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Abstract— The goal of this paper is to increase the estimation
performance of an Extended Kalman Filter for a nonlinear
differentially flat system by planning trajectories able to max-
imize the amount of information gathered by onboard sensors
in presence of both process and measurement noises. In a
previous work, we presented an online gradient descent method
for planning optimal trajectories along which the smallest
eigenvalue of the Observability Gramian (OG) is maximized. As
the smallest eigenvalue of the OG is inversely proportional to the
maximum estimation uncertainty, its maximization reduces the
maximum estimation uncertainty of any estimation algorithm
employed during motion. However, the OG does not consider
the process noise that, instead, in several applications is far from
being negligible. For this reason, this paper proposes a novel
solution able to cope with non-negligible process noise: this is
achieved by minimizing the largest eigenvalue of the a posteriori
covariance matrix obtained by solving the Continuous Riccati
Equation as a measure of the total available information. This
minimization is expected to maximize the information gathered
by the outputs while, at the same time, limiting as much as
possible the negative effects of the process noise. We apply
our method to a unicycle robot. The comparison between the
novel method and the one of our previous work (which did not
consider process noise) shows significant improvements in the
obtained estimation accuracy.

I. INTRODUCTION

Evidence from neuroscience and biology shows that the

humans’ brain dedicates a large effort for reducing the

negative effects of noise affecting both the motor and the

sensing apparatus [1]. Indeed, humans take into account

the quality of sensory feedback when planning their future

actions. This is achieved by coupling feedforward strategies,

aimed at reducing the effects of sensing noise, with feedback

actions, mainly intended to accomplish given motor tasks and

reduce the effects of control uncertainties [2].

Robots, analogously to humans, need to localize them-

selves w.r.t. the environment in order to move safely in un-

structured environments while, at the same time, a map of the

surrounding is built. This capability is highly influenced by

the quality and amount of sensor information, especially in

case of limited sensing capabilities and/or low cost sensors.

Moreover, if one wishes to include self-calibration states

in the estimation, the dimensionality of the state vector

clearly increases, while the number of measurements remains

unchanged [3]. As a consequence, it is important to deter-

mine inputs/trajectories that render all states and calibration

parameters as observable as possible by maximizing the
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information gathered along the trajectory. The problem of

optimal information gathering has been indeed studied in

the literature in a variety of contexts such as: (i) optimal

sensor placements, c.f. [4] for optimal placing the sensors on

a wearable sensing glove or [5] for studying the gyroscopic

sensing distribution of an insect wings; (ii) localization

and exploration for mobile robots, c.f. [6] that proposes a

complete observability analysis of the planar bearing-only

localisation and mapping problem.

For these reasons, understanding whether the problem of

estimating the state of the robot and the environment from

knowledge of the inputs and the outputs of the system admits

a solution is of fundamental importance. This is referred to

as observability problem as detailed in [7], [8]. The problem

is even harder to solve if the system is non-linear since,

in this case, the observability property depends not only

on the state but also on the inputs of the system. In some

cases, one may also find some singular inputs, i.e. inputs

that do not allow the reconstruction of the whole state from

measured output (c.f., [6]). In order to avoid this situation,

some authors have proposed intelligent control strategies

able to maximize the amount of information gathered by

sensors or, in other words, to maximise the “distance” from

the singular inputs/trajectories. This problem is known in

the literature as active perception, active sensing control or

optimal information gathering. One example in this context

is given by [9], where the authors maximize the minimum

eigenvalue of the Observability Gramian matrix in order to

find optimal observability trajectories for first-order nonholo-

nomic systems. Another example can be found in [10], where

the condition number of the Observability Gramian matrix

is used for finding the optimal observability trajectory for an

aerial vehicle.

While several works take into account the measurement

noise in their formulations, quite a few explicitly consider

the actuation noise, which, on the other hand, is far from

being negligible for several robotic applications (a prominent

example being aerial vehicles). One exception is represented

by the POMPD-based methods such as [11], [12] where the

authors propose a motion planning algorithm that minimises

the motion and the sensing uncertainties in environments

with static obstacles. Another approach is the one in [13],

where an optimal control algorithm selects trajectories that

optimises a cost function composed by the state tracking

goals, the control effort, and the sensitivity of planned

motion to variations in model parameters, including actuation

noise. However, these approaches are more devoted to an

offline implementation (also because of their computational

complexity), while the goal of this paper is to propose an
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online solution to the active sensing problem.

The rest of the paper is organised as follows. In Sec-

tion II, some preliminary concepts are introduced while in

Section III the optimal control problem is formalized. In

Section IV, a solution that combines an estimator (i.e., an

Extended Kalman Filter) and a gradient-descend optimisation

strategy is proposed while in Section V we test our method

on a unicycle robot. Finally, some conclusions and future

works are discussed in Section VI.

II. PRELIMINARIES

Let us consider a generic nonlinear dynamics

q̇(t) = f(q(t),u(t) +w), q(t0) = q0 (1)

z(t) = h(q(t)) + ν (2)

where q(t) ∈ R
n represents the state of the system, u(t) ∈

R
m is the control input, z(t) ∈ R

p is the sensor output

(the measurements available through the onboard sensors), f
and h are analytic functions, ν ∼ N (0,R(t)) is a normally-

distributed Gaussian output noise with zero mean covariance

matrix R(t) and w ∼ N (0,V (t)) is a normally-distributed

Gaussian input noise with zero mean covariance matrix V (t).
The onboard sensors can typically provide only partial

information about the state of the robot, which may include

self-calibration parameters and features of the surrounding

world. Therefore, an estimation algorithm is needed for

recovering online those state variables not directly available

from the raw sensor readings. Its performance, that is accu-

racy, precision and convergence rate, depends not only on the

quality and amount of information about the unknown state

variables gathered by the onboard sensors but also on the

level of actuation noise. For nonlinear systems, both aspects

depend on the inputs and hence the trajectories followed

by the system. The goal of this paper is hence to improve

the performance of the employed estimation algorithm by

determining online the control inputs that maximize the

information gathered by the onboard sensors and, at the same

time, limit the negative effects of actuation noise (which

basically degrades the above-mentioned information).

In our previous work on this subject [14], we considered

the particular case where w = 0, i.e. without actuation

noise. As a consequence, the only objective was to determine

the control inputs that maximize the amount of information

gathered by the onboard sensors along the trajectory followed

during motion. In order to obtain a measure of such informa-

tion [15], we considered a well-known observability criterion

for (1)–(2), related to the concept of local indistinguishable
states [8], [16], [14], i.e. the Observability Gramian (OG)

Go(t0, tf ) ∈ IRn×n,

Go(t0, tf ) �
∫ tf

t0

S(τ, t0)
TH(τ)TW (τ)H(τ)S(τ, t0) dτ

(3)

where tf > t0, H(τ) = ∂h(q(τ))
∂q(τ) , and W (τ) ∈ R

p×p

is a symmetric positive definite weight matrix (a design

parameter) that usually (and also in this paper) is taken equal

to R−1 in order to weight the outputs w.r.t. the level of noise.

Matrix S(t, t0) ∈ R
n×n, also known as sensitivity matrix, is

given as S(t, t0) =
∂q(t)

∂qo

and it is easy to check that it

verifies the following differential equation

Ṡ(t, t0) =
∂f(q(t),u(t))

∂q(t)
S(t, t0) , S(t0, t0) = I. (4)

In [14] the smallest eigenvalue of the OG was used as

performance index in order to determine the inputs and hence

the trajectory over a future time horizon along which the

information content is maximized. Moreover, as the inverse

of the smallest eigenvalue of the OG is proportional to the

maximum estimation uncertainty, its maximisation was also

expected to minimize the maximum estimation uncertainty

of any estimation algorithm that could be used during

motion [9]. The choice of adopting the smallest eigenvalue

(E-Optimality) index hence guarantees optimization of the

worst-case performance. In particular, by using an Extended

Kalman Filter (EKF) as estimation algorithm, in [14] we

verified through simulations that the ellipsoid associated to

the covariance matrix obtained by solving the Continuous

Riccati Equation (CRE) is much less elongated along the

eigenvector associated to the largest eigenvalue hence obtain-

ing a smaller and a more uniform estimation uncertainty. We

also obtained an increment of the convergence rate and the

precision of the EKF. Of course, in case of actuation noise,

which is far from negligible in several robotic applications

(e.g. UAVs), the OG is not able to measure how the actuation

noise degrades the amount of information gathered by the

noisy sensory feedback.

The main idea of this paper is hence to use directly the

CRE and determine the inputs that maximize the smallest

eigenvalue of the inverse of the covariance matrix explicitly

evaluated in presence of process noise. By doing this, the

maximum estimation uncertainty will reduce not only be-

cause along the planned trajectory the gathered information

from noisy sensory feedback is maximized, but also because,

at the same time, the degrading effects of the process noise

on such information are minimized.

III. PROBLEM FORMULATION

We now detail the optimal sensing problem addressed in

this paper: consider the particular class of nonlinear dynam-

ics (1–2) such that f(q,0) = 0 (i.e. without drift), a time

window [t0, tf ], tf > t0, and a EKF built on system (1–2)

for recovering an estimation q̂(t) of the true (but unknown)

state q(t) during motion. The goal of the paper is to propose

an online optimization strategy for continuously solving, at

each time t, the following optimal sensing control problem

Problem 1 (Optimal sensing control) For all t ∈ [t0, tf ]
find the optimal control strategy

u∗(t) = argmax
u

λmin

(
P−1(t0, tf )

)
, (5)

s.t.

E(t0, tf ) =

∫ tf

t0

√
u(τ)TMu(τ) dτ = Ē (6)
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where M is a constant weight matrix, Ē is a constant design
parameter λmin(·) is an operator that extracts the smallest
eigenvalue of the matrix argument while P (t0, tf ) is the
covariance matrix of the EKF filter, such that P−1(t0, tf ) is
solution of

Ṗ
−1

(τ) = −P−1(τ)A(τ)−AT (τ)P−1(τ)+

+HT (τ)R−1H(τ)− P−1(τ)B(τ)V BT (τ)P−1(τ),

P−1(t0) = P−1
0 (7)

τ ∈ [t0, tf ] and initial condition P−1
0 representing the

a priori information available at time t0 about the initial
q(t0). Matrices A(τ) = ∂f(q,u)

∂q

∣∣∣
q̂,u

, B(τ) = ∂f(q,u)
∂u

∣∣∣
q̂,u

and C(τ) = ∂h(q)
∂q

∣∣∣
q̂,u

, are the dynamics, input and out-

put matrices of the linear time-varying system obtained by
linearization of (1)-(2) around the estimated trajectory q̂(τ):

˙̂q(τ) = A(τ) q̂(τ) +B(τ) (u(τ) +w(τ))

ẑ(τ) = C(τ) q̂(τ) + ν
(8)

The scalar quantity E(t0, tf ) is meant to represent the

“control effort” (or energy) needed by the robot for moving

along the trajectory from t0 to tf . Constraint (6) over the

time horizon T is introduced for ensuring well-posedness

of the optimization problem. Indeed, in general, as for

λmin (Go(t0, tf )), also λmin

(
P−1(t0, tf )

)
could be un-

bounded from above w.r.t. the control effort E, as the

most likely optimal solution would consist in increasing the

observation time and the state indefinitely. Notice that the

final time tf is hence not treated as a fixed parameter but,

rather, as the time needed for “spending” the whole available

energy Ē during the robot motion and depends also on the

choice of the timing law along the trajectory.

The need for an online solution is motivated by the fact

that, as for the OG in [14], also the solution P−1 of (7)

depends on the state trajectory followed by the robot, which

is not assumed available. However, during the robot motion,

starting from an initial estimation q̂(t0), the EKF improves

the current estimation q̂(t) of the true state q(t), with

q̂(t) → q(t) in the limit. It is hence reasonable to exploit

this improved estimate to continuously refine (online) the

previously optimized path by leveraging the newly acquired

information during motion.

We now proceed to better detail the structure of Problem 1

and of the proposed optimization strategy.

A. Schatten norm as differentiable approximation of λmin

The use of the smallest eigenvalue as a cost function can,

however, be ill-conditioned from a numerical point of view

in case of repeated eigenvalues. For this reason, we replace

λmin

(
P−1(t, tf )

)
with the so-called Schatten norm

‖P−1(t, tf )‖μ = μ

√√√√ n∑
i=1

λμ
i (P

−1(t, tf )) (9)

where μ � −1 and λi(A) is the i-th smallest eigenvalue of

a matrix A: it is indeed possible to show that (9) represents

a differentiable approximation of λmin(·) [17].

B. Flatness and B-Spline parametrization

In order to reduce the complexity of the optimization

procedure adopted to solve Problem 1 and, hence to better

cope with the real-time constraint of an online implemen-

tation we now recall two simplifying working assumptions

already adopted in [14]. First, we restrict our attention to

the case of non-linear differentially flat1 systems [19]: as

well-known, for these systems one can find a set of outputs

ζ ∈ R
κ, termed flat, such that the state and inputs of

the original system can be expressed algebraically in terms

of these outputs and a finite number of their derivatives.

The flat system assumption allows avoiding the numerical

integration of the nonlinear dynamics (1) for generating the

future state evolution q̂(t), t ∈ [t̄, tf ], from the planned

inputs u(t) and the current state estimate q̂(t̄). Second, we

represent the flat outputs (and, as a consequence, also the

state and inputs of the considered system) with a family of

curves function of a finite number of parameters. Among the

many possibilities, and taking inspiration from [20], [21],

as in [14], also in this work we leverage the family of

B-Splines [22] as parametric curves. B-Spline curves are

linear combinations, through a finite number of control points

xc = (xT
c,1, xT

c,2, . . . , xT
c,N )T ∈ R

κ·N , of basis functions

Bα
j : S → R for j = 1, . . . , N . Each B-Spline is given as

γ(xc, ·) :S → R
κ

s �→
N∑
j=1

xc,j B
α
j (s, s) = Bs(s)xc

(10)

where S is a compact subset of R, Bs(s) ∈ R
κ×N . The

degree α > 0 and knots s = (s1, s2, . . . , s�) are constant

parameters chosen such that γ(xc, ·) is sufficiently smooth

w.r.t. s (the degree of smoothness will be chosen taking into

account the dynamics of the system). Bs(s) is the collection

of basis functions and Bα
j is the j-th basis function evaluated

in s by means of the Cox-de Boor recursion formula [22].

By parameterizing the flat outputs ζ(q) with a B-spline

curve γ(xc, s), and by exploiting the differential flatness

assumption, it follows that all quantities involved in Prob-

lem 1 can be expressed as a function of the parameter s
(the position along the spline) and of the control points xc.

In the following we will then let qγ(xc, s) and uγ(xc, s)
represent the state q and inputs u determined (via the flatness

relationships) by the planned B-spline path γ(xc, s). We also

note that the control points xc become the (sole) optimization

variables for Problem 1. The control points xc will then

become the new optimization variables for Problem 1 that

can be reformulated in terms of these few parameters and

s. This choice allows then reducing the complexity of

Problem 1 from an infinite-dimensional optimization into a

finite-dimensional one.

It is important to stress here that, in order to always

express q and u in terms of ζ and of a finite number of their

1The class of flat systems includes some of the most common robotic
platforms such as, e.g., unicycles, cars with trailers and quadrotor UAVs, and
in general any system which can be (dynamically) feedback linearized [18].
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time derivatives, intrinsic and apparent singularities in flat

differential systems (c.f. [23], [24]) must be avoided. How-

ever, while apparent singularities can be avoided by adopting

a different set of flat outputs and different state space

representations, intrinsic singularities must be treated by

guaranteeing some constraints along the planned trajectories

that depend on the system dynamics at hand. In our previous

work [14], this problem has not been tackled because of

the simplicity of the dynamics used in the simulation part

that has neither apparent nor intrinsic singularities. In the

following, we will describe our strategy to move the control

points in order to generate trajectories that avoid intrinsic

singularities.

C. Additional requirements
In addition to the energy constraint already introduced in

Problem 1 for guaranteeing a finite maximum value for the

cost function and hence well-posedness of our optimization

problem, in this work we also consider two additional

constraints: state coherency and flatness regularity.
1) State coherency: Already introduced in our previous

work [14], this constraint guarantees that at the current

time t, qγ(xc(t), s(t)) = q̂(t), where q̂(t) is the current

estimation of the true state q(t) provided by the EKF. This

constraint, while the estimated state q̂(t) converges to the

true one q(t), guarantees that the optimization over the time

window [t, tf ] will be done coherently with the current state

estimation.
2) Flatness regularity: a second requirement of this work

consists in avoiding intrinsic singularities, in order to always

express q and u in terms of ζ and of a finite number of their

time derivatives. Any intrinsic singularity can be generically

expressed as set of equalities fl(q,u) = 0 and hence, in the

contest of this work, as fl(xc, s) = 0. The flatness regularity

requirement is then equivalent to move the control points in

order to prevent all the functions fl(xc, s) to be zero along

the future planned trajectory.

D. Online Optimal Sensing Control
Letting s0 = s(t0), sf = s(tf ) and, in general, s(t) = st,

based on previous consideration, we can then reformulate

Problem 1 as

Problem 2 (Online Optimal Sensing Control) For all t ∈
[t0, tf ], find the optimal location of the control points

x∗
c(t) = argmax

xc

‖P−1(s0, st) + P−1(xc(t), st, sf )‖μ ,
s.t.

1) q̂(t)− qγ(xc(t), st) ≡ 0 ,

2) fl(xc(τ), sτ ) 	= 0 , ∀ τ ∈ [t, tf ]

3) E(xc(t), st, sf ) = Ē − E(s0, st) ,

where P−1(s0, st) represents a memory of the information
available at the current time t about the current q(t)
collected while moving during [t0, t] plus any a priori in-
formation available at time t0, while

E(s0, st) =

∫ st

s0

√
u(xc, σ)TMu(xc, σ) dσ

is the control effort/energy spent on the already traveled
interval [t0, t] (and, analogously, E(xc(t), st, sf ) the con-
trol effort/energy to be spent on the future interval [st, sf ]).
Finally, P−1(xc, st, sf ), for s ∈ [st, sf ], is solution of

Ṗ
−1

(xc, s) = −P−1(xc, s)A(xc, s)−AT (xc, s)P
−1(xc, s)+

− P−1(xc, s)B(xc, s)V BT (xc, s)P
−1(xc, s)+

+HT (xc, s)R
−1H(xc, s)v(xc, s), P−1(st) = 0 . (11)

We now detail the chosen optimization strategy for solving

Problem 2, taking into account what has been introduced so

far.

IV. ONLINE GRADIENT-BASED TRAJECTORY

OPTIMIZATION

This section is devoted to adapt and extend to Problem 1

the online solution proposed in [14]. The method still com-

bines an online constrained gradient-descent optimization

strategy with an Extended Kalman Filter meant to recover an

estimation q̂(t) of the true (but unknown) state q(t) during

motion. The constrained gradient descent action affects the

location of the control points xc and, thus, the overall shape

of the planned trajectory followed by the system over the

future time window [t, tf ] in order to minimize the maximum

estimation uncertainty. For this reason, we introduce a time

dependency xc(t) so that the B-Spline path becomes a time

varying path. We assume hence that the control points move

according to the following simple update law

ẋc(t) = uc(t), xc(t0) = xc,0 , (12)

where uc(t) ∈ R
κ × N is the optimization action to be

designed, and xc,0 a starting path (initial guess for the

optimization problem).

Since Problem 1 involves optimization of P−1 subject to

multiple constraints, we design uc by resorting to the well-

known general framework for managing multiple objectives

(or tasks) at different priorities [25]. In short, let io(xc) be a

generic objective (or task/constraint) characterized by the dif-

ferential kinematic equation iȯ = Ji(xc)
iẋc, where Ji(xc)

is the associated Jacobian matrix. Let also (J1, . . . ,Jr) be

the stack of the Jacobians associated to r objectives ordered

with decreasing priorities. Algorithm [25] allows computing

the contributions of each task in the stack in a recursive

way where AN i−1, the projector into the null space of the

augmented Jacobian AJ i = (J1, . . . ,J i), has the (iterative)

expression AN i =
AN i−1 − (J i

AN i−1)
†(J i

AN i−1) and
AN0 = I .

Considering Problem 1 and all the additional requirements

in section III-C, we then choose the following priority

list: the state coherency requirement should be the highest

priority task, followed by the regularity constraint and then

by the bounded energy constraint. Optimization of P−1 is

finally taken as the lowest priority task (thus projected in

the null-space of all the previous constraints). This choice is

motivated by the fact that we consider state coherency as a

primary requirement (the planned path γ should always be

synchronized with the current estimated state q̂), followed
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by flatness regularity and then by the bounded energy re-

quirement.

A. State Coherency

As mentioned before, the state coherency constraint en-

sures that the B-Spline is deformed so as to always pass

through the current robot state estimation2.

Let 1o(t) = qγ(xc(t), st) − q̂(t) represent the first

task/requirement (state coherency), so that

1ȯ(t) = J1
1uc(t) + Jsṡ− ˙̂q(t) (13)

where Js =
∂qγ

∂s
, the Jacobian J1 =

∂qγ

∂xc
=

∂qγ

∂Γ

∂Γ

∂xc
, and

matrix Γ =

[
γ(xc(t), st),

∂γ(xc(t), st)

∂s
, · · · , ∂(k)γ(xc(t),st)

∂s(k)

]
for a suitable k ∈ N. Here, the order of derivative k is

strictly related to the flatness expressions for the considered

system: indeed, k is the maximum number of derivatives of

the flat outputs needed for recovering the whole state and

system inputs. The term ˙̂q(t) is, instead, the dynamics of

state updating rule EKF used to recover the state estimate

q̂(t). By choosing in (13)

1uc = −J†
1(K1

1o(t)− ˙̂q(t) + Jsṡ), (14)

one obtains exact exponential regulation of the highest

priority task 1o(t) with rate K1. The projector into the

null space of this (first) task is just AN1 = AN0 −
(J1

AN0)
†(J1

AN0) with AN0 = IκN×κN . Notice that,

if other requirements along the path should be imposed, as

e.g. the desired configuration of the robot at the end of the

path or obstacles avoidance, they could be easily included at

this level of priority.

B. Flatness regularity

The second constraint for Problem 1 consists in preserving

flatness regularity by avoiding that the control points xc

zeroing the flatness singularity functions fl(xc, s). We tackle

this requirement by designing a repulsive potential acting on

the control points when δi(xc, s) = ‖fli(xc, s)‖2 is close

to zero over some intervals S∗
i . Let us define a potential

function Ui(δi) growing unbounded for δi → δmin and

vanishing (with vanishing slope) for δi → δMAX , where

δMAX > δmin represent minimum/maximum thresholds for

the potential. An example of such repulsive function, which

will be used in our simulation (see Section V), is

Ui(δi(xc, σ)) = cot d+ d− π

2
, d =

π

2

δi − δmin

δMAX − δmin
.

The total repulsive potential associated to the i-th interval

S∗
i is

Ui(xc, s(t)) =

∫
S∗
i

Ui(δi(xc, σ)) dσ . (15)

2We also note that this constraint is formally needed only when the
estimated state q̂(t) has not yet converged to the true one q(t) since, after
convergence, the requirement qγ(xc(t), s(t)) = q̂(t) would be trivially
met.

where S∗
i = Si ∩ [st, sf ] (indeed, the integral (15) is only

evaluated on the future path) and, as a consequence,

U(xc, s(t)) =
∑
i

∫
S∗
i

Ui(δi(xc, σ)) dσ (16)

represents the repulsive potential for all N control points

xc,i. The task here is to zero the potential (16), i.e. 2o(t) =
U(xc, s(t)). The time derivative of this task is

2ȯ(t) = J2
1uc(t) (17)

Analogously to previous tasks, by choosing

2uc =
1uc − (J2

AN1)
†(K2

2o(t) + J2
1uc), (18)

with J2 = ∂U/∂xc, one obtains exact exponential regulation

of the highest priority task 2o(t) with rate K2. The projector

into the null space of both previous objectives can be com-

puted (recursively) as AN2 = AN1−(J2
AN1)

†(J2
AN1).

C. Control effort

The third task in the priority (control effort) can be

implemented in a similar fashion. Let 3o(xc(t), st, sf ) =
E(xc(t), st, sf ) − (Ē − E(s0, st)) where we consider (as

usual) that the control points xc(t) cannot affect the past

control effort E(s0, st) already spent on the path. One then

has (using Leibniz integral rule and simplifying terms)

3ȯ(t) = J3
3uc(t)

where

J3 =

∫ sf

st

∂

∂xc

√
u(xc, σ)TMu(xc, σ) dσ .

As a consequence, (18) is complemented as

3uc =
2uc − (J3

AN2)
†(λ3

3o(t) + J3
2uc) ,

and, again, the projector into the null space of all previous

tasks is AN3 = AN2 − (J3
AN2)

†(J3
AN2).

D. Maximization of P−1

Finally, we consider the lowest priority task, that is,

maximization of the Schatten norm of P−1 in the null-space

of the previous tasks: the total control law for the control

points to be plugged in (12) then becomes

uc =
3uc +

AN3∇xc
‖P−1(st, sf )‖μ.

The gradient of the Schattern norm of P−1 can be expanded
as

∇xc‖P−1‖μ =
1−μ
μ

√√√√ n∑
i=1

λμ
i (P

−1)

(
n∑

i=1

λμ−1
i (P−1)

∂λi(P
−1)

∂xc

)
,

where
∂λi(P

−1)

∂xc
= vT

i

∂P−1

∂xc
vi

and vi is the eigenvector associated to the i-th eigenvalue λi

of P−1 [26]. By leveraging relationship (7), the quantity
∂P−1

∂xc
can be obtained as the solution of the following
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differential equation over the future state trajectory qγ(xc, s)
s ∈ [st, sf ]

d

ds

∂P−1(xc, s)

∂xc
=

∂

∂xc

dP−1(xc, s)

ds
=

=
∂

∂xc

(
−P−1(xc, s)A(xc, s)−AT (xc, s)P

−1(xc, s)−
−P−1(xc, s)B(xc, s)V BT (xc, s)P

−1(xc, s)+

+HT (xc, s)R
−1H(xc, s)v(xc, s)

)
, P−1

xc
(st) = 0

(19)

where v(xc, s) = ∂γ(xc,s)
∂s . Notice that, all derivative

Axc
(xc, s) = ∂A(xc,s)

∂xc
, Bxc

(xc, s) = ∂B(xc,s)
∂xc

and

Hxc
(xc, s) = ∂H(xc,s)

∂xc
can be analytically computed (the

initial condition P−1
xc

(st) = 0 steams from the fact that

P−1(st) is independent from xc). Moreover, forward inte-

gration of (19) needs also the concurrent forward integration

of (11).

V. SIMULATION RESULTS

In order to prove the effectiveness of our optimal active

sensing control strategy, in this section we apply the pro-

posed method to a unicycle robot that needs to estimate

its configuration by using, as its only outputs, the squared

distances from two fixed markers. Let us hence consider a

unicycle robot that moves in a plane where a right-handed

reference frame W is defined with origin in OW and axes

XW , YW . The robot pose q(t) = [x(t), y(t), θ(t)]T in the

world frame defines the state of our estimation algorithm,

where (x(t), y(t)) is the position of a representative point of

the robot in W and θ(t) is the robot heading with respect to

XW . Then, the robot kinematic model is⎡
⎣ẋẏ
θ̇

⎤
⎦ =

⎡
⎣cos θ 0
sin θ 0
0 1

⎤
⎦
[
r/2 r/2
r/b −r/b

]
(u+w) = BT (u+w) ,

where u = [ωR, ωL]
T are the angular velocities of the right

and left wheels, respectively. Moreover, r is the radius of

the robot wheels and b is the distance between their centers.

We assume that the robot is equipped with a sensor able to

measure the squared distances between the robot and two

fixed markers that, without loss of generality, are located at

(0, d) and (0,−d), respectively. Formally, the outputs can be

expressed as

z =

[
z1
z2

]
=

[
x2 + (y − d)2

x2 + (y + d)2

]
+ ν . (20)

To show the effectiveness of considering also the process

noise during the optimization phase, we will compare the

results obtained by applying the optimal active sensing

control strategy proposed in this paper, hereafter named

CRE-based method, with the one proposed in [14], hereafter

named OG-based method, where the actuation noise was not

taken into account. Of course, for both cases, the actuation

noise acts on the inputs ωL and ωR. While the OG-based

method is executed, the EKF does not take into account the

actuation noise, i.e. V = 0 in the covariance update step.

On the other hand, while the CRE-based method is executed,

the noise is re-introduced.

Fig. 1 compares the estimation performance of a EKF

filter when the system moves either along the optimal path

obtained by applying the CRE-based method developed in

this paper or the OG-based method developed in [14] for

the considered system3. The robot spent the same level of

energy along both paths. The two plots on the left depict the

trajectories traveled by the robot when using the CRE-based
method (top) and the OG-based method (bottom). It is im-

portant to note that, starting from the initial state estimation

q̂(t0), the optimal path from this estimated configuration is

obtained. Then, the robot starts moving at constant velocity

v = 1 and the EKF reduces the estimation error while the

gradient descent algorithm keeps updating online the shape

of the optimal path. For this reason, the final path will differ,

in general, with respect to the initial one (compare the thick

blue lines which represents the final B-Spline, with the thin

blue lines, which represents the starting B-Spline, in the plots

on the left in Fig. 1).

In the upper right corner of Fig. 1, the EKF performances

for the two methods are reported while the minimum eigen-

values of P−1 are shown in the bottom right corner of the

same figure. The last plot is particularly important since it

shows that the proposed method outperforms the one in [14]

since the minimum eigenvalue of P−1 reaches a higher

values in the former case. Notice that the two methods

generate paths having different length (the robot move at

constant velocity v = 1) but equal energy spent.

Moreover, between 1 s and 1.6 s, in the bottom right corner

of Fig. 1, the minimum eigenvalue of P−1 has a higher value

when using the OG-based method. This is due to the fact

that we are maximizing the smallest eigenvalue of P−1 at

the final time tf . For this reason, due to the presence of the

actuation noise, it may happen that locally the OG-based
method outperforms the CRE-based one. However, at the

end of the path the smallest eigenvalue of P−1 assumes an

higher value by using the CRE-based method as expected.

Table I reports the numerical data of Fig. 1. In particular,

notice again the minimum eigenvalue of P−1, whose value

at tf obtained with the CRE-based method reaches a value

almost three times larger than the value raised by the OG-
based method. This confirms the validity of the proposed

approach.

We have also performed a comparison considering three

different kind of paths: (i) paths generated by the CRE-based
method; (ii) paths generated by the OG-based method; and

(iii) random paths. Along each path the energy spent is

≈ 15.46. Both optimal methods use as initial guess the

random paths. Fig. 2 reports the maximum eigenvalue of

P (t0, tf ) (i.e., the maximum estimation uncertainty) and

its trace (i.e., a measure of the average estimation uncer-

tainty) for the three approaches. As expected, the CRE-based
method significantly outperforms the other two methods. On

the other hand, surprisingly, the OG-based paths are worse

3A video of the simulation is also attached to the paper.
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TABLE I

NUMERICAL SIMULATION RESULTS OF FIG. 1. FOR BOTH SIMULATIONS, THE VEHICLE STARTS FROM q(t0) = [−10.0 M, 0.0 M, 0.0 RAD]T . THE

INITIAL STATE ESTIMATION IS q̂(t0) = [−10.4 M, −0.5 M, −0.3 RAD]T WITH P o = 0.16 I . THE INITIAL ESTIMATION ERROR IS

e(t0) = [−0.4 M, −0.5 M, −0.3 RAD]T . THE OUTPUT NOISE COVARIANCE MATRIX R = 9 · 10−1I AND THE ACTUATION NOISE COVARIANCE

MATRIX IS V = 9 · 10−1I . THE NUMBER OF CONTROL POINTS IS N = 6 AND THE DEGREE OF THE B-SPLINE IS α = 3.

q(tf ) q̂(tf ) e(tf ) [×10−3] λmin((P
−1(tf )) λMAX(P−1(tf ))

OG-based optimal path

x(tf ) = −2.498 m

y(tf ) = −2.86 m

θ(tf ) = −1.058 rad

x̂(tf ) = −2.504 m

ŷ(tf ) = −2.874 m

θ̂(tf ) = −1.059 rad

ex(tf ) = −6.3 m

ey(tf ) = 1.1 m

eθ(tf ) = −2.7 rad

22.16 76.47

CRE-based optimal path

x(tf ) = −2.875 m

y(tf ) = −4.727 m

θ(tf ) = −0.372 rad

x̂(tf ) = −2.874 m

ŷ(tf ) = −4.726 m

θ̂(tf ) = −0.371 rad

ex(tf ) = −1.8 m

ey(tf ) = −1.2 m

eθ(tf ) = 0.5 rad

62.60 566.02

Fig. 1. The estimation performance of the CRE-based method is compared with the OG-based method proposed in [14]. At the end of the CRE-based
optimal path, the smallest eigenvalue reaches a value that is almost three times the one reached at the end of the OG-based optimal path. On the left, the
optimal path from the estimated initial configuration (thin blue line), the optimal path from the real initial configuration (thin black line), the final B-pline
(thick blue line), the real robot trajectory (thick black line) and the estimated robot trajectory (red line) obtained with CRE-based optimal control method
(top-left) and with the OG-based optimal control method (bottom-left); (top-right): the estimation errors of the EKF for the CRE-based (solid lines) and
OG-based (dashed lines) optimal control algorithms; (bottom-right): the minimum eigenvalue of P−1 obtained with the CRE-based method (solid lines)
and with the OG-based method (dashed lines).

than the random ones, confirming the destructive effects of

the actuation noise when not properly considered in the

optimization phase. This result is statistically significant,

confirmed by the Wilcoxon rank sum test (after having

rejected the normality of variance assumption on samples)

that results in less than 0.05 significance level. Obviously,

the results obtained on this comparison depend on different

factors, such as the actuation noise amplitude. In fact, the

larger the noise, the worse the OG-based should perform.

Finally, the computation time at each iteration of our

algorithm for on-line optimal sensing control, implemented

in MATLAB R©/Simulink R© with not fully optimized code,

is around 23 ms on an Intel Core i7-6600U running at

2.60 GHz. This confirm the possibility of a real-time im-

plementation.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, the problem of active sensing control has

been considered for differentially flat systems in presence of

actuation noise. The objective was to maximize the smallest
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max (P(t 0,t f)) Trace(P(t 0,t f))
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fig. 2. Statistical analysis over 40 different runs of the CRE-based method
(green), the OG-based method (red) and random paths (blue). The robot
starts from the same initial conditions. On the left, the maximum eigenvalue
of P (t0, tf ), that is the maximum estimation uncertainty; on the right, the
trace of P (t0, tf ), that is a measure of the average estimation uncertainty.

eigenvalue of the inverse of the covariance matrix, that is a

measure of the maximum estimation uncertainty taking into

account both process noise and noisy sensory feedback. We

have tested the proposed algorithm for the unicycle robot via

several simulations and we have compared it to the approach

in [14] which did not consider the actuation noise. We have

shown that, by using our approach, the maximum estimation

uncertainty is significantly reduced along the optimal path,

thus giving rise to an improved estimation of the state at

the end of the time horizon. We have also conducted a

series of simulations, comparing the two methods described

above with random paths. As one might have expected,

if not properly taken into account the actuation noise can

have disruptive effects in terms of maximum estimation

uncertainty, yielding results similar to what one could have

obtained with random (non-optimized) paths. This is, instead,

not the case when correctly considering the actuation noise

in the optimizaton problem, as proposed in this work. This,

then, further validates the proposed approach.

In the next future, we will apply the proposed method to

more complex systems such as quadrotor UAVs. It would

also be interesting to include the environment within the

variables to be estimated, i.e. to include some targets instead

of markers as well as calibration parameters.
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