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Abstract— We develop a localization method for a single-
UAV/multi-UGV heterogeneous system of robots. Considering
the natural supervisory role of the UAV and the challenging
(but realistic) assumption that the UAV-to-UGV measurements
do not include the identities of the UGVs, we have adopted
the PHD filter as a multi-target tracking technique. However,
the standard version of this filter does not take into account
odometric information coming from the targets, nor does it
solve the problem of estimating their identities. Hence, we
design ID-PHD, a modification of the PHD filter that is able
to reconstruct the identities of the targets by incorporating
odometric data. The proposed localization method has been
successfully validated through experiments. Some preliminary
results of a localization-based control scheme for the multi-
robot system are also presented.

I. INTRODUCTION

Heterogeneous systems are a particular case of multi-robot
systems whose team members are not equal each other. This
strategy is usually employed to specialize each agent for a
specific role in the team, so that each robot can perform better
its specific task. For this reason, heterogeneous systems are
raising a growing interest among researchers.

In particular, mixing Unmanned Air (UAV) and Ground
(UGV) Vehicles can be particularly useful, because it allows
to mix the localization capabilities and the on-site point of
view of the UGVs with the more complete vision of the
environment offered by the UAVs.

In this context, we want to design an heterogeneous system
in which a multitude of UGVs lies on a 2D plane (that can
easily be identified as the floor of a building) and an UAV
performs the role of supervisor flying over them, providing
higher level information to the team.

In this scheme, the knowledge of each others’ relative
configuration is mandatory for the members of the system
in order to exchange data, plan the action and cooperate to
perform higher level tasks. It can be achieved either by exter-
nal sensors, such as camera systems or Ground Positioning
System (GPS) like in [1], or on-board exteroceptive sensors
such as cameras and laser range finders. However, assuming
a general non structured environment leads to the assumption
that no external systems are available. This means that the
team can rely only on the measurements gathered from the
sensors of its members in order to estimate their relative
configurations. The relative localization of an heterogeneous
UAVs/UGVs system is faced in [2] where the authors used a
Kalman filter for the estimation in an outdoor experimental
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Fig. 1: The heterogeneous multi-robot system considered in this
paper consists of a single UAV (Pelican by AscTec) and multiple
UGVs (Khepera III by K-Team).

setup. In [3], a single user controls multiple robots, using a
particle filter for the estimation process with good results.
Similar techniques have been applied also using climbing
robots instead of UAVs [4].

A reasonable assumption which we will take is that the
UAV is able to gather measurements over the relative config-
uration of the UGVs. While in normal operation it is usually
possible to discriminate among the measured robots (e.g.:
applying tagging), there are several adverse environmental
conditions (low illumination, smoky environment, etc..) un-
der which the identification of the measured robots may not
be feasible or reliable. For this reason, we will assume that
the UAV is able to identify the UGVs in its field of view,
without detecting their identities. In previous works on multi-
robot system, this hypothesis is usually called unknown data
association [5], or anonymous measurements [6], [7], [8].
However, our situation is different from the one described
in those works since only one robot is in charge of the
localization, being able to gather relative measurements.

In this work we tackle the unknown data association
issue by employing a technique called Probability Hypothesis
Density (PHD) filter, which was first developed to solve the
multi-target tracking problem by Mabhler in [9]. It intrinsi-
cally solves the data association by estimating the PHD of
the targets in a given region of the space. However, since the
PHD filter is designed to allow the identification of generic
targets, it does not take into account two facts.

The first is the possibility that the targets are cooperative
and send their odometries to the agent performing the estima-
tion. In fact, the PHD filter is designed to work with generic
targets whose time update is performed using a motion model
with unknown input. On the contrary, in robotics each UGV
can usually measure its own displacement through the use of
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encoders on the wheels, so that the motion, hence the input
for the time update, is different and known for each UGV.

The second fact is the necessity to reconstruct not only the
state of each UGV in the team, but also its identity. Being the
localization provided from the UAV to the UGVs as a set of
relative configurations, each robot needs to recognize itself in
the set to compute its own control. For the same reasons, our
work differs from SLAM with moving objects approaches
like in [10]. In view of these additional characteristics, we
will develop a modification of the PHD filter which is able
to incorporate the odometries of the UGVs and use them to
reconstruct their identities directly in the filtering step.

Once the localization issue has been tackled, it is possible
to apply a control law performing higher level tasks. The
heterogeneity of the system allows the design of several
tasks relying on the robots coordination, such as exploration,
patrolling or deployment. Furthermore the large number of
robots gives to the system a high degree of redundancy, hence
the ability to execute several tasks at the same time.

The rest of the paper is organized as follows. After pre-
senting an overview on the system in Section II, we formally
state the main assumptions of the localization problem in
Section III. The relative localization system is presented in
Section IV, and its simulation and experimental results are
addressed in Section V and VI. An outline and preliminary
results of suitable control law for the system is discussed in
Section VII. Section VIII concludes the paper.

II. SYSTEM OVERVIEW

During the design of the multi-robot system, we have rec-
ognized the necessity to solve two main problems. The first
is the relative localization problem. Each robot, in order to
cooperate with the others, needs the knowledge — or an
estimate — of the relative configuration of the other members
of the team w.r.t. itself. The second is the control problem,
in which that knowledge can be used to actually perform
collective tasks.

As stated before, the specialization of the agents leads to
a task allocation that depends on the characteristics of the
various robots. Given its dominant point of view over the
ground, the natural role of the UAV is to perform relative
localization of the UGVs acting as supervisor; obviously, it
will also need to move so as to maintain optimal visibility of
the ground robots. In view of its role, the UAV is typically en-
dowed with a rich sensor equipment and high computational
power. In our case, an Inertial Measurement Unit (IMU)
measures the attitude and velocities of the UAV; whereas
exteroceptive sensing is obtained by an on-board camera
pointing downwards. Finally, a height sensor provides an
information which will be important to reconstruct the scale
of relative configurations. For simplicity, in the following
we will consider all sensors to be centered in the UAV
reference frame. Nonzero roto-translations among the various
frames, invariably present in practice, can be easily taken into
account by kinematic transformations.

The task of the UGVs is operative, in the sense that they
must carry out the required activities on the ground. Given

IMU relative relative
o configurations -
localization g controller UAl\/ Ve:oc'tly
- system to low leve
height sensor| controller
desired UGVs
uav ‘ communication ‘ velocities
. UGVs velocity
AN UGVs communication t0 low level
on-board tasks |controller

Fig. 2: The heterogeneous multi-robot system with the allocation
of tasks and the information flow among the robots.

their number, and considering that the UAV is in charge
of relative localization, the sensing equipment of the UGVs
can be quite basic. This is important because it will result
in a relatively low cost. In particular, we will assume that
each UGV is only equipped with an odometer that measures
its incremental motion. Other exteroceptive sensors may be
present to perform specific on-board tasks: e.g., range finders
for obstacle avoidance. However, we shall not consider the
availability of these sensors for the localization method.

Figure 2 illustrates the resulting control architecture with
the flow of information within the multi-robot system. The
relative configurations (with identities) reconstructed by the
localization system are sent to a centralized controller, which
computes motion commands for the UGVs (depending on
the ground task) and the UAV itself (to maintain the UGVs
in its field of view). The UGV reference velocities are then
sent to the UGVs, which may modify them in real time to
implement reactive behaviors. This control architecture may
be modified in order to introduce more decentralization. For
example, the localization data may be directly made available
to the robots, which can then compute their own control
action on an individual basis.

III. PROBLEM SETTING

We consider a system consisting of a single UAV R, and
n UGVs {R1,..., Ry}, with n unknown and variable over
time. The generic robot R;, ¢ = 0,...,n is modeled as a
rigid body moving in the 3D space and is equipped with a
reference frame F; = {O;, X;,Y;, Z;} attached to a repre-
sentative point of the robot. Hence, the configuration of R,
is uniquely determined in a world frame W = {0, XY, Z}
by the position Wp, € R? of O; and the rotation matrix
W Rz, between F; and W. The latter can be computed by
the roll "W¢;, pitch "6, and yaw "V1); angles of F; in W.
In general, the left superscript and the right subscript
will indicate the frame of reference in which a variable is
expressed and the entity to which that variable refers, respec-
tively. The UAV frame conforms to the North-East-Down
(NED) convention (Z-axis pointing down), as customary in
the aerospace field, while the UGVs adopt the North-West-
Up (NWU) frame (Z-axis pointing up), as shown in Fig. 3.
Denote with Rx(a), Ry(a), Rz(«) the elementary
rotation matrix around the X, Y and Z axes of an angle a.
We define Gy = {Og,, Xg,, Yg,, Zg, } as the frame having
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Fig. 3: Relative localization with anonymous measurements. Trian-
gles are UGVs with their attached frames. The image plane is also
shown with the set of detected features *° Sp.

the same origin of Fy and such that W Rg, = Rz("V1)y),
as in Fig. 3 (the axis Zg is parallel to Z). Being 9 Rz, =
Rx(m)Ry (»0y)Rx ("), we have

V0o sWhys™Vo, chbOsW@o
“Rr,=| 0 V¢, sV, (1)
s, —8W¢OCW90 —CW¢>OCW90

where sa = sin «, cov = cos «¢ and the rotation matrix

1 0 0
Rx(ﬂ') =10 -1 O
0 0 -1

represents the rotation from NED to NWU reference frames.

Furthermore, we define Ho={O%,, X1y, Yros Zg, } the
frame with the origin in the projection of Oy on the XY
plane, and such that Ho Rg, = I3, where I, is the m x m
identity matrix. Hence, as depicted in Fig. 3, Gy and H are
the same frame moved along Zg,, and "Rz, = 9° Ry, .

The IMU provides at each time ¢ the measurements Foay,
o of the linear acceleration 7@, and angular velocity
Fow,. Moreover, it provides, at each time instant, an estimate
(quo, W, W1Z)0)T of the attitude of Ry. We will use
the right superscript to express a time dependency (e.g.:
a” is quantity a at time 7). However, we will omit the
time dependency ¢, so that each variable without a right
superscript is implicitly referred to time # (e.g. 70ao = 70 af).

The images from the camera are scanned by a feature
extraction algorithm which is able to recognize the UGVs
but is not able to discriminate among the different UGVs
and recognize their identities. For this reason, its output is a
set 708y = {3y,...,5,,} of unlabeled points on the image
plane corresponding to the R;’s, ¢ > 0 that are in the field
of view of the camera. In addition to a gaussian noise on the
measured points, we also consider false positives (objects in
the image that look like robots) and false negatives (robots
in the image not recognized as such).

Assume that all the objects in the scene are stationary
except for the feature set 70S,. By removing this set from
the images, the Optical Flow [11] is computed on the
remaining set of M features 70%, obtaining an estimate

of the velocity 7© Yo of those features on the image plane,
which is influenced only by the camera ego-motion.

The height sensor provides at each time instant a measure
ho of the distance ||7°p, || between the UAV and its

projection on the XY plane.

Although the generic UGV R;, i = 1,...,n is described
as a 3-dimensional robot, it lies on the XY plane, so that
the third coordinate (along the axis Z) of "Wp, is always
zero and the X;Y; plane is coincident with the XY plane
for all 7 > 0. Hence, the rotation matrix WR};, 7> 01is an
elementary rotation around the axis Z.

The odometer of R;, ¢ > 0 provides, at each time ¢, a
measure “iu; € R? x S! of Fiu,;, the robot displacement
between two consecutive sampling instants ¢ — 1 and ¢ on
the plane XY

The robots of the team communicate through a wireless
communication channel. In particular, each R;, ¢ > 0 sends
as message to Ry containing (1) the robot signature (the
index i), (2) the total displacement 7ig, € R? x S! of

the robot between 0 and ¢ on the plane XY, computed
by composing the elementary displacements i@}, . .., Fia;.
Let be Ny the set of robots whose odometry message is
received by Ry at time ¢, and let be N3 = NJ U...U Np.

The UAV Ry runs the relative localization system using
its own sensor perceptions and the odometries gathered and
communicated by R;, ¢ > 0. It conducts the estimation from
a robo-centric point of view, computing at each time a belief
over the position “°p, and the rotation matrix 70 R, of the

generic R;. Hence, it solves the following problem:

Problem 1: (Relative Localization) For t = 1,2, ... and
i € N§**, compute the belief bel("op;, 7 Rz,) given 7037,
W¢(7)—’ W067 W'l/)(‘)r, ]:OSS—’ 70—, {]:iq;—}ie]\[&:t, T = 1,...,t.

IV. RELATIVE LOCALIZATION SYSTEM

The scheme of our estimation algorithm is shown in Fig. 4.
The first step is to fuse the depth information ho given by
height sensor with 705, and the camera calibration matrix
K through (assume WgZA)O, Wéo #£0)

_ h 3. _
fOPO_{ o K! <517>,vsjefﬂso} )

CW&O Cwéo
where s; € 705 is the generic j-th element of the camera
observation set. The result is a set of relative position
measurements 70 P,.
In order to compute the velocities 70w, of the UAV, we
consider the relation between the velocities of the camera
and the features in the set 70%:

Fosly = T (7080, Yo, "o, ho) T0g 3)

The so-called image Jacobian J 4 [12] is a rectangular matrix
of size 2M x 6. Equation (3) can be inverted by computing
the left pseudo-inverse of J 5 to obtain a least-square estimate
Fop, of the UAV velocities using 703,

If the UAV is in hovering (roll and pitch angles equal to 0),
Problem 1 can be simplified since the planes XY, and X;Y;
become parallel. Moreover, since H and G differs only for
a known translation along the axis Z, the problem reduces in
the estimation of the relative quantities (*0p,, 01;)T i > 0.
Note that the third coordinate of 7°p, is always zero and
HOR]:,L = Rz(Holﬂi), since Zyy, || Z;i N1 > 0.
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Fig. 4: The relative localization system.

When Ry is not in hovering, it is convenient to rewrite
the problem as if it was, by multiplying the UAV velocity
and position measurement set “0Py for "o Rz, via (1),
available from roll/pitch estimates (Wgﬁo, Wég), and applying
the translation of ho along the axis Z. The results are
the velocity 09, of Ho on the plane XY and position
measurement set Holf’o expressed in H.

Then Problem 1 is simplified as

Problem 2: (Reduced Relative Localization) For t > 0
and i € Ng*, compute the belief bel(*op,, "o4);) given
Ho Py, Mo, Wig, {74 q] bieng T =1, 1,1 > 0,

Note that if Problem 2 is solved, also Problem 1 is
solved. In fact, the other relative quantities are easily re-
coverable. For the relative attitude we have (70¢;, 706;)T =
(=W o, —V0,)T, since the attitude angles of the UGVs are
equal to zero. In addition, Fo p, is retrieved via

~T B
fopi = Ho R}‘U Hopi + ]:Op}[ov 4)

where f“i)Ho = (0, 0, ho)T from Fig.3.

In order to solve Problem 2 we need to recover (i) the
identities of the measurements in the set 7"0150 (i1) the relative
positions *°p, (iii) the relative orientation 04);.

By the definition of the reduced relative configuration
x; = (r"'topim Hﬂpiy Howi)TeRz x S of R; in Hy we can
further simplify Problem 2 reformulating it in 2D space.

Problem 3: (2D Reduced Relative Localization) For t >
0 and i € N}, compute the belief bel(z;) given Mo P,
Howg, Wl {7 @] iengt s T =1, 1,0 > 0.

The solution of Problem 3 is delegated to a modification of
the standard Gaussian Mixture PHD filter [13].

A. Interpretation of the PHD filter

The PHD filter is a generic filter that estimates the PHD of
targets in the space [9]. Assuming n targets, with n unknown
and variable over time, the PHD D(a’) of generic targets is
defined as the function such that its integral over any subset
S C X of the state space of the targets is the expected
number of targets N(S) in those subset. Its mathematical
definition is given by the following relationship:

N(S):/SD(Q:’)da:' (5)

Note that we can always factorize the probability hypoth-
esis density of generic targets in a sum of elements

D(z|) =) d"(x|) =) Pr()p"(=|) (6)
h=1 h=1

each one of them representing a target with probability of
existence

P(E") = PEO) = [ dal)dz, h=1...n ()
x
where E” is the event: the target h exists. By interpreting
the probability density function p?_)(m) as the probability
hypothesis density of a target whose probability of existence
is Pg(_) = 1 we can write

p'(z|-) = d"(x|E",") ®)

Then, d”(x|-) is the probability hypothesis density of the
single target h, while D(x|-) is the probability hypothesis
density of generic targets.

The derivation of the filter is based on random finite set
theory (RFS), and is somehow long and complicated. How-
ever, the resulting recursive filter is composed by two steps
— time and measurement updates — whose interpretation [14]
is straightforward.

Denote with Dy, () an estimate of the PHD at a given
time k7 computed using all measurements up to k7, and
assume that the next measurements are available at the time
(k+1)T. The time update is performed between & and k + 1
to propagate over time the estimate Dy, (x) using the motion
model of the targets. The result is an estimate Dkﬂ‘k(w) of
the PHD at the step k + 1, given all the measurements up to
step k. The generic equation of the time update is

Diyajp(x) = bppapn(z)+
+ [ ps(@) fesn(ele!) + begaplale) D (ad’ ©

where by, 1| () is the probability that a new target appears
in « between k and k + 1, pg(x’) is the probability that a
target with state a’ at step k& will survive into step k + 1,
bipt1jk(x|x’) is the probability that a new target spawns in
x at k+1 from a target that is in =" at k, and fj, 1) (z|2’)
is the single-target Markov transition density.

Using an interpretation of (6), assuming a constant
ps(x) = ps and assuming no target spawning, equation (9)
becomes

Dy () =

= bp1p(x) + /fk+1\k(m|$/) Zps P p"(a')da! =
h=1

= bk+1|k(33) + Zps Pg‘/f}c+1\k($|x’)ph(aﬂ)d$/ (10)
h=1
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showing that in this case each component of the probability
hypothesis density is governed by the same law of motion
governing the time evolution of the posterior probability
density function of a single target in the multi-target system.

Assume that at step k+1 a set of measurements Z (whose
generic element is z) is gathered. It is used to compute an
estimate Dy 1|41 (x) of the PHD at k+ 1 incorporating all
the measurements up to k£ + 1. Its generic equation is

Dy y1k(z) [L — pp(z)+

pD( )9(z|z)
* Z )\C + pr Z|£L’ )Dk—&-l\k( )d:c’

Dy 11 () =

Y

where g(z|m) is the sensor likelihood function, pp(x) is
the probability that an observation is collected from a target
with state « and Ac(z) expresses the probability that a given
measurement z is a false alarm.

Using (6), assuming no false alarms (A = 0) and a constant
probability of detection for each component pp(z) = ph,
equation (11) becomes

Dy g1 (z Z

sl _
Y T st nghw)dw/] -

zeZ
—Z (1-pp) +Z w
zeZ

ith h h P g
. v = J9(zlx) Zh 1p%P}’§p (2')dz'
Hence, the PHD filter exploits the data association by asso-
ciating each measurement with each component of the PHD
and giving a weight w" (z) to each component-measurement
pair on a probability basis. Also the case of no measurement
from a given component is taken into account by the first
term, that is weighted by (1 — p).

In this way the PHD filter keeps track of all possible
associations without computational explosion, magnifying
the most likely data associations through the weights. More-
over, the update rule for the single component p" (x)g(z|x)
expresses a Bayes-like paradigm.

If all components p”(z), the Markov model of the targets
Jrt1e(x|x’, u) and the measurement model g(z|x’) are (or
can be approximated as) gaussian functions, as the case of
unicycles moving on a plane, the resulting update step for
each component is the time update of an (extended) Kalman
filter. This principle is at the basis of the Gaussian Mixture
implementation of the PHD filter, first proposed in [13].
In this work, we will make use of the gaussian mixture
paradigm for our modification of the PHD filter. Hence, in
the rest of the paper we will assume all p” () to be gaussian
functions.

(ZIw)] (12)

B. The ID-PHD filter

In our framework, we have used the PHD filter to estimate
the probability hypothesis density of the robots. Hence, the

state space is X = R2 x S!, while the measurements Z are
the position set 0 Py. Note that the elements of "0 P, are
3D vectors, but the third component is always equal to zero,
hence in the following of the paragraph we are allowed to
consider and use them as if they were elements of R2.

The main difference between the capabilities of a standard
PHD filter and the features required by our problem is the
necessity to reconstruct the identities of the robots. At this
aim, we have implemented some significant modifications to
the time update of the filter in order to introduce in (10) the
odometries communicated by R;, ¢ > 0, and use them to
retrieve the identities.

First, we define the ragging of the components of a
PHD Dji1 = Yp_q Ph p"(x) as the function tag :
{p"(z),h =1,...,n} — Z such that

taely' (@) = {

—1 if p"(a) is not associated

i if p"(z) is associated to R; (13)

Hence, the tagging of a PHD is the association of identities
to the components of the PHD itself. We use the integer —1
to conventionally indicate that a component is not associated
to any robot.

Note that one component can be associated to at most one
integer, but more components may be associated to the same
integer, leading to an intrinsic multi-hypothesis filtering on
the reduced relative configuration of each R;. In fact, the
mean value of each component p"(x) : tag(p"(x)) = i, >
0 represents an hypothesis on the estimate over the relative
configuration of R;. Each hypothesis is then weighted by the
probability of existence of that component P, and the mean
value of the component with the highest weight associated
to R; is chosen as estimate of its 2-D reduced relative
configuration.

Using the concept of tagging, we can now express the
modification of the time update step (10) which enables the
estimation of the identities, that is

Di1)i(®) = bpger () +

+ Z/UP[fk-Q—Hk(x‘m/vQ)pS Ppp"(x))de’  (14)
h=1

where

up[fis1 k(@' Q) ps Pip"(x')] = (15)
[ Ferw(@la’, 7 ) ps P pt (@) - if tag(p® (@) # —1
a ZieNg:tfk+1|k($|iB7 qz)‘qup( ')  otherwise.

and Q = {Fiq;,Vi € N{} is the set of the odometries
communicated to RO.

If a component p"(z') is associated to RZ, then it is
updated using the odometry *#q,. Otherwise, p"(z') is split
in |Ng*| components equal to the original component with
weight equal to P2/|N}|. Each of them is associated to
a different i € Ng** and updated using the odometry 7
Once the odometry of R; is used to update a non previously
associated component, that component is then automatically
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associated to ¢ for all future steps. Newly introduced compo-
nents by 1) (x) are assigned tag(byyqx(x)) = —1, so that
the filter will automatically select a proper id.

Since our assumption of false positive measurements, we
conventionally associate those objects to the id —2, and add
to the set @ the null odometry “~2q_, = (0 0 0)”". Hence,
object mistaken for robots will be included in the estimation
of the PHD, but can be ignored in a second moment since
their estimated ids will be —2.

The initialization is conducted by generating in the state
space random components with very high variance and very
low weight and associating them to —1.

Each single component update of equation (15) is the
update step of a Bayesian recursive estimator, hence it can be
implemented as the update step of a standard EKF. Denote
with ]'-"'Aqf*'1 = (qutlAqk'H)T the position and yaw
displacement of R; in the time interval [T, (k + 1)T] on

the plane XY, which can be computed from 7 quH)T and

FighT
‘q;

Since the estimation is conducted in Hg, we need to take
into account also its own motion in all single components
updates. The position displacements of 7y on the XY plane
can be computed as integration of *ow with the Tustin
method

Hopnghhi= op T (16)

T/2Movi" + Ry (W Agg

where the yaw displacement is easily computed as

HoAqlly = WAugTt = WEIT - WgET. a)
Hence, the time update of the single component is
RE(HOAqk+1) [Hopzlk HgAqk+1+
Howfﬂlk: +R, (Howk\k)]iAqk+1] (18)
)+ ook~ Hongl)
Criap=FrEC, FEL T O a gk oo bt (19)
where Homkﬂlk and C'4 1)}, are mean and covariance of the

prevision at time (k-+1)T, HogFlF = (HopHk Moy k)T ang
Ck| . are mean and covariance of the estimate at time k7,
Fk, J’€+1 and J’Cle are the Jacobian matrices of Hocckﬂ‘k
W.L.t. o :cflk, Fi Aqi‘"‘1 and HOAq’SH respectively (omitted
for brevity). C;,7 > 0 are constant matrices representing the
noise on the movement of R;.

The measurement model of the single robot is

1 00
— FHop. —
z=H™x;, H <0 1 O) (20)
and the measurement update for each component is
Hoghlh — Hog M1 | ¢y (2 — Hogh) 1)

Cir=I—- K H)Cpj

where K, is the well known Kalman gain.

The probability of detection p’ of each component can
be computed by considering whether or not its mean falls in
the field of view of the camera (FOV).
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Fig. 5: Errors on «, y, ¥ on the estimates of the three robots.

V. SIMULATION RESULTS

During the development of the system we used the
Gazebo-ROS environment to simulate robots motion and
gather all data needed by the algorithm. Realistic 3D models
of all robots were used as well as simulated noisy sensors
that emulate the real ones used in the experiments.

To simplify the robot detection, the UGVs are covered
with simple markers (a white rectangle with a black dot in-
side). Hence, we perform a simple image segmentation using
both color and shape data to extract robots measurements.
More sophisticated methods may be used and the markers
may be removed to recover a more general setting.

A typical simulation starts with the UAV in flight above
three UGVs, a position control keeps it still in hovering for
all the time. The UGVs randomly move performing obstacle
avoidance. All the information as well as ground truth given
by the simulator are collected together with common timing.

Fig. 5 shows the results of a typical simulation. In particu-
lar, the figure shows the errors in the x, y, and ¥ components
of the best hypothesis for all the three ground robots. The
estimates converge in less than one minute. Note that during
the transient, the changes in the best hypothesis lead to some
instantaneous changes in the errors values. The final error is
less than 12 cm for the position components while it is less
than 10° for the angular one.

VI. EXPERIMENTAL RESULTS

After testing the system in simulation, we performed
some experiments with real robots. The team of robots is
composed by three unicycle-like Khepera III from K-Team
and a quadrotor Pelican from Ascending Technologies.

The Khepera III robots are small sized wheeled mobile
robots (14 cm diameter). They are a common platform
used to develop and test swarm control algorithms. Each
UGV is equipped with wheel encoders, a standard wireless
connection and an ARM-7 CPU, powerful enough to collect
sensor data, manage TCP/UDP net connection and perform
some simple control algorithm. A low-level speed control
was implemented on-board in order to manage trajectory
following.
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Fig. 6: Errors on the  and y components of the re-projection on the
image plane of the estimates of the three UGVs w.r.t. corresponding
features in a typical experiment.

The Pelican UAV comes with an IMU sensor (angular ve-
locities and linear accelerations), a magnetometer (heading)
and two ARM-7 CPUs used to collect and filter data from
sensors and perform attitude stabilization. A sonar pointing
along the positive Zr, axis was added to provide reliable
indoor height measurements, while the camera is a standard
USB webcam (25 Hz framerate). An embedded board with a
standard wireless link and a 1.66GHz Atom CPU with GNU-
Linux OS is used to mange data collection and transmission.

Since the UAV height controller is not implemented yet,
during a typical experiment the quadrotor hangs from the
ceiling with a wire. However, the propellers are on and
turning in order to introduce all realistic noises in the IMU
and camera measurements, while the yaw angle is manually
driven. Two wheeled robots are performing some pre-defined
closed trajectories (circle, eight) by using an open-loop
control, and the third is manually driven to loiter around. The
odometries of the UGVs are transmitted to a remote station
and collected with their timestamps. Similarly, data from the
UAV are collected on-board with their timestamps. All clocks
are synchronized by using the Network Time Protocol (NTP)
in order to have a common timing for all the measurements.

At the current stage, all the computations needed by the
filter are performed offline. Note that the computational cost
is quadratic with the number of robots as stated in [13], [9]
and every computation can easily be performed online on-
board the UAV to be used for control purpose.

Since our estimates are based on features positions in
the image plane, in order to evaluate the performances of
the system we can re-project the estimated positions of the
UGVs on the image plane and calculate the errors w.r.t. them.
Each feature is labeled and tracked in the video flow. The
algorithm is run on the data set and robots identities and the
estimates are collected. At the end each label is assigned to
the robot that is closest in the final part (after the algorithm
has converged) and the association is back-propagated till
the begin of the experiment. In this way we can plot the
estimates errors flows during the whole experiment.

Fig. 6 shows the plots built in the above described way for

a typical experiment. After the transient initial phase (around
50 seconds), the algorithm converges and the errors remain
bounded under 20 pixels (corresponding to about 10 cm on
the plane XY) till the end of the experiment. For a clip of
the experiment see the attached video.

VII. APPLICATION IN A CONTROL PROBLEM

Once the relative configurations among the team members
are retrieved by the localization system, it is possible to
apply a control scheme to execute some desired tasks. To test
the potentialities of our system, we are developing a control
scheme for a set of tasks representing the basic bricks to build
some intelligent behavior, whose design is still in progress.
Each task can be represented with an appropriate function,
whose Jacobian w.r.t. the robot velocities gives the relation
between the robots movement and task accomplishment.

To combine the tasks we resorted to redundancy resolution
techniques such as task augmentation and null space projec-
tion [15]. For each task we define a priority level according to
its effect on overall system performances: low-priority tasks
must not affect the execution of the high-priority ones.

Since the UGVs are moving in an unstructured environ-
ment, the highest priority task 7} is obstacle avoidance. For
safety reasons it is designed to rely on on-board proximity
sensors only (e.g. a laser range finder). Each UGV runs this
task independently and the influence on the overall system
can be seen as a disturbance for all the lower-priority tasks.

Maintaining the UGVs in the camera field of view is
another fundamental requirement for the whole system to
work. In fact, even if the filter can cope with a temporary loss
of view of some UGVs, the estimates on the configurations
will drift if new measurements can not be collected. To
increase the probability of detecting the largest number of
robots, the UAV should hover above the robots centroid and
the dispersion of the robots along the image plane must
be kept inside the limits of the camera field of view. The
dynamic of the feature associated with each UGV depends
on both the UAV and UGV motion itself. The centroid of
all the UGV features can be used to bring the camera view
in the best position to observe all the robots.

We designed two visual based tasks 7% and 75 to take into
account the motion of the features in the image plane. Task
T, consists in driving the UAV with an Image Based Visual
Servoing [16] scheme which generates linear velocities in
order to maintain the centroid of the features from the
UGVs at the center of the image plane. Task 75, consists
in keeping the dispersion of the features from the UGVs
inside a predefined limit.

The choice of an IBVS scheme makes the execution of T}
and 7% robust to error in the robot localization and decouples
them by the filter estimation. The UGVs can cooperate in
the execution of these tasks with a controller based on both
image information and relative configuration estimates.

Once the safety of the system has been assured, one may
look forward to accomplish some high level tasks, as setting
a particular formation for the UGVs or driving the whole
team to a relevant spot. Those problems can be addressed
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by choosing a direction of motion, by assigning a given
position as goal or by designing a trajectory for it. We chose
to consider the centroid of the UGVs: task T3 is designed to
drive it toward a fixed goal.

If our formation is deployed to explore an unknown
environment it may be useful to uniformly space the UGVs
along the unknown area in an almost rigid formation, moving
them as a platoon. To this aim we chose to deploy the
robots on a circle centered into the UGVs’ centroid: task
Ty is designed to force the UGVs to converge on assigned
positions on the circle.

Note that 75 and T, have a lower priority w.r.t. T} and 75,
since they do not affect the localization system dependability.
For this reason they are augmented and projected into the null
space of tasks 71,75, similar to the work in [17].

In Fig. 7, we show four snapshots taken from a numeric
simulation, while in Fig. 8 we show the normalized errors
in the execution of the tasks. After starting the simulation in
a random configuration (Fig. 7a), thanks to its redundancy
the system is able to execute all the tasks (Fig. 7b), while
all errors tends to zero. The rate of convergence and the
oscillations depend on the priority of each specific task in
the overall control scheme. When an obstacle is detected
(Fig. 7c) the robots formation changes its shape and spreads,
increasing the errors of the lower priority tasks (gray area
in Fig. 8). The increase of the dispersion is compensated
by increasing the altitude of the UAV and, thus, the camera
field of view. Remember that the obstacle avoidance can be
considered as a disturbance acting on the system: as soon
as the perturbation is over the circular formation is restored
and the error for task 7, goes back to zero. Then the team
reaches the goal (Fig. 7d).

VIII. CONCLUSIONS

We have presented a heterogeneous system including a single
UAV and multiple UGVs. Its design required the solution of
two main problems. The first is the estimation by the UAV
of the relative configuration of the robots using anonymous
measurements. For its solution, we have developed a relative
localization system which employs a modification of the
PHD filter to recover the identities of the robots. The system
has been validated through both simulations and experiments.
The computed estimates can be applied in a control law
as that outlined in Sect. VII, for which we presented some
preliminary results obtained in simulation. We plan to extend
this part in future works performing experiments. Another
interesting challenge would be the use of multiple UAVs at
the same time, in order to make the system more reliable.
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Ty: centroid tracking
T,: dispersion

T3: goal based nav.

Ty: circular formation
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o
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Fig. 8: Normalized task errors for high priority (71, 7%) and low

priority (13, T4) tasks. The gray area highlights the activity of

obstacle avoidance controllers.
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