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1Edgar Galván-López, 1Brendan Cody-Kenny, 2Leonardo Trujillo and 3Ahmed Kattan
1Distributed Systems Group, School of Computer Science and Statistics, Trinity College Dublin

2Doctorado en Ciencias de la Ingenierı́a, Instituto Tecnológico de Tijuana, Mexico
3AI Real-World Applications Lab, Computer Science Department, UQU, Saudi Arabia

{edgar.galvan, codykenb}@scss.tcd.ie; leonardo.trujillo@tectijuana.edu.mx; ajkattan@uqu.edu.sa

Abstract—Research on semantics in Genetic Programming
(GP) has increased over the last number of years. Results in this
area clearly indicate that its use in GP considerably increases
performance. Many of these semantic-based approaches rely on
a trial-and-error method that attempts to find offspring that
are semantically different from their parents over a number
of trials using the crossover operator (crossover-semantics
based - CSB). This, in consequence, has a major drawback:
these methods could evaluate thousands of nodes, resulting in
paying a high computational cost, while attempting to improve
performance by promoting semantic diversity. In this work,
we propose a simple and computationally inexpensive method,
named semantics in selection, that eliminates the computational
cost observed in CSB approaches. We tested this approach
in 14 GP problems, including continuous- and discrete-valued
fitness functions, and compared it against a traditional GP and
a CSB approach. Our results are equivalent, and in some cases,
superior than those found by the CSB approach, without the
necessity of using a “brute force” mechanism.

I. INTRODUCTION

Genetic Programming (GP) [12] has been successfully

used in a wide range of different challenging problems (see

Koza’s article on human competitive results for a comprehen-

sive review [13]). Despite its proven success, it also suffers

from some limitations and researchers have been interested

in making GP more robust, or reliable, by studying various

elements of the search process (e.g., neutrality [4], [8], [9],

[21], locality [5], [6], [7], special representations [3]).

One of these elements that has recently attracted the

attention of researchers is the study of semantics, resulting

in a dramatic increase in the number of related publications

(e.g., [1], [10], [11], [14], [15], [16], [20], [23]).

Semantics is a broad concept that has been studied in

different fields (e.g., natural language, psychology), making

it hard to give a precise definition of the concept. Thus, in this

work we adopted the popular use of semantics in GP from

recent related works [10], [20], [22], [23], where researchers

have used it as the difference of the raw outputs of two

programs1.

Research in this area has clearly demonstrated that the

study and application of semantics in the GP process en-

hances its performance [10], [11], [20], [22], [23]. These

studies have relied on the use of semantics at the crossover

1In these works, semantics was originally referred as the “meaning” of
programs. However, as we discuss in Section III, it might be better to re-
define it as functionality.

operator in an attempt to find, over a period of trials,

offspring that are semantically different from their parents.

Whereas these type of methods have proven to have a

superior performance than a traditional GP in terms of find-

ing problem solutions and started shedding the importance

of semantics in GP, they also suffer from one particular

limitation: these are computationally expensive as a result

of their trial-and-error approach [16].

The main goal of this paper is to explore the possibility

of using semantics in canonical GP without the necessity of

evaluating, potentially, thousands of nodes while at the same

time maintaining a similar performance compared to methods

based on trial-and-error. More specifically, we propose a

simple and computationally inexpensive method of using

semantics in the selection process, where one parent is

selected by considering its fitness, while the selection of the

second parent considers fitness and semantic dissimilarity

w.r.t. the first selected parent. This eliminates the need

of using a “brute force” mechanism to find children that

are semantically different from their parents, and so, the

computational cost of this new semantic-based approach,

denominated semantics in selection (SiS), remains the same

compared to a traditional GP system.

This paper is organised as follows. In Section II, we

present previous work carried out in the area of semantics in

GP. In Section III, we introduce our proposed approach. Sec-

tion IV provides details on the experimental setup used. The

results presented in this paper are discussed in Section V, and

finally, conclusions and future work are drawn in Section VI.

II. RELATED WORK

McPhee et al. [15] analysed the impact of subtree

crossover in terms of semantic building blocks by proposing

two forms of approaches: semantics of subtrees and seman-

tics of context. Within the context of Boolean problems, the

authors were able to show the importance of diversity in GP

semantics. That is, McPhee et al. pointed out how the 90%-

10% crossover operator used in GP (i.e., 90%-10% internal-

external node selection policy) leads to a high proportion

of crossover events that do not have any useful impact in

the semantic space of GP, leading to a lack of increase in

performance, measured in terms of finding fitter individuals

over generations.

2013 IEEE Congress on Evolutionary Computation 
June 20-23, Cancún, México 

978-1-4799-0454-9/13/$31.00 ©2013 IEEE 2972
Authorized licensed use limited to: Maynooth University Library. Downloaded on January 31,2022 at 15:56:52 UTC from IEEE Xplore.  Restrictions apply. 



Beadle and Johnson [1] proposed a crossover operator,

called Semantically Driven Crossover (SDC), that promotes

semantic diversity during search. More specifically, they

used reduced ordered binary decision diagrams (ROBDD)

on Boolean problems (i.e., Multiplexer and the even-5-parity

problem) to check for semantic similarity between parents

and offspring. Beadle and Johnson showed a significant

improvement, in terms of increased fitness, when using

SDC. Moreover, they also showed that by using ROBDD

on these particular problems, the SDC operator was able to

considerably reduce bloat.

Uy et al. [20] proposed four different forms of applying

semantic crossover operators on real-valued scenarios (e.g.,

symbolic regression problems). To this end, the authors

measured the semantic equivalence of two given expressions

by measuring them against a random set of points sampled

from the domain. If the resulting outputs of these two

expression were close to each other, subject to a threshold

value called semantic sensitivity, these expressions were

regarded as semantically equivalent. In their first two sce-

narios, Uy et al. focused their attention on the semantics of

subtrees. More specifically, for Scenario I, the authors tried to

encourage semantic diversity by executing, for a number of

trials, crossover if two subtrees were semantically equivalent.

Scenario II explored the opposite idea of Scenario I. For

the last two scenarios, the authors focused their attention

on full trees. That is, for Scenario III, Uy et al. checked

if offspring and parents were semantically equivalent. If so,

the parents were transmitted into the following generation

and the offspring were discarded. The authors explored

the opposite idea of Scenario III in Scenario IV (children

semantically different from their parents). They showed, for

a number of symbolic regression problems, that Scenario I

produced better results compared to the other tree scenarios

proposed by them.

Semantics has also been studied by Jackson [10], calling

it phenotypic diversity. In his work, the author measured the

semantics of programs based on their output. For this purpose

the authors used problems from different domains (e.g.,

Boolean, symbolic regression, and maze-like problems). For

the Boolean problems (e.g., even-n-parity problems), the

author measured semantic difference between two programs

based on their difference in the corresponding bits of their

output strings. For the symbolic regression problem, Jackson

used an approach similar to Uy’s approach [20] described

above. For the maze problems (e.g., artificial ant), the author

kept record on the path history. The author’s approach is also

similar to Uy’s approach based on the use of a maximum

number of trials, around 20, to trying to promote semantic

diversity. Jackson showed how semantic diversity promotes

a better search, in terms of finding solutions more frequently

compared to a traditional GP.

More recently, Moraglio et al. [16] proposed Geometric

Semantic GP, where the main idea was to use it directly in the

space of the underlying semantics of the potential solutions

(programs). That is, the authors considered properties of se-

mantic spaces for different metrics and provided insights for

designing semantically-based geometric crossover operators.

They tested their approach in a variety of problems, showing

how semantically different programs, produced by means

of crossover, yield better results compared to standard GP,

agreeing with the results obtained by other semantic-based

approaches. It is also interesting to notice that the authors

also reported how their approach produced bigger programs,

contradicting the results found by Uy et al. [20].

Recently, Krawiec and Pawlak [14] explore the concept of

Geometric Semantic GP with the key concept being that it

would be ideal to produce offspring that were the semantic

median of the parent programs. This means that it would be

beneficial if offspring had a an equal blend, or mixture, of

the parents semantics. They speculate that finding offspring

that meet a median measure of semantics between parents,

would increase the chances that the offspring would have

a higher fitness than both parents. Their approach tries to

regulate the crossover effect. Where syntactic crossover may

cause a huge change in semantics (or none at all), their

approach seeks to provide a more uniform semantic change

when offspring are created. As the creation of such offspring

is hard, the authors provide preliminary evidence for this

claim by inspecting a more practical measure of semantic

median which is localised in homologous regions of the

parent programs.

A. Final Comments on Semantics in GP

From the previous summary, it is clear that there is no a

single approach to incorporate semantics in GP. For instance,

the work carried out by Beadle and Johnson [1] is completely

different from the work proposed by Uy et al. [20].

However, what is interesting to observe is how authors

consistently report an improvement in performance in GP

search (measured in terms of finding a solution more fre-

quently) when semantics is explicitly considered.

Inspired by these approaches and their encouraging results

reported in [10], [11], [20], [22], [23] and briefly summarised

previously, this work continues using the same form of

semantics (e.g., [10], [22]), reinforced in the following

section in the context of the problems used, and proposes

a simple idea to overcome the computational expensive

limitation observed by these CSB trial-and-error approaches.

It is worth mentioning, however, that recent works have

started shedding some light on this but with other form of

semantics [16] and what are referred to as behavior-based

approaches [17], [18], [19].

III. SEMANTICS IN SELECTION

As can be seen from the previous section, semantics has

mainly been explored in GP using crossover as the main

genetic operator (and few works have also explored its use

using mutation, e.g., [2]) reporting outstanding results in both

continuous [10] and discrete-valued fitness functions [20].

One potential limitation on these approaches (e.g., [10], [11],

[20], [22], [23]) is the fact that the authors reported the use

of a maximum number of attempts, when applying crossover,
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Algorithm 1 Semantics in Tournament Selection

1: procedure SELECTING INDIVIDUALS

2: parent1 ← TournamentSelection ⊲ Apply

tournament selection as usual

3: parent2 ← TournamentSemantics(parent1)
4: end procedure

5: procedure TOURNAMENTSEMANTICS(parent1)

6: semanticsparent1 ← Pop.getSemantics(parent1)
7: best← nextInt(populationSize)
8: fbest← fitness[best]
9: count← 0

10: while count < tournamentSize do

11: comp← nextInt(populationSize) ⊲ select

randomly a competitor from the population

12: semanticscomp ← Pop.getSemantics(comp)
13: if semanticsparent1 <> semanticscomp then

14: if fitness[comp] > fbest then

15: fbest← fitness[comp]
16: best← comp
17: end if

18: end if

19: count← count+ 1
20: end while

21: return best

22: end procedure

to find children that are semantically different from their

parents. As a consequence of this trial-and-error approach,

the GP system could, potentially, evaluate many more nodes

compared to a traditional GP.

In this work, we make an effort to overcome this limita-

tion by considering semantics during the selection process

without the need of using a maximum number of trials. The

approach is tested in both continuous and discrete-valued

fitness cases by using well-known GP benchmark problems

(i.e., Artificial Ant, Even-n-Parity and Symbolic Regression

problems introduced in Section IV).

Before explaining the approach, it is important to indicate

how we measure semantics, which is based on previous

works reported by [10], [20], where the authors defined se-

mantics as the meaning of syntatically correct programs. We

believe that it is better to define semantics as the functionality

of programs (raw outputs). The main reason is because in

these works, the authors measured semantics diversity by the

difference of the outputs of two GP individuals when their

instructions are executed. This is explained next for each of

the problems used in this work.

For the case of the Artificial Ant problem, we keep track

of the individual’s semantics by recording the movements

produced by the execution of the program. Thus, every time

the ant moves to a different square, we record where the

ant is facing (i.e., north, east, south, west) in a vector. For

this particular problem, we regard two individuals to be

semantically different if their output vectors are different,

they are semantically similar otherwise.

For the Even-n-Parity problems (n = {3, 4, 5}), the

semantics of an individual is measured in terms of the output

it produces. More specifically, we keep a record of the result

that each fitness case produces in a vector of size 2n. So, we

regard two individuals to be semantically different if their

output vectors are different, they are considered semantically

similar otherwise.

Finally, for the Symbolic Regression problems, we again

keep track of the semantics of an individual in terms of

the output it produces, as in the Even-n Parity problems.

The main difference is that in this continuous-valued fitness

function problem we also use a threshold value, (α = 0.01),

to indicate if two individuals are semantically different.

That is, in a vector of size fc, where fc is the number of

fitness cases used, we check whether the absolute differences

between corresponding outputs lie within α. Thus, we regard

two individuals to be semantically different if for each

corresponding value contained in the vector the difference

is greater than the threshold value α, they are considered

semantically similar otherwise.

As indicated before, researchers have reported an improve-

ment in the performance of a GP system by encouraging

semantic diversity (e.g., parent and offspring being seman-

tically different). In this work, instead of promoting it at

the crossover level, where the application of this operator

is repeated until the offspring is semantically different than

their parents or until a maximum number of trials (e.g.,

nmax = 20) are executed, whatever occurs first [10], [11],

[20], [22], [23] we encourage semantic diversity at the

selection operator, in this case using tournament selection.

That is, we select the first parent in the typical way: we

define a pool of tsize individuals, and for a maximisation

problem, the one with the highest fitness is chosen to be

used in the crossover operator. The selection of the second

parent is chosen by considering both: fitness and the semantic

difference from the first selected parent. More specifically,

the second parent is chosen from a pool of tsize individuals

that is semantically different, as explained in the previous

paragraphs, from the first parent and that has the highest

fitness value. Algorithm 1 describes this idea in detail. For

problems where the goal is to minimise, the method works

the same, with the difference that the individuals with the

lowest fitness is selected.

The motivation behind this idea, is that, by having two

parents that are not only fit but also semantically different,

their offspring obtained via crossover, could increase the

probability of producing semantically different individuals

without the necessity of using a trial-and-error approach,

eliminating the number of unnecessary evaluated nodes in-

curred by applying crossover nmax of times. We further

discuss this in Section V.

IV. EXPERIMENTAL SETUP

For our analysis, we have used 14 GP benchmark prob-

lems: the Artificial Ant Problem [12], the Even-n-Parity

(n = {3, 4, 5}) problem (problems that require the com-

bination of several XOR functions, and are difficult if no
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TABLE I
SUMMARY OF PARAMETERS.

Parameter Value

Population Size 126, 250, 500

Generations 200, 100, 50

Type of Crossover
Any node

(used in each of the 3 approaches)

Crossover Rate 100

Mutation None

Selection Tournament (size = 7)

Initialisation Method Ramped half-and-half

Initialisation Depths:
Initial Depth 5
Final Depth 7

Maximum Length 9000 nodes

Maximum Final Depth 9

Maximum Trials for CSB 20

Independent Runs 100

bias favorable to their induction is added in any part of the

algorithm), and Real-Valued Symbolic Regression problems

(with 10 different target functions, as indicated in the left-

most column of Table II).

The first problem, the Artificial Ant Problem [12, pp. 147–

155], consists of finding a program that can successfully

navigate an artificial ant along a path of 89 pellets of food

on a 32 x 32 toroidal grid. When the ant encounters a food

pellet, its (raw) fitness increases by one, to a maximum of

89. The problem is in itself challenging for many reasons.

The ant must eat all the food pellets (normally in 600

steps) scattered along a twisted track that has single, double

and triple gaps along it. The terminal set used for this

problem is T = {Move,Right, Left}. The function set is

F = {IfFoodAhead, P2, P3}.

The second, third and fourth problems are Boolean Even-

n-Parity problems (n = {3, 4, 5}) where the goal is to evolve

a function that returns true if an even number of the inputs

evaluate to true, and false otherwise. The maximum fitness

for this type of problem is 2n. The terminal set is the set of

inputs. The function set is F = {AND,OR,NOT}.

The rest of the problems are real-valued symbolic re-

gression problems. The goal of this type of problem is

to find a program whose output is equal to the values

of functions. Thus, the fitness of an individual in the

population reflects how close the output of an individual

comes to the target (F1, · · · , F10) (see the left-most col-

umn of Table II). It is common to define the fitness as

the sum of absolute errors measured at different values of

the independent variable x, in this case in the range [-

1.0,1.0]. In this study we have measured the errors for

x, y ∈ {−1.0,−0.9,−0.8 · · · 0.8, 0.9, 1.0}. We have defined

an arbitrary threshold of 0.01 to indicate that an indi-

vidual with a fitness less than the threshold is regarded

as a correct solution, i.e. a “hit”. The function set is

F = {+,−, ∗, /, Sin, Cos,Exp, LOG}, where / is pro-

tected division. We used the same threshold, 0.01, to indicate

whether two individuals are semantically different of similar

(α = 0.01), as explained in Section III.

To evaluate our proposed approach, semantics in selection

(SiS), and for comparison purposes, we implemented two

other methods: a traditional GP system and a crossover-

semantics based approach, referred as GP and CSB, respec-

tively. The CSB tries to promote semantic difference at the

crossover operator with a maximum number of trials, as

described in Section III (see [20] for details).

The experiments were conducted using a steady state

approach with tournament selection and the traditional

crossover operator for each of the three approaches used.

The rest of the parameters used are shown in Table I. To

obtain meaningful results, we performed extensive empirical

experimentation (100 * 42 * 3 runs in total)2.

V. RESULTS AND ANALYSIS

A. Performance Comparison

Let us start by analysing the performance, measured in

terms of percentage of runs that found a solution, for the

first combination of Population Size = 126 and Generations

= 200 for each of the three approaches used, shown in the

second, third and fourth column of Table II, for each of

the 14 problems used in this study. For the first problem,

Artificial Ant, there is very little to say because all three

approaches, GP, CSB and SiS, behave equally bad. That is,

none of them was able to find a solution. For the Even-

3-Parity Problem, there is no difference in performance

between the approaches, because all the approaches were

able to find the solution all the time (100% success rate).

For the Even-4-Parity Problem, the situation is clearer. In

this problem, the semantic-based approaches are much better

compared to the traditional GP system: 19, 60, 58 success

rate for GP, CSB and SiS, respectively. For the Even-5-Parity

problem, all approaches have a poor performance, with the

difference being that SiS is able to find a solution, although

very few times, compared to GP and CSB where none of

them was able to solve the problem. For the last type of

problems, Symbolic Regression, shown in the last 10 rows of

Table II, where for some functions (i.e., F1, F2, F3, F4, F6),

the semantic-based approaches shown superior performance

over the GP approach. It is clear how semantics consistently

improves performance compared to GP without semantics.

For other Symbolic Regression problems (e.g., F5, F9, F10)

the situation is less clear, because the performance of all three

approaches is more or less similar. Finally, it is interesting

to see, how for almost all the problems used, both methods

based on semantics take longer (number of generations are

indicated within parenthesis in Table II) to find a solution

compared to traditional GP (except for the Even-4 parity

problem).

Let us now turn our attention to the second configuration

of Population Size = 250 and Generations = 100 for each of

2100 independent runs, 42 (i.e., three different combination of population
sizes and number of generations that results, more or less, in the same
number of evaluations, and 14 different problems,) and three approaches
(GP, CSB and SiS).
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TABLE II
SUCCESS RATE OVER 100 INDEPENDENT RUNS AND THE AVERAGE NUMBER OF GENERATIONS WHEN THE PROBLEM WAS SOLVED INDICATED WITHIN

PARENTHESIS, USING THREE DIFFERENT COMBINATIONS OF POPULATION SIZES AND NUMBER OF GENERATIONS, FOR EACH OF THE THREE

APPROACHES USED: GP, CROSSOVER-SEMANTICS BASED (CSB) AND SEMANTICS IN SELECTION (SIS). HIGHEST SUCCESS RATES ARE HIGHLIGHTED

IN BOLDFACE.

Population Size = 126 Population Size = 250 Population Size = 500
Generations = 200 Generations = 100 Generations = 50

GP CSB SiS GP CSB SiS GP CSB SiS

Artificial Ant
0 0 0 0 1 0 2 1 0
- - - - (36) - (15.5) (3) -

Even-3-Parity
100 100 100 95 99 99 100 100 100

(9.29) (5.04) (5.85) (15.64) (6.53) (11.15) (5.93) (4.28) (4.49)

Even-4-Parity
19 60 58 11 48 49 32 70 74

(85.47) (76.03) (92.34) (55.18) (43.94) (56.86) (26.5) (22.76) (24.61)

Even-5-Parity
0 2 1 0 0 3 0 0 3
- (113.5) (174) - - (90.67) - - (33)

F1 = x3 + x2 + x
28 27 50 22 46 46 64 71 88

(3.19) (14.26) (19.46) (6.18) (7.11) (10.65) (3.69) (3.86) (4.47)

F2 = x4 + x3 + x2 + x
17 31 16 14 29 16 16 31 44

(10.53) (18.48) (17.12) (7.14) (8.72) (17.81) (5.5) (5.74) (7.98)

F3 = x6 + x5 + x4 + x3 + x2 + x
10 23 23 8 16 14 15 20 27

(4.8) (19.22) (36.65) (15.88) (13.06) (14.93) (7.4) (6.6) (8.41)

F4 = sin(x2)cos(x)− 1
0 10 4 2 4 2 2 7 10
- (19.9) (46) (59) (16.5) (27) (4.5) (7.57) (17.82)

F5 = sin(x) + sin(x+ x2)
2 0 1 1 0 4 0 1 7

(26.5) - (30) (12) - (69.5) - (14) (19.71)

F6 = log(x+ 1) + log(x2 + 1)
12 17 24 14 18 24 22 30 22

(47.92) (46.71) (48.62) (14) (13.28) (18.17) (6) (12.80) (14.59)

F7 = sqrt(x)
0 2 1 0 2 3 3 1 4
- (8.5) (5) - (9) (14.67) (3.67) (7) (16.75)

F8 = sin(x) + sin(y2)
0 1 6 4 6 4 0 0 0
- (6) (59.83) (4.25) (29.5) (13) - - -

F9 = 2sin(x)cos(y)
0 3 3 2 3 2 5 7 6
- (69.67) (7.33) (51) (33) (10) (28) (11.71) (23)

F10 = xy 2 1 0 2 0 1 2 4 4
(32) (10) - (12.67) - (64) (13) (6.5) (20)

the three approaches used in this study, shown in the fifth,

sixth and seventh column of Table II. As before, there is

very little to say for the Artificial Ant problem because the

three approaches behave equally bad. For the Even-n-Parity

problem there are some significant differences between the

GP approach and the approaches based on semantics. In

particular, for the Even-4-Parity problem where the results

found by the semantic-based approaches (i.e., CSB and SiS)

are much better, around four times better, compared to GP.

A similar trend is observed in some Symbolic Regression

functions (e.g., F1, F2, F3, F6), although the difference in

performance is not as impressive as in the case of the Even-

4-Parity problem, where the performance increased is, in

average, the double compared to the GP approach. For other

functions (e.g., F5.F10) the three approaches behave equally

bad as very few runs were able to find a solution for these

problems.

For the last combination of population size and number

of generations, 500 and 50, respectively, the same trend is

observed for the three approaches used and the 14 benchmark

problems used in this study.

That is, the semantic-based approaches are consistently

better compared to the GP approach (e.g., Even-4-Parity,

F1, F2, F3, F4) regardless of the combination used for the

population size and number of generations.

B. Crossover-Semantics Based vs. Semantics in Selection

From the results reported in Table II, it is clear how both

semantic-based approaches outperformed the performance of

a GP system, where in some cases, these approaches where

four times better than the latter approach.

The performance shown by the CSB approach (see Ta-

ble II) agrees with the results previously reported by Jack-

son [10] and Uy et al. [20] where the authors reported

excellent results when using semantics at the crossover level

for trying to find semantically different children (using a

maximum number of attempts). As a consequence of the

latter, the GP system could evaluate dozens of thousands

of nodes resulting in a highly computationally expensive

process.

The main benefit of our approach (SiS) is that it does

not suffer from the flaw of needing to, potentially, evaluate

thousands of nodes (we discuss this in the following para-

graphs). Moreover, our proposed approach is equivalent, and

in some cases superior, in performance compared to the CSB

approach, as discussed above.

Now, let us focus our attention on the number of evaluated

nodes by CSB and SiS, shown in Figure 1 (notice that due
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Fig. 1. Number of evaluated nodes for the two semantic-based approaches: crossover-semantics based and semantics in selection, reported for the Artificial
Ant Problem (top row), Even-n-Parity Problems (middle row) and for functions F1, F2, F3, for each of the three different combinations of population
sizes (PopSize) and number of generations (Gen) used: PopSize = 126, Gen = 200 (left-most side); PopSize = 250, Gen = 100 (centre), and PopSize =
500 and Gen = 50 (right-most side).

to space restrictions and for clarity purposes, we plotted the

evaluated nodes for the Artificial Ant, Even-n-Parity and the

first three Symbolic Regression problems). From the plots

shown in Figure 1, it is clear that our proposed approach

(SiS) evaluates a much lower number of nodes compared

to the other semantic approach (crossover-based). This is to

be expected since, as we have discussed in Section III, the

latter approach executes an exhaustive search via crossover,

with a maximum number of trials, to find children that are

semantically different from their parents. It is also interesting

to notice how there seems to be a positive correlation

between the size of the population and the number of nodes

evaluated by the crossover-semantics based approach.

One might think that the large number of evaluated nodes

in the crossover-based approach could be the result of bloat

(growing of an individual at a rapid pace) rather than

performing an extensive search using the crossover operator.

Thus, to show that this is not the case, we have measured the

average number of trials needed by the CSB approach. This is

shown in Figure 2. These plots confirm our previous findings:

the results of evaluating dozens of thousand of nodes in

the referred approach is the result of trying to find, via the

crossover operator, offspring that are semantically different

from their parents over a number of trials (in this study set

at 20, as indicated in Table I).

The number of trials used by the CSB approach vary

according to the problem. For instance for the Artificial Ant

problem (shown at the top of Figure 2), around three attempts
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Fig. 2. Number of average trials for the crossover-semantics based approach required to find semantically different offspring compared to their parents,
reported for the Artificial Ant Problem (top row), Even-n-Parity Problems (middle row) and for functions F1, F2, F3 (bottom row), for each of the three
different combinations of population sizes (PopSize) and number of generations (Gen) used: PopSize = 126, Gen = 200 (left-most side); PopSize = 250,
Gen = 100 (centre), and PopSize = 500 and Gen = 50 (right-most side).

are necessary, regardless of the size of the population size

and number of generations defined.

For the Even-n-Parity problem, this number varies. When

n = 3 it requires a higher number of trials to find children

that are semantically different from their parents and it de-

creases as n increases. This is to be expected since there are

more chances to find children that are semantically different

from their parents the larger the number of fitness cases

used, because as explained in Section III, two individuals

are regarded semantically different if their output vectos are

different. What is also interesting to point out in this type

of problems is that, the number of trials increases for the

Even-4 and Even-5 problems as the population size increases

too, indicating that by having a bigger population size, does

not necessarily imply that it will be easier to find children

semantically different from their parents.

The same trend is observed for the Symbolic Regres-

sion problems (for clarity purposes, we again only plotted

F1, F2, F3, see bottom of Figure 2). That is, the number

of trials increases as the population size increases too, until

a certain limit, though. For example, when using 126 and

250 individuals, the number of trials is almost double, 9 and

18, respectively. This increase in not observed when using

250 and 500 individuals, where the number of trials remain

more or less the same when using these two population sizes

(around 18 trials).
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VI. CONCLUSIONS AND FUTURE WORK

Over the last years, GP systems that explicitly consider

semantics in their mechanism, have demostrated to have a

superior performance compared to a traditional GP approach.

In this work, we have presented a simple and computationally

inexpensive approach to use semantics in GP, called seman-

tics in selection, that eliminates the necessity of, potentially,

evaluating dozens of thousands of nodes during evolution

compared to semantic-based approaches that try to promote

semantic diversity at the crossover operator using an expen-

sive trial-and error approach (e.g., [10], [11], [20], [23]),

referred in this work as crossover-semantics based approach.

Thus, by using semantics in selection we guarantee that

the computational effort of the GP system remains the same.

To test the efficiency of this approach, we used 14 GP bench-

mark problems, including both continuous- and discrete-

valued fitness functions, and compare the results using a

traditional GP and a crossover-semantics based approach.

The semantics in selection approach proposed in this

paper has shown promising results, in many cases achieving

superior results compared to the crossover-semantics based

approach. We will extend and refine our approach to explore

any further benefits. For instance, the comparison semantic

difference used with Boolean problems and the Ant problem

can be adjusted, by using well-define metrics (e.g., Ham-

ming distance). As for the Symbolic Regression problems,

a threhold could be dynamically adjusted depending on the

progress of the GP search.
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[8] E. Galván-López and R. Poli. An empirical investigation of how and
why neutrality affects evolutionary search. In Proceedings of the 8th

annual conference on Genetic and evolutionary computation, GECCO
’06, pages 1149–1156, New York, NY, USA, 2006. ACM.
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