
Reducing Electricity Costs

in a Dynamic Pricing Environment

Edgar Galvan, Colin Harris, Ivana Dusparic, Siobhán Clarke and Vinny Cahill

Distributed Systems Group, School of Computer Science and Statistics, Trinity College Dublin

Email: { edgar.galvan, colin.harris, ivana.dusparic, siobhan.clarke, vinny.cahill } @ scss.tcd.ie

Abstract—Smart Grid technologies are becoming increasingly
dynamic, so the use of computational intelligence is becoming
more and more common to support the grid to automatically and
intelligently respond to certain requests (e.g., reducing electricity
costs giving a pricing history). In this work, we propose the use
of a particular computational intelligence approach, denominated
Distributed W-Learning, that aims to reduce electricity costs in
a dynamic environment (e.g., changing prices over a period of
time) by turning electric devices on (i.e., clothes dryer, electric
vehicle) at residential level, at times when the electricity price is
the lowest, while also, balancing the use of energy by avoiding
turning on the devices at the same time. We make this problem
as realistic as possible, by considering the use of real-world
constraints (e.g., time to complete a task, boundary times within
which a device can be used). Our results clearly indicate that the
use of computational intelligence can be beneficial in this type of
dynamic and complex problems.

I. INTRODUCTION

A Smart Grid (SG) is defined as a type of electrical

power grid whose goal is to respond to the behaviour and

actions of energy suppliers and consumers to efficiently deliver

economic, reliable and sustainable electricity services.

Computational Intelligence (CI) has successfully been used

in tackling different and challenging problems in SGs (e.g.,

disturbance diagnosis [8], power secondary voltage con-

trol [16], load restoration [19]). One element that underlies all

these works is the use of Multi-Agent Systems [14] (MAS).

The main idea in MAS is to break down a complex and

dynamic problem handled by a centralised system into a

smaller and more manageable problems controlled by several

independent entities (distributed system). We further discuss

the use of CI, in particular the of MAS in SGS in Section II

There are still many challenges and opportunities for CI to

support the SG to predict and intelligently respond to certain

requests. In this work, we are interested precisely to do address

this by means of MAS.

More specifically, this work intends to use MAS in SGs

to learn the optimal times to switch two electric devices on

or off (i.e., clothes dryer and electric vehicle) in a dynamic

environment (e.g., price rates changing over time) with the

ultimate goal of reducing costs. Moreover, to make this prob-

lem realistic, we take into considerations real-world constraints

(e.g., boundaries times that specify when a device can be used)

simulating typical scenarios that might arise at a residential

level. Finally, we also aim to balance the use of energy

by avoiding turning the devices on at the same. We further

describe this in detail in Section V.

This paper is organised as follows. In the next section, we

set the foundations of our work by presenting MAS along with

previous works that have used it in Smart Grids. In Section III,

we present in detail our approach, named Distributed W-

Learning (DWL). In Section IV, we give details on how we

modeled the explained problem using our DWL approach.

Section V presents the experimental setup used to conduct

our experiments. In Section VI we present and discuss our

findings. Finally, in Section VII we draw some conclusions

and discuss some potential future work.

II. RELATED WORK

As indicated previously, the use of Computation Intelligence

(CI) in SGs has increased significantly over the last few years.

Indeed a recent issue of CI in the IEEE Transactions in Smart

Grids was recently devoted to this topic. In the following

paragraphs, we summarise some CI works in SGs that have

inspired, to some extent, the work presented in this paper.

Molderink et al. [9] proposed a three-step approach to man-

age the cooperation of distributed generation, distributed stor-

age and demand-side load managements applied to domestic

energy streams. The authors pointed that these three elements

are relevant to each other. To this end, they proposed a control

strategy consisting of three steps. In the first step, a system

located at the consumers level predicts the production and

consumption pattern for all appliances for the upcoming day.

In the second step, these optimisation processes can be used

by a central planner to exploit the potential to reach a global

objective. It is here where the hierarchy is designed. That is,

the global controller consists of multiple nodes connected in

a tree structure (i.e., each house sends its profile to its parent

node). The result of this step is planning for each household

for the upcoming day. Finally, in the last step, a real time

algorithm determines at which times appliances are switched

on/off, when and how much energy flows from or to the buffers

and when and which generators are switched on.

The notion of distributed agents in SGs has also been

explored recently by Ramchurn et al. [12] inspired, according

to the authors, by the limitations present in Smart Meters

(these aims to control the devices in the home to minimise

inefficiencies in usage and maximise savings to the user) and

Demand Side Management (DSM) technologies (which have

IEEE SmartGridComm 2012 Symposium - Smart Metering Infrastructure Networks and Data

978-1-4673-0911-0/12/$31.00 ©2012 IEEE 169Authorized licensed use limited to: Maynooth University Library. Downloaded on January 31,2022 at 16:58:47 UTC from IEEE Xplore. Restrictions apply.

been developed to alter the behaviour of users). One major

limitation in both technologies, according to the authors, is

that it is unclear how these can be rolled out to millions of

houses or buildings nationwide. To address this problem, the

authors proposed a novel approach denominated Decentralised

DSM, where the main idea is to allow multiple homogeneous

agents (smart meters) to coordinate in a decentralised way.

The authors reported a reduction of demand peak of up to

17% and 6% reduction of carbon emissions.

MAS have also been used for load restoration. In [19],

Xu and Liu presented a distributed multi-agent based load

restoration algorithm. Similarly to [9], the authors considered

a local and global approach. Global information that is needed

for distributed load restoration can be achieved based on

the Average Consensus Theorem [18] (this relied on local

information to guarantee that the important information can be

shared in a distributed way). Local communication is achieved

by the interaction of agents that are neighbours. The design

and implementation of a MAS that provides intelligence to a

distributed smart grids has also been explored in [10]. Other

interesting works using MAS in SGs include the use to dis-

turbance diagnosis [8], power secondary voltage control [16].

A more comprehensive summary of works using MAS in SGs

can be found in [10].

As can be seen from the previous paragraphs, it is clear that

CI has been used in different problems in SGs. Particularly,

MASs have attracted the attention of many researchers in SGs

due to its success in challenging problems. In the next section

we present our approach based on heterogeneous MASs.

III. DISTRIBUTED W-LEARNING

The main goal of this work is to use decentralised and

collaborative techniques to learn optimal times in a dynamic

environment (e.g., changing prices over time) to turn electric

devices within a household on and off, so as to satisfy device

constraints, user preferences, minimise overall electricity cost

of the household and balance energy requirements.

To simulate the problem, we model the electricity needs of

two household devices: a clothes dryer and an electric vehicle.

Each of these devices has a set of associated constraints:

(a) each device can be used or charged within some time

boundaries (i.e., earliest start time and latest finish time), (b)

each device has to finish its task given within certain time

(e.g., a clothes dryer is given two hours to finish drying the

clothes), and (c) the balance of energy is managed by avoiding

turning devices on at the same time, whenever possible.

A. Distributed W-Learning

Distributed W-Learning (DWL) [1] is a learning-based algo-

rithm for agent-based self-optimisation that enables collabora-

tion between heterogeneous agents in order to simultaneously

satisfy multiple heterogeneous system policies. DWL learns

and exploits the dependencies between agents and between

policies to improve performance while respecting the relative

priorities of the policies.

DWL is based on Reinforcement Learning (RL) [13], which

is considered particularly suitable for implementation of self-

organising optimisation behaviours in large-scale systems, as

it does not require a predefined model of the environment,

which, due to the scale and complexity of such systems, is

time-consuming and complex to construct [15]. DWL works

by using Q-Learning and W-Learning, as follows.

B. Q-Learning and W-Learning Methods

In DWL, each agent uses a single Q-learning [17] process

to implement each of its own local goals (policies) that it

is tasked with meeting. This Q-learning process is a RL

technique that works by learning an action-value function that

gives the expected utility of taking a given action in a given

state and following a policy thereafter.

The problem model consists of an agent, states and a set of

actions per state. So, by performing an action, the agent (in

our case, agents controlling an electric vehicle and a clothes

dryer) can move from state to state, where each state provides

the agent a reward (a real or natural number). The goal of

this process is for the agent to maximise its total reward. Q-

Learning is highly influenced by the values assigned to the

discount factor γ and to the learning rate α.

In any RL method, an agent wanders in an unknown

environment and tries to maximise its long term return by

performing actions and receiving rewards. These variables

(learning rate and discount factor) balance this process. The

discount factor determines the present value of future rewards.

That is, the lower the value of the discount factor is (e.g., close

to 0), the more the emphasis is put by the agent to maximise

immediate rewards compared to long term returns. In contrast,

when this value is close to 1, the agent takes future rewards

into account more strongly. The latter variable (learning rate)

controls how fast we modify our estimates.

To arbitrate between different policies, an agent uses W-

learning [7] which learns the relative importance of an agent’s

policies. In W-learning, for each of the states that each policy

can be in, the agent learns how the performance of that policy

is affected should its preferred action not get executed. This

difference between the reward the agent would receive if its

preferred action is executed and the reward the agent receives

when another policy’s action is executed, is learned as a

W-value. The agent then executes the action suggested by

the policy that would be the most negatively affected if its

suggested action is not respected.

In this way, dependencies between local policies are learned:

if policies are compatible, actions suggested by policies will

be the same/similar, and execution of one will not negatively

affect the other; when policies conflict, an action preferred

by one policy will have a larger negative impact on the

performance of the other.

C. The Use of Q-Learning and W-Learning in DWL

In DWL, as well as Q-values and W-values for all of their

local policies, all agents also learn Q-values and W-values for

all of the policies that their immediate neighbours implement

170Authorized licensed use limited to: Maynooth University Library. Downloaded on January 31,2022 at 16:58:47 UTC from IEEE Xplore. Restrictions apply.

(so-called remote policies), i.e., they learn how their local

actions affect their neighbours’ performance. In such a way

dependencies between local and remote policies are learned,

similar to learning of the dependencies between local policies.

At each time step, each agent considers the W-values for

the current state of each of its local and remote policies. If any

of the immediate neighbours’ policies has a higher W-value

than the agent’s local W-values, the action suggested by that

neighbour can be executed.

Simultaneous optimisation towards multiple heterogeneous

policies on multiple heterogeneous agents can be enabled

while priorities of the policies are respected both locally and

within the overall system through use of a flexible cooperation

mechanism. All these features, as explained previously, are

present in our DWL approach.

IV. MODELLING THE PROBLEM IN DWL

As described in Section III, DWL works by using both

Q-Learning and W-Learning. Thus, it is necessary to define

actions, states and rewards for each of our devices: the clothes

dryer and the electric vehicle.

The simplest element is the action that each agent (device)

can take: either the device can be turned on or turned off. The

states and rewards are more complex and each is described in

the following paragraphs.

A. Modelling the States

The definition of the state is one of the main elements in any

multi-agent system as it represents the “environment” where

the agents make decisions (i.e., actions). To make this problem

more interesting, we have defined an scenario where there is

an overlap on the hours where the devices can start working,

as we are also interested in seeing if our approach is able to

avoid turning the devices on at the same time, as a way to

balance energy usage. We describe this formally in Section V.

The relevant state for the clothes dryer is the time t where

an agent makes a decision, three prices p1, p2, p3, the action

a (i.e, turn on/off) and the time left tl to finish the task.

The state is similar for the electric vehicle with one differ-

ence. Here, we are dealing with two forms of time left: time

left until the vehicle is fully charged and the time left for the

vehicle to be partially charged. So, we need to add an extra

time left to the design of the state space.

An additional element indicates the status of both devices

(on/off) when there is an overlap of hours, which is used to

balance the use of energy. We will discuss more of this in the

following section.

B. Defining Rewards

The reward mechanism varies according to the device. For

example, when using the clothes dryer, we simply reward the

agent 1 if it turns on the device at the time where the price is

the lowest and reward it 0, otherwise.

For the electric vehicle the situation is slightly more com-

plex. The agent is rewarded 1 if it decides to start charging

the vehicle at the time when the price is the lowest. Only if

this happens, the agent is rewarded another 0.5 units if the

minimum time of charge was achieved (partially charged) and

it is rewarded another 0.5 units if the agent manages to charge

the optimal time of the vehicle (fully charged). So, in principle,

an agent that is able to start charging the electric vehicle at the

time with the lowest price and charge it fully for the optimal

time, gets a reward of 2 units.

As indicated before, we are also interested in seeing if one

can control the agents by avoiding turning the devices on at

the same time. For this, we assigned an extra unit to the agent

if it manages to turn any of the devices on when the other is

turned off. By doing so, we are trying to balance the use of

energy. We further discuss this in Section VI.

V. EXPERIMENTAL SETUP

A. Dynamic Environment

To test our DWL approach in SGs to learn the optimal

times to switch two electric devices on or off in a dynamic

environment, we used two different pricing history files, where

each of them follow a given pattern (i.e., [low, medium, high];

[medium, low, high]).

More specifically, the dynamic environment is simulated by

using two pricing history data, let us call them data A and data

B, where each contains the hour with the associated electricity

price. We guarantee a challenging dynamic environment by

having a different price at each time in the two pricing history

data used in this work. For example, when using history data

A, we could have something like Time 17:00, Price = 100,

and when using history data B for the same Time (17:00), we

could have Price = 200. Then we switch n times, from data A

to data B and vice versa every 30000 time steps1 (see Table I

for more details).

B. Constraints

The use of each of these devices is subject to a start time

that lies within the boundaries of an earliest start time (EST)

and a latest finish time (LFT). Moreover, an action (i.e., turn

on/off) can take place every 30 minutes (i.e., we simulate that

the price changes every 30 mins). It is also worth mentioning

that we also took into consideration the time to complete a

task, either for the clothes dryer to finish drying the clothes

(TCD) or for the electric vehicle to be partially (TMinEV) or

fully (TIdealEV) charged.

More formally, we have that the constraint for the clothes

dryer can be expressed in the following terms,

ESTCD ≤ STCD ≤ LFTCD

where ESTCD = 17 : 30, LFTCD = 23 : 00, STCD =

ESTCD, and the time allowed to finish drying the clothes

TCD = {2}.
Similarly, we have that the constraint for the electric vehicle

can be expressed as follows:

1We chose 30000 time steps to allow our multi-agent system to learn the
pattern and give it opportunity to predict prices in this dynamic environment.

171Authorized licensed use limited to: Maynooth University Library. Downloaded on January 31,2022 at 16:58:47 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SUMMARY OF PARAMETERS USED IN OUR EXPERIMENTS.

Parameter Value

Learning Rate (α) 0.4

Discount Factor (γ) 0.4

n Steps to Switch 2, 3, 4, 5, 6, 7, 8

from Price to Price

Time Steps 30000 ∗ n

Selection Boltzmann (temperature = 2)

ESTEV ≤ STEV ≤ LFTEV

where ESTEV = 17 : 30, LFTEV = 3 : 30, STEV =

ESTEV , and the times allowed to fully charge the elec-

tric vehicle and partially charge it at TIdealEV = {4},
TMinEV = {2}.

C. Parameters

To study our approach in a dynamic environment, along with

the constraints associated to the problem, as described before,

we run 10 independent runs for each of the values associated

to the n steps to switch from price to price. The rest of the

parameters we have used are summarised in Table I. In the

following section we present and describe the results obtained

by our approach (DWL) using the described scenario.

VI. RESULTS AND DISCUSSION

We simulate price rates changing over time to simulate a

dynamic environment, similarly as the one can that could be

found in a SG scenario, as explained in Section V. To measure

how well or bad our approach behaves in this dynamic-

constrained problem, we performed an extensive empirical

experimentation (10 * 7 runs in total2, each run with 30000

time steps * n steps to switch from price to price).

A. Overview Performance of DWL

We are interested in seeing if it is possible to reduce

electricity costs by predicting prices and switching on electric

devices at the lowest price possible.

To measure this, we simulated a similar scenario that a

user faces, that is, turning devices on or off without the user

knowing the price at a given time (let us call this approach

“random approach”). Thus, we performed a random action-

evaluation process. That is, we selected an action (i.e., either

turn on/off the electric device) at any given time within the

boundaries set by EST and LST , and kept record of the

prices associated to those particular times when the electric

devices was turned on. Then, we averaged this and used it for

comparison purposed.

First, let us focus our attention to the clothes dryer (left-hand

side of Figure 1) to see if there was an increase or decrease

on electricity costs. It is clear that the agent fails to switch

on the clothes dryer at the lowest possible prices, regardless

210 independent runs and 7 different changes over a period of time, as
indicated by n in Table I.

2 3 4 5 6 7 8

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Number of changes

P
e
rc

e
n
ta

g
e

Clothes Dryer

2 3 4 5 6 7 8

−15

−10

−5

0

5

10

Number of changes

Electric Vehicle Min

2 3 4 5 6 7 8

−8

−6

−4

−2

0

2

4

6

Number of changes

Electric Vehicle Ideal

Fig. 1. Increase or decrease achieved by our DWL approach compared to
a random approach, expressed in percentages, for each of the electric device
present in a household (i.e., clothes dryer and electric vehicle) taking into
consideration, n, which is the number of changes (n = {2, · · · , 8} over a
period of time.

of the number of changes during a period of time (the higher

the number of changes, the more challenging the problem is).

Interestingly, it seems like the performance of our multi-agent

system approach remains more or less the same, regardless the

number of changes that takes place during a period of time.

To understand why this agent performs poor in this dynamic-

constraint problem, one really needs to consider the constraints

imposed to the problem, as introduced in the previous section.

We will discuss more about it later in this section.

If we, now, focus our attention in the other agent (i.e.,

electric vehicle – middle and right-hand side of Figure 1), we

can see a better (positive) trend compared to the clothes dryer,

especially when the vehicle is partially charged (i.e., middle of

Figure 1), and, to a lesser degree when the electric vehicle is

fully charged (right-hand side of Figure 1). When the electric

vehicle is partially charged, the electricity cost reduction is

fairly consistent regardless of the number of changes in prices

(expect when the number of changes is three). For example,

if one considers the mean values, the best result is around

4% electricity cost saving (this occurred when there were

five changes). The situation is more or less similar when the

electric vehicle is fully charged, but only when the number

of changes is less than four. From this point onwards, the

agent fails to predict the lowest possible price resulting in an

increase to the user’s electricity costs.

So far, we have seen, how the proposed multi-agent system

behaves more or less well in this complex and dynamic

problem, but we do not how this was achieved. To explain

this, one really needs to break down this result and analyse it

for time periods. This is discussed in the following section.

172Authorized licensed use limited to: Maynooth University Library. Downloaded on January 31,2022 at 16:58:47 UTC from IEEE Xplore. Restrictions apply.

17:3−18:3 19−20 20:3−21:3 22−23
−6

−5

−4

−3

−2

−1

0
P

e
rc

e
n

ta
g

e

17:3−18:3 19−20 20:3−21:3 22−23
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

P
e

rc
e

n
ta

g
e

Time

Fig. 2. Percentage increase/decrease achieved by our proposed multi-agents
system (DWL) when controlling the clothes dryer and in the presence of two
pricing history changes.

B. Detail Analysis of Performance

In the previous paragraphs, we have analysed the overall

performance achieved by our approach in a dynamic environ-

ment (e.g., changing prices). It is fair to say, however, that

it is unclear how this was achieved. Thus, to have a better

understanding of this, it is necessary to perform a deeper

analysis of what happen at each hour for each electric device

along with the constraints and features assigned to each of

them (e.g., time needed to complete a task).

Due to space restrictions, we focus our attention in the

presence of two pricing history changes (not to be confused

with the number of pricing history data used in this work, see

Section V for details). However, it is worth mentioning that

the same trend is observed when using more changes, as can

be inferred by the overall performance shown in Figure 1.

Let us start our analysis with the clothes dryer. As discussed

in the previous paragraphs, our model fails to turn on this

device at the lowest possible price. To explain why this

happens, one really needs to considers all the constraints and

preferences, as defined in Section V: (a) the time that the

clothes dryer has to finish its task (two hours), (b) there is

an overlap in the time where both devices can operate, and

finally (c) the system tries both: to turn on the device at the

lowest price, and it also tries to balance energy by avoiding

that both devices are switched on at the same time.

Taking all these elements into consideration, we can now

take a look to what happen when the system controls the

clothes dryer (see Figure 2). We know that each pricing history

data follows a given pattern (e.g., [medium, low, high] price),

so for clarity purposes we grouped these patterns in period

ranges (e.g., 17:30 – 18:30). By doing so, it is clear that there

are four periods and in each of these periods, there is only

one time with the lowest price. Now, given that the clothes

dryer needs two hours to finish its task, that will mean that the

17:3−18:3 19−20 20:3−21:3 22−23 23:3−00:3 1−2 2:3−3:3
−20

−10

0

10

20

30

P
e

rc
e

n
ta

g
e

17:3−18:3 19−20 20:3−21:3 22−23 23:3−00:3 1−2 2:3−3:3
−5

0

5

10

15

20

P
e

rc
e

n
ta

g
e

Time

Fig. 3. Percentage increase/decrease achieved by our proposed multi-agents
system (DWL) when controlling the electric vehicle (minimum charge) and
in the presence of two pricing history changes.

17:3−18:3 19−20 20:3−21:3 22−23 23:3−00:3 1−2 2:3−3:3
−5

−4

−3

−2

−1

0

1
P

e
rc

e
n
ta

g
e

17:3−18:3 19−20 20:3−21:3 22−23 23:3−00:3 1−2 2:3−3:3
−2

0

2

4

6

8

P
e
rc

e
n
ta

g
e

Time

Fig. 4. Percentage increase/decrease achieved by our proposed multi-agents
system (DWL) when controlling the electric vehicle (ideal charge) and in the
presence of two pricing history changes.

system will need to turn on the clothes dryer at the lowest price

in these four periods. Because of the constraints specified in

Section V and discussed in the previous paragraphs, it is clear

that this highly unlikely to happen due to the presence of the

electric vehicle that can operate at the same time, along with

the type of preference given to the vehicle (e.g., the reward for

the vehicle is twice higher compared to the clothes dryer). This

is confirmed in Figure 2 (again, in this example we used two

changes). From this, it is clear that regardless of the history

pricing data used (i.e., A or B, top and bottom of Figure 2,

respectively), the system turned on the clothes dryer at times

where the price was not the cheapest.

Let us continue our analysis by turning our attention to the

173Authorized licensed use limited to: Maynooth University Library. Downloaded on January 31,2022 at 16:58:47 UTC from IEEE Xplore. Restrictions apply.

other device: the electric vehicle in both situations: when it

is partially charged (Figure 3) and when it is fully charged

(Figure 4).

As indicated in Section V, we know that the electric vehicle

needs two hours to be partially charged (Figure 3) which is the

same time that the clothes dryer needs to finish its task. In this

case, however, our proposed system started to learn to charge

the electric vehicle at times when the price was the cheapest

(from 2:30 to 3:30, as seen at the top of Figure 3), and this

trend continued when there was a change in the data price

used (bottom of Figure 3). It is worth pointing out that this

saving in electricity costs is higher when there is no overlap

of hours compared to the clothes dryer (i.e., from 23:30 to

3:30). This indicates that while the system is able to save

some electricity costs, it also learns to avoid turning on both

devices (clothes dryer and electric vehicle) at the same time,

allowing to balance the use of energy.

Finally, let us consider when our system tries to fully charge

the electric vehicle (twice the time needed to charge the

vehicle compared to the partially charge scenario – Figure 4).

The situation is more or less similar compared when the

system tries to partially charge it, as explained in the previous

paragraph. That is, there is a tendency to start charging it

at times when the electricity price is the cheapest (bottom

of Figure 4), even in period of hours where there is an

overlap with the clothes dryer (i.e., from 17:30 to 23:00, and

from 17:30 to 3:30, for the clothes dryer and electric vehicle,

respectively).

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the use of Distributed W-Learning,

which is a computational intelligence method, in Smart Grid

technologies with the ultimate goal of learning the optimal

times to switch electric devices on or off to minimise elec-

tricity costs, by learning and predicting the electricity price,

based on a pricing history, in a dynamic price environment

(e.g., prices rates changing over a period of time), while also,

trying to balance the use of energy by avoiding turning on

electric devices at the same time.

To make this problem as realistic as possible, we considered

the use of constraints (e.g., time needed for the devices to

finish their tasks, boundary and overlap times within which a

device can be used).

We show how our proposed approach is able to reduce

electricity costs in some scenarios (e.g., electric device par-

tially charged, and in a lesser degree, when the system aims

to fully charge the electric vehicle). More importantly, we

showed how computational intelligence can successfully been

used in dynamic environments, which is precisely the type of

environment present in many real-world Smart Grid problems.

We are planning to extend this work considerably. For

example, we are considering the use of more devices (agents),

we are also planning in using other forms on CI. In particular

we are interested in using Evolutionary Algorithms and their

novel research on problem hardness (e.g., locality [3], [4], [5],

neutrality [2], [6], [11]) to, for example, speed the learning

process up.

ACKNOWLEDGMENTS

This research was supported by Science Foundation Ire-

land (SFI) under the Principal Investigator research program

10/IN.1/I2980 “Self-organizing Architectures for Autonomic

Management of Smart Cities” and by SFI grant 10/CE/I1855

to Lero - the Irish Software Engineering Research Centre

(www.lero.ie).

REFERENCES

[1] I. Dusparic and V. Cahill. Autonomic multi-policy optimization in per-
vasive systems: Overview and evaluation. Transactions on Autonomous

and Adaptive Systems. (In Press).
[2] E. Galvan-Lopez. An analysis of the effects of neutrality on problem

hardness for evolutionary algorithms. PhD thesis, University of Essex,
2009.

[3] E. Galván-López, J. McDermott, M. O’Neill, and A. Brabazon. Defining
locality in genetic programming to predict performance. In IEEE

Congress on Evolutionary Computation, pages 1–8. IEEE, 2010.
[4] E. Galván-López, J. McDermott, M. O’Neill, and A. Brabazon. Towards

an understanding of locality in genetic programming. In M. Pelikan and
J. Branke, editors, GECCO, pages 901–908. ACM, 2010.

[5] E. Galván-López, J. McDermott, M. O’Neill, and A. Brabazon. Defining
locality as a problem difficulty measure in genetic programming. Genetic
Programming and Evolvable Machines, 12(4):365–401, 2011.

[6] E. Galván-López, R. Poli, A. Kattan, M. ONeill, and A. Brabazon.
Neutrality in evolutionary algorithms... what do we know? Evolving

Systems, 2:145–163, 2011. 10.1007/s12530-011-9030-5.
[7] M. Humphrys. Action selection methods using reinforcement learning.

In Proceedings of the Fourth International Conference on Simulation of

Adaptive Behavior, pages 135–144. MIT Press, 1996.
[8] S. McArthur, E. Davidson, J. Hossack, and J. McDonald. Automating

power system fault diagnosis through multi-agent system technology.
In System Sciences, 2004. Proceedings of the 37th Annual Hawaii

International Conference on, page 8 pp., jan. 2004.
[9] A. Molderink, V. Bakker, M. Bosman, J. Hurink, and G. Smit. Manage-

ment and control of domestic smart grid technology. Smart Grid, IEEE
Transactions on, 1(2):109 –119, sept. 2010.

[10] M. Pipattanasomporn, H. Feroze, and S. Rahman. Multi-agent systems in
a distributed smart grid: Design and implementation. In Power Systems

Conference and Exposition, 2009. PSCE ’09. IEEE/PES, pages 1 –8,
march 2009.

[11] R. Poli and E. Galván-López. The effects of constant and bit-wise neu-
trality on problem hardness, fitness distance correlation and phenotypic
mutation rates. IEEE Trans. Evolutionary Computation, 16(2):279–300,
2012.

[12] S. D. Ramchurn, P. Vytelingum, A. Rogers, and N. Jennings. Agent-
based control for decentralised demand side management in the smart
grid. In The 10th International Conference on Autonomous Agents and

Multiagent Systems - Volume 1, AAMAS ’11, pages 5–12, Richland, SC,
2011. International Foundation for Autonomous Agents and Multiagent
Systems.

[13] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction

(Adaptive Computation and Machine Learning). The MIT Press, Mar.
1998.

[14] K. P. Sycara. Multiagent systems. AI Magazine, 19(2):79–92, 1998.
[15] G. Tesauro. Reinforcement learning in autonomic computing: A mani-

festo and case studies. IEEE Internet Computing, 11(1):22–30, 2007.
[16] H. Wang. Multi-agent co-ordination for the secondary voltage control

in power-system contingencies. IEE Proceedings - Generation, Trans-

mission and Distribution, 148(1):61–66, 2001.
[17] C. J. C. H. Watkins and P. Dayan. Machine Learning, (3):279–292,

May.
[18] F. Xiao, L. Wang, and Y. Jia. Fast information sharing in networks of

autonomous agents. In American Control Conference, 2008, pages 4388
–4393, june 2008.

[19] Y. Xu and W. Liu. Novel multiagent based load restoration algorithm for
microgrids. Smart Grid, IEEE Transactions on, 2(1):152 –161, march
2011.

174Authorized licensed use limited to: Maynooth University Library. Downloaded on January 31,2022 at 16:58:47 UTC from IEEE Xplore. Restrictions apply.

