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COMPARISON OF TWO ALGORITHMS FOR ROBUST
M-ESTIMATION OF GLOBAL MOTION PARAMETERS

Rozenn Dahyot Anil Kokaram
Department of Statistics Electronic & Electrical Engineering Dpt

Trinity College Dublin, Ireland Trinity College Dublin, Ireland
email: dahyot@mee.tcd.ie email: akokaram@tcd.ie

Abstract
The estimation of Global or Camera motion from image sequences is important both for video

retrieval and compression (MPEG4). This is frequently performed using robust M-estimators with
the widely used Iterative Reweighted Least Squares algorithm. This article presents an investigation
of the use of an alternative robust estimation algorithm and illustrates its improved computationnal
efficiency. The paper also introduces two new confidence measures which can be used to validate
camera motion measurements in the context of information retrieval.
Keywords: Camera motion, M-estimators, Video analysis.

1 Introduction

Content based information retrieval has been a highly active research area during the last decade [14].
The motivation has been that access via keywords allows only a primitive interaction with non-text media
in general. To allow access on the basis of content (e.g. responses to questions like “find all aces in a
game of tennis”) is the key to efficient exploitation of these kinds of information. Typically the process
begins by identifying and extracting feature primitives (colour, shape, motion,...) relevant to the content
and these features might be related in some way to the human perception of the data. The features are
then manipulated jointly in response to user queries or in order to identify events.

Motion is clearly an important feature in retrieval from video media, and Global Motion in particular
captures the movement of the camera operator. This motion is well correlated to important events in video
for example sport broadcasts [11] and can be used as a preliminary task before local motion analysis [9].
In this paper, global motion is considered to be that single motion representation which accounts for the
largest moving area in the image.

A 6 parameter affine model is introduced in section 2 to represent this displacement. Those parameters
are then estimated by minimising an energy function. It is local motion that complicates the estimation of
global motion. In effect, that area of the image which undergoes local motion (or discontinuity) acts as an
outlier in the global motion model. Standard estimation methods as presented in section 3, are sensitive
to the presence of such outliers. By using instead, robust estimation processes [4] (M-estimators), it is
possible to handle the presence of contaminated data in the observations i.e. the effect of global motion
in this case. M-estimation has been applied to many problems in computer vision such as regularisation
[6], motion optical flow estimation [1], object tracking [2], or object recognition and detection [8].

This paper considers two algorithms used for performing robust Global motion estimation with M-
estimators. The first is the so-called Iterative Reweighted Least Squares (IRLS), and the second is the
little known Iterative Modified Residuals (IMR) [10]. This article quantitatively analyses how well they
perform with respect to the accuracy of the motion estimate itself and it compares their computation
times. The paper shows that in fact, the two algorithms lead to the same performances for accuracy, the
IMR is more computationally efficient.
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Of special importance in any estimation problem on real data is to measure the confidence of the
estimates. The paper also introduces two new confidence measures which can be use to validate camera
motion measurements in the context of information retrieval.

2 Image sequence modelling

Motion estimation techniques presented in this article rely on the following image sequence model:���������
	���������������������������������
(1)

where
���������

is the grey level of the pixel at the location given by position vector
�

in the frame � . The
vector function

�����������
is the transformation of image coordinates induced by the motion between time� �"! and � .

�
is the vector formed by the motion parameters. In other words, it means that the current

frame can be created by rearranging the position of the intensities from the previous frame.

Camera Motion Model. To represent motion such as zooming, rotation and translation between the
current frame � and the previous frame �#��! , a 6-parameter affine transformation

�����������$	&%'� ��(
is used where

%
is a )+*#) matrix for affine transformation and

(
is the displacement vector, as below:�����������,	 %'�-�.(	 /10 � 03203450687 /"9: 7 �;/1<>=<>?@7	 /10 � 9 � 032 : � <>=034
9 � 06 : � <>?@7 	�AB�����C�

(2)

where
AB�����
	 / 9 : !EDFD5DDFD5D 9 : ! 7 and

�G	IH 0 �J� 032 � <>= � 034 � 06 � <>?JKML .

Toward a linear residual. The parameter
�

can be estimated by minimising some function of the
residual

�������N	G�O������� � ���������������������� . This residual
�������

is however not linear in
�

. A Taylor series
expansion around the motion parameters

�
is used to linearise the parameter estimation problem as

follows: ��������� � ���������AB�����C���
	QP+���������AB�����C����R�AB������RTSU�V�.W3����� (3)�������
and the higher order terms of the expansion are lumped together in the new residual

W3�����
linear

with respect to the update
SU�

. The
P

operator is the usual multidimensional gradient operator. The
estimation proceeds by recursive estimation of

SU�
and updating of

�YXZ�[�[SU�
. This simple idea

unifies all previous approaches to Global Motion estimations.
The equation (3) is expressed at each location

�
. Considering all the pixels, it can be rewritten using

vectors and matrices such as: \ 	G]�R�SU�"�@WWW
(4)

with the vectors (limiting the notation to the first two locations
�_^B	`� 9 �J� : ��� and

��a�	I� 9b2 � : 2 � ):cedgfhikjmlonqpbrJs�t-jmlUuovJnxw_nqpbrJs�y_sjmlonqp{z�s�t-jmlUuovJnxw_nqp{z�s�y_s...

| }~������ dgfhi � nqpbrJs� nqp{z�s...

| }~
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and the following matrix:�#�������3�o���J��J� ���q���M��������� �{���J��J� �m�q���M������� �J��J� ���q���M������� �3�o���J��J� � �q���M��������� �o���J��J� � �q���M������� �J��J� � �q���M��������>�b���J��J� ���q���M�3�O����� �����J��J� �m�q���M�3����� �J��J� ���q���M�3�O��� �>�b��� ��J� � �q���M�3������� �b��� ��J� � �q���M�3�O��� � ��J� � �q���M�3�����...
...

...
...

...
...

� � 
3 Maximum likelihood estimation

A maximum likelihood approach to estimation of
�

would choose an estimate ¡� which maximises the
likelihood of

�������
as all the sites in the image simultaneously ¢ ��WU� . This is equivalent to minimising

the log liklelihood �8£M¤¦¥
¢ ��WU� . In practice, by exploiting the linearisation of the log-likelihood (as in
the previous section) around a current estimate of

�
called

�¨§
; it is possible to generate an estimate by

successively updating ¡� through ¡� §q©�� 	G� § � ¡SU� . Where
SU� §

is the update to be estimated.
Assuming the distribution of the residual

W W W
is spherical (i.e. multidimensional gaussian with a covari-

ance matrix proportional to the identity matrix), the algorithm can be written as :ª ¤«««««�¬SU�[	�U® ¥N¯�°q±³²�´¶µU· �MW W W>¸ §q¹ ��	Gº1»�H W¦¸ §q¹ ����� K 2T¼½�¨¸ §q©��¾¹ 	 ½�¨¸ §q¹ � ¬SU�¿ ±Àm°q£3Á�¤>±Â¦Ã ® ¥¦ÃJ±oÁ�Ã  À�Äb±  £Å�À�ÃOÆBÇÇ Ç � ½�G	 ½�¨¸ §§ §q¹ � (5)

At each step Ç , ¬SU� is estimated by Least Squares:

¬SU�[	IH ] ¸ §q¹ L ] ¸ §q¹ K ��� ] ¸ §q¹ L \ ¸ §q¹ (6)

4 Robust M-estimation

Least Square estimation is sensitive to gross errors (or outliers) due to, for instance, local motion in the
video different from the global motion or occlusion effects. M-estimators [10] are now widely used to
perform robust estimation of global motion parameters [4, 15, 13]. The underlying assumption is that
the probability density function of the residuals is no longer gaussian, and can be written as:¢ �MW W W>��È Ã�É³ÆËÊm� !)¨Ì »ÎÍ / W3�����ÏoÐ 7ÒÑ (7)

Several functions Í , convex or non-convex, have been proposed in the literature [4, 8, 13]. In our ex-
periments (section 6), we have chosen the convex function Í ��Óm�8	 )oÔ ! �ËÓ 2 �G) , in order to avoid
problems with local minima occurring with non-convex ones which could disturb the comparison of the
algorithms. Ï{Ð is the scale parameter that controls the limit where the influence of the outliers begins to
decrease [10]. This parameter is fixed offline [4] but to simplify, it is set to 1 in the following equations.

The corresponding energy to minimize is non-quadratic and requires specific algorithms. Two have
been proposed in the literature. The first is widely used and is called The location step with modified
weights [10] in the robust statistic framework, or more commonly the Iterative Reweighted Least Squares
[12], or as ARTUR in the Half Quadratic (HQ) formulation [5]. The IRLS algorithm is reviewed in
paragraph 4.2.

The second algorithm, little known in computer vision literature, has first been called The location
step with modified residuals in robust statistics [10] and as LEGEND in the HQ framework [5]. This
algorithm is referred as Iterative Modified Residuals (IMR) and is explained in paragraph 4.3 for global
motion parameter estimation. The section 4.1 briefly explains the origins of the two algorithms and they
are compared in section 4.3.
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4.1 Half-Quadratic Theory

Several explanations can account for both algorithms [10, 5, 8], but for simplicity we choose here the
HQ framework. Maximising ¢ �MW W W¦� in

�
is equivalent to minimize · �MW W W¦�
	Gº » Í ��W3������� iteratively in

SU�
.

HQ theory defines an augmented energy · Õ with the same global minimum:· �MW W W¦�
	 ¯�°q±ÖØ× · Õ �MW W W�mÙ��
	 Ì »ÚÍ Õ ��W3��������ÛU�������TÜ (8)·�Õ is minimized iteratively in
SU�

and
Ù@	 µ ÛU����� ¼ » :ª ¤«««««««««««

ª ¤«««« SU�¨¸ Ý ¹ 	�U® ¥N¯�°q±³²�´#Þ3·�Õ �MW W W>¸ Ý ¹ �mÙ
¸ Ý ¹ �OßÙ
¸ Ý ©��¾¹ 	�U® ¥N¯�°q± Ö Þ ·àÕ �MW W W>¸ Ý ©��¾¹ �mÙ
¸ Ý ¹ � ß¿ ±Àm°q£Á�¤>±Â¦Ã ® ¥¦ÃJ±oÁ�Ã  À�Äb±  £3Å�À�ÃOÆ$áá á � ¬SU�[	QSU�¨¸ ÝÝ Ý ¹ �½� ¸ §q©��¾¹ 	 ½� ¸ §q¹ � ¬SU�¿ ±Àm°q£3Á�¤>±Â¦Ã ® ¥¦ÃJ±oÁ�Ã  À�Äb±  £3Å�À�ÃOÆBÇÇ Ç � ½�G	 ½�¨¸ §§ §q¹ �
The different interactions of the auxiliary variable

Ù
with the residual

W W W
defines the different robust

algorithms of the M-estimation.
Ù

corresponds to weights on the residuals in the IRLS algorithm and is
denoted â in section 4.2.

4.2 Iterative Reweighted Least Squares (IRLS)

The first proposed augmented energy can be written as:· Õ �MW W W� â �
	 Ì »Îã �����NH W3����� K 2 �Vä+� ã ������� (9)

When the auxiliary variable â 	 µ ã ����� ¼ » is fixed, the update is estimated by weighted Least Squares:SU� ¸ Ý ¹ 	IH ] ¸ §q¹ Læå ¸ Ý ¹ ] ¸ §q¹ K ��� �ç] ¸ §q¹ � L�å ¸ Ý ¹ \ ¸ §q¹ (10)

The diagonal matrix å 	[è °  ¥ � â � is then updated by ã ¸ Ý ©��¾¹ �����_	 Ðmé ¸ ê�¸ » ¹x¹2�ë ê�¸ » ¹ . The weights act to reduce
the effect of large residuals in the estimation process. A parametric expression of the function

ä
is

proposed in [8]: ««««« ã 	 Ð é ¸ ê ¹2 êäG	 Í ��WU� � Ðmé ¸ ê ¹2 W
Under some hypothesis on Í [7, 3], this can be expressed as

ä+� ã �¶	QìC����ìæíx� ��� � ã ��� � ã ��ì{íx� ��� � ã � withìC� 9 2 �
	 Í � 9 � .
4.3 Iterative Modified Residuals (IMR)

The second augmented energy can be written as:· Õ �MW W W�mÙ��
	 Ì » H W3����� � ÛU����� K 2 �Ëîo��ÛU������� (11)

When
Ù@	 µ ÛU����� ¼ » is fixed, the update is computed by :SU� ¸ Ý ¹ 	IH ] ¸ §q¹ L ] ¸ §q¹ K ��� ] ¸ §q¹ L � \ ¸ §q¹ � Ù ¸ Ý ¹ � (12)
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The vector
Ù

is updated by
ÛT¸ Ý ©��¾¹ ������	gW3����� / !Ò� Ðmé ¸ ê�¸ » ¹x¹2 ê�¸ » ¹ 7 . Here the auxiliary variable acts again

to reduce the effect of large residuals but here by subtraction of each outlier.
î

has been defined as
[7]:

îo��ÛO�B	 Åmï�Æ�ð³µ>� ��ñ � ÛO� 2 � Í ��ñ�� ¼ . As this expression is not analytically exploitable, a parametric
expression of

î
has also been proposed [8]:««««««««

ÛÒ	�Wò/ !_� Ðmé ¸ ê ¹2 ê 7î¨	 Í ��WU� � / Ð é ¸ ê ¹2 7 2 (13)

Remarks It has been shown that the IRLS algorithm converges in less steps á á á to the estimate ¬SU�than the IMR [10, 8] (cf. figure 1). But in comparing equations (12) and (10), we see that the IMR
algorithm involves less computation (product of matrixes

H ]�¸ §q¹ L ]¨¸ §q¹ K ) at each á step than the IRLS
(
H ]¨¸ §q¹ L å ¸ Ý ¹ ]¨¸ §q¹ K ).

Figure 1: Energy · with respect to the step á . Convergence to the minimum faster for IRLS (diamond-
blue) than for IMR (square-pink).

5 Confidence measures

The local motion behaviour or discontinuity contaminates the observations of the global motion. The
level of contamination can be evaluated using the following measures.

Using the residuals. The probability density function of the residuals ¯  É ´ ¢ �MW W W>� (or its correspond-
ing energy defined as ¯�°q± ´ µ>�8£M¤¦¥¶¢ �MW W W>� ¼ ) is directly connected to estimator behaviour. If the estimate
exactly accounts for the motion of each pixel within the image that is undergoing global motion, then
the residual energy is zero (consequently, the likelihood probability is high). Conversely, high residual
energy implies poor estimation and low likelihood probability.

Using the weights. The auxiliary variable used in the IRLS algorithm collects the weights defined on
each residual. This weight is close to one when the residual is an inlier for the estimation of the global
motion parameter, and close to zero otherwise. The image of the weights can be seen as a confidence map
on the data. We propose a measure using those weights: ó H ã 2 K 	gô�õö ÷ ¸ » ¹ùø �ô õ � . The measure is the Mean
Square weight (MSW) across the entire image, and if most of the image can be accounted for by global
motion, one would expect the IRLS MSW to be 1.0 and the IMR MSW to be 0.0. This measure is slightly
different from that proposed by Bouthemy et al.[4] in that it does not require any prior thresholding.
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6 Experimental results

Artificial sequences Three artificial video sequences (50 images of ú¦ûUD�*8)¦ü¦ü pixels) were generated
by applying a motion with known parameters on an original frame. The sequences show accelerating
global motion in order to simulate rapid camera action.

Accuracy. As the table 1 shows, the accuracy of both algorithms on each parameter are the same. The
error on the translation parameters is bigger than the one of matrix

%
, but is still very small ( ý�ý[! pel).0 � 032 034 06 <>= <>?

IRLS þ�ÿq!OD � 6 ú3ÿq!OD ��� ú3ÿq!OD ��� þ�ÿq!OD � 6 !Uÿq!OD � 2 !Uÿq!OD � 2
IMR þ�ÿq!OD � 6 ú3ÿq!OD ��� þ�ÿq!OD � 6 ú3ÿq!OD ��� !Uÿq!OD � 2 !Uÿq!OD � 2

Table 1: Average error on the parameters.

Computation time. The estimation has been computed using a three level pyramid as in [4] both to
speed up the computation and to have accurate results. Figure 2 shows the advantage of this approach in
terms of computation time: the notations IRLS and IMR (respectively PYR-IRLS and PYR-IMR) mean
that the estimation has been performed without (resp. with) the pyramid of resolution. The curves show
the computation time (in ms) for each frame of the sequence, and have been computed for the pan-only
sequence which presents a decelerating translation for each frame � such that: <{= � � � 	�� Ã�É³Æ��x� �2 ��� .
The initial guess of the algorithms for each frame � is the identity transformation (i.e. in particular< ¸ §	��
m¹= 	 D ). At the beginning of the sequence, the initial guess is far from the solution, and therefore
both algorithms (without using the pyramid decomposition) require more time to converge than at the
end. This is not the case using the pyramid decomposition where a coarse to fine refinement is used. The

IRLS, IMR, PYR-IRLS, PYR-IMR.

Figure 2: Computation time (pan-only).

table 2 presents the average time of computation on all our sequences using the pyramid decomposition.
No obvious difference appears between the performance of IMR and IRLS.

zoompan pan only zoom only
IRLS 641 639 605
IMR 633 666 607

Table 2: Average time (ms) on artificial sequences.
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Real video sequences A video sequence of cricket has been processed using both algorithms ( !�UD¦D
images of

� )UD�*�� � û pixels).
Computation time. On the overall sequence, the IMR is reaching the estimate 10% faster than the

IRLS (in comparing their average times �¦û³!J)���� for IMR and ûTþ � û���� for IRLS over the sequence). As
noticed in section 4.3, when the pixels in the image are numerous (that increases the size of the matrixes
involved in the computation), the computation costs at each á step involving the products of matrixes in
the IRLS algorithm can become time consuming.

Confidence measures. The figure 3 shows the confidence measures computed for the global motion
parameter over the cricket sequence: there is an obvious correlation between the shot changes and weak
values of the confidence measures (high values of the energy using the residuals, and low values of
the confidence measure using weights). Abrupt transitions like cuts are well detected by both confidence
measures, but not gradual transitions. As noticed in [4], confidence measures on the estimated parameters
can also be used to detect shot changes in the video sequences. Figure 6 presents the weights estimated

Figure 3: From top to bottom : ground truth of shot transitions (red dashdot lines for cuts, green dot lines
for dissolves, black solid lines for wipes), confidence measures using residuals (middle) and weights
(bottom).

for some images of the sequence. The weights are presented scaled by 255. High brightness represents
pixels with high weights and dark pixels represent those with low weights. Low weights indicate pixels
which are not part of the area undergoing global motion. This is in effect a representation of objects that
are not following the camera motion such as the wipe in image � 	 û³!Jû or people in frame 1400. Strong
camera activity is detected in image � 	 )��³! (travelling <�= 	 !Jû ) through the presence of outliers on the
right and left borders of the weight map. These are caused by off-scene locations that cannot be matched
in the successive images because of the large inter-frame motion.

7 Conclusion

We have presented two algorithms performing the robust M-estimation. Depending on the size of the
images, we have shown that the IMR algorithm can be faster, for the same accuracy, than the IRLS
algorithm usually used to solve M-estimation for the global motion estimation problem. Global motion
parameters are used for instance to index sport events [11] since the movement of the camera is highly
correlated to the game. The two measures characterising the amount of contaminated data can help to
detect shot changes [4]. Finally, weight maps provide a interesting start for local motion analysis and
object segmentation in videos.
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Figure 4: Images from the cricket sequence with their weighting map µ ã ����� ¼ » . Black pixels correspond
to weights close to 0 (outliers), and white ones are weights close to 1 (inliers).
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thesis, Université de Nice-Sophia Antipolis, France, 1994.
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