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Abstract— Large-scale, multi-agent systems are too complex
for optimal control strategies to be known at design time and as
a result good strategies must be learned at runtime. Learning
in such systems, particularly those with multiple objectives,
takes a considerable amount of time because of the size of the
environment and dependencies between goals.

Transfer Learning (TL) has been shown to reduce learning
time in single-agent, single-objective applications. It is the
process of sharing knowledge between two learning tasks called
the source and target. The source is required to have been
completed prior to the target task.

This work proposes extending TL to multi-agent, multi-
objective applications. To achieve this, an on-line version of TL
called Parallel Transfer Learning (PTL) is presented. The issues
involved in extending this algorithm to a multi-objective form
are discussed. The effectiveness of this approach is evaluated
in a smart grid scenario. When using PTL in this scenario
learning is significantly accelerated. PTL achieves comparable
performance to the base line in one third of the time.

I. INTRODUCTION

MULTI-AGENT, MULTI-OBJECTIVE LEARNING
can take a significant amount of time to complete [1].

This is because the different objectives and agents affect
each other making the environment more variable as well
as increasing the amount of learning to do. Not only must a
solution to each objective be learned, but also the agents in
a system must learn how the goals interact.

Objectives’ priorities can change across the state space,
which means that different conditions in the environment
will have different importances to different objectives. These
priorities can also change over time. This makes the learn-
ing problem much more complex than in single-objective
systems. Such problems can be found in many areas and
are particularly common in applications with multiple stake
holders such as economic systems or transportation. In these
applications, each stake holder has their own particular goals
–which may be mutually exclusive–, a computational entity
controlling such a system needs to select which objective
to obey at any one time. For example, a learning process
controlling the charging of an electrical vehicle might have
to find a series of actions according to two objectives: turn
the device on so that it is charged for the user or leave it
off to minimise the electricity drawn from the grid. These
goals are contradictory and so the process will be required
to resolve these conflicts for each time step. If a decision is
made for each 15 minute period and the system will run for
12 hours, there will be 96 possible solutions (4 decisions per

hour, 2 choices per decision). Each of these solutions is a
series of actions to be taken. Some of these will prefer one
goal over the other, while others will be balanced between
the two goals. There almost certainly will not be a single
best solution for all possible priorities, but rather the best
solution will depend on how the two objectives are related.
In this example, priorities could change over time, e.g. if the
vehicle was fully charged after 5 hours, then the two policies
would cease to be in conflict and the priorities would change
from then on. This simple example only had 1 agent and two
policies, and even still it would require a significant amount
of learning.

In this paper, we propose Parallel Transfer Learning (PTL),
an algorithm that accelerates learning in multi-objective,
multi-agent systems. It does this by exploiting the similarities
in what different agents learn and shares this information.

The rest of this paper is structured as follows. Section II
provides a review of relevant literature. The contribution
is presented in Section III, the requirements for a sys-
tem implementing it are in Section IV. Issues involved in
applying PTL to multi-objective systems are discussed in
Section V. The idea is evaluated in a smart grid scenario in
the Section VI and finally conclusions and future work are
given in Section VII.

II. BACKGROUND

A. Reinforcement Learning

The basic pattern underlying Reinforcement Learning
(RL) [2] is to observe the environment, choose and execute
an action to affect the environment and see how good that
action was. An agent (a process that implements RL) can
learn to perform optimally for a given state of the environ-
ment by executing this process multiple times. The agent
is provided with information about how good a particular
state is through a reward signal. The agent learns by adding
new information to its value function. The value function
is a record of how good a particular state and action has
been based on the reward signal and expected future reward.
When the value function converges for all states, the agent
has finished learning. Learning occurs by repeatedly visiting
states and seeing how actions affect the environment. Each
agent must learn how its own actions affect the environment.
When an agent has multiple objectives, it must learn how
each action affects each objective.
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An agent’s objectives are represented by a policy. A policy
is a representation of all possible states of the environment
and what should be done for them, they are often represented
as a Markov Decision Process. These are mechanisms for
describing sequential decisions in an environment. The more
policies an agent has, the longer it will take for its behaviour
to stabilise, as each policy requires many samples to learn
from. Many RL algorithms require that each state of the
environment is visited many times for the value function–
and by extension behaviour– to converge.

For RL to be useful in real-world, multi-agent system
scenarios (for example the smart-grid [3], [4], [5]), the
learning process will need to be accelerated while explo-
ration is occurring. The agent cannot meet its goals during
exploration, as RL requires, for convergence, that every
state-action pair is experienced and not all of these will be
required for the optimal performance. This means that during
exploration, RLs performance is necessarily suboptimal. For
an agent to know a particular state-action pair is suboptimal,
the agent must experience it.

Through implementing RL an agent can learn the optimal
solution to a single-objective problem. When extended to
multi-objective problem, further issues arise.

B. Multi-Objective Systems

Many large-scale distributed control applications require
that individual entities within a system are capable of han-
dling multiple objectives [6]. The entity will be required to
find an optimal way of satisfying these objectives. This is
non-trivial, as at any given time these objectives could require
conflicting action, and the entity must learn a way to behave
that accounts for this [7]. The problem is further compounded
by the fact that the importance of a particular objective can
change over time.

There are two main categories of approach to multi-
objective learning in reinforcement learning:
• Combined State Space Approaches. These work by

having a single learning process operate on a state space
which is the cross-product of those of the individual
objectives [8]. In this way the process learns how best to
behave according to multiple objectives in the same way
as with one objective. This has the added benefit of not
requiring any alteration of the algorithm, just the reward
scheme will change. Learning on combined state spaces
can become intractable very quickly, as each additional
environmental parameter or objective adds many states
to the state space.

• Arbitration-Based Methods. In these approaches, mul-
tiple learning processes make suggestions according to
their own single-objective at each time, and these sug-
gestions are then decided between by some arbitration
process [9]. There are many possible implementations
for the arbiter process: election based [10], priority
based [11], compromise based [9] or weight based [12].

This work will examine arbitration-based methods. This is
because combined state space approaches effectively reduce

multi-objective learning to a very large single-objective prob-
lem. In combined state space approaches the inter-objective
priorities are encoded in the reward structure, which means
that they are fixed to static values that must be known
at design time. Aside from having to be known at design
time, a major drawback with them is that priorities cannot
change regardless of what happens in the environment.
If the environment changes in a manner that would alter
inter-objective priorities, the system cannot adapt without
completely rebuilding the reward structure. This means they
are only applicable in applications were it is known the
priorities are fixed a priori.

C. Distributed W-Learning

Distributed W-Learning (DWL) [13] is a multi-agent,
multi-policy, arbitration-based RL algorithm. In DWL each
agent has a set of local policies. Each local policy represents
a single-objective. It also has a set of remote policies, which
represent the objectives of the agent’s neighbours. At each
time step, each policy suggests the action that it wants to
execute (either to explore it or to exploit it). This produces
a set of suggested actions. To decide between these actions
an arbiter process looks at the W-value associated with each
suggestion and selects the suggestion with the highest value
to execute. The W-value [12] is a representation of how
important it is that the suggesting policy be obeyed at a
given time step. It is updated by the Equation 1 when the
suggestion is not obeyed:

Wi(s) := (1− α)Wi(s) + α(Qi(s, ai)− (ri + γ(max(Q(s′, a′i)))

(1)
where Wi(s) is the W-value of the state the agent is in,
Qi(s, ai) is the Q-value for the state-action that was sug-
gested, Q(s′, a′i) is the Q-value of a potential next state-
action pair, ri is the reward that would have been received,
α is the learning rate, γ is the discount factor. As the value
is only updated when it is not obeyed, the state has the
opportunity to become more important next time if needed.
This dynamically changes priorities. W-values are assigned
to a state, rather than a state-action pair.

In DWL, the information about a local policy is separated
away from policy relation information. This means learning
each objective has two components. First the Q-component,
which is the state-action values, with information on what
is best for one objective. It contains no information about
how actions affect other objectives (or those of other agents).
The second part is the W-component, which contains only
information on how actions affect other policies, either local
or remote, in the system.

D. Accelerating Learning

There have been many attempts to accelerate learning in
single-objective, reinforcement learning systems. The way
the value function is represented can be changed. For exam-
ple, a function can be used instead of a table [14]. Using a
good function can allow the state space to be compressed and
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similar states to be grouped. This means that knowledge can
be generalised and thereby more efficiently used. However,
if the function is poorly chosen, it can lead to inaccurate
learning or reduced accuracy of representation.

The algorithm used to explore the state space can be
altered or changed. For example, Prioritised Sweeping [15]
is a modification to standard RL algorithms. It maintains a
list of states that have led to the current state, and when
a reward is received it is then propagated back accordingly.
This means that the values are more quickly propagated back
to the correct states and less learning time is required.

Learning can also be accelerated by the addition of ex-
ternal knowledge. Several different approaches as to how
knowledge can be incorporated have been explored [16].
The authors find that adding external knowledge through
action selection is preferable as it has no lasting effect on the
value function. Heuristically accelerated Q-Learning [17] is
one such approach. It works by defining a function which
biases action selection, which encourages exploration in
areas thought to be particularly important or beneficial. The
knowledge encapsulated in the heuristic function can come
from any source, for example prior experiences or human
knowledge.

Genetic algorithms have also been applied to multi-
objective learning and have been shown to be effective [18].
They can also be combined with RL [19]. The exploration
of the state space is done using policy search with a set of
potential solutions, and these policies are then evaluated and
modified. Over time, the correct solution will emerge. This
can only improve the speed of learning if the problem can
be run several times simultaneously.

E. Transfer Learning

Transfer Learning (TL) for RL [20] is an emerging field in
this area. It is based on an idea borrowed from psychology.
When learning how to accomplish a task, knowledge from
a related task is often used as a starting point. When
applying this concept to RL, it can be accomplished by
sharing information about states of the environment and good
actions amongst different agents. This is accomplished by
completing learning in one task (called the source task),
mapping the information from source to target (effectively
translating it, so it is intelligible and applicable to the target)
and passing it to the target agent, which then incorporates
this new knowledge into its state space. This is all done off-
line, prior to the execution of the target task.

A mapping is used to allow a common understanding
of what data means. This is typically achieved through
a function, which takes knowledge from the source and
translates it so it is in the same form as knowledge the
target produces itself. In the literature, this mapping has
typically been hand-coded by the designers [21], which is not
a scalable solution. In work by Ammar et al. [22], a mapping
function was derived automatically. This type of autonomous
mapping will be required for real-world applications of TL.

The goal of TL, as indicated before, is to reduce learning
time in the target task. Providing information from a good

source has been shown to significantly accelerate learning
in the target [23] but a large amount of time is required to
learn in the source task which is not reduced. If this time is
considered as part of the execution time for the target, then
the increase in speed is significantly reduced [22].

In this paper this type of TL where learning in the source
task happens prior to the learning in the target task, will be
called Sequential Transfer Learning (STL). The transfer is
unidirectional following a sequential order (see Figure 1a).
This figure shows the flow of data in sequential TL. Source
Task 1 is passing information to Target Tasks 1 and 2, while
Source Task 2 provides data to Target Tasks 2 and 3.

If these agents have multiple policies, then information
about how policies interact can also be shared. Sequential
TL will be difficult to apply to multi-policy agents, as
the relationship between policies on one agent is dynamic
and complicated [24]. Even if both source and target tasks
learned in identical scenarios, the policy dependencies may
differ [25]. This is particularity true if there are several
Pareto-optimal1 solutions. This means that a single transfer
of policy dependence information at the start of the learning
process will not adequately represent relationships in the
target task even if they are closely related as it changes
over time. The process of learning in the target agent will
invalidate the information received from the source. For this
reason a single transfer will not be particularly useful when
the target task that is required to learn has a dissimilar set
of policies or operates in a different environment. As many
real-world systems are multi-objective, extending TL to work
in theses would be desirable and is discussed below.

(a) (b)

Fig. 1: Information flow in (a) Sequential Transfer Learning
(b) Parallel Transfer Learning.

III. PARALLEL TRANSFER LEARNING

Parallel Transfer Learning (PTL) [27] is the idea of having
both source and target task learn simultaneously. The source
shares information when it considers the information to be
relevant to the target task. This removes the requirement
for having learned source information prior to executing
the target task and it also allows for multiple transfers.
Multiple transfers enable policy dependence information to
be consistently supplied, which means that the dynamicity
of multi-objective learning can be transferred to the target

1Pareto optimality is a balance between objectives in which improving
performance on one objective necessarily makes another perform worse [26].
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agent. Whenever the relationship between policies changes,
relevant information can be communicated. The disadvantage
with this approach is there is no learned information available
at the start of learning in the target task, so there is initially no
benefit in terms of performance. When using STL, the target
task begins learning with at least some knowledge, this means
that it can perform comparatively well initially. It takes some
time for PTL to overcome this initial lack of knowledge,
and the amount of time is application dependent. There is no
reason the two could not be used in conjunction to overcome
this if information were initially available. The roles of
source and target in PLT are more fluid. Any particular agent
can act as a source, target or both at a given time, as the
transfers can go between any pair of agents in the system.
This is shown in Figure 1b, where at any one time transfers
could be occurring through any set of the arrows. Different
approaches to selecting data to transfer and how to receive
it are discussed in [27].

IV. DESIGN

A system implementing PTL is composed of the following
elements:
• A set of agents, A = {A1, ..., AZ}, where Z is the total

number of agents in the system.
• A set of neighbours for every agent, Ni =
{Ni,1, ..., Ni,Y } where Y is the number of agents the
agent Ai is transferring to or from.

• A set of local policies for every agent in the system,
LPi = {LPi,1, ..., LPiX}, where X is the number of
local policies implemented by the agent Ai.

• A set of mappings χi,j from each of agent Ai’s local
policies LPi to each the policies belonging to the
agents in its neighbour set Ni. This is given by χi,j =
{χi,j→1,1, ..., χi,j→Y,X}, where χi,j→1,1 is the mapping
from the agent Ai’s jth policy to the agent A1’s first
policy, where A1 is the first agent in Ni, the neighbour
set of the agent Ai.

• A set of transfers τt = {τi,t, ..., τZ,t} where τi,t is the
set of transfers being received by the agent Ai at time
step t.

• Each mapping and transfer will have two components,
a Q-component and W-component given respectively as
the following: χi,j = χQ

i,j + χW
i,j , τt = τQt + τWt

At each time step an agent Ai will select a subset Nitrans

of its neighbours Ni. Ai then selects data items from a subset
LPitrans of its local policies LPi. Each of these data items is
then put through the mapping in the set χi,j corresponding to
its intended recipient. This produces Ai’s component of the
set of all transfers τt. This set is then sent over the network.
Upon receiving transfers to it τi,t, Ai merges them into its
state space.

V. PTL FOR MULTI-OBJECTIVE SYSTEMS

There are two types of knowledge which can be trans-
ferred. The first is information relevant to one objective. In
RL terminology, this might be the value associated with a

particular state-action pair. The other option is to transfer
objective-relation information, which could take the form of
policy weightings. The usefulness of both data types will
change over time. As a result, the way data is selected to be
transferred and how it is received will also change.

A. Q-Transfers

When agents are learning and exploring in a multi-
objective system, most schemes require them to learn how to
first satisfy each objective individually. During these single-
policy explorations, more focus on Q-component transfers
will most benefit learning, as at this time the agent is
sacrificing attempting to satisfy multiple goals, and is instead
trying to gain knowledge.

When deciding what Q-component information should be
shared at any one time, there are two main aims:
• To share information learned locally that is representa-

tive of the final converged value.
• To ensure that information received via transfer is

propagated through the system. Not all agents will have
the same sets of neighbours, so multiple agents may
be required to fully disseminate a piece of transferred
information.

Linked to this is the decision of how frequently to share
data and when to do so. At one extreme data could be
shared every time it changes, at the other it could be shared
only when it stabilises to a particular value (that being an
approximation of when learning is finished). Sharing data
too frequently or too early can lead to it being misleading as
one experience is not necessarily representative of subsequent
ones. This is particularly true in dynamic environments or
those with multiple agents. If information is shared too
infrequently, then it may not be available to the target
agent when needed. This opportunity cost can be particularly
pronounced in seldom visited states. In these states, a single
experience by one agent could be valuable to the system
overall if properly shared. It will take several visits from
each agent to converge that state, but given the state is seldom
visited, there will be time to completely share the experience,
so in aggregate the system will need to visit the state far less
to learn how best to act.

There are several schemes to select data that meet these
requirements. Which one works best will be application de-
pendent as different environments will have differing degrees
of change. Transferring states that have been visited most will
tend to share the values that there is the most confidence
in, however it will prefer the most common states and will
share only a small set of states (those that occur frequently)
neglecting less common ones. Selecting the state that has
shown the greatest degree of change over a period of time
will work well for sharing recently visited states and pass
on received information but will tend not to share near-
converged values, because close to convergence there is only
very small changes in value.

When merging information, an agent needs to consider
what it knows already. If it has no experience of a particular
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state, then it can just accept what it is being told completely
(this ignores the possibility of malicious agents). The more
interesting case is when it already has information about the
state in question. In this case, the agent must decide if the
new information is ‘better’ that its own. It would be possible
to share meta-information stating how many times the state
was visited but this will be affected by different learning
rates and cannot be easily mapped between heterogeneous
agents. Agents, therefore, will have to judge how to merge
a transfer based solely on its contents. They can use their
own value for a state as a heuristic for what the state’s final
value might be then if the received information is consistent
with this it can be accepted. Alternately, the two sources of
information could be added as a linear combination. This
allows the weight given to received information to decay
overtime, so as an agent has more local information it cares
less about the information others provide.

B. W-Transfers

Transferring W-components has similar issues to changing
Q-components but additionally interdependencies must be
accounted for. When changing the value of a particular state-
action pair, the only effect it has is how frequently that
action is selected at that state for that objective. Changing a
W-component can affect the balance that has been learned.
Multi-objective learning effectively finds a balance between
the objectives and changing even one W-value can result
in very different behaviour. This means that W-component
transfer should only occur during the exploration phase.

When there are policies that require collaboration (such
as those concerning a shared resource), it will be necessary
to maintain some degree of W-value diversity. Effectively
agents learn a way of interleaving or balancing their use
of the shared resource. If W-values are over-transferred this
balance may be affected. For example, if three agents are
trying to charge an EV, each from a limited electricity supply,
one solution they may learn is effectively round-robin. In this,
each one would charge every third time step, with an offset
to prevent collision. If one of these agents was assigned the
same W-values as one of the others, they would try to charge
at the same time. This would cause uneven loading on the
transformer, the very thing they had learned to avoid. For this
reason, only a small subset of all W-values should ever be
transferred. Thus, the exact number is application dependant.

VI. EXPERIMENTAL SCENARIO

The evaluation of PTL is done using a multi-objective,
smart grid scenario. The smart grid [28] involves apply-
ing computational intelligence to the electrical grid. The
evaluation focuses on a demand response [29] scenario.
Demand response is the idea of changing electrical demand
to react to supply or other factors (such as price, low-
carbon energy etc.). For example, if on a windy day, there
was a surplus of wind energy generated, electrical devices
implementing demand response could switch on and draw
more energy. This would mean they then would not need
to operate at another time. If demand can be intelligently

Method PAR Ave. Charge Range (%) Ave. Delta (W)
Probabilistic 1.95 66-100 837

DWL 1.69 66-100 3011
DWL+PTL(Q+W) 1.68 64-98 1278

TABLE I: The Results of Method Comparison.

modulated in this way, the electrical grid can operate much
more efficiently [30]. The degree of flexibility that devices
can exhibit when implementing demand response depends on
their function. An Electric Vehicle (EV), for example, can
shift when it charges significantly as long as it is sufficiently
charged when it is to be used. Electric lighting cannot
be rescheduled, as it must operate when turned on. This
evaluation will focus on EVs, as their flexibility makes them
interesting from a multi-objective point of view. The more a
device can be rescheduled, the more Pareto-optimal solutions
there are.

The simulations were conducted using GridLAB-D [31],
which is an open-source, electrical grid simulator developed
by the US Department of Energy. The scenario simulated
has nine EVs, which implement demand response through a
DWL agent. Each agent has three policies:
• A user policy - The EV must be sufficiently charged

when required by the user.
• A transformer policy - The EV should try to minimise

the load placed on the transformer at any one time.
• A predicted load policy - The EV should try to minimise

the number of times the transformer is overloaded and
smooth loading over time.

Each EV requires approximately 7 hours of charging
to meet the requirements of their daily journey. The base
electricity consumption is taken from an Irish Smart Meter
trial [32]. The results for the transformer policy will be
given in terms of peak-to-average-ratio (PAR) [33]. As a
performance metric, PAR is clearer than raw transformer load
profiles. The predicted load policy can be judged based on
the average δ. This is calculated by averaging the magnitude
of the change in transformer load between time steps. When
applied to DWL this will be calculated for the exploitation
phase only. This is a metric representing the ‘smoothness’
of the load profile. Jagged loading is undesirable for the
physical transformer as it can cause wear. The user policy’s
main metric is the average battery charge range during
exploitation. This is the average starting charge and average
final charge. The user policy is significantly easier to satisfy
that the others. It is affected only by the agent’s own actions;
if the agent chooses to charge, then the battery gets more
charge. The other policies depend on what other agents in
the environment do. When trying to limit the peaks, the agent
can be penalised based on others’ actions. All experiments
were run 10 times and averaged.

A. Method Comparison

Table I shows how the DWL+PTL(Q+W) (transferring
both Q and W-components) scheme described above works
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Fig. 2: The transformer load of different schemes over four
days.

Fig. 3: The transformer load of different schemes over 24
hours.

when compared to an approach implemented in GridLAB-
D, which is effectively a greedy solution to the user policy
with some probabilistic load balancing (called probabilistic
in tables and figures). Both DWL schemes had 29 days
of exploration, before exploiting their learned solution. The
Figure 2 shows the load on the transformer over a four day
period, Figure 3 shows one day’s load. The pattern in these
figures of a medium load in the mornings, an evening peak
and a trough over night is due to both the base load (the
solid black line on the graph) and the unavailability of EVs to
charge for a period around 02:00 due to them having finished
charging. The line for the probabilistic approach (green with
* markers) has much higher peaks each evening as it charges
EVs probabilistically as soon as they are available. This
means when the base load is low there is no extra load to add

Training PAR Ave. Charge Range(%) Ave. Delta (W)
9 days 1.95 59-92 806

19 days 1.84 66-100 775
29 days 1.8 66-100 1131

TABLE II: The Results of DWL over time.

Training PAR Ave. Charge Range(%) Ave. Delta (W)
9 days 1.83 66-100 2898

19 days 1.68 57-90 1280
29 days 1.69 61-94 1285

TABLE III: The Results of DWL+PTL(Q) over time.

(seen where the Probabilistic line and base load are equal).
In contrast the two DWL based approaches shift some of the
load from the evening peak to the overnight trough. This is
the essence of demand response.

An evolutionary based approach to the same scenario is
used in [34], where an average PAR of 2.24 is obtained.
All approaches tested here and the evolutionary approach
are capable of meeting the user’s demands. The PAR shows
that both DWL-based methods perform best according to
the transformer policy. The average δs show that there is
similar smoothing performance (the goal of the predicted
load policy). One individual charger draws 1430 Watts, so the
probabilistic approach and DWL+PTL(Q+W) are averaging
less than one change in the number of charging EVs per time
step. Minimising the number of times a charger is turned on
and off improves the length of its operational life.

In this set of experiments, DWL+PTL performs best on
average over all objectives. The following experiments will
investigate how different combinations of transfer affect
results.

B. Learning Time Experiments

The experiments discussed in this section illustrate how
PTL affects learning time, they use the previous scenario,
only exploration time changes. They are judged based on
performance, thus if the system reaches a performance of
P in time T using only DWL and with PTL it can reach
P in T/2, then PTL has learned significantly faster. The
experiments will be run with three different learning periods:
9, 19 and 29 days. Four schemes will be compared, DWL,
DWL+PTL(Q), DWL+PTL(W) and DWL+PTL(Q+W).

The Tables II - V show the four schemes’ results. Each
of the different schemes tends to find a slightly different
balance between policies. This is particularly true after
limited training (see 9 day training results). In these, there has
not been enough time to find a balanced solution, so when

Training PAR Ave. Charge Range(%) Ave. Delta (W)
9 days 1.79 59-92 2494

19 days 1.72 66-100 1247
29 days 1.69 61-94 1445

TABLE IV: The Results of DWL+PTL(W) over time.
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Training PAR Ave. Charge Range(%) Ave. Delta (W)
9 days 1.65 61-94 1404

19 days 1.62 66-100 1382
29 days 1.68 60-94 1247

TABLE V: The Results of DWL+PTL(Q+W) over time.

the agents exploit knowledge, they tend to find a solution
that is good for one policy, as these are easiest to learn.

The DWL scheme initially prioritises the predicted load
policy, which leads to good smoothing but rather poor per-
formance on the other metrics. Similarly, the DWL+PTL(W)
scheme reaches a good PAR at the expense of smoothing
performance. The performance of only DWL after 29 days
of exploration is comparable to that of the PTL schemes
after 9 days (approximately a third the learning time). It
takes PTL far less time to get the majority of exploration
done. PTL finds a reasonably effective solution with very
little exploration, the honing of this solution to one which
performs well on all three policies continues after this. This
accounts for the relatively minor fluctuations in performance
through 19 and 29 days of exploration. The trade-off between
the three policies becomes apparent once the PAR reaches
about 1.7. To further reduce the PAR, the agent must charge
less during the evening when the base load is high (and
contributing to the total peak). If it does not charge during
the evening, it leaves a lot to do during the rest of the night
and morning. This risks an EV not being charged when
required, this results in a very large negative reward, which
in turn makes the user policy’s priority increase when there
is a chance it won’t be met. This effect can be seen in
the Table III, where the PAR actually increases with more
training. In this case it has accepted worse performance on
the transformer policy in favour of the user policy.

VII. CONCLUSION AND FUTURE WORK

This paper proposes an algorithm to accelerate learn-
ing in an arbitration base approach to multi-objective RL,
Distributed W-Learning (DWL). This algorithm allows the
relatedness of tasks in a multi-agent system to be exploited to
accelerate learning. This is achieved by reusing information
learned by one agent in another’s learning process. Each
agent passes information to other agent, which allows them to
learn from each other’s experiences. The algorithm is called
Parallel Transfer Learning (PTL).

The results presented here show that learning time can be
improved by using PTL. It is particularly effective early in
the learning process when there is little information available.
In this paper, it was evaluated in a multi-objective, smart grid
problem. In this scenario, DWL+PTL achieves comparable
performance to DWL with a third of the learning time.

It is planned to extend this work by introducing inter-
policy mapping, which is the idea of taking information
from one policy and applying it to a distinctly different one.
It requires that the information is ‘translated’ so the target
policy can understand it. Potentially this could significantly
improve the speed of learning, as learning what is best for

one policy would be equivalent to learning what is best for
all. It is unlikely to be quite that effective in most scenarios,
it might be able to speed up initial learning significantly. This
type of mapping would need to be produced by the agents
themselves so that transfer could occur between arbitrary
policies deployed in a real system.

We would also like to investigate how PTL could be
tweaked to make it more effective. This might include
developing a heuristic as to which pairs of agents might have
useful information to share and which states are particularly
important to which policies. This heuristic could then be used
to guide the selection of data to transfer. Using a PTL scheme
it will be possible for agents to cooperatively explore the
state space, this has the potential to significantly accelerate
learning, as the state space’s size will be effectively reduced
to a fraction of its original size, where the fraction is one
divided by the number of cooperative agents.
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[34] E. Galván-López, A. Taylor, S. Clarke, and V. Cahill, “Design of
an automatic demand-side management system based on evolutionary
algorithms,” Proceedings of the 29th Annual ACM Symposium on
Applied Computing, SAC ’14, Gyeongju, Korea, 2014.

2305

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 31,2022 at 14:12:58 UTC from IEEE Xplore.  Restrictions apply. 


