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ABSTRACT We develop a new approach for feature selection via gain penalization in tree-based models.
First, we show that previous methods do not perform sufficient regularization and often exhibit sub-optimal
out-of-sample performance, especially when correlated features are present. Instead, we develop a new gain
penalization idea that exhibits a general local-global regularization for tree-based models. The new method
allows for full flexibility in the choice of feature-specific importance weights, while also applying a global
penalization. We validate our method on both simulated and real data, exploring how the hyperparameters
interact and we provide the implementation as an extension of the popular R package ranger.

INDEX TERMS Dimensionality reduction, feature selection, gain penalization, tree-models.

I. INTRODUCTION
In many Machine Learning problems, features can be hard
or economically expensive to obtain, and some may be
irrelevant or poorly linked to the target. For these reasons,
reducing the number of features is an important task when
building a model, and benefits the data visualization and
model performance, whilst reducing storage and training time
requirements [1]. However, for tree-based methods, there is
no standard procedure for feature selection or regularization
in the literature, as one would find for Linear Regression and
the LASSO [2] for example. Performing feature selection in
trees can be difficult, as they struggle to detect highly corre-
lated features and their feature importance measures are not
fully trustworthy [3]. Several methods to tackle this problem
have been recently proposed, including [4], [5], and [6].

In [5], the authors treat trees as parametric models and
use procedures analogous to LASSO-type shrinkage meth-
ods, by penalizing the coefficients of the base learners and
reducing the redundancy in each path from the root node
to a leaf node. However, their selected features can still be
redundant, since the focus is on reducing the number of rules
instead of the number of features.

On a different approachwe have [4], which focuses on gene
selection specifically for classification methods. The authors
propose an iterative tool that eliminates the least important
features (in fractions of the number of features, p) and updates
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the algorithm at each iteration. The complication is that the
method will always be either computationally expensive, if p
is low, or will eliminate too many features at once, which can
exclude useful or interaction features. Besides, the method
does not generalize to other dataset contexts or tasks, such as
regression.

In the contrasting approach of [6] and [7], the authors reg-
ularize Random Forests by gain penalization. Their method
consists of letting the features only be picked by a Random
Forest if their penalized (weighted) gain is still high. They
make recommendations on how to set the penalization coef-
ficients and present their implementation in the RRF package
for R [8]. However, the authors give no further guidelines on
how to generalize their method for other tree-based models
and penalization types and do not explore the influence of
hyperparameters on the algorithm.

Given that, in this work, we develop a gain penalization
approach that is fully generalizable and widely applicable,
in opposition to those mentioned above. In particular, our
main contributions are:
• We provide a general gain penalization procedure for
tree-based models, which allows for a combination of
local and global regularization parameters.

• We allow for the bespoke local regularization functions
to be domain-specific, which introduces a prior-like
component to feature selection in tree-based models.

• We propose different techniques for setting the regular-
ization parameters and discuss how they affect the final
results, with real and simulated examples.
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• We generalize gain penalization to multiple tree-based
methods (CART, Bagging, Random Forests), for both
regression and classification.

• We make available a faster implementation of the gain
penalization method, included in the very widely used
ranger package.

The format of this article is structured as follows. Section 2
explains the problem setup, followed by the generalization
of gain penalization in Section 3. In Section 4, we present
the results for simulated and real data. Section 5 explains the
implementation details, and Section 6 has the conclusions and
future work.

II. PROBLEM SETUP
Consider a set of training target-feature pairs (Yi, xi) ∈ R ×
Rp, with i = 1, . . . ,N indexing the observations with p being
the total number of features. In general, we can estimate an
f̂ that describes how the features xi relate to Yi and use it for
prediction or inference. However, not all features need to be
involved in f̂ . Especially for tree-based models, the occur-
rence of noisy or correlated features can badly influence the
results [9]. Given that, our interest here relies on estimating
f̂ such that it will only use the matrix xA, composed by the
sub-vectors of x ∈ Rp indexed by A, A ⊂ {1, . . . p}, which
should contain the optimal set of features (it produces similar
or equal prediction errors as the full set of features), that is
potentially of a much smaller dimension.

A. TREES
Non-linear models have been extensively used for regres-
sion and classification problems. Trees are a particular case
of such models, that recursively partition the feature space,
resulting in a local model for each estimated region [10].
They learn the features directly from the training data, cre-
ating an adaptive basis function model (ABM) [11] of the
form

f (x) = E[y | x]=
R∑
r=1

wrI(x ∈ Rr )=
R∑
r=1

wrφr (x; vr ), (1)

where Rr is the r-th region, wr is the prediction given to
this region and vr represents the splitting feature chosen and
the corresponding splitting value. These algorithms are fitted
using a greedy procedure, that computes a locally optimal
maximum likelihood estimator by finding the splits that lead
to the minimization of a cost function. For regression, the cost
function of a decision D is frequently defined as cost(D) =∑

i∈D(yi − ȳ)2, where ȳ = (
∑

i∈D yi)|D|−1 is the mean of
the observations in the specified region, while for classifi-
cation this function is replaced by the misclassification rate,
or cost(D) = |D|−1

∑
i∈D I(yi 6= ŷ).

Since trees are in general considered non-probabilistic
algorithms, one way of measuring the importance of each
feature is to calculate and aggregate their split gains. The gain
of a new split is a normalized measure of the cost reduction,

given by

1(i, t) = cost(D)

−

( |DLN(i,t) |

|D|
cost(DLN(i,t) )+

|DRN(i,t) |

|D|
cost(DRN(i,t) )

)
, (2)

for feature i at splitting point t , while D is related to the
previous estimated split, LN = (left candidate node) and
RN = (right candidate node). The global importance value
is given by accumulating the gain over a feature, 1(i) =∑

t∈Si 1(i, t), where Si now represents all the splitting points
used in a tree for the i−th feature. This measure will be a key
component in our developments below.

B. TREE ENSEMBLES
Trees are known to be high variance estimators: small
changes in the data can lead to the estimation of a completely
different tree [11]. One way to increase stability is to use the
property that an average of many estimates has a smaller vari-
ance than one estimate, and growmany trees from re-samples
of the data. Averaging such results give us a bagged ensemble
[12] of the form

f̂ (x) =
Ntree∑
n=1

1
Ntree

f̂n(x), (3)

where f̂n corresponds to the n-th tree. The RandomForest [13]
algorithm, for example, is defined by allowing only a random
subset m of the features to be the candidates in each split.
As for the importance values, in tree ensembles the feature
importances get averaged over all the trees, or

Impi =
1

Ntree

Ntree∑
n=1

1(i)n, (4)

where i represents the feature index. Moreover, the prediction
performance of the trees in ensembles such as the Random
Forest relies on the number of features tried at each split,
calledmtry here, as whenmtry→ 1, the larger the variance
of each tree, but the more effective will be the averaging
process, and vice versa [3]. As we will see later, the gain
penalization procedure also depends on mtry, because when
the wrong value is set for this hyperparameter, the penaliza-
tion can lead to models that are very far from the truth.

C. REGULARIZATION BY GAIN PENALIZATION
In [6], the authors first discuss the regularization of Random
Forests by gain penalization. The Regularized Random Forest
(RRF) proposes weighting the gains of the splits during the
greedy procedure, guiding the feature choosing of the model.
The regularized gain is defined as

GainR(Xi, t) =

{
λ1(i, t), i /∈ U and
1(i, t), i ∈ U,

(5)

where U is the set of indices of the features previously used,
Xi is the candidate feature, and t the candidate splitting point.
The λ ∈ (0, 1] hyperparameter is the penalty coefficient that
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controls the amount of regularization each feature receives.
A feature is penalized if it is new to the whole ensemble,
as the method has a memory of which features were already
used. Naturally, λ can be a constant value for all the features
but ideally, there should be a regularization parameter for
each feature that best represents the information they carry
about the target. In [7], the authors modify this idea by
introducing the Guided RRF. It consists of first running a
Standard Random Forest (mtry ≈

√
p, number of trees =

500) and producing an importance measure for each feature
and scaling this measure, in order to find Imp′i =

Impi
maxPj=1Impj

where Impi is the importance measure calculated for the i-th
feature in the RandomForest. The Imp′i becomes a component
of the penalization factor, in the form λi = (1− γ )+ γ Imp′i.
However, this method is explicitly developed for Random
Forests, as the gain penalization itself depends on the results
of a previously run Random Forest. No other methodologies
or extensions are explored, and the influence of the Random
Forests hyperparameters are not studied by the authors.

III. GENERALIZING GAIN PENALIZATION
One of our goals with this work is to propose a general-
ization of gain penalization in tree-based models for feature
selection. This generalization is made in two senses: for the
penalization methodology and in the algorithm type. For
the algorithm, this means that the regularization method can
be applied to any tree-based algorithm, be it either single
trees such as CART, or elaborated ensembles like Bagging
and Random Forests. All these methods are available in our
implementation. As for the penalization method, we gen-
eralize it by proposing a gain penalization based on a λi
parameter, that is written as

λi = (1− γ )λ0 + γ g(xi), (6)

where λ0 ∈ [0, 1) is interpreted as the baseline regularization,
g(xi) is a function of the i-th feature, and γ ∈ [0, 1) is
their mixture parameter, with λi ∈ [0, 1). In this fashion,
we propose a local-global form of penalization, that is applied
to all the features used in the model. The equation balances
howmuch all features should be jointly, or globally, penalized
and how much will it be due to a local g(xi), that is manually
set. When γ = 0, only a global penalization is performed,
while when γ = 1, the regularization is fully controlled by
g(xi).
The g(xi) should represent relevant information about the

features, based on some characteristic of interest. It can
include, for example, external information about the relation-
ship between xi and y, or information only about xi and its
utility for the model. This formulation has inspiration on the
use of priors made in Bayesian methods since we intend to
introduce prior knowledge regarding the importance of each
feature into the model. In the same way, the data will tell us
how strong our assumptions about the penalization are, since
even if we try to penalize a truly important feature, its gain
will be high enough to overcome the penalization and the
feature will get selected by the algorithm.

A. CHOOSING g(xi )
In the following, we list a few g(xi) options, taking into
consideration the possible natures of the features.

1) CORRELATION
A familiar option for continuous features is just to use g(xi)
as the absolute value of the marginal correlation between
xi and y, when we assume a continuous target problem.
It could be either Pearson’s, Kendall’s, Spearman’s, or any
other correlation coefficient of preference (the first is more
suitable for ordinary numeric inputs, while the others will be
more convenient for ordered inputs [14]). We drop the sign
because when two features are correlated, the magnitude of
the coefficient is enough to define its importance in terms of
significance, and one can use simply

g(xi) = |corr(y, xi)|. (7)

2) ENTROPY AND MUTUAL INFORMATION
A different situation is when the features are discrete. In
information theory, Shannon’s entropy [15] is a measure of
the uncertainty of a (discrete) random feature. In a short
description, if a discrete feature X has K states, its entropy
will be calculated as

H(X ) = −
K∑
k=1

p(X = k) log2 p(X = k), (8)

where H(X ) ∈ [0,∞]. Higher entropy will mean more
uncertainty, so it can be reasonable to give more weight to
features with lower uncertainties. One can use a normalized
version of the entropy calculated for each xi, or

g(xi) = 1−
H(xi)

maxPj=1H(xj)
, (9)

compelling the features with lower entropy to have larger
penalization coefficients. Under the same framework, a more
general approach to quantify how much knowing about one
feature tells us about the other is theMutual Information func-
tion. In this case, the similarity between a joint distribution
p(X ,Y ) and a factored distribution p(X )p(Y ) is calculated
with

MutInf(X;Y ) =
∑
x

∑
y

p(x, y) log
p(x, y)
p(x)p(y)

(10)

for two features X and Y , which is basically the Kullback-
Leibler divergence between the two distributions [11].
Recalling Equation 8, it is easy to see that the Mutual Infor-
mation value is the reduction in the uncertainty about Y when
we observe X , so it can be straightforwardly used as

g(xi) =
MutInf(xi, y)

maxPj=1MutInf(xj, y)
. (11)
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3) BOOSTED
If there is no interest in differentiating continuous or dis-
crete features, one can use what we call a Boosted g(xi).
Such functions depend on previously run machine learning
models that provide an importance value for the features.
The term Boosted is to introduce some familiarity with what
the algorithm consists of since we can arguably see it as a
heterogenous Boosting [16] applied to the features instead of
the observations.

More generally, manyMachine Learning algorithms can be
usedwhenever they allow for the calculation of an importance
value. Some examples include: Generalized Linear Mod-
els [17], where e.g. the normalized absolute parameter coef-
ficients can be interpreted as importance values, and Support
Vector Machines [18] that produce importance values via
sensitivity analysis ( [19], [20]). Each family of algorithms
will have its specific characteristics and preferences towards
the features, so it is advisable to be aware of those details
when using it in a Boosted g(xi).

4) COMBINATION
Another possibility is combining two or more g(xi). Objec-
tively speaking, some functions will be more appropriate to
one type of feature than others. As an example, one could
combine a Boosted method with the marginal correlations
between the target and each feature. This formulation can,
for example, be written as

g(xi) =

{
|corr(Xi, y)|, if |corr(Xi, y)| > ε

(Imp′i, if |corr(Xi, y)| ≤ ε
, (12)

where we let the absolute values of the correlations compose
g(xi) if the correlation is over a certain threshold ε, and use
Imp′i from a previously run algorithm. Analogously, we might
want to explore the features that are not so correlated to
the target (e.g. when their relationship is very non-linear) by
using a high value for ε.

B. DEPTH PARAMETER
Sometimes, growing very bushy trees with new features is
not desirable when we want to use the smallest set of fea-
tures possible. Following [21], where the authors use prior
distributions for whether a new feature should be picked
in a Bayesian Regression Tree, we introduce the idea of
increasing a penalization given the current depth of the
tree. Their priors take into account the current depth of
a tree, so when a tree is already deep the priors get less
concentrated in high probability regions, resulting in lesser
bushier trees. In our framework, a similar idea is applied by
setting

GainR(Xi, t,T) =

{
λ
dT
i 1(i, t), i /∈ U and
1(i, t), i ∈ U,

(13)

where dT is the current depth of the T tree, T =

(1, . . . ,ntree), for the i-th feature. The aim here is to reduce

the gains of the features if they are to be picked in a deep node,
preventing new features to appear at the bottom of trees unless
their gains are exceptionally high. The benefit of this comes
from the fact that deep nodes contain fewer observations than
their parents, so a deep split will likely lead to a smaller gain
if any at all. In a scenario where we want to keep only the
variables that have a high importance to the model, this is
undesirable and can be prevented by using our method added
with the depth penalization.

C. DETAILS AND ADVANTAGES
1) FEATURE MASKING EFFECT
Tree-based models often suffer from feature masking
effects [3]. For example, in a tree, some feature Xj might
never occur in the algorithm if it leads to splits slightly worse
than some other feature Xi. So if Xi is removed, Xj can
prominently occur and have a high importance value. In the-
ory, this problem is overcome by ensembles like Random
Forests, as selecting onlym features to pick from decorrelates
the trees, but if we regularize Random Forests, the prob-
lem remains. This happens because if weak features end
up being picked (randomly) by the trees, their gains will
have an unfair advantage against the other features (possi-
bly very important features), that will be penalized. Luckily
this situation is can be fixed with hyperparameter tuning
for mtry.

2) CORRELATED FEATURES
A second issue to have in mind when working with tree
ensembles is their bias towards giving high importance to cor-
related features [9]. As an example, suppose we have a subset
C ⊆ X of features which are correlated. Ideally, we would
expect to have only one or just a few of these features being
selected, because if one of the correlated features is truly
important for prediction, using this one feature is enough, but
the ensembles are not able to detect and eliminate correlated
features. The naive approach to tackle this problem is to
calculate a full correlation matrix between all the features and
filter by only the least correlated one, but when p grows this
might not be computationally feasible, and it implies more
manual work when building the model. Our gain penalization
method automatically deals with the correlated features, since
when one of the features in C gets picked, the algorithm is
less likely to pick the other correlated features as well, given
that a new feature needs to reduce the prediction error more
drastically to be selected.

IV. EXPERIMENTS
This section shows the results of our experiments, that evalu-
ated the effects of different regularization types in simulated
and real datasets using the Random Forest algorithm.

A. SIMULATED DATA
Consider now a set X = (x1, . . . , x205) of features, all
sampled from a Uniform[0, 1] distribution, n = 1000.
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We generated a target of interest Y ∈ R as

y = 0.8 sin(x1x2)+ 2(x3 − 0.5)2 + 1x4 + 0.7x5

+

200∑
j=1

0.9(j/3)xj+5 +
45∑
j=1

0.9jx5 + ε, ε ∼ N (0, 1), (14)

inspired by the simulation equation proposed in [22], total-
ing 250 features. This framework produces interesting rela-
tionships between the target and the features: non-linearities
(i = (1, 2, 3)), decreasing importances (i = (6, . . . , 205))
and correlations (i = (5, 206, . . . , 250)), inducing a more
complicated scenario. We created 10 datasets, all randomly
split into train and test set (80%/20%). For all the algo-
rithms we fixed the number of trees at 100, varied mtry =
(15, 45, 75, 105, 135, 165, 195, 225, 250) and our accuracy
measure is the RMSE calculated in the test set. We used
a standardized version of y and, in the following, the
term selected feature represents any feature with importance
1(i) > 0 in the final estimated model.

B. STANDARD RANDOM FOREST, RRF AND GRRF
As a benchmark, we run a Standard Random Forest, the RRF
and GRRF models for each of the the 10 simulated datasets
and all the different values of mtry, and the results are
compared to our method. The first mtry is what would be
the default in a Standard RF, since

√
250 ≈ 15, and the last

is the total of features available.

FIGURE 1. Averages of the number of features used and RMSEtest values
for a Standard Random Forest. The models use all 250 features in every
run. The lowest RMSE occurs with mtry = 45 and the highest RMSE with
mtry = 15.

For the Random Forest model, the resulting number of
features used for all the models is always the maximum
available (see Figure 1). If we consider the correlated features
issue, this means that too many features are being picked,
once we know that they become irrelevant in their joint
presence. The RMSEtest changes when mtry changes: when
mtry = 45 is when we have the best results, meaning that
the default value (mtry =

√
p ≈ 15) is not the best

option. As for theRRF andGRRF, we used the hyperparamet-
ers λ = (0.05, 0.12, 0.18, 0.25, 0.32, 0.39, 0.45, 0.52, 0.59,
0.65, 0.72, 0.79, 0.86, 0.92, 0.99), γ = (0.05, 0.12, 0.18,
0.25, 0.32, 0.39, 0.45, 0.52, 0.59, 0.65, 0.72, 0.79, 0.86,
0.92, 0.99) (which represents the weighting parameter of

Imp′i in the GRRF) and tried all combinations between λ
(RRF), γ (GRRF) and mtry (both). The models were run
using the RRF 1 [23] package for R [8].
Figure 2 shows the results of the average RMSEtest

(left) and average number of selected features (right) in the
10 datasets for the two types of models. We can see a con-
tinuous transition in the number of features picked by the
two models, but they present an inverse pattern regarding the
mtry and penalization parameters. For the RRF, the region
with the lowest RMSEtest is predominantly the one with the
most features, meaning that the penalization is happening but
themodels using the least features do not satisfactorily predict
for the test set. As for the GRRF, mtry = 45 seems to be
optimal, similarly to the Random Forest. However, the lowest
RMSEtest region happen when γ is high, which represents
and improvement but still seemingly leads to the number of
selected features to not be as low as it can be.

C. GENERALIZED GAIN PENALIZATION IN RANDOM
FORESTS
Now we present the experiment results using the Gen-
eralized Gain Penalization in Random Forests. For this
subsection, we vary λ0 = (0.1, 0.5, 0.9) and γ =

(0.001, 0.25, 0.5, 0.75, 0.99), use all combinations of the
hyperparameters (γ ×λ0), first with g(xi) = |corr(y, xi)| and
later using two Boosted methods, with a Standard Random
Forest and with a Support Vector Machine. In Figure 3 we
can see that RMSEtest values are mostly close or below the
0.5 line. In comparison to Figure 2, our algorithm is doing
better, as we can spot many cases where the RMSEtest is
low while using very few features (<25), especially when
g(xi) = BoostedSVM . Even when the RMSEtest is a little
higher, 0.5 for example, the number of features used is fre-
quentlymuch smaller (<10) than previously seem in the other
algorithms. When γ is low the regularization is primarily
controlled by λ0, and we spot a heavier influence of mtry on
the number of selected features, which tends to decrease as
λ0 increases. When γ is high the penalization values depend
more on g(xi), and the results vary less regarding the values
for λ0 and mtry.

A more in-depth analysis of the selected features can be
seen in Table 1. We define the most important features in the
simulation asV = (x1, x2, x3, x4, x5, xi

i∈[6,205]∩[0.9(i−5)/3>0.01]
).

We do not include the last 45 features which are correlated
and we ideally want to avoid them. We then calculate the
percentage of important features that were selected by each
algorithm, from the total of features, and for the correlated
ones, which percentage of those was selected by the algo-
rithm. So, for example, if an algorithm picked 10 features,
3 of them being important, 5 being from the correlated group

1 There is a difference on the splitting criteria of the RRF package, that

calculates1(i, t) =
( cost(DLN(i,t) )
|DLN(i,t) |

+
cost(DRN(i,t) )
|DRN(i,t) |

)
−
cost(D)
|D| ,when finding

the best feature and threshold to split on. At each time the cost reduces in
cost(D)
|D| , making the cost measure have a smaller magnitude than the one

used by us in the ranger package.

VOLUME 8, 2020 190235



B. Wundervald et al.: Generalizing Gain Penalization for Feature Selection in Tree-Based Models

FIGURE 2. (a) Tile plot for the average of resulting RMSEtest and (b) number of selected features in a
Regularized Random Forest and a Guided Regularized Random Forest varying mtry, λ and γ . The number of
selected features has a clear effect in the two models. For the RRF, the region with the lowest RMSEtest is
predominantly the one with the most features, while for the GRRF this situation improves.

FIGURE 3. Averages of RMSEtest (with maximum and minimum intervals) and of the log number of features using the mixture of a λ0 and a g(xi ),
for g(xi ) = (|corr (y, xi )|, BoostedRF , BoostedSVM ). The x-axis shows the original scale, but the values are transformed to log. The models are
mainly using fewer features than the GRRF or Standard RF, with λ0 and mtry visibly affecting the results.

and 2 being ‘‘non-important’’, we calculate the proportion of
important features as 3/5 and the proportion of correlated as
5/45.
With Table 1 we see that the proportion of impor-

tant features is considerably higher for our approach with
g(xi) = BoostedRF and g(xi) = BoostedSVM . When we
use g(xi) = |corr(y, xi)| the algorithm picks less of the

correlated features. We also notice that the best results hap-
pened when λ0 ≤ 0.5 and g(xi) has a higher influence
in the penalization coefficients, so the introduction of prior
information in the gain penalization is really helping the
feature selection. We also show the same results for the
GRRF, which picks manymore of the correlated features and,
on one occasion, more of the important ones. When looking
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TABLE 1. Percentages of the most important and of correlated features
selected and RMSEtest, averaged by mtry and γ . When using
g(xi ) = BoostedSVM , we pick more of the important features, less of the
correlated and have lower RMSEtest. The GRRF tends to pick many of the
correlated features, leading to non-optimal feature subsets.

TABLE 2. Real classification datasets and its specifications. Problematic
p > n situation in all cases.

at this result, we need to take into account that this model
also tends to select more features in general, so that is not
satisfactory if too many variables were selected.

D. REAL DATA CLASSIFICATION
This part of our work now discusses the results for real
gene classification micro-array datasets, specified in detail
in Table 2. With an average of 4787 features, 67 observa-
tions, and 3 classes, those are classical examples of ‘‘large p,
small n’’ datasets. Though the focus here is in gene datasets,
our method generalizes to data from any contexts or sizes
and the datasets were chosen following previous literature
([4], [6]).

As the goal here is to find the best features to predict
the gene classes, the experiment conducted for this section
is different. We run the penalized models and extract their
selected features, that are later used in a Standard Ran-
dom Forest, with which the misclassification rates are cal-
culated. This is to mimic how such an approach can be
used in practice, where first a discovery experiment is run
to identify important features, then a subsequent algorithm
is run on a new dataset using the selected features to better
assess their prediction power. We set γ = λ0 = 0.5,

attributing the same weight to the baseline regularization and
to g(xi). We vary mtry = (

√
p, 0.15p, 0.40p, 0.75p, 0.95p)

and g(xi) =
(
BoostedRF ,

MutInf(y,xi)
maxPj=1MutInf(y,xj)

)
. We also run

a Standard Random Forest, a GRRF, the LASSO [2], and
varSelRF [4] algorithms for each dataset, which are namely
the biggest competitors of our method and are quite different
feature selection techniques, bringing variety to our compar-
isons. All datasets were randomly separated into 50 differ-
ent train (2/3) and test sets (1/3). We first find the average
misclassification rates (MR) and the number of features used
for each of the 50 resamples, eliminating at this step the
mtry column. Out of that, we filter by the resample with the
smallest misclassification rate.

According to Table 3, the Standard RF uses more fea-
tures, but does not always have the lowest prediction errors.
As for the generalized gain penalization, using g(xi) =(

MutInf(y,xi)
maxPj=1MutInf(y)

)
is better for [brain] and [prostate], while

when g(xi) = BoostedRF , the results are good for the [adeno-
carcinoma], [breast 2], [breast 3] and [nci 60]. The GRRF is
strictly better for the [colon] and [srbct] datasets considering
the MR, though it uses many more features in comparison
to the other algorithms. The LASSO often presents a low
percentage of features, but its misclassification rates aremuch
above the ones for the other models shown in the table. If we
compare that to the generalized gain penalization method
with g(xi) =

(
MutInf(y,xi)

maxPj=1MutInf(y)

)
, our approach would be much

more preferable since it uses less variables than the LASSO
while mostly keeping a lower misclassification rate in the
test set, The MRs are all the same for the [leukemia] and
[lymphona] in the Standard RF, GRRF and generalized gain
penalization models, but the percentage of features is often
the lowest for our method. When this happens and such
algorithms also have a low or very similar MR to a Standard
RF one, we reach an optimal situation, which happened for
almost all the datasets. Looking at the varSelRF results,
we notice that this model produces the highest prediction
errors and does not beat our models in terms of the percentage
of features used, even though this algorithm is designed to
work in well in this specific context.

V. IMPLEMENTATION
The implementation used here is included as an extension
to the ranger package [33] for R [8]. This choice was
made given that the ranger, originally written in C++,
is the fastest Random Forest implementation available for
R, so it serves us well for a general tree-based approach
and the models can scale to high-dimensional settings. Fur-
thermore, the package has a wide variety of other Random
Forests extensions, is actively maintained and interfaces with
python. The speed and scalability discussion presented in
ranger and its comparison to the randomForest pack-
age [34] is analogous to the one about our regularization
implemented in the ranger and the one in the RRF package
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TABLE 3. Average percentage of features used and average misclassification rates with standard deviation for all the models. The gain penalized models
used far fewer features than a Standard Random Forest, and it frequently uses fewer variables than the other feature selection techniques. Our approach
also frequently has the lowest prediction errors, showing how it can use far fewer features whilst maintaining competitive misclassification performance.

(which is based on the original randomForest code) so we
will not repeat the same experiments.2

VI. CONCLUSION AND NEXT STEPS
Feature selection and regularization for tree-based methods
is not an easy task and is a topic of active research. In this
work, we have demonstrated that one efficient and general
way of accomplishing such a task is via a generalization of
feature gain penalization for tree-based methods. Our method
combines previous information about the features with a
baseline penalization λ0, in a fully flexible local-global form
of gain penalization. In general, the technique produces good
results in terms of the number of features used and prediction
error trade-off, outperforming more traditional methods. The
performance and other characteristics of the method have
been demonstrated with both simulated and real data in exten-
sive experiments. Along with the methodology, we make
the implementation available in the ranger package for R,
which can also be used in python.
The downside of our approach is the addition of new

hyperparameters, and how to choose them well. Future work
involves finding theoretical properties of certain gain penal-
ization approaches, parameter optimization (using e.g. [35]),
and comparing our approach to other methods with a similar
context ( [36]–[38], for example). We would also like to
explore extensions of this work to other popular and power-
ful tree-based models, such as gradient boosting algorithms
([39], [40]).

2All the code and data used are available for reproducing the experiments.
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