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Abstract— We propose a sensor-based motion plan-
ning/replanning method for a humanoid that must execute a
task implicitly requiring locomotion. It is assumed that the
environment is unknown and the robot is equipped with a depth
sensor. The proposed approach hinges upon three modules
that run concurrently: mapping, planning and execution. The
mapping module is in charge of incrementally building a
3D environment map during the robot motion, based on the
information provided by the depth sensor. The planning module
computes future motions of the humanoid, taking into account
the geometry of both the environment and the robot. To
this end, it uses a 2-stages local motion planner consisting
in a randomized CoM movement primitives-based algorithm
that allows on-line replanning. Previously planned motions
are performed through the execution module. The proposed
approach is validated through simulations in V-REP for the
humanoid robot NAO.

I. INTRODUCTION

Researchers envision a future where humanoid robots
are able to effectively assist or even replace humans in
repetitive, tiring and dangerous activities. To achieve such
objectives, these robots must be able to plan and execute
whole-body motions that avoid collisions, maintain balance,
and satisfy all existing kinematic/dynamic constraints. These
requirements, together with the typical high-dimensionality
of the planning space, make the motion planning problem
for humanoid robots very challenging.

Over the last decade, many methods have been proposed to
address the above problem in the case of known environment.
They range from simple footstep planners (see [1] for a
survey on existing techniques), that only generate isolated
contacts with the ground, to full-fledged whole-body plan-
ners, that produce task-oriented motions, either relying on
some reshaping of the final motion (e.g., [2]), or not easily
generalizable to dynamic walking (e.g., [3]).

Differently from these works, in [4], we introduced a
randomized motion planner that, hinging on the concept
of CoM movement primitives (representative of typical hu-
manoid actions, such as static walking, dynamic walking, and
more), simultaneously generates foot placements and whole-
body motions, without the need of any form of reshaping.

Most approaches work off-line, firstly producing a com-
plete plan, whose computation may require high planning
times, depending on the scenario complexity, forcing the
robot to wait before being able to start moving. To address
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this problem, in [5], we have proposed an anytime algorithm
that interleaves planning and execution intervals: a previously
planned partial solution is executed, while a 2-stages local
planner simultaneously plans a new solution for the sub-
sequent execution interval. To ensure on-line performance,
such local planner firstly builds a tree of CoM movement
primitives sequences, performing lazy collision checks (in
the spirit of [6] and [7]), and then searches the tree to validate
a feasible, collision-free whole-body motion.

In this paper we propose a sensor-based whole-body
planning framework for the case of unknown environments.
This work extends [5], removing the assumption of a priori
knowledge of the obstacles geometry. This is a non-trivial
extension, since the planning and mapping capabilities are
highly interconnected. In fact, in unknown environments, the
ability of on-line building a map and accordingly planning
collision-free motions is of fundamental importance to allow
a robot to fulfill an assigned task. The contribution of this
paper consists in a framework that allows a humanoid robot,
equipped with a depth sensor, e.g., a Kinect, to incrementally
build a map of its surroundings while executing previously
planned motions, and simultaneously plan future motions,
without any assumption about the environment.

In literature, some methods rely on the idea of monitoring
the workspace with off-board, fixed sensors to provide a
planner with the positions of the humanoid and obstacles
(e.g., [8], [9]). Off-board sensing requires an appropriate
setting that is difficult, or even impossible, in unstructured
environments. Thus, on-board sensing is clearly preferable.

To reduce the computational complexity, allowing the
robot to plan its motions on-line according to environmen-
tal information collected through on-board sensors while
moving, the planning problem is often reduced to searching
footstep sequences by detecting planar surfaces that define
safe regions where the robot can step onto (as in [10],
where binocular stereo-vision is used), or by representing
the environment through a heightmap (using data provided
by, for example, a monocular on-board camera as in [11],
or a pivoting laser scanner mounted on the humanoid torso
as in [12], [13]). Planning only at footsteps level implicitly
assumes that collisions occurs only at robot soles, which is
not the case for most real-world scenarios.

Only few methods have been proposed that take into
account the 3D structure of an unknown environment. Most
of them, in order to make the planning problem tractable
on-line, rely on simplifying assumptions on either the en-
vironment or the robot geometry. For example, in [14] the
environment is classified into areas of predefined different
types, according to which the robot motions are chosen.
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In [15], instead, a robot bounding box is used to check
collisions within a 3D occupancy grid. A more recent work,
[16], proposes an approach integrating mapping, planning
and localization. It maintains a 3D representation of the
environment through an Octomap constructed from depth
data, similarly to our work. Nevertheless, collision checks
are performed using a floor projection of the 3D map and a
circular robot model, impeding the humanoid of passing in
narrow passages. The authors extended this work in [17],
where they introduced the concept of inverse heightmaps
precomputed for each possible robot action, for checking
collisions within a 2.5D maps. This does not allow the robot
to perform motions aimed at passing below obstacles.

Differently from these approaches, the sensor-based
framework proposed in this paper does not rely on any
form of simplification of either the environment or the robot
geometry. Instead, to achieve the on-line performances, we
leverage on the efficiency of an adaptation of the local motion
planner proposed in [5] that checks collisions directly using
an incrementally built 3D environment map, and consider-
ing the humanoid whole-body structure. Furthermore, our
framework does not require any previous knowledge about
obstacle positions and shapes.

The rest of the paper is organized as follows. We introduce
the planning problem in Sect. II. The proposed approach
is presented in Sect. III, hinged on a local motion planner
discussed in Sect. IV. V-REP planning experiments for the
NAO humanoid robot are illustrated in Sect. V. Conclusions
and some future work are discussed in Sect. VI.

II. PROBLEM FORMULATION

In the situation of interest, the humanoid is assigned a
loco-manipulation task, i.e., a manipulation task that implic-
itly requires locomotion. In particular, the robot must bring
a specified hand (hence, the end-effector) to a desired set-
point, e.g., for grasping an object that is in general outside
the workspace of the humanoid at its initial configuration.
Furthermore, the robot acts in an unknown environment
and it is equipped with a head-mounted depth camera,
e.g., a Kinect, through which it can continuously acquire
information about its surroundings while moving. In our
framework, an environmental map is firstly created and,
then, continuously updated when the sensor acquires new
information. The proposed motion planner uses this map in
order to generate task-oriented whole-body robot motions
that are feasible (in the sense formally described below) in
the so far explored area.

Throughout this paper, we assume that the environment
is populated only by static obstacles and that the robot can
perfectly localize itself with respect to a fixed inertial frame
using an external module. Removing these two assumptions
is part of our future work (see Sect. VI).

Let q = (qCoM, qjnt)
T be the generic configuration of the

humanoid. Here qCoM ∈ SE(3) is the world pose (position
and orientation) of a reference frame attached to the Center of
Mass (CoM) and qjnt ∈ Cjnt is the n-vector of joint angles.
The assigned task must be fulfilled through a sequence of

whole-body motions q(t), t ∈ [tini, tfin], constituted by a
succession of on-line planned partial solutions, that satisfies
four requirements:

R1 The assigned set-point is reached at a finite time tfin.
R2 Collisions with workspace obstacles are avoided.
R3 Position and velocity limits on the joints are respected.
R4 The robot is in static or in dynamic equilibrium at all

times.

In the following, we will call feasible the motions that
satisfy requirements R2-R4.

III. SENSOR-BASED PLANNING/REPLANNING
FRAMEWORK

To address the described problem, we propose a frame-
work constituted by three cooperating modules, namely the
mapping, planning, and execution modules, that are in charge
of, respectively, incrementally build an environment map,
computing on-line feasible whole-body motions, and sending
commands to the humanoid actuators.

At the beginning, the mapping module generates a 3D
map M(tini) according to information that the robot can
acquire at its initial configuration qini. Then, an initial plan
constituted by whole-body motions that are feasible within
M(tini) is computed by the planning module. Once such
initial plan is computed, the robot starts performing it,
according to the commands sent by the execution module.
Then, an interleaved procedure (described below), in which
the three modules run in parallel, starts. Hereafter, we refer
to the time instant in which the robot starts moving as t0.

During the interleaved procedure, the planning module
works iteratively with the aim of computing future mo-
tions; meanwhile, previously planned motions are performed
through the execution module, and the map M is continu-
ously updated by the mapping module according to the newly
acquired information. In particular, at any time instant tc, the
robot will be in the configuration q(tc) as specified in the
available, previously planned, sequence of feasible whole-
body motions q(t), henceforth referred to as the current
plan, with t ∈ [t0, t̄]. Thus, such plan will be composed by
two portions: the committed part that the robot has already
executed in the time interval [t0, tc], and the remaining part
that defines the future motions of the robot in the time
interval (tc, t̄].

The objective of each iteration of the planning module is
to compute an extension of the current plan that starts at its
final configuration q̄ = q(t̄), at which the robot will be at the
associated time instant t̄, and is feasible according to newly
acquired information. To extend the current plan before the
robot reaches q̄, each iteration of the planning module must
complete within (at maximum) the remaining time on the
current plan. The idea is to repeatedly extend the current
plan, each time considering an enlarged environment map,
until it allows the robot to complete the assigned task.

In the following we describe separately the three modules.
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A. Mapping Module

The mapping module is in charge of continuously inte-
grating information gathered by the depth camera into the
environment mapM. To take full advantage of the humanoid
capabilities in scenarios containing complex shaped obsta-
cles, we maintain the mapM in the form of a 3D occupancy
grid, which models both free and occupied space, and, at the
same time, implicitly models unknown space, just by missing
information. This feature is particularly relevant within our
planning process, since it allows to produce task-oriented
motions (for details, see Sect. IV).

In our framework, the map M is kept as a volumetric
octree-based map, called OctoMap, whose characteristics
perfectly match the needs described above. This represen-
tation compactly models free and occupied areas by vox-
els, each one containing an occupancy probability that can
be dynamically updated. More details about this power-
ful mapping framework can be found in [18], while the
software is available as an open-source C++ library at
http://octomap.github.io.

At the initial time instant tini, the map M(tini) is

M(tini) = R(qini) ∪M0(tini) (1)

where R(qini) represents the free volume that the robot body
occupies (computed on the basis of proprioceptive sensors),
and M0(tini) is the initial knowledge at the configuration
qini, that may consist of a limited exogenous knowledge of
the starting location, further enlarged by collecting informa-
tion through, e.g., a pan-tilt motion performed on the spot.

The map is then updated while the robot moves in the
unknown environment. At each reading, the camera provides
a depth image in which each pixel contains the distance
between the 3D point in the Cartesian space to which the
pixel refers to, and the camera image plane. Such depth
image indicates a beam of rays originating in the camera
origin and ending at the observed Cartesian points. Given
the coordinate zf of the camera far clipping plane on the
principal axis, if the depth of a certain pixel is less than zf ,
the endpoint of the corresponding ray is on the surface of an
obstacle. In this case, the voxel corresponding to the endpoint
is updated in M as occupied, and all the other voxels along
the ray are updated as free; otherwise, all the voxels along
the whole ray are updated as free.

B. Planning Module

The planning module generates the whole-body motions
that the robot performs through the execution module. As
already mentioned, this module firstly generates an initial
plan within the initial environment map, and then enters
an iterative phase, where extensions of the current plan are
computed thanks to the continuously updated map provided
by the mapping module described in Sec. III-A.

At the i-th generic iteration, the planning module invokes a
specifically designed local motion planner (LMP), described
in Sect. IV, that is in charge of producing a whole-body
motion (henceforth referred to as a local plan) that starts
at the final configuration q̄i of the current plan q(t), where

t ∈ [t0, ti], provides an extension of it for further exploration
aimed at completing the task, and is feasible within the
currently available map. Such local plan must be computed
before the time instant ti. Thus, the LMP is allowed to run
for a limited time budget. While such time budget determines
the duration of the i-th iteration of the planning module, the
duration of the local plan to be computed is not specified, as
it is autonomously determined by the LMP. In the following,
we denote the duration of the i-th iteration of the planning
module, i.e., the time budget given to the LMP at the i-th
invocation, by ∆TP,i, and the duration of the local plan that
it produces by ∆TE,i.

Let tc be the time instant at the beginning of the i-
th iteration of the planning module; at the corresponding
invocation, the LMP is provided with:

• The planning map MP,i, that coincides with the cur-
rently available map M(tc). The planning map MP,i

is then fixed during the i-th replanning, while the map
M is continuously updated by the mapping module.

• The time budget, that is computed as a portion of the
remaining time on the current plan

∆TP,i = αP (ti − tc) (2)

where αP ∈ (0, 1) is a predefined value. Note that,
the larger (smaller) αP , the less (more) frequent the
replanning, the more (less) enlarged the planning map
MP,i w.r.t. the previous oneMP,i−1. Choosing a large
αP potentially allows to find longer local plans. On
the other hand, a small αP reflects in a more reactive
behavior.

The planning module is shown in Algorithm 1. It starts by
invoking the LMP that is in charge of producing, within a
predefined time budget ∆TP , the first local plan q(t), with
t ∈ [t0 = tini + ∆TP , t1 = t0 + ∆TE,0], with ∆TE,0 its
duration, starting at the initial robot configuration qini. This
plan is guaranteed to be feasible in the initial map M(tini).
Once such plan is computed, the robot starts executing it
and the planning module waits for a portion αP ∆TE,0 of
its duration before entering the iterative phase. The rationale
beyond this choice is to avoid an immediate replanning on
the same map used to compute the initial plan. In fact, since
at this point the robot is not moved yet, the mapping module
has not gathered new information about the environment, and
replanning would not provide any plan extension.

At the i-th iteration, the planning module computes the
time budget ∆TP,i devoted to the current invocation of the
LMP according to (2) and retrieves the planning map MP,i

as the one currently provided by the mapping module. This
invocation of the LMP produces a local plan qi(t), t ∈
[ti, ti+1 = ti + ∆TE,i], that starts at the final configuration
q̄i of the current plan q(t) and is feasible within the map
MP,i. The current plan is then extended by concatenating
the computed local plan to it.

This iterative procedure terminates when the LMP com-
putes a local plan such that the desired set-point is definitely
reached, i.e., f(q̄i) = y∗

M with f(q̄i) the end-effector
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Algorithm 1: Planning Module
1 ∆TP,0 ← ∆TP ;
2 MP,0 ←M(tc);
3 q(t), t ∈ [t0, t1]←LMP(qini, ∆TP,0, MP,0);
4 wait for αP ∆TE,0;
5 extract q̄1 from q(t);
6 i← 1;
7 while f(q̄i) 6=y∗M do
8 compute time budget ∆TP,i according to (2);
9 MP,i ←M(tc);

10 qi(t), t ∈ [ti, ti+1]←LMP(q̄i, ∆TP,i, MP,i);
11 q(t), t ∈ [t0, ti+1]← concatenate q(t), t ∈ [t0, ti], and

qi(t), t ∈ [ti, ti+1]);
12 i← i+ 1;
13 extract q̄i from q(t);
14 end

position at the last configuration q̄i of the extended plan.
In this case, the planning module stops and the execution
module continues until the humanoid completes the task.

C. Execution Module

This module is in charge of sending the joint commands
to the robot low level controllers. At each time instant, such
commands are all taken from the current plan, except for
the robot yaw neck joint that is used to directly control the
pan angle of the depth camera, rigidly attached to the head.
With the aim of favoring the mapping module in enlarging
the environment map in the area where the extension of
the current plan has to be computed through the planning
module, the yaw neck joint velocity q̇p is computed on-line
in such a way to make the robot looking in the direction of
the location that it will reach at the end of the current plan.

At each time instant, the robot yaw neck joint velocity q̇p
is computed using a simple proportional control

q̇p = Kp(qdp − qp) (3)

where qdp and qp are, respectively, the desired and current
yaw joint positions. Given the final configuration q̄ on the
current plan and the configuration q specified for the current
time instant, qdp is defined as the angle between the robot
sagittal axis at q (that can be easily identified through the
subvector qCoM), and the line joining the origins of the CoM
frames at q and q̄. Kp is a positive scalar gain.

Note that, when the current plan is extended, its final
configuration q̄ changes, and consequently also qdp .

IV. LOCAL MOTION PLANNER (LMP)

In this section, we describe the local motion planner
(LMP) that is invoked at each iteration of the planning
module. It consists in an adaptation, for the case of unknown
environments, of the LMP presented in [5]. Within this
planner, humanoid whole-body motions are produced as
concatenations of precomputed CoM movements primitives,
as firstly introduced in [4]. The LMP is provided with
a catalogue U of N primitives, each one representing an
elementary humanoid motion. In general, U will include

Procedure 1: LMP(q̄, ∆TP , MP )
1 split the time budget ∆TP in two intervals ∆TL

P and ∆TV
P ;

2 T ← LazyStage(q̄, ∆TL
P , MP );

3 q(t) ← ValidationStage(T , ∆TV
P , MP );

4 return q(t);

basic walking movements, e.g., static and dynamic steps, and
possibly more complex ones, e.g., crauching or crawling. A
pure manipulation primitive, namely the free CoM, is also
included in U . Each primitive, henceforth indicated as uCoM,
has an associated duration, and specifies reference CoM and
swing foot trajectories for the whole duration1.

The LMP, whose pseudocode is provided in Procedure 1,
is composed of two consecutive stages, namely lazy and
validation stages, amoung which the time budget ∆TP
assigned by the planning module to the LMP is split as

∆TL
P = αLMP ∆TP , (4)

∆TV
P = (1− αLMP )∆TP , (5)

where αLMP ∈ (0, 1), and serves as a design parameter.
The lazy stage (see Procedure 2) is a RRT-based algorithm

that builds a tree T in configuration-time space. To speed
up such tree construction, the algorithm performs collision
checks lazily, i.e., only at vertexes level by means of a
simplified occupancy volume of the robot. In the tree T :

• A vertex v = (q, t) consists of a configuration q, and
its associated time instant t.

• An edge represents a feasible whole-body motion con-
necting two adjacent vertexes, produced through a cer-
tain CoM primitive uCoM.

• A branch of the tree provides a candidate local plan
if its ending vertex (i.e., the leaf) is such that one of
the these conditions holds: (i) the simplified occupancy
volume of the robot at the corresponding configuration
q does not completely lie within the map MP ; (ii) it
has been generated through the free CoM primitive, i.e.,
it potentially allows to finalize the assigned task.

The tree T is rooted at v0 = (q̄, t̄) , where q̄ is the final
configuration on the current plan, and t̄ its associated time
instant. At the generic iteration, the algorithm picks a random
sample point yrand in the task space, and retrieves its nearest
vertex vnear = (qnear, tk)2 in T using a metric d(·,yrand)3.
From the catalogue U a primitive uk

CoM is randomly selected.
Let Tk be its duration. The reference CoM and swing foot
trajectories specified by uk

CoM determine the reference poses
of, respectively, the CoM frame qnew

CoM and the (new) support
foot qnew

sup (that we do not explicitly include in the vertex

1This is true for all primitives, except for free CoM, as it does not provide
any reference CoM trajectory, leaving it to freely move while maintaning
both feet fixed on the ground.

2Selection of ending vertexes of already existing candidate local plans is
carefully avoided as their expansion does not produce any new local plan.

3In our implementation, the metric d(q,y), that measures the distance
between a configuration q and a point y in the task space, is defined as
the Euclidean distance between the ground projections of the robot CoM
positions at q and y.
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Procedure 2: LazyStage(q̄, ∆TL
P , MP )

1 root the tree T at v0 = (q̄, t̄);
2 V ′ ← {v0};
3 te ← 0;
4 repeat
5 pick a random sample point yrand in the task space;
6 select the nearest vertex vnear in T to yrand according to

d(·,yrand);
7 select from U a random CoM primitive uk

CoM;
8 compute qnew

CoM according to qnear
CoM and uk

CoM;
9 if S(qnew) is collision−free then

10 vnew ← ((qnew
CoM, ∅)T , tk+1 = tk + Tk);

11 add vertex vnew in T as a child of vnear;
12 end
13 te ← get the elapsed time;
14 until te ≥ ∆TL

P ;
15 return T ;

for sake of illustration) at the time instant tk+1 = tk + Tk,
i.e., after applying uk

CoM to qnear. At this point a collision
check is performed within the map Mp using a simplified
occupancy volume of the robot S(qnew), with qnew =
(qnew

CoM, ∅)T (the subvector qjnt is left undefined). In our
implementation, we check collisions at footsteps level using
the pose qnew

sup . Other choises, like conservative bounding
boxes with pose qnew

CoM, are also possible. If S(qnew) results
collision-free, a new vertex vnew = (qnew, tk+1) is added to
T as a child of vnear. This iterative procedure stops when
the time budget ∆TL

P assigned to the lazy stage runs out.
At this point, the validation stage (see Procedure 3) is run.

With the aim of further approaching the desired set-point,
and possibly completing the task, the candidate local plan,
among the ones resulting from T , whose ending vertex is
the closest to y∗

M in terms of the metric d(·,y∗
M ) described

above, is chosen for a validation attempt.
Let p∗ = {v0, . . . , vK−1} be the chosen candidate local

plan, with K the number of vertexes along the corresponding
branch. The validation attempt consists in generating the
whole-body motion between each pair of consecutive ver-
texes, and checking its feasibility w.r.t. requirements R2-R4.

This procedure proceeds iteratively. At the k-th iteration,
the configuration qk = (qk

CoM, q
k
jnt)

T , and the associated
time instant tk, are extracted from the vertex vk. If the
sub-vector qk

jnt is undefined, a motion generator is called
to produce the whole-body motion that connects qk−1 to
qk through the primitive uk−1

CoM (such information may be
stored with the edge at the time of its creation during the lazy
stage), i.e., the joint trajectory that realizes the specified CoM
and swing foot trajectories in the time interval [tk−1, tk =
tk−1 +Tk−1], with Tk−1 the duration of uk−1

CoM, and possibly
reaches the desired set-point y∗

M . To this end, the motion
generator works by integrating the joint velocities produced
by a priorities-based kinematic control law in which the
locomotion and manipulation tasks are, respectively, the
primary and secondary tasks. The generated joint trajectories
are continuously checked for collisions within the map
MP using the actual occupancy volume R(q) of the robot

Procedure 3: ValidationStage(T , ∆TV
P , MP )

1 select the best local plan p∗ in T ;
2 te ← 0;
3 while p∗ 6= ∅ and te ≤ ∆TV

P do
4 q(t)← ∅;
5 k ← 1;
6 while k < K and qk−1 6= (∅, ∅)T do
7 extract qk

jnt from vk;
8 if qk

jnt 6= ∅ then
9 [qk, qk−1qk] ← MotionGeneration(vk−1, vk);

10 if qk 6= (∅, ∅)T then
11 if qk−1qk ⊂ MP then
12 update vertex vk with qk and add edge

qk−1qk to T ;
13 q(t)← append qk−1qk to q(t);
14 else
15 return q(t);
16 end
17 else
18 remove subtree T k rooted at vk from T ;
19 end
20 end
21 k ← k + 1;
22 end
23 select the best local plan p∗ in T ;
24 te ← get the elapsed time;
25 end
26 return ∅;

(requirement R2), and for violation of position/velocity joint
limits (requirement R3). Static equilibrium is also checked
in case uk−1

CoM is free CoM, while for the other primitives,
static or dynamic equilibrium is guaranteed by construction
(requirement R4). More details about the motion generator
can be found in [4], [5].

In case of no violations in the motion generator, the
validation stage proceeds or stops depending on whether the
produced whole-body motion qk−1qk is entirely contained
in the map MP , i.e., the actual occupancy volume of the
robot R(q) at each configuration q of the latter completely
lies inMP (in this case, qk−1qk is concatened to the portion
of the candidate local plan that has been validated so far),
or not (in this case, the validated local plan is returned).

In case of violations in the motion generator, the tree T is
pruned of the subtree Tk rooted at vk, and a new candidate
local plan is selected for another validation attempt.

V. PLANNING EXPERIMENTS

The proposed sensor-based framework has been imple-
mented in V-REP on an Intel Core i7 running at 2.70 GHz.
The chosen robotic platform is the NAO humanoid robot,
and the right hand is employed as end-effector. The robot
is equipped with a Kinect camera that provides 320×240
depth images. To maintain the 3D environment map, we use
an Octomap with a resolution of 5 cm.

The set of CoM primitives is defined as U = {free CoM∪
UD

CoM}. Here, free CoM is a non-stepping primitive that
allows the CoM to move freely, as long as both feet remain
fixed; UD

CoM is a subset of dynamic steps extracted from
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Fig. 1. Planning scenario 1: snapshots from a solution.

Fig. 2. Planning scenario 2: snapshots from a solution.

various types of ZMP-based gaits precomputed by the intrin-
sically stable MPC framework presented in [19]. In particu-
lar, UD

CoM includes forward, backward, curved and diagonal
steps. In our simulations, we activate the manipulation task
only when the robot hand is inside a spherical region centered
at the desired set-point y∗

M , where we allow the choice of
the free CoM primitive4.

We consider two planning scenarios. In both of them, the
robot is assigned the task of grasping a ball placed on a
table that is outside its initial workspace. The mapM0(tini)
consists of an initial knowledge provided in advance within
a cylindrical area of radius 0.5 m and height 1.2 m centered
at qCoM(tini), and further knowledge acquired through an
initial pan-tilt motion, whose duration is 18 s. After this
phase, the planning module starts to compute an initial plan
within this map through the first invocation of the LMP, with
a predefined time budget of ∆TP = 15 s. The parameters
αP and αLMP are respectively set to 0.5 and 0.6.

In the first scenario (see Fig.1), obstacles of different kinds
(chairs, tables and sofas) obstruct the path between the robot
at the initial configuration, at which only portions of few
obstacles can be seen, and the destination. Once the initial
partial plan is available, the robot starts to perform it through

4Planning smoother reaching motions is out of the scope of this paper,
although this can be easily accounted in the proposed framework by
involving the strategy proposed in [20].

i
time

budget (s)
# lazy
plans

motion
duration (s)

Experiment 1
0 15 19 52.45
1 13.11 29 17.65
2 15.38 5 11.65
3 13.52 55 27.5

Experiment 2
0 15 4 47.05
1 11.76 5 49.75
2 30.76 3 0
3 13.39 13 34.15
4 24.76 2 0
5 12.38 67 26.05
6 19.22 95 15.25
7 17.23 77 17.05
8 17.14 89 13.75
9 15.45 4 5.6

TABLE I
PLANNER PERFORMANCE DATA.

the execution module, while the planning module computes
future motions. At each replanning, previously unknown
obstacles are taken into account, and collisions are correctly
avoided. The mapping-planning-execution cycle is repeated
until the robot grasps the red ball (last snapshot). The overall
robot motion (constituted by a sequence of dynamic steps
and concluded by the free CoM primitive to finally grasp
the ball) results fluid, without the need for the robot to
stop in any case. This proves the on-line performances of
the proposed framework. Furthermore, we emphasize the
capability of our LMP in managing narrow passages. In fact,
taking into account the 3D structure of both the environment
and the robot, the LMP is able to produce motions allowing
the robot to pass, e.g., in the strict free space between the sofa
and the chair (third snapshot). Note that, due to the complex
shape of the chair, approaches using bounding boxes (e.g.,
[15]) or 2D projections of swept volumes (e.g., [17]) to check
collisions would fail to find a feasible plan in this case.

In the second scenario (see Fig. 2), we show the capability
of the proposed framework of recovering from dead-ends. At
its initial configuration (first snapshot), the robot cannot see
the wall obstructing the straight path to the destination, as
it is outside the initial camera field of view. Among all the
candidate local plans bringing towards unexplored areas, the
LMP chooses, and validates, the one that allows the robot
to approach as much as possible the destination. This local
plan leads the robot to proceed ahead the wall, entering a
dead-end (second snapshot), that is incrementally discovered
through the mapping module while walking. Once the dead-
end is included in the new map, the LMP generates an
extension of the current plan that allows the robot to exit
the closed space and to proceed towards the free boundary of
the map (third and fourth snapshots). We emphasize that such
effective behaviour is the result of the intrinsic bias towards
unexplored areas of the proposed planner. Once the robot
is outside the dead-end, it proceeds towards the destination,
appropriately planning its motions according to continuously
acquired information. Also in this case, the task is completed
by pure manipulation.

Table I collects, for the three scenarios, some performance
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data of the planning module. The experiments have required,
respectively, four, and ten invocations of the LMP. For each
invocation, the table reports: the assigned time budget, the
number of candidate plans produced by the lazy stage, and
the duration of the generated extension of the current plan.
Note that, in the second scenario, in two cases the LMP
returned no extension of the current plan. This means that,
among the candidate local plans produced by the lazy stage,
the best one consists in a branch of the tree such that only
the configuration in the root vertex is inside the current map.
This automatically postpones the extension of the current
plan to the subsequent LMP invocation, which will work
with a new time budget computed as in eq. (2) within a new
map that has been updated during the robot motion.

We encourage the reader to see the accompanying video to
better appreciate the effectiveness of the generated motions.

VI. CONCLUSIONS

In this paper, we proposed a sensor-based framework for
humanoids aiming at fulfilling tasks that implicitly require lo-
comotion. The planner is hinged on three cooperating, highly
interconnected modules: mapping, planning and execution
modules. The mapping module is in charge of building and
updating a 3D environment map during the robot motion.
While the execution module sends the commands to the
humanoid actuators based on previously planned whole-body
motions, the planning module on-line computes future plans
using a local motion planner that takes into account newly
acquired information. Its 2-stages design allows for rapid
replanning and proved to be particularly suitable for on-
line application. V-REP simulations with the NAO humanoid
have shown the ability of the proposed framework to generate
fluid robot motions, without the need for the robot to stop
and plan. Furthermore, thanks to the fact that our framework
considers the 3D structure of both the environment and the
robot, narrow passages are correctly negotiated.

Our current research focuses on removing the static en-
vironment and perfect robot localization assumptions men-
tioned in Sect. II by, respectively, equipping the robot with
the possibility of replanning also when a moving obstacle
invalidates the current plan, and substituting the mapping
module with a full-fledged SLAM module, providing the
robot with full autonomy. Other possible extensions of this
work will include the design of strategies for on-line gener-
ating movement primitives according to the planning needs,
e.g., for managing uneven grounds and tasks that require
mobile manipulation of heavy objects.
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