝜌𝑖 = 𝑥 cos 𝜃𝑖 + 𝑦 sin 𝜃𝑖 (1)

All parameters {(𝜌𝑖, 𝜃𝑖)}𝑖=1,⋅⋅⋅ ,𝑛 for all foreground pixels in

all image silhouettes from all camera views are known.

2.2. Kernel density estimator

Having only one ray (𝜌𝑖, 𝜃𝑖), we propose to model the prob-

ability density function of the random variable x = (𝑥, 𝑦),
representing the spatial position of the object in the 2D slice.

If we wanted to have all possible positions to be exactly on

the ray generated by (𝜌𝑖, 𝜃𝑖), then we could select the Dirac

kernel as follow:

𝑝(x∣(𝜌𝑖, 𝜃𝑖)) ∝ 𝛿 ((𝜌𝑖 − 𝑥 cos 𝜃𝑖 − 𝑦 sin 𝜃𝑖)) (2)

Instead, we propose to use the gaussian kernel:

𝑝(x∣(𝜌𝑖, 𝜃𝑖)) ∝
1√
2𝜋ℎ

exp

(−(𝜌𝑖 − 𝑥 cos 𝜃𝑖 − 𝑦 sin 𝜃𝑖)
2

2ℎ2

)
(3)

This latter choice allows to consider the positions close to the

ray as potential positions for the object with a probability non-

zero. Each foreground pixel now creates a fuzzy cylinder of

possible positions of the object instead of a strict line (ray).

When considering the set of all rays, {(𝜌𝑖, 𝜃𝑖)}𝑖=1,⋅⋅⋅ ,𝑛
and assuming them all equiprobable, then we can propose the

following kernel estimate for x:

𝑝(x) ∝
1

𝑛

𝑛∑
𝑖=1

1√
2𝜋ℎ

exp

(−(𝜌𝑖 − 𝑥 cos 𝜃𝑖 − 𝑦 sin 𝜃𝑖)
2

2ℎ2

)
(4)

As an illustration, Figure 1 shows the probability density gen-

erated by equation (4) for a slice of a spherical object (soc-

cer ball) reconstructed using 36 equally spaced camera views,

and compared with the one estimated by the Radon transform.

As can be noticed, the Radon transform reconstructs a surface

(or empty object), whereas the 𝑝(x) models a volume object

(or full object). Our purpose is now to recover the positions

x corresponding to maxima of 𝑝(x). This will be performed

using Mean-shift.

Fig. 1. Probability density 𝑝(x) (left), Radon transform

(right).

2.3. Mean shift Algorithm

We note 𝑑𝑖(x) = (𝜌𝑖 − 𝑥 cos 𝜃𝑖 − 𝑦 sin 𝜃𝑖). The gradient of

𝑝(x) is:

∇𝑝(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂𝑝(x)

∂𝑥
∝ 1√

2𝜋𝑛ℎ3

𝑛∑
𝑖=1

𝑑𝑖(x) cos 𝜃𝑖 exp

(−𝑑2𝑖 (x)
2ℎ2

)

∂𝑝(x)

∂𝑦
∝ 1√

2𝜋𝑛ℎ3

𝑛∑
𝑖=1

𝑑𝑖(x) sin 𝜃𝑖 exp

(−𝑑2𝑖 (x)
2ℎ2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(5)

Using (5), starting from an initial position x(0), the mean-shift

iteration to converge towards the nearest local maximum, is

then:

x(𝑚+1) =
(
𝐿(x(𝑚))

)−1

⋅𝑀(x(𝑚)). (6)

where 𝐿(x) is a 2× 2 matrix:

𝐿(x) =
𝑛∑

𝑖=1

exp

(−𝑑2𝑖 (x)
2ℎ2

)
×

[
cos2 𝜃𝑖 sin 𝜃𝑖 cos 𝜃𝑖
cos 𝜃𝑖 sin 𝜃𝑖 sin2 𝜃𝑖

]
(7)

and 𝑀(x) is the 2× 1 vector:

𝑀(x) =
𝑛∑

𝑖=1

exp

(−𝑑2𝑖 (x)
2ℎ2

)
×

[
𝜌𝑖 cos 𝜃𝑖
𝜌𝑖 sin 𝜃𝑖

]
. (8)

From the starting position x(0), the iteration (6) is repeated

until convergence.

2.4. Bandwidths

If the number of cameras is small, the probability density

might be noisy, and have many spurious modes. In that case,

the ordinary mean shift algorithm might get trapped in mean-

ingless local maxima. To overcome this problem, we propose

to use the mean shift algorithm with a simulated annealing

scheme [10, 11].
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The bandwidth starts large which results in a smoother

probability density function with less local maxima. As the

mean-shift point approaches the global maximum the band-

width is decreased to achieve the greatest accuracy possible.

This scheme allows our method to robustly and quickly con-

verge. The rate at which the bandwidth decreases from ℎ𝑚𝑎𝑥

to ℎ𝑚𝑖𝑛 = 1 is based on a geometric rate [11]:

ℎ𝑏 = 𝛼𝑏ℎ𝑚𝑎𝑥 until ℎ𝑏 = ℎ𝑚𝑖𝑛 with 𝛼 = 0.98, (9)

The minimum bandwidth reflects the uncertainty on the pixel

resolution ℎ𝑚𝑖𝑛 = 1. ℎ𝑚𝑎𝑥 = 10 has been chosen experi-

mentally. In the case when few cameras are used, the mean-

shift iteration may be trapped in a local maximum. This local

maxima can be avoided by re-increasing the bandwidth, since

we know the value of the density on the object max 𝑝(x)
which can be calculated by the number of maximum inter-

sected rays.

Several guess points are created in the spatial domain around

the object, and these are moved using the simulated Mean-

shift algorithm until convergence. The contour of the object

in the slice is then inferred by connecting the closest points

together.

3. EXPERIMENTAL RESULTS

To test our method, a dataset with a ground truth was created

using Autodesk 3ds Max (see examples Fig. 4). 10 mesh

objects of various sizes and proportions were selected and the

silhouette of each was orthographically projected into 360 im-

age planes equally spaced around each object (equivalent set-

ting as a turning table [6]).

The 3D surface of each object in the dataset is estimated

from the silhouette images using our Mean-shift method and

the Radon transform-based approach (computed by the func-

tion iradon in Matlab and associated with the canny edge de-

tector for finding the maxima) [6]. The original mesh object

was used as the ground truth. Figure 2 presents the contours

estimated by Mean-Shift (green) and the Radon Transform

(blue) in a slice of the face (see Fig. 4) compared to the

ground truth (red). Both estimates are convex approximation

to the reference and the mean-shift reconstruction is closer to

the ground truth.

An euclidian distance is computed between the reconstruc-

ted meshes and the reference one, and normalized to remove

the effect of the scale of the object. Figure 3 shows these

distances computed for several camera views (4 to 36 cam-

eras) and averaged over all our 10 objects. Note that for each

number of cameras (abscissa in Figure 3), the experiment is

repeated on each object by selecting randomly the equally

spaced camera views. This is done to remove any effect that

some particular views maybe more informative than others.

The standard error is also reported. As can be seen in Figure

3, the Mean-shift based reconstruction outperforms the Radon

transform one (the distance to the reference is smaller) and
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Fig. 2. Slice reconstruction of the object head (using 36

views).

as expected for both methods, the distance decreases up to a

point as more camera views are available. The two graphs

have a similar pattern as the number of cameras changes.

However, our method is more accurate, and when the distance

is close to the limit of 0.5, adding more cameras does not im-

prove the accuracy.
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Fig. 3. Distance plot with standard error: Mean-shift (red)

and Radon Transform (green).

Figure 4 presents a few 3D objects used with the Mean-

shift reconstructions estimated from 36 camera views.

4. CONCLUSIONS AND FUTURE WORK

We have proposed a new approach to 3D shape estimation us-

ing 2D silhouette images recorded from several camera views.

It is based on a new kernel density estimate of the density
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Fig. 4. 3D reference models (top row) and 3D Mean-Shift estimates (bottom row).

function of the spatial position in each slice and its corre-

sponding Mean-shift algorithm for finding its maxima. Ex-

perimental results have shown that this new statistical ap-

proach is more accurate than the Radon transform approach

where the inverse transform is computed using the filtered

back-projection algorithm.

Future work will look at including priors in our statistical

modelling to get more accurate 3D shape estimation. In addi-

tion, we will look at adding colour information in the frame-

work so that segmenting the object as a pre-process will not

be necessary anymore.
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