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ABSTRACT
Discontinuities in any information bearing signal serve to
represent much of the vital or interesting content in that sig-
nal. A sharp loud noise in a movie could be a gun, or some-
thing breaking. In sports like tennis, cricket or snooker/pool
it would indicate a point scoring event. In both cases the
discontinuity is likely to be semantically relevant without
further inference being necessary, once a particular domain
is adopted. This paper discusses the importance of tempo-
ral motion discontinuities in inferring events in visual media.
Two particular application domains are considered: content
based audio/video synchronisation and event spotting in ob-
servational Psychology.

Categories and Subject Descriptors
H.3.1 [Information Systems]: Content Analysis and In-
dexing—Indexing Methods

General Terms
Algorithms

Keywords
Video Retrieval, Motion Tracking, Information Retrieval,
Event Spotting, Bayesian Inference

1. INTRODUCTION
Content based manipulation of an audiovisual media stream

is only a defined problem once a domain of operation is ac-
knowledged. It is true that unsupervised classification of
feature space can help associate portions of a video stream
with each other. However, it is only through the user that
the semantic meaning and hence usefulness of that classi-
fication can be assessed or exploited. It is often the case
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that the act of acknowledging a particular domain of in-
terest allows semantically relevant features to be identified
and hence a more useful retrieval/access/manipulation sys-
tem to be developed. Features that appear to generalise in
their suitability to many domains, while at the same time
directly semantically relevant, are therefore doubly impor-
tant. Colour histograms are one such feature. It is well
known that a discontinuity in the temporal evolution of im-
age histograms between frames of a sequence are indicative
of shot changes [1]. Shot changes are in turn the building
block of semantic analysis [15, 3]. Camera motion is an-
other such feature, being useful for identifying shot changes
[2] as well as semantic events in cricket [9]. Object motion is
clearly another universally useful and semantically relevant
feature, although much more difficult to extract [14, 4].

This paper explores the use of object based motion cues
for two aplications: content based audio/video synchronisa-
tion and event spotting in observational Psychology. The
idea is to introduce implicit object based motion features
that can be powerful when exploited in the right domain.
The key to that exploitation is the detection of discontinu-
ities in the temporal evolution of the features.

1.1 Detecting Percussive Movement
Consider a video of dancers dancing to a particular tune.

At points which correspond to a beat in the original sound-
track, the dancers will typically exhibit a characteristic pose
movement which demarcates a ‘phrase’ in the dance. Con-
sider further that an editor wishes to create visual material
to accompany a different music track, and has identified the
dance footage as appropriate. A compelling way to bind the
footage to the new audio material is to temporally warp the
video such that frames which demarcate dance phrases are
presented simultaneously with the beats of the new music
track, causing the dancer to appear to dance to a different
tune.

To achieve this automatically, it is necessary to locate in-
stances in the video and audio track which should be aligned
for a convincing final effect. Foreground/background seg-
mentation using block based motion fields makes it possible
to propose regions of foreground motion as primitive motion
models. The motion models are then propagated over the
visual sequence of the dancer. Discontinuites in the shape of
the foreground mask, or in the evolution of a motion patch,
are indicative of the end of a dancing phrase. These events
are defined here as percussive movement events since there
is a rapid change in shape or motion.
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Figure 1: This example shows the movement de-
signed to trigger the ATNR primary reflex (one of
4 reflexes being examined). It is called the Ayres
test. In this test the child is on all fours. The ex-
perimenter rotates the head to the left and right
slowly. The amount of movement made by the arms
at the elbow during the rotation gives one clue about
the severity of the retained reflex. In a non-dyslexic
child, the hypothesis is that the elbow should not
move.

1.2 Detecting episodes in Observational
Psychology

McPhillips et al. [11] presented the notion that there is a
quantifiable connection between Dyslexia and the retention
of certain reflex movements. Dyslexia is now no longer seen
solely as a problem generated by a higher-order brain mal-
function, but as possibly a treatable disorder with a physi-
ological rationale. Evidence was provided that in Dyslexics,
certain primary reflexes [7] are retained. In subsequent de-
velopment, these reflexes become integrated into postural
reflexes to allow the child to progress to the next stage of
movement. But in dyslexics, early reflexes may persist. The
work of McPhillips et al. also indicates that Dyslexia can be
treated by retraining the central nervous system by slowly
repeating these movements. Hence the connection between
the treatment of Dyslexia and a movement therapy.

The DysVideo [8] project at Trinity College was set up
to observe the development of 400 children aged below 6
years. Each child is observed through 3 sessions of 20 min-
utes, each 6 months apart. The session is composed of 14
exercises that are designed to trigger each of four primary re-
flexes. For example, Figure 1 shows the movement designed
to trigger the ATNR[5, 6] primary reflex. The experimenter
rotates the head of a child right and left. While doing so
any involuntary bend in the arms is noted. The idea is that
the presence of that reflex is in some way correlated with
the presence of Dyslexia.

There are two main problems. The first is the retrieval
aspect: given up to one hour of recorded video per session,
is it possible to automatically retrieve the two minutes of
material in which a child is actually performing the exer-
cise? The second is to assess during that portion of video
how well the movement of the child matches some expected
performence measure.

Previous published work by the authors [8] discussed pre-
liminary system design and the start of tool development.
The testers use a palmpilot to generate DTMF audio tones
at the start and end of each recorded session that are recorded
simultaneously onto one audio channel as the video record-
ing proceeds. These DTMF tones encode numerical child
ID codes as well as experiment type. Extraction of this in-
formation from the audio track is done automatically (FFT

analysis) when the data is transferred from tape to disk
later. This information yields a coarse parsing of the video
material. The coarse parsing generally indexes a 20 second
clip of material within which the motion to be measured
occupies about 5 seconds. In each experiment however, the
child undergoes some stylistic motion. Hence is it sensible
that delineating the limb in question and tracking it through
the 20 second clip, would yield a more accurate index for
parsing. This is an example in which it is possible to exploit
context much more heavily to achieve object extraction and
hence tracking.

The essential idea is to generate temporally evolving mo-
tion features and detect the onset of events as discontinuities
in the process itself. For instance, while the child is being
explained the motion to be performed, there is a great deal
of sometimes random activity. However, once the test be-
gins, the activity is much more homogenous. This change
in behaviour is used both to index the relevant portions of
video as well as to instigate a tracker for the assessment of
motion.

2. OBJECT DELINEATION
In both case studies outlined above the first step is to ex-

ploit context to delineate the object of interest and hence
facilitate object tracking. In the case of Psychology (Psy),
this is possible to a large extent because of the stylistic na-
ture of experiments. However, in the Percussive Movement
(PuM) study the only constraint on the content is that the
foreground moving objects are of interest. This implies that
the Psy example is able to exploit more feature information
than in the PuM study.

2.1 Psy Body delineation
Head and arm localisation is facilitated by skin detection

achieved with simple colour segmentation process. The re-
quirement is to configure a label field l(x) that is 1 at pixel
sites x containing skin and 0 otherwise. The algorithm is as
follows.

1. Candidate pixels expressing skin (l(x) = 1) are de-
tected by colour thresholding (from [13]) using the fol-
lowing criterion

l(x) = 1 if

����
���

(R > 95)&(G > 80)&(B > 40)
(R > G)&(R > B)
(R − min(G, B)) > 10
(R − G) > 15

(1)

= 0 Otherwise (2)

The various parameters used in delineating the colour
region were determined from the lighting used in the
pictures recorded. This is the same throughout 100
hours of recording. The first two criterion delineate
skin colour, while the last two reject false alarms due
to pixels that are near grey or near yellow.

2. The label field l(x) is post-processed to smooth the
surface. This is achieved using morphological closing
with a dilation element of 3 pixels and an erosion ele-
ment of 4 pixels.

As shown in figure 1 the arms are generally the largest
area of skin exposed in the view. In addition they are near
vertical. Hence a vertical sum (integration) of the label field
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Figure 2: Example frames from different sequences
showing the results of skin detection and hence body
localisation. The detected skin pixels are coloured in
red. The horizontal and vertical projections of the
label field are shown in green along the left and bot-
tom edges of each frame. This illustrates that the
lobes in vertical projection correspond to arm lo-
cation. The first mode in vertical projection (from
the bottom of the frame) corresponds to arm lo-
cation. The estimated lines delineating the child’s
arms, head and hands are shown superimposed on
the image.

yields modes corresponding to the horizontal position of the
arms. Given the detection field l(x) the vertical projection
is defined as pv[h] =

�
k l(h, k). Noise in pv[h] is removed

by filtering with a Gaussian filter with 9 taps and variance
1.5. To detect modes in pv[h] the two most significant max-
ima are selected that are at least 50 pixels apart. This al-
lows robustness to false alarms within a single arm segment.
Figure 2 clearly shows the correlation between lobes and
horizontal arm location for 4 different recordings of 4 differ-
ent children. Note the false alarms due to poorly detected
skin in the background (due to strangely coloured walls) are
rejected with this process.

Locating the hands is achieved through the horizontal
projection of the label field ph[k] =

�
h l(h, k). The first

maxima corresponds roughly to the middle of the hand po-
sition because of the orientation of the child in the view.
This is shown in Figure 2. The very first non-zero projec-
tion corresponds to the start of the hand location. From
observation of body proportions over 10 hours of experi-
ments it is possible to relate the distance between the start
of the hand and the middle to the position of the wrist, D.
The wrist location is hence taken to be 1.5D. In addition,
the average forearm length is approximately 2.5 the hand
length in this view, hence the location of the elbow can be
roughly delineated vertically. This enables a bounding box
to be placed that contains the hand and arm locations. The
process is found to be better than 99% accurate in these
sequences, provided the child adopts the correct position.
Typical results are shown in Figure 2. For video examples,
see www.sigmedia.tv/research/indexing/dyslexia/.

The location of the arms is used to bound the head lo-

cation horizontally. Therefore, head location is assumed to
be contained within a column of the image bounded by the
left and right arm locations. Unfortunately, detection of the
head using projections is not reliable because in horizontal
projection the face of the experimenter can often cause am-
biguity. Instead a motion based strategy provides a solution
to head localisation and rotation estimation simultaneously.

Figure 3: Estimating the centre of rotation. The
process begins with block based motion estimation,
the leftmost picture shows typical vectors super-
imposed on the image. Perpendicular vectors are
then caculated (as shown in the next image), and
these extended throughout the image and accumu-
lated into an Accumulator array (third image from
right). The mode of the accumulated vectors in the
array yields an estimate of the head centre shown as
the black dot in the rightmost image.

2.2 Head centre estimation
The centre of rotation of the head and the amount of

that rotation are important features for parsing and mea-
surement. Finding the centre of rotation of the head can be
achieved without explicit head localisation. Figure 3 shows
the result of estimating translational motion between two
frames exhibiting head rotation. A multiresolution, gradi-
ent, block based technique was used (see Kokaram[10]) for
motion estimation. Lines perpendicular to each motion vec-
tor, should intersect at the centre of rotation, provided ro-
tation is occurring. When they do not intersect typically no
rotation is occurring and hence the video material is irrele-
vant anyway. To estimate this centre of rotation therefore,
lines perpendicular to the direction of motion in each block
are accumulated in an accumulator array of the same size
as the observed image. In practice of course the lines do
not intersect exactly because of problems in sampling the

185



lines during their entry into the accumulator array. Filter-
ing with a Gaussian filter (anti-aliasing) of size 9 × 9 and
variance 1 alleviates this problem (see Figure 3). A typical
accumulator centre of rotation estimation process is shown
in figure 3.

Detection of the maximum in the accumulator array yields
an estimate for the centre of rotation. The height of a mode
yields a confidence measure for the centre estimate. The
technique is robust enough that when rotation is ongoing,
the centre of rotation is noticeably stable. While this feature
could yield a simple index to the useful video, estimating the
rotation itself is more useful. This is discussed in the next
section.

2.3 PuM Objects
Objects that move coherently are expected to belong to

some semantically relevant portion. Unfortunately, the ob-
ject that is undergoing the Percussive Motion may be per-
ceivable by a human in the context of the performance (e.g.
subtle movements of the hands) but not necessarily signifi-
cant enough to be quantitatively assessed. Hence two kinds
of object analysis are employed. A simple foreground seg-
mentation process based principally on displaced frame dif-
ference, and another based on motion clustering.

In either case, global motion of the scene must be ac-
counted for and this is estimated using the multiresolution
gradient based scheme outlined in [12]. The sequence mo-
tion model is therefore as follows.

In(x) = In−1(Agx + dg + d(x)) + e(x) (3)

where the pixel intensity at position x = [i, j] in frame n
is In(x), the global motion of the scene has an affine com-
ponent Ag and a translational component dg , and the local
motion of the pixel at x is translational d(x). Hence Ag, dg

are fixed over the whole frame, while the local motion d(x)
would vary depending on the foreground motion. e(·) is a
residual model error.

Regions undergoing foreground motion constitute a fore-
ground map, lf (x). Pixels that are part of this map will be
poorly matched with the previous frame if only the global
estimate is used. Hence a simple mechanism for generat-
ing this map is to threshold the difference between glob-
ally motion compensated frames. Hence given DFDg =
In(x)− In−1(Agx + dg), all pixels with DFDg > 15 in this
case are assigned to the foreground motion map. This map
is smoothed with a morphologial filling operation uwing el-
ement size 5 × 5.

There is a huge amount of literature on motion based
segmentation but the motion segmentation step is only one
aspect of the PuM detection process. Hence the idea is to
attempt to limit the computational complexity of the pro-
cess by employing a simple local motion clustering step. Lo-
cal motion is estimated using a a multiresolution, gradient,
block based technique presented in Kokaram[10]. Local mo-
tion segmentation is therefore performed on a block basis
(9 × 9 blocks in this case). Local motion estimation pro-
ceeds after global motion compensation, hence yielding an
estimate for dg(x) in the model above. Assuming that the
first frame contains no local motion (the usual case in most
performances), local motion exceeding a threshold of 3 pix-
els away from the background motion magnitude (i.e. the
results of applying A yields blocks that are candidates for
local motion clusters. Local motion blocks that are spatially

adjacent are then assigned to a single cluster. These clus-
ters then constitute the current local motion objects Oi

k,
indicating the ith object in frame k. These are associated
with some unique label, such that at a pixel x undergoing
motion corresponding to the ith object, the label is Oi

k(x).
The motion of each region with the same label Oi

k(x) is

modelled as a Gaussian with mean vector d̂i and covariance
matrix Mi (a 2×2 matrix). Gradients in the blocks are used
to weight the calculation of mean and covariance. The task
is to assign blocks in the next frame to particular motion
models, or to an outlier class Z. The outlier class allows the
instantiatiation of new moving objects. Class assignment is
based on a MAP criterion. Given site x it is required to ma-
nipulate p(Oi

k(x)|d(x),D(−x)). Here d(x), D(−x) indicate
the motion at the site x and not including that site respec-
tively. This can be decomposed as follows using Bayes’ law.

p(Oi
k(x)|d(x),D(−x)) ∝ p(d(x)|Oi

k(x))× p(Oi
k(x)|Ok(−x))

(4)
The first term on the right is the likelihood that the observed
motion vector belongs to the class i, and the second term is
the prior probability that the pixel belongs to class i given
the current class assignments of the blocks nearby. A Gibbs
energy field is used to encode the MRF prior that encourages
this smoothness in the label field. Using log-likelihood, and
knowing the number of classes, this problem can be posed as
an energy minimisation exercise. Without going into more
details, the algorithm is as follows for class assignment, for
N+1 classes, in which the last class is an outlier class with
Z = N + 1. Consider that the current block to be labeled
has the observed motion d.

1. For each class i , evaluate the vector likelihood energy
Ei

v = [d − d̂i]T Mi[d − d̂i]

2. For each class i , evaluate the class smoothness en-
ergy Ei

s =
�8

m=1 λm||[Oi−O(m)]||, where O(m), m =
1 . . . 8 refers to the current class labels in the 8-connected
neighbourhood of the current block.

3. Calculate an outlier class energy EZ = α+EZ
s , α = 10

acts as a 99% outlier threshold on the likelihood of a
vector not being in any of the classes.

4. Calculate the total energy for each class assignment
Ei = Ei

v + Ei
s.

5. Assign the current motion block to the class with min-
imum energy among the N+1 energies Ei, EZ .

This process is iterated over the whole frame in a checker-
board scan, 5 iterations are sufficient. Contiguous regions
of Z at the end of these iterations are denoted as separate
classes. λ encourages smoothness in the label field and a
value of 5 is found to be useful. Note in addition, that the
colour of the image covered by a particular motion segment
can also be used in the formulation of the likelihood.

Figure 4 shows an apparently simple sequence in which
two halves of a coconut are being banged together. The
PuM in this sequence is clearly in the motion of the shells
and the instant of interest is in the sudden stop at the col-
lision. The motion clusters are shown as coloured blocks
and the white lines indicate significant edges in the image
between blocks. The colour of each motion segment was
modelled as a Gaussian and that was used to augment the
likelihood energy in the algorithm above. As can be seen
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Figure 4: The top two rows show six frames from a sequence showing a coconut shell being beaten. The
bottom two rows show the corresponding motion clusters (in colour) and motion vectors estimated using the
process described.
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the estimated motion of the shells becomes more coherent at
the stop itself. The clusters themselves in general maintain
their coherency over the sequence. Figure 5 shows a much
more complicated example with more complicated seman-
tics. Nevertheless, clusters are forming in a sensible fashion:
generally segmenting the body into arms, torso and legs due
to motion.

3. MOTION FEATURES
Having delineated objects of interest in each application,

motion features can be generated. These features must be
extracted with some view to the content being indexed.

3.1 Psy Motion Features
Estimating the amount of rotation in the head can proceed

after the centre of rotation is estimated. Consider an image
model in the region of the head as follows.

In(x) = In−1(Rx) + e(x) (5)

where I(x) is the image intensity at site x, R is the usual ro-
tation transformation [cos(θ), − sin(θ); sin(θ), cos(θ)] and
e(·) is a Normally distributed error. Estimation of the rota-
tion θ between the current frame n and the previous frame
n− 1 may proceed with a direct matching technique for the
region of interest in the image (i.e. the head), or a paramet-
ric fit to the translational motion field previously estimated.
Direct image matching is typically more accurate but more
computationally intensive. Adopting a parametric fit to the
motion field is good enough for parsing.

Given the purely rotational image sequence model above,
the displacement v̂(x) at a site x = [i, j] can be written as
follows.

v̂(x) = x − Rx (6)

where the coordinates x are measured with reference to
the estimated centre positions from the previous section.
Given observed displacements v(x) = [v1(x), v2(x)], a least
squares estimate for θ is generated by minimising the fol-
lowing error with respect to θ (recalling that R is a function
of θ).

E =
�
x

�
v(x) − [x− Rx]

�2

(7)

A solution can be generated by differentiating with respect
to sin(θ) and cos(θ) and solving the resulting system of equa-

tions. The estimate of rotation θ̂ is then given as

θ̂ = tan−1

	
sin(θ)

cos(θ)



=

�
x(iv2 − jv1)�

x(iv1 + i2 + jv2 + j2)
(8)

Figure 6 shows typical results of rotation estimation for
one sequence using this method. The images in figure 6 are
inserted roughly where they occur on the timeline. They
show that the direction of rotation is correctly estimated
since the sign of the rotation tracks correspond to the direc-
tion of rotation of the head.

3.2 PuM Features
PuM features are derived from the foreground motion map

and the local motion clusters. Principal potential editing
indicies are located at points in the video that depict a sud-
den stop or sudden starts, i.e. a sudden decrease in the
amount of local motion. The foreground motion map is

used to generate a global motion trace M(n), defined by
M(n) =

�
x(lf

n(x)). M(n) is the number of pixels undergo-
ing foreground motion in frame n. Figure 7 shows this trace
extracted from a complicated sequence showing a dancer. It
contains camera motion as well as changes in scene lighting.

As fas as the local motion clusters are concerned, the
statistics of the clusters with time i.e. mean motion mag-
nitide and motion covariance yield useful features. Further-
more the life of the clusters themselves are significant as well
as the cluster area. Sharp stops should coincide with cluster
decline in motion as well as area.

4. PARSING
Indexing the start and end of the useful Psy experimental

data is achieved by detecting the onset of significant rota-
tional movements. This implies detection of both significant
rotation and a discontinuity in the head rotation estimate.
Figure 6 shows an example of this for one sequence. Signif-
icant rotation is detected when the rotation estimate from
head tracking is greater than 2.0 standard deviations away
from the mean arm angle over the whole active portion of
video. Figure 6 shows the detected regions of significance
(delineated by the short blue stems) as well as ground truth
for these sequences (estimated visually). The start and end
of each rotation is estimated to within 5% of the ground
truth (generally to within 1 second). These measurements
have been made over processing of one hour of material.

4.1 PuM
Detection of Percussive events for editing is decidedly

more difficult. The foreground motion trace for the dancer
sequence is shown at the top of figure 7. To remove noise
in the signal it is processed using Savitky-Golay filtering
with a polynomial of order 3. Minima in the smoothed mo-
tion trace are identified by consideration of the sign of its
first derivative. The s(n) sign signal is given by s(n) =

sign(M̂(n) − M̂(n − 1)).
Minima in the smoothed motion trace correspond to those

points in which s(n) changes from -1 to 0 or 1. To account
for residual noise in the signal s(n), it is median filtered with
a filter of size 3. The transitions are then detected in the
median filtered signal. Transitions where the median filtered
s(n) differs in value from the original s(n) are discarded.

At this stage, the signal can be considered as a series of
peaks, corresponding to the regions between local minima.
Each peak is expected to correspond to a movement in the
video, and it is at the end of each peak that the percussive
motion is found. Therefore, each peak region is assessed for
its ‘peakiness’, by comparing the ratio of the peak ascent
to the peak descent. The ascent of a peak is the difference
between its maximum value and its starting value, which
the descent is the difference between the peak value and
the final value. Peaks whose peakiness is less than 20%
are discarded, as the end of these peaks probably do not
correspond to percussive motion. Figure 7 shows how well
this feature alone works for PuM detection in this signal.

The use of the local motion clusters to yield motion mag-
nitude for the coconut sequence is shown in figure 8. Each
line is a plot of motion magnitude for a single cluster over
its lifetime. As can be seen, the decrease in velocity of clus-
ters corresponds exactly with suitable edit points (shown as
dotted lines). In that simple example edit points are located
with 100% reliability with this method. The situation with
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Figure 5: The top two rows show six frames from a sequence showing a dancer. The bottom two rows show
the corresponding motion clusters and motion vectors estimated using the process described. A zoom on the
foreground region is shown.

Figure 6: Estimated rotation versus time in frames. The solid line (black) represents a smoothed graph of the
inter-frame rotation angle, the dash line (red) represents the manually created ground truth indicating when
rotation occurs. The short solid line (blue stem) respresents the estimated start of rotation. The regions
detected as containing rotation agree with the ground truth very well. On average less than 5% of frames
are missed, and there are less than .01% falsely detected frames.
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Figure 8: Cluster mean motion magnitude versus
frame number for the coconut sequence (top) and
the dancer sequence (bottom). Visually assessed
edit points (ground truth) are shown at dotted lines.

the dancer is decidely more complex as shown in the bottom
of the same figure. The vector magnitude of clusters does
indeed decline and show minima at edit points but there
are numerous points that attract false alarm. In this, more
complicated sequence the local motion clusters can be used
to validate the minima discovered in the foreground motion
trace.

Over 10 mins of dancing, PuM events are detected with
a precision of 70% and recall of 60% in general. This is in
comparison with visually assessed edit points which itself is
not a reliable ground truth.

4.2 Audio/Video Synchronisation
The validity of the selected edit points is best assessed

by use in the application itself. Audio beats are first ex-
tracted from the new piece of music using an algorithm first
described by Scheirer [16]. The audio signal is split into six
frequency bands, and each bandpass signal is fed into a bank
of 100 tuned resonators. The resonance frequency showing
the strongest response over all six frequency bands is then
chosen as corresponding to the tempo of the music.

Given the PuM edit points detected above, the idea is to

warp the timeline between visual edit points to coincide with
the extracted audio beats from the new piece of music. The
number of frames of the output video to be generated to the
time of the next beat in the new music track, designated
FBP is therefore known. The number of input video frames
to the next edit point FEP is also known, having been found
using the techniques described above.

Three synchronisation strategies must be adopted depend-
ing on the relationship of FEP and FBP .

• FEP ≤ FBP : In this case, it is desirable to stretch
the section of the input video between the two edit
points so that it is of exactly the same duration as the
time between beat points. This is achieved simply by
repeating frames to attain the required frame rate of
FEP /FBP . More sophisticared frame interpolation is
possible.

• FEP > FBP : In this domain it is required to tempo-
rally compress the video segment extending to the next
edit point so that it fits exactly between the two beat
points. This is achieved by discarding frames from the
input video. The input video can either be copied at a
rate of FEP /FBP , or at a rate that increases exponen-
tially as processing gets closer to the beat point. This
second method results in very strong accentuation of
the edit point frame.

• FEP � FBP : Temporal compression of video results
in a highly unnatural final effect for high rates of ac-
celeration. To avoid introducing this effect, the next
beat point is not accompanied by an edit point frame
if it is so far away that acceleration by a factor greater
than a threshold (3 used here) would be necessary.

Examples of videos generated using the fully automated
application are available at
http://www.mee.tcd.ie/∼hdenman/RAVE/. They show that
despite the numerically moderate performance of the PuM
detection process, the resulting effect is convincing.

5. DISCUSSION
Ground truth for PuM is difficult to acquire. The no-

tion of PuM itself depends on the perception of the human
observer. In addition, semantically relevant objects do not
necessarily consist of coherently moving regions. A good
example is the dress of a female dancer. The mechanics of
cloth imply that those parts close to the body might have
a motion different from other parts. Hence the skirt at the
waist changes motion with the dancer body while the skirt
nearer the floor might still be undergoing smooth motion
due to the previous body behaviour. Therefore for the PuM
application the implicit motion feature, the foreground mo-
tion area, contains more utility than the object based ap-
proach. The object based approach can be used to validate
edit points estimated with the implicit feature, in a hybrid
system. This is because the PuM scenario contains compli-
cated semantics that are not quite well understood.

In the Psy study, the opposite is true. It is a well con-
strained environment and hence object based motion anal-
ysis achieves exactly the desired effect. Parsing and content
analysis is therefore facilitated by the strong semantic un-
derstanding that can be brought to the application.

The paper has shown that discontinuities in various mo-
tion features contain rich information for content analysis.

191



The remaining issue will always be whether there is sufficient
understanding of the semantics of the media for motion fea-
tures to correspond exactly to a useful parsing.
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