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Abstract—This article proposes an online optimal active per-
ception strategy for differentially flat systems meant to maximize
the information collected via the available measurements along the
planned trajectory. The goal is to generate online a trajectory that
minimizes the maximum state estimation uncertainty provided by
the employed observer. To quantify the richness of the acquired
information about the current state, the smallest eigenvalue of
the constructibility Gramian is adopted as a metric. In this arti-
cle, we use B-splines for parametrizing the trajectory of the flat
outputs and we exploit a constrained gradient descent strategy
for optimizing online the location of the B-spline control points
in order to actively maximize the information gathered over the
whole planning horizon. To show the effectiveness of our method in
maximizing the estimation accuracy, we consider two case studies
involving a unicycle and a quadrotor that need to estimate their
poses while measuring two distances w.r.t. two fixed landmarks.
Concurrent estimation of calibration/environment parameters is
also considered for illustrating how the proposed method copes
with instances of active self-calibration and map building.

Index Terms—Active estimation, calibration and identification,
localization, reactive trajectory planning.

I. INTRODUCTION

IN HUMANS, action selection is an important decision pro-
cess that depends on the state of the body and of the envi-

ronment [1]. Because signals in our sensory and motor systems
are affected by variability or noise, our nervous system needs
to estimate these states. Evidence from neuroscience shows that
humans take into account the quality of sensory feedback when
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planning their future actions for better solving this estimation
problem. This seems to be achieved by coupling feedforward
strategies, aimed at reducing the negative effects of noise, with
feedback actions, mainly intended to accomplish a given motor
task and reduce the effects of control uncertainties [2]. In most
cases, a robot also needs to solve a similar estimation problem in
order to safely move in unstructured environments. For instance,
it has to self-calibrate and self-localize w.r.t. the environment
while, at the same time, a map of the surroundings may be
built. These possibilities are highly influenced by the quality and
amount of sensor information (i.e., available measurements),
especially in case of limited sensing capabilities and/or low cost
sensors. Moreover, including self-calibration states (or environ-
ment states) in the estimator increases the dimensionality of
the state vector while the number of measurements typically
remains unchanged [3]. As a consequence, it is important to
determine inputs/trajectories that render all states and calibra-
tion parameters observable and, among them, the ones that
can maximize the information gathered along the trajectory
under possible constraints, such as, e.g., limited energy/control
effort. This allows reducing the estimation uncertainty and in-
creasing the overall estimation performance of the employed
estimator [4].

Given a dynamical system with some outputs (the available
measurements), a first step is to establish whether the observa-
tion problem, which consists in finding an estimation of the
true (but unknown) state of the robot/environment from the
knowledge of the inputs and the outputs over a period of time,
admits a solution [5], [6]. Differently from linear systems, in
the nonlinear case state observability may also depend on the
chosen inputs and, in some cases, one can show the existence
of singular inputs that do not allow at all the reconstruction of
the whole state [7]. A relevant problem is hence to consider
some level of active sensing/perception in the control strategies
of autonomous robots [8]. One crucial point in this context
is the choice of an appropriate measure of observability to be
optimized.

Starting from the nonlinear observability analysis in [5],
which can only provide a “binary” answer about the local weak
observability property of a nonlinear system, in [9], Krener and
Ide have developed an observability measure based on the (local)
observability Gramian (OG). This can be seen as the OG of the
linear time-varying system obtained by linearizing the nonlinear
one around a given nominal trajectory. The main issue with this
observability measure is the difficulty of obtaining a closed-form
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expression for several cases of practical interest in robotics.
Indeed, the OG depends on the transition matrix associated to the
linearized time-varying system, and a closed-form expression
for this matrix is, in general, not available apart from some very
special cases, as e.g., the first-order nonholonomic system (cf.,
[10]) with a particular choice of outputs [11] and the unicycle
vehicle [12]. For all the other cases, i.e., quadrotor UAVs,
manipulators, or humanoids, in which the transition matrix is
not available, the empirical OG is a possible, widely used,
alternative [9]

Wo =
1

4ε2

∫ T

0

⎡
⎢⎢⎢⎣

ΔzT
1 (t)

...

ΔzT
n (t)

⎤
⎥⎥⎥⎦
[
Δz1(t) . . . Δzn(t)

]
dt

where Δzi = z+i − z−i and z±i is the simulated measurement
when the state xi is perturbed by a small value ±ε. As reported
in [9], by letting ε → 0 this approximation converges to the true
OG. However, from a practical point of view, ε cannot be too
small in order to avoid numerical issues. As a consequence,
depending on the dynamics, the empirical OG may be a rough
approximation. In [3], an improved approximation, named ex-
panded empirical OG, is introduced by incorporating higher
order Lie derivatives that are included in the observability matrix
[5]. This makes it possible to capture input–output dependencies
that do not directly appear in the sensor model. Despite the clear
improvement, this measure still remains an approximation of the
real OG.

By definition, the OG measures the level of observability of
the initial state and hence, its maximization actually improves
the performances in estimating (observing) the initial state
of the robot. However, when the objective is to estimate the
current/future state of the robot (which is implicitly the goal of
most of the previous literature on this subject, and of this article
too), the OG is not the right metric. One main contribution of
this article is then to show that the right metric is in this case the
constructibility Gramian (CG) that indeed quantifies the level
of constructibility of the current/future state (see Section II),
which is obviously the state of interest for the sake of motion
control/task execution. As another contribution, in our formu-
lation we do not resort to any approximation of the CG even
for those cases in which the transition matrix is not available in
closed-form (which cover the vast majority of nontrivial robotic
systems). We then propose an online optimal sensing control
problem whose objective is to determine at runtime the future
trajectory that maximizes the smallest eigenvalue of the CG,
which corresponds to the maximum estimation uncertainty. The
need for an online solution is motivated by the fact that, for a
nonlinear system, the CG is a function of the state trajectories,
that, in a real scenario, are not assumed directly measurable.
By resorting to an offline optimization method that relies on an
initial estimation of the state (as done in most prior literature,
e.g., all the abovementioned works), the resulting optimized
trajectory would most likely be suboptimal—for example, in
a worst-case scenario of a system admitting singular inputs, the
optimal trajectory from the estimated initial state could be very
close to a singular one. On the other hand, by exploiting as initial

guess an offline optimization based on the information available
at the starting time, the use of an online strategy can mitigate
the abovementioned shortcoming since the optimal path can be
continuously refined by relying on the current state estimation
that converges over time toward the true state.

In order to make the online optimization problem tractable,
i.e., to be performed in real time, we restrict our attention to the
case of nonlinear differentially flat systems [13], which allows
representing the flat outputs with a family of parametric curves
(B-splines in our case) function of a finite number of parameters
(which become our optimization variables). Finally, we detail
an online constrained gradient-descent optimization strategy
able to consider different levels of priorities for the several
optimization constraints, and we couple it with a concurrent
estimation scheme (an extended Kalman filter in our case) for
recovering an estimation of the true (but unknown) state during
motion.

In [14], a preliminary version of this article has been proposed.
However, the maximization of the smallest eigenvalue of the OG
was considered rather than the one of the CG.1 Furthermore,
in [14], the transition matrix was assumed to be known in
closed-form, which is only possible for very simple dynamics
(e.g., linear time-invariant systems, or specific cases, such as the
unicycle). Finally, in order to demonstrate the effectiveness of
the proposed method, in this article, we consider two case studies
involving a unicycle vehicle and a planar quadrotor (for which a
closed-form solution of the transition matrix is not available) and
a much larger number of tests and scenarios for a comprehensive
validation of the method.

The rest of this article is structured as follows. In Section II,
the CG is introduced and its link with the extended kalman filter
(EKF) is shown. Section III details our constrained optimization
problem for a differentially flat system, where the optimization
variables are the control points of the B-splines that parametrize
the trajectories of the flat outputs. In Section IV, an online
gradient-based solution is presented, whereas in Section VI, a
number of simulation results are reported for the case studies
introduced in Section V for showing the effectiveness of our
method. Finally, Section VII concludes this article.

II. PRELIMINARIES

Let us consider a generic nonlinear system with noisy nonlin-
ear outputs and negligible actuation/process noise

q̇(t) = f(q(t),u(t)), q(t0) = q0 (1)

z(t) = h(q(t)) + ν (2)

where q(t) ∈ Rn represents the state of the system, u(t) ∈ Rm

is the control input, z(t) ∈ Rp is the sensor output (the mea-
surements available through sensors), f(·) and h(·) are smooth
functions (i.e., C∞), and ν ∼ N (0,R(t)) is a normally dis-
tributed Gaussian output noise with zero mean and covariance
matrix R(t).

1In the simple case studies considered in [14], the transition matrix was equal
to the identity matrix and, hence, as it will be clear in next sections, the OG
was equal to the CG. Of course, in more general situations this identity does
not hold.
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The chosen formulation is (purposely) kept quite general for
covering a broad class of practical cases. For instance, the state
q can include the pose of a mobile robot, its linear/angular
velocity (in case the vehicle dynamics is taken into account),
disturbances, as well as the environment (e.g., locations of
landmarks) and/or calibration parameters (e.g., the focal length
of a camera, sensor biases, or physical/geometrical parameters).
Likewise the inputs u can represent velocity or force/torque
commands, and the measurements z can include typical sensor
readings, such as distances, bearing angles, forces, and so on.

The goal of this article is to minimize the state estimation
uncertainty of the employed observer at the final time tf in order
to recover at best the (unmeasurable) stateq(t) by processing the
collected (noisy) sensor readings z(t) and applied inputs u(t)
over an interval [t0, tf ]. We therefore need a suitable metric for
capturing the information content of candidate trajectories q(t)
over [t0, tf ]. Toward this end, we now briefly summarize some
known concepts of nonlinear observability for arriving at the
metric used in this article (which, as explained in the previous
section, is the CG).

The ability of determining the initial state q0 = q(t0) from
knowledge of present and future system output z(t) and input
u(t) over a time interval [t0, tf ] revolves around the notion of
observability [15]. The initial state q0 can be retrieved if one
can distinguish, from the output measurements z(t), various
initial states in a small neighborhood of q0 without going too
far from q0, or equivalently, if one cannot locally admit indis-
tinguishable states. When this holds, system (1)–(2) is called
locally weakly observable. A well-known observability criterion
to check this property for a nonlinear system in the form (1)–(2)
is the observability rank condition (ORC) [5]. However, the
ORC can only provide a “binary answer” about the local weak
observability of the system, i.e., whether there exists (or not)
at least one input, and hence one state trajectory, for (1)–(2)
that allows recovering the initial state q0. An alternative more
quantitative criterium, and hence more amenable to be used as
performance index for quantifying the amount of information
collected along a trajectory, is instead the so-called OG (see
[15] and [16]) Go(t0, tf ) ∈ I Rn×n defined as

Go(t0, tf ) �
∫ tf

t0

Φ(τ, t0)
TC(τ)TW (τ)C(τ)Φ(τ, t0) dτ

(3)
where C(τ) = ∂h(q(τ))

∂q(τ) , W (τ) ∈ Rp×p is a symmetric posi-
tive definite weight matrix (a design parameter), and matrix
Φ(t, t0) ∈ Rn×n is the state transition matrix (see [17] and
[15] for its definition and properties) of the linear time-varying
system obtained after linearizing the nonlinear system (1)–(2)
around a trajectory. This matrix, also known as sensitivity matrix

[16], is formally defined as Φ(t, t0) =
∂q(t)

∂q0
and obeys the

following differential equation:

Φ̇(t, t0) = A(t)Φ(t, t0) , Φ(t0, t0) = I (4)

where A(t) � ∂f(q(t),u(t))
∂q(t) . If the (symmetric and semipositive

definite) OG Go is full rank over the time interval [t0, tf ], then
system (1)–(2) is locally weakly observable [6]. Unlike linear

systems, in the nonlinear case, the OG is a function of the specific
state trajectory q(t) followed during the time interval [t0, tf ]:
therefore, one can attempt optimization of (some norm of) the
OG w.r.t. the state trajectory q(t) for determining the input u(t)
that can maximize the information about the initial state q0

contained in the collected output z(t) (see, e.g., [16] and [14]).
Most robotics applications are, however, more concerned with

the performance in reconstructing the current state q(t) rather
than observing the initial state q0, since knowledge of q(t) is
needed at runtime for implementing the required control action.
The ability of determining the current state q(t) (rather than
the initial one) from knowledge of the present and past system
output z(t) and input u(t) over [t0, t] is instead captured by
the so-called CG [15], [16], which appears to be a less popular
choice than the OG in the existing robotics literature on active
sensing/perception. By letting qf = q(tf ) (where tf can be
considered as either a fixed final time or as the current running
time), the CG is defined as

Gc(t0, tf ) �
∫ tf

t0

Φ(τ, tf )
TC(τ)TW (τ)C(τ)Φ(τ, tf ) dτ.

(5)
From the semigroup property Φ(t0, tf ) = Φ(t0, τ)Φ(τ, tf ) =
Φ−1(τ, t0)Φ(τ, tf ), one has Φ(τ, tf ) = Φ(τ, t0)Φ(t0, tf ).
This can be used to show that the CG is related to the OG by

Gc(t0, tf ) = ΦT (t0, tf )Go(t0, tf )Φ(t0, tf ). (6)

Since Φ(tf , t0) is always nonsingular for continuous-time sys-
tems, it follows that rank(Go(t0, tf )) = rank(Gc(t0, tf )): if
a state trajectory q(t) allows for recovering q0 (full-rankness
of Go), it also allows for recovering qf (full-rankness of Gc)
and vice versa. However, optimization of the CG w.r.t. q(t)
will result in a state trajectory that maximizes the performance
in reconstructing the current state qf rather than observing
the initial state q0. It is also worth noting the role of matrix
Φ(t0, tf ) in (6): its pre/post multiplication shifts at time tf
the information content of Go at time t0 about the initial state
q0. This temporal shifting action will be often exploited in the
following developments. Notice that, as Φ(t0, tf ) depends in
general on the trajectory, the information content of Go may be
shifted at time tf in different manners.

Remark 1: Despite their similar definitions, the OG and the
CG may represent two very different optimization objectives,
and hence generate different optimal trajectories. Consider, for
instance, a unicycle vehicle measuring its planar position in
a global reference frame and needing to estimate its heading:
in [12], the authors show that maximization of the smallest
eigenvalue of the OG results in an optimal path barycentric
w.r.t. the initial position of the vehicle (by considering the
path as a continuous uniform distribution of unitary mass).
Since the only difference between the OG and the CG is the
use of ΦT (t, t0) in place of ΦT (t, tf ) in their definitions, the
CG would depend on the final position of the vehicle rather
than on the initial one. By using the procedure in [12], it is
hence straightforward to show that, when optimizing the CG,
the optimal path results barycentric w.r.t. the final position.
Therefore, the optimal paths in terms of the OG and of the CG
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are completely different since, as explained, they optimize two
different (indeed opposite) objectives.

We conclude by showing an important link between the CG
and the optimal error covariance matrix P for the linearization
of system (1)–(2). Consider the linear time-varying system

q̇(t) = A(t) q(t) +B(t)u(t), q(t0) = q0

z(t) = C(t) q(t) + ν
(7)

where A(t) = ∂f(q,u)
∂q , B(t) = ∂f(q,u)

∂u , and C(t) = ∂h(q)
∂q ,

that is, the linearization of (1)–(2) around a nominal trajectory
q(t). In the absence of process noise, the optimal covariance ma-
trix P (t) for the estimation error is governed by the continuous
Riccati equation [19]

Ṗ (t)=A(t)P (t) + P (t)AT (t)− P (t)C(t)TR−1C(t)P (t)

which exploiting the matrix identity Ṗ
−1

= −P−1ṖP−1,
can be rewritten as

Ṗ
−1
(t) = −P−1(t)A(t)−AT (t)P−1(t) +CT (t)R−1C(t) .

(8)
Considering the initial condition P (t0) = P0, the solution

of (8) is (see [17] and [20])

P−1(t) = ΦT (t0, t)P0
−1Φ(t0, t)

+

∫ t

t0

ΦT (τ, t)CT (τ)R−1(τ)C(τ)Φ(τ, t)dτ .

(9)
Since the second term of (9) is exactly the CG Gc(t0, t) when
W (t) = R−1(t), one has

P−1(t) = ΦT (t0, t)P
−1
0 Φ(t0, t) + Gc(t0, t). (10)

This expression can be interpreted as follows: the first term rep-
resents the contribution of the a priori information P0 available
at time t0 but shifted at time t by the operator Φ(t0, t), while
the second term is the contribution of the information actually
collected during the interval [t0, t].

Interestingly, expression (10) can also be reformulated in
terms of the sole CG: let Gc(−∞, t) represent the CG computed
over the (infinite) interval (−∞, t], and consider the partition

Gc(−∞, t) =

∫ t0

−∞
ΦT (τ, t)CT (τ)R−1(τ)C(τ)Φ(τ, t)dτ

+

∫ t

t0

ΦT (τ, t)CT (τ)R−1(τ)C(τ)Φ(τ, t)dτ.

(11)
Since Φ(τ, t) = Φ(τ, t0)Φ(t0, t), one has

Gc(−∞, t) = ΦT (t0, t)Gc(−∞, t0)Φ(t0, t) + Gc(t0, t).
(12)

By comparing (10) with (12), and by interpreting the a priori
information P−1

0 as the information encoded by the CG over the
interval [−∞, t0], it follows that

P−1(t) = Gc(−∞, t). (13)

We can then conclude that maximization of (some norm of)
Gc(−∞, t) is equivalent to minimization of (some norm of) the
estimation error covariance P (t). Maximization of some norm

of CG is then expected to produce a state trajectory q(t) that
results in an estimated state with minimum uncertainty. As a
side effect, by reducing the estimation error covariance, both
the precision and the convergence rate may also improve [21],
even though these two objectives are not directly encoded in
the CG (and, hence, not explicitly optimized by the machinery
proposed in the following sections).

III. PROBLEM FORMULATION

We now detail the optimal sensing control problem addressed
in this article. Let us consider the nonlinear dynamics (1)–(2),
a time window [t0, tf ], tf > t0, and an EKF built on sys-
tem (1)–(2) for recovering an estimation q̂(t) of the true (but
unknown) state q(t) during motion. The goal is to develop an
online optimization strategy for continuously solving, at each
time t, the following optimal sensing control problem.

Problem 1 (Optimal Sensing Control): For all t ∈ [t0, tf ],
find the optimal control strategy

u∗(t) = argmax
u

‖Gc(−∞, tf )‖ (14)

s.t.,

E(t0, tf ) =

∫ tf

t0

√
u(τ)TMu(τ) dτ = Ē (15)

where ‖ · ‖ is a suitable norm for the CG (discussed in
Section III-A), E(t0, tf ) represents a measure of the “control
effort” (or energy) needed for moving along the trajectory from
t0 to tf , and M > 0 and Ē > 0 are design parameters. Note
that, in our context, the final time tf is not treated as a fixed
parameter but, rather, as the time needed for spending the whole
available energy Ē during the robot motion.

Remark 2: It is important to note that, in general,
‖Gc(−∞, tf )‖ could be unbounded w.r.t. the terminal time
tf and/or the state q(t). For nonlinear dynamic systems with
or without drift, constraint (15) ensures well-posedness of
Problem 1 preventing the state trajectories to grow unbounded in
any nonidealized case. Indeed, any robot system is subject to dis-
sipative effects (e.g., friction between wheels and ground, aero-
dynamic drag, joint friction, and so on) that in practice require
a positive control effort for sustaining motion. Moreover, even
if one decides to consider dissipative effects negligible (e.g., a
UAV subject to gravity with negligible drag), any collected mea-
surements w.r.t. the environment (e.g., relative distance, bearing,
and position) would eventually become uninformative as the
robot travels too far away because of sensor noise, limited max-
imum range/resolution, or any other practical sensor limitation.
Finally, other constraints needed by the optimization problem
may also prevent an unbounded growth of the state trajectories
in presence of drift. For instance, a “bounding box” constraint for
keeping the state trajectories confined (e.g., inside a room) would
obviously avoid the issue, and analogously any other constraint
requiring a positive norm of the control action over time (thus,
imposing a continuous expense of control effort). Some of these
possibilities have, indeed, been exploited in the quadrotor UAV
simulations of Section VI-E where one feasibility requirement
(flatness regularity) translates into demanding a positive thrust
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at all times, and a sensor noise covariance growing with the
distance to the measured landmarks has been considered.

As explained, the need of an online solution is motivated by
the fact that Gc is a function of the state trajectory q(t) which
is not assumed available. On the other hand, during the robot
motion, it is possible to exploit a state estimation algorithm, such
as an EKF, for improving online the current estimation q̂(t) of
the true state q(t), with q̂(t) → q(t) in the limit. A converging
state estimation q̂(t) makes it possible to continuously refine
(online) the previously optimized future path by exploiting the
newly acquired information during motion.

We now proceed to better detail the structure of Problem 1
and of the proposed optimization strategy.

A. Choice of the CG Performance Index

Among the many possible (matrix) norms, in this article,
we consider the smallest eigenvalue of the CG as performance
index, i.e., ‖Gc(−∞, tf )‖ = λmin (Gc(−∞, tf )). Since the in-
verse of the smallest eigenvalue of the CG is a measure of
the maximum estimation uncertainty [see (13)], maximizing
λmin (Gc(−∞, tf )) is expected to minimize the maximum esti-
mation uncertainty of the estimated state q̂(t) [11]. The use of
the smallest eigenvalue as a cost function can, however, be ill-
conditioned from a numerical point of view in case of repeated
eigenvalues. For this reason, we replace λmin (Gc(−∞, tf ))
with the so-called Schatten norm

‖Gc(−∞, tf )‖μ = μ

√∑n

i=1
λ
μ
i (Gc(−∞, tf )) (16)

where μ � −1 and λi(A) is the ith smallest eigenvalue of a
matrix A: it is indeed possible to show that (16) represents
a differentiable approximation of λmin(·) [22]. The choice of
taking the smallest eigenvalue as matrix norm for the CG is
also known as E-Optimality criterium, which is related to the
maximum estimation uncertainty.

Remark 3: We note that the used cost function (Shatten norm
or smallest eigenvalue of the CG) does not satisfy the Bellman
principle, i.e., it is not additive since given two square matrices
A and B, λmin(A+B) 	= λmin(A) + λmin(B) in general. As
a consequence truncations of optimal paths need not to be
optimal: for instance, given the optimal path obtained for an
energy Ē1, if one was interested in reducing the uncertainty by
spending less energy Ē2 < Ē1, in general one would need to
follow a completely different optimal path (and not the simple
“truncation” at Ē2 of the path optimized for Ē1) because of the
nonadditivity of the cost function.

Clearly, other choices are also possible, see [23] for an
overview. However, we believe that the E-Optimality criterium
is the most appropriate choice when addressing observability
optimization problems, since other existing criteria may lead
to undesired behaviors. Consider, for instance, the (popular)
trace operator taken as matrix norm of the CG (also known
as A-Optimality criterium), which is related to the average
estimation uncertainty. On one side, this measure is additive
and hence satisfies the Bellman principle. On the other side, it

can lead to contradictory results w.r.t. the notion of observability
as illustrated in the following Remark 4.

Remark 4: Consider a planar omnidirectional robot (mod-
eled as a first-order kinematic integrator) that measures its
distance w.r.t. a beacon at the origin of a world reference frame,
and that needs to estimate its world-frame position (x, y) from
the collected measurements. In this case, the transition matrix is
the identity. As a consequence, the OG and the CG computed in
a time interval (t0, tf ) coincide (see [18]) and their trace is equal
to tf − t0 = T for any path with length T . This would hold also
in case the chosen path results in a null smallest eigenvalue for G
(as long as all eigenvalues sum up to T ), thus clearly indicating a
nonobservable mode (i.e., the component of the state associated
to the zero eigenvalue).

Similar considerations can also be drawn for the D-Optimality
criterium, which is related to the volume of the estimation uncer-
tainty ellipsoid by maximizing the determinant of CG (OG). The
choice of adopting the smallest eigenvalue (E-Optimality) index
guarantees, instead, optimization of the worst-case performance
and, thus, prevents the occurrence of undesired results like the
ones discussed above.

B. CG Decomposition

We now detail a decomposition of the CG instrumental for
solving online Problem 1. Let t ∈ [t0, tf ] be the current time
during the robot motion along the planned trajectory: similarly
to (12), Gc(−∞, tf ) can be expanded as

Gc(−∞, tf ) = Φ(t, tf )
TGc(−∞, t)Φ(t, tf ) + Gc(t, tf )

= Φ(t, tf )
TGc(−∞, t)Φ(t, tf )

+

∫ tf

t

Φ(τ, tf )
TC(τ)TW (τ)C(τ)

×Φ(τ, tf ) dτ. (17)

By partitioning Φ(τ, tf ) = Φ(τ, t)Φ(t, tf ) one has

Gc(−∞, tf ) = Φ(t, tf )
T

(
Gc(−∞, t)

+

∫ tf

t

Φ(τ, t)TC(τ)TW (τ)C(τ)Φ(τ, t) dτ

)
Φ(t, tf )

= Φ(t, tf )
T
(Gc(−∞, t) + Go(t, tf )

)
Φ(t, tf ). (18)

This decomposition of the CG is quite insightful for our goals:
the first termGc(−∞, t) represents a memory of the information
about the current q(t) collected while moving during [t0, t] plus
any additional a priori information that was possibly available
at time t0 (representative of the interval [−∞, t0]). The term
Gc(−∞, t) is obviously “fixed” and cannot be optimized any
longer at the current time t. On the other hand, the second term
Go(t, tf ) stands for the information yet to be collected during
the future interval [t, tf ]: this term can still be optimized at time
t. Note that this contribution (correctly) takes the form of an OG
since it encodes the information collected on the future period
[t, tf ] about the “initial state” q(t) (see Section II). Finally, the
pre/post multiplication by Φ(t, tf ) shifts all contributions at the
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final time tf (this term is also not fixed and can be optimized at
the current time t).

From an implementation point of view, we also note that
Φ(t, tf ) and Go(t, tf ) in (18) are function of the state evolution
q(t) over [t, tf ] which, as explained, is assumed unknown:
therefore, these two terms must be evaluated on a predicted state
trajectory generated from the current estimated state q̂(t). The
termGc(−∞, t) in (18) can instead be directly obtained via (13)
as the inverse of the current (estimated) covariance matrix P (t)
generated by the EKF.2

C. Flatness and B-Spline Parametrization

In order to reduce the complexity of the optimization proce-
dure adopted to solve Problem 1 and, hence, to better cope with
the real-time constraint of an online implementation, we make
two simplifying working assumptions.

First, we restrict our attention to the case of nonlinear dif-
ferentially flat systems [13]: for these systems, it is possible
to find a set of outputs ζ(q) ∈ Rκ, named flat, such that the
state q and inputs u of the original system can be algebraically
expressed in terms of the outputs ζ and of a finite number of
their time derivatives. In our context, the flatness assumption
for system (1) allows avoiding any numerical integration of the
nonlinear dynamics (1) for generating the state evolution q̂(τ),
τ ∈ [t, tf ], from the current estimated state q̂(t) by applying the
planned inputs u(t).

Second, we choose to parameterize the flat outputs ζ(q)
(and, as a consequence, the state and inputs as well) by a
family of curves function of a finite number of parameters.
This choice further reduces the complexity of our optimization
problem from an infinite-dimensional to a finite-dimensional
one. Among the many possible parametric curves, we con-
sider the class of B-splines [26]. B-spline curves are linear
combinations, through a finite number N of control points
xc = (xT

c,1, x
T
c,2, . . . , x

T
c,N )T ∈ Rκ·N , of basis functions Bα

j :
S → R for j = 1, . . . , N . Each B-spline is given as

γ(xc, ·) : S → Rκ

s 
→
N∑
j=1

xc,j B
α
j (s, s) = Bs(s)xc

(19)

where S is a compact subset of R and Bs(s) ∈ Rκ×N . The
degree α > 0 and knots s = (s1, s2, . . . , s�) are constant
parameters, Bs(s) is the set of basis functions and Bα

j is the
jth basis function evaluated in s, obtained by using the Cox-de
Boor recursion formula [26].

Remark 5: Providing an analytical procedure for determin-
ing the minimum number of control points and degree α that
guarantees a solution to our optimization problem is very com-
plex. However, besides ensuring continuity of all the state
variables (i.e., of the flat outputs and a finite number of their
derivatives), the parameter N should be chosen as a tradeoff

2If a different estimation algorithm is used then Gc(−∞, t) should be
computed online via (11) and (12) on the estimated robot trajectory.

between the computational cost and the possibility of obtaining
a more fine-tuned trajectory (thus increasing the value of the
Shatten norm of the CG).

By parameterizing the flat outputs ζ(q) with a B-spline curve
γ(xc, s), and by exploiting the differential flatness assumption,
it follows that all quantities involved in Problem 1 (states q,
inputsu, and, thus, any quantity needed for the CG computation)
can be expressed as a function of the parameter s (the position
along the spline) and of the control points xc. The latter will
be then the (sole) optimization variables for Problem 1. In the
following, we will then let qγ(xc, s) and uγ(xc, s) represent
the state q and inputs u determined (via the flatness) by the
planned B-spline path γ(xc, s).

D. Additional Requirements

In addition to the “bounded energy” constraint (15) (necessary
for ensuring well-posedness of Problem 1), in this article, we also
consider two additional requirements of interest for the optimal
solution: state coherency and flatness regularity.

1) State Coherency: when solving Problem 1 online, it is im-
portant to guarantee that, at the current time t,qγ(xc(t), s(t)) =
q̂(t) (i.e., it is indeed necessary to synchronize the B-spline with
the current state estimate of the robot), where q̂(t) is the current
estimation of the true state q(t) provided by the employed
observer.3 This requirement, already introduced in our previous
work [14], then translates into some continuity constraints on
the planned flat output path γ(xc(t), s(t)) (and on some of its
derivatives) at the current time t which, in turn, imposes some
constraints on the motion of the B-spline control points xc.

2) Flatness Regularity: in order to always express q and u
in terms of ζ and of a finite number of their time derivatives,
intrinsic and apparent singularities in flat differential systems
(see [24] and [25] for more details) must be avoided. While
apparent singularities can be avoided by adopting a different set
of flat outputs and different state-space representations, intrinsic
singularities must be handled by guaranteeing some constraints
along the planned trajectories. Generally speaking, any intrinsic
singularity can be expressed as a set of equalities fl(q,u) = 0
and hence, in the context of this article, as fl(xc, s) = 0. The
flatness regularity requirement is then equivalent to move the
control points in order to prevent function fl(xc, s) to vanish
along the future planned path.4

E. Online Optimal Sensing Control

Exploiting (18) and letting s0 = s(t0), sf = s(tf ) and, in
general, s(t) = st, we can then reformulate Problem 1 as

3We note that this constraint is formally needed while the estimated state
q̂(t) has not yet converged to the true one q(t) since, after convergence, the
requirement qγ(xc(t), s(t)) = q̂(t) would be trivially met.

4In our previous work [14], flatness regularity was not tackled because of
the particularly simple case study, which had neither apparent nor intrinsic
singularities. This, however, does not translate to more realistic case studies
such as the ones presented in this article.
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Fig. 1. Block diagram of the proposed method. The optimization action uc

affects the positions of the control points that in turn are used to determine the
desired timing law along the path The control input u for the robotic system
is then computed by exploiting the flatness relationships from the position of
the control points xc and st. While the robot moves along the trajectory, the
control effort until the current instant t is computed online in order to correctly
determine the control effort task. The EKF receives the sensor readings, the
input u and the initial covariance matrix P o and provides the current estimate
of the robot’s state q̂ and the a posteriori covariance matrix P that represents a
memory of the past acquired information. q̂ andP are then used in the Priorized
task control to determine the next action uc for optimizing the location of the
control points over the future path.

Problem 2 (Online Optimal Sensing Control): For all t ∈
[t0, tf ], find the optimal location of the control points

x∗
c(t) = argmax

xc

‖Φ(xc(t), st, sf )
T
(Gc(−∞, st)

+ Go(xc, st, sf )
)
Φ(xc(t), st, sf )‖μ

s.t.,

1) q̂(t)− qγ(xc(t), st) ≡ 0

2) fl(xc(τ), sτ ) 	= 0, ∀ τ ∈ [t, tf ]

3) E(xc(t), st, sf ) = Ē − E(s0, st)

where

E(s0, st) =

∫ st

s0

√
u(σ)TMu(σ) dσ

represents the control effort/energy already spent on the previous
interval [t0, t] (and, analogously, E(xc(t), st, sf ) the control
effort/energy yet to be spent on the future interval [st, sf ]).

Section IV will be dedicated to detail the chosen optimization
strategy for solving Problem 2.

IV. ONLINE GRADIENT-BASED SOLUTION TO ACTIVE

SENSING CONTROL

In this article, we propose to solve Problem 2 by an online
constrained gradient descent action affecting the location of the
control points xc, and thus the overall shape of the trajectory
followed by the robot (see Fig. 1). A feature of the chosen
optimization strategy is its ability to handle different priorities
for the various constraints/requirements and to cope with the
real-time constraint of an online implementation. Toward this
end, we also discuss how to obtain the gradient of both the cost

function and the constraints w.r.t. the control points despite the
assumed nonavailability of a closed-form expression for the state
transition matrix. We then let

ẋc(t) = uc(t), xc(t0) = xc,0 (20)

where uc(t) ∈ Rκ ×N is the optimization action to be de-
signed, and xc,0 the control points of a starting path (initial
guess for the optimization problem).

Since Problem 2 involves optimization of the CGGc(−∞, tf )
subject to multiple constraints, we design uc by resorting to the
well-known general framework for managing multiple objec-
tives (or tasks) at different priorities [27]. In short, let io(xc)
be a generic objective (or task/constraint) characterized by the
differential kinematic equation iȯ = Ji(xc)

iẋc, where Ji(xc)
is the associated Jacobian matrix. Also let (J1, . . . ,Jr) be
the stack of the Jacobians associated to r objectives ordered
with decreasing priorities. Algorithm [27] allows computing
the contributions of each task in the stack in a recursive way
whereAN i−1, the projector into the null-space of the augmented
Jacobian AJ i = (J1, . . . ,J i), has the (iterative) expression
AN i =

AN i−1 − (J i
AN i−1)

†(J i
AN i−1) and AN0 = I .

Considering Problem 2, we then choose the following priority
list (see “Priorized task control” in Fig. 1): the state coherency
requirement should be the highest priority task, followed by the
regularity constraint and then by the bounded energy constraint.
Optimization of the CG is finally taken as the lowest priority task
(thus projected in the null-space of all the previous constraints).
This choice is motivated by the fact that the planned path γ
should always be synchronized with the current estimated state
q̂ (state coherency) in order to generate the optimal path from the
best available estimation of the true state. The generated optimal
path should then avoid intrinsic flatness singularities (flatness
regularity). Once these two basic requirements are satisfied,
the bounded energy requirement must be also satisfied and
maintained while the information metric is maximized. Different
prioritizations are also clearly possible. Moreover, additional re-
quirements can be also included in order to, e.g., avoid obstacles
or reach a particular state value at tf . We then now detail the
various steps of this prioritized optimization.

A. State Coherency

Let 1o(t) = qγ(xc(t), s(t))− q̂(t) represent the first
task/requirement (state coherency), so that

1ȯ(t) = J1
1uc(t) + Jsṡ− ˙̂q(t) (21)

where Js =
∂qγ

∂s , the Jacobian J1 =
∂qγ

∂xc
=

∂qγ

∂Γ
∂Γ
∂xc

, and ma-

trix Γ = [γ(xc(t), st),
∂γ(xc(t),st)

∂s , . . . , ∂(k)γ(xc(t),st)
∂s(k) ] for a

suitable k ∈ N. The order of derivative k is strictly related to the
flatness expressions for the considered system: indeed, k is the
maximum number of derivatives of the flat outputs needed for
recovering the whole state and system inputs. The term ˙̂qq(t) is,
instead, the dynamics of the particular state estimation algorithm
used to recover the state estimate q̂(t). By choosing (21)

1uc = −J †
1

(
k1

1o(t)− ˙̂q(t) + Jsṡ
)

(22)
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Fig. 2. Representative shape of the flatness regularity potential function.

one obtains exact exponential regulation of the highest priority
task 1o(t) with rate k1. The projector into the null-space of this
(first) task is just AN1 = AN0 − (J1

AN0)
†(J1

AN0) with
AN0 = IκN×κN .

B. Flatness Regularity

The second constraint for Problem 2 consists in preserving
flatness regularity along the path γ(xc(t), s(t)) by avoiding
intrinsic singularities, i.e., by avoiding that the control points xc

make the flatness singularity functions fl(xc, s) to vanish. We
tackle this requirement by designing a repulsive potential acting
on the control points when δi(xc, s) = ‖fli(xc, s)‖2 is close to
zero over some intervals S∗

i . Let us define a potential function
Ui(δi) growing unbounded for δi → δmin and vanishing (with
vanishing slope) for δi → δMAX, where δmin and δMAX > δmin

represent minimum and maximum thresholds for the potential,
respectively. A possible potential function, also adopted in this
article, is given in Fig. 2.

The total repulsive potential associated to the ith interval S∗
i

is

Ui(xc, s(t)) =

∫
S∗
i

Ui(δi(xc, σ)) dσ . (23)

where S∗
i = Si ∩ [st, sf ] (indeed, the integral (23) is only

evaluated on the future path) and, as a consequence

U(xc, s(t)) =
∑
i

∫
S∗
i

Ui(δi(xc, σ)) dσ (24)

represents the repulsive potential for all N control points
xc,i. The task is to minimize the potential (24), i.e., 2o(t) =
U(xc, s(t)). The time derivative of this task is

2ȯ(t) = J2
1uc(t) (25)

with J2 = ∂U/∂xc. By choosing

2uc =
1uc −

(
J2

AN1

)† (
k2

2o(t) + J2
1uc

)
(26)

one obtains exact exponential regulation of task 2o(t) with rate
k2 while still guaranteeing the accomplishment of the highest
task 1o(t). The projector into the null-space of both previous
objectives can be computed (recursively) as AN2 = AN1 −
(J2

AN1)
†(J2

AN1).

C. Control Effort

The third task in the priority (the control effort) can be
implemented in a similar fashion. Let

3o(xc(t), st, sf ) = E(xc(t), st, sf )− (Ē − E(s0, st))

where we consider that the control pointsxc(t) cannot obviously
affect the past control effort E(s0, st). One then has (using
Leibniz integral rule and simplifying terms)

3ȯ(t) = J3
3uc(t)

where

J3 =

∫ sf

st

∂

∂xc

√
u(xc, σ)TMu(xc, σ) dσ .

As a consequence, (26) is complemented as

3uc =
2uc + (J3

AN2)
†(−λ3

3o(t)− J3
2uc)

and, again, the projector into the null-space of all previous tasks
is AN3 = AN2 − (J3

AN2)
†(J3

AN2).

D. CG Maximization

Finally, we consider the lowest priority task, that is, maxi-
mization of the Schatten norm of CG in the null-space of the
previous tasks: the total control law for the control points to be
plugged in (20) then becomes

uc =
3uc +

AN3∇xc
‖Gc(−∞, sf )‖μ.

The gradient of the Schatten norm of Gc can be expanded as

∇xc
‖Gc‖μ

=
1−μ
μ

√∑n

i=1
λ
μ
i (Gc)

(∑n

i=1
λ
μ−1
i (Gc)

∂λi(Gc)

∂xc

)

where

∂λi(Gc)

∂xc
= vT

i

∂Gc

∂xc
vi

and vi is the eigenvector associated to the ith eigenvalue λi of
Gc. The expression of ∂Gc

∂xc
can be obtained by using (18), and

considering that Gc(−∞, st) is constant w.r.t. xc

∂Gc

∂xc
=

∂Φ(xc, st, sf )

∂xc

T (Gc(−∞, st)

+ Go(xc, st, sf )
)
Φ(xc, st, sf )

+Φ(xc, st, sf )
T
(Gc(−∞, st)

+ Go(xc, st, sf )
)∂Φ(xc, st, sf )

∂xc

+Φ(xc, st, sf )
T ∂Go(xc, st, sf ))

∂xc
Φ(xc, st, sf ).

(27)

Evaluation of (27) requires availability of the following quan-
tities: (i) Gc(−∞, st) which, if an EKF is used, is directly
estimated by the filter covariance matrix P (t) as shown
in (13), otherwise it can be computed by using (11) and (12);
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(ii) Go(xc, st, sf ) which is obtained by forward integrat-
ing (3) over the future state trajectory qγ(σ), σ ∈ [st, sf ];
(iii) Φ(xc, st, sf ) which (being Φ(t, tf ) = Φ(xc, st, sf ) =
Φ(xc, sf , st)

−1 = Φ(tf , t)
−1) is, again, obtained by for-

ward integrating (4) over the future state trajectory qγ(σ),

σ ∈ [st, sf ]; and finally (iv) the gradients ∂Φ(xc,st,sf )
∂xc

and
∂Go(xc,st,sf )

∂xc
. These can be obtained as follows. Let us first

consider ∂Φ(xc,st,sf )
∂xc

which we will denote, for convenience,
as Φxc

(xc, st, sf ). Since Φ(xc, st, sf ) = Φ(xc, sf , st)
−1, one

has

Φxc
(xc, st, sf )

= −Φ(xc, sf , st)
−1Φxc

(xc, sf , st)Φ(xc, sf , st)
−1. (28)

By leveraging relationship (4), the quantity Φxc
(xc, sf , st)

(needed to evaluate (28) and, thus, obtain the sought
Φxc

(xc, st, sf )) can be obtained as the solution of the follow-
ing differential equation over the future state trajectory qγ(σ),
σ ∈ [st, sf ]

d

dσ

∂Φ(xc, σ, st)

∂xc
=

∂

∂xc

dΦ(xc, σ, st)

dσ

= Axc
(xc, σ, st)Φ(xc, σ, st) +A(xc, σ, st)Φxc

(xc, σ, st)

Φxc
(xc, st, st) = 0

(29)
where Axc

(xc, σ, st) =
∂A(xc,σ,st)

∂xc
can be analytically com-

puted (we note that the initial condition Φxc
(xc, st, st) = 0

stems from the fact that Φ(xc, st, st) = I independently of
xc). Finally, by looking at (3), one can verify that ∂Go

∂xc
can be

evaluated by exploiting all the quantities discussed so far (in
particular the state transition matrix Φ and its gradient Φxc

).
Remark 6: We note that other requirements/constraints could

also be imposed along the path, such as, e.g., reaching a desired
configuration, avoiding obstacles or imposing control bound-
aries and sensor constraints. All these additional requirements
can be easily included in the priority stack (at any desired level).

For example, for reaching a desired state value q̄t∗ at a
time t∗, it is sufficient to apply the same procedure used for
the state coherency requirement to the following new task:
o(t) = qγ(xc(t), s(t

∗))− q̄t∗ , where qγ(xc(t), s(t
∗)) is the

state computed in s(t∗) by the flatness in terms of the control
points position at the current time t (t∗ could be tf ) This is indeed
exploited in the case study of Section VI-E.

For obstacle avoidance or similar constraints, similarly to [28]
and [29], it would be sufficient to define a repulsive potential
function PF = PF (xc, s(t)) that acts on the control points of
the B-spline and pushes the planned path away from the obsta-
cles (or from any other constraint, such as limited actuation).
The procedure for determining such potential function and the
control law for the control points would be analogous to the one
reported in Section IV-B for the flatness regularity requirement.
It is sufficient to define δi(xc, s) = ‖p(xc, s)− pobs‖2 where
p(xc, s) and pobs are the position of the robot and obstacle,
respectively, or δi(xc, s) = ‖u(xc, s)− ū‖2 where u(xc, s) is
the control input of the robot and ū its boundary.

Fig. 3. Mobile robots and relevant quantities. The robot task is to localize
itself with the smallest maximum estimation uncertainty by maximizing the
information collected along the path through the outputs (i.e., distances w.r.t.
landmarks FR and FL). (a) Unicycle. (b) Planar quadrotor.

V. CASE STUDIES

In order to prove the effectiveness and the flexibility of our
machinery, in this section, we apply the method to the cases of
a unicycle vehicle and a two-dimensional (2-D) quadrotor UAV,
both equipped with a sensor able to provide noisy distances from
two fixed landmarks, denoted by FL and FR (see Fig. 3). In the
unicycle case, we also consider different scenarios, including the
cases where self-calibration parameters and landmark positions
are a subset of the whole state space to be estimated. For both
robots, we assume a right-handed reference frame FW defined
with origin in OW and axes XW ,Y W ,ZW .

A. Unicycle Vehicle

Let us consider a unicycle vehicle moving on the planeXW ×
Y W [see Fig. 3(a)]. The configuration of the vehicle is described
byq(t) = (x(t), y(t), θ(t)), where (x(t), y(t)) is the position on
the plane XW × Y W of a reference point of the vehicle, and
θ(t) is the vehicle heading with respect to the XW axis. Using
this notation and denoting by v(t) and ω(t) the forward and
angular velocity, the unicycle kinematics is⎡

⎢⎢⎣
ẋ

ẏ

θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎣
cos θ 0

sin θ 0

0 1

⎤
⎥⎦
[
v

ω

]
. (30)

Moreover, v(t) = r(ωR(t)+ωL(t))
2 and ω(t) = r(ωR(t)−ωL(t))

2b ,
where ωR(t) and ωL(t) the right and left wheel angular ve-
locities while r and b are the wheels radius and the axle length,
respectively. In the following, we will assume that the nominal
values of parameters r and b are 0.1 and 0.25 m, respectively.

The flat outputs for the unicycle vehicle are ζ = [ζ1, ζ2]
T =

[x, y]T and it is easy to show that θ = arctan(ζ̇2/ζ̇1),

v =
√
ζ̇21 + ζ̇22 , and ω = (ζ̈2ζ̇1−ζ̈1ζ̇2)/(ζ̇2

1+ζ̇2
2 ).

B. Planar Quadrotor

Let us consider now a planar quadrotor moving on the plane
XW ×ZW [see Fig. 3(b)]. Let us also consider a body frame
FB attached to the quadrotor center of mass, with ZB aligned
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with the trust direction. Let q = [x z ẋ ż θ ω]T = [p v θ ω]T be
the state of the planar quadrotor and letu = [f τ ]T be the inputs,
i.e., the total trust and torque, the planar quadrotor dynamic
model considered in this article is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗ = v

v̇ =

[
0
−g

]
+

f

m

[
− sin θ

cos θ

]

θ̇ = ω

ω̇ =
τ

I

(31)

with m and I being the quadrotor mass and inertia, and g
the gravity acceleration magnitude. The flat outputs are ζ =
[ζ1, ζ2]

T = [x, z]T and it is easy to show that ẋ = ζ̇1, ż =
ζ̇2, θ = arctan(−ζ̈1/(ζ̈2+g)), ω = (

...
ζ 2ζ̈1−

...
ζ 1(ζ̈2+g))/(ζ̈2

1+(ζ̈2
2+g)),

f =
√
ζ̈21 + (ζ̈2 + g)2, and τ = ω̇I .

C. Sensory Measurements

For the unicycle case, we assume that the landmarks are
located on the plane of motion. Let d and α be the distance
between the landmarks and the orientation of the segment in-
between w.r.t. XW , respectively. The Cartesian coordinates of
these two points w.r.t. FW are FR = (d2 sinα,−d

2 cosα, 0) and
FL = (−d

2 sinα,
d
2 cosα, 0). Hence, the outputs, in this case,

can be expressed as [see Fig. 3(a)]

hR =

(
x− d

2
sinα

)2

+

(
y +

d

2
cosα

)2

hL =

(
x+

d

2
sinα

)2

+

(
y − d

2
cosα

)2

.

(32)

In the following, we will assume that the actual position of the
landmarks are such that d = 4 m and α = 0 rad.

For the planar quadrotor, we will assume that the landmarks
are located on a parallel plane w.r.t. the plane of motion. Let ȳ
be the distance of such a plane from XW ×ZW . The Cartesian
coordinates of these two points w.r.t. FW are FR = (d, ȳ, 0)
and FL = (−d, ȳ, 0). Hence, the outputs, in this case, can be
expressed as [see Fig. 3(b)]

hR = (x− d)2 + ȳ2 + z2

hL = (x+ d)2 + ȳ2 + z2 .
(33)

with d = 0.5 m and ȳ = 1 m in our simulations.

D. Timing Laws Along B-Spline

The parametrization imposed by the current B-spline, i.e.,
s(t), can be changed depending on the desired timing law chosen
for traveling along the path (see “desired timing law” of Fig. 1).
This new parametrization can be simply obtained by forward
integrating

ṡ = v∗(s)
∥∥∥∥∂γ(xc, s)

∂s

∥∥∥∥
−1

2

, s(t0) = 0 (34)

where v∗(s) is the desired timing law along the trajectory. To
avoid numerical problems with previous equation, it is important
to ensure along the whole trajectory ∂γ(xc,s)/∂s 	= 0. In the
following, we will assume that the unicycle moves at constant
velocity (i.e., v∗(s) ≡ 1) along the pathγ(xc, s)with, thus, s(t)
representing the arc length parametrization. On the other hand,
for the planar quadrotor, we will not change the parametrization
imposed by the B-spline. Finally, by exploiting the flatness, a
feedback control law able to ensure the tracking of the planned
B-spline trajectory with desired timing law can be also simply
designed (see [30] for details).

VI. RESULTS

This section is dedicated to evaluate the improvement in
performance in estimating the state (which also include self-
calibration and environment parameters for the unicycle case)
via an EKF when maximizing the smallest eigenvalue of CG.

A. Estimation of the Unicycle State

Starting from a given initial configuration q0 of the vehicle
and an initial estimation q̂0 with uncertainty P 0, we generated
200 random paths with the same energy E(t0, tf ) = Ē = 15,
which were then optimized by using our methodology. In this
section, the parameters r and b, as well as the landmarks param-
eters d and α, are assumed constant and equal to their nominal
values, i.e., r = 0.1 m, b = 0.25 m, d = 4 m, α = 0 rad. We
assume a normally distributed Gaussian output noise with zero
mean and identity covariance matrix R = I . Finally, the initial
estimation error covariance matrix is P 0 ≈ 0.16I .

Fig. 4(a) shows a selection of the 200 random paths, and
Fig. 4(b) the resulting optimal ones (after the optimization has
converged). We note that, due to the local nature of our method,
the optimization converges to two distinct locally optimal paths
depending on the particular initial guess. The smallest eigen-
value of the CG attains its largest value along the path on the
left w.r.t. the initial forward direction of the vehicle. Nonethe-
less, both paths are locally optimal and reduce the estimation
uncertainty w.r.t. the corresponding random one, which served
as initial guess.

We also note that the path followed by the vehicle will be
slightly different from those showed in Fig. 4(b), which are
obtained offline by relying on the initial estimated configuration
of the vehicle q̂0. Indeed, as already explained, during motion the
employed EKF improves the current estimation q̂(t), making it
possible to continuously refine (online) the previously optimized
future path by exploiting the newly acquired information during
motion.

We then compared the estimation performances of the EKF
during the robot motion along each random path and its corre-
sponding optimized one in order to show the expected benefits in
terms of estimation performance. For the sake of completeness,
we performed a comparison not only in terms of the maximum
estimation uncertainty, i.e., λMAX(P (tf )) ≡ λ−1

min(Gc(t0, tf ))
(which is the metric actually optimized by our algorithm),
but also in terms of the average, the volume and the shape
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Fig. 4. Some of the 200 generated random paths (a) and the optimal ones
obtained after applying our optimization method (b).

of the estimation uncertainty, i.e., tr(P (tf)), det(P (tf )), and

κ(P (tf )) =
λMAX(P (tf ))
λmin(P (tf ))

, respectively.
The performance was also compared in terms of the individual

components of the final estimation errors, and of its root mean
squared (rms), as well as in terms of the time of convergence
of the estimation errors, defined here as the time needed to
attain the same amount of estimation error at the end of the path.
For instance, assuming the EKF performs better in the optimal
case (as expected), the convergence time is defined as the time
needed by the optimal strategy to reach the estimation error norm
attained at the end of the corresponding random path (which
served as initial guess). This definition of the convergence rate
makes it possible to assess whether, with our method, the same
final estimation error (in the example, the one at the end of
the random path) can be obtained in a shorter time. Similarly,
the corresponding energy consumption, hereafter called energy
of convergence, was also computed.

Statistical differences were evaluated using classic tools, after
having tested the normality and homogeneity of variances as-
sumption on samples (through Lilliefors’ composite goodness-
of-fit test and Levene’s test, respectively). In particular, a
nonparametric test was adopted for the comparison (Wilcoxon
rank sum test) as, in our case, the normality hypothesis always
failed on our samples. A significance level of 5% was assumed
and p-values less than 10−4 were considered to be equal to zero.

In Table I, the average values of λMAX(P (tf )), tr(P (tf)),
κ(P (tf )), and det(P (tf )) with their corresponding standard

TABLE I
MEAN VALUES OF THE MAXIMUM AND AVERAGE ESTIMATION UNCERTAINTY

AS WELL AS OF THE SHAPE AND VOLUME OF THE ESTIMATION UNCERTAINTY

WITH THEIR STANDARD DEVIATIONS

The percentage average improvement is also reported in the last column.

deviations are reported for both the random and the optimal
paths. The resulting p-values are all zero, showing that in terms
of uncertainty, the proposed optimization method is able to find
more informative paths according to all the considered metrics
besides λMAX(P (tf )) (which, again, is the quantity directly
optimized by the proposed algorithm).

Furthermore, Fig. 5(a) and (b) shows the average absolute
estimation error and estimation uncertainties (with associated
standard deviations) for each state component obtained by the
EKF at the end of both the random and the optimal paths. In
Fig. 5(b), the rms of the whole state estimation error is also
reported. Wilcoxon rank sum test confirms that there is statistical
difference in the average absolute estimation errors and estima-
tion uncertainty for all the state variables as well as for the rms.
Indeed, one can verify that the average absolute estimation error
of x and y is much less along the optimal paths than along the
random ones (p-value: 0). However, the same does not hold for
θ where the average absolute estimation error is slightly smaller
along the random paths than along the optimal ones (p-value:
6.4e−4). For variable θ, there is no significant difference in terms
of uncertainty at the end of the random and optimal paths [see
Fig. 5(a)]. Indeed, the largest uncertainty at the end of the random
paths (used as initial guess for our optimization method) is on
the states x and y and, as a consequence, our method acts more
on these states since it aims at reducing the maximum estimation
uncertainty (which is the goal encoded in the CG). However, the
rms of the whole state estimation error at the end of the optimal
path is, on average, two times smaller than that at the end of
the random path (reduction of about 54%), thus showing that,
overall, the estimation performance was significantly better in
the optimized case.

Fig. 5(c) shows, for each state variable and for the rms of the
whole state estimation error, the average time of convergence ob-
tained by the EKF at the end of both the random and the optimal
paths. Their corresponding standard deviations are also reported.
Also in this case, the Wilcoxon rank sum test confirms that there
is statistical difference in the average time of convergence for all
the cases (the p-values are indeed zero). In other words, while
for x and y along the optimal paths we have a smaller time of
convergence than along the random ones, the same conclusion
cannot be drawn for θ. The reason of this result is exactly the
same that for the average absolute estimation errors shown in
Fig. 5(b). However, the time of convergence computed for the
rms of the whole state estimation error allows to conclude that
our method reduces the overall time of convergence of about
19%. Finally, Fig. 5(d) shows the energy consumption along
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Fig. 5. Statistical differences in the average absolute estimation errors and convergence rate show that our method overall improves the estimation performances
obtained with the EKF. The average estimation uncertainty is also reported to show the effectiveness of our method in increasing the overall collected information.
The percentage average reductions/increments obtained with the optimal paths w.r.t. the random ones are also reported in each figure. (a) Average estimation
uncertainty with standard deviations. (b) Average absolute estimation errors with standard deviations. (c) Average time of convergence with standard deviations.
(d) Average energy of convergence with standard deviations.

Fig. 6. Estimation performances obtained with the EKF along the CG-based (top-right) and the OG-based (top-left) optimal path (the shape of the final estimation
uncertainty is also reported). The B-splines is characterized by N = 6 control points and degree λ = 4. The optimal paths from the estimated initial configuration
are drawn in thin blue line, the optimal path from the real initial configuration are in thin black line, the real robot trajectory from the real robot configuration
(q = (−10, 0, 0)T in black) are in thick black line, the estimated robot trajectory from the initial estimated robot configuration (q = (−10.4,−0.5,−0.3)T in
red) are in thick red line.

the random and optimal path in order to achieve the largest final
estimation error between the optimal and the random path. Their
corresponding standard deviations are also reported. Also in this
case the Wilcoxon rank sum test confirms that there is statistical
difference in the average energy of convergence for all the cases
except for the estimation error of θ. The p-values are indeed
zero, 1.86e−4 and zero for the estimate of x, y and the rms,
respectively, while it is 0.1 for θ. In other words, while for x and
y we have a smaller energy of convergence along the optimal
paths than along the random ones, the same conclusion cannot
be drawn for θ with the 5% of confidence. However, looking
at the energy of convergence for the rms for the whole state
estimation error [see Fig. 5(d)], with the optimization strategy
proposed in this article we can achieve the same results obtained
with a random path with, in average, a 25% of energy saving.

We finally note that the proposed framework has been imple-
mented in the MATLAB/Simulink environment and executed
on a laptop with an Intel Core i7-6600U at 2.60 GHz. Each
iteration of the optimization routine has taken about 18 ms (in
the nonoptimized code used for our simulations), thus showing

the possibility of the proposed approach to run in real time during
the robot motion.

B. Comparison of Optimizing Gc(t0, tf ) Versus Go(t0, tf )
for the Unicycle Case

In this section, starting from a given initial configuration q0 of
the vehicle and an initial estimate q̂0 of this configuration with
uncertainty P 0, the path that maximizes the smallest eigenvalue
of Gc(t0, tf ) (CG-based optimization) is compared, in terms of
the estimation performances obtained with the EKF, with the one
that maximizes the smallest eigenvalue ofGo(t0, tf ) (OG-based
optimization), which, as explained, is a more popular choice in
the existing literature. The objective is to confirm what stated
in Remark 1. We assume the same output noise as in previous
section and all the parameters (i.e., r, b, d, and α) are again set
to their nominal values.

Fig. 6 shows the results of the simulation. First of all, one
can note how the CG-based optimal path is completely different
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Fig. 7. Estimation performances obtained with an EKF along the optimal paths for ASC (top-right) and the ARSEO (top-left). The shape of the final estimation
uncertainty for state x, y and θ and parameters r and b, separately, are also reported. The B-splines is characterized by N = 6 control points and degree λ = 4.
The optimal paths from the estimated initial configuration are drawn in thin blue line, the optimal path from the real initial configuration are in thin black line, the
real robot trajectory from the real robot configuration (q = (−10, 0, 0, 0.1, 0.25)T in black) are in thick black line, the estimated robot trajectory from the initial
estimated robot configuration (q̂ = (−10.4,−0.5,−0.3, 0.11, 0.3)T in red) are in thick red line.

from the OG-based one, showing that the two metrics are in-
deed encoding two different objectives. Moreover, the smallest
eigenvalue of the inverse of the covariance matrix provided by
the EKF at the end of the CG-based optimal path becomes six
times the one at the end of the OG-based optimal path [see
bottom-right in Fig. 6)], with a percentage increment of about
487%, thus confirming Remark 1. Of course, this has then an
effect on the rms of the estimation error that at the end of the
CG-based optimal path is smaller than at the end of the OG-based
optimal path as expected.

C. Active Sensing Control for Self-Calibration for Unicycle

In this section, we consider an instance of the active self-
calibration (ASC) problem for improving not only the estima-
tion of the configuration of the vehicle q(t) ∈ R3, but also
the estimation of parameters r and b, of which only an initial
(wrong) estimation is available, by maximizing the information
collected along the path about the extended state scqe(t) =
[q(t)T , r(t), b(t)]T ∈ R5 [see Fig. 3(a)]. The objective is to
maximize the smallest eigenvalue of the CG associated to the ex-
tended state scqe(t) (Gc(t0, tf ) ∈ R5×5). A parallel simulation
[hereafter named active robot’s state estimation only (ARSEO)]
has also been performed where the objective is to maximize
the amount of information concerning only the state of the
vehicle q(t), i.e., without including the wheels’ radius r and the
axle length b. Of course, also during this simulation, the EKF
is estimating the extended state scqe(t), although not along a
path optimal w.r.t. the estimation of the extended state. For both
simulations, the output noise was the same as in previous sec-
tions. A video of this simulation can be found in the multimedia
attachment.

Fig. 7 shows the final results of the simulations, also available
in the attached multimedia video. The optimal path for ASC is
significantly different from the one for ARSEO. The collected

information along the two paths until about 9 s of simulation
is almost the same. In particular, in terms of the collected
information (see bottom-right in Fig. 7), at the beginning and
until 2 s of simulation, the ASC outperforms the ARSEO, then
from 2 to 6 s the ARSEO outperforms the ASC and finally from
6 to 9 s of simulation is again the ASC that outperforms the AR-
SEO. This behavior is due to the uncertainty about the calibration
parameters that acts on the EKF as a sort of actuation/process
noise which degrades the information collected through the
outputs. After 9 s of simulation, the ASC definitely outperforms
the ARSEO and indeed the maximum estimation uncertainty at
the end of the ASC optimal path is almost 35 times less than the
one at the end of the ARSEO optimal path, with a percentage
decrement of about 2784%. Indeed, the rms of the whole state
estimation error is smaller along the active scene reconstruction
(ASR) optimal path (see bottom-left plot in Fig. 7). Finally, the
same rms of the state estimation error obtained at the end of
the ARSEO optimal path can be achieved also along the ASC
optimal one with about a 78% of energy saving.

D. Active Sensing Control for Scene Reconstruction for
Unicycle

In this last case, the objective is to apply our optimization
method to the problem of simultaneous scene reconstruction
and unicycle state estimation [hereafter named (ASR)]. We
hence assume that the landmarks represent the doorposts of
a door through which the robot has to pass, perpendicularly
to the segment between the landmarks. We hence consider
the problem of estimating the position of the middle of the
door and the orientation of the door, i.e., the extended state
erqe(t) = [q(t)T , d(t), α(t)]T [see Fig. 3(a)], as accurately as
possible. The models of the vehicle (parameters r and b) are
assumed perfectly known and equal to their nominal values.
A video of this simulation can be found in the multimedia
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Fig. 8. Estimation performances obtained with an EKF along the optimal paths for ASR (top-right) and the ARSEO (top-left). The B-splines is characterized by
N = 6 control points and degree λ = 4. The shape of the final estimation uncertainty for state x, y and θ and parameters d and α, separately, are also reported.
The optimal paths from the estimated initial configuration are drawn in thin blue line, the optimal path from the real initial configuration are in thin black line,
the real robot trajectory from the real robot configuration (q = (−10, 0, 0, 4, 0)T in black) are in thick black line, the estimated robot trajectory from the initial
estimated robot configuration (q̂ = (−10.4,−0.5,−0.3, 0.5, π/12)T in red) are in thick red line.

attachment of this article. Also in this case, the ARSEO solution
has also been obtained for comparison. For both simulations, the
output noise was the same as in previous sections. Fig. 8 shows
the results of the simulations. The optimal path for ASR is not
very different from the optimal path for ARSEO especially until
9 s of simulations. The main differences can be remarked in the
final part of the optimal paths where the estimation uncertainty
is more than two time less along the ASR optimal path, with a
percentage decrement w.r.t. the ARSEO optimal path of about
107%. Indeed, the rms of the whole state estimation error is in
average smaller along the ASR optimal path (see bottom-left
plot in Fig. 8). Moreover, the same rms of the state estimation
error obtained at the end of the ARSEO optimal path can be
achieved also along the ASR optimal one with about a 8.4% of
energy saving.

E. Estimation Performances of the 2-D UAV State

In this section, we consider the case of a planar UAV that
needs to estimate its state by exploiting two distance measure-
ments from two landmarks whose positions areFR = [d, ȳ, 0]T

and FL = [−d, ȳ, 0]T , (refer to (33) for the meaning of ȳ).
Contrarily to the unicycle case, in order to show how further
requirements can be easily included in our machinery, we im-
posed a final desired configuration for the UAV: the robot needs
to reach the middle point between the markers on the plane
of motion and remain there in hovering. Furthermore, we also
considered a measurement noise that increases with the distance
from the landmarks for representing a more realistic setting in
which the quality of a measurement degrades with its range
from the measured point. This has been obtained by weighting
the measurement covariance matrix R−1 by a weight matrix
W so that R−1

W = W TR−1W where W = diag(wL, wR). A
possible shape for weight w{L,R} is shown in Fig. 9.

As a consequence, if the robot moves further than the distance
D2 from the marker, then the measurement covariance matrix

Fig. 9. Representative shape of the weight adopted to increase the measure-
ment noise.

becomes infinity and the measure from that marker is no longer
available. In our simulations, D1 = 6 m and D2 = 7 m.

The results of our optimization strategy are reported in Fig. 10,
also available in the attached multimedia video. A comparison
with another trajectory, along which a small amount of informa-
tion is collected, is also reported in order to show the estimation
improvement obtained. The nonoptimal path is planned offline
and then executed without any adjustment during motion. The
optimal path is also planned offline but then, during motion,
it is refined online as usual by taking into account the current
state estimation. The maximum estimation uncertainty at the
end of the optimal path is about five times less than at the end
of the nonoptimal path. Our method also provides a significant
improvement of the overall estimation performance, in particular
in terms of convergence rate (see Fig. 10 bottom-right). The rms
at the end of the optimal path is 98% less than at the end of the
nonoptimal path. Moreover, the same rms of the state estimation
error obtained at the end of the nonoptimal path can be achieved
also along the optimal one with about a 77% of energy saving
and with about 76% less time. Finally, one step of the proposed
algorithm for the planar UAV, implemented with nonoptimized
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Fig. 10. Estimation performances obtained with an EKF along the optimal path (top-right) and a random path (top-left). The B-splines is characterized
by N = 16 control points and degree λ = 8. For both cases, the energy spent is Ē = 35. The planar quadrotor has a mass m = 0.4 kg, I = 0.1 kgm2,
and 0.6m of diameter. The optimal paths from the estimated initial configuration is drawn in thin black line, the real robot trajectory from the real
robot configuration (q = (−3.5, 0.5, 0, 0, 0, 0)T ) are in black line, the estimated robot trajectory from the initial estimated robot configuration (q̂ =
(−4.2, 1.25, 0.098,−0.25, 0.12,−0.15)T ) are in red line. The initial state covariance matrix is P 0 ≈ diag(1, 1, 0.25, 0.25, 0.15). Notice that, the maximum
estimation uncertainty at the end of the optimal path is about five times less than at the end of the nonoptimal path.

Matlab code, has taken about 29 ms on an Intel Core i7-6600U
running at 2.60 GHz.

VII. CONCLUSION

In this article, the problem of active sensing control for non-
linear differentially flat systems had been tackled by considering
the smallest eigenvalue of the CG as metric for quantifying
the acquired information during motion. The computational
complexity of the optimization problem had been reduced by
parametrizing the flat outputs with a family of B-splines. By
applying our strategy to a unicycle vehicle and a planar quadro-
tor, we showed that an improved estimation of the state can
be consistently achieved in a large number of tested conditions,
thus demonstrating the effectiveness of the proposed framework.
Future works will consist in applying our methodology to more
complex robotic platforms such as a complete 3-D quadrotor
UAV and multirobot systems for localization purposes. More-
over, we are also interested in including the actuation/process
noise in our optimization problem, which can be quite relevant
when dealing with uncertain robotics systems such as UAVs (for
which the aerodynamics can be hardly modeled accurately). In
[31], we have already proposed a possible solution consisting
in minimizing the largest eigenvalue of the covariance matrix
directly, as the solution of the Riccati differential equation.
However, this solution is only valid if an EKF is used as an
observer and hence limits its application domain. A better pos-
sibility is probably to leverage tools coming from the nonlinear
reachability analysis instead in order to quantify how much the
actuation/process noise degrades the collected information dur-
ing motion. Another possibility when in presence of parametric
uncertainty in the robot model is to combine the CG with a
parameter sensitivity metric, such as the one proposed in [30],
for taking into account at the same time state observability and
robustness against model uncertainty (which could be seen as a
form of process noise).
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