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ABSTRACT
Quantum computing has the power to break current cryptographic

systems, disrupting online banking, shopping, data storage and

communications. However, quantum mechanics can also be used to

make these systems stronger and more resilient. In this paper we

describe the transmissibility of a quantum money scheme, which

was proposed by Dmitry Gavinsky and implemented by the authors,

and discuss some of its benefits and limitations.
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1 INTRODUCTION
Quantum computing has the theoretical power to break certain

modern cryptography [6]. In 1994, Peter Shor developed a quantum

algorithm that can jeopardise public key cryptographic systems [7],

such as RSA. In 1996, Grover’s algorithm was developed, which re-

duced the effectiveness of symmetric key cryptographic systems [4].

Without cryptography, much of our online banking, shopping and

data storage technology would no longer be usable.

Though quantum computing has the power to break some of

our current systems, it also holds the key to unlocking solutions

that exceed the bounds of our current computational capabilities.

Quantum technology has particularly useful qualities for applica-

tions to communication systems, privacy and security. In particular,

the ‘no-cloning’ theorem, which states that no quantum bit can

be duplicated, has been shown to have very useful properties for

quantummoney [8]. Quantummoney was one of the first suggested

applications of quantum mechanics in the realm of cryptography.
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It was first proposed in 1970 by Wiesner but the idea was not ac-

cepted for publication until 1983 [8]. This first protocol, which

suggests using the basis of the quantum no-cloning theorem as a

method of creating unforgeable coins, laid the ground work for the

development of the quantum cryptography field.

In this paper, we discuss the transmissiblity of a quantum money

scheme proposed by Gavinsky [3]. This scheme allows the issu-

ing of quantum coins, which cannot be cloned and whose validity

can be verified by using local quantum operations and a classical

channel. This offers efficient coin validation while providing prov-

able security for the coin. We implemented the scheme using the

SimulaQron simulator [2]. Source code is available [5].

2 GAVINSKY’S QUANTUMMONEY
We follow much of Gavinsky’s notation. The size of the quantum

coin is 𝑘 , where each coin requires 𝑘 quantum registers (each con-

sisting of two qubits), a 𝑘 bit classical register and a unique ID.

To validate one of these coins a coin holder, say Alice, initiates

the Ver process, see Figure 1. The bank then issues a challenge

that begins by choosing a random subset of size 𝑡 of the 𝑘 registers

and the coin holder must make a measurement on 2𝑡/3 of these,
the local subset.

The details of the measurements and validation involve the use

of a quantum Hidden Matching Problem called HMP4 [1].

Gavinsky considers the trade-off between the size of 𝑡 and 𝑘 .

The larger 𝑡 is, the harder it is for an attacker to respond to the

validation challenge. However, larger 𝑡 values result in quantum

registers being used more quickly, increasing the chance that a

legitimate coin holder will be unable to respond to the challenge,

and need to have the coin re-issued. A design assumption is that

once a quarter of the quantum registers have been used, the coin

will be renewed.

Gavinsky shows that if 𝑡 is chosen to be Θ(𝑘3/4) then Ω(𝑘1/4)
validity tests will be possible. Roughly speaking, this means that

if we take 𝑡 proportional to 𝑘3/4 then the number of validations

possible will at least be proportional to 𝑘1/4.

2.1 Hidden Matching Problem
Verification is based on the Hidden Matching Problem (HMP) intro-
duced by Bar-Yossef et al. [1] and defined as follows:

Definition 2.1 (HMP4 condition). For 𝑥 ∈ {0, 1}4 and 𝑚,𝑎,𝑏 ∈
{0, 1}, we say that (𝑥,𝑚, 𝑎, 𝑏) ∈ HMP4 if

𝑏 =

{
𝑥1 ⊗ 𝑥2+𝑚 if 𝑎 = 0

𝑥3−𝑚 ⊗ 𝑥4 if 𝑎 = 1
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Figure 1: Quantum Coin State Diagram

Alice provides classical bit string values (𝑎𝑖 , 𝑏𝑖 ) to the bank

which holds the values 𝑚𝑖 . The bank verifies that Alice holds

the Q-coin corresponding to the classical values 𝑥𝑖 , by verifying

(𝑥𝑖 ,𝑚𝑖 , 𝑎𝑖 , 𝑏𝑖 ) ∈ HMP4 for each 𝑖 in the local subset.

3 DISCUSSION
Gavinsky shows that by choosing a high value of 𝑡 , such as 𝑡 ∈
Θ(𝑘3/4), Ver can run Ω(𝑘1/4) times, where it will take 𝑒𝑘

Ω (1)
time

to counterfeit a Q-coin with a probability greater than 𝑒−𝑘
Ω (1)

. In

our tests, we initially picked 𝑡 close to 0.85𝑘3/4 and found that the

constant for the Ω lower bound on completed validations was 0.79.

Figure 2 shows how quickly our 𝑡 grows in relation to 𝑘 . There-

fore, as the coin size increases so does the number of measurements,

𝑡 , that are shared with the bank when challenged toVer. However,

the number of possible validations does not grow nearly as quickly.

Even very large Q-coins, with 𝑘 = 40,960 the number of possible

validations will be proportional to 𝑘1/4 = 8. Though, this will lead

to a very small counterfeit probability.

While it is relatively easy to achieve a strong level of security, the

Θ bound on the number of validations limits how often the coin can

be passed on and validated, which limits the transmissibility. In fact,

if we follow Gavinsky’s recommendation to re-issue the Q-coin
after 3𝑘/8𝑡 successful runs of Ver then only 1 or 2 validations can

be run. Therefore it is an option for the bank to select the level of

security that it desires. The selection of 𝑡 has an important impact

on the re-usability (or transmissibility) of the coin while considering

the effort it expends minting (issuing) and transferring the Q-coin.

If a transmissibility level of 1 is desired, i.e. to simply prove that

you are the holder of a token, then this is easy to achieve. The bank

will then need to decide an appropriate counterfeit difficulty level,

which would naturally then determine the value of 𝑘 .

Alternatively, by selecting a Q-coin that takes a smaller propor-

tion of 𝑘3/4, we would get a coin that could be validated more times

and produce a Q-coin with higher transmissibility. Suppose we take

𝑡 ≈ 𝛼𝑘3/4, where 0 < 𝛼 < 1. We get approximately 3𝑘1/4/8𝛼 valida-

tions before Gavinsky recommends re-issuing, which is a slightly

conservative lower bound. Or at most we get 3𝑘1/4/2𝛼 validations

Figure 2: Comparative growth of Ω and Θ

before register exhaustion becomes a certainty. For example, using

the maximum size we considered, 𝑘 = 512, and taking 𝛼 = 0.527 we

get 𝑡 = 54, with a maximum transmissibility level of approximately

14, or 3 before Gavinsky recommends re-issuing the Q-coin.

One of the attractive features of Gavinsky’s scheme is that the

coin does not need to be repeatedly returned to the bank, and the

coin holders do not need to have a quantum channel to the bank.

Instead they can use untrusted peers such as Bob does with Alice in

Figure 1. However, it appears that choosing parameters that allow

many validations may be challenging without storing many qubits,

making highly transmissible Q-coins a potential challenge.
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