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Abstract. Data sets with imbalanced class distribution pose serious
challenges to well-established classifiers. In this work, we propose a sto-
chastic multi-objective genetic programming based on semantics. We
tested this approach on imbalanced binary classification data sets, where
the proposed approach is able to achieve, in some cases, higher recall,
precision and F-measure values on the minority class compared to C4.5,
Naive Bayes and Support Vector Machine, without significantly decreas-
ing these values on the majority class.

1 Introduction

Classification is one of the most studied and challenging problems in machine
learning and data mining. The task consists in predicting a value of an attribute,
so-called class, based on the values of other attributes. The importance of this
research problem can be understood by the fact that many real-world problems
have been stated as classification problems, including image recognition [24] and
medical diagnosis [1].

Multiple classification algorithms have been proposed and successfully used
on classifications tasks, including decision trees, neural networks, support vector
machines, Bayesian networks and nearest neighbour classifiers. However, data
sets with an imbalanced class distribution (i.e., when the learning examples from
at least one class are very uncommon) have posed challenges to well-established
classifiers that work under the assumption of a relatively well-balanced class
distribution [3,20].
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c© Springer International Publishing AG 2017
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In binary classification, the class with the smaller number of examples is
called the positive or minority class, whereas the other class is referred as the
negative or majority class. Good accuracy on the positive class can in many
cases be more important than the accuracy on the negative class. However, it
has been reported that very often when trying to increase the accuracy on one
class, the accuracy on the other tends to decrease [2]. This is because these two
objectives are usually in conflict.

A natural form to deal with this scenario is to use evolutionary multi-
objective optimisation [5]. Evolutionary Algorithms (EAs) [8], also known as
Evolutionary Computation systems, are influenced by the theory of evolution by
natural selection. These algorithms have been with us for some decades and are
very popular because they have proven competitive in the face of challenging
problem features, such as deceptiveness and multiple local optima, among other
characteristics [7]. They are also popular because EAs have been successfully
used in many different problems, ranging from the automated optimisation of
game controllers [12,19] to the automated design of circuits [10,17].

The idea behind EAs is to automatically generate (nearly) optimal solutions
by “evolving” potential solutions (individuals forming a population) over time
(generations) by using bio-inspired operators (e.g., crossover, mutation). Briefly,
the evolutionary process includes the initialisation of the population P (0) at
generation g = 0. The population consists of a number of individuals which
represent potential solutions to the problem. At each iteration or generation
(g), every individual within the population (P (g)) is evaluated using a fitness
function that determines its fitness (i.e., how good or bad an individual is). Then,
a selection mechanism takes place to stochastically pick the fittest individuals
from the population. Some of the selected individuals are modified by genetic
operators and the new population P (g + 1) at generation g + 1 is created. The
process stops when some halting condition is satisfied. Further details on how
these stochastic optimisation algorithms work can be found in [8].

The goal of this work is to use a Evolutionary Multi-objective Optimisation
(EMO) method [4], in specific a MO Genetic Programming (MOGP) paradigm
to automatically design classifiers that can correctly classify imbalanced data.
Moreover, MOGP has the potential to yield programs (classifiers) that are read-
able to a human expert. It also has the advantage that from a single run, the
approach is able to produce multiple results allowing the user to select the most
convenient for the final application (e.g., a high accuracy on the positive class
regardless of the accuracy achieved on the negative class). The novelty of this
work is the use of semantics in the proposed MOGP. The motivation for doing
so is because the specialised EA literature indicates that the adoption of seman-
tics in a canonical Genetic Programming (GP) [22] system yields better results
compared to a GP system without semantics. We apply the proposed approach,
described in detail in Sect. 2, on a number of imbalanced classification problems
of different nature and complexity, and we used these problems as ‘they are’,
that is, we do not try to balance the classes with a sampling method.
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The rest of this paper is organised as follows. In Sect. 2, we introduce our
proposed approach. Section 3 provides details on the experimental setup used in
this research. Section 4 shows and discusses the results found in this study, and
finally, conclusions are drawn in Sect. 5.

2 Proposed Approach

2.1 Evolutionary Multi-objective Optimisation

Multi-objective optimisation (MO) aims to simultaneously optimise several
objectives. No single solution exists when these objectives are in conflict and
the optimal trade-offs between these must be sought. This idea is captured in
the Pareto dominance relation: a solution will dominate another one if it is at
least as good as the other solution on all the objectives and better on at least
one. Similarly, solutions are non-dominated if they are not dominated by any
solution in the set of candidate solutions.

Evolutionary multi-objective optimisation (EMO) [5] is based on the follow-
ing: by replacing the single-objective selection steps, based on the comparison
of fitness values, by some Pareto-based comparison, one turns a single-objective
evolutionary optimisation algorithm into a multi-objective evolutionary opti-
misation algorithm, but because Pareto dominance is not a total order, some
additional criterion must be used so as to allow the comparison of any pair of
points of the search space.

In NSGA-II [6], the Pareto-based comparison uses the non-dominated sorting
procedure: all non-dominated individuals in the population are assigned Rank
1 and removed from the population, the remaining non-dominated individuals
are assigned Rank 2, and so on. The secondary criterion is the crowding distance
that promotes diversity among the individuals having the same Pareto rank: in
objective space, for each objective, the individuals in the population are ordered,
and the partial crowding distance for each of them is the difference in fitness
between its two immediate neighbours. The crowding distance is the sum over
all objectives of these partial crowding distances. Intuitively, it can be seen as
the Manhattan distance between the extremal vertices of the largest hypercube
containing the point at hand and no other point of the population. Selecting
points with the largest crowding distance amounts to favour the low-density
regions of the objective space, thus favouring diversity.

In general, NSGA-II proceeds as follows. From a given population of size
N , N offspring are created using standard variation operators (crossover and
mutation). Parents and offspring are merged and the resulting population, of
size 2N , is ordered using non-dominated sorting and the crowding distance as a
secondary criterion. The best N individuals according to this ranking are selected
to survive at the next generation.

2.2 Semantics in Genetic Programming

GP has been successfully used in various different challenging problems (see
Koza’s article on human competitive results for a comprehensive review [23]).
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Despite its proven success, it also suffers from some limitations and researchers
have been interested in making GP more robust or reliable by studying various
elements of the search process (e.g., neutrality [16,18,25], locality [13,14]). One of
these elements that has relatively recently attracted the attention of researchers
is the study of semantics in GP, resulting in a dramatic increase in the number
of related publications (e.g., [11,15,26,27]).

Semantics is a broad concept that has been studied in different fields (e.g.,
natural language, psychology), making it hard to give a precise definition of the
concept. Moreover, the way semantics have been adopted in canonical GP varies
significantly (see [27] for a summary of works carried out on semantics in GP).

In this work we adopted the popular use of semantics in GP from recent
related works [26], where researchers have defined it as the output a program pro-
duces when it is evaluated on the complete set of training instances, as adopted
in various previous works [11,26].

Thus, two individuals (in this case, two expressions/classifiers) are regarded
as semantically different if their output vectors are different, they are consid-
ered semantically similar, otherwise. Similarly, a semantic distance is defined
as the number of different outputs between two individuals. Commonly, when
computing the semantic distance, two outputs are considered different if their
absolute difference is greater than a given threshold [11,26]. In this work, we set
the threshold at 0.5. The speciliased literature indicates that promoting seman-
tically different individuals tends to yield better results.

2.3 Incorporating Semantics into MOGP

In this work, we incorporated semantics into the core of the NSGA-II algorithm.
This algorithm, as briefly described before, relies on two main elements: a ranking
system and a crowding distance.

We incorporated semantics by replacing this last element, the crowing dis-
tance, with a semantic-based indicator called Semantic-based Crowding Distance
(SCD). This is computed the following way: a pivot is chosen, being the individ-
ual from the first Pareto front (Rank 1) that is the furthest away from the other
individuals of this front using the crowding distance. For each point, its semantic
distance with the pivot is computed. Similarly to the crowding distance, the SCD
is computed as the average of the semantic distance differences with its closest
neighbours in each direction. The higher values of this SCD are favored during
the selection step of NSGA-II. This allows us to have a set of individuals that
are spread in semantic space, thereby promoting semantic diversity, the same
way NSGA-II promotes diversity (‘spreadness’) in objective space. Hereafter,
this variant of NSGA-II will be called Distance based on Semantics (DBS).

3 Experimental Design

We used binary imbalanced classification problems taken from the well-known
UCI Machine Learning Repository [1]. These problems are of different nature
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Table 1. Binary imbalanced classification data sets used in our research. Table adapted
from [2].

Data set Classes Number of examples Imb. Features

Positive/negative (brief description) Total Positive Negative Ratio No. Type

Ion Good/bad (ionsphere radar signal) 351 126 (35.8%) 225 (64.2%) 1:3 34 Real

Spect Abnormal/normal (cardiac tom. scan) 267 55 (20.6%) 212 (79.4%) 1:4 22 Binary

Yeast1 mit/other (protein sequence) 1482 244 (16.5%) 1238 (83.5%) 1:6 8 Real

Yeast2 me3/other (protein sequence) 1482 163 (10.9%) 1319 (89.1%) 1:9 8 Real

Derma Pityriasis/other (dermatology diseases) 358 20 (5.5%) 338 (94.5%) 1:17 34 Integer

Balanced Balanced/unbalanced (balance scale) 625 49 (7.8%) 576 (92.2%) 1:12 4 Integer

Abalone1 9/18 (biology of abalone) 731 42 (5.75%) 689 (94.25%) 1:17 8 Real

Abalone2 19/other (biology of abalone) 4177 32 (0.77%) 4145 (99.23%) 1:130 8 Real

Table 2. Confusion matrix.

Predicted object Predicted non-object

Actual object True Positive (TP) False Negative (FN)

Actual non-object False Positive (FP) True Negative (TN)

and complexity (e.g., from a few number of features up to dozens of them,
and these include real, binary and integer-value features, from low to relatively
high imbalanced data). Table 1 shows the sizes of both negative (majority) and
positive (minority) classes for each of the problems used in this work along with
some details1. We used the data ‘as is’ (e.g., we did not try to balance the classes
with sampling techniques). For each data set, half of the data (with the same
class balance than in the whole dataset) was used as a training set and the rest
as a test set. All reported results, discussed in the following section, are on the
latter.

To automatically generate classifiers via MOGP, we defined our terminal and
function in the same manner as in [2]. The terminal set consists of problem fea-
tures from each data set. The function set consists of a conditional if function
and the typical four standard arithmetic operators, and so, the function set is
defined by F = {if, +, −, ∗, /}, where the latter operator is protected divi-
sion, which returns the numerator if the denominator is zero. The if function
takes three arguments: if the first is negative, the second argument is returned,
otherwise the last argument is returned. These functions are used to build a
classifier (e.g., mathematical expression) that returns a single value for a given
input (data example to be classified). This number is mapped onto a set of class
labels using zero as the class threshold. In our studies, an example is assigned
to the positive class if the output of the classifier is greater or equal to zero. It
is assigned to the negative class, otherwise.

The most common way to measure fitness in classification is the overall clas-
sification accuracy: using the four outcomes for binary classification shown in
Table 2 and the minority class being the positive class, we have that the accuracy
1 For the abalone data sets, we substituted F, M and I by 1, 2 and 3, respectively.
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Table 3. Total number of independent runs executed for our experiments.

Description Value

Number of independent runs 50

Number of data sets 8

Number of algorithms (NSGA-II and NSGA-II DBS) 2

Total number of runs 800∗

∗800 = 50 * 8 * 2.

is given by Acc = TP+TN
TP+TN+FP+FN . The drawback with Acc is that it can bias

the evolutionary search towards the majority class as pointed out in [28] via [2].
Also, as pointed out in [2], a better approach is to treat each objective (class)
‘separately’ using MOGP. To this end, we used in the fitness function of our
MOGP the true positive rate (TPR = TP

TP+FN ) and the true negative rate
(TNR = TN

TN+FP ) to measure the accuracy for the positive and negative class,
respectively.

The experiments were conducted using a steady state approach with tour-
nament selection of size 7. To initialise our population, we used the ramped
half-and-half method (initial and final depth set at 1 and 5, respectively). To
control bloat (a dramatic increase of programs’ length without observing a cor-
responding improvement in fitness) a maximum depth of 8 was specified (where
root was considered of depth 0) or a maximum number of 800 nodes was used.
Crossover and mutation rates were 60% and 40%, respectively. Elitism for NSGA-
II is not required given the nature of the algorithm. We compare our proposed
approached, NSGA-II DBS with canonical NSGA-II, as well with three well-
known machine learning algorithms (i.e., Naive Bayes, C4.5 and SVMs).

Because of the stochasticity associated to MOGP, we performed extensive
independent runs (we executed 800 runs in total, see Table 3 for details). Runs
were stopped when the maximum number of generations was reached.

4 Experimental Results

4.1 Precision, Recall and F-Measure

We compared our results against three very popular machine learning algorithms:
Naive Bayes (NB), C4.5 and SVMs. To this end, we use the well-known weka
tool [21]. The comparison of results is conducted by computing the F-measure
which reflects the performance on both precision and recall. Recall is defined by

R = TPrate =
TP

TP + FN
(1)

and precision is defined by

P =
TP

TP + FP
. (2)
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Table 4. F-measure comparison on the positive (minority) class.

Data set
NSGA-II NSGA-II DBS NB C4.5 SVM

Positive Negative Positive Negative Positive Negative Positive Negative Positive Negative

Precision

Ion 0.838 ± 0.097 0.645 ± 0.025 0.873 ± 0.075 0.657 ± 0.018 0.689 0.881 0.939 0.865 0.930 0.826
Spect 0.560 ± 0.021 0.491 ± 0.052 0.563 ± 0.020 0.496 ± 0.052 0.614 0.763 0.63 0.759 0.644 0.797
Yeast1 0.452 ± 0.055 0.832 ± 0.016 0.455 ± 0.055 0.833 ± 0.019 0.685 0.918 0.685 0.888 0.737 0.845
Yeast2 0.546 ± 0.064 0.879 ± 0.006 0.541 ± 0.047 0.879 ± 0.006 0.827 0.964 0.817 0.951 0.917 0.890
Derma 0.963 ± 0.073 0.955 ± 0.002 0.970 ± 0.060 0.955 ± 0.002 1 0.917 1 0.917 1 1

Balanced 0.636 ± 0.346 0.893 ± 0.021 0.643 ± 0.322 0.899 ± 0.020 0 0.917 0 0.917 0 0.917
Abalone1 0.199 ± 0.097 0.941 ± 0.018 0.29 ± 0.074 0.945 ± 0.012 0.186 0.974 0.333 0.953 0 0.948
Abalone2 0.017 ± 0.006 0.992 ± 0.004 0.014 ± 0.005 0.979 ± 0.084 0.019 0.995 0 0.993 0 0.993

Recall

Ion 0.832 ± 0.045 0.896 ± 0.076 0.818 ± 0.052 0.926 ± 0.050 0.81 0.795 0.730 0.973 0.635 0.973
Spect 0.716 ± 0.077 0.550 ± 0.062 0.711 ± 0.078 0.558 ± 0.060 0.66 0.725 0.642 0.750 0.717 0.738
Yeast1 0.753 ± 0.033 0.799 ± 0.057 0.750 ± 0.039 0.801 ± 0.061 0.587 0.945 0.49 0.956 0.111 0.992
Yeast2 0.925 ± 0.036 0.894 ± 0.027 0.928 ± 0.033 0.893 ± 0.024 0.736 0.978 0.637 0.980 0.121 0.998
Derma 0.995 ± 0.035 0.998 ± 0.005 0.995 ± 0.035 0.998 ± 0.003 1 0.994 1 0.994 1 1

Balanced 0.922 ± 0.940 0.868 ± 0.156 0.893 ± 0.177 0.889 ± 0.127 0 1 0 1 0 1
Abalone1 0.835 ± 0.900 0.760 ± 0.910 0.836 ± 0.111 0.800 ± 0.096 0.579 0.861 0.105 0.988 0 1
Abalone2 0.688 ± 0.186 0.660 ± 0.156 0.692 ± 0.150 0.69 ± 0.154 0.333 0.873 0 1 0 1

F-measure

Ion 0.831 ± 0.053 0.749 ± 0.043 0.843 ± 0.050 0.768 ± 0.027 0.745 0.836 0.821 0.916 0.755 0.893
Spect 0.627 ± 0.032 0.518 ± 0.056 0.626 ± 0.034 0.525 ± 0.055 0.636 0.744 0.636 0.755 0.679 0.766
Yeast1 0.562 ± 0.037 0.815 ± 0.038 0.562 ± 0.037 0.816 ± 0.042 0.632 0.931 0.507 0.921 0.193 0.913
Yeast2 0.684 ± 0.048 0.887 ± 0.016 0.681 ± 0.037 0.886 ± 0.014 0.779 0.971 0.716 0.965 0.214 0.941
Derma 0.977 ± 0.049 0.976 ± 0.002 0.981 ± 0.041 0.976 ± 0.002 0.957 0.997 0.957 0.997 1 1

Balanced 0.703 ± 0.285 0.873 ± 0.095 0.700 ± 0.271 0.890 ± 0.074 0 0.957 0 0.957 0 0.957
Abalone1 0.303 ± 0.099 0.835 ± 0.093 0.330 ± 0.089 0.863 ± 0.063 0.282 0.914 0.160 0.970 0 0.973
Abalone2 0.032 ± 0.011 0.782 ± 0.118 0.028 ± 0.009 0.744 ± 0.146 0.035 0.930 0 0.996 0 0.996

The F-measure represents a harmonic mean between these two elements.
Hence, a high value on the F-measure denotes that both recall and precision are
high. The F-measure is defined by

F − measure =
2

1/R + 1/P
. (3)

We compare precision, recall and F-measure results on the five different learn-
ing methods (NSGA-II, NSGA-II DBS, NB, C4.5 and SVM) for each of the eight
data sets used (Table 1). For the Pareto front (PF) found by every independent
run of the NSGA-II and NSGA-II DBS, we took the best pair of true positive
rate and true negative rate measured in terms of the Euclidean distance between
a point in the PF against the optimal solution (100% accuracy). These results
are shown in Table 4.

Due to space constraints, we focus our attention on the F-measure values on
the positive (minority) class. The best (higher) values are highlighted in boldface.
The MOGP approaches (NSGA-II and NSGA-II DBS) are better compared to
the other three algorithms in three problems (Ion, Balanced and Abalone1). In
two of these problems (Ion and Abalone1), NSGA-II DBS is better than NSGA-
II (Balanced). When comparing these two algorithms on the latter problem, we
can see that they are very close to each other (the difference is only 0.003) but
NSGA-II DBS is better when one takes into account also the negative (majority)
class.

When we focus our attention on the results of the other learning algorithms
we can see that the worst performance is achieved by C4.5. On the other hand,
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MOGP Approach Evolved Classifier

NSGA-II

IF + IF IF * f3 f1 / f1 f2 * f4 f1 * * f2 f2 IF f4 f2 f1 / - f1
f3 * f2 f4 - IF IF f1 f1 f2 * * f2 f2 IF f4 f2 f1 / f3 f2 * / f4
f2 * f3 f2 - * * / f3 f2 * f1 f4 - * / f3 f2 - f1 f1 IF * f1 f1 /
f2 f3 * f1 f4 / IF IF f1 f1 f2 * / f4 f2 * f3 f2 / f3 f2 f2 IF +
/ * f2 * f2 f3 - f1 f4 / / - f1 f3 - f2 f1 + f4 f2 * / f2 f2 / f1
f4 + * IF * f1 f1 / f2 f3 * f1 f4 / / - f1 * f2 f3 - f2 f1 + f4
f2 * * f2 f3 - f1 f1

NSGA-II DBS

IF - * - / f1 IF f2 f2 f2 f3 * - f3 f3 / / + - f3 f3 - f1 f3 IF -
f2 f4 - f3 f3 + f1 f1 f1 - / + f2 f4 f2 / + f3 f1 IF f2 f3 f1 -
IF IF f4 f1 f1 - - f2 f4 + f2 f1 - - f4 f2 / + f2 f4 f2 / + f3 f1
IF f4 f1 f1 * - + + f3 f4 / + f2 f4 f2 IF + f4 f4 * f1 f2 / f1 f1
- / + f2 f4 f2 / + f3 f1 IF f4 f1 f1

NSGA-II NSGA-II DBS

Fig. 1. Accuracy of all unique evolved solutions on the balanced data set found by
NSGA-II and NSGA-II DBS shown in the left and right-hand side of the figure, respec-
tively. The red triangles indicate the evolved classifiers found by these approaches,
shown at the top of the figure. f denotes a feature, where f1 denotes the first feature
of the data set. (Color figure online)

Naive Bayes achive good results on the Yeast and Abalone2 problems, and SVMs
achive good results on the Spect and Derma problems.

Overall, our MOGP approaches are very competitive to well-established
machine learning classifiers. In fact, they show excellent performance on a spe-
cific problem, discussed next.

4.2 MOGP Classifiers

We now focus our attention on the results produced by NSGA-II and NSGA-II
DBS. To do so, we analyse the balanced data set, where the results obtained by
these two approaches on the positive (minority) are impressive without decreas-
ing significantly their precision, recall, F-measure on the negative (majority)
call. F-measure values on the positive class are 0.703 ± 0.285 and 0.700 ± 0.271,
when using NSGA-II and NSGA-II DBS, respectively, against the other algo-
rithms where they failed completely (i.e., F-measure on the positive class is 0).

Figure 1 shows all the unique solutions found by NSGA-II and NSGA-II DBS
on this data set over all 50 independent runs (notice that a single run yields
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Ion Spect

Yeast1 Yeast2

Derma Balanced

Abalone1 Abalone2

Fig. 2. Average length of evolved solutions, indicated in the y-axis, over 50 genera-
tions, indicated in the x-axis, over 50 independent runs using NSGA-II (blue line) and
NSGA-II DSB (cyan line). (Color figure online)
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multiple results). Some elements are worth mentioning. Our proposed approach,
NSGA-II DBS, is able to produce more unique solutions compared to the NSGA-
II as noticed by the number of scatter points in the figure. Furthermore, there
are more solutions close to the optimal solutions (100% accuracy) compared to
NSGA-II. The evolved classifiers, shown at the top of Fig. 1, correspond to those
marked by the red triangles shown in the scatter plots (bottom of the figure).
These classifiers were selected based on the shortest solutions found by these
two algorithms.

4.3 Length of Evolved Classifiers

Very often it is necessary to account for a classifier that can be interpreted. One
element that helps towards this is the size of the classifier [9]. Figure 2 shows the
average size of the classifier, along with the standard deviation, found by both
MOGP approaches for each of eight data sets used in this work.

There are two elements worth discussing: the length of the evolved classifier
gets larger as evolution continues (i.e., in all cases the classifiers are significantly
larger at the end of the evolutionary search compare to when search starts).
The other element is that both algorithms tend to produce evolved classifier of
similar length. This means that there is no extra cost when using our proposed
approach, NSGA-II DBS, in terms of analysing the evolved classifer.

5 Conclusions

In this work, we proposed a stochastic multi-objective genetic programming
approach based on the semantics of programs, for classification of imbalanced
data. The results are highly encouraging: the proposed approach (NSGA-II DBS)
is able to classify data from the positive class without significantly decreasing
the recall, precision and F-measure values on the negative class.

The MOGP approaches used in this work have some advantages: a single run
offers multiple solutions and the final user could decide which is the best suited
according to his/her needs (e.g., a 100% accuracy on the positive class could
be good enough regardless of the accuracy obtained on the negative class). We
have also learnt that the proposed approach is able to produce more solutions
compared to the traditional NSGA-II. Morever, it is possible to interpret the
evolved classifiers thanks to the nature of the representation (encoding of a
solution) used by the MOGP approaches. Finally, we also have learnt that the
NSGA-II DBS produces classifiers that are of similar length compared to the
well-known NSGA-II.
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