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ABSTRACT
The effects of neutrality on evolutionary search have been
considered in a number of interesting studies, the results of
which, however, have been contradictory. Some researchers
have found neutrality to be beneficial to aid evolution whereas
others have argued that the presence of neutrality in the evo-
lutionary process is useless. We believe that this confusion
is due to several reasons: many studies have based their con-
clusions on performance statistics (e.g., on whether or not
a system with neutrality could solve a particular problem
faster than a system without neutrality) rather than a more
in-depth analysis of population dynamics, studies often con-
sider problems, representations and search algorithms that
are relatively complex and so results represent the composi-
tions of multiple effects (e.g., bloat or spurious attractors in
genetic programming), there is not a single definition of neu-
trality and different studies have added neutrality to prob-
lems in radically different ways. In this paper, we try to
shed some light on neutrality by addressing these problems.
That is, we use the simplest possible definition of neutral-
ity (a neutral network of constant fitness, identically dis-
tributed in the whole search space), we consider one of the
simplest possible algorithms (a mutation based, binary ge-
netic algorithm) applied to two simple problems (a unimodal
landscape and a deceptive landscape), and analyse both per-
formance figures and, critically, population flows from and
to the neutral network and the basins of attraction of the
optima.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming; D.2.8 [Software Engineering]: Metrics—com-
plexity measures, performance measures

General Terms
Algorithms
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1. INTRODUCTION
The effects of neutrality [7] on evolutionary search have

been considered in a number of interesting studies.
Harvey and Thompson studied some effects of neutral net-

works in an evolvable hardware problem [5]. In their work,
they defined the concept of potentially useful junk that refers
to loci in a genotype that are functionless within the current
context, but with different values elsewhere in the genotype
they may become functional. Harvey and Thompson argued
that is possible to reach a global optimum without worrying
about premature convergence if one uses neutrality in the
evolutionary process.

Banzhaf [1] proposed an approach where a genotype-phenotype
mapping was used in the context of constrained optimisation
problems. Banzhaf argued that, very often, constraining the
solution space leads to local optima which are difficult to es-
cape from with traditional methods. He used high variabil-
ity of neutral variants to escape from local optima on saddle
surfaces. Keller and Banzhaf extended this work in [6].

Shipman et al. explored the benefits of neutrality in the
context of a mapping based on an abstraction of a genetic
regulatory network — a random boolean network [9]. The
mapping used in their experiments provided a very large
degree of neutrality. From their experimental results they
concluded that neutral drift allowed the discovery of many
more phenotypes than would be the case with a direct en-
coding without redundancy.

Elsewhere [10] the same authors proposed four different
redundant mappings to study their effect in the evolution-
ary process and see how neutrality influences the search.
They argued that redundancy was useful in three of their
mappings. From this, they concluded that some kind of
redundancy (neutrality) is crucial.

Smith et al. [11] analysed the effects of the presence
of neutral networks on the evolutionary process. They ob-
served how evolvability was affected by the presence of such
neutral networks. For this purpose they used a system with
an extremely complex genotype-to-fitness mapping. They
concluded that the existence of neutral networks in the search
space, which allows the evolutionary process to escape from
local optima, does not necessarily provide any advantage.
This is because the population does not evolve any faster
due to inherent neutrality. Later on [12] the same authors,



focused their research on looking at the dynamics of the pop-
ulation rather than looking at just the fitness, and argued
that neutrality did not perform a useful role in an evolution-
ary robotic task.

Yu and Miller [13] showed in their work that neutrality im-
proves the evolutionary search process for a Boolean bench-
mark problem. They used Miller’s Cartesian GP [8] to mea-
sure explicit neutrality in the evolutionary process. They
have explained that mutation on a genotype that has part
of its genes active and others inactive may produce different
effects: mutation on active genes is adaptive because it ex-
ploits accumulated beneficial mutations, while mutation on
inactive genes has a neutral effect on a genotype’s fitness,
yet it provides exploratory power by maintaining genetic di-
versity. Yu and Miller extended this work in [14] showing
that neutrality was helpful and that there is a relationship
between neutral mutations and success rate in a Boolean
function induction problem. However, Collins [3] claimed
that the conclusion that, in this problem, neutrality is ben-
eficial is flawed.

Yu and Miller also investigated neutrality using the sim-
ple OneMax problem [15]. They attempted a theoretical ap-
proach in this work. With their experiments, they showed
that neutrality is advantageous because it provides a buffer
to absorb destructive mutations.

Chow [2] proposed a method that uses individuals which
contains multiple chromosomes instead of a single chromo-
some. The idea of his approach was to apply genetic oper-
ators which do not maintain a one-to-one mapping between
a genotypic bit and a phenotypic bit. Chow tested his ap-
proach in well known deceptive problems with good results.

Downing [4] added effortless neutral walks in his experi-
ments. For this purpose he used Binary Decision Diagrams
(BDDs). His idea was inspired by the fact that BDDs con-
tain a lot of redundancy. Thanks to the presence of neu-
trality in BDDs, he found good results when solving even-
n-parity problems (7 ≤ n ≤ 17).

As it can be seen from the brief summaries provided above,
some researches have found neutrality to be beneficial for the
evolutionary process while others have found it either use-
less or worse. We believe there are various reasons of why
contradictory results on neutrality have been reported and,
by addressing them, we think we can start clarifying the
sources of confusion. The aims of this study are:

• To understand how population flows in the search space
are affected by the presence of neutrality in the evolu-
tionary process, and, following from this analysis,

• to identify under what circumstances neutrality may
help improve performance of the evolutionary process.

The paper is organised as follows. In Section 2, the ap-
proach used to carry out our research is described. Section
3 provides details on the experimental setup used. The re-
sults presented in this paper are discussed in Section 4 and
conclusions are drawn in Section 5.

2. APPROACH
We believe that the confusion regarding neutrality has

several reasons:

• many studies have based their conclusions on perfor-
mance statistics (e.g., on whether or not a system with

neutrality could solve a particular problem faster than
a system without neutrality) rather than a more in-
depth analysis of population dynamics,

• studies often consider problems, representations and
search algorithms that are relatively complex and so
results represent the compositions of multiple effects
(e.g., bloat or spurious attractors in genetic program-
ming),

• there is not a single definition of neutrality and dif-
ferent studies have added neutrality to problems in
radically different ways,

• the features of a problem’s landscape change when
neutrality is artificially added, but rarely an effort has
been made to understand in exactly what ways.

In this paper, we try to shed some light on neutrality by
addressing these problems. That is,

• We use the simplest possible definition of neutrality:
a neutral network of constant fitness, identically dis-
tributed in the whole search space. Neutrality is “plugged
into” the original non-redundant code by adding an ex-
tra bit to the representation: when the bit is set the
individual is on the neutral network (and, so, its fit-
ness has a pre-fixed constant value), when the bit is
0, the fitness of the individual is determined by the
coding bits as usual.

• We consider one of the simplest possible algorithms
(a mutation based, binary genetic algorithm without
crossover).

• We analyse both performance figures and, critically,
population flows from and to the neutral network and
the basins of attraction of the optima.

• We use two problems with significantly different land-
scape features: a unimodal landscape where we expect
neutrality to always be detrimental and a multimodal
deceptive landscape, where there are conditions where
neutrality is more helpful than others.

In the presence of the form of neutrality discussed above,
the landscape is therefore divided into two areas of identi-
cal size, which we will call the neutral layer and the nor-
mal layer. For bit strings of length l there are 2l points in
each layer. However, we still only have one global optimum.
So, the addition of neutrality comes at a cost since we are
expanding the size of the search space without correspond-
ingly expanding the solution space. So, we should expect to
see benefits of neutrality (e.g., improved performance) only
when neutrality modifies the search bias of an algorithm-
problem pair, in such a way to make it much more likely
to (eventually) sample the global optimum. If this does not
happen, or worse, if the original bias is modified in such a
way to make it harder to reach the global optimum, then we
can be certain that neutrality will not help.

Think, for example, of a stochastic hill-climber or a mutation-
only genetic algorithm on a unimodal landscape. If we start
the search from some random point, we can easily imagine
how the hill-climber will generate moves that improve fit-
ness as many times as it will generate moves that make it
worse. So, the hill-climber will obtain an improvement of



fitness every other time step, on average. Adding neutrality
of the type indicated above to this landscape, however, will
change radically the behaviour of the hill-climber. If the
current solution has a fitness below the fitness of the neu-
tral network, then the neutral network will be a preferable
place to be in, and so, the hill-climber moves there and be-
haves like a random walk thereafter. If, instead, the fitness
of the current point is above the fitness of the neutral net-
work, then the neutral network will be a place to avoid, and
so, the hill-climber will only accept improving moves on the
normal layer. However, this are now generated with only
half the probability they had in the absence of neutrality.
So, in both cases the hill-climber cannot benefit from the
introduction of a uniform neutral network in an otherwise
unimodal landscape.

Neutrality is often reported to help in multimodal land-
scapes, in that it can create paths which connect local op-
tima, thereby allowing the march towards the global op-
timum to never come to a complete stand still. So, in the
case of our multimodal deceptive problem, should we expect
a uniform neutral network to increase performance? And
what sort of population dynamics should we expect? For
analysis purposes, we further divide the normal and neutral
layers into two: depending on which of the two basins of
attraction a string belongs to. We will term the resulting
four areas “global neutral”, “local neutral”, “global normal”
and “local normal”.

Let us now consider whether a uniform neutral network
could provide a performance improvement in the case of
our deceptive landscape. Naturally, we must first consider
whether or not the neutral layer acts as an attractor or a
repellent and for what proportion of the local and global ar-
eas. If, for example, the neutral layer has a very low fitness,
then it should become harder for individuals to use it as a
“tunnel” between the large basin of attraction of the local
optimum and the narrow basin of attraction of the global
optimum. In this case, the neutral layers would provide no
advantage and, given that it doubles the search space, we
should see a marked decrease in performance. If, instead,
the neutral layers had a relatively high fitness, we should ex-
pect to see more individuals moving towards it. This means
that there could be a flow of individuals from one basis of
attraction to the other. This however would not in itself
provide a performance improvement w.r.t. the case where
no neutrality is used, because the flow is bidirectional and,
so, individuals already in the global area may end up per-
forming a random walk which leads them away from it. In
addition, because the search space is still twice as big as the
original while the solution spaces has still size 1, in order to
beat the performance of the no-neutrality case, neutrality
would need to provide a very significant “improvement” in
search bias.

There may be situations, however, where the neutral sys-
tem can provide very dramatic improvements. For example,
one can modulate the benefits and drawbacks of neutral-
ity by varying population size and using biased initialisa-
tion strategies. The latter are particularly common when
dealing with infinitely large search spaces (e.g., the space of
variable length strings and the space of computer programs),
where it is impossible to initialise the population uniformly
at random across the whole search space, which may be a
further reason why certain studies have reported significant
benefits when using neutrality (albeit of forms very different

Figure 1: Example of deceptive problem used in our
study.

Table 1: Summary of Parameters.
Parameter Value

Length of the genome 8 (+1 for neutrality)
Population Size 20, 40, 60, 80, 100
Generations 300
Mutation Rate (per bit) 0.02
Independent Runs 100

from the one used here).
These considerations have motivated our experiments. These

are described in more detail in the following section.

3. EXPERIMENTAL SETUP
We have used two problems to analyse neutrality. The

first one is the OneMax problem. The problem is to max-
imise:

f(x) =
X

i

xi,

where x is a binary string of length l, i.e., x ∈ {0, 1}l. Nat-
urally, this problem has only one global optimum in 11 · · · 1,
and, the landscape is unimodal.

The second problem is similar to a deceptive trap func-
tion, but it includes minor variations which make the land-
scape less symmetric. In this problem we have two optima:
a global optimum at position 11 · · · 1 and a local optimum
a position 00 · · · 0. The global optimum is given a fitness
n, while the local optimum has fitness n − 1. The remain-
ing points in the landscape are assigned fitness values that
decrease with the distance from one of the optima, in such
a way that the basin of attraction of the global optimum
is significantly smaller than the basin of attraction for the
local optimum. This last feature makes the problem decep-
tive. Figure 1 shows an example of deceptive problem for
the case of l = 4 (where we use n = 10). In our experiments
we used the chromosomes of length l = 8 and n = 40.

The experiments were conducted using a GA with fitness



Table 2: Average number of generations required to
reach the optimal solution for the OneMax problem.
Length of the genome l = 8.

Population Without Value on Value on
size neutral layer neutral 7 neutral 5

20 9.6 111.3 17
40 6.5 101.2 11.6
60 5.4 82.3 8.2
80 4.5 64.6 7.5
100 3.5 50.5 6.7

proportionate selection and bit-flip mutation, run for 300
generations. To obtain more meaningful results, we per-
formed 100 independent runs for each of the population
sizes. Runs were stopped when the maximum number of
generations was reached. The parameters we have used are
summarised in Table 1.

When the neutral layer was used, we used two different
values of fitness.

For the deceptive problem we have used two different
methods of initialisation. The first method, which we will
call random initialisation, creates the initial population ran-
domly and uniformly across the whole search space. The
second method, which we will call fixed initialisation, still
creates the initial population at random, but this time in-
dividuals can only belong to a pre-fixed area: the basin of
attraction of the local optimum. For OneMax we used ran-
dom initialisation.

4. RESULTS AND ANALYSIS

4.1 Performance comparison
Let’s start by analysing the results for the OneMax prob-

lem. In Table 2, we show the number of generations required
to reach the optimal solution for the OneMax problem. As
expected, the number of generations required to reach the
optimal solution in the presence of explicit neutrality is big-
ger than when it is not present. In the case considered here
(l = 8) the maximum achievable fitness is 8, and so a neu-
tral layer with fitness 7 turns the search into a set of parallel
random walks (as we explained earlier). It is not surprising
that then, performance decreases so much with neutrality.
When, instead, the fitness of the neutral layer is lower, 5, we
see that the original character of the search is maintained,
but, because half of the moves (mutations) are wasted (in
the sense that offspring on the neutral layer are then not se-
lected, and so, produce no progress), performance is inferior
to the no-neutrality case by about a factor of 2.

Now, let’s consider the second problem – the bimodal de-
ceptive problem. In Tables 3 and 4, we present the percent-
age of runs that were able to reach the optimal solution with
and without neutrality in the evolutionary process.

When using the random initialisation method and being
neutrality present, when the fitness of the neutral layer is
low (23), the percentage of runs that reached the optimal
solution were lower than when neutrality was not present
at all population sizes. This is to be expected, since, as we
argued above, in this situation we have an increased search
space but virtually no “tunnelling” ability (since random
walks on the neutral layer can only be rare and very short
due to its low fitness). As expected the situation is different

Table 3: Percentage of runs that reached the optimal
solution for the Deceptive problem. Length of the
genome l = 8. Random initialisation.

Population Without Value on Value on
Size neutral layer neutral 38 neutral 23

20 61% 42% 51%
40 78% 56% 60%
60 81% 67% 72%
80 85% 81% 75%
100 93% 94% 84%

Table 4: Percentage of runs that were able to reach
the optimal solution for the Deceptive problem.
Length of the genome l = 8. Fixed initialisation.

Population Without Value on Value on
Size neutral layer neutral 38 neutral 23

20 7% 26% 2%
40 9% 48% 6%
60 17% 68% 12%
80 17% 74% 21%
100 31% 86% 23%

when the neutral layer has a high fitness (38, which is only
beaten by the global and local optima). For example, with
small population sizes it is better to have a neutral layer with
low fitness than with high fitness, while the opposite is true
for larger populations. Also, interestingly, for large enough
populations (e.g., 100), performance is not statistically dif-
ferent from the performance registered in the no-neutrality
case. This means that there are complex dynamics going on
between layers and regions of the landscapes, and that only
by understanding these one can predict and understand the
effects of neutrality. We investigate them in the next section.

Before doing that, we let us have a look at what happens
when the population is away from the basin of attraction of
the global optimum. When we have initialised our popula-
tion in the local area, the presence of neutrality is beneficial
when the fitness of the neutral layer is high enough to allow
the easy crossing of the barrier between basins of attraction.
As shown in Table 4, if the fitness of the neutral layer is too
low, the benefits accrued by the more modest tunnelling
ability provide by neutrality in this case are masked by the
drop in performance due to an enlarged search space.

4.2 Population flows
First, let us consider where individuals reside and in what

proportions in different phases of the search in the presence
of neutrality. In a particular generation each individual can
be in one of four areas: normal layer close to the global
value, normal layer close to the local value, neutral layer
close to the global value and neutral layer close to the local
value.

In Figure 2, we show how individuals tend to migrate
between areas in the case of random initialisation, for two
different population sizes and two different fitness values for
the neutral layer. When the fitness assigned to the neutral
layer is 23, the number of individuals in the neutral layer
decreases very rapidly and stays low thereafter. This is easy
to explain, being 23 the lowest value in the search space. On
the other hand, when the value on the neutral layer is 38,



this layer rapidly acquires individuals, this effectively be-
ing the easiest way for the population to increase its fitness.
This intake is at the expense of the normal layers which
rapidly become less populated. This happens because ini-
tially most individuals in that layer have fairly low fitness
compared with the neutral layer. However, after a certain
number of generations the population is close enough to one
of the optima and then being on the normal layer is no longer
disadvantageous. Indeed, in the case of populations of size
20, we see that eventually both layers come to have approx-
imately the same number of individuals (Note that plots are
averages).

With a population of 100, instead, most runs end up with
the population around the global optimum, and this is the
reason why, the plot in the bottom right corner of Figure 2,
individuals in the normal layer in the local region keep de-
creasing monotonically.

In Figure 3, we show how individuals migrate between ar-
eas in the case of fixed initialisation, for two different pop-
ulation sizes and two different fitness values for the neutral
layer. When the fitness assigned to the neutral layer is 23,
the number of individuals in the neutral layer decreases very
rapidly and stays low thereafter, like for random initialisa-
tion. In these conditions, a population of 20 is clearly in-
sufficient to avoid the attractor at the local optimum. With
larger populations, the global optimum can be reached given
enough mutation steps. When the fitness of the neutral layer
is 38, this layer rapidly acquires individuals, as for random
initialisation. The individuals in this layer are effectively
drifting and so, some reach the neutral layer in the basin of
attraction of the global optimum, as indicated by the plots
for either population size. The individuals there keep drift-
ing on the neutral layer until they are close enough to the
global optimum that offspring in the neutral layer start be-
ing reasonably competitive with those on the neutral layer.
This multi-stage process is the reason for the slower growth
in the number of individuals in the normal layer near the
global optimum. This explanation shows that what nor-
mally is seen as a simple “tunnelling” effect provided by
neutrality may in fact be a much more complicated process.

So far, we have seen that individuals tend to move from
one area to another. However, we can not say from where
an individual came from being in a specific layer. In a mu-
tation based genetic algorithm each individual has only one
parent. This makes it possible to track the origin of a sample
point, and, in fact, the full evolutionary path of an individ-
ual within its family tree. This has allowed us to collect
detailed statistics of population flows from one layer and re-
gion to another. To perform a full analysis we need to look
at 24 = 16 different parent/offspring transitions: a parent
could be in any of four areas and his offspring could be in
any of the same four areas. Due to space limitations, we will
report only the data for the Deceptive problem, running the
genetic algorithm with a population of size 100 and using
the random initialisation method.

We show the results of the analysis of family trees using
two different values for the neutral layer: 23 (shown in Fig-
ure 4) and 38 (shown in Figure 5). In all plots we can observe
that the majority of offspring in an area came from parents
already in that area. These are not the only sources, how-
ever, as shown in Figure 4 (lower left) where we can see that
a small proportion of individuals in the neutral layer near
the global optimum actually comes from the corresponding

normal layers (which is, of course, due to mutations to the
“neutrality bit”). Another example is in Figure 5 (top right),
which shows a small flow of individuals from the neutral lo-
cal area to the corresponding normal area. More generally
the plots confirm the observations made above.

5. CONCLUSIONS
There is considerable controversy on whether or not neu-

trality helps or hinders evolutionary search. In this paper
we have highlighted some possible reasons for this situa-
tion. A particularly serious problem is that many studies
are only based on performance statistics, rather than more
in-depth investigations, and there is considerably variabil-
ity in the problems, algorithms and representations used for
benchmarking purposes. Also, there is neither a single defi-
nition of neutrality nor a unified approach to add neutrality
to a representation. In this paper, we have made an effort
to address these problems, by analysing performance fig-
ures, population distribution w.r.t. the basins of attraction
of optima and the neutral network in the landscape, and
parent-offspring flows from and to the neutral network and
the basins of attraction of the optima.

We argue that neutrality may be beneficial in itself, but
when it comes at the cost of an increased size of the search
space without a corresponding expansion of the solution
space, then any benefits it may bring via a search bias, tun-
nelling ability, etc. may be insufficient to compensate for the
additional search effort required by a reduce density of solu-
tions. We also argue that the modifications in the original
search bias of an algorithm produced by the addition of neu-
trality (at least of the form we have discussed here) are not
always beneficial. We brought, for instance, the example of
a unimodal landscape, where, as confirmed also experimen-
tally, it is very hard to imagine any advantages in adding
neutrality. Neutrality-induced bias, may, however, be very
beneficial (so much so to fully overcome the inefficiencies
due to an extended search space) in certain circumstances,
like, for example, when the population is initialised in the
wrong part of the search space.

In the paper we have shown, however, that it is very dif-
ficult to infer the effects (or benefits) of neutrality without
getting under the bonnet and looking at the population flows
induced by the presence of neutrality. For example, we have
shown that in exactly the same conditions, a neutral network
of low fitness changes the behaviour of a genetic algorithm
in very different ways than a high-fitness neutral network.
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Figure 4: Number of transitions to the normal global area (top left), normal local area (top right), neutral
global area (bottom left) and neutral local area (bottom right), when the fitness of the neutral layer is 23.
Random initialisation and population size 100.

Figure 5: Number of transitions to the normal global area (top left), normal local area (top right), neutral
global area (bottom left) and neutral local area (bottom right), when the fitness of the neutral layer is 38.
Random initialisation and population size 100.
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