
Whole-Body Motion Planning for Humanoids
based on CoM Movement Primitives

Marco Cognetti, Pouya Mohammadi, Giuseppe Oriolo

Abstract— This work addresses the problem of whole-body
motion planning for a humanoid robot that must execute a
certain task in an environment containing obstacles. A random-
ized planner is proposed that builds a solution by concatenating
whole-body motions. Each whole-body motion is generated so
as to realize a center of mass (CoM) movement selected from
a set of primitives and simultaneously accomplish a portion
of the task. The CoM primitives are representative of typical
humanoid actions such as walking gaits (static and dynamic),
and can in principle include more sophisticated movements
(e.g., jumping, crouching, etc). Implementation on the NAO
humanoid proves that the proposed method generates sensible
plans for a variety of composite tasks requiring a combination
of navigation and manipulation.

I. INTRODUCTION

While most early work on humanoid robots focused on

the problem of achieving stable and efficient locomotion,

researchers are now turning their attention to more articulated

tasks, that may use locomotion as building block but in

general require complex whole-body motions. These motions

should be feasible, i.e., comply with the various kinematic

and dynamic constraints of the specific robot; at the same

time, collisions should be avoided with the obstacles that

are invariably present in the robot workspace.

On-line generation of task-constrained robot motions is

typically achieved using kinematic control; a well-known

example is the task-priority framework [1], which can be

extended to handle inequality constraints for collision avoid-

ance [2]. This framework was applied to humanoid footstep

generation for manipulation tasks in [3]. However, kinematic

control is a local technique: in complex situations, it may fail

to find a solution even if one exists. If the scene geometry

is known, a deliberative approach based on motion planning

is expected to outperform any reactive approach.

Even in the simple configuration-to-configuration case,

motion planning for humanoids is a challenging problem

in view of the high dimension of the configuration space,

the inherent underactuation of the mechanism, and the ne-

cessity of maintaining some form of equilibrium. A further

complication is met when the robot is assigned a task. This

may be a single operation (e.g., ‘grasp this object’, ‘open

the door handle’) or a composite sequence of navigation

and manipulation actions (‘take the object on that table and

bring it in the other room’). This is exactly the kind of task-

constrained motion planning we consider in this paper.
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In [4], we have proposed a planning approach that does

not separate locomotion from task execution. Building on the

task-constrained planning framework of [5], a randomized

planner is proposed that simultaneously generates foot dis-

placements and whole-body motions. As a result, the planner

was naturally able to generate walking motions when these

are implicitly required by the task.

Here, we generalize our previous planner by replacing foot

displacements with movements of the center of mass (CoM).

These movements are representative of typical humanoid

actions, such as static walking, dynamic walking, and more.

Assuming that a catalogue of CoM movement primitives

has been precomputed, solutions are built by concatenating

feasible whole-body motions that realize such primitives

and simultaneously accomplish portions of the task. Another

important aspect under which the new planner improves over

the previous is that it can indifferently handle tasks specified

as trajectories or as simple destinations in the task space.

Results obtained on a NAO humanoid will confirm the

higher versatility gained by the use of CoM movements prim-

itives. For example, we obtain plans that automatically toggle

between dynamic and static walking gaits when required by

the characteristics of the environment (e.g., obstacles) or the

task itself. In addition, the possibility of assigning destination

points allows a simple definition of composite tasks.

The paper is organized as follows. In the next section,

a quick review of the related literature is presented. In

Section III we introduce a humanoid motion model and

formulate our planning problem. Motion generation based

on CoM movement primitives is described in Section IV,

and a randomized planner is proposed in Section V. Motion

planning experiments for the NAO humanoid robot are

presented in Section VI. Future research directions are briefly

discussed in Section VII.

II. RELATED WORK

Many motion planning methods for humanoids use sim-

plifying assumptions on either the environment or the robot

geometry. One such approach consists in checking collisions,

at least in a first phase, only at the footstep [6], [7] or at

the leg [8] level; although these techniques have the merit

of simplicity, the final motion may need reshaping due to

collisions not predicted by the simplified model. Another

approach is to find a collision-free path for a simplified robot

model (e.g., its bounding box) and then convert this path into

a feasible locomotion trajectory: this is done in [9] for digital

characters, and in [10] for a humanoid robot. Due to the

coarse approximation of the robot occupancy, this method
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may fail to find a solution in cluttered environments; for

example, extending over a table to pick up something is not

possible. In [11], a whole-body planner is presented that ex-

plores the whole configuration space of the humanoid robot

by first computing collision-free motions and then converting

them into dynamically stable motions. The technique in [12]

is one example of simultaneous generation of footsteps and

whole-body motions. Most of the above methods do not

directly incorporate task constraints.

Task-constrained motion planning for humanoids has been

addressed in [13] for the fixed-stance case (the robot cannot

take steps) or separating locomotion from task execution

in [14]. The approach in [15] works in two stages: first,

statically stable collision-free paths are computed for a free-

flying humanoid robot; then, these paths are converted to

dynamically stable humanoid motions. Reshaping of the

final motion may be needed due to collisions appearing

only in the second phase. In [16], acyclic locomotion and

task execution are achieved through whole-body contact

planning at specified locations. With respect to these works,

our planner does neither rely on any form of separation

nor require the advance specification of footsteps: stepping

motions emerge naturally from the solution of the planning

problem as driven by the assigned task.

Primitives have been used, e.g., for planning humanoid

motions on varied terrain [17]. However, those primitives

are actually whole-body motions (they specify the motion

of all joints) while in our approach they only describe the

trajectory of the CoM and can thus map to different robot

movements as required by the various phases of the plan; this

gives a higher plasticity to our planning method. Moreover,

the above planners cannot directly handle the case in which

a task (e.g., manipulation) is assigned to the robot.

III. PROBLEM FORMULATION

We first introduce a motion model for a humanoid robot,

and then discuss the nature of the considered tasks.

A. Humanoid Motion Model

Planning for a humanoid requires an appropriate definition

of the configuration space. Denote by n the number of artic-

ulation variables (joint angles) of the humanoid. In general,

to specify the configuration of a free-flying humanoid one

should assign the n values of the joint angles as well as the

pose (position and orientation) of a reference frame linked

to one of the robot bodies. In this paper, we will use to

this end a frame attached to the center of mass (CoM in the

following) and oriented as the torso. A configuration will be

then defined as follows

q =

(
qCoM

qjnt

)
,

where qCoM ∈ SE(3) is the pose of the CoM frame and

qjnt ∈ Cjnt is the n-vector of joint angles. The humanoid

configuration space SE(3)×Cjnt has thus dimension n+6.

The natural partitioning of the configuration vector q
also reflects the different way in which motion will be

Fig. 1. Examples of CoM movement primitives: (a) stepping (b) jumping
(c) squatting. Each primitive specifies a trajectory for the CoM (red, dotted)
and possibly other points of the robot, such as a foot (blue, dashed).
However, the planner can freely choose the whole-body motion among the
infinite that are compatible with the primitive.

generated within our planner. For the CoM, we shall con-

catenate whole movements (i.e., subtrajectories) rather than

defining instantaneous motions. These subtrajectories will be

extracted from a catalogue of CoM movement primitives that

are associated to typical humanoid actions such as walking,

jumping, squatting, etc. (see Fig. 1). Each primitive may

actually specify the trajectory of other points of the robot

in addition to the CoM: for example, a stepping primitive

will include also the trajectory of the swing foot. Note that

selecting a particular CoM primitive does not specify the

whole-body motion, which can be freely chosen1 by the

planner among those compatible with the primitive.

Once a CoM movement primitive has been chosen, the

displacement of qCoM is defined throughout its whole du-

ration. At this point, the instantaneous motion of the joint

coordinates qjnt can be chosen so as to realize the chosen

primitive, as well as to meet other planning requirements.

The above motion generation approach can be represented

by the following conceptual model

qCoM(t) = qk
CoM +A(qk

CoM)uk
CoM(t) (1)

q̇jnt(t) = vjnt(t) (2)

for t∈ [tk, tk+1], an interval in which the CoM performs a

certain primitive movement of duration Tk= tk+1−tk. Here:

• qk
CoM = qCoM(tk) is the CoM frame pose at tk;

• A(qk
CoM) is a transformation matrix from the CoM

frame at tk to the world frame, whose structure depends

on the choice of orientation coordinates in qCoM;

• uk
CoM(t) is the pose displacement of the CoM frame at

t relative to the pose at tk;

• vjnt is the velocity input vector for the humanoid joints.

Note the hybrid nature of model (1–2). The first equa-

tion is algebraic, because the CoM motion is generated by

patching whole subtrajectories extracted from the catalogue

of primitives; in fact, the primitive chosen for application

at tk specifies the history of the relative pose displacement

uk
CoM(t) for all t ∈ [tk, tk+1]. The second equation is

differential, as joint variables are changed instantaneously

to track the CoM motion and pursue other tasks.

1In particular, repetition of the same primitive (e.g., a step) in different
parts of the plan will correspond in general to different whole-body motions,
depending on the local task history and obstacle placement.
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B. Task-Constrained Planning
In this paper, a task is described as the trajectory for

the position (and possibly orientation) of a specific point

(body) of the humanoid. For instance, a manipulation task

may be specified as a trajectory assigned to one hand, while

a navigation task may be assigned in terms of motion of the

midpoint between the feet. This simple viewpoint makes it

very easy to translate a task from natural language (‘pick up

that object and bring it to me’) to an assignment that can be

directly used by our planner.
Collect the task coordinates in a vector y taking values

in an appropriate space. Task coordinates are related to

configuration coordinates by a forward kinematic map

y = f(qCoM, qjnt).

Suppose that a desired task trajectory y∗(t), t ∈ [ti, tf ], is

assigned. The trajectory may be a geometric path (with a

path parameter s in place of t) or also degenerate to a single

point y∗(tf ) representing a desired task set-point.
In short, the planning problem considered in this paper

is to find a feasible whole-body motion of the humanoid

over [ti, tf ] that realizes the assigned task while avoiding

collisions with workspace obstacles, whose geometry is

known in advance. In our approach, a solution is identified

by a concatenation of CoM movement primitives that has

been ‘fleshed out’ by defining collision-free whole-body

motions which realize such movements while complying

with the task. In the end, however, the solution can be directly

described in terms of joint motions.
More explicitly, a solution to our problem consists of a

trajectory qjnt(t), t ∈ [ti, tf ] that satisfies three requirements:

R1 The assigned task trajectory is exponentially realized;

that is,

lim
t→∞(y(t)− y∗(t)) = 0

with an exponential rate of convergence.

R2 Collisions with workspace obstacles and self-collisions

are avoided.

R3 Position and velocity limits on the robot joints, re-

spectively in the form qjnt,m < qjnt < qjnt,M and

vjnt,m < vjnt < vjnt,M, are satisfied.

Note that if y(ti) = y∗(ti) (matched initial configuration,

or ‘the robot starts on the task’), requirement R1 automati-

cally becomes

y(t) = y∗(t), ∀t ∈ [ti, tf ],

i.e., the assigned task must be exactly realized at all times.

IV. MOTION GENERATION

The proposed planner works in an iterative fashion by

repeated calls to a motion generator. In particular, we use two

interleaved procedures for generating motions of qCoM and

qjnt. The first (CoM movement selection) selects a particular

CoM movement from the set of primitives. The second

procedure (joint motion generation) computes feasible (in

the sense of requirement R3) collision-free joint motions that

realize the chosen primitive as well as the corresponding

portion of the assigned task trajectory.

A. CoM Movement Selection
The CoM movement selector is invoked from the current

configuration qk = (qk
CoM qk

jnt)
T at time tk.

For sake of illustration, we consider a precomputed cat-

alogue of CoM movement primitives that contains only

stepping movements (as well as a non-stepping motion, see

below). However, the proposed framework can use any set

of primitives; indeed, the richer this set, the larger the set of

tasks for which we will be able to plan a whole-body motion.

For example, crouching and crawling primitives would allow

to achieve tasks that require passing below obstacles.
As explained in Sect. III-A, each primitive specifies the

history of the relative pose displacement uk
CoM(t) for all

t ∈ [tk, tk + Tk]. In the following, we denote this history

by uk
CoM for compactness. A CoM movement uk

CoM is then

selected by picking one primitive from the catalogue

U =
{
US
CoM ∪ UD

CoM ∪ free CoM
}

(3)

where US
CoM and UD

CoM are subsets of static and dynamic
steps, respectively, and free CoM a non-stepping movement.

The stepping motions in US
CoM are extracted from a static

walking gait, in which equilibrium is guaranteed by ensuring

that the ground projection of the CoM falls at all times within

the humanoid support polygon. This set will typically include

a forward step (uSF
CoM), a backward step (uSB

CoM), left (uSL
CoM)

and right (uSR
CoM) steps, and possibly others.

UD
CoM will instead include motions extracted from a dy-

namic walking gait, in which the Zero Moment Point (ZMP)

is always contained in the support polygon. This set is more

complex, in that it will contain a starting step (uDF,start
CoM ),

a cruise step (uDF,cruise
CoM ) and a stopping step (uDF,stop

CoM ) for

each direction of motion.
Finally, with free CoM the CoM is completely free to

move as long as both feet remain fixed and the robot main-

tains equilibrium; this is obviously an important primitive for

manipulation tasks. Moreover, it is a stretchable primitive,

in that its duration can be chosen arbitrarily. Its inclusion is

particularly important, because it allows to build a sequence

of movements whose total duration is tf −ti (as specified by

the task) using motion primitives whose individual durations

are otherwise fixed.
Note the following important points.

• In general, CoM movement primitives specify the mo-

tion of other points on the robot body in addition to

that of the CoM displacement. For example, stepping

primitives assign also the swing foot trajectory within

the associated time interval.

• The above stepping movement primitives can be pre-

computed using suitable Walking Pattern Generators.

• At a given configuration qk, the set of primitives from

which to choose is actually a subset of U that depends

on the configuration itself, and in particular on which

CoM primitive has produced qk. For example, no static

step can be selected after a dynamic cruise step; only

another cruise step or a stopping step are admissible.

Similarly, the only dynamic step that can follow a static

step is a starting step; and so on.
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To explore the space of possible solutions, the CoM

movement may be chosen within the set of primitives U
either randomly or based on appropriate heuristics, which

may be designed on the basis of the specific task.

Wrapping up, selection of a specific CoM movement

primitive provides as outputs:

• a duration Tk for the movement and a time interval

[tk, tk+1];
• for all primitives but free CoM, a reference trajectory

z∗
CoM for the position of the CoM (the position com-

ponent of qCoM) in [tk, tk+1], where tk+1 = tk + Tk;

• for all primitives, a reference trajectory z∗
swg in

[tk, tk+1] for the swing foot (position and orientation).

Note that the swing foot reference trajectory in [tk, tk+1]
for the free CoM primitive is simply z∗

swg(t) = z∗
swg(tk).

B. Joint Motion Generation

Once a CoM movement primitive of duration Tk has been

chosen, instantaneous joint motion is generated from qk at

tk with the objective of realizing the portion of the assigned

task y∗ contained between tk and tk+1 = tk + Tk, as well

as z∗
CoM and z∗

swg in the same interval.

Define the augmented task vector as ya = (yT zT
swg)

T

if free CoM has been chosen as CoM movement primitive,

and as ya = (yT zT
CoM zT

swg)
T in any other case. Denote

by Ja the Jacobian matrix of ya with respect to qjnt, and

by e = y∗
a − ya the augmented task error, where y∗

a(t) is

the reference value of the augmented task in [tk, tk+1].
Joint velocity commands are generated as

vjnt = J†
a(qjnt) (ẏ

∗
a+Ke)+(I−J†

a(qjnt)Ja(qjnt))w, (4)

where J†
a is the pseudoinverse of Ja, K is a positive

definite gain matrix and w is an n-vector that may be

chosen arbitrarily without perturbing the execution of the

augmented task. Substitution of (4) in (2) yields ė = −K e,

i.e., exponential convergence of the augmented task to its

reference trajectory.

Given the kinematic redundancy of the humanoid with

respect to the augmented task, further exploration of the

space of possible solutions is achieved by letting

w = wrnd, (5)

where wrnd is a bounded-norm random n-vector. In the case

in which free CoM has been selected as primitive movement,

we use a slightly different choice of w:

w = −η · ∇qjnt
H(qjnt) +wrnd, η > 0, (6)

where H(qjnt) is the squared distance between the centroid

of the support polygon and the ground projection of the CoM.

The first term in eq. (6) tends to move the CoM towards

the center of the support polygon, in order to privilege the

generation of robot configurations that are statically stable.

The trajectories generated by (4–5), or (4–6), are contin-

uously checked for collisions (requirement R2) as well as

for position and velocity joint limits (requirement R3). For

the free CoM primitive, static equilibrium is also explicitly

checked. If any of these conditions is violated, the current

execution of the motion generator is interrupted. Otherwise,

integration proceeds up to tk+1. In this case, we have

obtained a feasible, collision-free whole-body motion over

that complies with the task over [tk, tk+1] and can be used

by the planner to compose a solution.

V. PLANNER OVERVIEW

Our planner builds a tree in configuration space with the

root at the initial configuration q(ti). Nodes are configura-

tions of the humanoid associated to a time instant, while

arcs represent feasible, collision-free whole-body motions

that realize a portion of the task. As explained in the previous

section, each of these motions has been computed using a

CoM movement primitive as a ‘seed’.

The algorithm makes use of a task compatibility metric in

configuration space. In particular, given a certain point ȳ of

the task trajectory, function γ(q, ȳ) characterizes the com-

patibility of the robot configuration q with the task point ȳ.

For example, in a manipulation task, γ(q, ȳ) can be defined

as the inverse of the Euclidean distance between the ground

projection of ȳ and the midpoint between the feet when the

robot is in q; the rationale being that motion generation from

configurations where this distance is large is more prone to

failure, because some joints will be close to the limits of

their available ranges. This kind of compatibility function is

also appropriate for a navigation task, and will therefore be

chosen for the planning experiments of Section VI.

The pseudocode of the planner is shown in Fig. 2. The

generic iteration of the planner starts by choosing a random

sample y∗
rand from the assigned task trajectory y∗. Then,

a node qnear is randomly extracted from the tree using

a probability that is proportional to the task compatibility

γ(·,y∗
rand). Once qnear has been identified with its associ-

ated time instant, the motion generator is called. First, a CoM

movement is selected from the currently available subset of

primitives; as explained before, this subset depends on qnear.

The new CoM movement comes with a duration as well

as reference trajectories for the CoM and the swing foot

in the next time interval. The portion of the assigned task

contained in the time interval can then be extracted. Finally,

the joint motion generator computes a whole-body motion

that complies with the task. If this trajectory is feasible and

collision-free, its final configuration qnew is added to the

tree; otherwise, a new iteration is started.

VI. PLANNING EXPERIMENTS

The proposed planner has been implemented in V-REP for

NAO, a small humanoid by Aldebaran Robotics, and runs on

an Intel Core 2 Quad at 2.66 GHz.

The set of CoM movement primitives is defined as in (3).

Static steps in US
CoM have been precomputed by a Static

Walking Pattern Generator using step lengths in the range

[0.03, 0.12] m for forward/backward steps and [0.01, 0.03] m

for lateral steps; static steps of different heights (in the range

[0.02, 0.06] m) were also included to give the robot the

possibility of passing over low obstacles. All static steps
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Algorithm 1: Planner

root the tree T at q(ti);1

repeat2

i ← i+ 1;3

select a random sample y∗
rand on the task trajectory;4

select a random node qnear from T with probability5

proportional to γ(·,y∗
rand);

get the time instant tk associated with qnear;6

[qnew, qnearqnew, tk+1]←GenerateMotion(qnear, tk);7

if qnew �= ∅ then8

add node qnew and arc qnearqnew to T ;9

end10

until tk+1 = tf or i = MAX IT ;11

Procedure GenerateMotion(qnear, tk)

select a random CoM primitive uk
CoM from the1

currently available subset of U given by (3);

get the associated duration Tk, CoM trajectory z∗
CoM2

and swing foot trajectory z∗
swg;

extract the portion of task trajectory y∗ in [tk, tk + Tk];3

build the extended task ya = (yT zT
CoM zT

swg)
T ;4

repeat5

generate motion by integrating joint velocities (4);6

if collision or joint position/velocity limit violation7

then
return [∅, ∅, ∅]8

end9

until t = tk + Tk ;10

return [qnew, qnearqnew, tk + Tk]11

Fig. 2. Pseudocode of the proposed planner

have a duration of around 2 s. Dynamic steps have been

precomputed by a ZMP-based Walking Pattern Generator; in

particular, UD
CoM includes a starting step of length 0.038 m

and duration 1.6 s, a cruise step of length 0.04 m and duration

0.425 s, and a stopping step of length 0.038 m and duration

1.325 s, all in the forward direction. In all dynamic steps,

the maximum height for the swing foot is 0.02 m.

CoM movement primitives are selected from U with uni-

form probability distribution. As for joint motion generation

(4-5-6), we use K = diag{2, 2, 1} while wrnd is chosen

using uniform probability and a norm limit at 0.4 rad/sec.

We consider two planning scenarios. In the first experi-

ment (Fig. 3), the humanoid must pick up an object (a ball),

which is placed on a low stool away from the robot’s initial

workspace, and then reach a final position in a corridor across

an automatic door. This is simply translated to a composite

task consisting of two goal points to be reached in sequence

by the robot: the first is a position for the right hand in

order to pick the ball (manipulation task), while the second

is a position for the midpoint between the feet (navigation

task). The navigation task is automatically activated when

the manipulation task is completed. In view of the nature

of our composite task, the task compatibility function γ is

defined as described in Section V.

In order to avoid unnatural movements, we chose not

to constrain the hand motion during the early stages of

the manipulation phase. This is obtained by deleting the

task component y from the augmented task vector ya in

eq. (4) when the hand is outside a certain ball centered at

the object to be grasped. Note that, even in this condition,

expansion of the tree towards the manipulation goal point is

still guaranteed in view of the metric used by our planner

to select qnear. Once the hand enters the ball, the task is

activated; as a consequence, the robot performs a natural

reaching motion only when is sufficiently close to the object.

Figure 3 shows a few snapshots from a solution computed

by our planner. The accompanying video contains a dynamic

playback clip of the planned motion in which full physical

simulation (including joint control) is enabled: this means

that the joint motions in the computed plan are feasible

and can be effectively tracked by the NAO low-level joint

controllers. Note how the planner has correctly generated an

approach phase that the humanoid must execute before the

actual manipulation can occur. Also, the solution includes

different kind of CoM motion primitives: a dynamic walk is

used in the approach phase, while the free CoM primitive

is used for grasping the object in double support. Once

this part of the task is completed, the navigation task is

activated and the robot resumes dynamic walking in order

to cross the automatic door and reach its final destination.

This sensible solution was automatically produced by our

planner by taking advantage of the catalogue of movements

represented by the set of primitives.

The scenario of the second experiment, shown in Fig. 4,

considers a navigation task. In particular, the humanoid

is assigned a goal position for its midpoint between the

feet. To reach it, the robot has to go through an automatic

door whose guide rail represents a ground obstacle. As

shown by the snapshots extracted from a solution, and by

the dynamic playback clip in the accompanying video, the

humanoid initially chooses dynamic walking to reach the

door; once there, it performs two static steps of sufficient

height to overcome the rail, and finally resumes dynamic

walking in order to complete the task. The planner is using

exactly the same set of primitives of the first scenario: here,

the switch from a dynamic to a static gait is triggered

by the characteristics of the environment (the presence of

an obstacle that cannot be avoided using a dynamic step),

whereas in the first scenario it was a consequence of the

composite nature of the task (the robot stopped to pick up

the bal). Once again, the planner takes full advantage of the

richness of the set of CoM movement primitives.

Table I collects some data (averaged over 10 runs) related

to the planner performance in both experiments. Solutions

for the first experiment have a longer duration and this is

reflected in a larger exploration tree. On the other hand,

the time needed to find a solution is longer for the second

scenario. This is due to the relative difficulty of overcoming

the door guide rail: during planning, many configurations in

that area were rejected due to collisions.
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Fig. 3. Planning experiment 1: snapshots from a solution. See the
accompanying video.

Fig. 4. Planning experiment 2: snapshots from a solution. See the
accompanying video.

VII. CONCLUSIONS

We considered the problem of planning whole-body mo-

tions for a humanoid robot that must execute tasks in

an environment containing obstacles. Our approach hinges

on the concept of CoM movement primitives, defined as

precomputed trajectories of the CoM (and possibly other

points of the robot). The proposed planner builds a tree

in configuration space by concatenating feasible, collision-

free whole-body motions that realize a succession of CoM

movements and, at the same time, the assigned task. The

algorithm has been successfully implemented in V-REP and

validated for the NAO humanoid.

We intend to extend the current framework in order to:

• include additional CoM movement primitives (jumping,

crouching, etc) to accomplish more complex tasks;

• design task-based heuristics for guiding the choice of

the primitive;

• consider moving obstacles, following the ideas in [18];

• take into account torque bounds, using a second-order

motion generation scheme as in [19].

data exp 1 exp 2

planning time (s) 6.4 8.3

tree size (# nodes) 144.2 72.1

motion duration (s) 27.5 18.0

TABLE I

PLANNER PERFORMANCE AT A GLANCE
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