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ABSTRACT
Demand-Side Management (DSM) refers to programs that
aim to control the energy consumption at the customer side
of the meter. Different techniques have been proposed to
achieve this. Perhaps the most popular techniques are those
based on smart pricing (e.g., critical-peak pricing, real-time
pricing). The idea, in a nutshell, is to encourage end users
to shift their load consumption based on the price at a par-
ticular time (e.g., the higher the price, the less number of
electric appliances are expected to be turned on). Motivated
by these techniques (e.g., a strong positive correlation be-
tween the number of appliances being used and the electric-
ity cost), we propose the use of an stochastic evolutionary-
based optimisation technique, Evolutionary Algorithms, to
automatically generate optimal, or nearly optimal, solutions
that represent schedules to charge a number of electric ve-
hicles (EVs) with two goals: (a) that each EV is as fully
charged as possible at time of departure, and (b) to avoid
charging them at the same time, whenever possible (e.g.,
load reduction at the transformer level). Instead of using
a price signal to shift load consumption, we achieve this by
considering what all the EVs might do at a particular time,
rather than considering an interaction between an utility
company and its user, as normally adopted in DSM pro-
grams. We argue that exploiting the interaction of these
EVs is crucial at achieving excellent results because it car-
ries the notion of smart pricing (e.g., balance energy us-
age), which is highly popular in DSM systems. Thus, the
main contribution of this work is the notion of load shift-
ing, borrowed from smart pricing methods, implemented in
an evolutionary-based algorithm to automatically generate
optimal solutions. To test our proposed approach, we used
a dynamic scenario, where the state of charge of each EV is
different for every day of our 28 days testing period. The
results obtained by our proposed approach are highly en-
couraging in both: EVs being almost fully charged at time
of the departure and the transformer load being reduced as
a result of avoiding turning on the EVs at the same time.
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1. INTRODUCTION
Demand-Side Management (DSM) is an important research

area in the Smart Grid (SG) community as shown by the in-
creasing number of publications over the years (e.g., [5, 6, 9,
10, 11, 12, 13, 15, 18, 19, 20]). DSM is normally considered
as a mechanism or program, implemented by utility com-
panies, to control the energy consumption at the customer
side [12].

The high importance of the DSM in the SG scenario can
be understood by considering the new challenges that are
continuously presented to the grid, for example the addition
of more and more electric vehicles using the grid. Thus,
there is clearly a challenge to keep the grid stable, while at
the same time, ensuring that the demand is satisfied by using
the already available infrastructure. In other words, the goal
of a DSM is to efficiently use the available energy without
the necessity of installing new transmission infrastructure.

DSM programs include different approaches (e.g., manual
conservation and energy efficiency programs [1], Residential
Load Management (RLM) [8, 13]), where RLM programs
based on smart pricing are amongst the most popular meth-
ods.

The idea behind smart pricing is to encourage users to
manage their loads, so that they can reduce electricity prices
while, at the same time, the utility companies achieve at
reducing peak-to-average ratio (PAR) in load demand by
shifting consumption whenever possible [8]. Load-shifting is
foreseen to become even more important in the grid as the
result of more devices connecting to the grid, where some
of them, such as electric vehicles, can double the average
household load [13].

Motivated by the smart pricing-based approaches, we are
interested in developing a demand-side automatic intelligent
management system that shifts electricity consumption of
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electric vehicles (EVs) by considering what the rest of the
EVs do at a particular time, rather than considering a utility
- user communication approach, which has been normally
adopted in the DSM programs. That is, we believe that
we could find optimum, or nearly optimum, solutions by
allowing this interaction (i.e., information of all the EVs).

To this end, we use a stochastic optimisation evolutionary
algorithm (EAs). The main contribution of this work is the
notion of load shifting, borrowed from the popular smart
pricing-based methods, by considering what all EVs do at a
particular time, rather than considering an scenario where
the interaction is done at the consumer - utility company
level, as normally adopted in DSM system (Mohsenian-Rad
et al. [14] used a similar idea using a game theory approach).
The use of all EVs is considered in the solution representa-
tion used in our EAs (in Section 2 we give details on this)
and we also use this in the evaluation of candidates solutions
to automatically generate (nearly) optimal solutions.

To test this idea, we considered a dynamic scenario where
the ultimate goal of each EV is to being able to complete
a journey (e.g., the fuller the battery the better) while at
the same time trying to charge them at different time slots
(i.e, an action is made every 30 minutes over a period of
14 hours), whenever possible (e.g., reduction of load at the
transformer level, reduction of PAR load demand). So, an
automatic generated solution via our EA represents an (op-
timal) scheduling for each EV that indicates when each of
them should be turned on to achieve both goals.

This paper is organised as follows. In the following we
present the system configuration, the problem used and show
in a nutshell how EAs work. In Section 3, we formally intro-
duce the EA solution representation proposed in this work to
automatically generate scheduling solutions based on load-
shifting. Section 4 describes the experimental setup used in
this study. In Section 5 we present and discuss the results
obtained by our approach, and finally, Section 6 draws some
conclusions and presents some future work.

2. SYSTEMCONFIGURATION, PROBLEM
DESCRIPTIONANDSOLUTIONREPRE-
SENTATION

2.1 Description of the Problem
We consider a scenario where a single source of energy

is used among various household units and where each of
them has an EV that charges over a period of time. The
demand management of these EVs could happen by turning
them “on” or “off” (e.g., [3, 8]) or by modulating the charge
rate [16, 17]. In this work, we adopted the former. In our
scenario, a decision can be made every 30 minutes. We try to
maximise the state of charge of each EV at time of departure,
whereas at the same time we try to avoid charging them all
at the same time, whenever possible (e.g., reduction of the
PAR demand load, reduction of transformer load).

To make this problem challenging, the period of time
where each EV can be charged is the same for all them,
which results in finding different charging schedules when-
ever possible (e.g., if two or more EVs needs to be turned on
for the entire period of time at home, then it is not possible
to find different charging schedules).

2.2 Automatic Evolution of Solutions

As indicated previously, we are interested in automati-
cally generating (evolving) potential solutions that can ac-
complish both goals: EVs being as fully charged as possible
whereas at the same time trying to avoid charging them
at the same time, whenever possible. For this purpose,
we use an evolutionary algorithm (EA). These algorithms
are strongly influenced by natural selection, where the idea
is to “evolve” potential solutions to automatically generate
(nearly) optimal solutions.

The evolutionary process includes the initialisation of the
population P at generation g = 0. The population con-
sists of a number of individuals which represent potential
solutions to a specific problem, (P (g)). At each iteration
or generation (g), every individual within the population
is evaluated using a fitness function that determines their
fitness (i.e., how good or bad an individual is). Then a se-
lection takes place to pick the fittest individuals from the
population. Some of the selected individuals will be modi-
fied by genetic operators and the new population P at gener-
ation g+1 is created. The process stops when some halting
condition is satisfied. Details on how these stochastic opti-
misation algorithms work can be found in [2, 7].

3. EVOLUTIONARY ALGORITHMS SO-
LUTION REPRESENTATION BASED
ON LOAD SHIFTING

Two key elements that are necessary for successfully us-
ing an EA are: (a) the representation of individuals, and
(b) how they are evaluated via a fitness function, so that
automatic solutions can be generated. We now proceed to
formally define both of them for the problem we briefly in-
troduced (details of the experimental setup are presented in
Section 4).

Let N denote the number of EVs, where the number of
users is denoted by U = N . For each EV n ∈ N , we define
the solution representation of n as

indn � [atin, · · · , atfn]

where at denotes an action taken, at 30 minute granularity,
within the range of ti (initial time) and tf (final time). Thus,
the representation of a solution (individual) is given by

ind � indn ·N (1)

Because we want to ensure that all the EVs can complete
an entire journey at time of departure (e.g., being as fully
charged as possible), while at the same time trying to bal-
ance energy usage by shifting energy consumption whenever
possible. It is necessary to capture these in the evaluation
of the potential solutions via the fitness function.

First, we start given a formal definition on the first target:
trying to ensure that all the EVs n ∈ N are as fully charged
as possible at time of departure. So, we compute the number
of time slots that are automatically assigned to each EV
(indn)

SoCindn �

tf∑
indnt=ti

at∀n ∈ N (2)

While Equation 2 calculates the number of slots assigned
to an EV (indn) without considering how much energy it
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needs, it is very unlikely that it will find the optimum solu-
tion for the first objective (e.g., optimum charging schedule
of an EV). Let R be the number of time slots needed by indn
to be as fully charged as possible, we now can compute the
optimal number of slots needed to accomplish this. Thus,

OP SoCindn �

⎧⎪⎪⎨
⎪⎪⎩

SoCindn

Rindn
, if SoCindn < Rindn

SoCindn
−Rindn

Rindn
, if SoCindn > Rindn

k otherwise

(3)
where k = 1 is a constant value which indicates that a per-
fect match has been generated between the necessary time
slots to (fully) charge an EV and the assigned time slots.
Equation 3 computes the number of times slots needed to
optimally charge an EV. We now proceed to calculate the
optimal number of time slots needed for all the EVs to be
as fully charged as possible. This is computed as follows

OP SoCind �

N∑
n=1

OP SoCindn (4)

Equation 4 captures the first goal (i.e., trying to charge
as much as possible all N EVs) without considering what
all of them EVs are doing at time t which, in consequence,
could imply in generating automatic solutions that represent
charging all N at the same time. So, we need to consider
the number of occurrences O at a particular time of the day.

For each customer n ∈ N , let at
n denote the action taken

at time slot t ∈ T � {ti, · · · , tf}. The total number of EVs
being charged at each time slot t ∈ T of the day can be
computed as

Ot �
∑
n∈N

∑
ind∈indn

a
t
n, if at

n = 1 (5)

Equation 5 computes the occurrences of EVs being charged
at a particular time. Because we prioritise the charge of EVs
over the number of EVs being charged at a particular time,
we need to re-formulate the latter. Thus, we regarded an
optimal occurrence at time t as

OP Ot �

{
k
N
, if Ot = 1

−k, if Ot = 0
(6)

We automatically evaluate potential solutions (individu-
als) by combining our first and second objective, formally
defined in Equations 4 and 6, respectively. Thus, we have
that the fitness function is given by

f(ind) � maximise OP SoCind +OP Ot (7)

4. EXPERIMENTAL SETUP

4.1 Smart Grid Scenario

As mentioned previously, the goals are: (a) to guarantee
that each EV can complete a journey (e.g., each EV can be
charged as much as possible at time of departure), and (b) to
avoid charging them at the same time, whenever possible.
In Section 5, we show how both are met by our proposed

Figure 1: An schematic view of the problem used
in this work with two main goals: (a) that each EV
is as fully charges as possible at time of departure
and (b) reduction of load transformer achieved by
avoiding charging more than one EV at a particular
time, whenever possible.

approach by showing (a) the state of charge at time of de-
parture, and (b) by showing the averaged transformer load
for the period of time where the EVs can be charged and the
peak-of-ratio (PAR) in load demand, respectively. The PAR
in load demand is calculated as the highest load across all
users for a period of time (e.g., time available to charge EVs)
over the average load for the same period of time. Details
of this calculation can be found in [13]. Thus, a reduction
of PAR is generally preferred.

In our considered benchmark smart grid system there are
U = 9 users, each with an EV (N = U). Each EV n ∈ N

can only be charged at home. As explained in Section 2, all
N EVs could be charged in the same period of time (i.e.,
ti = 18:00, tf = 7:30). An schematic view of the problem
used in this problem can be seen in Figure 1

We simulated a dynamic scenario, where every day, the
initial state of charge (SoC) of each EV at time of arrival
(ti) at home varies (recall that EVs can only be charged
once they are at home). To be able to easily visualise how
good an automatic solution generated by our stochastic op-
timisation EA algorithm is, we defined the SoC within the
range of SoC = [85, 95]. By using these values, an optimal
solution would be that an EV can be fully charged at time
of departure. This would be fairly easy to solve if it was not
by the presence of our second goal: avoiding charging more
than one EV at the same time whenever possible. Table 1
summarises the parameters used to simulate our grid sce-
nario. We ran our simulations for one month of simulated
time, using the well-developed GridLab-D [4] (version 2.3).
This is an electrical, open source, grid simulator developed
by the US Department of Energy.

4.2 Evolutionary-Based Algorithm
The generation of automatic solutions were obtained using

an evolutionary-based optimisation stochastic method with
fitness proportionate selection and two-crossover point, and
bit-flip mutation, run for 300 generations. To obtain mean-
ingful results, we performed 28 independent runs (i.e., one
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Table 1: Summary of Parameters Used for our
Smart Grid System
Parameter Value

Number of EVs (N) 9
Initial time and latest time to charge ti =18:00, tf =7:30
Frequency of making a decision 30 minutes
Number of times slots T 28
State of Charge (SoC) at ti [85, 95]
Type of Charging Low

Table 2: Summary of Parameters for our
Evolutionary-Based System

Parameter Value

Length of the individual T ·N (see Table 1)
Population size 300
Generations 300
Mutation rate (per bit) 0.001
Two-point crossover rate 0.7
Independent runs 28

run for each day of the month). Runs were stopped when
the maximum number of generations was reached. The pa-
rameters we have used are summarised in Table 2.

To compare the results achieved by our proposed approach,
we used a deterministic approach (default implemented in
GridLab-D), denominated in this work as“greedy”, where all
the EVs start charging as soon as they reach home. To make
a fair comparison of both approaches, each EV in these two
methods, used exactly the same randomly generated values
for each day of the month (i.e., initial SoC at time of arrival
ti at home).

5. RESULTS AND ANALYSIS

5.1 Final Battery State of Charge
Let us start by analysing the results on the first objec-

tive: trying to maximise the SoC of all the EVs at time of
departure. Figure 2 shows the average SoC over a period
of 28 days, at time of arrival at home (initial charge) and
their corresponding SoC at time of departure (final charge).
As indicated in Section 4, we randomly initialised the initial
SoC between SoC = [85, 95], so that it could be easily iden-
tified whenever an optimal solution, for this first objective,
(i.e, an EV being fully charged – 100%) was automatically
generated by the EA via the proposed fitness function (left-
hand side of Equation 7). Our proposed approach behaves
fairly well finding, almost, an optimal solution for all the
EVs (i.e., SoC > 98%). It should be noticed that the final
SoC achieved by the greedy approach (i.e., EVs charging
as soon as they reach home) is not reported because all the
EVs are able to being fully charged at time of departure

We now take a more fine-grained view by analysing how
the charge happens for an EV for the 28 days used in this
study and using the proposed approach, explained in Sec-
tion 3. Due to space limitations, we only report the results
on EV1 shown in Figure 3. This shows that regardless the
initial state of charge, our proposed approach is able to sig-
nificantly charge the EV. For example, for days 13, 18 and
28 and the initial SoC being set no greater than 87%, the
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Figure 2: State of charge (SoC), averaged over a
period of one month, at time of arrival for each EV
(indicated in black bars) and their corresponding
SoC at time of departure (indicated in white bars)
achieved by our stochastic bio-inspired optimisation
process.

EA is able to fully charge the EV. We can also see that for
those cases where the EV was not being able to be fully
charged, the state of charge at the time of departure was
set at SoC > 94.5% (four days – days 2, 9, 10, 21) and
SoC > 98% (three days – days 3, 7 and 8). In summary,
Figure 3 shows that for most of the days, the proposed ap-
proach is able to find an optimal solution, for the first objec-
tive (i.e., SoC being fully charged at time of departure), and
for those non-optimal solutions, the SoC is at least 94.5%
at time of departure.

5.2 Transformer Load and Peak-To-Average
Ratio

To fully appreciate the results achieved by our proposed
approach, we need to analyse the impact of this automatic
scheduling on the transformer load. Figure 4 shows the
transformer load when the EVs are being charged. Due to
the nature of the greedy approach (i.e., EVs starting charg-
ing as soon as they arrive at home), it is natural to imagine
how this approach will achieve the highest peak in electric-
ity at the initial time of charging (ti =18:00) and decreases
linearly thereafter.

In contrast, our proposed approach, is able to balance en-
ergy usage during the period of time where the EVs can be
charged (ti =18:00, tf = 7:30), as expressed in the ‘x-axis’
of Figure 4) while at the same time all the EVs are being
charged as much as possible as discussed in the previous
paragraphs (see Figure 2). An interesting trend that can be
observed by our approach is how there is a slightly more en-
ergy consumption around the initial time of charging (e.g.,
t < 20:00) compared to the remaining time slots that can
be used to charge the EVs. This is expected since the eval-
uation function (fitness function) expressed in Equation 7
gives a higher importance (left-hand side of the equation)
to EVs being as fully charged as possible compared to the
energy usage balance (Equation 6).
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Figure 3: Battery state of charge (SoC) represented
in terms of percentage for EV1. The initial SoC, in-
dicated in green diamond marks, for each of the 28
days, is randomly initialised within the range [85, 95]
(see Table 1 for details). The proposed approach is
able to find the optimal solution, for the first objec-
tive (i.e., final SoC, indicated in red square marks,
SoC = 100) most of time.

Finally, let us analyse the impact of our approach vs. the
greedy approach in the PAR load demand, shown in Fig-
ure 5. As indicated in Section 4, the PAR is calculated by
the maximum load demand for a period of time over the av-
erage load demand. Thus, a reduction in PAR is preferred.
We can see how our proposed approach (indicated in white
bars in Figure 5) is able to reduce the PAR load demand
compared to the greedy approach (indicated in black bars
in Figure 5) most of the time (i.e., 25 out of 28 days). This
is to be expected. That is, we know that the PAR load
demand is calculated by considering the maximum load de-
mand of a period of time. We know, from Figure 4, that
the maximum load is considerable reduced by our proposed
approach hence we should expect to see a reduction of PAR,
in general.

6. CONCLUSIONS AND FUTUREWORK
Demand-Side Management (DSM) systems play an im-

portant role in Smart Grids. Their importance can be un-
derstand by considering the new challenges that are continu-
ously presented to the grid, for example, electric appliances
that could double the average household (e.g., electric vehi-
cles). The correct design of a DSM results in efficiently use
the available energy without the necessity of installing new
electricity infrastructure.

In the specialised literature, there are techniques adopted
by DSM programs. Perhaps, the most popular techniques
are those inspired on smart pricing, such as critical-peak
pricing, real-time pricing. Briefly, the idea is to incentivise
end-consumers to shift energy consumption to hours when
the electricity price is low to reduce both electricity costs
and energy-load consumption.

Motivated by these techniques we considered, instead of
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Figure 4: Transformer load, averaged for 28 days,
for 9 EVs with different initial state of charge SoC.
All 9 EVs could be charged from 18:00 until 7:30.
Red squares shows the transformer load for the
greedy approach (i.e., EVs start charging as soon
as the reach home) whereas blue circles show the
load using our proposed approach.

using a price signal to shift load consumption, what all the
EVs do at a particular time to achieve both: (a) for an EV
to be as charged as much as possible at time of departure,
and (b) to avoid turning them on at the same time whenever
possible. We then adopted an evolutionary-based stochastic
optimisation algorithm to automatically generate scheduling
solutions for each of the EVs for the period of 28-days used
in this study.

The results achieved by our proposed approach are highly
encouraging. That is, we showed how it is possible to almost
fully charged the EVs at the time of departure while at the
same time we are able to reduce the load consumption at the
transformer level which is reflected in the reduction of peak-
to-average ratio of load demand, which is a desired feature
in smart grids.

We are planning to extend this work considerable. For
example, we decided to use a discrete-valued representation
in our EA that indicates the (nearly) optimal scheduling
that each EV should follow for a period of time to be as
much charged as possible while reducing the transformer
load. This works well for a “small” scenario as the one we
used in our study (i.e., 9 end-users each with an EV). One
natural extension is to consider having a real-valued presen-
tation that could indicate, for instance, how much energy is
needed by each EV at a particular time. This is particular
important to consider when one deals with a large scenario
(e.g., dozens/hundreds of EVs).

One also needs to consider the adoption of a more “nat-
ural” form of multi-objective (MO) optimisation. The spe-
cialised MO literature is full of approaches that can nicely
be integrated with our approach and we will also incorporate
it in our EA.
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achieved by both our proposed approach (black
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approach is able to reduce the PAR in 25 out of 28
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A. Marinescu, V. Cahill, and S. Clarke. Set point
control for charging of electric vehicles on the
distribution network. In 2014 IEEE Power & Energy
Society Innovative Smart Grid Technologies
Conference (ISGT), Washington, D.C., USA,
February 2014. IEEE Press.

[12] G. M. Masters. Renewable and Efficient Electric
Power Systems. Wiley-Interscience, 2004.

[13] A. Mohsenian-Rad, V. Wong, J. Jatskevich,
R. Schober, and A. Leon-Garcia. Autonomous
demand-side management based on game-theoretic
energy consumption scheduling for the future smart
grid. Smart Grid, IEEE Transactions on, 1(3):320
–331, dec. 2010.

[14] A.-H. Mohsenian-Rad and A. Leon-Garcia. Optimal
residential load control with price prediction in
real-time electricity pricing environments. Smart Grid,
IEEE Transactions on, 1(2):120 –133, sept. 2010.

[15] P. Palensky and D. Dietrich. Demand side
management: Demand response, intelligent energy
systems, and smart loads. Industrial Informatics,
IEEE Transactions on, 7(3):381–388, Aug.

[16] P. Richardson, D. Flynn, and A. Keane. Optimal
charging of electric vehicles in low-voltage distribution
systems. Power Systems, IEEE Transactions on,
27(1):268 –279, feb. 2012.

[17] S. Studli, E. Crisostomi, R. Middleton, and
R. Shorten. A flexible distributed framework for
realising electric and plug-in hybrid vehicle charging
policies. International Journal of Control,
85(8):1130–1145, 2012.

[18] A. Taylor, I. Dusparic, E. Galván-López, S. Clarke,
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