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Abstract-In Evolutionary Algorithms (EAs), it is well-known 
that the adoption of diversity is highly beneficial for evolutionary 
search. This has also been explored and confirmed in Dyn3lnic 
Optimisation Problems (DOPs) using EAs. Multiple works have 
been proposed to encourage diversity in EAs in the face of a 
change, where the most common form to promote diversity is 
to replace a number of individuals by new genetic material. A 
common element when adopting this form of diversity is the 
fact that, frequently, the number of individuals to be replaced is 
picked rather arbitrarily. In this work, we propose the adoption 
of the Kendall tau distance that quantifies pairwise dissimilarities 
among two lists (of fitness values) with the hope to make a better 
informed decision in terms of the number of individuals that need 
to be replaced in a population by new individuals. Results on 
continuous fitness-valued cases indicate that the adopted distance 
is beneficial in DOPs. 

I. INTRODUCTION 

Multiple definitions have been proposed to describe opti­
misation in dynamic environments. In this work, we adopt 
the most common definition of dynamic optimsation problems 
(DOPs) which are defined as problems that are solved online 
by an optimisation algorithm as time progresses [12]. 

Multiple evolutionary algorithm (EA) elements have been 
reported to be beneficial in DOPs (see e.g., diversity [12] , 
immigrants [9] , memory schemes [10]). 

One key element is diversity. Diversity is a key element 
of the biological theory of natural selection and it is used 
in EAs to describe, for instance, structural [4] or behavioral 
variety [2] , [5]. A large amount of research has proved that 
diversity is necessary to escape from local optima. Intuitively, 
this means that if the vast majority of the population has 
converged to a local or global optimum (e.g., this majority 
being structurally similar among themselves) and the environ­
ment has changed (consequently, the global optimum changing 
too), it is unlikely that the population would be able to escape 
from it. Thus, it is expected that an EA with a mechanism to 
promote diversity will greatly improve its performance. 

Multiple approaches have been proposed to keep diversity 
in EAs e.g. , changing a genetic operator rate, changing the 
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size of a population. One commonly adopted approach is the 
replacement of individuals in a population by newly generated 
genetic material. A common element observed when adopting 
the latter is that, frequently, researchers used an arbitrary 
approach to decide the number of individuals that need to be 
replaced. However, this process is purely intuitive and often 
expensive due to its trial-and-error nature. 

To the best of our knowledge, however, there are no studies 
that have focused their attention on a more informed way to 
determine the number/proportion of individuals that need to be 
replaced in DOPs and this works intends to shed some light 
on this. To this end, we use the fitness values of individuals 
in the population as indicators to determine how big/small a 
change is, and consequently, use this to determine the number 
of individuals to be generated to promote structural diversity. 
Any population-based EA can adopt our proposed approach, 
described in Section 111, and in this work, we use a Genetic 
Programming (GP) system [7]. 

This paper is organised as fol1ows. In Section 11, we discuss 
related works. Section 111 shows the proposed approach. Sec­
tion IV provides details on the experimental setup used. The 
results are presented in Section V, and finally, conc1usions and 
future work are drawn in Section VI. 

11. PREVIOUS WORK ON PROMOTING AND MAINTAINING 

DIV ERSITY 

As indicated previously, multiple works have been proposed 
to promote and maintain diversity in EAs (see [12] for a 
summary of works). In this section, we focus only on DOPs 
tackled by GP (see [12], [18] for a more general treat on 
the subject). Among those approaches proposed to promote 
diversity in the face ofDOPs using GP are: (a) injection ofnew 
genetic structural material, (b) adaptable genetic operators, and 
(c) behavioural diversity. 

One of the easiest forms of promoting diversity is adopting 
the injection of new genetic material into the GP population. 
The generation of GP individuals is done by using common 
techniques, like the adoption of the ramped half-and-half 
method [7]. This can take place when, for instance, detecting 
a change [8] or when bloat (dramatic increase of tree sizes 
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as evolution proceeds) reaches a limit and there is a need 
to substitute individuals contained in the population by new 
GP programs [16]. Injecting new GP individuals into the 
population has also been promoted via culling [13]. That is, 
removing the worst (less fit) individuals and replacing them 
by randomly generated GP programs. Variable population 
size [15] also promotes diversity by adding new GP individuals 
into the population. A common element in all these works is 
that, often, the number of individuals to be replaced by the 
same number of newly created individuals is chosen rather 
arbitrarily. 

Another well-known approach to promotelincrease diversity 
in GP facing DOPs is to use adaptable genetic operators. 
The idea is straightforward and easy to implement in a 
GP system: to change (increase/decrease) the frequency of 
applying a genetic operator to individuals in a GP population. 
Examples of works inspired by this technique include [8], 
where the authors increased the subtree mutation rate when 
a change in the problem is detected. The adoption of this 
technique has also been adopted when there is a change 
e.g. , in the fitness of the best individual for a number of 
generations [13] , where the authors decreased the crossover 
rate if the fitness value increased (for a maximisation problem) 
over generations and increased the crossover rate, otherwise. 
An opposite approach has been conducted when using elitism 
(keeping the best solution found so far), that is, the elitism rate 
was increased when the fitness increased, for a maximisation 
problem, and decreased up to a certain threshold, when the 
fitness deteriorated [13]. 

Finally, the study of the behavioural diversity of GP has 
increased dramatically over the last years as a result of 
multiple scientific studies indicating that the presence of 
behaviour (semantic) diversity can dramatically improve the 
performance of a GP system. Multiple semantic methods have 
been proposed in GP, and so, it is not possible to give a unique 
definition of this. However, the common element present in 
these approaches is to capture how a GP system behaves on 
a given problem. The most popular form of semantics GP, 
as originally proposed in [11], is defined as the vector of 
output values computed by a (sub )tree for each set of input 
values in turn (a.k.a. fitness cases in most cases). From this, 
one can compute the semantic (behaviour) diversity among 
two individuals. That is, one can say that two individuals are 
behaviourally different if their output vectors are different (or 
so me of the values contained in these vectors are different). 
Surprisingly, only a few scientific studies have focused their 
attention on promoting behavioural diversity in DOPs. Yan and 
Clack are among those few researchers promoting this type 
of diversity in a dynamic setting [17] by using the common 
semantic diversity method explained before. 

A. Final Comments on Diversity 

By far, the most used technique to promote diversity in GP 
on DOPs is the adoption of structural diversity. As discussed 
earlier, this has been adopted differently in various research 
works. However, one predominant element in all these works is 

that the decision on how many individuals should be replaced 
is made rather arbitrarily. Next, we present an approach that 
aims to overcome this limitation. 

IH. PROPOSED ApPROACH 

From the previous section, we know that there is strong 
evidence indicating that the adoption and/or encouragement of 
structural diversity in GP search on DOPs is highly beneficial. 
Normally, when adopting this type of diversity, researchers 
have focused their attention on setting arbitrarily a number of 
individuals to be generated and then used them to e.g., replace 
the worst GP individuals in a population. The major drawback 
with this approach is that, very often, this process is based on 
trial and error and can be computationally expensive. 

We believe that it is possible to adopt a more informed 
way of determining the number of individuals that should 
be replaced from a population by using fitness values. The 
use of these values as indicators to perform a specific task 
(e.g., prediction of problem hardness) is common in EAs. The 
most well-known example of this is the fitness-distance corre­
lation [6], where these fitness values are used in conjunction 
with a metric that informs us how distant two individuals are 
in the search space to determine the difficulty of a problem. 

In this work, we use a distance that accounts for pairwise 
disagreements between two lists of ranked fitness values. We 
hope that these disagreements can inform us on whether an 
evolved population is useful/relevant in the face of a change. 
Our proposed approach works in three phases: 

1) Firstly, it is necessary to account for a method that can 
indicate when a change is about to take place. We do 
this in a non-expensive matter: before a new generation 
is about to take place, we use one individual (the elitist 
individual), whose fitness UD is assessed again in the 
next generation (g + 1). 

2) Secondly, if f~ and f~+l are different, then we regard 
this as a change in the environment and we then proceed 
to compute the Kendall tau rank distance (defined in 
Eq. 1) between the ranking of the fitness values of 
all individuals at generation g and the next generation 
(g + 1). This distance counts the number of pairwise dis­
agreements between two ranked lists and it is normalised 
by the maximum number of possible disagreements. 
This distance gives a discrete value k = [0,1] and this 
is used to generate a percentage of Ck new individuals 
with respect to the size of the population. 

3) Thirdly, the worst individuals (less fit individuals) at 
g + 1 are replaced by the newly generated individu­
als keeping the size of the population constant (using 
ramped half-and-half initialisation method, details are 
discussed in Section IV). 

The Kendall tau distance between two ranked lists is defined 
as, 

k(T1 ,T2) = L ki ,j(T1,T2) 
(i,j)E P 

(1) 
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TABLE I 
SUMMARY OF PARAM ETERS. 

Parameter Value 

Population Size 800 
Generations 200 
Type of Crossover Any node 
Crossover Rate 0.80 
Type of Mutation Subtree 
Mutation Rate 0.20 
Selection Tournament (size = 7) 
Initialisation Method Ramped half-and-half 
Initialisation Depths: 

Initial Depth 2 
Final Depth 5 

Maximum Length 1200 nodes 
Maximum Final Depth 8 
Independent Runs 50 

Changes 
Every 50 generations 

Random [1,50) 

where, P is the set of pairs of elements in Tl and T2, 

k i, j (Tl, T2) = 0 if i and j are in the same order in both Tl 

and T2; and 1 if i and j are in opposite order in Tl and T2. 

It is worth mentioning that when the change to the objective 
function is monotonically increasing (order preserving), the 
computed Kendall tau distance will be O. This is a good 
property of the distance because in this case the evolved 
individuals are expected to behave weil in the changed ob­
jective function, so there is no need to replace individuals. 
A mirror image is seen in the presence of a monotonically 
decreasing change of the objective function, wh ich will yield 
the maximal normalised distance of 1, meaning that the order 
of both fitness lists are completely different. The latter will 
indicate that our proposed approach based on the Kendall tau 
distance will replace the entire population by newly generated 
genetic material. 

IV. EXPERIMENTAL SETUP 

To test the proposed approach, we have adopted four 
symbolic regression functions, shown in Table 11. The goal 
on these problems is to find a program whose output matches 
the outputs of these functions. Thus, the fitness of an in­
dividual in the population reftects how close the output of 
this individual are to the target. It is common to define the 
fitness as the sum of absolute errors measured at different 
values of the independent variable x, in this case in the 
range [-1.0,1.0]. In this study we have measured the errors 
for x E {- 1.0, - 0.9, - 0.8·· ·0.8,0.9, 1.0}. We have defined 
an arbitrary threshold of 0.01 to indicate that an individual 
with a fitness less than the threshold is regarded as a correct 
solution, i.e. a "hit". The function set is F = {+, - , *, j}, 
where / is protected division. 

To simulate a dynamic environment, we changed the ob­
jective function (changed the last '+' sign symbol in each 
function (fi ) by a '-' symbol (gi ), as shown in Table 11) 
either every 50 number of generations or a random number 
of generations in the range of [0,50). We then repeated the 

TABLE II 
SYMBOLIC REGRESSION BENCHMARKS PROBLEMS USED I N O UR WORK. 

I Function I Objective function 

h x0+x"+x 
gl x3+x2_x 

f2 x4+x3+x2+x 
g2 x4+x3+x2_x 
f3 x5+x4+x3+x2+x 
g3 x5+x4+x3+x2_x 
f4 x6+x5+x4+x3+x2+x 

g4 x6+x5+x4+x3+x2_x 

process until the number of generations has been reached (e.g., 
generations [0,49], [50,99], [100,149], [150,199] using f1 , gl, 
f1 , gl, respectively). 

Moreover, for comparison purposes, we also used an arbi­
trary approach in terms of the number of individuals that are 
replaced once a change has occurred as commonly adopted in 
EAs DOPs. In both methods, including our Kendall tau-based 
distance, we generated our individuals using the ramped half­
and-half method, where the initial and final depths used are 
the same as when generating the population (see Table I). 

The experiments were conducted using a steady state ap­
proach. The parameters used in this study are shown in Table I. 
To obtain meaningful results, we performed an extensive 
empirical experimentation (50 * 2 * 2 * 4 runs in tota!) I . 

V. ANALYSIS OF RESULTS 

A. Performance 

Let us first focus our attention on the average of the best 
fitness values before a change takes place. This is shown in 
Table 111. The statistical significance for these results was 
computed using aT-test at 90% level of significance, where 
significant values are highlighted in boldface. 

These results are encouraging in terms of adopting the 
Kendall tau distance on determining the number of individuals 
that should be replaced when a change occurs: in six out 
of eight cases, our proposed approach yield better results 
compared to an arbitrarily model (random) frequently used by 
EAs practitioners in DOPs. The latter approach yields slightly 
beUer results only on the last problem (f4, g 4)' 

If we now focus our attention on the percentage of success 
rate achieved by both approaches, shown in Table IV, we can 
see a similar trend: our Kendall tau distance approach achieves 
higher success rates. In fact, in none of the problems nor in 
any type of change, the success rate achieved by our approach 
is lower compared to the arbitrary model. 

B. Average on Fitness Values and Length on Individuals 

We now proceed to analyse the average fitness of both, 
the elitist individual and the entire population, and also, the 
average length of individuals in the presence of a fixed change, 
when using an arbitrary model and our adoption of the Kendall 

150 independent runs, 2 types of replacement of individuals (arbitrary, 
Kendall tau distance-based), 2 type of changes (fixed change at every 50 
generations, random change between [1,49]), 4 problems (shown in Table 1I). 
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TABLE III 
AV ERAGE OF BEST FITNESS VALUES BEFORE A CHANGE TAKES PLACE OVER 50 INDEPENDE NT RUNS. 

Type of Change 

Fi xed at every 50 gens. 
Random in the range of [1 ,50) 

TABLEIV 
PERCENTAGE OF SUCCESS RATE US ING TWO TYPE OF REPL ACE MENTS ON FO UR DIFFERENT SYMBOLIC REGRE SS ION FUNCTlO NS . 

Type of Change 

Fixed at every 50 gens. 
Random in the range of [1 ,50) 

tau distance. This is depicted in Figure 1. Let us first focus 
our attention on the fitness values, shown in the left and 
centre-hand side of the figure , for the elitist individual and 
the entire population, respectively. It is cIear that the Kendall 
tau distance (indicated by a dashed line) yields high er values 
compared to the arbitrary model (indicated by asolid line) 
for these problems mode lied as maximisation problems. This 
is in correspondence to the performance discussed above and 
as shown in Tables 111 and IV. The tendency is stronger in 
rather easy problems (f1 , gl and f2, g2) compared to more 
complex problems (f3, g3 and f4, g4 -see Table 11). If we 
continue our inspection and turn now our attention to the 
average length of individuals when using either our proposed 
approach or an arbitrary model. We can now observe mixed 
results. For instance, for f1 , gl the average length of the entire 
population when using the Kendall distance is lower compared 
when using the arbitrary model. This, however, is the opposite 
when using f2, g2, where the Kendall distance tend to produce 
slightly longer individuals compared to the arbitrary model. 
This mixed tendency continues for both f3, g3 and f4, g4. 

Now let us analyse the average of fitness values, for both the 
elitist individual and the fitness values of the population, and 
the average length of individuals in the presence of a random 
change when using either an arbitrary model or our proposed 
approach, shown in Figure 2. First, let us discuss the fitness 
values trend. In most of the cases, the Kendall tau distance 
yields higher values in each of the four symbolic regression 
functions used in this work compared to an arbitrary model, 
wh ich is in correspondence to the performance achieved by 
these two approaches, as discussed earlier (see Tables III 
and IV). As for the average length of individuals, we can 
see the same tendency as before: there are mixed results on 
this. That is, in some cases, the length of individuals tends 
to be sm aller when using our proposed approach based on 
the Kendall tau distance compared to an arbitrary model, for 
example, see the resuIts when using f1 , gl shown in the top­
right hand side of Figure 2, whereas a mirror image can be 
seen when using f2, g2 shown below the length of f1 , gl. 

C. Analysis of Successful Runs via Generations Taken to Solve 
a Problem and Number of Created Individuals 

The previous figures helped us to understand some general 
aspects in terms how a GP system behaves, using either an 
arbitrary approach or our proposed approach to deterrnine the 
number of individuals that need to be created in the presence of 
a change to promote diversity. However, the previous analysis 
does not inform us how these two approaches behave when 
solving a given problem. 

To this end, we focus our attention only on those runs that 
were able to solve a problem and keep track on the number 
of generations necessary to solve a problem, and also, the 
number of individuals that were created by either the arbitrary 
approach or by our approach. This is shown in Figure 3, using 
only the fixed change for cIarity purposes. 

At the top of the figure, we see the average number of 
generations that were necessary to solve a problem. It is cIear 
to see that, in general, for our proposed approach (black­
filled rectangle), it took a fewer number of generations to 
solve a function compared to an arbitrary model (white-filled 
rectangle). The standard deviation also indicates that there 
is less variation when using our approach compared to the 
arbitrary model. 

If we, now, turn our attention to the average number of 
individuals created in the presence of a change, we can see 
the same tendency as before, our proposed approach created a 
fewer number of individuals (black-filled rectangle), and also, 
it shows less variance compared to the arbitrary model (white­
filled rectangle). Notice that the lack of information in the 
first generations [0, 50) at the bottom of the figure is to be 
expected since a change takes place after this. Blanks in other 
parts at the bottom of this figure indicate that a problem was 
not solved in correspondence to what it is observed at the top 
of the figure . 

D. Measuring Structural Changes 

To further understand the impact that the arbitrary model 
and our proposed approach has in DOPs, we analyse how 
abrupt a change is, and to do so, we compute the tree­
edit distance between the elitist individual and the target 
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expression, each of these shown in Table 11. The tree-edit 
distance is integer-valued and reflective of a very intuitive 
notion of the distance between a pair of trees, based on the 
number of edits required to transform one into the other. Three 
types of edits are allowed: insertion, deletion, and substitution. 
This distance measure has been studied outside EAs, with 
algorithms given by [14] and used in GP e.g., [4]. 

This average tree-edit distance is shown in Figure 4. At the 
top of the figure we can see how abrupt a change is in the 
presence of a fixed change, where a change is depicted by a 
vertical line. Our proposed approach, indicated by a dashed 
line, is less abrupt in terms of a structural change compared 
to an arbitrary model, depicted by asolid line, except for the 
last problem (f4, g4), where a structural change is more abrupt 
using our proposed approach compared to the arbitrary model. 
This can be explained if we consider what we discussed in 
the previous paragraphs regarding the number of individuals 
created by each of these two methods (see Figure 3). The same 
tendency can be observed in the presence of a random change, 
shown in the bottom of Figure 4, where a change is depicted 
by a vertical line. 

VI. CONCLUSIONS 

It is well-known that diversity helps evolutionary search 
in dynarnic optimisation problems (DOPs). Many approaches 
have been proposed to promote diversity in DOPs using e.g., 
GP. In particular, the adoption of structural diversity has been 
popular given their e.g., positive impact and its simplicity 
to adopt it in a GP system. One particular element when 
promoting structural diversity in GP is the adoption of a rather 
arbitrary (random) model in terms of the number of individuals 
that need to be replaced by new created individuals. In this 
approach, we have proposed an approach based on the Kendall 
tau distance to make a more informed decision. 

We have shown how the proposed approach is able to yield 
better results on the continuous fitness-value functions used in 
this work and used a variety of tools (e.g., tree-edit distance, 
number of created individuals, number of generations required 
to solve the problem) to explain why this approach behaves 
better than the arbitrary model commonly used in EAs, in 
general, and in GP, in particular. 

To fully see the potential of the proposed approach is 
necessary to account for some of memory, either implicit or 
explicit, that has been reported to be necessary when tackling 
a DOP. It is also necessary to study the behaviour of our 
proposed approach in other more challenging problems (e.g., 
real-world DOPs [1], [3]). 
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Fig. 1. Average best fitness, average fitness of entire population and average length of entire population computed when using either an arbitrary approach 
(indicated by asolid line) or the Kendall tau distance (indicated by a dashed line) shown in the left, centre and right·hand side of the figure, respectively, 
when using a fixed change, where a change is indicated by a vertical line. These are plotted for each of the four problems used in this work (see Table 11). 

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 31,2022 at 10:50:08 UTC from IEEE Xplore.  Restrictions apply. 



o. 

o. 

o. 

o. 

o. 

o. 

o. 

o. 

o. 

o. 

o. 

o. 

o. 

o. 

o. 

o. 

0 

.. 

'r r' , , 
6 

1/ 
" 

4 

2 

0 

" 

0 

, 

6 

4/ ~. V. 
2 

00 

" 

0 

, 

6 

4 

Avg. Best Fitness 

r' J ,- - ,,- - ~-

:V!r 1,( , ' 

~I 

-- ~ndell flll 
- Arbitrarytl 

100 
Generations 

150 

Avg. Best Fitness 

Ir 

,I ~v=-v 
"' T,""" 12

2
1 I' 

- Arbltral)'f2 

100 150 
Generations 

Avg. Best Fitness 

:11 
, 

200 

.--
(r 

200 

IFV- ""I~ r-".II" ~r ' 

,11 VI I I ~I 
1 . 1 I I~ :~:e~~f31 

0 

" 

0 

, 

6 

4 

2 
.,-'=' V~r 

0 

" 

1 00 
Generations 

1 50 

Avg. Best Fitness 

~ir--= 
- llmdell f4 4 1 

- Arbitraryf4 

100 
Generations 

150 

2 00 

V I? 

200 

0 

, , .. 

r " 

.f 
. ' , ' 
' ' !j , IV 

4 

2 
I I 

o. 0 I 
50 

1. 0 

r , .,. 6 

~ .. 
4 

f/ ,( 
2 

j o . 

f • o . 

o. 00 

" 

0 

, 

6 

4 

2/ r IPI ,( 

o. 0 I 11 

50 

0 

, 

6 

4 

2I ..-= 1('(" ,r 

o. 0 
50 

h , gl 

Avg. Fit. Pop. 

.. 
llmdellfl 11 

- Arbltraryfl 

.,.' 

li( . . r 

100 
Generations 

f2, g2 

Avg. Fit. Pop. 

- "Thndellf2 21 
- Arbitraryf2 

150 

I~ Ir=-

100 
Generations 

f3 , g3 

Avg. Fit. Pop. 

---= :~~~ß I 

," 

Ir- I~ 

I I 
1 00 

Generations 

f4 , g4 

Avg. Fit. Pop. 

.-
::~4f41 -

1 50 

I~ I~ 

100 
Generations 

150 

( / 

200 

I! ,.' 
I!/-

200 

Ir Ir 
11 

2 00 

Ir I~ 

200 

5 

0 

\("--1 rv 
5 _. 

0 

5 

0 
50 

Avg. Length POp. 

.,>-

~ . ' 
I 

-- llmdell fl1 1 
- ArtIitrarytl 

100 
Generations 

. 

150 

Avg. Length POp. 

Ir-
Ir J v 

200 

25·n ----rr-r--,----rr----r-rr---, 

20 

10 

00 

" 

5 

0 1'- ' . ' 

11------(;; 
5 

V 

0 

5 

0 
50 

100 150 
Generations 

Avg. Length POp. 

r---: 
~' 

," -- '. ' ' I'f" 

.-
"Thndellß 31 

- Art>itraryf3 

1 00 
Generations 

1 

Avg. Length POp. 

50 

200 

Ir 
1· ' 

2 00 

25,n----rr-r--,----rr----r-rr---, 

rl In Ir 
'v--, .. I~.~, 

,, _ _ r \ 
15 

10 

- - "Thndellf4 I 
- Arbitrary f4 1 

00 50 100 150 200 
Generations 

Fig. 2. Average best fitness, average fitness of entire population and average length of entire population computed when using either an arbitrary approach 
(indicated by a solid line) or the Kendall tau distance (indicated by a dashed line) shown in the left, centre and right·hand side of the figure, respectively, 
when using a random change, where a change is indicated by a vertical line. These are plotted for each of the four problems used in this work (see Table II) . 
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