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Abstract—The electronic exchange of business to business 
information (e.g. purchase orders, inventory data and shipment 
notices between departments or organizations) can eliminate 

the need for human intervention and paper copy trails. Incor- 
porating Electronic Data Interchange (EDI) standards into an 

organization can drastically improve the efficiency of processing 
times. Modelling the behaviour of EDI messages within a Supply 
Chain network’s queuing system has many purposes, from 
understanding the efficiency of queue behaviour to process re- 
engineering. In this paper we demonstrate that these messages 
are heterogeneous, suffer from correlation, are not stationary and 

are challenging to model. We investigate whether a parametric 
or non-parametric approach is appropriate to model message 
service and inter-arrival times. Our results show that parametric 
distribution models are suitable for modelling the distribution’s 
tail, whilst non-parametric Kernel Density Estimation models are 
better suited for modelling the head. 

I. INTRODUCTION 

Queuing systems help businesses within the Supply Chain 

domain improve productivity and turnover. It enhances client 

satisfaction by allowing for the processing of large volumes 

of messages with persistent storage [1]. When demand ex- 

ceeds supply, queuing systems provide a more streamlined 

experience by preventing job loss and supporting queue and 

job prioritization. This is integral to avoiding Supply Chain 

distribution problems by keeping the system steady-state [2]. 

A recent report on future trends for the Supply Chain sug- 

gests that resiliency is an essential requirement for customer 

needs [3]. Queuing systems are ubiquitous across industry 

domains: telephone communications [4], road traffic flows 

[5], hospital waiting lists [6], and banking transactions [7]. 

However, like all computing systems, queues are not immune 

to performance and reliability problems, including latency, 

bottlenecks, scalability, and the challenge of random arrival 

of incoming messages [8]. 

Our interest originated from problems arising within a 

Supply Chain network, where message processing times are 

not clearly understood. In practice, these heterogeneous EDI 

messages suffer from numerous failed message re-tries and 

throttling, causing bottlenecks within the enterprise messaging 

system. The benefits of modelling these messages and their 

queue behaviour could lead to a simplified understanding of 

the system. Given the sheer volume and velocity of incoming 

messages processed through the system, some abstraction will 

be necessary. In our example system, one might see over two 

Jonathan Dunne 
IBM 

Dublin, Ireland 

Jonathan_Dunne@ie.ibm.com 

million messages processed on a typical day. Depending on 

size, these messages may be split into smaller sizes and lead 

to potentially over thirty-two billion jobs processed through 

the Enterprise queuing system. Another important area where 

these EDI Supply Chain messages are important is within 

the realm of smart contracts and distributed ledgers. Applying 

smart contracts using Blockchain can reduce fraudulent trans- 

actions and help trace misplaced items within a transactions 

life cycle [9]. 

This paper studies the challenges we faced when modelling 

EDI transactions, including correlation, message bundling and 

heavy-tailed data. We consider different techniques for filter- 

ing, splitting, and grouping the data to facilitate parametric 

and non-parametric modelling. We also attempt to classify the 

events at the head of the distribution. 

We aim to address the following questions. First, can EDI 

messages be modelled using parametric, or, failing that, non- 

parametric techniques? Second, can the service time (ST) and 

inter-arrival times (IAT) of an EDI message be modelled by a 

parametric method? If not, can non-parametric techniques be 

used? Third, are we able to classify these messages? 

This paper is structured as follows. Section II describes 

the background and related research. Section III describes the 

dataset and methods we took and the limitations of our dataset. 

Section IV and Section V provide results and a discussion. 

Section VI concludes and notes future work. 

Il. BACKGROUND AND RELATED RESEARCH 

A. Electronic Data Interchange 

EDI is defined as the inter-organizational, computer-to- 

computer exchange of business documentation in a standard, 

machine-processable format [10]. These messages are part of 

a Supply Chain messaging architecture component. It enables 

electronic exchange and processing of these heterogeneous 

business documents through the network. Our research is cen- 

tered around these heterogeneous EDI messages (e.g. purchase 

orders, invoices, shipment notices). Different EDI message 

standards exist, including X12, EDIFACT, TRADACOMS 

[11]. In our analysis, most of our messages were of the type 

X12. 

We will discuss systems that support queueing of EDI 

transactions next. There is surprisingly little literature on 

the modelling of EDI transactions. Most of the literature 
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concentrates on the benefits of switching to an EDI system 

[12], [13]. 

B. Queuing Applications 

Enterprise Queuing applications are used within the Supply 

Chain domain. We briefly consider four: ActiveMQ [14], 

Kafka [1], RabbitMQ [15], and IBM Message Queue(MQ) 

[16]. 

RabbitMQ is an open-source distributed message broker. 

It supports multiple messaging protocols and offers flexible 

queue routing with multiple exchange types [17]. Rabbit 

MQ has a broad customer base with over thirty-thousand 

companies running the software [18]. 

Kafka is an open-source distributed event streaming plat- 

form. It takes raw input messages categorized by Kafka 

and transforms them for further consumption or follow-up 

processing. It is scalable, fault-tolerant and can store and 

process streams of data with a guarantee of zero message 

loss [19]. Kafka is often used by high-end social networking 

companies. Twitter use it as part of their stream-processing 

infrastructure [20]. LinkedIn uses it for streaming data in news 

feeds and offline analytical systems [21]. Netflix uses it for 

data collection [22]. AWS use it as part of their cloud platform 

[23]. Kafka has a broadly similar market share to Rabbit MQ 

with over thirty-thousand companies using Kafka today [24]. 

Active MQ is an open-source Java-based standalone mes- 

sage broker. It supports high availability, load-balancing, and 

asynchronous messaging [25]. Active MQ has roughly half the 

market share of customers of Kafka and Rabbit MQ, with just 

over fourteen thousand customers [18]. 

IBM Message Queue (MQ) belongs to the WebSphere 

family. It is part of the middleware stack. It supports point- 

to-point, publish/subscribe and file transfer methods for its 

messaging and queuing operations. IBM MQ can transport 

any type of data as a message [16]. 

C. Queuing Theory 

Queue theory studies an orderly list of one or more jobs 

[26]. For stream-based job types, these jobs are processed 

through single or multi-server queuing systems. The arrival of 

such jobs may be random or based on pre-defined schedules. 

The method of service, such as ’first in first out’, last in first 

out’ and ’shortest job first’ can also be important [27]. 

Modelling incoming jobs via service times and inter-arrival 

times gives insight into delays, queue sizes and how a heavy 

influx may impact a system. When modelling, queue length, 

idleness and wait times are fundamental metrics [28]. 

D. Distribution Fitting 

Distribution fitting is the study of fitting a probability 

distribution to a dataset given measurements of a random 

quantity that one can use to make inferences about the sample 

population [29]. With the fitted distribution, one can predict 

the probability of specific events. 
Two common methods for estimating distribution parame- 

ters are the Method of Moments Estimation (MME) and Max- 

imum Likelihood Estimation (MLE). MME was introduced 
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by Pearson and matches the moments of a distribution to the 

empirical moments [30]. MLE, proposed by Fisher, estimates 

the parameters of a probability distribution by maximising the 

likelihood of the observed data [31]. Research undertaken by 

Fisher shows that MLE is generally more efficient than MME 

because MLE’s variance is smaller [31]. 

E. Goodness of Fit Testing 

When a dataset is presented, it can be helpful to understand 

how well the underlying data fits a known probability distri- 

bution. There are methods to assess a distribution’s goodness 

of fit to a data set. 

The Cramer-Von Mises (CVM) test criterion is a non- 

parametric test that examines the goodness of fit of a cumu- 

lative distribution function (CDF) compared to an empirical 

density function (EMF) [32]. This significance test will deter- 

mine whether data is drawn from a known CDF. 

The Kolmogorov—Smirnov (KS) test measures the distance 

between the EMF of the sample and the CDF of a reference 

distribution or between the EMF of two samples [33]. KS tests 

are useful when testing whether a set of observations are from 

a specified continuous distribution [34]. 

The Anderson—Darling (AD) test is also a statistical test 

of whether a particular PDF fits the data [35]. This test is a 

modification of the KS test, giving more weight to the tails of 

the empirical data. 

F. Heavy Tailed Estimation 

A heavy-tailed distribution is when the tails of the data are 

not exponentially bounded [36]. Heavy tailed distribution was 

first introduced in financial data from Mandlebrot in 1963 [37]. 

In our case, if enough messages have long processing times, 

this may lead to poor performance. When modelling data, the 

distribution’s tails may form a different parametric fit than the 

rest of the data. If we need to split our data into shorter and 

longer intervals, we take a simple approach of splitting the data 

into a head and a tail using simple criteria of > n seconds. 

More generally, Hill proposed a method allowing inferences 

about the tails of data [38]. 

G. Hurdle Distribution 

When modelling count data, one should often give special 

consideration to zero value. Depending on the dataset, it 

may have different interpretations. Some count models suffer 

from excess zeros. A Hurdle model can support modelling 

excess zeros in the data by combining a left-truncated count 

component with a right-censored hurdle component [39]. A 

Hurdle distribution can be preferable to Poisson distribution 

due to the additional flexibility [40]. 

H. Kernel Density Estimation 

Kernel Density Estimation (KDE) is a non-parametric 

method to estimate the density of a random variable. When 

the sample population does not fit a known probability distri- 

bution, KDE can be used. KDE can indicate the data being 

either multi-modal or having a degree of skewness [41]. 
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To implement KDE, one needs to choose the kernel and 

bandwidth. Different kernels apply different weights based on 

how far the data is from each point. Some common kernels are 

Epanechnokiov [42], Gaussian, Uniform, Box, and Triangle. 

The bandwidth determines how spread out the kernels are. 

Large bandwidths can cause a high degree of bias in the 

distribution [41]. There are different algorithms to define 

the bandwidth, including Silverman’s Rule of Thumb [41], 

Sheather & Jones [43], and Park & Marron [44]. 

For the accuracy of the KDE models, we used visualization 

techniques and the area under the curve as a method to assess 

a best-fit. The MISE was not appropriate for statistically 

confirming a Goodness Of Fit as we do not know the true 

density of the data. 

I. Related Work 

We review some of the literature around performance mod- 

elling of queueing applications for EDI messages. 

LinkedIn wanted to move from a batch-oriented system to a 

real-time publish-subscribe system. They needed a system that 

could process 10 billion messages per day with a peak demand 

of 172,000 messages per second. They initially explored 

ActiveMQ, but instead, they developed Kafka [45]. 

Wu, Shang & Wolter analyzed the performance of Kafka 

using specific tuning parameters [46]. Their analysis concluded 

that the performance varied significantly depending on mes- 

sage type and system infrastructure. They also noted a strong 

correlation between packet sizes and sending intervals. 

Henjes, Menth & Zepfel conducted a study of the capacity 

of the IBM MQ JMS Server [47]. They considered different 

filters, message sizes and the number of pubs/subs. They found 

that message size had a significant impact on the message and 

data throughput of the server. The number of topics had little 

influence on server capacity. They did, however, find that the 

message replication grade and the number of filters have a 

significant impact on server capacity. 

UI. DATA SET AND METHODS 

Modelling the behaviour of a queue can assist in improving 

the stability and reliability of queuing systems. Identifying the 

distribution of inter-arrival and service times allows modelling 

the behaviour of a queue and the prediction of congestion 

issues. We demonstrate data wrangling techniques that will 

enable us to fit our data into parametric and non-parametric 

models. 

A. System Description and Data Collection 

The study presented in this paper uses an enterprise dataset 

from a cloud-based Supply Chain Network. Within our Supply 

Chain Network, a message can traverse multiple paths until it 

reaches its destination. As the message passes each point on 

its path, multiple queues may ingest the message. First, we 

analyze the messages from source to destination and from one 

endpoint to another. 

Fig. 1 provides a greater intuition of the flow of a message 

on a Supply Chain Network. We can see from the figure 

  131 

that multiple queues interlock the communication channels 

between the various entities. Our analysis was focused on 

the entities in shaded grey. The combined Translation Service, 

Rules Engine and Message Dispatcher were provided on seven 

servers. In addition, there was the SAP Server. 

    
Business To Business Architectural Diagram 

B2B Configuration Information Customer Tracking 

Service A (queue } B2B gp queue 

Service B Ayes ETE: 

Translation Cqueue ) HTTP 

__Service __ ‘ are 
Message JMS 
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Service B   
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Service C             

Fig. 1. Supply Chain Network Architectural Message Flow 

We collated four different datasets from a Cloud Supply 

Chain Network organization. Fig. 1, a logging application 

called Graylog aggregates both the SAP and Outbound Mes- 

sage Service information. The Message Dispatcher, B2B Rules 

Engine, and the Translation Service log files are aggregates 

using a separate process. The log files contained a mixture 

of structured, unstructured and XML data. We stripped a lot 

of the data from within the log files to reduce noise. We 

then filtered to help classify the start and end of a message 

and the different steps the message took. We noted associated 

beginning and ending times, cumulative counts (to determine 

message splits, see below). Where one message generated 

other messages, they were tagged as a child/parent message. 

This data-wrangling technique allows for the traversal of each 

messages lifetime within the network, as represented by Fig. 2. 

We wanted to focus our efforts on the complete end-to- 

end flow of a message from its source to its final destination. 

Initially, we took the SAP Service as our starting point. 

However, for the data available to us, we noted only 527 

incoming messages that we could trace end to end. Instead, 

we chose to look at the Translation Service, of which 90% of 

all incoming messages make use. 

Fig. 2 shows an example of the processing complexities 

of a single message flow end to end. The first entity to the 

left shows the start of the message from the source. The 

message then travels to the B2B Rules Engine and the Message 

Dispatcher displayed by the oval entities. From here, the 

message gets sent to three different queues. 

These parent and child messages then get sent to the Trans- 

lation Service represented by black rectangles. The Translation 

Service processes the message through the Translation queues, 

then back to the B2B Rules Engine / Message Dispatcher, 

where the Rules Engine initiates a Command Request and a 

Data Request shown with a white rectangle with grey text. 

After the Command Request and Data Request complete, the 

Rules Engine and Message Dispatcher send the message to the 
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client’s trading partner, which is the last entity to the right of 

the image. As the MQ system did not log when a message left 

the queue, we used the Rules Engine and Message Dispatcher 

Command Request and Data Request to determine when the 

message left the queue. 
From Fig. 2 we see that one message entered nineteen 

queues as part of its lifecycle. This unobfuscates the flow of 

an EDI message in a way that does not seem to be presented 

in previous literature. 

  

  

Fig. 2. B2B Low Level Message Flow, Note the number of queues with the 
grey rounded rectangle, show how often one message enters a queue through 
its lifecyle 

The Translation Service illustrated in Fig. | offers different 

functionality. It can translate messages from one format to 

another (e.g. X12 to CSV) and can concatenate or extract 

documents from a message. It can split one input file into 

multiple output files. This reduces the size of the message 

processed through the queues, thus reducing job sizes and 

facilitating parallelism. 

Fig. 3 shows the steps a message takes within the Transla- 

tion Service. We have selected a simple message, as a more 

complex message result in a larger number of steps. Step 4 

is where the actual translation occurs. Document extraction 

begins in Step 6. In Steps 16 to 18, messages are sent to the 

Translation queue, as noted in Fig. 2 with the grey rounded 

rectangles with the titles “Queue 3” and “Queue 4”. Again, 

the order of the steps does not appear to have been noted in 

the literature review. 

B. Data Overview and Limitations 

As noted, we focus on the Translation Service, which 

processes around 2 million messages per day. Our dataset 

was 13.5 hours, from midnight on the 30th of November 

up until 13:30 of that same day. Table I shows the volume 

of messages we analyzed. From the Translation Service, we 

observed data going into two different queues. The CMD 

queue is the command queue, where commands are sent. The 

Data queue is where the corresponding data is sent. Every 
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1. Incoming Msg is not bulk @ 

2. Preparing to start ® 

3. Set unique reference ide 

4. Action : Translation / XML To EDI @ 

5. Incoming Event ID .. @ 

6. Running Document Extraction @ 

7. Fetch Map Name @ 

8. Start enveloping msg @ 

9, End enveloping msg @ 

10. Returning Map Name e 

11. Start : Add context to map @ 

12. End : Add context to mape 

13. Starting sending to Reporting DB@ 

14. Start : sending to reporting DB Queue 1@ 

15. End : sending to reporting DB Queue le 

16. Send to MQN @ 

17. Send to queuel@® 

18. Send to queue2@ 

19. Processing@ 

20. Commit Successful@ 

Fig. 3. Message Translation Steps 

message is associated with a CMD and Data Queue entry. If 

we refer back to Fig. 2, this single message hits these queues 

eight times in total, represented by the rounded grey rectangles 

titled “Queue 3” and “Queue 4”. 

TABLE I. TRANSLATION SERVICE ALL DATA MESSAGE 
VOLUME 

CMD Queve 
30th Nov 1,036,938 1,036,956 

We note a number of practical limitations of the data set. 

First, it was challenging to trace a message from end to end. 

The was no unique identifier between the different log files 

and Graylog that allow us to trace all relevant information. 

While every effort was made to identify unique characteristics 

that trace individual messages through the system, our method 

is somewhat ad hoc. 

Second, because of the logging level in the system, we could 

only directly identify when the organization sent a message to 

the queue. We had to use log files from other applications to 

infer when the message left the queue. 

Finally, collecting data for longer periods from this system 

is challenging. Due to the sheer volume of messages hitting 

the Rules Engine and the Message Dispatcher, there was a lim- 

itation in the amount of data we could gather. Consequently, 

the Rules engine and the message dispatcher only keep data 

for a few hours before the log files are recycled. 

C. EDI Modelling 

When fitting data to parametric models, the easiest case 

is when time-series data shows no dependence on previous 

values. The independence of arrivals is also a common as- 

sumption in queueing models. If a correlation exists, the 
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time-series data may be deemed non-stationary, and different 

techniques may be used to handle correlation. Thus we check 

for correlation whilst checking the distribution fit of the data. 

Table II shows the Spearman’s rank correlation co-efficient 

test statistics for non-normal data. 

TABLE II. SPEARMAN RANK 
CORRELATION 

  

We shall now describe an approach to our analysis in the 

following set of subsections. 
1) Normal And Busy Periods: Based on information from 

the team operating this system, we knew there was a period 

where the system had been considered to have a performance 

problem. When analyzing the data, we found a period where 

the number of messages queued was always bigger than zero 

and often growing. Accordingly, we broke the data into two 

periods, busy and normal. Table III shows our busy period 

was just under forty minutes, whilst our normal period was 

just over twelve hours. There is a similar volume of messages 

per second going into each queue (~ 22 messages per second). 

This suggests the busy period is caused by a change in STs 

rather than IATs. Arrivals to the CMD and Data queue are 

generally similar in both periods, though there is a slight 

discrepancy of eighteen messages between the two queues in 

the busy period. The difference may be due to some messages 

containing large attachments. If the message is big, it is 

paginated, causing more data messages. 

TABLE III. TRANSLATION DATA DIFFERENT 
TIME PERIODS 

  

  

  

Period Start Time | End Time | CMD Queue | Data Queue 

Normal 12AM 12PM 984,183 984,183 
Busy 12:50PM 1:29PM 52,755 52,773               

2) Message Split Count: We noted a significant number 

of messages that were part of a bundle, ie., part of a group 

with zero seconds between them. We consider splitting the 

messages into groups according to how many messages were 

in the bundle. 

First, Split = “1” is when a single message comes into the 

system, and one message gets sent to the queue. These are 

not part of a bundle and may be small in size. Split = “2” is 

when one message comes into the system, and two messages 

get sent to the queue. Finally, Split = “Other” is when one 

message comes into the system, and three or more messages 

get sent to the queue. The maximum bundle size we saw was 

1,617. These are typically large bundled messages. If we refer 

back to Section I, thirty-two billion jobs (2 million * 1617) 

can come from two million messages. 

Table IV shows how many messages belong to each split 

group over the normal period. We note that most messages are 

in the Split = 1 group. 
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TABLE IV. TRANSLATION 
DATA PER SPLIT 

  

3) Hurdle Modelling: A considerable volume of messages 

was processed in zero seconds. When attempting to fit the 

data to a distribution, using a hurdle model, we considered 

removing these zeros from the data to improve fit and to 

facilitate overdispersion. Table V shows the percentage of 

messages removed using a hurdle model. 

TABLE V. NORMAL PERIOD: 

HURDLE MODEL 

  

4) Message Bundle: As we noted above, there are a number 

of messages that result in a bundle. When calculating the 

arrival time and service time of these messages, it may make 

sense to treat them as a single message. In this case, we use 

the first message in the bundle to calculate the IAT and ST, 

as the other messages appear to have zero duration. 

5) Scheduled Versus Un-Scheduled Messages: We checked 

our data for the normal period for other signs of burstiness. 

In Fig. 4 we show the frequency of jobs arriving based on the 

minute within the hour. We note that period 00 has the highest 

frequency of messages. Additional minutes 30-33 and 43-46 

also show signs of extra scheduled jobs. 

Normal Day InterArrival Start Time By Minute CMD Queue 

S & 

Fr
eq
ue
nc
y 

0.02 

  

Fig. 4. Normal Period : Burstiness in Data 

These scheduled jobs are likely to require separate mod- 

elling, so we removed these scheduled times from our model 

before attempting to model random arrivals. 

6) Map Count: If we refer back to Fig. 3, we note that in 

step 7, the Translation Service fetches a map for the message. 

A map is an XML information document relating to the job 

(e.g. cost, shipment, details etc.). Some maps may also contain 
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programmatic loops. As different maps may influence mes- 

sages duration, we consider fitting different models according 

to these maps. 

In practice, not every message is associated with a map, 

and many maps can be associated with one message. Table VI 

shows the total count of maps for each split. We note that the 

maximum amount of maps for one message was 30. 

TABLE VI. NORMAL PERIOD: 
MAP COUNT 

  

D. Parametric Modelling 

We will consider modelling service times and inter-arrival 

times parametrically. We consider a range of possible distribu- 

tions (Table VII) and data transformations (Table VIID) when 

fitting. We determine the parameters for each distribution, and 

then an Anderson-Darling Goodness Of Fit test can be used 

to determine if the data fits that distribution. 

TABLE VII. 
PARAMETRIC TESTS 

  
  
  
  

Normal Log Log Logistics | Logistic 
Cauchy Gamma | Burr Inverse Burr 
Exponential | Beta Weibull Pareto           

TABLE VIIL DATA 
TRANSFORMATIONS 

Our service times are extracted from the data as the time a 

message starts to the time the following message starts. Inter- 

arrival times are the time between when one message gets sent 

to the queue and when the following message gets sent to the 

queue. While fitting, we noted that our data was heavy-tailed 

and right-skewed. As previously mentioned, we considered a 

head and tail approach. For both STs and IATs, we considered 

the head of the data to be values of one second or under. 

E. Non-Parametric Modelling 

When a parametric approach does not provide a useful 

technique to model a dataset, a non-parametric approach can 

sometimes be useful. We apply Kernel Density Estimation 

(KDE). We used Silvermans Rule of Thumb, Sheather & 

Jones, Biased Cross-Validation, Un-Biased Cross- Validation, 

and Direct Plug-in methods for the bandwidths. Finally, our 

study will focus on modelling the service times with limited 

modelling on the inter-arrival times. 
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F. Message Classification 

While reviewing the dataset for over-dispersion, we ob- 

served a number of interesting features in the STs that were 

visible when plotted on a log scale (e.g. Fig. 5 and 6) where 

the message Split =’ 1’. We note that there appeared to be 

stratification of times into different overlapping distributions. 

It may be interesting if these different distributions represent 

different ‘classes’ of messages. A business needs to understand 

baseline metrics, and getting insight into these messages from 

the head of the distribution motivates our research question 

classifying them. 

log Transform ST<1 second 

) 
400

00 
£00

00 
000

0 

*e
qu

en
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ace
 

200
0 

300 
{ 

  

)   

Fig. 5. Service Times - Log Transform 

It appears that the messages from -7 to -4 form one group, 

so to better understand the different classes of messages, we 

zoom in on the range from -4 to -1.5 and note potentially five 

distinct types of messages as represented in Fig. 6. We can 

crudely split these into different groups as shown in Table IX. 

log(ST) 18 : 249 milliseconds, filter= 1 

32000 

8 
2000 

1000 

Oo 

4.0 3.5 

Fig. 6. Service Times - Log Transform, Filter =1 

  

3.0 2.5 

service Times 
—2.0 1.5 

TABLE IX. MESSAGE CLASSIFICATION 
GROUPING 

  

IV. RESULTS 

We will now describe the results of our analysis. 
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A. EDI Modelling 

I) Normal and Busy Periods: Table X shows summary 

statistics for the service and inter-arrival times for each queue 

during both normal and busy periods. We note that the 

maximum duration of service and inter-arrival times is 458s 

(7.6 min) which is significant compared to all average values. 

TABLE X. NORMAL/BUSY PERIOD - ST & IAT IN 

SECONDS.MILLISECONDS 

  

We note from Fig. 7 and Fig. 8 that the histograms have 

one bin where the majority of the data lies. On this scale, 

adding more bins does not change the shape of the histogram, 

as most messages took under one second to process. Fig. 7 

and Fig. 8 clearly do not show enough details to allow us to 

discern useful patterns, other than the data having a long tail. 

Busy Period, Service Times Busy Period, Inter-Arrival Times. 

Den
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Fig. 7. Histogram: Busy Periods, IAT and ST 
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2) Message Split Count: Based on our discussion in Sec- 

tion III-C, we split the service and inter-arrival times into its 

head and tail. Fig. 9 shows improved definition in terms of 

both service and inter-arrival times. Both the head and the tail 

of the data show more bins containing an observable amount 

of data, and, consequently, we are able to discern more. 
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Fig. 9. Messages - Heads And Tails 

We plotted the autocorrelation of each time series to look for 

correlation with a cutoff of between thirty and sixty lags. We 

have also done crosscorrelation tests between the service times 

and the interarrival times and noted that the tests confirmed 

crosscorrelation existed past sixty lags. We checked the data 

for correlation, grouping the messages by their split count. 

Table XI shows that there is no correlation in the tails of the 

model except for IAT where Split = ’2’. We note that the head 

of the data does present correlation. We approach modelling 

this part of the data with caution unless correlation can be 

removed or understood. 

TABLE XI. CORRELATION 
CHECKS By SPLIT 

  

3) Hurdle Modelling: We removed the transaction mes- 

sages of zero seconds duration from the model. This was done 

for all messages in the head of the data. We performed this task 

in consideration of Hurdle modelling and due to the fact that 

several standard transformations can not be performed without 

either removing the zeros or shifting the data. Even after 

removing transactions of zero duration, the histogram does 

not change substantially (see Fig. 10 left) as the majority of 

messages are in the millisecond range. Interestingly, removing 

these zeros from the data does also not remove correlation 

from the models (Fig. 10 right). 

To investigate this correlation in service times further, we 

will now explore the data by splitting it in other ways. 

4) Message Bundle: When modelling by message bundle, 

our analysis identified the first, up to and including the second 

last message was processed in zero seconds of duration. We 

noted that only the last part of the bundled message had a 

duration greater than zero seconds. We looked at modelling 
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Fig. 10. Distribution Head : Message Bundle With Hurdle Implementation 

by message bundle to see if a correlation still existed in the 

data, as per previous Fig. 10 and correlation was still present. 

Thus, bundles of messages alone are not a full explanation 

of correlation in the data. 

5) Scheduled Versus Un-Scheduled Messages: Referring 

back to Fig. 4, we noted different periods where the frequency 

of messages is higher than those of other periods. In particular, 

we note the 00 minutes, minutes 30-33 and minutes 43-46 

appear to represent busier periods, which could contribute to 

correlation in our data. We investigated the impact of the 

removal of these scheduled messages from our data. As per 

Table XII, we were not able to remove correlation from our 

data based on the results of the table. 

TABLE XII. SERVICES TIMES - CORRELATION CHECKS BY 
SCHEDULE 

  

Table XIII is a summary of the different filtering techniques 

we have applied and the results of the correlation tests. 

TABLE XIII. RE-CAP OF CORRELATION 
TEST RESULTS 

lation =1 =2 = 33 46 
Exist other | ule 

Re- ule ule 
moved] Re- Re- 

moved| moved 
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6) Map Count: We now look at the implication of the map 

on the correlation by splitting the data according to how many 

maps were applied. When analyzing the map information, we 

noted 40% of transactions have no map name, and 96% of 

transactions have either 0 or 1 maps associated with them, and 

3.5% of transactions have more than one map. From Table XIV 

we note that all tests passed correlation except where the map 

count for a message was greater than three, which represents 

0.14% of the messages. 

TABLE XIV. SERVICE TIME : 

CORRELATION RESULT 

  

It appears that the number of maps is a contributing factor 

to the correlation we are seeing. With this insight, we consider 

parametric and non-parametric modelling. Before doing that, 

we will briefly look at the data on a larger scale. 

B. Parametric Modelling 

1) Modelling Service And Inter-Arrival Times: Initially, 

we tried to fit parametric distributions and tested the fit on 

all data with no filtering techniques applied. However, some 

parts of the data are amenable to the fitting of a parametric 

distribution. For example, we found a reasonable fit to a 

parametric distribution using the message split count on the 

tail, representing 0.3% of the data. In this case, a filter was 

applied ( split=1), a hurdle model was implemented We can 

confirm that the tail of this filtered data fits a parametric Burr 

distribution using the Anderson-Darling test (see Table XV). 

TABLE XV. AD TEST NORMAL PERIOD, ST, 

TAIL OF DATA 

We ran similar tests on the tail of the inter-arrival times 

where the inter-arrival times is > | second. We consider, for 

example, the results of attempting to fit distributions to the 

IAT with Split = 1, and with no hurdle model. The results of 

the AD tests conclude, as per Table XVI that this filtered data 

does not fit a parametric distribution. However, we observe 

that a no-transform and a square root transform (highlighted 

in bold) are relatively close to a Burr distribution but do not 

pass the AD test. 

For the head of the data, ic. ST <= 1 second, we could 

not parametrically fit the data to a parametric distribution, 

irrespective of transformation or implementing any splitting 
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TABLE XVI. 
IAT > 1, FILTER = 1 : AD TEST 

(data+1) (data) (data) (log (log exp( 

(data+1 (data+1) | data)) 

+1) 

Normal 

Logis- 
tic 

nential 

Burr 

  

In the interests of space only AD scores have been shown. The majority 
p-values round 0.00 

methods. Table XVII shows that the AD score on all of the 

tests is high (an AD score of 3.5 or below would be sufficient 

to pass the AD test). 

TABLE XVII. 
ST < 1, FILTER = 1 : AD TEST 

(datat+1) | (data) (data) (log (log exp( 

(data+1 (data+1) | data)) 

+1 

nential 

Burr 

  

In the interests of space only AD scores have been shown. The majority 

p-values round 0.00 

We also attempted parametric fits to subsets of the data 

based on the map count. Previously, we saw that splitting the 

service times by map count reduced correlation. Table X VIII 

shows the results of fitting followed by an AD test. With a 

transformation of square root and exponential for the para- 

metric tests, the AD score is exceptionally high. None of the 

fits passed the AD test. 

C. Non-Parametric Modelling 

As no suitable parametric model has been found, we set 

out to model the head of the data using KDE. We fitted KDE 

models to the head of the data where split=1. Examining the 

histograms, we found too much white space for convincing 

regardless of the bandwidth, kernel, bins, or custom breaks 

used. We then reduced the data size to a sample size of 
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TABLE XVIII. 
Map Counts = ALL - AD TEST 

  

fifty thousand messages, implemented k-fold techniques and 

re-applied the KDE modelling techniques. From Fig. 11 we 

observe that KDE does fit the tail of the data reasonably well 

but see a less convincing fit at the head of the first bin. The 

model appears to be under-predicting the data within the first 

bin. 

sample,ST <=1 Second, breaks = custom, bcv:rectangular 

De
ns
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y 

  

0.0 02 04 06 08 1.0 

sample_df 

Fig. 11. KDE: ST<=1 Second 

Encouraged by these results, we looked at the data grouped 

by the hour and were able to fit the data using KDE. Fig. 12 

shows the resulting histograms, the histogram to the left 

overlayed with a KDE model uses a bandwidth selector of the 

Sheather-Jones “plug-in” estimator with a method of “dpi” and 

an Epanechnikov kernel. We used a break size of 50 on the 

histogram. The histogram to the right has a bandwidth selector 

of unbiased cross-validation using a rectangular kernel. 

Fig. 13 also shows the resulting histograms, the histogram 

to the left uses a bandwidth selector of unbiased cross- 

validation and a triangle kernel. The histogram to the right 

has a bandwidth selector of Sheather-Jones “plug-in” estimator 

with a method of “dpi” and a triangular kernel. 

Most data split by the hour permitted convincing KDE fits, 

except for 9 am, and 11 am, where we did not find a good 

match between the fitted distribution and the histogram. 

D. Message Classification 

If we refer back to our hypothesis question on message 

classification Fig. 5 shows the head of the data transformed 
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Fig. 12. KDE: Fitting By Hour 
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Fig. 13. KDE: Fitting By Hour 

for all messages > 0.000 milliseconds and < 1 second. In 

Table XIX we have attempted to classify the messages between 

Group 1, which is from - 7 to - 4 (0.001 to 0.018 milliseconds), 

and Group 2, which is -4 to -2.7 (0.019 to 0.036 milliseconds). 

TABLE XIX. 
HEAD MESSAGE CLASSIFICATION: GROUP COMPARISON 

  

  

  

Group] Milli | Doc Max File Splits | Transl- | EDI 

sec- Type | Map Size ation Types 
onds Count | Count | Bytes Action 

1 0.001 | 2 2 60 O - | Defer, X12, 
- bytes - | 1521 Doc Edi- 

0.018 50 mil Ex- fact, 

tract, Other, 

TX Idoc, 

Ean- 

com 

2 0.019 | 2 2 60 O - | Defer, X12, 

- bytes 889 Doc Edi- 
0.036 - di Ex- fact, 

mil tract, Other, 

TX Idoc, 

Ean- 

com                     

When comparing the two groups in Table XIX, we note that 

Group | has messages with bigger bytes sizes than Group 2. 

The number of message splits in Group | is different to that of 

Group 2. We note that the more times the message is split, the 

faster the duration. So, we can say that Group 1’s messages 

are short in duration, and this may be due to the number of 

  138 

times the messages are split. Group 2’s smaller split count 

may explain the increased processing time for the messages. 

V. DISCUSSION 

We will reference each section back to the research question 

asked in Section I. At a high level, we noted that most 

transactions took under one second to process and contained 

many discrete values, and so it was useful to split the data 

into a head and tail part. 

I) Normal and Busy Periods: We split the data into these 

two periods for parametric modelling as the busy period was 

outside of normal conditions. Nevertheless, the normal period 

with no transformations or filtering did not fit parametric or 

non-parametric models. However, when we split the data using 

the different EDI Modelling techniques, we fit much of the 

data using parametric and non-parametric models. We note that 

these EDI messages suffer from a high correlation, and caution 

should be taken when undertaking modelling. We considered 

splitting the data to understand the source of correlation. 

We have partly answered our first research question: Can 

EDI messages be modelled using parametric, or, failing that, 

non-parametric techniques? We see that we can predict the 

probability of specific events for random sample messages. 

2) Message Split Count: We used the message split count 

to help split up the head of the data. We further noted that 

correlation was not fully explained by splitting on this feature. 

For the Split=’1’ group, the tail of the data fitted a parametric 

distribution, whilst the head of the data required further effort. 

This provides a further partial answer to the first research 

question: Can EDI messages be modelled using parametric, 

or, failing that, non-parametric techniques? Developers could 

use this splitting technique in EDI B2B messaging systems 

to determine if modelling the data by the number of splits 

shows an increase or decrease in message processing times. 

Data Scientists could use it for selecting data when fitting 

parametric models. 

3) Hurdle Modelling: We implemented a Hurdle model 

to remove over-dispersion. We removed the zero duration 

messages aS we were mainly interested in messages of a 

positive duration. This approach improved the fit of the 

models, but not enough to pass an AD test and did not explain 

the observed correlation. When speaking to developers about 

which messages they were concerned with modelling, they 

were only interested in messages of a duration greater than 

five minutes. This provides a further partial answer to our first 

research question: When modelling such messages, it is worth 

reflecting on which messages may be interesting according to 

the needs of the group that will use the model, and this may 

point to modelling a subset of the data. 

A. Message Bundle 

We noted that some messages arrived in the system as 

part of a bundle, where only the last message had a duration 

greater than zero seconds. Keeping these bundled messages in 

the system and modelling each one individually may cause 

correlation in the data due to the time dependence of the 
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succession of messages and may also cause over-dispersion. 

We want to identify the causes for correlation and over- 

dispersion, so we consider removing them from the dataset 

for modelling. This approach might weaken correlation and 

reduce over-dispersion. However, implementing the message 

bundle technique did not fully remove correlation from the 

model, but it did weaken it. Again, this has partly answered 

our first research question: bundling messages may be useful 

to developers when understanding the overall service times for 

each bundle and so help with understanding the service times 

and inter-arrival times of the messages (especially when the 

message has been significantly split). SREs might use bundles 

to determine the performance load on the system based on 

modelling of the scheduled time periods, as these bundled jobs 

may benefit from separate modelling. 

B. Scheduled Versus Un-Scheduled Messages 

Scheduling of messages is important for modelling queue 

behaviour and burstiness. Understanding the scheduled load 

versus random load helps support queue capacity planning. 

In isolation removing the scheduled messages from the data 

did not remove correlation, nor did it support parametric mod- 

elling. Again, we get further information on our first research 

question: EDI messages can have a scheduled component that 

may require separate modelling. SREs can use this insight to 

separately consider scheduled frequencies of messages over 

normal load. Data scientists and researchers can use it to better 

model incoming jobs via service times and inter-arrival times 

to better understand queue capacity. 

C. Map Count 

A map is a useful feature of an EDI message. These 

maps have many different authors and editors. Depending 

on the skill level of the map editor and the content within 

these maps, they may take different times to process. We 

expected that as map count might be a proxy indicator for 

complexity, it might help explain correlation. We found that 

a combination of splitting the data by Map Count and using 

message bundling produced uncorrelated data. Thus, it seems 

like a useful technique for data scientists and researchers who 

want to break up correlations in EDI heterogeneous messages. 

So, we have a further partial answer to our first research 

question. 

D. Parametric Modelling 

We noted that modelling all service times or the head of 

the distribution did not fit a known parametric distribution 

regardless of transformation or our EDI modelling techniques. 

However, we could fit the tail of the data to a known Burr 

distribution. The inter-arrival times of the tail of the data were 

close to a Burr-type distribution but failed the AD test. 

We wanted to understand if service times and inter-arrival 

times of EDI messages could be modelled effectively, and a 

parametric approach was only suitable for part of the dataset. It 

appears further work is required to break up this dataset which 

appears to contain heavy-tailed and discrete components. Thus, 
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we can conclude that the dataset should be modelled using 

a simple parametric method. Data scientists and researchers 

can use this information to guide the steps one can take 

to model these EDI messages effectively. We have partly 

answered our second research question: can the ST and [AT 

of an EDI message be modelled by a parametric method or 

non-parametric method? 

E. Non-Parametric Modelling 

Modelling the head of our data for service times using KDE, 

we observe a lot of white space indicating that the model does 

not fit the data. However, breaking the data up by the hour, we 

observe that a KDE model provides better fits to the data. From 

that, we have partly answered our second research question: 

can the ST and IAT of an EDI message be modelled by a 

parametric method or non-parametric method? As suggested 

in the previous section, Data scientists and researchers can use 

this information to guide the steps one can take to model EDI 

messages using a non-parametric approach. 

F. Message Classification 

Our third research question set out to answer whether 

we can classify EDI messages. On looking at the head of 

the data up to 0.036 milliseconds, we were able to classify 

these messages into two groups where group | had a shorter 

processing time than group 2. We also noted that the significant 

difference between the two groups was the number of times 

the message got split and the number of bytes in a message. 

Further work is required to classify these messages better. 

Message classification is desirable so that SREs can define 

baseline metrics for the different types of EDI messages 

coming into the system. The issue is the number of different 

ways one can classify the messages. 

VI. CONCLUSION 

This study aimed to model B2B EDI messages and de- 

termine if modelling was appropriate by a parametric or 

non-parametric approach. Modelling this data set is quite 

challenging. We noted evidence of correlation throughout the 

dataset, and the understanding of correlation was difficult. We 

note that a “one size fits all approach” is not appropriate; 

instead, we would require a combination of approaches to fit 

such data adequately. We found that the head of our data could 

not be modelled using parametric techniques and that the tail 

of the data fitted a parametric distribution. We also found that 

a non-parametric approach was suitable to model a portion of 

our data based on how we sliced the data. This work provides 

a more refined study, specifically modelling heterogeneous 

messages within the Cloud Supply Chain domain. By using a 

parametric approach, we modelled the tail of the data using 

a Burr Distribution. Modelling the data by hour fitted a non- 

parametric model. 

In future work, we can investigate modelling the busy period 

service times and identify if that period fits a parametric 

distribution. Additionally, further work is required to identify 

the underlying correlation within queue service time data and 
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if we can remove the correlation whether a parametric or non- 

parametric modelling approach is appropriate. 
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