
An Empirical Investigation of
How Degree Neutrality Affects GP Search

Edgar Galván-López1 and Riccardo Poli2

1 Natural Computing Research & Applications Group, Complex and Adaptive Systems Lab
University College Dublin
edgar.galvan@ucd.ie

2 University of Essex, School of Computer Science and Electonic Engineering,
Wivenhoe Park, Colchester, CO4 3SQ, UK

rpoli@essex.ac.uk

Abstract. Over the last years, neutrality has inspired many researchers in the
area of Evolutionary Computation (EC) systems in the hope that it can aid
evolution. However, there are contradictory results on the effects of neutrality
in evolutionary search. The aim of this paper is to understand how neutrality -
named in this paper degree neutrality - affects GP search. For analysis purposes,
we use a well-defined measure of hardness (i.e., fitness distance correlation) as
an indicator of difficulty in the absence and in the presence of neutrality, we pro-
pose a novel approach to normalise distances between a pair of trees and finally,
we use a problem with deceptive features where GP is well-known to have poor
performance and see the effects of neutrality in GP search.

1 Introduction

Despite the proven effectiveness of Evolutionary Computation (EC) systems, there are
limitations in such systems and researchers have been interested in making them more
powerful by using different elements. One of these elements is neutrality (the neutral
theory of molecular evolution [8]) which the EC community has incorporated in their
systems in the hope that it can aid evolution. Briefly, neutrality considers a mutation
from one gene to another as neutral if this modification does not affect the fitness of an
individual.

EC researchers have tried to incorporate neutrality in their systems in the hope that
it can aid evolution. Despite the vast number of publications in this field, there are
no general conclusions on the effects of neutrality and in fact, quite often, there is
a misconception with regard to what neutrality is. There are also many contradictory
results reported by EC researchers on neutrality.

For instance, in “Finding Needles in Haystacks is not Hard with Neutrality” [20],
Yu and Miller performed runs using the well-known Cartesian GP (CPG) representa-
tion [9,10] and also used the even-n-parity Boolean functions with different degrees of
difficulty (n = {5,8,10,12}). They compared performance when neutrality was present
and in its absence and reported that the performance of their system was better when
neutrality was present.

A. Hernández Aguirre et al. (Eds.): MICAI 2009, LNAI 5845, pp. 728–739, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Empirical Investigation of How Degree Neutrality Affects GP Search 729

A few years later, Collins claimed the opposite and presented the paper entitled
“Finding Needles in Haystacks is Harder with Neutrality” [2]. He further explored the
idea presented by Yu and Miller and explained that the choice of this type of problem is
unusual and in fact not suitable for analysing neutrality using CGP. This is because both
the landscape and the form of the representation used have a high degree of neutrality
and these make the drawing of general conclusions on the effects of neutrality difficult.

These works (both nominated as best papers in their conference tracks!) are just
two examples of many publications available in the specialised literature which show
controversial results on neutrality.

The aim of this paper is to understand the effects of neutrality in GP search. For this
purpose a new form of neutrality, called degree neutrality, will be proposed and studied
in detail and a problem with deceptive features will be used to see how GP behaves in
the absence and in the presence of neutrality.

This paper is structured as follows. In the next section, a new form of neutrality will
be introduced. In Section 3, a well-known measure of difficulty, called fitness distance
correlation will be described. A novel method to normalise the distance between a pair
of trees will be explained in Section 4. Section 5 provides details on the experimen-
tal setup used. Analysis and conclusions of the results found using our approach are
presented in Section 6.

2 Degree Neutrality

Degree neutrality is a form of neutrality induced by adding ‘dummy’ arguments (i.e.,
terminals) to internal nodes (i.e., functions). More specifically, this type of neutrality
works as follows:

– Once an individual has been created, the internal nodes that have an arity lower
than a given arity are marked (i.e., if an internal node is A and needs to be marked,
it is relabelled as NA).

– Dummy terminals are added to the internal nodes (i.e., functions) that have been
marked. The number of dummy terminals that will be added is determined by a
given arity (i.e., an arity specified by the user). For instance, suppose that the given
arity is 5 and a tree has functions of arity 1 then those nodes will be marked and
4 dummy terminals will be added to the marked nodes. These are dummy in the
sense that their value is totally ignored when computing the output of the node.

Suppose that one is using the language proposed in [14]. That is, the function set is
formed by letters (i.e., Fset = {A,B,C, · · · }) and the arities of each function are as fol-
lows: 1 for function A, 2 for function B, 3 for function C and so forth. The termi-
nal set is defined by a single element Tset = {X}. Now, let us define a function set
Fset = {A,B,C,D,E}. This function set has a maximum arity of 5. Let us assume that
this is the arity that will be used to add degree neutrality. A typical GP individual using
the function set Fset is shown at the top of Figure 1 and the same individual with degree
neutrality is shown at the bottom of the figure. Notice how all internal nodes of the
resulting individual (Figure 1 bottom) have now the same arity (i.e., 5).

730 E. Galván-López and R. Poli

XX

X

E

A

X

D

XXX

C

XX B

XX

B

X

X

E

NC

XX XX

NB

XX XXX

NA

XX XXX

ND

XX XXXNB

XX XXX

Fig. 1. A typical GP individual created using the language proposed in [14] (top) and the same
individual with degree neutrality using a maximum arity of 5 (bottom)

This can easily be extended if one would like to specify, for instance, that the func-
tions defined in the function set are of arities 4 and 5. Then all the function with arities
lower than 4 could be marked and extended with dummy arguments. As a result of this,
all the functions of the function set would be of arities 4 and 5. The same technique
could be applied if the user wanted all the functions defined in the function set to have
arities 3, 4 and 5 (i.e., all the internal nodes whose arities are lower than 3 should be
“filled” by dummy arguments).

To analyse how degree neutrality will affect the sampling of individuals performed
by GP, this form of neutrality will be examined in conjunction with constant neutrality.
This form of neutrality was first studied using a binary GA [5,3] and then analysed
using GP [4]. Briefly, the idea is that in this approach, neutrality is “plugged” into the
traditional GP representation by adding a flag to the representation: when the flag is set,
the individual is on the neutral network and its fitness has a pre-fixed value (denoted in
this work by fn). When the flag is not set, the fitness of the individual is determined as
usual. See [4] for a full description of its implementation. We decided to use constant
neutrality to study the effects of degree neutrality because with many primitive sets, GP
has the ability to create a rich and complex set of neutral networks. This may be a useful
feature, but it is a feature that is hard to control and analyse. However, using these types
of neutrality we are in total control so, we are in position of study its effects in detail.

In the following section, a well-defined measure of hardness will be introduced and
this will help us to better understand the effects of neutrality in evolutionary search.

An Empirical Investigation of How Degree Neutrality Affects GP Search 731

3 Fitness Distance Correlation

In [7], Jones proposed an heuristic called fitness distance correlation (fdc) using the
typical GA representation (i.e., the bitstring representation) and successfully tested it
on several problems.

fdc is an algebraic measure to express the degree to which the fitness function
conveys information about distance to the searcher.

The idea of using fdc as an heuristic method, as stated in [7], was to create an alge-
braic metric that can give enough information to determine the difficulty (for a GA) of
a given problem when the global optimum is known in advance. To achieve this, Jones
explained that it is necessary to consider two main elements:

1. To determine the distance between a potential solution and the global optimum
(when using a bitstring representation, this is accomplished using the Hamming
distance) and

2. To calculate the fitness of the potential solution.

With these elements in hand, one can easily compute the fdc coefficient using Jones’
calculation [7] thereby, in principle, being able to determine in advance the hardness of
a problem.

The definition of fdc is quite simple: given a set F = { f1, f2, ..., fn} of fitness values
of n individuals and the corresponding set D = {d1,d2, ...,dn} of distances of such indi-
viduals from the nearest optimum, fdc is given by the following correlation coefficient:

f dc =
CFD

σF σD
,

where:

CFD =
1
n

n

∑
i=1

(fi− f)(di−d)

is the covariance of F and D, and σF , σD, f and d are the standard deviations and means
of F and D, respectively. The n individuals used to compute fdc are obtained via some
form of random sampling.

According to [7] a problem can be classified in one of three classes, depending on
the value of f dc:

– misleading (f dc≥ 0.15), in which fitness tends to increase with the distance from
the global optimum,

– difficult (−0.15 < f dc < 0.15), for which there is no correlation between fitness
and distance; and

– easy (f dc≤−0.15), in which fitness increases as the global optimum approaches.

There are some known weaknesses with fdc as a measure of problem hardness
[1,15]. However, it is fair to say that this method has been generally very successful
[3,4,5,7,12].

Motivated by the good results found by fdc, this measure of hardness has been further
explored using tree-like structures. There are some initial works that have attempted
calculating the distance between a pair of trees [11,16]. However, these works were

732 E. Galván-López and R. Poli

X

X

A

X

B

A A

X

X

C

B

A A

X X

B

A A

XX

B

A A

X

D=

RCRC RC RC

RC

(a) (b) (c) (d) (e)

Fig. 2. Distances calculated between different trees. The language that has been used is the
one proposed in [14]. k = 1 and c has been defined as the arity that each function has (i.e.,
c(A) = 1, c(B) = 2, c(C) = 3 and so forth). The distance between trees (a) and (b) is de-
noted by distance(a,b). So, distance(a,b) = 1.5, distance(b,c) = 4.0, distance(c,d) = 11.75
and distance(d,e) = 36.75.

limited in the sense that they did not offer a reliable distance. In, [18,19,17] the authors
overcame these limitations and computed and defined a distance1 between a pair of
tress.

There are three steps to calculate the distance between tree T1 and T2:

– T1 and T2 must be aligned to the most-left subtrees,
– For each pair of nodes at matching positions, the difference of their codes c (typi-

cally c is the index of an instruction within the primitive set) is calculated, and
– The differences calculated in the previous step are combined into a weighted sum

(nodes that are closer to the root have greater weights than nodes that are at lower
levels).

Formally, the distance between trees T1 and T2 with roots R1 and R2, respectively, is
defined as follows:

dist(T1,T2,k) = d(R1,R2)+ k
m

∑
i=1

dist(childi(R1),childi(R2),
k
2
) (1)

where: d(R1,R2) = (|c(R1)−c(R2)|)z and; childi(Y) is the ith of the m possible children
of a node Y , if i < m, or the empty tree otherwise. Note that c evaluated on the root of
an empty tree is 0 by convention. The parameter k is used to give different weights to
nodes belonging to different levels in the tree. In Figure 2 using Equation 1, various
distances have been calculated using different trees. The distance produced successful
results on a wide variety of problems [3,4,17,18,19].

Once a distance has been computed between two trees, it is necessary to normalise it
in the range [0,1]. In [18], Vanneschi proposed five different methods to normalise the
distance. In this work, however, we will introduce a new method that carries out this
task more efficiently. This will be presented in the following section.

1 This is the distance used in this work. We will use the code provided in [3, Appendix D] to
calculate the distance between a pair of trees.

An Empirical Investigation of How Degree Neutrality Affects GP Search 733

4 Normalisation by Maximum Distance Using a Fair Sampling

Inspired by the methods proposed in [18], we propose a new method called “Normal-
isation by Maximum Distance Using a Fair Sampling” which is used to conduct the
empirical experiments show in this work. This method works as follows.

1. A sample of ns individuals is created using the ramped half-and-half method using
a maximum depth greater than the maximum depth defined to control bloat,

2. The distance is calculated between each individual belonging to the sample and the
global optimum,

3. Once all the distances have been calculated using ns individuals that belong to the
sample, the maximum distance Ks found in the sampling is stored,

4. np individuals that belong to the population are created at random,
5. The distance is calculated between each individual belonging to the population and

the global optimum,
6. Once all the distances have been calculated using np individuals that belong to the

population, the maximum distance Kp found in the population is stored,
7. The global maximum distance, K, is the largest distance between Ks and Kp.

At the end of this process, the global maximum distance K is found. Given that the
depth ds used to create a sample of ns individuals (for our experiments ns is typically
10 times bigger than the population size) is greater than the depth dp defined to control
bloat (for our experiments ds = dp + 2), then throughout the evolutionary process, it is
highly unlikely we will ever find a higher value for the global maximum distance. In
fact, as we mentioned previously, this normalisation method was used to conduct the
experiments reported in this work and in none of them was a higher distance found.

The global maximum distance is found after the sampling of individuals and the
creation of the population. Clearly, the main advantage of this process is that during the
evolution of individuals, the complexity of the process to normalise distances can be
reduced substantially compared to Vanneschi’s methods (e.g., “constant-normalisation
by iterated search”).

5 Experimental Setup

5.1 Trap Function

The problem used to analyse the proposed form of neutrality is a Trap function [6].
The fitness of a given individual is calculated taking into account the distance of this
individual from the global optimum. Formally, a trap function is defined as:

f (�) =

⎧⎪⎨⎪⎩
1− d(�)

dmin
if d(�)≤ dmin,

r(d(�)−dmin)
1−dmin

otherwise,

where d(�) is the normalised distance between a given individual and the global opti-
mum solution. d(�), dmin and r are values in the range [0,1]. dmin is the slope-change

734 E. Galván-López and R. Poli

Table 1. Parameters used for the problems used to conduct extensive empirical experiments using
degree neutrality

Parameter Value

Population Size 400
Generations 300
Neutral Mutation Probability (Pnm) 0.05
Crossover Rate 90%
Tournament group size 10
Independent Runs 100

location for the optima and r sets their relative importance. For this problem, there is
only one global optimum and by varying the parameters dmin and r, the problem can be
made either easier or harder.

For this particular problem, the function and terminal sets are defined using the
language proposed in [14] (see Section 2).

A

X

B

A

X

C

A

X

B

C

A

X

B

A

X

A

X

XX

Fig. 3. A global optimum used in our first experiment (top) and a global optimum used in our
second experiment (bottom)

An Empirical Investigation of How Degree Neutrality Affects GP Search 735

Standard crossover was used to conduct our experiments. Tournament selection was
used to conduct our experiments. Furthermore, runs were stopped when the maximum
number of generations was reached. The parameters used are given in Table 1.

To avoid creating the global optimum during the initialisation of the population for
the Trap function, the full initialisation method has been used. Figure 3 shows the global
optima used in our experiments.

6 Analysis of Results and Conclusions

The results of fdc, the average number of generations required to find these global op-
tima and the percentage of successes are shown in Tables 4 and 5 when constant neu-
trality and degree neutrality with a maximum arity of 5 are used (i.e., all the functions
are of the same arity).

In Tables 2 and 3, we show the results when using constant neutrality (indicated by
{1,2,3,4,5}which means that there are functions of those arities) and degree neutrality.
As we mentioned previously, the performance of the GP system increases when either
form of neutrality is added, specifically in the range of [0.30− 0.65]. As can be seen
from these results, degree neutrality has almost the same effect as constant neutrality
when the functions declared in the function set are of mixed arities.

This, however, is not the case when neutral degree is added and the functions de-
clared in the function set are of the same arity. Under these circumstances, the perfor-
mance of the GP system is increased in almost all cases, as shown in Tables 4 and 5. As
can be seen, the predictions done by fdc are roughly correct. That is, in the presence of
neutrality, the percentage of successes tends to increase, particularly when the fitness
of the constant value lies in the range of [0.30− 0.75]. There is, however, a variation
in the percentage of successes when there is a mixture of arities (i.e.{1,2,3,4,5}) and

Table 2. Performance of GP using swap-crossover. Constant neutrality (i.e., {1,2,3,4,5}) and
degree neutrality with functions of different arities (i.e.,{2,3,4,5},{3,4,5},{4,5}) were used.
fn stands for the different fixed fitness values used. The global optimum is shown at the top of
Figure 3 and setting B = 0.01 and R = 0.8 (i.e., the problem is considered to be very difficult).

fn value {1,2,3,4,5} {2,3,4,5} {3,4,5} {4,5}
Avr. Gen % Suc. Avr. Gen % Suc. Avr. Gen % Suc. Avr. Gen % Suc.

- 4.50 2% 4.00 1% 4.00 2% 4 1%
0.10 N/A 0% N/A 0% N/A 0% N/A 0%
0.20 6.00 1% N/A 0% 6.00 1% N/A 0%
0.30 11.16 6% 15.50 2% 29.66 3% 18.00 9%
0.40 43.75 12% 37.00 9% 65.83 6% 86.57 7%
0.50 76.80 10% 61.30 13% 67.00 10% 80.69 13%
0.60 111.75 8% 97.00 6% 107.85 7% 104.87 8%
0.70 157.25 8% 118.00 3% 124.60 5% 83.00 1%
0.80 266.50 2% N/A 0% N/A 0% N/A 0%
0.90 N/A 0% N/A 0% N/A 0% N/A 0%

736 E. Galván-López and R. Poli

Table 3. Performance of GP using swap-crossover. Constant neutrality (i.e., arities
of functions = {1,2,3,4,5}) and degree neutrality with functions of different arities
(i.e.,{2,3,4,5},{3,4,5},{4,5}) were used. fn stands for the different fixed fitness values used.
The global optimum is shown at the bottom of Figure 3 and setting B = 0.01 and R = 0.8 (i.e.,
the problem is considered to be very difficult).

fn value {1,2,3,4,5} {2,3,4,5} {3,4,5} {4,5}
Avr. Gen % Suc. Avr. Gen % Suc. Avr. Gen % Suc. Avr. Gen % Suc.

- N/A 0% N/A 0% N/A 0% N/A 0%
0.10 N/A 0% N/A 0% N/A 0% N/A 0%
0.20 N/A 0% N/A 0% N/A 0% N/A 0%
0.30 52.20 10% 66.55 20% 62.07 13% 58.50 18%
0.40 79.57 14% 113.69 13% 77.66 9% 86.09 11%
0.50 110.30 10% 109.30 13% 75.07 13% 70.66 3%
0.60 204.00 3% 129.50 6% 82.71 7% 145.00 2%
0.70 128.00 2% 101.00 1% 10.66 3% 161.00 1%
0.80 N/A 0% N/A 0% N/A 0% N/A 0%
0.90 N/A 0% N/A 0% N/A 0% N/A 0%

Table 4. Performance of GP using swap-crossover. Constant neutrality (i.e., arities of functions
= {1,2,3,4,5}) and degree neutrality using the maximum arity (i.e., all function have the same
arity) were used. fn stands for the different fixed fitness values used. The global optimum is
shown at the top of Figure 3 and setting B = 0.01 and R = 0.8 (i.e., the problem is considered to
be very difficult).

fn value fdc {1,2,3,4,5} {5}
Avr. Gen % Suc. Avr. Gen % Suc.

- 0.9987 4.50 2% N/A 0%
0.10 0.9623 N/A 0% N/A 0%
0.20 0.8523 6.00 1% N/A 0%
0.30 0.7012 11.16 6% 35.60 10%
0.40 0.5472 43.75 12% 49.38 13%
0.50 0.4682 76.80 10% 84.11 18%
0.60 0.3912 111.75 8% 120.40 15%
0.70 0.3298 157.25 8% 100.25 8%
0.80 0.2892 266.50 2% 104.33 3%
0.90 0.2498 N/A 0% 56.00 2%

when all the functions are of the same arity (i.e.,arity = 5). So, it is clear that while fdc
computes some of the characteristics of a problem in relation to its difficulty, it does not
capture all.

By how much neutrality will help the search strongly depends on the constant fit-
ness assigned in the neutral layer, fn. However, for almost all values of fn improvements

An Empirical Investigation of How Degree Neutrality Affects GP Search 737

Table 5. Performance of GP using swap-crossover. Constant neutrality (i.e., arities of functions
= {1,2,3,4,5}) and degree neutrality using the maximum arity (i.e., all function have the same
arity) were used. fn stands for the different fixed fitness values used. The global optimum is
shown at the bottom of Figure 3 and setting B = 0.01 and R = 0.8 (i.e., the problem is considered
to be very difficult).

fn value fdc {1,2,3,4,5} {5}
Avr. Gen % Suc. Avr. Gen % Suc.

- 0.9991 N/A 0% N/A 0%
0.10 0.9714 N/A 0% N/A 0%
0.20 0.8693 N/A 0% N/A 0%
0.30 0.7023 52.20 10% 82.76 17%
0.40 0.5802 79.57 14% 78.00 14%
0.50 0.4674 110.30 10% 81.40 15%
0.60 0.3879 204.00 3% 147.12 6%
0.70 0.3342 128.00 2% 246.23 2%
0.80 0.2787 N/A 0% N/A 0%
0.90 0.2467 N/A 0% N/A 0%

can be seen over the cases where neutrality is absent and when crossover is used. Here
there is a rough agreement between fdc and actual performance although as fn is in-
creased beyond a certain level, fdc continues to decrease (suggesting an easier and easier
problem) while in fact the success rate reaches a maximum and then starts decreasing
again.

To explain why GP with crossover is able to sample the global optimum in the pres-
ence of neutrality (i.e., see for instance Tables 4 and 5 when fn = {0.30,0.40,0.50}), we
need to consider the following elements. Firstly, the flatter the landscape becomes the
more GP crossover will be able to approach a Lagrange distribution of the second kind
[13]. This distribution samples heavily the short programs. Secondly, since the global
optima used in our experiments (i.e., see Figure 3) are all relatively small, this natural
bias might be useful.

On the other hand, as can be seen in Tables 4, and 5, when the constant value on the
neutral layer is high (i.e., fn ≥ 0.70) the perfomance of the GP system tends to decrease.
This is easy to explain given that the higher the value of fn, the flatter the landscape.
Thus, flattening completely a landscape (i.e., fn ≥ 0.80) makes the search totally undi-
rected, i.e., random. So, there is no guidance towards the optima. The flattening of the
landscape also reduces or completely removes bloat. This is a good feature to have in
this type of problem and for the chosen global optima because bloat moves the search
towards the very large programs, but we know that none of them can be a solution.
So, if bloat were to take place during evolution, it would hinder the search. Effectively,
we can say that by changing the values of fn, the user can vary the balance between
two countering forces: the sampling of short programs and the guidance coming from
fitness.

738 E. Galván-López and R. Poli

References

1. Altenberg, L.: Fitness Distance Correlation Analysis: An Instructive Counterexample. In:
Back, T. (ed.) Proceedings of the Seventh International Conference on Genetic Algorithms,
pp. 57–64. Morgan Kaufmann, San Francisco (1997)

2. Collins, M.: Finding Needles in Haystacks is Harder with Neutrality. In: Beyer, H.-G.,
O’Reilly, U.-M., Arnold, D.V., Banzhaf, W., Blum, C., Bonabeau, E.W., Cantu-Paz, E.,
Dasgupta, D., Deb, K., Foster, J.A., de Jong, E.D., Lipson, H., Llora, X., Mancoridis, S.,
Pelikan, M., Raidl, G.R., Soule, T., Tyrrell, A.M., Watson, J.-P., Zitzler, E. (eds.) GECCO
2005: Proceedings of the 2005 conference on Genetic and evolutionary computation,
Washington DC, USA, June 2005, vol. 2, pp. 1613–1618. ACM Press, New York (2005)

3. Galván-López, E.: An Analysis of the Effects of Neutrality on Problem Hardness for Evo-
lutionary Algorithms. PhD thesis, School of Computer Science and Electronic Engineering,
University of Essex, United Kingdom (2009)

4. Galván-López, E., Dignum, S., Poli, R.: The Effects of Constant Neutrality on Performance
and Problem Hardness in GP. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar,
A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp.
312–324. Springer, Heidelberg (2008)

5. Galván-López, E., Poli, R.: Some Steps Towards Understanding How Neutrality Affects Evo-
lutionary Search. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whit-
ley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 778–787. Springer, Heidelberg
(2006)

6. Goldberg, D.E., Deb, K., Horn, J.: Massive Multimodality, Deception, and Genetic Algo-
rithms. In: Männer, R., Manderick, B. (eds.) PPSN II: Proceedings of the 2nd International
Conference on Parallel Problem Solving from Nature, pp. 37–48. Elsevier Science Publish-
ers, Amsterdam (1992)

7. Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis, University
of New Mexico, Albuquerque (1995)

8. Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cam-
bridge (1983)

9. Miller, J.F.: An Empirical Study of the Efficiency of Learning Boolean Functions Using
a Cartesian Genetic Approach. In: Banzhaf, W., Daida, J.M., Eiben, A.E., Garzon, M.H.,
Honavar, V., Jakiela, M.J., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary
Computation Conference GECCO 1999, Orlando, Florida, vol. 2, pp. 1135–1142. Morgan
Kaufmann, San Francisco (1999)

10. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Lang-
don, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp.
121–132. Springer, Heidelberg (2000)

11. O’Reilly, U.-M.: Using a Distance Metric on Genetic Programs to Understand Genetic Oper-
ators. In: IEEE International Conference on Systems, Man, and Cybernetics, Computational
Cybernetics and Simulation, Orlando, Florida, USA, vol. 5, pp. 4092–4097. IEEE Press, Los
Alamitos (1997)

12. Poli, R., Galván-López, E.: On The Effects of Bit-Wise Neutrality on Fitness Distance Corre-
lation, Phenotypic Mutation Rates and Problem Hardness. In: Stephens, C.R., Toussaint, M.,
Whitley, D., Stadler, P.F. (eds.) Foundations of Genetic Algorithms IX, Mexico city, Mexico,
pp. 138–164. Springer, Heidelberg (2007)

13. Poli, R., Langdon, W.B., Dignum, S.: On the limiting distribution of program sizes in tree-
based genetic programming. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-
Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 193–204. Springer, Heidelberg
(2007)

An Empirical Investigation of How Degree Neutrality Affects GP Search 739

14. Punch, B., Zongker, D., Godman, E.: The Royal Tree Problem, A Benchmark for Single
and Multi-population Genetic Programming. In: Angeline, P., Kinnear, K. (eds.) Advances
in Genetic Programming 2, pp. 299–316. The MIT Press, Cambridge (1996)

15. Quick, R.J., Rayward-Smith, V.J., Smith, G.D.: Fitness Distance Correlation and Ridge Func-
tions. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS,
vol. 1498, pp. 77–86. Springer, Heidelberg (1998)

16. Slavov, V., Nikolaev, N.I.: Fitness Landscapes and Inductive Genetic Programming. In:
Smith, G.D., Steele, N.C., Albrecht, R.F. (eds.) Artificial Neural Nets and Genetic Algo-
rithms: Proceedings of the International Conference, ICANNGA 1997, University of East
Anglia, Norwich, UK, Springer, Heidelberg (1997)

17. Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: Study of Fitness Distance Correlation
as a Difficulty Measure in Genetic Programming. Evolutionary Computation 13(2), 213–239
(2005)

18. Vanneschi, L.: Theory and Practice for Efficient Genetic Programming. PhD thesis, Faculty
of Science, University of Lausanne, Switzerland (2004)

19. Vanneschi, L., Tomassini, M., Collard, P., Clergue, M.: Fitness Distance Correlation in Struc-
tural Mutation Genetic Programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K.,
Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 455–464. Springer, Heidelberg
(2003)

20. Yu, T., Miller, J.F.: Finding Needles in Haystacks is not Hard with Neutrality. In: Foster, J.A.,
Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278,
pp. 13–25. Springer, Heidelberg (2002)

