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Abstract—Many devices, such as phones and fitness trackers,
contain barometers to measure air pressure, allowing the tracking
of air pressure over time. While such changes can be used to
identify changes in altitude, if a device is stationary, changes
could also be used to identity a person’s location in conjunction
with meteorological information, which potentially makes pres-
sure data sensitive information. We will use the meteorological
data to see how effective device localisation can be when matching
air pressure profiles to different locations in Ireland.

Index Terms—localisation; smart devices; air pressure; barom-
eters

I. INTRODUCTION

A growing number of smart devices are used by people
today. In this paper, we are going to consider smart devices
with three common data sources: a barometer, an accelerome-
ter and a clock. Devices such as smart phones, smart watches
and other fitness trackers commonly have all three of these.
An accelerometer is used for activity monitoring and gesture
identification, a barometer used to identify changes in altitude
(to count, say, stairs climbed), and a clock is necessary for
many purposes, such as data recording. While many smart
devices also include GPS, we are going to study the feasibility
of approximately localising a device using a time series of
pressure measurements, without the use of GPS.

Suppose a smart device with an accelerometer can determine
when it is stationary. While stationary, the clock and barometer
can be used to form a time series of air pressure readings. In
this paper, we are interested in how much information these
air pressure readings reveals about the device’s location. Of
course, to link a time series of air pressure measurements
to a location, one must have records of air pressure values
for different locations. Fortunately, air pressure at different
locations is of considerable interest to meteorologists, and
records of such values are available.

In Section II we review related work. In Section III we de-
scribe our source of meteorological data and the performance
of the barometers in smart devices. In Section IV we describe
two methods for combining these data sources to estimate
a device’s location. The results of using these methods is
described in Section V, and we conclude in Section VI.

II. RELATED WORK

Barometers have been used to track a variety of human
activity including augmenting GPS accuracy with altitude
information, determining changes of floor within buildings
and even detecting sudden altitude changes associated with
falls [1]. While we have not seen information on localising
humans with barometer measurements, people have proposed
using pressure measurements to localise vehicles moving on
roads, where the elevation changes of the roads have been
mapped in advance [2], [3].

Smart devices have accidently leaked information about lo-
cation. For example, the Strava exercise tracking app provided
a heat-map of locations where people engaged in exercise.
As the app was used by a significant number of US military
personnel, it accidently revealed the location of US military
bases [4], [5].

The idea of deriving sensitive information from apparently
innocuous data has been of interest in recent years. In 1997,
Latanya Sweeney showed that is was possible to re-identify
publicly accessible US medical records using voter records
[6]. Data from the Netflix competition to rank films was
partially de-anonymised by combining it with public data from
the Internet Movie Database [7]. Sometimes re-identification
is possible even without an additional data source [8]. We
consider the use of air pressure information to identify location
to be in a similar vein.

III. DATA SOURCES

A. Met Éireann MÉRA data

For a source of meteorological data, we use the Met Éireann
Re-Analysis (MÉRA) data set [9]. This data is produced
by combining historical observations and a physical weather
model to generate a consistent reconstruction of past weather.
The reanalysis period extends from 1981 to 2015, and provides
estimates of many meteorological quantities on a grid spaced
by approximately 2.5km. In a sense, the reanalysis provides
a best reconstruction of actual weather conditions, given the
observations available.

Data is available in GRIB (GRIdded Binary) format, and
we requested surface pressure values for the month of June
2015. The file contains time values every three hours, with
three intermediate steps, effectively providing hourly data.978-1-6654-3429-4/21/$31.00 ©2021 IEEE
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Fig. 1. MÉRA air pressure data (major land boundaries added).
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Fig. 2. Filtered MÉRA locations (major land boundaries added).

Each hour contains 258,681 data points at varying latitudes and
longitudes. Data was extracted using ecCodes GRIB tools1.

The data for the first hour is plotted in Figure 1. We can
see that the area covered by the MÉRA data covers much of
the UK, Ireland and even the Atlantic and continental Europe.
Mountainous areas are clearly visible as areas of low pressure
in the data. We confirmed that the data points are separated
by approximately 2.5km using the haversine distance. We also
checked the resolution of the pressure values; data values are
separated by multiples of 0.25Pa.

As we are interested in localising stationary smart devices,
we can restrict our interest to a subset of these locations.
In practice, one might use other information to give a broad
indication of the devices’ location to filter these points. For
example, though IP geolocation has accuracy challenges [10],
[11], identifying the country that a device is in is often
practical.

As an example, we use the 2011 Census Boundary data
to filter locations within the provinces of the Republic of
Ireland2. This reduced the number of locations to 11,205.

The resulting locations are shown in Figure 2. At this scale,
we can see the individual points are visible, including points
on islands. There are small discrepancies between the major

1Available from https://confluence.ecmwf.int/display/ECC/ecCodes+Home.
2Available from https://data.gov.ie/dataset/census-2011-boundary-files.
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Fig. 3. Distribution of air pressure during the first week of June 2015. Boxes
show IQR, whiskers show 5th and 95th percentiles.

land boundaries shown and census boundaries. This is because
the land boundaries are lower resolution and also the census
boundaries include some inland waterways.

Finally, any success in localising a device depends on the
variability of air pressure values over both space and time. To
give a preliminary indication of the variability, we show a box
and whiskers plot of the hourly air pressure over the first week
of June 2015 in Figure 3. Each box indicates the interquartile
range, with the whiskers showing 5th and 95th percentiles over
the filtered locations. The mean is also shown.

We see that the interquartile range for this week is typically
around 1,000Pa. At resolutions between 0.25–1Pa, a single
hour could potentially provide 1,000-4,000 distinct values
to help localise the device at an area with pressure within
the interquartile range. This suggests that combining multiple
hours of data will be necessary to localise devices, as we have
over 10,000 locations to distinguish. We also note that values
shown move in a correlated way over time, so we should not
expect changes to air pressure to be independent.

B. Barometers in Smart Devices

Given that one of the common applications of these devices
is to measure a change of floor in a building, we expect that
these devices will all be able to comfortably measure a change
of around 2m. Near sea level, assuming hydrostasis, the change
in air pressure per meter is approximately ρg, where ρ is the
density of air and g is the acceleration due to gravity. This
gives a value of about 12Pa/m.

The barometers in smart devices are of surprisingly high
quality. For example, the iPhone 6 and 7 are rumoured to
use a custom Bosch BMP280 sensor. The data sheet for this
sensor reports that it can measure pressure ranges from 3,000–
11,000Pa, with a relative accuracy of 12Pa and an absolute
accuracy of 100Pa [12], however, this seems quite pessimistic
compared with some reports [1]. The RMS noise is given as
1.3Pa and the resolution 0.16Pa in the data sheet.

More recent sensors are likely to have even better capabili-
ties, with devices such as drones making use of barometers to
maintain constant altitude, to roughly 0.1m. For example, the

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 31,2022 at 12:03:12 UTC from IEEE Xplore.  Restrictions apply. 



BMP085 is available to hobbyist at a price of a few euro and
reports an absolute accuracy of better than 3Pa [13].

The Apple and Fitbit barometer APIs3 report pressure in
units of Pascals, suggesting a resolution of at least 1Pa. In fact,
both APIs seem to report results as floating point numbers,
so better resolution is possible. The Fitbit API also indicates
that the barometer can be read at rates from 1Hz to 40Hz, so
averaging to reduce noise is certainly practical.

Testing an iPhone 6s and Xs with a barometer application,
we found that it could report the pressure to a resolution
1Pa and that measuring at height differences of 1m reported
a change 11–13Pa. The expected change is around 12Pa,
which suggests the device is capable of measuring to the
nearest Pascal. Quick tests indicated that the Apple Watch had
comparable performance and the Fitbit Vista reports a change
in altitude at the resolution of 1ft.

As the meteorological data we have is historical, we choose
to simulate our smart device barometer data. We will do this
by taking choosing a location from the meteorological data
and then adding noise values to the pressure values from the
meteorological time series. The noise will represent both the
difference between (1) the meteorological data and ground
truth and (2) between ground truth and the the values recorded
by the smart device.

IV. METHOD

Suppose that we determine from the accelerometer that a
device has been stationary. This might correspond to a period
where a watch or phone has been left on a bedside locker
overnight, or a period where no steps have been taken, such
as someone sitting at a desk. Air pressure measurements from
this period can be filtered to produce a higher quality time
series of air pressure values on the same time scale as our
meteorological data. We call this series P̂t, where the t takes
values at discrete (e.g. hourly) values in some set T .

At the same time, we have our meteorological data
Pt(lat, long), where the location, (lat, long), is from our
filtered set of locations of interest, F . An obvious approach
for matching locations to the observed time series is to use
least squares

argmin
(lat,long)∈F

∑
t∈T

(
Pt(lat, long)− P̂t

)2
.

This minimisation can be performed by exhaustively searching
our set of locations F . It can be calculated in a single pass over
the meteorological data by accumulating the sum of squared
error (SSE) for each location. Note, there is a possibility that
the location minimising the SSE is not unique.

When we consider the possible sources of errors in our data,
least squares has some attractive features. Our measured P̂t
will have errors relative to the actual air pressure, however a
common assumption is to treat errors as normally distributed.
Likewise, the meteorological data is reconstructed from obser-
vations, so normally distributed residual errors could be used

3See https://dev.fitbit.com/build/guides/sensors/barometer/ and
https://developer.apple.com/documentation/coremotion/cmaltitudedata.

as an approximation. This means that the difference between
P̂t and Pt(lat, long) will be the sum of two normals, and
so also normally distributed. Consequently, a least squares
estimate would also correspond to a maximum likelihood
estimate.

We may also have systematic factors to accommodate. The
data sheets for the smart device barometers indicate that there
may be a larger absolute error than relative error, suggesting
that the values may have some constant offset. Second, our
meteorological data is for surface pressure, however the person
may be stationary, but not at the expected surface height. In
this case, we can introduce an extra parameter, δP , to represent
the unknown constant offset due to these systematic factors.
We can then estimate δP by minimising,

argmin
(lat,long)∈F

δP

∑
t∈T

(
Pt(lat, long)− P̂t − δP

)2
.

Note that we can do the minimisation with respect to δP ex-
plicitly by differentiating, and find that at each (lat, long) ∈ F :

δP(lat,long) =
1

|T |
∑
t∈T

Pt(lat, long)− P̂t.

Once δP(lat,long) is known, an exhaustive search of our
locations F is possible. We could regard δP(lat,long) as an
adjustment so that the mean value of Pt(lat, long) matches
that of P̂t. In some sense, we are using one degree of freedom
to estimate δP and then perform least squares matching, where
the means have been adjusted to match. This also tells us that
in the case of |T | = 1, all locations will have zero SSE.

In this case, minimisation can also be achieved in a single
pass over the meteorological data by maintaining the SSE and
the sum of Pt(lat, long) − P̂t per location. If some bounds
are known on the size of the systematic factors, the range
of δP could be constrained (e.g. based on range of building
height and absolute barometer error). Alternatively, if a prior
distribution was available for δP , more sophisticated estimates
could be made.

V. RESULTS

A. Initial Tests

As an initial test of our method, we try to locate a simulated
device at a location near Maynooth (53.366°,-6.612°), at
ground level. We generate our pressure measurements using,

P̂t = Pt(53.366°,−6.612°) + nt,

where nt are i.i.d. normal samples with mean zero and vari-
ance σ2. We use four values for the noise: σ = 0, 1.25, 5, 20Pa.
No noise corresponds to artificially good matching; 1.25Pa
corresponds to an optimistic view of smart device barometer
performance where the noise is about the same size as the
precision in our data sources; 5Pa is a slightly pessimistic
view on a smart device barometer; and 20Pa represents quite
poor pressure measurements. Note that as time points are an
hour apart, there should be time to make multiple barometer
readings on the smart device and denoise them.
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Fig. 4. Estimating the position of Maynooth. Rows represent attempts with |T | = 1, 2, 4, 8 points in time series. Columns represent noise with σ =
0, 1.25, 5, 20Pa. • actual location, + locations with minimal SSE, gray dots indicate locations with SSE less than twice minimal.

We consider matching |T | = 1, 2, 4, 8 hourly-spaced time
points, corresponding to someone being stationary for lunch,
a cinema trip, spending an afternoon working at a desk or
sleeping.

For each choice of σ and |T | we pick a beginning time
at random within our data, and simulate matching (P̂t)t∈T to
our meteorological data using our first method. The results
are shown in Figure 4. The correct location is shown as a
green circle, and a red cross indicates locations with least
square error. Rather than just show the location(s) with the
least square error, we also show locations where the SSE is
within a within a factor of two of the minimum.

Particularly, in the case where we use only one time point,
we see that there may not be a unique location that is identified
by our method. This is not surprising, given our observations
about the spread of the meteorological air pressure data.

We also see that for |T | = 1 or 2 the estimated location may
be quite far from the actual location, and increasing amounts
of noise reduce the the ability to give estimates close to the
right location. For |T | = 4, the locations estimated are all in
the right part of the country and for |T | = 8 the estimates are
all quite close, even in the case of high noise.

We make two other observations, based on running these
tests. First, locations at different elevations to Maynooth
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|T | σ number of locations
(Pa) 1 2 3 4 5+

1 1.25 52.4% 24.1% 11.2% 5.9% 6.4%
1 5 51.8% 24.2% 12.5% 6.4% 5.0%
1 20 54.7% 22.8% 11.7% 6.5% 4.3%
2 1.25 99.2% 0.7% 0.1% 0.0% 0.0%
2 5 99.6% 0.4% 0.0% 0.0% 0.0%
2 20 99.8% 0.2% 0.0% 0.0% 0.0%

3+ > 0 100% 0.0% 0.0% 0.0% 0.0%

TABLE I
NUMBER OF MINIMAL SSE LOCATIONS WITHOUT SYSTEMATIC FACTOR

ADJUSTMENT.

typically have a large SSE, and so are rarely considered good
matches. Second, each test runs quite rapidly, typically using
less than 1s of clock time on a laptop.

B. Performance without Systematic Factors

The previous section gave us something of a feeling of the
behaviour of the method for a single location. Clearly results
may vary depending on the location and the measurement
quality. There is also a potential issue of multiple locations
minimising the SSE.

To study these problems, for each combination of numbers
of time points and noise, we picked 1,000 random locations.
Then for each location we conducted experiments as described
in the previous section. We make two changes: first we omit
σ = 0Pa as somewhat unrealistic; and we include |T | = 3, as
there appears to be an interesting performance improvement
between |T | = 2 and |T | = 4.

For each run, we first noted the number of locations solving
our least squares problem. The results are summarised in
Table I. We see that the problem of multiple optimal locations
is largely confined to the case where we are only matching
a single time point. Indeed, we didn’t observe any situations
where there were multiple optimal locations when matching
more than two time points.

We next consider how good these optimal estimated loca-
tions are, relative to the location selected for each experiment.
We noted the haversine distance between each estimated loca-
tion and the actual location. In the case of multiple estimated
locations, we take the distance averaged over the locations.
The resulting cumulative distribution of the distances is shown
in Figure 5.

In the case where σ = 1.25Pa and we have |T | ≥ 3 time
points, we achieve a location within about 2.5km more than
80% of the time. Even in the case where we have only two
time points, we are still within 2.5km more than 50% of the
time. However, the performance with just one time point is
rather poor, only producing an answer within 100km around
40% of the time.

Naturally, it is more challenging to estimate locations when
σ = 5Pa. Now we we need 8 time points to get a location
within 2.5km 80% of the time. With 4 time points, we can get
within 10km approximately 50% of the time. When σ = 20Pa
even estimates using 8 time points have large distance errors
much of the time.

|T | σ number of locations
(Pa) 1 2 3 4 5+

2 1.25 33.9% 17.6% 9.6% 7.1% 25.8%
2 5 41.2% 18.3% 10.1% 6.2% 24.2%
2 20 59.7% 14.3% 8.4% 3.4% 14.9%
3 1.25 96.4% 3.5% 0.1% 0.0% 0.0%
3 5 97.1% 2.6% 0.3% 0.0% 0.0%
3 20 99.0% 0.9% 0.1% 0.0% 0.0%

4+ > 0 100% 0.0% 0.0% 0.0% 0.0%

TABLE II
NUMBER OF MINIMAL SSE LOCATIONS ADJUSTING FOR SYSTEMATIC

FACTORS.

C. Performance with Systematic Factors

In Section IV we outlined a method to handle situations
where the smart device’s barometer readings may have a
systematic difference from the meteorological data due to
differences due to height above ground level, errors in device
measurements or other systematic factors. In this section, we
will test this method for estimating the location.

As noted, our method to handle these systematic factors
essentially adjusts the data so that the mean pressure measured
by the smart device matches the mean in the meteorological
data and then proceeds to estimate the location using least
squares on the adjusted data. Consequently, we effectively
loose 1 degree of independence in the data. For example, as
predicted, when |T | = 1, we find that all locations match
equally well, and so we get no useful location information.
To account for this, we consider |T | = 2, 3, 4, 5, 8, 9 as we
know we need an extra degree of freedom.

We also note that because the estimator makes the mean
pressure values match, there is no need to choose a size for
the systematic factors, as the estimate of δP will adjust for any
constant offset at the first step. This means that we do not need
to choose an offset size for our simulations, as all constant
offsets will perform in the same way. Consequently, we use
noise that is N(0, σ2), as before, with σ = 1.25, 5, 20Pa.

Again, for each combination of |T | and σ, we ran 1,000
tests at randomly chosen locations. We recorded the estimated
locations with the smallest SSE, when corrected for the esti-
mated systematic factors. Table II shows how many locations
were found to achieve the minimal SSE.

We see that with |T | = 2 time points we frequently find
multiple locations with minimal SSE. However, with |T | = 3
we get a unique location in most situations, and with |T | ≥ 4
we always get a unique location. If we compare this to Table I,
it tallies well with our intuition that we have used a degree
of freedom to estimate the systematic factors, and so need an
extra time point in order to be able to identify locations.

Next we study the distribution of the distances between the
actual locations and the estimated locations in Figure 6. As in
Section V-B, we use the average distance if multiple locations
have minimal SSE.

In the case where we have good results from our barometer
(σ = 1.25Pa), with eight or nine time points, we can still
achieve an estimated location within approximately 2.5km
of the actual location over 80% of the time. However, the
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Fig. 5. Cumulative distribution function of the distance between the actual location and estimated location for σ = 1.25, 5, 20Pa.
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Fig. 6. Cumulative distribution function of the distance between the actual location and estimated location for σ = 1.25, 5, 20Pa adjusting for systematic
factors.

performance in other cases (|T | ≤ 5 or σ = 5, 20Pa) is
considerably below that seen in Section V-B. This suggests that
the absolute value of the air pressure is important in identifying
the location. This is probably through its dependence on the
elevation of the location, as we observed in Section V-A.

We conclude that the method still appears practical when
accounting for systematic factors, however it requires more
time points. This suggests that an improved location estimator
that takes into account of restrictions on δP could be quite
powerful.

VI. CONCLUSION

In this paper we looked at the feasibility of locating a
stationary smart device via contemporary air pressure mea-
surements. Our results show that this is feasible, particularly
if the barometer is of good quality and a reasonable number
of points can be matched (e.g. for a device that is stationary
overnight). We see that it is possible to correct for systematic
differences between meteorological and measured data, but
that it makes the localisation task more challenging. Chal-
lenges for the method include the availability of contempo-
rary meteorological information. Future work could include
using additional sensor data (e.g. magnetometer), estimation
of location using live data, testing if restricting the range
for systematic differences can improve localisation, and the
possibility of interpolating between locations.

Thanks to André Düsterhus, Daire Healy, Jack McDonnell
and Eoin Whelan for advice on meteorological and geographic
data and to Karl Stanley for testing an Apple Watch.
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