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Abstract. Research on semantics in Genetic Programming (GP) has
increased dramatically over the last number of years. Results in this area
clearly indicate that its use in GP can considerably increase GP perfor-
mance. Motivated by these results, this paper investigates for the first
time the use of Semantics in Muti-objective GP within the well-known
NSGA-II algorithm. To this end, we propose two forms of incorporating
semantics into a MOGP system. Results on challenging (highly) unbal-
anced binary classification tasks indicate that the adoption of seman-
tics in MOGP is beneficial, in particular when a semantic distance is
incorporated into the core of NSGA-II.

1 Introduction

Genetic Programming (GP) [9] has been successfully used in a range of different
challenging problems (see Koza’s article on human competitive results for a
comprehensive review [10]). Despite its proven success, it also suffers from some
limitations and researchers have been interested in making GP more robust by
studying various elements of the search process, and also by e.g., considering
other GP forms [7].

One of these elements that has relatively recently attracted the attention of
researchers is the study of semantics in GP, resulting in a dramatic increase in
the number of related publications (e.g., [2,8,11,12]).

Semantics is a broad concept that has been studied in different fields making
it hard to give a precise definition of the concept. Moreover, the way seman-
tics has been adopted in canonical GP varies significantly e.g., Beadle and
Johnson [2] used reduced ordered binary decision trees on Boolean problems
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to study semantics, whereas Uy’s work on semantics has focused on repeat-
edly applying crossover to encourage semantic difference between parents and
offspring (see [15] for a summary of works carried out in semantics).

This work uses a popular version of semantics GP, as originally proposed in
[12], and used in recent works from the first author [8,13], in which the semantics
of a (sub)tree is defined as the vector of output values computed by this (sub)tree
for each set of input values in turn (a.k.a. each fitness case in most cases). Several
semantic-based approaches have been proposed for GP which take semantics into
account when e.g., choosing and modifying subtrees, such as the one that has
been demonstrated beneficial in [13] and it is adopted in this work too.

To the best of our knowledge, however, there is no scientific study on the
adoption of semantics in Evolutionary Multi-objective Optimisation at large [5],
and in Multi-objective GP in particular and this paper intends to start filling
this important research area.

The goal of this paper is to incorporate semantics into a Multi-objective
GP paradigm by using the well-known NSGA-II. To this end, we adopted two
different forms of incorporating semantics into NSGA-II: (a) one based on a
relatively simple, efficient and straightforward semantic-based single-objective
GP approach, and (b) one based on the adoption of a semantic distance into the
core of the NSGA-II algorithm.

This paper is organised as follows. In Sect. 2, we introduce our proposed
approaches. Section 3 provides details on the experimental setup used. The
results presented in this paper are discussed in Sect. 4, and finally, conclusions
and future work are drawn in Sect. 5.

2 Semantics in Multi-objective Genetic Programming

In this work, following [12], the semantics of a GP tree describes the behaviour
of the tree when various values are given to the input variables. Two trees can
be syntactically very different while behaving identically. What matters, as far
as solving the problem at hand is concerned, is in fact the behaviour of the tree,
i.e., its response to given inputs. These arguments support the use of semantics
adopted here and at least partly explain the benefits of using semantics in GP
as reported in [8,13].

In the case of a fitness based on the computation of several fitness cases, the
semantics of a GP individual is a vector of size the number of fitness cases, one
value for each fitness case. For instance, in the case of the problems used in this
work (unbalanced data sets introduced in Sect. 3), the semantics of a GP tree is
the vector of real-valued output by the tree for each of the examples in the e.g.,
training data set. In this work, the semantic distance between two trees is the
number of outputs that are different between their semantics. Commonly, when
computing the semantic distance, two outputs are considered different if their
absolute difference is greater than a given threshold [8,13]. In this work, we set
the threshold at 0.5.
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2.1 Evolutionary Multi-objective Optimisation

Multi-objective optimisation (MO) is concerned with the simultaneous optimi-
sation of several objectives. When these are in conflict, no single solution exists,
and trade-offs between the objectives must be sought. The optimal trade-offs are
the solutions for which no objective can be further improved without degrading
another objective. This idea is captured in the Pareto dominance relation: a
point x in the search space is said to Pareto-dominate another point y if x is at
least as good as y on all objectives and strictly better on at least one objective.

The set of optimal trade-off solutions of a MO problem can then be defined
as the set of points of the search space that are not dominated by any other
point, and is called the Pareto set of the problem at hand. The goal of Pareto
MO is to identify the Pareto set, or a good approximation of it. The Pareto front
is the image of the Pareto set in the objective space.

Evolutionary multi-objective optimisation (EMO) [5] is based on the follow-
ing: by replacing the single-objective selection steps, based on the comparison
of fitness values, by some Pareto-based comparison, one turns a single-objective
evolutionary optimisation algorithm into a multi-objective evolutionary opti-
misation algorithm, but because Pareto dominance is not a total order, some
additional criterion must be used so as to allow the comparison of any pair of
points of the search space.

In NSGA-II [6], the Pareto-based comparison uses the non-dominated sorting
procedure: all non-dominated individuals in the population are assigned Rank
1 and removed from the population, the remaining non-dominated individuals
are assigned Rank 2, and so on. The secondary criterion is the crowding distance
that promotes diversity among the individuals having the same Pareto rank: in
objective space, for each objective, the individuals in the population are ordered,
and the partial crowding distance for each of them is the difference in fitness
between its two immediate neighbours. The crowding distance is the sum over
all objectives of these partial crowding distances. Intuitively, it can be seen as
the Manhattan distance between the extremal vertices of the largest hypercube
containing the point at hand and no other point of the population. Selecting
points with the largest crowding distance amounts to favour the low-density
regions of the objective space, thus favouring behavioural diversity.

The NSGA-II proceeds as follows. From a given population of size N , N off-
spring are created using standard variation operators (crossover and mutation).
Parents and offspring are merged, and the resulting population, of size 2N , is
ordered using non-dominated sorting, and crowding distance as secondary crite-
rion. The best N individuals according to this ranking are selected to survive at
the next generation.

Because the underlying idea within NSGA-II is to favour behavioural diver-
sity, but only considering the fitness as a whole, it can be hoped that introducing
semantics in NSGA-II can only enforce this idea.
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2.2 Incorporating Semantics in MOPG

In this work, we investigate two ways of incorporating semantics into a MOGP
system (recall we use NSGA-II). One natural form to do so is to use semantics as
commonly adopted in canonical GP (e.g., semantically-based crossover [13]). In
our study, we adopted the semantics in the selection tournament mechanism [8]
due to its simplicity and efficiency. Briefly, the idea is to create offspring that are
semantically different from their parents when tournament selection is applied:
the first parent is selected as usual and the second parent is selected if it is
semantically different and fitter than the already selected parent, if this is not
satisfied for any individual in the pool, one is chosen at random. We call this
NSGA-II Semantics in Selection (SiS).

The second proposed way to add semantics to NSGA-II is to replace the
crowding distance (see above) with a semantic-based indicator called Semantic-
based Crowding Distance (SCD). This is computed the following way: a pivot
is chosen, being the individual from the first Pareto front (Rank 1) that is the
furthest away from the other individuals of this front using the crowding distance.
For each point, its semantic distance with the pivot is computed. Similarly to the
crowding distance, the SCD is computed as the average of the semantic distance
differences with its closest neighbours in each direction. The higher values of this
SCD are favored during the selection step of NSGA-II. This allows us to have
a set of individuals that are spread in the semantic space, therefore, promoting
semantic diversity, the same way NSGA-II promotes diversity (‘spreadness’) in
the objective space. It is worth pointing out that this approach also works when
there is only one front. This variant of NSGA-II will be called Distance-based
Semantics (DBS) in the following.

3 MOGP Configuration and Experimental Design

To study the effects of semantics in MOGP, we used challenging binary (highly)
unbalanced classification problems taken from the literature [1]. These problems
are of different nature and complexity, e.g., they have from a few features up to
dozens of them, these features include binary, integer, and real-valued features.
Table 1 gives the details for all datasets. These have been used ‘as is’ (i.e., we
did not try to balance the classes out). For each dataset, half of the data (with
the same class balance than in the whole dataset) was used as a training set and
the rest as a test set. All reported results are on the latter.

The terminal and function sets used in these experiments were the same
than in [3]. The terminals are the problem features. The function set consists of
the conditional if function and the typical four standard arithmetic operators:
F = {if,+,−, ∗, /}, where the latter operator is the protected division, which
returns the numerator if the denominator is zero. The if function takes three
arguments: if the first one is negative, the second argument is returned, otherwise
the last argument is returned. These functions are used to build a classifier (e.g.,
mathematical expression) that returns a single value for a given input (data
example to be classified). This number is mapped onto a set of class labels using
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Table 1. Binary unbalanced classification data sets used in our research. Table adapted
from [3].

Data set Classes Number of examples Imb. Features

Positive/Negative (Brief
description)

Total Positive Negative Ratio No Type

Ion Good/bad (ionsphere
radar signal)

351 126 (35.8%) 225 (64.2%) 1:3 34 Real

Spect Abnormal/normal
(cardiac tom. scan)

267 55 (20.6%) 212 (79.4%) 1:4 22 Binary

Yeast1 mit/other (protein
sequence)

1482 244 (16.5%) 1238 (83.5%) 1:6 8 Real

Yeast2 me3/other (protein
sequence)

1482 163 (10.9%) 1319 (89.1%) 1:9 8 Real

Table 2. Confusion matrix.

Predicted positive Predicted negative

Actual positive True Positive (TP) False Negative (FN)

Actual negative False Positive (FP) True Negative (TN)

zero as the class threshold. In our studies, an example is assigned to the minority
class if the output of the classifier is greater or equal to zero. It is assigned to
the majority class, otherwise.

The common way to measure the fitness of a classifier for classification tasks
is the overall classification accuracy: for binary classification, the four possible
cases are shown in Table 2. Assuming the minority class is the positive class, the
accuracy is given by Acc = TP+TN

TP+TN+FP+FN . The drawback of using Acc alone
is that it rapidly biases the evolutionary search towards the majority class [3].
A better approach is to treat each objective (class) ‘separately’ using a multi-
objective approach: Two objectives are considered, the true positive rate TPR =

TP
TP+FN , and the true negative rate TNR = TN

TN+FP , that measure the distinct
accuracy for the minority and majority class, respectively.

The experiments were conducted using a steady state approach with tour-
nament selection (of size 2 for NSGA-II and NSGA-II DBS, and of size 7 for
NSGA-II SiS to encourage semantic diversity). Initialisation and sub-tree muta-
tion used the ramped half-and-half method (initial and final depth set at 1 and
5, respectively). To control bloat, a maximum depth of 8 was specified (root is at
depth 0), or a maximum number of 800 nodes was used. Crossover and mutation
rates were set at 60 % and 40 %, respectively. To obtain meaningful results, we
performed 50 independent runs for each of the MOGP approaches for each of
the problems used in this work.
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Table 3. Average (± standard deviation) hypervolume, where the reference point is
(0,0), of evolved Pareto-approximated fronts, Pareto optimal (PO) front for the three
MOGP used in this work: NSGA-II, NSGA-II SiS and NSGA-II DBS, over 50 runs.

Methods Hypervolume Ion Spect Yeast1 Yeast2

NSGA-II Average 0.842 ± 0.070 0.542 ± 0.024 0.822 ± 0.041 0.944 ± 0.021

PO Front 0.948 0.637 0.875 0.978

NSGA-II SiS Average 0.858 ± 0.063 0.542 ± 0.020 0.827 ± 0.035 0.939 ± 0.048

PO Front 0.960 0.642 0.876 0.977

NSGA-II DBS Average 0.856 ± 0.051 0.548 ± 0.026 0.827 ± 0.015 0.948 ± 0.011

PO Front 0.977 0.664 0.873 0.977

4 Results and Discussion

4.1 Front Hypervolume

As a measure of performance, in order to compare the different approaches, we
use the hypervolume [4] of the evolved Pareto approximations. For bi-objectives
problems, the hypervolume of a set of points in objective space (using reference
point (0, 0)) is easily computed as the sum of the areas of all trapezoids fitted
under each point. Such measure was chosen as being the only known Pareto-
compliant indicator to-date [16]: the larger the hypervolume, the better the
performance. We also computed the Pareto-optimal (PO) front with respect to
all 50 runs, i.e., the set of non-dominated solutions after merging all 50 Pareto-
approximated fronts.

Table 3 reports, for each problem, both the average hypervolume over 50
runs, and the hypervolume of the PO. In this table, the best hypervolumes are
highlighted in boldface. Furthermore, the statistical significance for the results
on the average hypervolume was computed using Wilcoxon Test at 90 % level
of significance, independently comparing each of the semantic-based approaches
(NSGA-II SiS, NSGA-II DBS) against NSGA-II.

According to these results, in three out of the four problems, both semantic-
based MOGP approaches achieve a higher hypervolume of the PO front com-
pared to the NSGA-II. Moreover, the NSGA-II DBS is statistically better (indi-
cated in boldface) than the NSGA-II on two classification problems, but not
statistically different on the other two problems. On the other hand, NSGA-II
SiS is not statistically different on any of the problems compared to NSGA-II.
This suggests that the adoption of semantics into a MOGP approach should be
in one of the pillars of the MO approach.

4.2 Evolved Solutions and Pareto-Optimal Front

Let us now focus on the coverage of the objective space achieved by the semantic
variants of NSGA-II: Fig. 1 displays together on the same plot, for each problem
(top to bottom), and for NSGA-II and NSGA-II DBS (left and center respec-
tively), the 50 Pareto front approximations obtained in the 50 independent runs
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Ion

NSGA-II NSGA-II DBS Difference

Spect

NSGA-II NSGA-II DBS Difference

Yeast1

NSGA-II NSGA-II DBS Difference

Yeast2

NSGA-II NSGA-II DBS Difference

Fig. 1. Accuracy of all evolved solutions over 50 runs using the canonical NSGA-II and
the NSGA-II DBS, shown in the left-hand side and centre of the figure, respectively.
Plots in the the right-hand side of the figure show the evolved solutions that were
exclusively found by either NSGA-II (indicated by a red plus ‘+’ symbol) or NSGA-II
DBS (indicated by a blue cross ‘x’ symbol). For clarity purposes, we reduced the size
of the marker symbols in problems with denser areas (i.e., Yeast problems).
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Ion Spect

Yeast1 Yeast2

Fig. 2. Pareto-Optimal fronts each of the four problems for NSGA-II (black star sym-
bols), NSGA-II SiS (blue circle symbols) and NSGA-II DBS (red square symbols).
(Color figure online)

(NSGA-II SiS is omitted due to space constraints). For some problems (e.g.,
Ion), it is relatively easy to see that NSGA-II DBS has a better coverage of the
objective space. A better look at the difference between NSGA-II and NSGA-II
DBS is proposed on the right-hand side of the figure: only the points found by
one of both algorithms are plotted, a red plus ‘+’ symbol for NSGA-II, a blue
cross ‘x’ symbol for NSGA-II DBS. More blue cross ‘x’ symbols are visible on
top or right of the objective space, where the true Pareto front lies and explains
why DBS has a better performance on the Ion data set.

Figure 2 shows, for each problem, the Pareto-Optimal fronts (POs) for each
of the MOGP approaches used in this work. In accordance to the results reported
in Table 3, little difference is observed among the three methods on the Yeast2
problem, while NSGA-II SiS dominates on the Yeast1 problem; and both seman-
tic variants dominate parts of the front for Ion, while NSGA-II DBS is a clear
winner for Spect.

4.3 Bloat

Bloat (dramatic increase of tree sizes as evolution proceeds) has always been an
issue in GP, and should be monitored carefully when designing new GP variants.
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Ion Yeast2

Fig. 3. Average length of evolved solutions vs generations, over 50 independent runs,
for the Ion and Yeast2 problems, for NSGA-II (black star symbols), NSGA-II SiS (blue
circle symbols) and NSGA-II DBS (red square symbols). (Color figure online)

Contradictory results regarding bloat have been reported for semantic-based GP:
semantics seems to prevent bloat in [8], while it exacerbates it in [13]. To shed
some light on this issue here, Fig. 3 shows, for the Ion and Yeast2 problems, the
average length of evolved trees during evolution.

It is clear that the semantic-based approaches tend to produce slightly shorter
programs compared to canonical NSGA-II on the Yeast2 problem – and similar
tendency was observed for the Yeast1 and Spect problems (not shown here due
to space constraints). Surprisingly, NSGA-II SiS is indeed able to produce much
shorter programs compared to both other methods for the Ion problem. This
is aligned to the results reported in [8], that indicates that SiS is capable of
producing shorter programs compared to e.g., the well-known semantic-based
crossover [13]. From this, we believe that researchers tend to report mixed results
on bloat because its appearance is dependant on both: problem and approach
used, and so, no general conclusions can be drawn on this.

5 Conclusions and Future Work

In Genetic Programming, semantics is commonly defined as the behaviour of
syntactically correct programs. In canonical GP, semantics is represented by the
output vector of the tree for different known inputs and the similarity between
the semantics of two trees gives a much smoother idea of the similarity between
the trees than either the syntactic description of the trees or their raw fitness.

This work proposed two ways to add semantics to Multi-Objective GP, more
precisely NSGA-II for GP. The first one, Semantics in Selection (SiS), was
adapted from canonical GP to NSGA-II. The second approach, named Distance-
based Semantics (DBS), consists in using a semantic distance in lieu of the
crowding distance at the heart of NSGA-II.

We have learned that semantic-based NSGA-II GP behaves better than plain
NSGA-II GP on some well-known unbalanced binary classification problems. We
also learned that NSGA-II DBS outperforms NSGA-II SiS. We believe that the
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reason behind this is because the concept of semantic distance is used into the
very core of NSGA-II. There are multiple research areas that we will consider in
the near future. An in-depth analysis is required to confirm, and understand why
DBS outperforms SiS. Given the encouraging results, it is worth studying the
effects of semantics in other parts of a MOGP algorithm (e.g., ranking system).
It is also necessary to study the adoption of semantics and its impact in other
well-known MO approaches.
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Abstract. In recent years, a number of methods have been proposed
that attempt to improve the performance of genetic programming by
exploiting information about program semantics. One of the most impor-
tant developments in this area is semantic backpropagation. The key idea
of this method is to decompose a program into two parts—a subprogram
and a context—and calculate the desired semantics of the subprogram
that would make the entire program correct, assuming that the context
remains unchanged. In this paper we introduce Forward Propagation
Mutation, a novel operator that relies on the opposite assumption—
instead of preserving the context, it retains the subprogram and attempts
to place it in the semantically right context. We empirically compare
the performance of semantic backpropagation and forward propagation
operators on a set of symbolic regression benchmarks. The experimental
results demonstrate that semantic forward propagation produces smaller
programs that achieve significantly higher generalization performance.

Keywords: Genetic programming · Program semantics · Semantic
backpropagation · Problem decomposition · Symbolic regression

1 Introduction

Standard tree-based genetic programming (GP) searches the space of programs
using traditional operators of subtree-swapping crossover and subtree-replacing
mutation [4]. These operators are designed to be generic and produce syntacti-
cally correct offspring regardless of the problem domain. However, their actual
effects on the behavior of the program, and thus its fitness, are generally hard to
predict. For this reason, many alternative search operators have been recently
proposed that take into account the influence of syntactic modifications on pro-
gram semantics [1,10,11,13].

Semantic backpropagation [12,15] is arguably one of the most powerful tech-
niques employed by such semantic-aware GP operators. The two operators based
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