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a b s t r a c t

Traditional preparation methods for cytology samples pose a significant problem for Raman micro-
spectroscopy, with long-established clinical techniques depositing cells on glass slides. Unfortunately,
both the signal from the glass slide and the baseline signal from the cell itself obscure the Raman cell
spectrum. The intensity of the glass signal varies from cell to cell depending on morphology, and al-
though smooth, the signal is more complex within the fingerprint region than the baseline, and cannot
be easily removed from the Raman spectrum using polynomial fitting techniques. It is difficult to ac-
curately remove both background signals, and therefore, the use of standard glass slides compromises
the capability of pre-processing methods to extract reliable and reproducible spectra from biological
cells. To avoid this signal, Raman spectra are often recorded from cells on expensive substrates, such as
calcium fluoride (CaF2) or quartz, but this practice is impractical for large scale applications of Raman
cytology for diagnostics or screening purposes. This study investigates the potential of a number of
background subtraction algorithms to remove both the glass signal and the baseline, and investigates the
effect of these algorithms on subsequent multivariate analysis for the purpose of cell classification. This
study demonstrates that the well-known extended multivariate signal correction (EMSC) algorithm is
particularly effective in this regard, and that the results of subsequent multivariate statistical analysis are
independent of the reference cell spectrum used in the algorithm. Matlab code is provided for the im-
plementation of the EMSC algorithm.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The analysis of cytological samples using Raman micro-spec-
troscopy has the potential of replacing many invasive procedures,
such as endoscopy or biopsy. Raman based diagnostics have re-
ceived growing interest in recent years, particularly for cervical [1–
3], urine [4–6], and oral cytology [7,8]. However, the advancement
of Raman spectroscopy into the clinic has been hindered by its
incompatibility with inexpensive glass slides that are used as a
standard consumable within the cytopathological laboratory.

It is necessary to remove background signals insofar as possible
from Raman spectra in order to facilitate an accurate comparison
of related cell spectra, and in particular for the application of
multivariate classification for the purpose of disease diagnostics or
screening. In general, Raman spectra of biological samples contain
a broad baseline signal that often varies randomly from one
T. Kerr),
recording to the next. The signal is most often ascribed to an auto-
fluorescence from the sample itself [9]. Although it has been
suggested by some authors [10] that it may originate from sample
morphology and Mie scattering of the source laser wavelength.
Regardless of its origins, various algorithms have been developed
to identify and remove this baseline signal from Raman cell
spectra, with polynomial fitting techniques being the most com-
mon technique used today [11–13].

The preparation of cytology samples poses a significant pro-
blem for Raman micro-spectroscopy, with current clinical techni-
ques, such as the ThinPrep or SurePath methods, producing cell
samples on glass slides for pathological evaluation. Glass is often a
necessary consumable in clinical cytopathology due to its low cost.
Unfortunately, the background signal from glass adds to the
aforementioned baseline signal to further obscure the weak Ra-
man cell spectrum, thus compromising the ability of Raman mi-
cro-spectroscopy to produce reliable and reproducible spectra
from biological cells [14]. This is particularly evident in the 1050–
1150 cm�1 region, where the glass signal is often strongest when
recording Raman spectra with a 532 nm excitation source. The
spectral profile, location, and intensity of the glass signal are
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dependent on the excitation source, as shown elsewhere [15], with
the ability to recover Raman spectral peaks decreasing as the
source wavelength moves from the visible to the NIR region. Here,
we are only interested in 532 nm laser sources, which produce a
relatively low, but still problematic glass background signal. Ty-
pically, research groups try to avoid the glass signal by recording
Raman spectra from cells deposited on expensive substrates, such
as CaF2, which has a relatively flat background within the finger-
print region [16]. In this paper, a number of different background
subtraction algorithms are investigated in order to accurately re-
move the glass contamination present in Raman cell spectra, as
well as the baseline signal. It is demonstrated that EMSC is parti-
cularly effective in removing both background signals, as well as
having the additional benefit of effectively normalising the cor-
rected spectra, a step that is always required in advance of mul-
tivariate classification.

Algorithms have been previously developed to remove spectral
contaminants from Raman spectra, based on a variety of techni-
ques. Tfayli et al. [17] reported the removal of paraffin signals from
Raman spectra using a combination of independent component
analysis (ICA) and non-negative constrained least squares; with
other research groups applying a similar technique for the removal
of known spectral contaminants, such as pharmaceutical drugs
[18], or polystyrene nanoparticles [19], that were present within
Raman cell spectra. Beier et al. [20] proposed an algorithm that
simultaneously removed the baseline as well as the background
signal from a known contaminant based on an iterative poly-
nomial subtraction method [21]. This algorithm has previously
produced good results in the removal of the glass signal from
Raman spectra of epithelial cheek cells [15], however, following
extensive testing, it is reported in this paper, that for certain cell
lines of particular morphology, this algorithm can result in over-
fitting and alteration of key spectral information, which has a
negative impact on resultant multivariate classification algorithms.

EMSC algorithms are gaining interest in recent times for the
removal of spectral interferents from vibrational spectroscopic
data [22]. EMSC can be applied to vibrational spectra to separate
between different physical effects based on an ordinary least
squares fitting approach [23]. This technique has been applied
extensively to Fourier Transform Infrared (FTIR) spectroscopic data
to correct for Mie scattering effects [24–26]. Liland et al. [27] re-
cently applied EMSC to fit whole datasets to reference spectra,
resulting in the removal of an interfering signal from Raman
spectra of adipose tissue. This interferent was due to an optical
effect resulting from the Raman system design, presenting in
various intensities from spectrum to spectrum, and could not be
completely removed using traditional background correction al-
gorithms, such as a modified polynomial in combination with the
standard normal variate (SNV). A similar approach is applied here
for the removal of the glass signal from Raman cytology spectra. It
is believed that this algorithm could help with the advancement of
Raman cytology into a clinical setting, allowing for the use of
current clinical pathology techniques, such as glass slides. Ad-
ditionally, the results of the EMSC algorithm, and subsequent
Principal Component Analysis (PCA) results, are compared with
two other background algorithms.
2. The EMSC algorithm for removal of glass signal

A raw spectrum, S, can be described as a linear superposition of
the Raman spectrum of interest, R, the baseline signal, B, and the
glass signal, G:

= + + ( )S R G B 1
The goal is to estimate the values of B and G such that they may be
subtracted from the recorded spectrum. Although noise will al-
ways be present in the raw spectrum [28], it is assumed that the
signal to noise ratio is sufficiently high such that the noise signal
may be ignored.

A reference spectrum, r, is first obtained such that it may be
assumed that R can be approximated by the product of this re-
ference spectrum and a certain weight:

≈ × ( )cR r 2r

where cr is a scalar for a given spectrum.
Similarly, by recording a spectrum directly from a glass slide, g,

it is possible to represent the spectral contribution of glass in the
recorded cell spectrum, G, as the product of the pure glass spec-
trum and a certain weight:

= × ( )cG g 3g

It should be noted that both cr and cg are scalar values that are
unique to each cell spectrum, and are dependent on experimental
parameters such as the Raman acquisition time.

The slowly varying baseline B can be represented using an
appropriate N order polynomial:

= + + + ⋯ + ( )c c c cB x x x 4N N
N

0 1 2
2

where N is the order of the polynomial, and cm for = →m N0
represents the various coefficients in the polynomial [29].

The raw spectrum, S, the reference spectrum, r, the glass
spectrum, g, and the order of the polynomial, N, are all input to the
EMSC algorithm, which returns estimates for cr, cg, and cm for

= →m N0 . These estimates are based on an optimal fit of the
various vectors in Eq. (5) in an ordinary least squares sense
[22,27]:
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The background corrected cell spectrum, T, is given by:
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The choice of the reference spectrum, r, is a subject of parti-
cular interest. It is common to set r to be equal to the mean
spectrum for a given dataset of interest [22,27]. In this paper,
however, in order to omit the glass signal from the reference
spectrum, spectra are recorded from similar cells on CaF2 slides,
and r is taken to be equal to the mean spectrum. The CaF2 sub-
strate produces a relatively weak background signal, and it can
therefore be assumed that ≈ +r r bcell , where rcell denotes the true
Raman spectral irradiance of the cell on the CaF2 substrate, and b
represents a baseline signal that is inherent in the reference
spectrum. All corrected spectra therefore will be fit to a reference
that includes this baseline signal. The presence of this constant
baseline is only a matter of aesthetics since the qualitative and
quantitative data within a dataset will be unaffected so long as all
of the spectra in the dataset are processed using the same re-
ference spectrum [22]; it has been shown that this constant
baseline, therefore, has no effect on multivariate statistical analy-
sis, such as PCA, that follows after processing using EMSC.

The purpose of this paper is to investigate the application of the
EMSC algorithm to pre-process Raman datasets recorded from
cells on glass slides, in advance of PCA based classification, with a
view to understanding the potential of the method for improving
the sensitivity and specificity of cytopathology. For such an ap-
plication, it is important to fully evaluate the effect of different
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reference spectra on the multivariate classification of pre-pro-
cessed data, in order to assess any possible biasing of the results.
3. Methods

3.1. Spectral acquisition

Spectra are recorded with a custom built confocal Raman mi-
cro-spectrometer operating with a 532 nm laser (150 mW, Torus;
Laser Quantum, Cheshire, UK), 50� microscope objective (50� /
0.8 Olympus UMPlanFl; Olympus Corporation, Japan), and μ100 m
confocal aperture. The laser illuminates a μ3 m diameter spot size
that is targeted at cell nuclei. Raman scattered photons are col-
lected with a spectrograph (Shamrock 500; Andor Technology, UK)
operating with a 600 lines mm�1 grating (spectral resolution of
4 cm�1 at the centre), and a cooled CCD camera (DU420A-BR-DD;
Andor Technology, UK) operating at − °80 C. Spectra are recorded
from each cell nucleus with an acquisition time of 5 s each; two
spectra are recorded from the same location within the nucleus,
and are averaged together using an algorithm that simultaneously
removes cosmic rays. [30].

Four datasets of Raman spectra were recorded using the system
described above, with 50 cell spectra present in each dataset;
(i) T24 high grade bladder cancer cells recorded on CaF2 substrates
(Raman grade CaF2, Crystran, UK); (ii) MDA-MB-231 triple nega-
tive breast cancer cells recorded on CaF2 substrates; (iii) T24
bladder cancer cells recorded on glass slides; and (iv) RT112 low
grade bladder cancer cells recorded on glass slides. All cell lines
were obtained from Cell Lines Services GmBH, Germany. The latter
two datasets contain the spectra selected for pre-processing using
the EMSC algorithm, while the other datasets are used to generate
the reference spectra used in the algorithm.

3.2. Background subtraction algorithms

For the sake of comparison, two other well-known background
subtraction algorithms are first applied to the T24 and RT112 da-
tasets recorded on glass slides.

The first algorithm is the modified polynomial baseline cor-
rection method, as proposed by Lieber et al. [21]. This is an auto-
mated approach in which the spectrum is first fitted with an N
order polynomial using ordinary least squares. Those values of the
spectrum that lie above the polynomial are set equal to the value
of the polynomial; the resultant signal is again fitted with an N
order polynomial, and the process is iteratively repeated, until a
point is reached such that the polynomial lies directly underneath
the Raman spectral peaks. Here, this method is applied based on a
fifth order polynomial and 200 iterations. This algorithm makes no
attempt to remove the glass signal, but it is one of the most
common approaches used for baseline correction in the literature.

The second algorithm applied is the method proposed by Beier
et al. [20], which involves the subtraction of a weighted glass
signal and an N order polynomial in an iterative manner, similar to
the modified polynomial method, until a point is reached such
that the modelled baseline lies directly below the Raman peaks.
The fminsearch function in Matlab (Matlab, Mathworks Inc., USA)
can be applied to determine which glass weight/polynomial
combination results in the smallest residual spectrum, as de-
scribed in [20]. In the results presented here, N is chosen to be 5,
and the number of iterations is 200.

The EMSC algorithm is implemented via an adapted version of
Matlab's polyfit function, which is available in the Appendix. A
glass signal was recorded by focusing the laser onto the surface of
a glass slide over a 5 s integration time. The glass signal was then
smoothed using a Savitsky Golay filter ( = =w k3, 41). In this
study, only a first order polynomial is chosen for all cases (i.e. a
straight line), however, in general the order of the polynomial is
dependent upon the dataset being analysed, and the associated
baseline intensity present.

The choice of reference spectrum is an important consideration
as discussed in Section 3. EMSC has previously been shown to
work well for Raman spectroscopy; in previous examples the
mean spectrum of a dataset has been shown to be a good choice
for the reference spectrum. However, in the present study, two
datasets are analysed for the purpose of cell classification. It is
essential to use the same reference for both bladder cell datasets
on glass slides. The reason for this lies in the constant baseline that
is inherent in the reference. Therefore, all spectra must be fit to the
same reference for the sake of fair comparison. In order to un-
derstand if the choice of a particular reference spectrum can in-
troduce any bias into subsequent multivariate analysis, two dif-
ferent reference spectra were applied, and PCA analysis of the
resultant dataset pairs was compared. In order to generate a re-
ference spectrum, 50 cell spectra are recorded from cells on CaF2,
and averaged together to form a single spectrum. No pre-proces-
sing or baseline correction algorithms are applied to the reference
spectrum, unless desired for aesthetical purposes. Here, the first
reference spectrum is generated from T24 cells that are recorded
on a CaF2 substrate, and the second reference spectrum is taken
fromMDA-MB-231 cells that are also recorded on a CaF2 substrate.
These two references have been chosen because they are both
from epithelial cells, but have different spectral shapes and in-
tensities to each other. Furthermore, one of the reference spectra is
related to one of the two bladder cell lines under investigation,
while the other is unrelated to the two cell lines under in-
vestigation. In both cases, a Savitsky Golay smoothing filter
( = =w k3, 7) is applied to the mean CaF2 spectra, to generate the
final reference spectra for use in the EMSC algorithm.

PCA is applied to both datasets following each background
subtraction method, and the first three PC coefficients are ana-
lysed for residual glass signals. Additionally, the standard devia-
tion across an entire dataset is monitored and compared for each
background algorithm.
4. Results

We begin this section with the results of the two well-known
background subtraction algorithms discussed in Section 2; the
modified polynomial [21], and the Beier method consisting of a
modified polynomial with the glass signal [20]. Fig. 1(a) shows the
mean spectra for T24 and RT112 cells recorded on glass, averaged
over 50 cell spectra in each group respectively, following (i) the
application of the modified polynomial baseline correction meth-
od, and (ii) normalisation. The shaded region highlights the pre-
sence of varying levels of glass signal across both datasets. This
varying signal is due to the different cell morphology of the two
cell lines; the RT112 cells appear to contain relatively smaller
nuclei sizes, and therefore their Raman spectra contain a larger
proportion of the glass substrate signal. It is expected that the
glass contribution will remain in the processed spectra since the
modified polynomial method is designed only to subtract the
baseline signal.

Fig. 1(b) shows the PC score plot, and the first three PC coeffi-
cients obtained when the data in Fig. 1(a) are subject to PCA. Here,
it can be seen that the first PC has a significant glass contribution
(see Fig. 1(c)). It is interesting to note that the spectra are separ-
ating mainly along the first PC; the physical interpretation of this
is that the cells are effectively separation according to differing
morphology across the two cell lines, which is manifesting
through the varying power of the glass signal component.



Fig. 1. (a) Mean of T24 and RT112 datasets following a modified polynomial background subtraction method; (b) PC scores, and the first three PC coefficients [(c), (d), and (e),
respectively] for the data shown in (a); (f) mean of T24 and RT112 datasets following the background subtraction method proposed by Beier et al., involving a modified
polynomial and glass signal subtraction [20]; (g) PC scores, and the first three PC coefficients [(h), (i), and (j), respectively] for the data shown in (f). The shaded areas
highlight the region where the glass signal is most present within Raman cell spectra. (For interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this paper.)
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Although interesting, this is not a desirable result. It cannot be
expected that a similar morphological difference will occur in all
cell classification applications. It is far more reliable in general to
base classification on the biochemical variation across the
datasets.

The second algorithm that is investigated is the method pro-
posed by Beier et al. [20] which, as described in Section 3, is de-
signed to simultaneously remove both the glass signal and the
baseline based on the combination of a modified polynomial and a
weighted glass signal. Fig. 1(f) displays the mean spectra for T24
and RT112 cells recorded on glass, averaged over 50 cell spectra in
each group respectively, following application of this algorithm
and normalisation. This figure demonstrates a significant reduc-
tion in the amount of glass signal present in the spectra, particu-
larly for RT112 cells, when compared to spectra that have been
baseline corrected with a modified polynomial alone.

Fig. 1(g) shows the PC score plot, and the first three PC coeffi-
cients obtained when the processed data is subject to PCA. Similar
to the results presented in Fig. 1(c), the first PC contains a signal
within the 1050–1150 cm�1 region, associated with glass (see
Fig. 1(h)). Therefore, while the glass signal has been reduced, it is
still a significant component in both spectral datasets, and will
remain the dominant factor in any PCA based classification.

Fig. 2 illustrates the removal of the glass signal contribution
from a sample T24 cell spectrum recorded on a glass slide based
on a reference spectrum generated from T24 cells on CaF2 using
EMSC. The red line represents the raw spectrum recorded from a
T24 cell on glass, and the black line represents the reference
spectrum to which all other spectra are fitted. The green line is the
modelled background consisting of a combination of the glass
signal and a first order polynomial, determined using the EMSC
algorithm, and the blue line is the corrected spectrum, which has
had the glass signal subtracted.

Fig. 3(a) shows the equivalent mean spectra for the same cell
lines as shown in Fig. 1, where pre-processing is implemented
using the EMSC algorithm; input to this algorithm was the glass
signal, a reference spectrum based on T24 cells on a CaF2 substrate,
as well as the chosen polynomial order N. Here, the glass signal
has been effectively removed from the Raman cell spectra. The
remaining peaks within the 1050–1150 cm�1 region are Raman
cell peaks, seen in urothelial cell spectra recorded on CaF2 and
other similar substrates that produce low background signals [31].
The standard deviation is also shown for each cell line following
EMSC processing. The amplitude of the standard deviation is
amplified by a factor of 10 with respect to the mean spectra shown
in the same figure.

Fig. 3(b) displays the PC score plot obtained when these data-
sets are subject to PCA, with Fig. 3(c), (d), and (e) illustrating the
first three PC coefficients obtained. In contrast to the PC coeffi-
cients using the previously discussed processing methods, the PC
coefficients presented in Fig. 3 do not appear to contain a glass
signal component. This is an important result as it is essential for



Fig. 2. Raw spectrum of T24 cell (red), recorded on a glass slide, which has been fit
to a reference spectrum recorded from T24 cells on CaF2 (black) using EMSC, re-
sulting in a modelled background signal (green) consisting of a first order poly-
nomial and a weighted glass signal, and the final background corrected spectrum
(blue). (For interpretation of the references to colour in this figure caption, the
reader is referred to the web version of this paper.)
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reliable classification algorithms to be based on biomolecular dif-
ferences across cell groups, and not to be based on the presence, or
absence, of a glass signal. Both cell lines separate according to the
second PC coefficient, with key biomolecular peak differences
observed at 790 (DNA), 938 (proteins), 1170 (tyrosine), 1221
(Amide III), 1340 (CH2/CH3 wagging of nucleic acids), 1580 (pro-
teins), and 1676 cm�1 (Amide I); similar peak differences have
previously been observed in the separation of urothelial cell lines
[5,32].

It is important to note that =N 1 was used for the EMSC al-
gorithm; in this case, therefore, the EMSC algorithm ultimately
amounts to subtracting only a straight line, and a weighted glass
signal from each cell spectrum, followed by normalisation. The use
of higher orders were also investigated, but the use of

=N 3, 5, or 7 appeared to offer no improvement over the results
presented here. For this reason, and since it may help to invalidate
any suggestion of over-fitting, =N 1 is chosen. For some cases,
which are not presented here, where strong baseline signals are
present within a dataset, higher values of N are needed for accu-
rate modelling of the background signal. It has been shown else-
where that the use of high values of N (e.g. up to 7th order) with
EMSC does not result in over-fitting. [22].

Although these results are positive, and it is clear that the glass
signal is removed, and will no longer be a factor in any subsequent
classification applied to the PCA results, it could be argued that the
EMSC algorithm might inadvertently influence the results of any
subsequent multivariate analysis, particularly when the reference
is based on the mean spectrum of T24 cells on CaF2 for both the
T24 and RT112 glass datasets. To investigate such effects, a second
reference spectrum is used that is unrelated to the two cell lines
under investigation. The reference used in this case is based on
MDA-MB-231 cells on CaF2. All other parameters (i.e. glass signal,
N) remained the same. The mean spectra of the two processed
datasets are shown in Fig. 3(f), where it can be seen that the
overall shape of these mean spectra are moderately different from
the corresponding result shown in Fig. 3(a) for the T24 reference
spectrum. This results from the two references containing differing
baselines. This difference is merely a question of aesthetics, and
has no impact on any multivariate statistical analysis that is to
follow EMSC processing. Indeed, it can be seen that the peak dif-
ferences between the two spectra are effectively the same for both
references. An analysis of the standard deviations of the two da-
tasets also shows a very similar trend to that found for the pre-
vious T24 reference.

Fig. 3(g) shows the PC score plot obtained when the two pro-
cessed datasets are subject to PCA. Remarkably, the PCA score plot
appears to be identical to that obtained for the previous reference.
Fig. 3(h), (i), and (j) illustrate the first three PC coefficients ob-
tained. The PC coefficients appear to be identical to those pre-
sented in Fig. 3(c), (d), and (e), with both cell lines separating
across the same regions, thus showing that the EMSC algorithm
appears to produce results in the subsequent multivariate analysis
that are independent of the reference spectrum used, and that it
has no impact on the relative Raman peaks.

The ratio of cg to cr corresponds to the weight of the glass signal
relative to the weight of the reference that is present in a given
spectrum. These ratios are shown in Fig. 4 for both the T24 and
RT112 datasets following application of the EMSC algorithm with
the T24 reference spectrum. By applying a Gaussian distribution fit
to these values, it is possible to estimate both the mean and
standard deviation of the glass to reference ratio. It is clear that in
general, the RT112 cells contain a stronger glass signal and a larger
standard deviation, likely resulting from their smaller morphology.
It is possible to choose a threshold ratio value, in between the two
mean values, that largely separates the two datasets. By choosing
the mid-point as a simple threshold, it is possible to achieve a
sensitivity of 97% and specificity of 82% for T24 and RT112 cells.
We believe that this classification is based purely on the mor-
phology of the cells being analysed, with the ratio of cg to cr being
inversely proportional to the cell thickness. It is interesting to note
that in the case of the two algorithms investigated in Fig. 1, clas-
sification was possible using only the first PC, which was primarily
composed of the glass signal, rather than the subtle variation in
the Raman spectra owing to varying biochemical concentrations.
In the case of EMSC, the glass signal can be extracted, and two
approaches exist for classification: (i) analysing the ratio of cg to cr
to perform an approximate classification, or (ii) analysing the Ra-
man spectra after EMSC for a more accurate classification based on
biomolecular variation.

In order to compare the three algorithms investigated here, the
standard deviation and confidence intervals, across the various
processed datasets, were analysed. Fig. 5 shows the mean, and
associated 95% confidence interval, for RT112 cells following each
background correction algorithms. Following a modified poly-
nomial correction, there remains a significant deviation across the
fingerprint region, with the largest differences seen in the region
where the glass signal is present. The Beier method reduces this
confidence interval, however, there remains a considerable
amount of variance seen across the 1050–1150 cm�1 region. The
third method, based on EMSC, shows a reduced confidence inter-
val across the entire spectrum, including the 1050–1150 cm�1

region. This indicates that the glass signal has been effectively
removed from all of the spectra in the dataset.
5. Conclusion

For many years, the advancement of Raman micro-spectro-
scopy into the clinic has been impeded by its incompatibility with
standard clinical protocols, particularly the use of inexpensive
glass slides. In this paper, the ability to remove the glass signal



Fig. 3. (a) Mean of T24 and RT112 datasets following EMSC based on a T24 reference spectrum; (b) PC scores, and the first three PC coefficients [(c), (d), and (e), respectively]
for the data shown in (a); (f) mean of T24 and RT112 datasets following EMSC based on a MDA-MB-231 reference spectrum; (g) PC scores, and the first three PC coefficients
[(h), (i), and (j), respectively] for the data shown in (f). The shaded areas highlight the regionwhere the glass signal is strongest within Raman cell spectra. (For interpretation
of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

Fig. 4. Histograms, and associated distribution fits, of the weight of the glass signal
(cg) divided by the weight of the reference signal (cr), obtained following EMSC
with a T24 reference for T24 and RT112 cells.

Fig. 5. Mean, and associated 95% confidence intervals, of RT112 cells, recorded on
glass slides, following three different background algorithms: (i) modified poly-
nomial, (ii) Beier method based on a modified polynomial plus glass signal, and (iii)
EMSC algorithm, based on a reference spectrum of T24 cells on CaF2.
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present within Raman spectra, as well as the baseline signal, has
been demonstrated, resulting in spectra that are free from glass
contamination. The EMSC algorithm takes as input (i) the signal
generated from glass slides upon illumination with a 532 nm laser,
(ii) a reference spectrum based on a similar cell type recorded on
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CaF2 substrates, and (iii) a chosen baseline polynomial order N;
based on these input parameters the algorithm estimates a back-
ground consisting of a weighted glass signal and a slowly varying
baseline curve, which can be subtracted to produce spectra that
are equivalent to those recorded on expensive “Raman-friendly”
substrates. The output of the EMSC algorithm is the raw spectrum
with this background subtracted, followed by multiplication with a
normalisation factor that is related to the reference spectrum.

Additionally, application of PCA to the background corrected
spectra indicates that EMSC produces reliable and reproducible
results that are independent of the reference spectrum used. This
is an important result since objectivity and reproducibility are
crucial for providing good diagnostic classification, and it de-
monstrates that the reference spectrum does not introduce any
biasing of PCA based classification. EMSC was also compared with
two other well-known background subtraction algorithms, for
which it can be seen that the glass signal remained a significant
component within their first PCs, thus reducing the reliability of
these algorithms for Raman based cytological diagnostics on glass
slides.

At present, it is not possible to provide a universal reference
spectrum that can be applied to Raman datasets recorded on glass
slides from any Raman micro-spectrometer. The reasoning for this
is due to the lack of accurate system calibration protocols for Ra-
man micro-spectrometers. Such rigorous calibration tools involve
wavelength calibration, using a Neon source, intensity calibration,
with a NIST calibrated white light source, followed by wave-
number calibration [33–35]. In order to utilise a universal Raman
reference spectrum, similar to the Matrigel spectrum applied for
FTIR RMie correction [25], every Raman micro-spectrometer
would need to be calibrated with a similar calibration tool. Fur-
thermore, even with the application of such calibration tools,
variable results are still often recorded across different systems
[36]. Therefore, it is advised for the reference spectrum to be re-
corded from any epithelial cell type on CaF2 with the user's own
Raman micro-spectrometer.

As demonstrated in Fig. 4, the ratio of the weight of the glass
signal to the weight of the reference can be applied as a single
classification metric for the case of the two cell lines investigated
within this paper; using this approach, it is possible to separate
low grade and high grade bladder cancer cell lines with 97% sen-
sitivity and 82% specificity. This technique could be used to quickly
identify large or abnormal cells on a slide. However, as these re-
sults are most likely based on cell thickness, it may not be possible
to separate cell groups that are more similar in size. This is an
interesting application for Raman micro-spectroscopy, but it
should be noted that there are alternative modalities that can
provide better information about cell morphology, such as digital
holographic imaging [37], scanning near-field microscopy (SNOM)
[38], or scanning electron microscopy (SEM) [39]. Raman micro-
spectroscopy identifies the biomolecular differences between dif-
ferent cell groups, and by removing the glass signal from Raman
spectra with EMSC, it is possible to classify cells based on bio-
chemistry rather than cell morphology, which produces higher
classification results and can be applied across all cell types.
Therefore, Raman micro-spectroscopy remains the preferred
modality for the identification of cancerous or diseased cells.
However, it should be noted that it may be possible to include the
c c/g r metric as an additional variable, together with the processed
cell spectrum, for enhanced classification; the benefit, as well as
the manner, of such an approach may be the subject of future
work.

There are many further advantages of the EMSC algorithm
when compared to commonly used baseline correction methods. It
is computationally less intensive, which is an important factor
when considering the high patient through-put present in cyto-
pathological laboratories worldwide, and produces spectral data-
sets with significantly smaller standard deviation, which improves
the reproducibility of results. We believe that this algorithm will
help with the advancement of Raman based cytology into a clinical
setting, allowing for the use of current clinical techniques, such as
the ThinPrep or SurePath methods, and glass slides.
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