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Digital holographic systems are a class of two step, opto-numerical, pseudo-three-dimensional imaging techniques. The role of the digital
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1 INTRODUCTION

The invention of holography was reported by Gabor in a
short article in 1948 [1] and then expanded upon by him in
several other manuscripts, see for example [2]–[4]. Holog-
raphy is a two-step imaging process, where a hologram is
first recorded and later reconstructed. This approach retains
information about the complex amplitude of the wavefield,
however a static scene and fairly coherent light source
are generally required for the duration of the recording
process and a known reference wave is necessary to encode
the phase information. This latter requirement unfortunately
produces three additional and unwanted terms, namely the
two DC terms and a conjugate image term, [2]–[5]. However,
one advantage is that since the complex amplitude of the
object field is recovered, it is possible to record the hologram
in a non-imaging optical plane. Increasingly, holograms are
recorded by digital devices, such as CCD’s, and can then be
reconstructed numerically, in close to real-time, by desktop
computers [6]–[8]. A CCD device returns an array, Wn×m, of
numbers to the user and can be related to the instantaneous
intensity, see [9, 10] and Chapter 9 of Ref. [11]. Proceeding
with a 1-D analysis for the sake of simplicity we write this
relationship as:

Wn = βpL(x)δT(x)
[

pγ(x)⊗ |u(x) + uref(x)|2
]

= βpL(x)δT(x) {pγ(x)⊗ [Iz(x)

+ Iref(x) + u∗(x)uref(x) + u(x)u∗ref(x)]} , (1)

where β is a constant of proportionality between the wave
field intensity and the values returned by the camera which
we henceforth neglect. The functions pγ(x) and pL(x) de-
scribe the effect of the finite pixel size and the finite camera
extent respectively, and uref(x) is the reference wavefield. The
‘∗’ indicates complex conjugation. The function δT is a comb
function [12] which can be defined as

δT(x) =
∞

∑
n=−∞

δ(x− nT),

and can conveniently be represented as [13]

δT(x) =
1
T

∞

∑
n=−∞

exp
(

j2πnx
T

)
, (2)

where T is the spacing between the centers of adjacent pix-
els and where ⊗ respresents the convolution operation [12].
From Eq. (1) we can see that |u(x) + uref(x)|2 is first con-
volved with our pixel function pγ(x) before being apertured
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(limited in space) by the function pL(x) and then sampled.
The order of operations is very important and has been dis-
cussed in the following references [9, 10][14]–[16]. In Eq. (1),
Iz(x) and Iref(x) refer to the object and reference intensities,
while u∗(x) is the conjugate image term. In order to produce
a quality reconstruction it is necessary to remove or supress
these terms which can be achieved in numerous ways, per-
haps most famously by Leith and Upatnieks [17], however
many other techniques exist [18, 19]. Here we assume that
these terms; the conjugate twin image and the DC intensity
terms (see for example Chapter 9 of Ref. [5]), may be removed
using phase shifting interferometric techniques [20]–[23], see
also Chapter 2 of [24]. We concentrate exclusively on the u∗refu
term for the remainder of this paper.

In Ref. [25], Collins relates diffraction theory to ray matrices,
providing a convenient method of describing the propagation
of a field through several optical elements. The field at the out-
put of such a system will in general be in a mixed space-spatial
frequency domain, and can be interpreted mathematically as
a Linear Canonical Transform (LCT) [26, 27]. Referring to Fig-
ure 1, a field U(X), (with input domain variable X), is input
to the system, the effects of which are described with the pa-
rameters ABCDA, where the subscript A is used to indicate
that the field represents an analytical or continuous mathe-
matical function. The complex field, u∗refu, at the output of this
transform is recorded by a digital camera and in the process is
subject to three separate operations: (1) the spatial frequency
content of the signal is changed by the finite size of the cam-
era pixels, 2γ, used to record the hologram; (2) the finite ex-
tent, 2L, of the camera face acts to limit the spatial extent of
the field u∗refu; and finally (3) the digital camera samples the
field u∗refu, which after PSI processing [10, 22], would return
a 2-D array of complex numbers to the user. This 2-D array
of captured data is then subject to a second numerical LCT
operation, defined with the variables ABCDN, to yield our re-
constructed field RN(X). Here we use the superscript, N, to
indicate that a numerical operation on a finite discrete data set
is performed by a computer to generate the continuous field
RN(X). We define the LCT as follows:

u(x) =



LCTABCD {U(X)} (x) ,(√
jλB

)−1 ∫ U(X)

× exp
[

jπ
λB
(

Dx2 − 2xX + AX2)] dX ,(√
jλD−1

)−1
U(Dx) exp

(
jπCDx2

λ

)
if B =0

(3)

where j =
√
−1. We note that since |AD− BC| = 1, we have 3

independent variables and can thus typically eliminate C. This
transform reduces to other more well known transforms by
appropriately choosing the values for ABCD. For example the
following matrices describe the scaled (by a factor q) Fourier
Transform (FT),

FT =

(
0 q
− 1

q 0

)
, (4)

Fresnel (FST) propagation (a distance z),

FST =

(
1 z
0 1

)
, (5)

the effect of a thin converging lens (focal length, f ) or Chirp
Modulation Transform (CMT),

CMT =

(
1 0
− 1

f 1

)
, (6)

an imaging operation (magnified by M),

M =

(
M 0
0 1

M

)
. (7)

and a Fractional Fourier Transform (FRT) operation of frac-
tional angle θ [28] and where q is a scaling factor,

FRT =

(
cos(θ) q sin(θ)
− sin(θ)/q cos(θ)

)
. (8)

We now make some general comments about the results thus
far.

We note that the hologram recorded by the camera is sampled
in an LCT domain, which in general will be a mixed space-
spatial frequency domain. In order to understand the implica-
tions of this we need to look at some recent theoretical devel-
opments in sampling theory [13, 27][29]–[31].

If we choose our ABCDA = [1, 0, 0, 1], i.e. an in-focus unit
magnification imaging system, see Eq. (7), then our sampling
rate T must be such that 1/T > 2 fmax to ensure that the max-
imum spatial frequency, fmax is recovered. We note that here
we are sampling in the space domain and so our sampling
rules reduce to a statement of the Nyquist sampling condi-
tions, i.e. fmax = fNQ. The pixel function pγ(x) will in general
act to attenuate the higher spatial frequencies present in our
signal u(x).

If however we set ABCDA = [1, z, 0, 1], our initial LCT trans-
form then becomes a Fresnel transform, see Eq. (5). Once the
discrete set of values, Eq. (1), are reconstructed numerically
(this operation is typically an inverse Fresnel transform that is
performed numerically [10]), we find that the resulting image
is different in several regards. Similar to the imaging LCT op-
eration the pγ(x) will again act to attenuate the higher spatial
frequencies in the image, however the sampling rate, T, now
defines the region in space that can be reconstructed without
being corrupted by overlapping replicas (assuming an input
function of finite spatial extent), see Ref. [10] for more detail.
Importantly this does not effect the ability of the system to
resolve spatial frequencies [10][32]–[37].

Other different imaging properties occur if we assume that
our initial LCT operation performs a scaled FT. In this instance
the image is reconstructed by numerically implementing an
inverse FT. From the analysis presented in Ref. [38] we see that
in this case the function pγ(x) acts to attenuate the complex
amplitude of the reconstructed image. We expect other prop-
erties for different types of LCT transforms. Indeed depending
on the application it may be possible to design optimal opto-
numeric imaging systems by applying this generalized phase
space holographic recording [39]–[42].

Since holographic capture provides access to the complex am-
plitude of an optical field, it is possible to numerically re-
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FIG. 1 Schematic depicting our optical system. A plane wave is incident on a transparency (A) of finite extent at plane X. Here the power of the wavefield is diffracted into

different optical “channels" that are related to the spatial frequencies present in the transparency (The path of two possible frequencies are depicted; fx1 and fx2). These

channels propagate towards the camera plane x however their path may be modified using different optical elements, for example the Dashed Lens (DL). The field u(x) is

incident on the camera where it is combined with a spherical or plane reference field. At the camera plane a series of lossy filtering operations are performed on the signal

which are described graphically. The signal is first convolved with the camera pixel function; we depict this as a FT followed by a filtering operation (B) in the k′ plane. A further

FT is performed and the field is filtered with a finite extent pinhole array (C) to yield a 2D matrix of complex values after PSI processing. These are sent to the CPU for processing.

construct our field at various depths providing a pseudo-3D
imaging capability over a volume. Kou and Sheppard [43]
point out that this can only be considered to be 2.5D imaging
due to the finite spatial frequency support of the hologram,
unlike optical sectioning where multiple images are acquired.
By examining the 3D PSF of the system we find that the detail
size or resolution we can expect to recover from our hologram
varies as a function of depth and system parameter values,
with the result that the image detail is maximized for particu-
lar reconstruction planes only.

In the following sections and conclusion we develop a theo-
retical framework to describe the imaging properties of gener-
alized phase space holographic imaging systems. This frame-
work will not only allow us to analyze both the imaging prop-
erties of the FT and FST systems, but also those of more gen-
eral optical systems. The layout of the paper is as follows: In
Section 2.1 we highlight some important performance prop-
erties for general imaging systems that ideally should be ad-
dressed by an analysis: (i) what spatial frequencies will be
passed through the system? (ii) what is the size of the in-
put field that can be imaged? The analysis presented applies
to a broad range of DH systems and so to ensure we still
maintain some insight into the imaging process, and are not
overwhelmed by the complexity of the solution, we introduce
a special input function that allows us to specifically exam-
ine how the extent and spatial frequency content of an input
field change as the field propagates through a quadratic phase
space system described by an LCT. In Section 2.2 we examine
the role of the finite camera aperture on the imaging perfor-
mance of the system. Simple but general rules of thumb are

derived, which relate the quality of the output image to the
input field and the system parameters. In Section 2.3 the filter-
ing effect of the finite pixel size is discussed. Again a simple
guideline is presented that allows an imaging system designer
to determine the quality of the output image. Numerical ex-
amples are presented that illustrate different features of this
performance limiting factor. In Section 2.4 the role of sampling
is examined. In Section 3 we derive an expression to describe
the PSF function for a general DH system and show that it
varies as a function of depth and hence does not perform true
3D imaging. Some representative numerical examples are pre-
sented. Finally we make some closing remarks in a brief con-
clusion and discussion section.

2 THEORETICAL ANALYSIS

Here we present our approach for analysing generalized DH
systems.

2.1 Representation of the input f ield

We begin by considering a plane wave normally incident on a
thin sinusoidal amplitude diffraction grating of infinite extent.
Neglecting the DC term, the resulting diffracted field is com-
posed of two infinite plane waves that travel at an angle to
the optical axis, see Section 4.5.2 of Ref. [5]. From this analysis
[5], it is shown that under special conditions, i.e. at the Tal-
bot distances, the diffracting field will reproduce a perfect im-
age of the original diffracting grating. In practical systems the
diffracting grating has a finite extent which places a limit on
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the power entering the system and also acts to localize the spa-
tial distribution of power in the diffracted field, thus confining
the Talbot bands to a particular spatial volume. In Figure 1, we
depict such a situation. Here, an input transparency contain-
ing different spatial frequencies diffracts the power contained
in the illuminating beam into several different ‘channels’
that propagate until they are incident on the camera plane.
Different optical elements, such as DL in Figure 1, can be
used to deflect the path of these channels. We now wish to
provide a mathematical description for what has been dis-
cussed thus far by choosing a specific function as our input
wavefield,

U(X) =

√
1
αi

exp

(
−X2

α2
i

)
cos (2π fxX) . (9)

For values of fx > 1, and αi > 1, Eq. (9) limits the power
entering our system to ≈

√
π/8 Watts. Furthermore the sig-

nal’s power is localized and primarily lies within the range
−2αi ≤ X ≤ 2αi m, and thus by varying αi we can investigate
the region of space that can be viewed with the opto-numeric
system or as we shall see later, by choosing a small value for
αi and setting fx = 0, we can determine the PSF of the optical
system. We note when fx = 0 the power entering the system
doubles. The cosine function allows the determination of how
individual spatial frequencies are effected by the imaging op-
eration.

To examine the expression for the field u(x) at the camera
plane, see Figure 1, we calculate the following expression:

u fx(x) = LCTABCD

{
1

2
√

αi
exp

(
−X2

α2
i

)

× exp (j2π fxX)

}
(x) ,

= Kc exp

[
− (x− B fxλ)2

α2
c

]
× exp

[
j
(

φl
cx + φ

q
c x2
)]

, (10)

where

αc =

 παi√
A2π2α4

i + B2λ2

−1

, (11)

Kc =
1

2
√

αi

(√
A +

jBλ

πα2
i

)−1

exp

(
−jπAα4

i π2 f 2
x Bλ

π2 A2α4
i + B2λ2

)
, (12)

φl
c =

2π3 A fxα4
i

π2 A2α4
i + B2λ2

, (13)

and

φ
q
c =

π3 Aα4
i (AD− 1) + πB2Dλ2

π2 A2Bα4
i λ + B3λ3

. (14)

From Eq. (10) and Eq. (11) we see that under an LCT op-
eration, the input modulated Gaussian-type function is
transformed into another Gaussian-type function, that is

centered at x = Bλ fx and has a width of approximately
−2 αc ≤ (x− B λ fx ) ≤ 2 αc. Thus the power associated
with a specific spatial frequency is confined to a definite
spatial location, see Figure 1. From Eqs. (10)–(14) we also
note that this Gaussian-type function is multiplied by system
dependent linear and quadratic phase terms, as well as some
constant complex term, Kc. Noting that

cos (2π fxX) =
1
2
[exp (j2π fxX) + exp (−j2π fxX)] ,

we write the field at the camera as

u(x) = u fx(x) + u− fx(x). (15)

The transform we have performed on our input signal is a
lossless operation and so we expect that the power of the field
in the camera plane will be conserved, even though the sig-
nal may now be distributed differently in phase space. Loss
is introduced into our system for the first time at the cam-
era and our signal is modified irreversibly, due to the finite
extent of the camera, the discrete nature of the device (sam-
pling), and the finite active areas of the pixels. Note that so
far we have assumed that the extent of various lenses that
are used to process the input field prior to capture are effec-
tively infinite. However, as we shall see it is possible to extend
this analysis further by limiting the extent of our optical el-
ements using complex ABCD parameters [44, 45]. In the fol-
lowing sections we now examine conditions under which we
may expect to get a reasonable reconstruction of our original
object field. Ideally we should try to ensure that as much of
the signal field u(x) lies within the finite extent of the cam-
era. We would also like to minimize the impact of the pixel
filtering operation, [due to the finite pixel size, see Eq. (1)],
on our reconstructed signal. Thus for a given signal type and
fixed camera parameters, we wish to determine the optimal
transform (ABCDA), that maximizes the information through-
put of the opto-numeric system or that attempts to match the
Space-Bandwidth Product (SBP) of the signal and the optical
system [39]–[42]. Using results from Eqs. (10) to (15) we now
consider the effect of the finite size camera aperture, the pixel
filtering operation, the role of sampling, and finally the ability
of our system to reconstruct an input field over a 3D volume.

2.2 Camera Aperture

In order to proceed further it is useful to look at a specific nu-
merical result and so in Figure 2 we present a plot of |u(x)|
with the following parameters, λ = 633 nm, ABCDA =

[1, 0.5, 0, 1] (Standard SI units are used unless specifically
stated otherwise), αi = 2 mm, and fx = 10 lines/mm. Refer-
ring to Eq. (5), we note that this operation is a Fresnel trans-
form. We assume an on-axis plane wave, thus uref(x) can be
arbitrarily set to unity.

From Figure 2(a), we can see the presence of two Gaussian-
type functions located at ±λB fx. These two functions [u fx(x)
and u− fx(x)] interfere with each other producing the structure
in the field at−1 ≤ x ≤ 1 mm. For different parameter choices
this structure can vary quite significantly. The finite extent of
a digital cameras can be modeled using a rect function which
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FIG. 2 (a) u(x) with the following parameters, λ = 633 nm, ABCDA = [1, 0.5, 0 ,1],

αi = 2 mm, and fx = 10 lines/mm. SE indicates the spatial extent of the field, u(x),

while ±λB fx indicates the location of u fx (x). (b) |RN(X)| is calculated from a series

of values of u(x) sampled over the range −L ≤ x ≤ +L at intervals of T = 10 µm.

The values of the |u(x)| axis has been multiplied by a factor
√

αi for presentation

purposes while both the x and X axes are plotted in mm.

FIG. 3 (a) u(x) with the following parameters, λ = 633 nm, ABCDA = [1, 1, 0 ,1],

αi = 2 mm, and fx = 10 lines/mm. SE indicates the spatial extent of the field, u(x),

while ±λB fx indicates the location of u fx (x). (b) |RN(X)| is calculated from a series

of values of u(x) sampled over the range −L ≤ x ≤ +L at intervals of T = 10 µm.

The values of the |u(x)| axis has been multiplied by a factor
√

αi for presentation

purposes while both the x and X axes are plotted in mm.

we define as

pL(x) =
{

1, when |x| < L
0, otherwise.

(16)

We would now like to determine how large the width of the
camera aperture, 2L, should be in order to ensure that the
power from our input signal is incident on the light sensi-
tive area of the camera. We first observe that the width of
the u fx(x) functions is 4αc and they are centered at ±λB fx;
therefore most of the power of u(x) lies within the range,
−SE ≤ x ≤ SE where

SE = λB fx + 2αc. (17)

Substituting the appropriate values for B, αc and fx into
Eq. (17) gives a value of SE ≈ 7.2 mm, which is indicated by
a dashed vertical line in Figure 2(a). We arbitrarily choose a
value of L = 6 mm for our camera aperture, indicated by a
solid vertical line in Figure 2(a). All information outside these
lines, i.e. x ≥ |L|, is not recorded by the camera and there-
fore does not contribute to the final reconstructed field. In
Figure 2(b) we present the result of the numerical reconstruc-
tion. To generate this reconstruction we sample the field u(x)
over the range −L ≤ x ≤ +L in steps of T = 10 µm. Us-
ing these values RN(X) was calculated by implementing an
inverse Fresnel transform using a trapezoidal integration al-
gorithm. A more in-depth discussion of the role of sampling
is presented in Section 2.4. From Figure 2(a) we can see that
while most of the power contained in the input signal is inci-
dent on the camera, a small portion falls outside the camera

FIG. 4 Contour plot of PR for the following parameters, λ = 633 nm, L = 6 mm and

αi = 2 mm, as a function of 50 ≤ B ≤ 300 mm and 1 ≤ k ≤ 85 lines/mm.

FIG. 5 3D plot of RMSE for the following parameters, λ = 633 nm, L = 6 mm and

αi = 2 mm, as a function of 50 ≤ B ≤ 300 mm and 1 ≤ k ≤ 85 lines/mm.

aperture and leads to a slight distortion of our reconstructed
field, see Figure 2(b). Such effects are more pronounced in Fig-
ure 3, where we have repeated the calculation, this time how-
ever setting ABCDA = [1, 1, 0, 1]. From Eq. (17) we expect that
u fx(x) will be shifted further along the x axis with the result
that less of the signal power is now intercepted by the camera,
since SE ≈ 10.3 mm, see Figure 3(a). This results in a poor re-
construction of the input signal, as can be seen by inspecting
Figure 3(b).

From these initial results we hypothesis that the quality of the
reconstruction is closely related to the ratio, PR, between the
amount of power that is transmitted through the optical sys-
tem and that captured by the camera. We can relate the power
at the input plane (i.e. the total power ≈

√
π/8 W) to that in-

tercepted by the camera aperture using Eq. (10) and Eq. (15),
to give

11034- 5



Journal of the European Optical Society - Rapid Publications 6, 11034 (2011) D. P. Kelly, et al.

FIG. 6 Contour plot of RMSE with the following parameters, λ = 633 nm, L = 6 mm and

αi = 2 mm, as a function of 50 ≤ B ≤ 300 mm and 1 ≤ fx ≤ 85 lines/mm. In this

plot a reduced range is presented: 0 ≤ RMSE ≤ 4.

PR =
√

π/8
−1
∫ L

−L

[
u fx(x)u∗fx

(x) + u− fx(x)u∗− fx
(x) + CT

]
dx

=
√

π/8
−1
∫ L

−L
2
[
u fx(x)u∗fx

(x)
]

dx

=
√

π/8
−1
√

π

2
KcK∗c αc

{
erf

[√
2 (L− λB fx)

αc

]

+erf

[√
2 (L + λB fx)

αc

]}
. (18)

where we assume that the cross-terms, CT, average to zero
and hence do not contribute to the total power incident on
the camera. In Figure 4 we present a contour plot of Eq. (18),
[see caption for details]. We now further suppose that PR is
directly related to the quality of the reconstructed signal. This
hypothesis was tested by comparing the input and recovered
signals using a Root Mean Square Error (RMSE) metric calcu-
lated for a discrete set of points in the reconstruction plane,

RMSE =

√√√√m=M/2−1

∑
m=−M/2

||U(mδX)|2 − |RN(mδX)|2|2, (19)

where M = 600, and δX ≈ 12 µm (−3.6 ≤ X ≤ 3.6 mm), which
yields the following results, see Fig. 5.

From Figure 5 and 6 we see that as the signal power incident
on the camera reduces, the quality of our reconstructed sig-
nal decreases (as indicated by the increasing RMSE values) in
keeping with our hypothesis. By comparing the results In Fig-
ure 4 and 6, it can be seen that a high quality reconstruction is
achieved once PR ≥ 0.8.

We therefore conclude that for a given optical system, de-
scribed using the parameters ABCDA, we may recover a given
spatial frequency when

L ≥ SE. (20)

Examining Fig. 5 and 6, it should be noted that this require-
ment is relatively stringent and that it is possible to reasonably
reconstruct a given spatial frequency provided that PR ≥ 0.8,
where PR is calculated using Eq. (18).

To summarize this section we conclude that as expected the
camera aperture size plays a major role in determining the
ability of holographic imaging systems to recover spatial fre-
quencies. Whether a particular spatial frequency fx can be re-
covered depends on the camera extent 2L, the wavelength λ,
and lastly the optical system ABCDA parameters, in particu-
lar B, which can be varied by combining different lenses and
sections of free space, see for example DL in Figure 1. Finally,
we note from Figure 5 and 6 that the RMSE values start again
to steadily increase for values of B < 100 mm. This however
is not related to the relative values of L, λB fx and SE, rather
it is a result of the use of an insufficient sampling rate for the
given input function extent which leads to aliasing. We will
return to discuss this observation later in Section 2.4.

2.3 Active Pixel Area

In this section we examine the filtering effect introduced by
the size of the camera’s pixels in more detail. This operation is
described mathematically as a convolution of the pixel func-
tion of the CCD and the incident wavefield,

[u∗ref(x)u(x)]⊗ pγ(x).

In keeping with the standard approach in the literature,
[9, 10][14]–[16], we assume a uniform rectangular structure
for the CCD pixels, thus

pγ(x) =
{

1, when |x| < γ

0, otherwise,
(21)

with a corresponding FT given by

p̃γ(k) = Sγsinc(2πγk), (22)

where sinc(x) = sin(x)/x. From Eq. (21), we note that the
size of a pixel is 2γ. We can relate this size to the sampling
rate; T = 2γ/FF, where FF is the ‘fill-factor’, 0 ≤ FF ≤ 1.

We now examine the impact of the convolution filtering oper-
ation on the spatial frequency content of u(x). From the form
of Eq. (22), we expect that our signal will be subject to a low
pass spatial frequency filtering operation. Since this operation
is most easily understood in the spatial frequency domain, we
look at the FT of our signal u(x). Using Eq. (4) we note we can
describe the effect of a general LCT followed by a FT as(

C/λ D/λ

−Aλ −Bλ

)
=

(
1/λ 0

0 −λ

)(
0 1
−1 0

)(
A B
C D

)
.

To generate an unscaled FT, we include a λ scaling factor in
the above equation to take into account the way we have de-
fined our LCT transform. Using these new ABCDA values we
determine the bandwidth, BW, just as we previously defined
SE,

BW = D fx + 2α̃c, (23)
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FIG. 7 Plot of (a) |ũ(k)|, over the range 0 ≤ k ≤ 50 lines/mm with λ = 633 nm,

αi = 0.1 mm, FF = 1, fx1 ≈ 5.8 lines/mm and fx2 ≈ 46.7 lines/mm and (b) the

resulting reconstruction in the image plane. The values of the |ũ(k)| and |RN(X)|
axes have been multiplied by factors of 10 and 0.5

√
αi respectively for presentation

purposes, while the units for the k and X axes are lines/mm and mm respectively.

FIG. 8 Plot of (a) |ũ(k)|, over the range 0 ≤ k ≤ 105 lines/mm with λ = 633 nm,

αi = 0.1 mm, FF =1, fx1 = 12.5 lines/mm and fx2 = 100 lines/mm, and (b) the resulting

reconstruction in the image plane. The values of the |ũ(k)| and |RN(X)| axes have

been multiplied by factors of 10 and 0.5
√

αi respectively for presentation purposes,

while the units of the k and X axes are lines/mm and mm respectively.

where

α̃c =

 παi√
(C/λ)2 π2α4

i + D2

−1

. (24)

We therefore propose that the following ‘rule of thumb’ be
used as a guideline to determine the role of the finite size pixel
in the imaging operation:

BW ≤ 1/T =
FF
2γ

. (25)

From Eq. (23) we note that BW may be controlled by varying
the parameter D. This can be achieved either by placing differ-
ent optical elements between the input and camera planes or
alternatively by varying the curvature of the reference field.
We now present some numerical examples to illustrate how
an optical system may be designed by varying the reference
field.

For imaging (or Fresnel) systems the effect of the sinc func-
tion in Eq. (21) will be to attenuate higher spatial frequen-
cies more than lower ones. Therefore in order to examine
how different spatial frequencies are transmitted through the
complete ‘opto-numeric’ system we now present an example
involving a signal with two spatial frequency components:
fx1 = 12.5 lines/mm and fx2 = 100 lines/mm.

We set αi = 0.1 mm and choose an ABCDA = [1, 2/25, 0, 1],
which again corresponds to a Fresnel transform. Our camera
extent 2L = 12 mm and sampling rate, T = 10 µm are iden-
tical to those used in the previous example and we choose a

100% filter factor, setting FF = 1. In Figure 7 we present the
results.

Eq. (23) predicts that when D = 1 we expect to see two peaks
at k = fx1 and k = fx2, each having a finite spread (extent)
since α̃c ≈ 3.2 lines/mm. The sinc function will attenuate all
of the contribution that exists at k = fx2, however since in gen-
eral α̃c 6= 0, some of the power associated with the fx2 com-
ponent of the signal will still be present, leading to some mi-
nor distortion of the fx1 component in the reconstructed input
signal in Figure 7(b). We have compared the reconstruction in
Figure 7(b) with the actual input signal using an RMSE metric,
yielding a high value of RMSE ≈ 3.16.

We now modify our optical system by changing our reference
field from a plane wave to a diverging spherical wave, de-
fined:

uref(x) =
(√

jλzS

)−1
exp

[
jπx2/(λzS)

]
. (26)

The field recorded by our camera, u∗ref(x)u(x), can be ac-
counted for, using Eq. (6). The original system parameters are
thus changed in the following manner (A similar approach is
adopted in [46])(

1 0
− 1

zS
1

)(
A B
C D

)
. (27)

Setting zS = 150 mm, the new system parameters, ABCDA,
become [1, 2/25, -20/3, 7/15].

We first note that since A and B are invariant under this trans-
formation, SE will not change when we replace our plane
wave reference source with a spherical one. In one sense this
is not unexpected, since the same part of the scattered ob-
ject field is captured by the camera face. Nevertheless the
new spherical reference will effect the captured spatial fre-
quency distribution, since the effective values of both C and D
have been altered. Referring to back Eq. (23), and noting that
D = 7/15, we expect that our spatial frequency peaks, previ-
ously located at k = fx1 and k = fx2, will be shifted to lower
frequencies as can be seen by comparing Figure 7 and 8. Also
from Eq. (24) we expect that the width of the distributions will
be reduced; i.e. α̃c ≈ 1.8 lines/mm. The fact that these peaks
are no longer located at their original spatial frequencies re-
flects the fact that we are filtering in a mixed spatial-spatial
frequency domain. Thus the action of the finite size pixel is
now less severe. This is reflected in the reduced RMSE value,
RMSE = 1.27, for the resulting reconstruction.

We now choose zS = 2/25, i.e. we locate the source of our
spherical reference beam the same distance from the cam-
era as our object field. For this special distance we find that
ABCDA becomes [1, 2/25, -12.5, 0]. Since D = 0, Eq. (23) im-
plies that all spatial frequency components become bunched
together at k = 0, while α̃c ≈ 1.97 lines/mm. This system
is referred to as a lens-less Fourier optical setup [8] and we
note the similarity (apart from scaling factors) of the distribu-
tions in Figure 9. With this system there is a FT relationship be-
tween the image field and the captured field. Since the spatial
frequency content has been shifted into the center (towards
zero) there is no appreciable filtering effect (due to the finite
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FIG. 9 Plot of (a) |ũ(k)|, over the range 0 ≤ k ≤ 4 lines/mm with λ = 633 nm,

αi = 0.1 mm, FF = 1, and (b) the resulting reconstruction in the image plane. The

values of the |ũ(k)| and |RN(X)| axes have been multiplied by factors of 10 and

0.5
√

αi respectively for presentation purposes, while the units for the k and X axes

are lines/mm and mm respectively.

size pixels) and we obtain a good reconstruction of our object
field with RMSE ≈ 0.00019. In this sub-section we have cho-
sen a relatively small value for our input field extent, namely
4αi ≈ 0.4 mm. From Figure 9(a) we can see that the sinc func-
tion is approximately flat over the range |k| < 4 lines/mm
and does not attenuate ũ(k) appreciably. As our input extent
increases, so too will the extent of ũ(k). The two domains are
related by k = X/(λzS). Thus we see that the effect of the
finite pixel size for this optical system acts to attenuate the
complex amplitude of the reconstructed field.

We conclude this section by making several remarks. The ef-
fect of the pixel extent, and the associated convolution oper-
ation, is to attenuate the spatial frequency content in the FT
plane of our capture LCT domain. Indeed signal power lo-
cated at k = n/(2γ) is entirely removed, where n is a positive
integer [10, 47]. If it were possible to design a camera by com-
bining pixels of different widths, it may be possible to over-
come this limitation [10], although other fundamental limits
do exist [47]. Assuming FF = 1, the first spatial frequency
suppressed would be k = 1/(2γ) = 1/T = 2 fNQ.

For a Fresnel system, D = 1. This would seem to imply,
Eq. (23), that we can recover spatial frequencies up to twice the
Nyquist limit. For values in the range 2/(2γ) ≤ k ≤ 3/(2γ),
the sinc function in Eq. (21) is negative returning a signal that
is phase shifted by π. As shown by designing the system us-
ing lenses and free space we can vary D, and recover spatial
frequencies much higher than this limit. One example of such
systems are lens-less Fourier systems.

Finally we note that in a unit magnification imaging system,
D = 1; implying that we should be able to recover frequen-
cies above the Nyquist limit without any additional process-
ing along the lines outlined in [48]–[51]. As we shall see in the
next section, sampling comes into play in this case limiting the
recoverable spatial frequencies in a unit magnification imag-
ing system to fNQ.

2.4 Sampling

It is necessary now to address the role of sampling in DH.
We have already noted that for the generalized holographic
systems our input function will be sampled in a mixed
space-spatial frequency domain. Let us refer to the field
after filtering by both the camera pixels and aperture as

v(x), such that with the help of Eq. (2), we may rewrite{[
u∗ref(x)u(x)

]
⊗ pγ(x)

}
pL(x) as

uN = v(x)δT

=
1
T

∞

∑
n=−∞

v(x) exp
(

j2πnx
T

)
(28)

Hence our filtered field is sampled at intervals of T. We pro-
cess this data by applying an inverse LCT operation numeri-
cally to generate our continuous reconstructed signal,

RN(X) =

(
1
T

)
LCTABCDN

{
∞

∑
n=−∞

v(x) exp
(

j2πnx
T

)}
(X)

=

(
1
T

) ∞

∑
n=−∞

exp
[
−jπλDN

( n
T

)2
]

× exp
(

j2nπBN DN X
T

)
R
(

X− nλBN
T

)
. (29)

We note that

R(X) =

(
1
T

)
LCTABCDN {v(x)} (X) , (30)

where R(X) is the signal that would be returned if no sam-
pling took place. Appropriate general parameters for per-
forming our inverse numerical LCT are given by(

AN BN
CN DN

)
=

(
D −B
−C A

)
. (31)

We note from this result that the effect of sampling is to pro-
duce an infinite number of modulated replicas of our contin-
uous function R(X), which are spatially separated from each
other by a distance λBN/T. Provided that the spatial extent of
our input field is less than the distance between neighboring
replicas, i.e.

4αi ≤
λBN

T
, (32)

then it is possible to avoid aliasing and to recover our signal
R(X) from its replicas [13, 27]. We also note that each replica
is multiplied by linear and constant phase terms.

We now return to Figure 5 and Figure 6. Once again we apply
the hypothesis that the quality of the reconstructed signal is
closely related to the power incident on the CCD. We note that
as the incident power decreases, it corresponds to an increase
in the calculated RMSE values. One region differs significantly
in the two figures namely when B < 100 mm. We expect from
Eqs. (18), (20) and Eq. (25) that a high quality reconstruction
is possible, however the RMSE values indicate that the recon-
struction in this region is poor. The results presented in these
figures assumed λ = 633 nm, T = 10 µm and αi = 2 mm. From
Eq. (29) we expect the onset of aliasing to occur for B < 126
mm. Therefore the increase in RMSE values shown in Fig. 6
is related to replicas encroaching on our reconstructed signal
and distorting it. There is however a slow onset of this alias-
ing effect in the results presented. Based on Eq. (32), aliasing
should start when B < 126 mm, however a noticeable increase
does not occur until B < 100 mm, this is due to the particular
nature of the chosen signal. To clarify we refer back to Fig-
ure 2(b), (to remind ourselves of the form our input signal),
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and note that while aliasing may be occurring, initially it only
effects the regions of the reconstruction that have low ampli-
tude and hence does not contribute significantly to increasing
the RMSE values until B ≈ 100 mm.

Suppose now that our initial LCT transform performs
as an ideal unit magnification imaging operation, in this
case ABCDA = [1, 0, 0, 1], and ABCDN = [−1, 0, 0,−1],
which on substitution into Eq. (30) yields the following
result [note we have dropped the constant phase term
exp

(
−jπλBN DNn2/T2) for simplicity],

RN(X) =
1
T

∞

∑
n=−∞

cos
(

2nπX
T

)
R (X) . (33)

There are several points to note about this result: (i) RN(X) is
a continuous function and therefore returns a value for all X,
(ii) Since BN = 0 we do not see the appearance of an infinite
number of replicas in the reconstruction, indeed this is a spe-
cial case of Eq. (32), (iii) In general for a given value of X, R (X)

is multiplied by an infinite number of different cosine values,
which are dependent on both T and X. We can ensure that the
cosine terms do not effect the recovery of our signal R(X) by
carefully choosing our values for T and X, i.e., if

cos
(

2nπX
T

)
= 1,

→ X = mT, (34)

where m is an integer. Hence we see that we can only recover
the signal at particular values of X that are integer multiples
of T, which appears equivalent to the Nyquist sampling con-
ditions.

To close this section we note that while sampling is an im-
portant performance limiting factor in DH imaging systems
it does not necessarily limit the the spatial frequencies that
can be reconstructed. Since the sampling operation occurs in
a non-imaging plane more general sampling conditions ap-
ply, and therefore in many instances the field at the camera
plane can be sampled at rates much lower than the traditional
Nyquist rate and yet still be fully recovered.

3 3D Imaging Performance - Point
spread function analysis

Thus far we have examined the ability of our system to re-
cover the spatial frequency content of our input signal. We
now wish to examine the imaging performance of the holo-
graphic system as a function of depth. A practical example
of interest might be imaging small particles that lie within
a volume as depicted in Fig. 1 of Ref. [52] or in Fig. 10 of
[53]. It would seem to be useful to introduce a PSF to aid our
analysis. Ideally the model we have been developing should
provide some insight into the expected form of the PSF. We
motivate this idea by considering some standard descriptions
of diffraction-limited optical imaging systems; see for exam-
ple Chapter 24 of Ref. [54] and Ref. [55]. One description of
the imaging process [54, 55], first calculates the image formed
using geometric optics, and then accounts for the effects of
diffraction, by convolving this geometrical image with a PSF.

Alternatively one can analyze the behavior of a 4-f imaging
system (where the limiting aperture is situated in the Fourier
plane) by decomposing the input field into its Fourier compo-
nents [54]. These spatial frequencies are then mapped to Dirac
delta functions in the Fourier plane. Only those spatial fre-
quencies that lie within the aperture window can contribute
to the final image and thus the degrading effects of diffraction
can be interpreted as a spatial frequency filtering operation.
As the width of the aperture increases, more spatial frequen-
cies are passed and the width of the associated convolving
PSF narrows, improving the resolving capability of the sys-
tem, i.e., the quality of the output image. Thus the width of
the PSF is directly related to the spatial frequencies that pass
through the Fourier plane aperture, see Section 6.2 in Ref. [5].
We note that this latter viewpoint (frequency decomposition)
is similar to the approach taken thus far. We see from our anal-
ysis that in a Fresnel system the power associated with differ-
ent spatial frequencies is localized and confined to particular
optical “channels” that tend to walk off from the optical axis,
see also Section 2 of Ref. [56]. If a sufficient amount of power
associated with a particular spatial frequency in the signal is
not intercepted by the camera aperture we cannot recover that
spatial frequency, see Section 2.2 above.

Setting fx in Eq. (9) to zero and allowing the variable αi to
limit to zero, Eq. (9) reduces to a Point Source (PS) located
on the optical axis. The resulting field, ups(x), incident on the
camera can be expressed as

ups(x) =
1√
jλB

exp
(

jπDx2

λB

)
. (35)

This field is first convolved with the camera pixel function

ũps(x) = ups(x)⊗ pγ(x)

=
1√
jλB

∫ γ

−γ
exp

[
jπ
λz′

(
x− x′)2

)]
dx′

=
1

2
√

D
{erf [Q (x− γ)]− erf [Q (x + γ)]} (36)

where Q = (−1)
3
4
√

π/λz′ and z′ = B/D. We note that
Eq. (36) is in fact a scaled Fresnel transform integral over a dis-
tance z′, with a Fresnel number F = γ2/λz′. This number pro-
vides some insight into the form of the distribution described
by Eq. (36). For example when F > 1, we are in the “Fresnel”
regime and the distribution in Eq. (36) tends to be more struc-
tured, see for example Section 4.5.1 in Ref [5] and in particular
Fig. 4.15 (note that the axes are scaled). Often the Fresnel num-
bers that are encountered in DH systems are F � 1, due to the
small size of the camera pixel compared with z′. Under these
conditions we can, to a good approximation, replace Eq. (37)
with the Fraunhofer approximation to give

ũps(x) ≈ 2γ√
jλB

sinc
(

2πγx
λz′

)
exp

(
jπDx2

λB

)
. (37)

An important case when the Fraunhofer approximation can-
not be made includes imaging systems where B → 0 and
F → ∞. In the following subsections we examine the effect
these approximations have on the system’s PSF.
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3.1 Fraunhofer approximation, F � 1

Here we examine the implications for our PSF analysis when
the Fraunhofer approximation is valid, i.e. when F � 1. Fol-
lowing the convolution operation the field ũps(x) is sampled,
apertured and subject to an inverse LCT operation with the
parameters ABCDN. We may write the resulting PSF as

hT(X) =
1√

jλBN

∫ L

−L
δT(x)ũps(x)

× exp
[

jπ
λBN

(
DN X2 − 2xX + A2

N x2
)]

dx. (38)

Choosing(
AN BN
CN DN

)
=

(
1 zn f
0 1

)(
−D B
C −A

)
,

=

(
−D + Czn f B− Azn f

C −A

)
, (39)

we can “numerically refocus” our digital hologram by vary-
ing zn f , i.e., by using the Fresnel transform to propagate to
parallel nearby planes. Making use of Eqs. (2), (37), and (39),
and simplifying the resulting expression we can write Eq. (38)
as

hT(X) =Kps

∞

∑
n=−∞

exp
[
−jπλDN

( n
T

)2
]

× exp
(

j2nπDN X
T

)
h
(

X− nλBN
T

, zn f

)
, (40)

where

h(X, zn f ) = exp

 −jπAX2

λ
(

B− Azn f

)
 ∫ L

−L
sinc

(
2πγX

λz′

)

× exp

 −j2πxX

λ
(

B− Azn f

)


× exp

[
−j2πx2

λ

(
D
B

+
−D + Czn f

B− Azn f

)]
dx, (41)

and Kps = 2γ/
[

jTλ

√
B
(

B− Azn f

)]
.

We note from Eq. (40), that the sampling operation again
produces an infinite number of replicas in the reconstruction
plane separated from each other by λBN/T as well as a linear
and constant phase terms.

If we set zn f = 0, the expression in Eq. (41) reduces to a scaled
FT operation. The form of the resulting PSF distribution de-
pends on the interaction of the width of the sinc function and
the camera aperture size. The first null of the sinc function oc-
curs when X = λz′/γ. Hence provided that

L� λz′

γ
, (42)

we can assume that the limits of integration in Eq. (41) are
imposed by the sinc function, rather than the camera aperture
and therefore that the imaging system performance is limited

by the camera pixels. Setting L→ ∞ in Eq. (41),

h(X, zn f ) = exp
(
−jπAX2

λB

)
×
∫ ∞

−∞
sinc

(
2πγX

λz′

)
exp

(
−j2πxX

λB

)
dx

=pγ(X/D) (43)

and performing the scaled FT we see that h(x) is given by a
scaled form of the original camera pixel function.

When zn f 6= 0, we must take into account the quadratic phase
term in Eq. (41). This is equivalent to performing an LCT op-
eration on the sinc function. For small values of zn f we expect
that h(x) will have a form similar to that of diffraction from a
rectangular aperture (1-D slit), i.e. similar to the mathematical
form of Eq. (36).

We now examine the case when the camera aperture acts to
limit the region of integration of Eq. (41). This implies that
the sinc function should not vary appreciably over the range
−L ≤ X ≤ L. This will approximately hold if the following
inequality is satisfied

L <
λz′

10γ
. (44)

Again for simplicity we initially assume that zn f = 0. Eq. (41)
can then be expressed as

h(X, zn f ) = 2L exp
(
−jπAX2

λB

)
sinc

(
2πLX

λB

)
, (45)

which has the more familiar PSF form, a sinc function. When
zn f 6= 0, Eq. (45) will tend to broaden and its peak amplitude
will decrease.

3.2 Numerical examples

In the previous section we discussed how the mathematical
form of the PSF is dependent on the particular DH system.
Here we explore this further by examining how the PSF varies
as a function of position for different DH systems. We do this
by considering the reconstruction of a PS located at two differ-
ent locations for three separate system configurations (i) Fres-
nel, (ii) lens-less Fourier and an (iii) optical FT system. The
properties of these different systems are summarized in Ta-
ble 1. Examining the parameters for ABCDN we note that the
location of the replicas vary as a function znf for systems (i)
and (ii), while for system (iii) the locations of the replicas in
the reconstruction domain is a function of the lens focal length
only. The optical system parameters ABCDA, are more impor-
tant for determining the performance of the different systems
as these variables define both SE and BW.

Keeping the same CCD parameters as before, i.e. L = 6 mm,
T = 10 µm, FF = 1, we first examine the reconstruction for
system (i).

3.2.1 Fresnel PSF

Here we examine the form of the PSF when the PS is located at
zps = 7/500 and then at zps = 8/125. Subbing the values into
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(i) Fresnel (ii) Lens-less Fourier (iii) Optical FT

ABCDA

(
1 zps
0 1

) (
1 0

−1/zr 1

) (
1 zps
0 1

) (
1 zf
0 1

)(
1 0

−1/zf 1

)(
1 zps

0 1

)
(

0 zf
−1/zf 1− zps

zf

)

ABCDN

(
1 znf
0 1

)(
−1 zps

0 −1

) (
1 znf
0 1

)( zps
zr
− 1 zps

−1/zr −1

) (
1 znf
0 1

)( zps
zf
− 1 zf

−1/zf 0

)
(
−1 zps − znf
0 −1

) (
zps−znf−zr

zr
zps − znf

−1/zr −1

) ( zps−znf−zf
zf

zf

−1/zf 0

)

TABLE 1 Table summarizing the different parameters for the Fresnel, lens-less Fourier and optical FT imaging systems. The variables zr and zf refer to the location of the spherical

reference field and the focal length of our FT lens respectively. znf refers to the amount of ‘numerical refocusing’ we carry out, while zps is the distance of the PS from the CCD

for both the Fresnel and lens-less Fourier systems, but it refers to the distance the PS lies away from our FT lens in the optical FT system.

FIG. 10 (a) Lateral and (b) longitudinal cross-sections of |h(X, zn f )| for a Fresnel

system (normalized with respect to |h(0, 0)|). The solid gray line represents the sys-

tem: ABCDA = [1, 7/500, 0, 1], while the dashed black line represents the system:

ABCDA = [1, 8/125, 0, 1]. Axes are in µm.

Eq. (42) we find that in the first instance L ≈ 0.9 mm, while
when the PS is located further away from the CCD, L ≈ 4
mm. We present the plots for h(X, zn f ) in Figure 10(a) and (b)
respectively. Since L = 6 mm, Eq. (42) holds when zps = 7/500
and so we should expect a rectangular shaped PSF. For the sec-
ond PS, Eq. (42) only approximately holds and we note that
the PSF is shaped similar to a flat-topped sinc function. Nev-
ertheless for both PS locations the limiting effect of the pixels
dominate the imaging performance. In Figure 10(b) we plot
the longitudinal PSF distribution which is symmetric about
z = 0. For both PS the distribution is similar. Closer inspec-
tion reveals that the peak amplitude for |h(X, zn f )| does not
occur when zn f = 0. This implies that the most sharply fo-
cused plane does not lie at the correct focus but rather two
planes either side of the contributing PS. To confirm this we
also plot h(X, zn f ≈ 58 µm) as a dotted distribution in Fig-
ure 10(a). While the peak amplitude is higher at this value for
zn f , the width of the distribution is also wider.

3.2.2 Lensless Fourier PSF

From Section 2.3 we recall that by appropriately designing our
optical system we can vary the value for D. Turning our at-
tention to system (ii) we choose a value of zr = 7/500, see
Table 1. Again we examine the distribution that results when
the PS is located at zps = 7/500 and then at zps = 8/125. With

FIG. 11 (a) Lateral and (b) longitudinal cross-sections of |h(X, zn f )| for a lens-less

Fresnel system, where the reference field is a diverging spherical wave located 7/500 m

from the CCD (normalized with respect to |h(0, 0)|). The solid gray line represents the

system: ABCDA = [1, 7/500, -500/7, 0], while the dashed black line represents the

system: ABCDA = [1, 8/125, -500/7, -25/7].

these parameters D is given by zero and -25/7 respectively.
This indicates that for the first PS location, spatial frequencies
will not be effected by the convolution action of the pixels re-
sulting in a dramatically improved form for our PSF, see the
solid gray distributions in Figure 11(a) and (b). From Eq. (44)
we find that for the first PS location the camera aperture acts
as the limiting performance factor. For the second PS, Eq. (42)
applies indicating that the finite pixel size limits the imaging
performance of the system which can be verified by examin-
ing the dashed black distributions in Figure 11(a) and (b). We
further note that the PSF for the second PS location is approx-
imately rectangular and 3 times wider than in Figure 10(a),
in keeping with Eq. (43). Once again the peak amplitude for
|h(X, zn f )| does not occur when zn f = 0.

3.2.3 Optical FT PSF

Finally we turn our attention to our optical FT system. We
choose a converging lens of focal length zf = 100 mm and
refer the reader to Table 1 for the system parameters. We first
note that the value of B is not a function of the location of the
PS rather it is determined solely by the focal length of the lens.
Neither of the inequalities, Eq.’s (42) and (44) are satisfied in
this instance, hence in this region both the finite size of the
pixels and the camera aperture effect the PSF. From Table 1,
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FIG. 12 (a) Lateral and (b) longitudinal cross-sections of |h(X, zn f )| for a optical

Fourier transform system implemented using a converging lens of focal length 10 cm

and a plane wave reference field (normalized with respect to |h(0, 0)|). The solid gray

line represents the system: ABCDA = [0, 1/10, -10, 43/50], while the dashed black

line represents the system: ABCDA = [0, 1/10, -10, 9/25]. Axes are in µm.

we recall that B does not vary as function of zps and so for
this particular system, the differences arise due to the filtering
action of the camera pixels. Interestingly when the PS is lo-
cated further from the CCD it gives a smaller value for D [see
Eq. (23) and Eq. (25)], resulting in a narrower distribution, see
the dashed line in Figure 12(a) and (b). In this latter instance
we note that more power is contained in the side-lobes of the
distribution. We attribute these differences to the effect of the
pixel filtering operation.

3.3 Special Case: Complex ABCDA
parameters for imaging architectures

In this section we wish to demonstrate how the analysis can
be extended to include Gaussian type apertures in our opti-
cal systems, by examining a particular case namely the PSF
for an imaging system. Previously we have assumed that the
ABCDA are real and implicitly that the lens and other opti-
cal elements in the system are of infinite extent. Therefore a
PS in the object plane would be mapped to a corresponding
PS in the image plane and registered as a single bright spot
on the center camera pixel, [we note for an imaging system,
B = 0 and hence the role of Eq. (35) needs to be considered
more carefully, see the definition in Eq. (1)]. Previous analyses
of these types of systems [57], assume that the limiting aper-
ture arises due to the finite extent of other optical elements
and not the camera aperture. We now show that an analogous
result can be derived using the approach discussed in [44, 45].
Consider a 4-f unit magnification imaging system with a lim-
iting Gaussian aperture located in the Fourier plane, i.e.(

A B
C D

)
=

(
0 f
−1/ f 0

)(
1 0
−λ

jπα2
lens

1

)(
0 f
−1/ f 0

)

=

[
1 jλ f 2/

(
πα2

lens

)
0 1

]
. (46)

Substituting Eq. (46) into Eq. (35) and simplifying yields the
Gaussian function

√
παlens
λ f

exp

(
−x2

α2
ds

)
(47)

whose extent ranges over −2αds ≤ x ≤ 2αds, where
αds = λ f / (παlens ). The equivalent rectangular aperture
extent is 2 Γ = 4αlens.

If the effective width of the PSF, 4αds, can be resolved (in a
Nyquist sense) by the sampling rate of the camera then the
limits on resolution are imposed by the optical components
used to image the input field. Should, 4αds, be smaller than
the pixel spacing then the sampling rate and finite pixel size
will both act to limit the maximum spatial frequency that can
be recovered [58].

4 Conclusion

In this manuscript we have developed a model which sim-
plifies the analysis of generalized holographic imaging sys-
tems that include as special cases the familiar Fresnel, lens-
less Fourier and imaging architectures. We began by choos-
ing a relatively straight-forward mathematical expression as
the input function that could be used to conveniently model
the propagation of different spatial frequency components
through the holographic imaging system, see Figure 1. Us-
ing this function both the finite extent and spatial frequency
content can be varied and their effects on the final reconstruc-
tion of the signal estimated using simple but quite general
rules of thumb. It was shown that the power associated with
a specific spatial frequency component can be visualized as
traveling along definite “channels” centered at x = ±λ fxB
of spatial extent 4αc. For a reasonable reconstruction we re-
quire that the power contained in these “channels” lie within
the finite extent of the camera, ±L. This condition is ensured
when Eq. (20) is satisfied, although quite reasonable recon-
structions can be obtained for the less restrictive condition
given in Eq. (18). A feature of a generalized DH system is that
the path of these “channels” can be controlled using a combi-
nation of lenses and sections of free space by fixing the optical
system parameters ABCDA, using Eqs. (4)–(8).

The averaging effect of the finite size pixels were shown to
limit the system performance by an amount related to the sys-
tem parameter D and α̃c. As a guideline one should ensure
that the bandwidth of the signal, BW, is less than 1/T, see
Eq. (23) and (25). It was shown that the value of D could be
varied by changing the curvature of the reference wavefield
and this was explored in Section 2.3.

The discrete nature of CCD cameras has significant implica-
tions for the resulting reconstructed DH field. The effect of the
sampling operation is to produce an infinite series of repli-
cas in the reconstruction plane that are separated from each
other by a distance λB/T. Provided that the extent of our in-
put field is finite and does not exceed the separation between
replicas we can perfectly reconstruct our signal. This result is
a generalization of the commonly quoted Nyquist criterion,
which implies that it is possible to recover spatial frequen-
cies far greater than the Nyquist sampling limit provided that
Eq. (32) holds. We note that in the model presented here, it has
been assumed that the all optical elements are of infinite ex-
tent, this limitation may be overcome by modeling apertures
using a Gaussian function [44, 45] and as discussed in Section
3.3.

If a priori knowledge is available regarding the extent and
spatial frequency content of an input signal, the main results
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from Section 2, i.e., Eq. (18), Eq. (25) and Eq. (32), can be used
to optimally design an optical system ABCDA in order to im-
age that signal.

In order to examine the 3D imaging performance of general-
ized DH systems in Section 3 we introduced a Point Spread
Function (PSF) analysis. It was shown that the system’s PSF
was determined by the parameters ABCDA. In general the
finite extent of the camera and pixels both contribute to the
shape of the system’s PSF, although two specific regimes were
identified where one of these effects is almost completely
dominant, see Eq. (42) and Eq. (44). It was shown that the lon-
gitudinal and lateral widths of the PSF were dependent on
the distance of the point source with respect to the camera,
see Table 1 and Eq. (42) and Eq. (44). Some implications of this
result were discussed with the aid of some numerical exam-
ples in Section 3.2. Since the form of PSF is dependent on the
parameters ABCDA, one cannot image over a 3D volume with
the same detail, as when using a scanning imaging system. A
similar conclusion was previously reached by Kou and Shep-
pard [43]. In Section 3.3 the analysis was extended to include
soft Gaussian apertures. This approach can be applied more
generally along with the results in both Section 2 and 3 to deal
with lossy systems, see for example [44].

These algorithms map Nx×Ny samples in the capture domain
to Mx ×My samples in the reconstruction domain. The effect
of discretizing RN(X) in Eq.(29) produces a periodicity of the
sampled camera distribution. Although no information is de-
stroyed by using these fast algorithms care needs to be taken
when implementing them so that other sampling rules are not
violated, [27, 31, 59, 60].

In closing we would like to mention several publications that
came to our attention after this manuscript was accepted.
First, an early publication by Yaroslavskii and Merzlyakov,
[61] and a more recent contribution (see Chap. 3), again from
Yaroslavskii, [62]. In Ref. [63], Hao et. al. propose a slightly dif-
ferent model of interaction with the camera, swapping the or-
der of the convolution and the aperture, but their model out-
puts identical sample values to that used in this paper.

ACKNOWLEDGMENTS
DPK is now Junior-Stiftungsprofessor of Optics Design and
is supported by funding from the Carl-Zeiss-Stiftung. BMH
and DPK acknowledge funding from the European Commu-
nitys Seventh Framework Programme FP7/2007-2013 under
grant agreement 216105 “Real 3D”. JJH acknowledges the sup-
port of the Optica Mathematica projects (DGAPA-UNAM IN-
105008 and SEP-CONTACYT 79899) and the Irish Research
Council for Science, Engineering and Technology. JTS and
BMH acknowledge the support of Science Foundation Ire-
land under the National Development Plan. DPK further ac-
knowledges helpful discussions with Donald Duncan, Steve
Jacques, Scott Prahl and Ravikant Samatham on various top-
ics discussed here.

References

[1] D. Gabor, “A new microscope principle” Nature 161, 777–778
(1948).

[2] D. Gabor, “Microscopy by reconstructed wave-fronts” Royal Soci-
ety of London Proceedings Series A 197, 454–487 (1949).

[3] D. Gabor, “Microscopy by reconstructed wave fronts: II”, Proc.
Phys. Soc. B 64, 449–469 (1951).

[4] D. Gabor, and W. P. Goss, “Interference microscope with total
wavefront reconstruction” J. Opt. Soc. Am. 56, 849–856 (1966).

[5] J. Goodman, Introduction to Fourier Optics (Second Edition,
McGraw-Hill, New York, 1966).

[6] J. W. Goodman, and R. W. Lawrence, “Digital image forma-
tion from electronically detected holograms” Appl. Phy. Lett. 11,
77–79 (1967).

[7] U. Schnars, and W. Jüptner, “Direct recording of holograms by a
CCD target and numerical reconstruction” Appl. Opt. 33, 179–181
(1994).

[8] U. Schnars, and W. P. O. Juptner, “Digital recording and numeri-
cal reconstruction of holograms” Meas. Sci. Technol. 13, R85–R101
(2002).

[9] C.-S. Guo, L. Zhang, Z.-Y. Rong, and H.-T. Wang, “Effect of the fill
factor of CCD pixels on digital holograms: comment on the papers
“Frequency analysis of digital holography” and “Frequency analy-
sis of digital holography with reconstruction by convolution”” Opt.
Eng. 42, 2768–2771 (2003).

[10] D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T.
Rhodes, “Resolution limits in practical digital holographic sys-
tems”Opt. Eng. 48, 095801 (2009).

[11] J. W. Goodman, Statistical Optics (John Wiley and Sons, 1985).

[12] R. Bracewell, The Fourier Transform and its Applications (McGraw-
Hill, New York, 1965).

[13] A. Stern, “Sampling of linear canonical transformed signals” Signal
Process. 86, 1421–1425 (2006).

[14] T. M. Kreis, “Frequency analysis of digital holography” Opt.
Eng. 41, 771–778 (2002).

[15] T. M. Kreis, “Frequency analysis of digital holography with recon-
struction by convolution” Opt. Eng. 41, 1829–1839 (2002).

[16] T. M. Kreis, “Response to “Effect of the fill factor of CCD pixels on
digital holograms: comment on the papers ‘Frequency analysis of
digital holography’ and ‘Frequency analysis of digital holography
with reconstruction by convolution’ ”” Opt. Eng. 42, 2772–2772
(2003).

[17] E. N. Leith, and J. Upatnieks, “Reconstructed wavefronts and com-
munication theory” J. Opt. Soc. Am. 52, 1123–1128 (1962).

[18] T. Latychevskaia, and H.-W. Fink, “Solution to the Twin Image Prob-
lem in Holography” Phys. Rev. Lett. 98, 233901 (2007).

[19] D. S. Monaghan, D. P. Kelly, N. Pandey, and B. M. Hennelly,
“Twin removal in digital holography using diffuse illumination”
Opt. Lett. 34, 3610–3612 (2009).

[20] G.-S. Han, and S.-W. Kim, “Numerical correction of reference
phases in phase-shifting interferometry by iterative least-squares
fitting” Appl. Opt. 33, 7321–7325 (1994).

[21] Z. Wang, and B. Han, “Advanced iterative algorithm for phase ex-
traction of randomly phase-shifted interferograms” Opt. Lett. 29,
1671–1673 (2004).

[22] I. Yamaguchi, and T. Zhang, “Phase-shifting digital holography”

11034- 13



Journal of the European Optical Society - Rapid Publications 6, 11034 (2011) D. P. Kelly, et al.

Opt. Lett. 22, 1268–1270 (1997).

[23] M. North Morris, J. Millerd, N. Brock, J. Hayes, and B. Saif, “Dy-
namic phase-shifting electronic speckle pattern interferometer”,
in Society of Photo-Optical Instrumentation Engineers (SPIE) Con-
ference Series, H. P. Stahl, ed. (2005), Presented at the Society
of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol.
5869, 337–345.

[24] P. K. Rastogi, Digital Speckle Pattern Interferometry and Related
Techniques (Wiley, New York, 2000).

[25] S. A. Collins-Jnr, “Lens-system diffraction integral written in terms
of matrix optics” J. Opt. Soc. Am. 60, 1168–1177 (1970).

[26] D. P. Kelly, J. E. Ward, U. Gopinathan, and J. T. Sheridan, “Control-
ling speckle using lenses and free space” Opt. Lett. 32, 3394–3396
(2007).

[27] J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Additional sampling
criterion for the linear canonical transform” Opt. Lett. 33, 2599–
2601 (2008).

[28] D. P. Kelly, B. M. Hennelly, W. T. Rhodes, and J. T. Sheridan, “Ana-
lytical and numerical analysis of linear optical systems” Opt. Eng.
45, 088201 (2006).

[29] F. Oktem, and H. M. Ozaktas, “Exact relation between continuous
and discrete linear canonical transforms” IEEE Signal Proc. Let. 16,
727–730 (2009).

[30] J. J. Healy, and J. T. Sheridan, “Fast linear canonical transforms”
J. Opt. Soc. Am. A 27, 21–30 (2010).

[31] J. J. Healy, and J. T. Sheridan, “Reevaluation of the direct method
of calculating Fresnel and other linear canonical transforms” Opt.
Lett. 35, 947–949 (2010).

[32] F. Gori, “Fresnel transform and sampling theorem” Opt. Com-
mun. 39, 293–297 (1981).

[33] L. Onural, “Sampling of the diffraction field” Appl. Opt. 39,
5929–5935 (2000).

[34] A. Stern, and B. Javidi, “Sampling in the light of Wigner distribu-
tion” J. Opt. Soc. Am. A 21, 360–366 (2004).

[35] A. Stern, and B. Javidi, “Sampling in the light of Wigner distribu-
tion: errata” J. Opt. Soc. Am. A 21, 2038–2038 (2004).

[36] A. Stern, and B. Javidi, “Analysis of practical sampling and recon-
struction from Fresnel fields” Opt. Eng. 43, 239–250 (2004).

[37] L. Onural, “Exact analysis of the effects of sampling of the scalar
diffraction field” J. Opt. Soc. Am. A 24, 359–367 (2007).

[38] H. Jin, H. Wan, Y. Zhang, Y. Li, and P. Qiu, “The influence of struc-
tural parameters of CCD on the reconstruction image of digital
holograms” J. Mod. Optic. 55, 2989–3000 (2008).

[39] G. T. D. Francia, “Degrees of freedom of an image” J. Opt. Soc.
Am. 59, 799–803 (1969).

[40] D. Mendlovic, and A. W. Lohmann, “Space–bandwidth product
adaptation and its application to superresolution: fundamentals”
J. Opt. Soc. Am. A 14, 558–562 (1997).

[41] D. Mendlovic, A. W. Lohmann, and Z. Zalevsky, “Space–bandwidth
product adaptation and its application to superresolution: exam-
ples” J. Opt. Soc. Am. A 14, 563–567 (1997).

[42] R. Piestun, and D. A. B. Miller, “Electromagnetic degrees of free-
dom of an optical system” J. Opt. Soc. Am. A 17, 892–902 (2000).

[43] S. S. Kou, and C. J. Sheppard, “Imaging in digital holographic mi-
croscopy” Opt. Express 15, 13640–13648 (2007).

[44] H. T. Yura, and S. G. Hanson, “Optical beam wave propagation

through complex optical systems” J. Opt. Soc. Am. A 4, 1931–1948
(1987).

[45] H. T. Yura, S. G. Hanson, and T. P. Grum, “Speckle: statistics and
interferometric decorrelation effects in complex ABCD optical sys-
tems” J. Opt. Soc. Am. A 10, 316–323 (1993).

[46] D. P. Kelly, J. E. Ward, B. M. Hennelly, U. Gopinathan, F. T. O’Neill,
and J. T. Sheridan, “Paraxial speckle-based metrology systems
with an aperture” J. Opt. Soc. Am. A 23, 2861–2870 (2006).

[47] D. P. Kelly, N. Pandey, B. M. Hennelly, and T. J. Naughton, “Quan-
tization noise: An additional constraint for the extended sampling
theorem”, in Digital Holography and Three-Dimensional Imaging
(Optical Society of America, 2009), paper DWB12.

[48] B. R. Frieden, “Restoring with maximum likelihood and maximum
entropy” J. Opt. Soc. Am. 62, 511–518 (1972).

[49] B. R. Frieden, and J. J. Burke, “Restoring with maximum entropy,
II: Superresolution of photographs of diffraction-blurred impulses”
J. Opt. Soc. Am. 62, 1202–1210 (1972).

[50] F. Soulez, L. Denis, Éric Thiébaut, C. Fournier, and C. Goepfert,
“Inverse problem approach in particle digital holography: out-
of-field particle detection made possible” J. Opt. Soc. Am. A 24,
3708–3716 (2007).

[51] C. Fournier, L. Denis, and T. Fournel, “On the single point resolu-
tion of on-axis digital holography” J. Opt. Soc. Am. A 27, 1856–1862
(2010).

[52] S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, “Spatially re-
solved Fourier holographic light scattering angular spectroscopy”
Opt. Lett. 30, 3305–3307 (2005).

[53] T. Meinecke, N. Sabitov, and S. Sinzinger, “Information extraction
from digital holograms for particle flow analysis” Appl. Opt. 49,
2446–2455 (2010).

[54] A. W. Lohmann, Optical Information Processing (Universitätsverlag
Ilmenau, 2006).

[55] D. P. Kelly, J. T. Sheridan, and W. T. Rhodes, “Fundamental diffrac-
tion limitations in a paraxial 4-f imaging system with coherent and
incoherent illumination” J. Opt. Soc. Am. A 24, 1911–1919 (2007).

[56] L. Xu, X. Peng, Z. Guo, J. Miao, and A. Asundi, “Imaging analysis
of digital holography” Opt. Express 13, 2444–2452 (2005).

[57] T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian,
F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Nu-
merical parametric lens for shifting, magnification, and complete
aberration compensation in digital holographic microscopy” J. Opt.
Soc. Am. A 23, 3177–3190 (2006).

[58] A. Stern, and B. Javidi, “Space-bandwidth conditions for efficient
phase-shifting digital holographic microscopy” J. Opt. Soc. Am.
A 25, 736–741 (2008).

[59] D. S. M. N. P. Bryan, M. Hennelly, and D. P. Kelly, Informa-
tion Optics and Photonics: Algorithms, Systems, and Applications
(Springer, 2010).

[60] J. J. Healy, and J. T. Sheridan, “Space–bandwidth ratio as a means
of choosing between Fresnel and other linear canonical transform
algorithms” J. Opt. Soc. Am. A 28, 786–790 (2011).

[61] L. P. Yaroslavskii, and N. S. Merzlyakov Methods of Digital Holog-
raphy (Consultants Bureau, Los Angeles, 1980).

[62] L. P. Yaroslavskii, and J. Astola (eds.) Advances in Signal Trans-
forms: Theory and Applications (Hindawi Publishing Corporation,
Cairo, 2007).

[63] Y. Hao, and A. Asundi, “Resolution analysis of a digital holography
system” Appl. Opt. 50, 183–193 (2011).

11034- 14


	INTRODUCTION
	THEORETICAL ANALYSIS
	Representation of the input field
	Camera Aperture
	Active Pixel Area
	Sampling

	3D Imaging Performance - Point spread function analysis
	Fraunhofer approximation, F 1
	Numerical examples
	Fresnel PSF
	Lensless Fourier PSF
	Optical FT PSF

	Special Case: Complex ABCDA parameters for imaging architectures

	Conclusion

