
Predicting Problem Difficulty for Genetic Programming
Applied to Data Classification

Leonardo Trujillo,
Yuliana Martínez

Instituto Tecnológico de
Tijuana, México

leonardo.trujillo.ttl@gmail.com
ysaraimr@gmail.com

Edgar Galván-López
School of Computer Science
and Electronic Engineering
University of Essex, United

Kingdom
edgar.galvan@gmail.com

Pierrick Legrand
Université Victor Segalen

Bordeaux 2
ALEA Team, INRIA Bordeaux

IMB, UMR CNRS, France
pierrick.legrand@u-

bordeaux2.fr

ABSTRACT

During the development of applied systems, an important
problem that must be addressed is that of choosing the cor-
rect tools for a given domain or scenario. This general task
has been addressed by the genetic programming (GP) com-
munity by attempting to determine the intrinsic difficulty
that a problem poses for a GP search. This paper presents
an approach to predict the performance of GP applied to data
classification, one of the most common problems in computer
science. The novelty of the proposal is to extract statistical
descriptors and complexity descriptors of the problem data,
and from these estimate the expected performance of a GP
classifier. We derive two types of predictive models: linear
regression models and symbolic regression models evolved
with GP. The experimental results show that both approaches
provide good estimates of classifier performance, using syn-
thetic and real-world problems for validation. In conclusion,
this paper shows that it is possible to accurately predict the
expected performance of a GP classifier using a set of de-
scriptors that characterize the problem data.

Categories and Subject Descriptors

I.2.2 [Artificial Intelligence]: Automatic Programming—pro-
gram synthesis

General Terms

Theory, Experimentation, Performance

Keywords

Genetic Programming, Performance prediction, Classification

1. INTRODUCTION
The goal of developing truly autonomous intelligent sys-

tems is still one of the main areas of research in computer sci-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

ence. One property that an intelligent system might require
is the ability to determine, or estimate, the success rate it ex-
pects to achieve when confronted with a particular problem
instance. By doing so, a system could then be able to make
an informed choice as to which is the best problem solving
strategy to follow, without the need for a human designer
to choose the strategy beforehand. Therefore, it is necessary
to describe the problem in a meaningful way, and from this
derive an estimate of its inherent difficulty.

One of the most common problems in computer science
is data classification. As such, researchers have developed
a large number of classification algorithms, based on a vari-
ety of mathematical and computational models. However, in
many cases, when confronted with a particular classification
task it is not evident which is the best classifier to use. In
order to make a reasoned decision, a researcher must assess
the principal characteristics of the data and predict the ex-
pected performance that each classifier at his disposal might
achieve. However, a general algorithmic solution to this task
currently does not exist. That is why it is mostly solved using
the trial and error method or by the researcher choosing the
classification algorithm he is most familiar with. Therefore,
we propose an approach to predict the performance of a par-
ticular classifier, a GP system based on a probabilistic clas-
sification procedure [30], which is referred to in this paper
as the Probabilistic Genetic Programming Classifier (PGPC).
The goal of the proposal is to build a predictive model of the
expected classification accuracy of PGPC, using descriptive
features of the problem data [12, 24, 4, 26]. The approach is
validated on an extensive set of synthetic problems, and on
real-world multi-dimensional data.

The remainder of this paper proceeds as follows. Section
2 overviews related work. Afterwards, the PGPC classifier is
described in Section 3. Section 4 defines the problem state-
ment and Section 5 describes the descriptors used to charac-
terize each classification problem. Then, the predictive mod-
els are presented in Section 6. Section 7 contains the exper-
imental setup and gives a summary of the results. Finally,
Section 8 outlines some concluding comments.

2. RELATED WORK
While the paradigm of evolutionary computation has

achieved a wide acceptance over the years, there are still
many questions that need to be addressed to gain a proper
understanding of the merits and shortcomings of this biolog-

1355

ically inspired approach towards problem solving. One such
question is that of determining the expected performance of
an evolutionary search when applied to a particular prob-
lem instance. Several strategies have been proposed to study
this fundamental issue. For instance, to predict the conver-
gence of an evolutionary algorithm researchers have relied
on schema theorems [5, 17, 16] and Markov chain models
[14, 19]. While these approaches have produced solid the-
oretical foundations for some practical techniques [15, 18],
their general use in real-world scenarios is still not a realistic
option. Another way to determine if a problem can be solved
by an evolutionary search, is to study the structure of the fit-
ness landscape [7]. This idea of problem difficulty, or evolv-
ability, has also been addressed by analyzing a phenomena
in biological evolution known as neutrality [6, 29, 2, 28] and
by studying the concept of locality within the search space
[11, 3]. Finally, some of the most promising results in charac-
terizing problem difficulty have been achieved with fitness
distance correlation [25], fitness clouds and negative slope
coefficient [20]. This last group of methods use sampling
techniques to determine the structure of the search space,
and the manner in which genetic operators can explore this
structure guided by fitness. One drawback of these tech-
niques is that they require a new sampling of the search space
each time a new problem instance is encountered, a practical
issue that might, or might not, be of importance.

The present work takes a different approach. Firstly, here
we study the performance of GP applied to data classifica-
tion, a domain where promising results have been achieved
[30]. Secondly, instead of focusing on the structure of the
search space as defined by fitness, the genetic operators and
the encoding, we study the structure of the problem data it-

self; i.e., the data that needs to be classified 1. From this, the
goal is to infer the expected performance, and by corollary
the difficulty of a problem, for a GP classifier.

In data classification, the behavior of an individual classi-
fier depends on the characteristics of the data that is to be
classified. One of the first attempts to detect a useful rela-
tionship between classifier performance and the underlying
structure of the data is the STATLOG project [12], which de-
veloped a meta-level binary rule that determines the applica-
bility of a classifier to a given problem. Another example is
[24], where a statistical meta-model was developed to predict
the expected performance of several common classifiers on a
small set of real-world problems. The above examples per-
form a meta classification using statistical descriptors of the
data. The predictive accuracy of these approaches, however,
has been criticized because they do not consider the geomet-
ric relationships between the data, a more relevant character-
istic to classifier accuracy [4]. On the other hand, [4] provides
a detailed analysis of several types of complexity measures
directly related to classification difficulty. However, [4] does
not attempt to use these measures to estimate classifier per-
formance. Based on the above works we propose a charac-
terization of problem difficulty and prediction of GP perfor-
mance. A similar goal is pursued in [13] for feature selection
algorithms, based on a different experimental framework.

3. DATA CLASSIFICATION WITH GP
In a supervised classification problem some pattern x ∈

R
P has to be classified in one of M classes ω1, ..., ωM using

1What is called the set of fitness cases in GP literature.

a training set X of N P-dimensional patterns with a known
classification. Then, the goal of a supervised classifier is to
build a mapping g(x) : R

P → M , that assigns each pattern x

to a corresponding class ωi, where g is derived based on the
evidence provided by X . GP can be used in different ways
to solve the problem described above, such as evolving rule
sets [8] or decision trees [1]. However, this paper focuses on
the method proposed in [30], PGPC.

3.1 Probabilistic GP Classifier
PGPC is based on a simpler approach towards classifica-

tion, also described in [30], which proceeds as follows. First,
R is divided into a series of M non-overlapping regions,
one for each class. Then, GP is used to evolve a mapping
h(x) : R

P → R, such that the region in R where pattern x

is mapped to, determines the class to which it belongs. The
most obvious shortcoming of such an approach is that it re-
quires an a priori definition of the region boundaries.

To overcome the above problem, in PGPC it is assumed
that the behavior of h can be modeled using multiple Gaus-
sian distributions, each corresponding to a particular class
[30]. The distribution of each class N (µ, σ) is derived from
the examples provided for it in set X , by computing the mean
µ and standard deviation σ of the outputs obtained from h on
these patterns. Then, from the N of each class, [30] proposes
two fitness measures. The first is based on the overlap area
among the distributions, and the second is based on Fisher’s
linear discriminant. Given that both methods exhibited simi-
lar performance, in this work we arbitrarily choose the latter.

3.1.1 Fitness evaluation

Given a two class problem, which is the type of problem
studied in this paper, and the estimated Gaussian distribu-
tion N for each class, [30] proposes a distance measure be-
tween both classes as

d =
|µ1 − µ2|
σ1 + σ2

, (1)

where µ1 and µ2 are the means of the Gaussian distribution
of each class, and σ1 and σ2 their standard deviations. When
this measure tends to 0 it is the worst case scenario because
the mapping of both classes overlap completely, and when it
tends to ∞ it represents the optimal case with maximum sep-
aration. Moreover, in order to normalize the above measure,
the final distance between both classes is given by

fd =
1

1 + d
, (2)

which provides the fitness measure for an individual map-
ping h generated by GP.

3.1.2 Classification with PGPC

Once the Gaussian distribution Ni for each class is deter-
mined using the best individual h found by GP, a new test
pattern x is assigned to class i when Ni gives the maximum
probability. While [30] studies the effects of using multiple
individuals to compute the final probability of class member-
ship, here we only use the single best solution. Finally, Table
1 presents the setup for the PGPC system, that uses standard
Koza style crossover and mutation and dynamic depth con-
trol to minimize bloat [22]. The PGPC system was imple-
mented using Matlab 2009a and the GPLAB toolbox [21].

1356

Table 1: Parameters for the PGPC system used in the exper-
imental tests.

Parameter Description
Population size 200 individuals.
Generations 200 generations.
Initialization Ramped Half-and-Half,

with 6 levels of maximum depth.
Operator probabilities Crossover pc = 0.8; Mutation pµ = 0.2.

Function set
n

+,−, ∗, /,√,sin, cos, log, xy , | · |, if
o

Terminal set {x1, ..., xi, ..., xP } Where each xi is a
dimension of the data patterns x ∈ R

P

Bloat control Dynamic depth control.
Initial dynamic depth 6 levels.
Hard maximum depth 20 levels.
Selection Lexicographic

parsimony tournament
Survival Keep best elitism

4. PROBLEM STATEMENT
As stated above, the main goal is to estimate the perfor-

mance of the PGPC classifier, based on a description of a par-
ticular problem’s data. To accomplish this goal,we begin by
building a set P of synthetic 2-class multimodal problems,
where each sample in P represents an individual classifica-
tion problem. Second, from each problem p ∈ P we extract a
vector of descriptive features β, described in Section 5. Third,
we solve each problem in p using the PGPC system described
in Section 3, in order to determine the performance PGPC
achieves, which we characterize with the classification error
ǫ. After which, we have a set of problems P , where each
pi ∈ P is described by a descriptive vector βi, as well as the
expected classification error ǫi of PGPC applied to pi. There-
fore, the problem we pose is that of finding an optimal esti-
mator Ko of classifier performance, such that

Ko = arg min
K

{Err[K(βi), ǫi]} ∀pi ∈ P (3)

where Err[,] represents an error measure, which in this
work is given by the root-mean-square error (RMSE).

4.1 Classification problems and PGPC per-
formance

We randomly create 300 classification problems with two
classes using Gaussian mixture models (GMMs), these con-
form set P . The use of randomly generated GMMs allows us
to generate either unimodal or multimodal classes, with dif-
ferent amounts of class overlap and geometry. All problems
are set in the R

2 plane with x, y ∈ [−10, 10], and 200 sample
points were randomly generated for each class. The param-
eters for the GMM of each class were also randomly chosen
using the following ranges of values:

• Number of Gaussian components: {1, 2, 3}.

• Median of each Gaussian component for each feature
dimension: [−3, 3].

• Each element of the covariant matrix of each Gaussian
component: (0, 2].

• The rotation angle of each covariance matrix: [0, 2π].

• The proportion of sample points generated with each
Gaussian component: [0, 1].

−10 −8 −6 −4 −2 0 2 4
−6

−4

−2

0

2

4

6

8

(a) ǫ = 0.02
−6 −4 −2 0 2 4 6

−5

−4

−3

−2

−1

0

1

2

3

4

5

(b) ǫ = 0.19

0 50 100 150 200
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

F
it
n

e
s
s

Generation

Run 1

Run 2

Run 3

Run 4

Run 5

(c)

0 50 100 150 200
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

F
it
n

e
s
s

Generation

Run 1

Run 2

Run 3

Run 4

Run 5

(d)

Figure 1: Figure shows two classification problems (a,b),
with the median classification error achieved by PGPC, and
the five convergence plots of the best individual fitness ob-
tained in each of the five independent runs (c,d).

Afterwards, ∀p ∈ P we compute the set of descriptive fea-
tures β defined in Section 5. Then, for every problem we
determine the median test error of the PGPC from 5 inde-
pendent runs, using 70% of the 200 sample points for fit-
ness evaluation (training) and the rest for testing; the sets
were randomly chosen at the beginning of each run. Figure 1
shows the type of performance achieved by PGPC, showing
two classification problems, the median test error of PGPC,
and the evolution of the best fitness from each of the five
runs. The median error is used as an approximation of the
expected PGPC performance on each problem instance. The
convergence plots in Figure 1 illustrate that there is only a
small variability in the five independent runs for each prob-
lem. In general, the average difference in classification error
between the best run and the worst run for all 300 problems
is only 8.3%, with a standard deviation of 4.4%, which gives
some confidence regarding the accuracy of the performance
estimate. Figure 2 shows three other problems with different
degrees of difficulty, which increases from left to right. No-
tice, that the expected performance of PGPC is related to the
amount of overlap between both classes and the compact-
ness of each, as should be expected [4].

5. DESCRIPTORS
The research goal in this paper is to build an estimator

of classifier performance based on a set of descriptive mea-
sures that are extracted from the problem itself. We consider
two groups of measures, statistical measures and measures
of data complexity. The statistical measures are a subset of
those proposed in [24]; we choose those that produced the
best results with the meta-model developed in that work.
These descriptors are some basic statistics computed for each
feature, or dimension, of the problem data.

• The geometric mean ratio of the pooled standard devi-

1357

−4 −2 0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4

(a) ǫ = 0.00
−10 −5 0 5
−6

−4

−2

0

2

4

6

(b) ǫ = 0.15
−6 −4 −2 0 2 4 6

−8

−6

−4

−2

0

2

4

6

8

(c) ǫ = 0.33

Figure 2: Three classification problems and the median error achieved by PGPC; difficulty increases from left to right.

ations to standard deviations of the individual popula-
tions (SD).

• The mean absolute correlation coefficients between two
features (CORR) and its squared value (CORR2).

• The mean skewness of features (SKEW).

• The mean kurtosis of features (KURT).

• The average entropy of features (HX) and its squared
value (HX2).

Additionally, we also employ various measures of prob-
lem complexity that consider the geometry of the distribu-
tion of samples over the feature space. These descriptors are
a subset of those proposed in [4]. We choose data descrip-
tors that consider the geometry of the distribution of points
and the density, or proximity, of the points. [4] also includes
descriptors based on the performance of a linear classifier,
which we omit because these measures are an indirect de-
scription of the data based on a specific classifier.

Fisher’s discriminant ratio (FD).
The discriminant ratio proposed by Fisher is defined as

f =
(µ1 − µ2)

2

σ1 + σ2

2

, (4)

where µ1, µ2, σ1, σ2 are the means and standard deviations
of the two classes. This measure is computed independently
for each feature of the data. Therefore, for a multidimen-
sional problem the maximum f over all feature dimensions
is chosen as the representative value FD [4].

Volume of overlap region (VOR).
This measure provides an estimate of the amount of over-

lap between both classes in feature space. This measure is
computed by finding, for each feature, the maximum and
minimum value of each class and then calculating the length
of the overlap region. The length obtained from each fea-
ture can then be multiplied in order to obtain a measure of
volume overlap. VOR is zero when there is at least one di-
mension in which the two classes do not overlap.

Feature efficiency (FE).
It is a measure of how much each feature contributes to the

separation of both classes. When there is a region of overlap

between two classes on a feature dimension, then data is con-
sidered ambiguous over that region along that dimension.
However, it is possible to progressively remove the ambigu-
ity between both classes by separating those points that lie
inside the overlapping region. The efficiency of each feature
is defined as the fraction of all remaining points separable
by that feature, and the maximum feature efficiency (FE) is
taken as the representative value for a two-class problem.

Class distance ratio (CDR).
This is a measure that compares the dispersion within the

classes to the gap between the classes, and is computed as
follows [4]. For each data sample the Euclidean distance to
its nearest-neighbor is computed, within and outside its own
class. Then, the CDR is the ratio of the averages of all intra-
class and interclass nearest-neighbor distances.

5.1 Correlation with PGPC performance
In Figure 3, we present scatter plots between the perfor-

mance achieved by PGPC on each problem, and each of
the data descriptors described above. These plots illustrate
the relationship between each problem, represented by a de-
scriptive value, and the classification error of PGPC. More-
over, to quantify this relationship, Figure 3 also provides
the value of Pearson’s correlation coefficient ρ. From these
plots we can see that some measures are more strongly cor-
related with the performance of PGPC than others. More
precisely, features SD, VOR, FE and CDR obtain the highest
correlation scores. This result is consistent with the conclu-
sions of [4], where measures based on the geometric distri-
bution of the data and those based on nearest-neighbor crite-
ria provide the most informative description of the problem.
Moreover, these results are very similar to those published in
[26], where the correlation of these descriptors was measured
with respect to a neural network classifier.

6. PREDICTIVE MODELS
The estimators of PGPC performance are built using two

different approaches. The first is to derive least squares lin-
ear regression models. The second is to pose a symbolic re-
gression problem with GP, similar to the approach of [26].

6.1 Linear Models
In this approach, the first step is to choose which descrip-

tors will be used as predictors in the linear models. For sim-
plicity, we employ those descriptors that exhibit the highest

1358

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

Geometric mean

C
la

s
s
if

ic
a
ti

o
n

 e
rr

o
r

(a) SD: ρ = −0.39

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

C
la

s
s

if
ic

a
ti

o
n

 e
rr

o
r

(b) CORR: ρ = −0.00

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Squared Correlation

C
la

s
s

if
ic

a
ti

o
n

 e
rr

o
r

(c) CORR2: ρ = −0.21

−2 −1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

Skewness

C
la

s
s

if
ic

a
ti

o
n

 e
rr

o
r

(d) SKEW: ρ = 0.01

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

Kurtosis

C
la

s
s
if

ic
a
ti

o
n

 e
rr

o
r

(e) KURT: ρ = 0.07

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

Entropy

C
la

s
s

if
ic

a
ti

o
n

 e
rr

o
r

(f) HX: ρ = 0.15

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Squared Entropy

C
la

s
s
if

ic
a
ti

o
n

 e
rr

o
r

(g) HX2: ρ = 0.11

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

Fisher Ratio

C
la

s
s
if

ic
a
ti

o
n

 e
rr

o
r

(h) FD: ρ = −0.08

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

Volume of Overlap Region

C
la

s
s

if
ic

a
ti

o
n

 e
rr

o
r

(i) VOR: ρ = 0.50

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Feature Efficiency

C
la

s
s
if

ic
a
ti

o
n

 e
rr

o
r

(j) FE: ρ = −0.71

0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

Class Distance Ratio
C

la
s

s
if

ic
a

ti
o

n
 e

rr
o

r

(k) CDR: ρ = −0.50

Figure 3: Scatter plots that show the relationship between each descriptive measure of problem data (x-axis) and classifica-
tion error (y-axis). Legend of each plot shows the value of Pearson’s correlation coefficient ρ.

correlation with PGPC performance, as discussed in the pre-
vious section; these are: SD, VOR, FE and CDR. Then, it must
be determined if the predictive data exhibits multicollinear-
ity; i.e., if the descriptors are highly correlated. Figure 4
shows scatter plots between each of the chosen descriptors
and the value of their linear correlation. Given that the prob-
lem descriptors are not strongly correlated, it is possible to
use standard least squares regression.

6.2 Symbolic regression with GP
This approach is similar to the one followed in [26], where

the optimization problem of Equation 3 is solved using sym-
bolic regression and GP. Here, the same descriptors used
with the linear models makeup the terminal set T ,

T = {SD, V OR, FE, CDR} . (5)

The function set F , on the other hand, contains common
primitive functions used for symbolic regression problems
with GP; these are

F =
n

+,−, ∗, /,
√

,sin, cos, log, xy, | · |, if
o

, (6)

with protected functions for /, log,
√· and xy .

Fitness is posed as a cost function, given by the RMSE com-

puted on the set of n training samples,

f(K) =

v

u

u

u

t

n
X

i=1

(K(βi) − ǫi)
2

n
, (7)

where βi is the descriptive vector of problem pi, and ǫi its
classification error.

7. EXPERIMENTS AND RESULTS
This section presents implementation details and summa-

rizes the main results.

7.1 Linear Models
Four different linear models are derived using the predic-

tive descriptors selected above, these are: (1) Linear model
(L1); (2) Linear model with interaction terms (L2); (3) Lin-
ear model with interaction and quadratic terms (L3); and (4)
Linear model with quadratic terms (L4). All models also con-
tain a constant term. Each model is derived using half of the
ground truth data, the rest is used for testing. Moreover, for
statistical significance 30 different models are built with dif-
ferent random partitions of the data.

7.2 Symbolic regression with GP
The parameters of the GP used to evolve performance es-

timators for PGPC are given in Table 2. It is a Koza-style GP

1359

0 2 4 6 8 10
−0.5

0

0.5

1

Geometric mean

V
o

lu
m

e
 o

f
O

v
e
rl

a
p

 R
e
g

io
n

(a) SD-VOR: ρ = −0.32

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Geometric mean

F
e
a
tu

re
 E

ff
ic

ie
n

c
y

(b) SD-FE: ρ = 0.40

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Geometric mean

C
la

s
s
 D

is
ta

n
c
e
 R

a
ti

o

(c) SD-CDR: ρ = 0.27

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

Volume of Overlap Region

F
e

a
tu

re
 E

ff
ic

ie
n

c
y

(d) VOR-FE: ρ = 0.66

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.5

1

1.5

2

2.5

3

3.5

4

Volume of Overlap Region

C
la

s
s

 D
is

ta
n

c
e

 R
a

ti
o

(e) VOR-CDR: ρ = −0.44

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

Feature Efficiency

C
la

s
s
 D

is
ta

n
c
e
 R

a
ti

o

(f) FE-CDR: ρ = −0.51

Figure 4: Scatter plots show the correlation among the cho-
sen descriptors: (a) SD-VOR; (b) SD-FE; (c) SD-CDR; (d)
VOR-FE; (e) VOR-CDR; (f) FE-CDR. The caption of each
contains the value of Pearson’s correlation coefficient ρ.

Table 2: Parameters for the GP used to derive performance
predictors for PGPC.

Parameter Description
Population size 200 individuals.
Generations 100 generations.
Initialization Ramped Half-and-Half at 6 levels.
Operator probabilities. Cross. pc = 0.8; Mutation pµ = 0.2.
Bloat control Dynamic depth control.
Initial dynamic depth 6 levels.
Hard maximum depth 12 levels.
Selection Lexicographic tournament.
Tournament size 6 individuals.
Survival Keep best elitism.

with bloat control using the dynamic depth method [22] and
lexicographic parsimony pressure during tournament selec-
tion [10]. The GP was executed 30 times, thus the results are
statistics computed over all of the runs. In each run, 50% of
the 300 classification problems were used for fitness evalua-
tion (training) and the rest for testing. The training and test
sets were randomly chosen for each run.

A summary of the evolutionary search performed by the
GP is presented in Figure 5. Figure 5(a) shows the median
of the best individual training fitness at each generation, and

0 20 40 60 80 100
5

6

7

8

9

10

11

12

13

14

Generations

F
it

n
e
s
s

Best

Test

(a)

0 20 40 60 80 100
0

20

40

60

80

100

120

140

S
IZ

E

Generations

0 20 40 60 80 100
−2

0

2

4

6

8

10

12

B
L

O
A

T

Size

Bloat

(b)

Figure 5: Evolutionary search of the GP for performance
prediction: (a) Evolution of best individual at each genera-
tion evaluated with the training and testing sets; (b) Evolu-
tion of size and bloat during the search process.

the median of the test fitness computed with the best indi-
vidual at each generation. It is evident that the GP search is
not overfitted given the similarity between the training and
testing fitness. Figure 5(b) illustrates the effect of bloat dur-
ing the GP runs, also showing median values. This figure
is a double y-axis plot, where the left axis shows the size of
the best individual at each generation, given in number of
nodes. The right y-axis measures the bloat incurred in the
experiments using the measure proposed in [27]. It appears
that most program growth is due to bloat, since both size and
bloat behave in an almost identical manner.

7.3 Comparison
All of the predictive models are compared based on their

median, average, and standard deviation of the prediction
RMSE, which is summarized in Table 3. In every case, these
statistics are computed over the 30 independent runs of each
algorithm. Moreover, a boxplot comparison is depicted in
Figure 6. In general, the figure shows that all models give
a good prediction of PGPC performance. Among the linear
models, the best performance is achieved by the quadratic
linear model (L4). Moreover, the GP models achieve the low-

1360

Table 3: Comparison of the RMSE between every predic-
tive model, obtained over thirty independent runs; bold
indicates best (minimum).

Median Average Std.
Linear - L1 7.40 7.42 0.19
Interaction - L2 7.67 8.62 2.28
Quadratic - L3 7.30 8.36 3.19
Pure Quadratic - L4 6.80 7.00 0.92
GP 6.25 6.41 1.06

Figure 6: Boxplot comparison of each predictive model.

est median and average error, which is depicted in the box-
plot. An ANOVA test reveals that the observed difference
among the models is statistically significant with a p value
of 0.00. However, not all of the observed differences are sta-
tistically significant. A multiple comparison test, using the
HSD criterion and a significance level α = 0.05, reveals that
the GP and L4 models are better than the L1 and L2 mod-
els, but no differences is detected with respect to L3, and no
difference is detected between GP and L4.

With respect to size, it appears that the GP models are
larger than the linear models, their median size is around 120
nodes, see Figure 5(b). On the other hand, the linear model
L1 only contains 5 terms, L2 11 terms, L3 15 terms, and L4
9 terms. However to compare their size, we must consider
all addition and multiplication operations performed by each
linear model. Moreover, if we also consider the terminal ele-
ments of each model, when the linear models are expressed
as GP trees then L1 requires 13 nodes, L3 43, L3 63 and L4
33 nodes. While the difference is still substantial between GP
and the linear models, the difference in size appears to be
a result of bloating, see Figure 5(b). Therefore, in order to
improve upon the size of the predictors produced by GP, a
better bloat control method is required.

7.4 Real-world test
Finally, the predictive models are tested on two real-world

problems from the medical field, see Table 4. The first is
Parkinson’s diagnosis, with 23 real-valued features and 197
data samples [9]. The second is diabetes diagnosis, with 8
real-valued features and 768 samples [23]. Notice how these
problems are highly multi-dimensional, which adds a de-
gree of difficulty not present in the synthetic data used for

Table 4: First column shows the classification error
achieved by PGPC on each problem. The final five
columns show the predicted classification error given by
each model; bold indicates the best prediction.

PGPC L1 L2 L3 L4 GP
Park. 23% 13.7% 12.4% 17.6% 14.3% 23.5%
Diabetes 25.3% 24.3% 27.3% 27.5% 27.5% 42.7%

training. For each problem, PGPC was executed 5 times and
the median classification error was computed, shown in the
PGPC column of Table 4. Then, SD, VOR, FE and CDR were
computed on each dataset, and each predictive model was
used to determine the expected performance of PGPC, the fi-
nal five columns of Table 4. In these tests, the models that
achieved the minimum predictive error on the set of syn-
thetic two-class problems are used. For the Parkinson’s data
set, the GP model performs the best, achieving an almost per-
fect prediction of PGPC performance. On the other hand, the
linear models perform quite poorly for this dataset. How-
ever, for the diabetes problem the results are exactly the op-
posite, with the linear models achieving an accurate predic-
tion and the GP model severely over-stating the difficulty of
the problem. Such discrepancies in performance show that
it is not yet clear which predictive models provide the best
tool for real-world situations. Nonetheless, it is evident that
it is possible to accurately predict the performance of a GP
classifier using the general proposal outlined in this paper.

These are promising results, because they suggest that an
artificial system might be able to analyze a particular prob-
lem, and autonomously determine if the computational tools
it posses can solve the problem in an acceptable manner.
Moreover, if the system is endowed with several computa-
tional tools, then the system could choose which algorithm
to use based on the performance it expects to achieve. Such
capabilities are the type of features that a truly autonomous
intelligent system might exhibit in real-world scenarios.

8. CONCLUDING REMARKS
This paper presents an approach to determine the diffi-

culty of a problem for a GP-based classifier. The goal is to
predict the performance, in classification error, of a particu-
lar GP approach towards data classification, based on a set
of descriptors of the problem data. These descriptors are
based on statistical properties of the data and on their ge-
ometric dispersion within the feature space of the problem.
In order to derive the predictive models, we use a standard
linear regression approach and a GP-based symbolic regres-
sion approach. Experimental evaluations show that both ap-
proaches produce models that achieve an accurate estima-
tion of classifier performance. Moreover, tests on real-world
problems show the ability of the predictive models to gener-
alize to more complex problem instances. However, further
research is still required to determine which type of model
provides the best predictive performance.

Therefore, this work shows that for data classification, it is
possible to accurately predict the performance of a GP sys-
tem without actually running the GP search! The predictive
models allow us to estimate the difficulty associated with a
problem, and thus make a reasoned choice regarding the use-
fulness of GP. Finally, future work should look to integrate
such predictors into an autonomous system that is capable of

1361

analyzing a problem and determining which computational
tool is best suited to solve it.

Acknowledgements

Second author supported by scholarship 298654 from Con-
sejo Nacional de Ciencia y Tecnología (CONACYT), México.

References
[1] J. Eggermont, J. N. Kok, and W. A. Kosters. Genetic

programming for data classification: partitioning the search
space. In Proceedings of the 2004 ACM symposium on Applied
computing, SAC ’04, pages 1001–1005, New York, NY, USA,
2004. ACM.

[2] E. Galván-López, S. Dignum, and R. Poli. The effects of
constant neutrality on performance and problem hardness in
gp. In Proceedings of the 11th European conference on Genetic
programming, EuroGP’08, pages 312–324, Berlin, Heidelberg,
2008. Springer-Verlag.

[3] E. Galván-López, J. McDermott, M. O’Neill, and A. Brabazon.
Defining locality as a problem difficulty measure in genetic
programming. Genet. Program. Evolv. Mach. (accepted).

[4] T. K. Ho and M. Basu. Complexity measures of supervised
classification problems. IEEE Trans. Pattern Anal. Mach. Intell.,
24:289–300, March 2002.

[5] J. H. Holland. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, MI, 1975.

[6] M. Kimura. The neutral theory of molecular evolution. Cambridge
University Press., 1983.

[7] K. E. Kinnear. Fitness landscapes and difficulty in genetic
programming. In Proceedings of the First IEEE Conference on
Evolutionary Computing, pages 142–147, Piscataway, NY, 1994.
IEEE Press.

[8] J. R. Koza. Genetic programming II: automatic discovery of reusable
programs. MIT Press, Cambridge, MA, USA, 1994.

[9] M. A. Little, P. E. McSharry, E. J. Hunter, and L. O. Raming.
Suitability of dysphonia measurements for telemonitoring of
parkinson’s disease. IEEE Transactions on Biomedical
Engineering, 56(4):1015–1022, 2008.

[10] S. Luke and L. Panait. Lexicographic parsimony pressure. In
Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’02, pages 829–836, San Francisco, CA,
USA, 2002. Morgan Kaufmann Publishers Inc.

[11] J. McDermott, E. Galvan-Lopez, and M. O’Neill. A
fine-grained view of GP locality with binary decision diagrams
as ant phenotypes. In R. Schaefer, C. Cotta, J. Kolodziej, and
G. Rudolph, editors, PPSN 2010 11th International Conference on
Parallel Problem Solving From Nature, volume 6238 of Lecture
Notes in Computer Science, pages 164–173, Krakow, Poland,
2010. Springer.

[12] D. Michie, D. J. Spiegelhalter, C. C. Taylor, and J. Campbell,
editors. Machine learning, neural and statistical classification. Ellis
Horwood, Upper Saddle River, NJ, USA, 1994.

[13] L. C. Molina, L. Belanche, and A. Nebot. Feature selection
algorithms: A survey and experimental evaluation. In
Proceedings of the 2002 IEEE International Conference on Data
Mining, ICDM ’02, pages 306–324, Washington, DC, USA, 2002.
IEEE Computer Society.

[14] A. E. Nix and M. D. Vose. Modeling genetic algorithms with
markov chains. Annals of Mathematics and Artificial Intelligence,
5:79–88, 1992.

[15] R. Poli. A simple but theoretically-motivated method to
control bloat in genetic programming. In C. Ryan, T. Soule,
M. Keijzer, E. P. K. Tsang, R. Poli, and E. Costa, editors, Genetic
Programming, 6th European Conference, EuroGP 2003, Essex, UK,
April 14-16, 2003. Proceedings, volume 2610 of Lecture Notes in
Computer Science, pages 204–217. Springer, 2003.

[16] R. Poli and N. F. McPhee. General schema theory for genetic
programming with subtree-swapping crossover: Part i. Evol.
Comput., 11(1):53–66, 2003.

[17] R. Poli and N. F. McPhee. General schema theory for genetic
programming with subtree-swapping crossover: Part ii. Evol.
Comput., 11(2):169–206, 2003.

[18] R. Poli and N. F. McPhee. Parsimony pressure made easy. In
GECCO ’08: Proceedings of the 10th annual conference on Genetic
and evolutionary computation, pages 1267–1274, New York, NY,
USA, 2008. ACM.

[19] R. Poli, N. F. McPhee, and J. E. Rowe. Exact schema theory and
markov chain models for genetic programming and
variable-length genetic algorithms with homologous
crossover. Genet. Program. Evolv. Mach., 5:31–70, March 2004.

[20] R. Poli and L. Vanneschi. Fitness-proportional negative slope
coefficient as a hardness measure for genetic algorithms. In
Proceedings of the 9th annual conference on Genetic and
evolutionary computation, GECCO ’07, pages 1335–1342, New
York, NY, USA, 2007. ACM.

[21] S. Silva and J. Almeida. Gplab–a genetic programming toolbox
for matlab. In L. Gregersen, editor, Proceedings of the Nordic
MATLAB conference, pages 273–278, 2003.

[22] S. Silva and E. Costa. Dynamic limits for bloat control in
genetic programming and a review of past and current bloat
theories. Genet. Program. Evolv. Mach., 10(2):141–179, 2009.

[23] J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, and
R. S. Johannes. Using the adap learning algorithm to forecast
the onset of diabetes mellitus. Johns Hopkins APL Technical
Digest, 10:262–266, 1988.

[24] S. Y. Sohn. Meta analysis of classification algorithms for
pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell.,
21:1137–1144, November 1999.

[25] M. Tomassini, L. Vanneschi, P. Collard, and M. Clergue. A
study of fitness distance correlation as a difficulty measure in
genetic programming. Evol. Comput., 13:213–239, June 2005.

[26] L. Trujillo, Y. Martínez, and P. Melin. Estimating classifier
performance with genetic programming. In S. Silva et al.,
editor, Proceedings of the 14th European Conference on Genetic
Programming, EuroGP 2011, volume 6621 of LNCS, pages
275–286, Turin, Italy, 2011. Springer Verlag.

[27] L. Vanneschi, M. Castelli, and S. Silva. Measuring bloat,
overfitting and functional complexity in genetic programming.
In GECCO ’10: Proceedings of the 12th annual conference on
Genetic and evolutionary computation, pages 877–884, New York,
NY, USA, 2010. ACM.

[28] L. Vanneschi, M. Tomassini, P. Collard, S. Vérel, Y. Pirola, and
G. Mauri. A comprehensive view of fitness landscapes with
neutrality and fitness clouds. In Proceedings of the 10th European
conference on Genetic programming, EuroGP’07, pages 241–250,
Berlin, Heidelberg, 2007. Springer-Verlag.

[29] T. Yu and J. F. Miller. Neutrality and the evolvability of
boolean function landscape. In Proceedings of the 4th European
Conference on Genetic Programming, EuroGP ’01, pages 204–217,
London, UK, 2001. Springer-Verlag.

[30] M. Zhang and W. Smart. Using gaussian distribution to
construct fitness functions in genetic programming for
multiclass object classification. Pattern Recogn. Lett.,
27:1266–1274, August 2006.

1362

