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Smooth Kernel Density Estimate for Multiple View
Reconstruction

J. Ruttle, M. Manzke and R. Dahyot

School of Computer Science and Statistics, Trinity College Dublin Ireland

Abstract

We present a statistical framework to merge the information
from silhouettes segmented in multiple view images to infer
the 3D shape of an object. The approach is generalising the
robust but discrete modelling of the visual hull by using the
concept of averaged likelihoods. One resulting advantage of
our framework is that the objective function is continuous and
therefore an iterative gradient ascent algorithm can be defined
to efficiently search the space. Moreover this results in a
method which is less memory demanding and one that is very
suitable to a parallel processing architecture. Experimental
results shows that this approach is efficient for getting a
robust initial guess to the 3D shape of an object in view.

Keywords: Shape from silhouette, Kernel Density estimate,
Newton-Raphson

1 Introduction

3D shape estimation from 2D image sequences has been widely
carried out in the field of computer vision [18]. Merging
information from multiple view images has a wide range of
applications such as creating automatically 3D models of real
objects or buildings, improving video surveillance [21].

In this article, we focus on improving one of the early method
proposed in the domain called the visual hull. This method
is modelling a discrete objective function that is memory
demanding and while some optimisation techniques like octree
spatial data structures can improve its memory requirement
and computational cost it can still be considerable. It is very
robust and it is still often used as an initial guess in many
methods. We propose to reformulate this approach in a smooth
continuous statistical framework that allows optimisation by
efficient gradient ascent techniques. The paper is organised
as follows: we review briefly the domain in section 1.1 and
explain our motivation in section 1.2. Paragraph 2 presents
our new smooth modelling and optimisation is presented in
section 3. Experimental results show promising results (section
4) and further extension of our framework are discussed in the
conclusion.

1.1 Review

Methods for inferring 3D volumes or surface from multiple
camera views can be classified into two broad groups: the

one that uses discrete objective functions in the modelling or
in the optimisation strategy, and the one that uses continuous,
smooth and/or differential ones. Amongst the discrete class,
one of the most popular methods to compute 3D shape of
interest objects is silhouette volume intersection [13]. Each
2D silhouette of the object creates a cone to the 3D world
and the intersection of these cones from all camera views
give an estimation of the 3D object volume and shape. This
approach is called Visual Hull [11]. The objective function
corresponds to a 3D histogram where each elementary cell (i.e.
bin or voxel) is incremented each time a cone is intersecting
it. This approach is similar to the Hough transform using 2D
histogram for estimating aligned edges in images of contour
[6, 9]. Both approaches are connected to the principle of
duality [1, 12] and are related to the inverse Radon transform
[5, 15]. Moreover both can be understood as the sum (or
average) of the likelihoods computed with one observation (one
pixel) taken at a time. This type of inference has been shown
for being very robust [9]. However, when dealing with a 3D
space, this discrete volume-based approach generally suffers
from a heavy computation and memory requirement and if
more dimensions are added for colour or motion these costs
become infeasible.

A way to alleviate the computational load is to infer a
surface instead of the whole volume [8]. The surface-
based approach focuses on surface representation of the
visual hull. The surface vertices and faces are estimated by
intersecting the generalized cones from the occluding contours
of the silhouettes. This method requires less computation
and memory than the volume-based approach. However,
the intersection in the 3D space is sensitive to numerical
instabilities, especially in complicated objects.

Many methods can be formulated as minimising a functional
to find the surface that best explains the consistency of
the pixels in different images (that can be understood as a
likelihood of the observations), with an added regularisation
term (or prior) to ensure the smoothness of the solution [14].
The optimisation can then be performed using Graph cuts
[14] that discretizes the continuous objective function which
can be memory demanding and therefore is intrinsically not
well suited to deal with inference in high dimensional space.
Moreover, many algorithms for inferring surfaces or volumes
from multiple images require a good initial guess around the
object of interest. This can be specified by the user by a
bounding box [14]. Alternatively, the discrete visual hull can



also provide an efficient initial estimate to be refined [7].

1.2 Motivations

The visual hull is a robust crude estimate of the volume of the
object of interest that can be used efficiently as initial guess
for more accurate reconstruction methods and is widely used
in tracking techniques. However its discreet nature is memory
demanding and similarly to the Hough transform [9], the
selection of the voxels (i.e. optimisation of the corresponding
discrete objective function) that belong to the object is also not
computationally efficient.

In general the visual hull method uses a regular sampling on a
3D grid to preform a reconstruction. This is where the world is
broken up into small volume elements (voxels). An algorithm
which uses data from the input images then determines whether
the voxel belongs to the object or lies outside the object. The
main issue with this approach is that the resolution of the final
object depends on the size of the voxels and decreasing the size
of the voxels mean greatly increasing the number of voxels. A
two times increase in resolution means an eight time increase
in voxels. The computation time and memory requirement are
linear with the number of voxels so they too greatly suffer
when an increase in resolution is required. For example the
Middlebury [18] temple object size 10cm x 16cm x 8cm with a
voxel size of 0.5mm requires over 10 million voxels, the dataset
is set up so that each pixel scales to about 0.25mm on the object
at that resolution you would require over 80 million voxels. If
we are calculating a likelihood value for each voxel that say is
saved in a double (8 bytes), this mounts up to 625 MB of data
storage required.

Granted a number of methods have tried to tackle some of these
problems for example some spatial data structures like octree
can give considerable improvements, but does have similar
problems [20].

As a main contribution, we reformulate the visual hull
approach using a smooth continuous objective function for
which we can define an optimisation algorithm that converges
at a much faster rate [9]. This new modelling remains robust
and computationally the advantages are that the resulting
algorithm is not memory demanding since the whole 3D space
do not need to be stored, and it is very suitable for parallel
architecture.

The main advantage of our smooth continuous model is that
we can define an iterative gradient ascent algorithm. This will
converge a point towards the object of interest. The main
difference now is that instead of calculating something for
every voxel element we are iterating a number of points to sit on
the surface of the object. A visual hull with 80 million voxels
would now be equivalent to a 100,000 surface points. This
results in about a thousand times memory saving. While each
surface point has to be iterated about 10 to 20 times to reach
the surface (this depends on how good an initial guess we start
off with, with better guesses this can be greatly improved) and
each iteration is more costly to computer than a single voxel,

there is still a significant saving in computation time.

It can be seen from the Middlebury results that the results of
our method are comparable to that of the standard visual hull
and while not as good as the state of the art in 3D reconstruction
this is because our method is currently only using silhouette
information rather than full colour information. Shape
from silhouette methods can not reconstruct concavities
theoretically, but the concave regions can be estimated using
stereo information, measuring texture or photo-consistency of
surface patches.

The real potential of this framework will be realised when
higher dimensions are explored. For example when searching
in a 6D space (consisting of colour and space domain) using
a histogram or regular sampling approach becomes extremely
impractical due to the exponential increase in memory
requirements and computation time. While our solution should
continue to work with only a minor increase in complexity.

2 Smooth modelling with Kernel density estimates

We consider a recording system composed by C cameras. Pc

represents the camera matrix of camera c and nc is the total
number of pixels in the image recorded by camera c (cameras
may have different resolutions). We note uc

i = (uci , v
c
i ) the ith

pixel location in the image recorded by camera c, mc
i is the

vector of colour intensity values (not yet used in this paper) at
the position uc

i . We consider available the indicator variable πc
i

that is 1 if the pixel is in the object and 0 otherwise: this defines
the binary silhouette image.

Note that additional features can be extracted from the images
and added to the set of observations available. This includes
disparity maps or depth information when stereo-matching
is possible between pairs of images, and the normals of the
silhouette contours [12].

In this paper, we assume that we only know
{πc

i ,u
c
i ,P

c}i=1,··· ,ncand,c=1,··· ,C . The latent variable of
interest corresponding to the 3D location of the object is noted
x = (x, y, z) and from the information available, we aim at
modelling the likelihood of x to be in the object.

2.1 Averaged likelihoods

To ensure robustness of the modelling, we use the averaged
likelihood:

lik(x) =
1

C

C∑
c=1

(
1∑nc

i=1 π
c
i

nc∑
i=1

p(uc
i |Pc,x) πc

i

)
(1)

with p(uc
i |Pc,x) is the conditional of one observation uc

i given
the corresponding camera matrix Pc and the latent 3D position
x. lik(x) has the form of a kernel density estimate (KDE). In
the same spirit as the Hough Transform or visual hull approach,
expression (1) corresponds to the average of all the likelihoods
defined using one observation uc

i at a time.



2.2 Pin-hole camera

The pin-hole camera model is used for modelling the
conditional p(uc

i |Pc,x). Using the camera projection matrices
Pc = [Pc

ij ]0<i≤3,0<j≤4 the 3 × 4 matrix for camera c, the
projected image coordinates of x in the image plane of camera
c are uc(x) = (uc(x), vc(x))T computed by:

uc(x) =

∣∣∣∣∣∣∣
uc(x) =

x Pc
11+y Pc

12+z Pc
13+Pc

14

x Pc
31+y Pc

32+z Pc
33+Pc

34

vc(x) =
x Pc

21+y Pc
22+z Pc

23+Pc
24

x Pc
31+y Pc

32+z Pc
33+Pc

34

(2)

We model the conditional as a Normal distribution:

p(uc
i |Pc,x) =

1

2πh2
exp

[
−‖uc

i − uc(x)‖2

2h2

]
(3)

The shape of the density p(uc
i |Pc,x) looks like as a fuzzy cone

in the 3D space (see Figure 1).

Figure 1: Image plane and pixel ray (black) with cone like
distribution (red), the point (blue) x can be projected back to
the image plane using equation (2).

2.3 Remark

Note that our framework considers that binary silhouettes are
available:

πc
i =

{
0 if the pixel uc

i belongs to the background
1 if the pixel uc

i belongs to the object (4)

However our modelling could also accommodate probability
maps about the position of the object of interest in each camera
view, instead of binary silhouette images. In this case the
binary priors defined in equation (4) would be replaced by
more fuzzy ones having values between 0 (background) and
1 (object).

By regular sampling we can generate a likelihood map of the
object in the scene. Figure 2 shows the kernel density estimate
for several slices of a 3D object. High probabilities are in light
pixels whereas black pixels indicate low probabilities.

3 Optimization

Gradient methods are well known deterministic numerical
approaches for optimisation [16]. Starting with an initial
guess, the position in the 3D space is iteratively updated
(section 3.1) and the sequence of these positions creates a
Markov Chain. In order to speed up convergence and avoid

Figure 2: Example of lik(x). Top: one view of the original
object. Bottom: For visualisation, horizontal slices of lik(x)
are presented starting at the feet then moving up the legs and
body to the shoulders and head (left to right, top to bottom).

local maxima, the bandwidth h in the kernel can be used as
temperature in a simulated annealing like approach [16, 19].
The bandwidth starts large (h = 10) which results in a
smoother probability density function with less local maxima.
As the point approaches the global maximum the bandwidth is
decreased (h = 1) to achieve the greatest accuracy possible and
reflect the uncertainty in the pixel itself.

3.1 Iterative Gradient Ascent Algorithm

The advantage of generating a continuous kernel density
function over a discrete cost function is that now it is possible
to implement an iterative gradient ascent algorithm like
mean-shift [4]. Due to the properties of a pin hole camera the
kernel is non linear which means mean-shift cannot be used.
It is however possible to define a Newton-Raphson algorithm
that uses the gradient and the hessian of the kernel. Starting
from an initial position x(0), a markov chain is updated from
the current position x(m) to the next x(m+1) by:

x(m+1) = x(m) −
[
H · lik(x(m))

]−1
∇lik(x(m)) (5)

This method of optimisation has been shown to be more
efficient (requires fewer steps to converge) than mean shift and
makes fewer assumptions on the form of the underlying kernel
structure [10]. H · lik(x) and ∇lik(x) are respectively the
Hessian matrix and the gradient of the KDE computed at the
3D position x.

Figure 3 represents a slice of the KDE and the magnitude
of its gradient. As we are interested in converging towards



the edge of the object, the stopping criterion for the Markov
chain to converge is a combination of high values for both
‖∇lik(x(∞))‖ and lik(x(∞)).

(a) (b)

Figure 3: (a) lik(x) in a 2D slice and (b) the magnitude of
its gradient ‖∇lik(x)‖. This is computed on the probability
density function in the top row of figure 2 (second from the
left) with 12 cameras, with a bandwidth h = 4 and a truncated
gaussian kernel.

3.2 Selection of the initial points

J starting positions {x(0)
j }j=1,··· ,J are randomly selected in the

3D space and iteratively updated until convergence in using our
simulated anealing framework to {x(∞)

j }j=1,··· ,J . Positions

x
(∞)
j with low probability or low gradient can be discarded

before their meshing is performed to recover the surface of the
object.

To speed-up the process, initial positions {x(0)
j }j=1,··· ,J can

be selected more efficiently using stereo-matching between
pairs of recorded images when this is possible. In that case,
the starting positions will be closer to the surface of the
object allowing a faster convergence. Potential mis-matches
(outliers) that would converge towards local maxima, can also
be discarded using the value of the probability.

A truncated Gaussian kernel has been used to save computation
time and memory allocation. Indeed only the pixels that affect
the KDE at the current position x(m) are used to compute
the update x(m+1). These pixels are found by projecting the
current position x(m) in each camera view using the projection
matrices {Pc}c=1,··· ,C and by selecting neighbours at ±5 h.

Finally, this algorithm is very well suited to take advantage of
parallel architecture since each Markov Chain can be processed
in parallel[3].

4 Experimental results

In section 4.1 we assess the modelling presented in section 2
and section 4.2 illustrates the surface reconstruction using the
algorithm presented in section 3.

4.1 Assessment of the modelling with KDE

A bandwidth of h = 1 is chosen to match the pixel resolution
of the images and a truncated Gaussian kernel has been used.
To assess our modelling and visualise the 3D object, the

probability is calculated on a regular 3D grid every 1mm,
considering all information from every camera. The probability
on the 3D grid is thresholded to give solid binary volume
of the final object. Alternatively, for surface reconstruction,
the boundaries of the horizontal slices can be found using
edge detection techniques. These boundaries represent the
approximate surface points of the object. A third party meshing
algorithm has been used to mesh the points 1.

Three experiments were carried out:

1. Two of the multi-view data sets provided by Middlebury
[18] were used; the Temple with 47 camera views and
the Dino with 48 camera views. Each of the images were
converted to silhouettes using the method described in the
data sets supplementary material. The first two images
in Figure 4 presents our reconstructions for these two
objects.

2. A second data set was synthesised using 3D studio max.
Five objects were chosen; a normal head, a normal
human body, the Stanford bunny, the Utah teapot and the
Stanford Dragon. The objects were scaled to roughly the
same size as the Middlebury objects to allow comparison
between the results. A camera was set up in 3D studio
max to take 360 equally spaced images horizontally
around each object. Each object was then reconstructed
using 9 camera configurations (4, 5, 6, 8, 9, 12, 15,
36 and 45) equally spaced around the object. The
reconstructions can be seen in the last five images of
Figure 4. Two metrics were used to assess the quality of
the reconstructions. Both methods come from [18]; an
accuracy measurement and a completeness measurement.
The accuracy measurement d is computed such that 90%
of the points on the reconstruction are within that distance
d of the ground truth. The completeness measurement
gives the percentage of ground truth points that are less
than 1.25mm away from the reconstruction. The results
of the accuracy and the completeness measurements can
be seen in Figure 5a and 5b. Overall the results show
that the accuracy nears 1mm for the head, human body
and the teapot which is the same as the resolution of
the sampling. The bunny and the dragon approach 3
to 4mm which is good for such complex objects. The
completeness does not look as good though due to a poor
meshing algorithm used. For the accuracy figures there
is a performance boost for odd numbers of cameras (5
and 9). When an even number of cameras is used, each
camera has a perfectly opposite camera which provides
almost identical silhouette (i.e. same information).
Therefore half the cameras are almost redundant, this is
not the case with an odd number of cameras.

3. The third experiment was to test the robustness of the
method. The human body silhouettes were altered with
different levels of salt and pepper noise (5, 10, 15 and

1http://www.mathworks.com/matlabcentral/fileexchange/22185-surface-
reconstruction-from-scattered-points-cloud-part1



20 percent) to simulate noisy binary silhouettes. The
objects were then reconstructed using the same 9 camera
configurations as before. The results of the accuracy and
completeness measurements can be seen in Figure 5c and
5d. This shows that the method is very robust. Even when
20% salt and pepper noise is added to the original data set
it still produces a very accurate reconstruction.

4.2 Assessment of the algorithm

Two main experiments were carried out.

1. Reconstructions were carried out on real images from the
Human Eva 2 [2] data set with 4 cameras and an in house
dataset [17] with 6 cameras, the reconstructions can be
seen and recognised in figure 6 and figure 7.

2. A number of reconstructions were also done on the
Middlebury dataset [18] and the reconstruction using our
algorithm can be seen in figure 8. Our results are not
yet good enough to compete with the leading methods
on the Middlebury dataset. However, our approach uses
very little information from the silhouettes images: the
intensity and colour values of the images are not yet used
in our formalism. This means for instance that no concave
regions can be recovered. The advantages of this method
in terms of memory requirements and computation time
can be seen Table 1. Results from the Middlebury website
can be seen in Table 2.

Figure 8: Reconstructions using the Middlebury dataset [18]
using our algorithm.

5 Conclusion and Future works

We have introduced a novel approach for modelling and
estimating the visual hull using 2D silhouette images recorded
from several pin-hole camera views. The resulting iterative
gradient ascent algorithm has a better convergence rate [9] and

Visual Hull Just KDE IGA
No. of Points 5,292,621 5,292,621 5,000

Memory Requirement 41MB 41MB 120KB
Computation time 10 mins 2.5 hrs 5mins

Table 1: Comparison of standard visual hull method with our
KDE using regular sampling and using our iterative gradient
ascent algorithm (IGA). Numbers based on reconstruction of
the Middlebury [18] dino object. Computation time based on
Matlab code implementation that has not yet been optimised.

Visual Hull Our KDE

Accuracy 2.41mm 2.25mm
Completeness 77.0% 75.5%

Table 2: Comparison of standard visual hull method with our
KDE of the Dino, the results are calculated by the Middlebury
Website [18].

is less memory demanding than histogram-based modelling.
It is also very well suited to take advantage of parallel
architecture and therefore has an interesting potential for being
fast. Experimental results shows that this approach works well
considering the limited information used in the modelling (i.e.
only silhouette information).

One straight forward extension of our framework is to add
colour information to be taken into account by modelling
the averaged likelihood lik(x,m) where m represents the
colour information encoded as either as a 3 dimensional feature
(i.e. RGB values) or 2D one (if keeping only chrominance
information for insuring colour consistency between views).
The conditional can be modelled for instance by:

p(uc
i ,m

c
i |Pc,x,m) ∝

exp

[
−‖uc

i − uc(x)‖2

2h2

]
× exp

[
−‖mc

i −mc‖2

2h2m

]
(6)

Optimisation of lik(x,m) by gradient ascent method is again
applicable in the latent space of (x,m) and will lead to an
estimate of the photohull. This extension should remove the
need of segmenting the object from the background to get
the silhouette images. Finally, this framework will also be
extended by using a prior, leading to the optimisation of a
posterior density function.



Figure 4: 3D reconstructions (using 48 cameras (dino), 47 cameras (temple), both from the Middlebury dataset [18], and 45
cameras for the other objects). More results can be seen at https://www.cs.tcd.ie/˜ ruttlej/
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Figure 5: Results of Reconstructions from clean images (top) and from noisy images (bottom). The black vertical lines show the
max, mean and min values obtained from all the Middlebury results [18].



Figure 6: 3D surface reconstruction using 4 cameras (from Human Eva2 data) [2].

Figure 7: Images from in house dataset with 3D surface reconstructions using 6 cameras [17].
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