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The ability to conduct in-situ real-time process-structure-property checks has the potential to overcome
process and material uncertainties, which are key obstacles to improved uptake of metal powder bed
fusion in industry. Efforts are underway for live process monitoring such as thermal and image-based
data gathering for every layer printed. Current crystal plasticity finite element (CPFE) modelling is cap-
able of predicting the associated strength based on a microstructural image and material data but is com-
putationally expensive. This work utilizes a large database of input–output samples from CPFE modelling
to develop a trained deep neural network (DNN) model which instantly estimates the output (strength
prediction) associated with a given input (microstructure) of multi-phase additive manufactured stain-
less steels. The DNN model successfully recognizes phase regions and the associated unique crystallo-
graphic orientation variations. It also captures differences in macroscopic stress response due to the
varying microstructure. However, it is less reliable in terms of fatigue life predictions. The DNN model
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Nomenclature

_ca rate of slip along the slip system a
a current slip system
_a reference strain rate component [s�1]
n strain rate sensitivity
sa slip system resolved shear stress [MPa]
ga isotropic strain hardening coefficient [MPa]
g0 initial critical resolved shear stress [MPa]
g1 stage I stress [MPa]
h0 self-hardening moduli [MPa]
xa kinematic hardening back stress [MPa]

C11;C12;C44 elastic anisotropic constants [GPa]
C1;D1 Armstrong-Frederick parameters for the back-stress

evaluation [GPa]
b fatigue equation exponent
p accumulated effective crystallographic slip
W accumulated crystallographic strain energy dissipation

[MJ/m�3]
Ni fatigue crack initiation life
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exhibits high accuracy for the structure–property relationship as a surrogate prediction tool compared to
CPFE while significantly reducing the computational cost to just a few seconds.
� 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The medical device and aerospace industries have led the adop-
tion of metal powder bed fusion (PBF) additive manufacturing
(AM) as a process of choice for next-generation manufacturing.
However, challenges with real-time quality control and process-s
tructure–property awareness limit further uptake of PBF. The
mechanical performance of metals during in-service deformation
is largely dependent on microstructural features such as phase
composition, crystallographic orientation, grain morphology, as
well as grain size distribution [1]. The complex layer-by-layer
solidification process and intricate thermal history of metal PBF
parts present difficulties in predicting the material microstructure
of printed parts. Such structure and performance predictive capa-
bility has not been developed in a format suitable for industrial
quality control or live process optimization, in part because of
the lack of high-resolution in-situ PBF microscopy technology.

Finite element analysis, involving grain boundary and crystal
orientation specifications, along with constitutive and damage
model parameters, are referred to as crystal plasticity finite ele-
ment (CPFE) methods [2–5]. CPFE modelling has been utilized to
quantify the phase composition effect on tensile behaviour [6,7],
the higher ductility and strength caused by finer grain size struc-
ture [8,9], the strengthening effect of grain boundaries [10,11], as
well as manufacturing direction-induced texture effect [12,13].
This predictive capability has been applied to investigate AM met-
als and processes within manufacturing and materials research,
requiring post-build sectioning, polishing, imaging, model recon-
struction and time-consuming analysis.

Most CPFE studies are based on Voronoi tessellation (VT) ide-
alised (grain morphology and linear grain boundaries) representa-
tive volume elements (RVE) that statistically represent the real
microstructure [14–16]. Other recent CPFE studies have introduced
high-fidelity models based on realistic characterization images
from scanning electron microscope (SEM) or electron backscatter
diffraction (EBSD) scans [17–19]. The difficulty in determining
accurate minor phase content (below 10%) has led some research-
ers to approximate dual phase materials as single phase (Ti-6Al-4V
[20], 316L steel [21] and P91 steel [22]), though dual phase CPFE
studies on AM Ti-6Al-4V [6,20] have been reported.

CPFE methods have evolved to include increased slip system
complexity [23,24], allowing simulation of multi-phase alloy beha-
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viour. These advances improve accuracy and broaden the applica-
bility, but they also increase computational cost. This
computational effort increases when the loading condition is com-
plex (e.g. cyclic) and further grows if a definitive RVE model [25,26]
or a high-fidelity model (realistic microscopy image based) is
required. Such advanced modelling generally requires model
development and simulation time in the order of hours and days,
respectively. Often high-end computer infrastructure is required
to perform the computation, and once complete offers powerful
insights into the contribution that individual microstructural fea-
tures make to the local and bulk material response. While accurate
and insightful, CPFE is far removed from a live in-process property
predictive tool, primarily due to model setup and simulation times.

Stainless steels have emerged as a common material for metal
printing due to the low power requirement for melting and the
non-reactive properties of the material in powder form [27]. The
AM fabricated stainless steel exhibits different phase components
(austenite, martensite, and ferrite), leading to a complex combina-
tion of microstructure and mechanical properties [1]. Studies have
shown that chemical phase fraction has a bigger influence on
mechanical behaviour, among a range of microstructural features
examined in PBF additive manufactured 17-4PH stainless steel
(SS17-4PH) and 316L stainless steel (SS316L) [28]. SS17-4PH is a
dual-phase steel strengthened by precipitation. As-built SS17-
4PH contains mainly martensite phase together with the retained
austenite phase [29], the precise fraction of which is highly depen-
dent on the PBF process as well as post heat treatment parameters
[30]. Studies have reported the retained austenite phase varying
from 3% to 63% [31–34]. Similar behaviour was also observed for
other stainless steels such as SS316L, with the detected volume
fraction of ferrite ranging from 0.83% to 7.83% [35,36]. Variations
in PBF process parameters, number of parts in a build or build lay-
outs can lead to variations in as-built microstructure, and conse-
quently variations in local mechanical performance [37]. Even
when process parameters are held constant in a build, a gradient
in microstructure can often be observed along the build direction
[38]. This, along with the risk of defect occurrence, has led to some
PBF equipment manufacturers developing live process monitoring
quality tools that image and record sensor data for each individual
solidified layer, before the next layer of loose powder is applied. As
optical imaging resolution and sensor technology continue to
advance, it is anticipated that the next generation of quality control
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in PBF machines will go beyond melt-pool analysis and record as-
solidified microstructural features, such as grain boundaries within
the captured individual layer data. To take advantage of this live
microstructural data, an ideal in-process PBF monitoring tool
should have a structure–property prediction for each printed layer.
However, live-CPFE modelling of the individual layers is impracti-
cal due to computational cost and the short time frame (generally
seconds) between successive layer printing.

Over recent years, Deep Learning (DL), a subclass of the general
term machine learning, has become a popular tool due to its ability
to deal with big data efficiently. DL provides greater flexibility via
an artificial neural network where successive transformations
(known as hidden layers) of the inputs extract useful information
from the previous layers to predict the final output, with minimal
human bias. Some studies have considered integrating DL with the
structure–property prediction models to either assist decision
making [39–42] and non-destructive quality control [43,44], or
improve efficiency [45,46]. Such existing DNN-CPFE coupled meth-
ods focus on stress–strain behaviour prediction and computational
cost reduction. Convolutional neural networks (CNN)was adopted
as the encoder to study the crystallographic texture effect on the
stress–strain behaviour [47] and orientation evolution [48] of a
synthetic RVE morphology. CNN methods gave accurate predic-
tions compared to CPFE simulations but in milliseconds. Yamanaka
et al. [49] developed a DNN tool to read in 3D orientation informa-
tion of aluminium sheet material and applied this to estimate the
biaxial stress–strain behaviour. Mangal [50] used CNNs to predict
stress localization and capture hotspots. While previous studies
have successfully implemented DL techniques with various struc-
ture–property models, to the author’s knowledge, an integrated
DL-CPFE tool that captures the effect of phase and crystallographic
orientation in AM materials has not been previously developed.

This study presents a data-driven DL model based on a CPFE
predicted structure–property relationship database. This will pro-
vide an instant predictive capability to advance the development
of a live process-structure–property tool based on real-time image
and sensor data, giving real-time layer-by-layer strength predic-
tions, once suitable in-situ microscopy technology is in place.
2. Methodology

The workflow is described in Fig. 1. This process firstly gener-
ates a statistically equivalent VT-generated CPFE model from the
EBSD measurement of an AM 17-4PH stainless steel sample. The
input parameters are calibrated against experimental stress–strain
behaviour under tensile and cyclic fatigue conditions (ASTM-
E606). The dual phase CPFE model is then extended to five different
martensite volume fractions (Vf ;mÞ model sets. Each set contains
200 models, with different (random) grain morphologies, leading
to the simulation of 1000 unique CPFE models in total. The result-
ing 1000 structure–property linkages are used for training and val-
idating the DL model as a surrogate tool for CPFE to rapidly predict
structure–property relationships.
2.1. Material and experimental characterization

The material employed for this study is the AM SS17-4PH spec-
imen [33] fabricated via PBF under the protection of argon atmo-
sphere. The samples were built along the axial direction
(vertically printed) where the deposited powder layer was perpen-
dicular to the specimen axis. The PBF specimen was then subjected
to the recommended post-build heat treatment. Post-build pro-
cessing consisted of solution annealing at approximately 1050 �C,
air cooling, and then age hardening at 593 �C for 4 h, followed by
air cooling at room temperature. Grit blasting was conducted to
3

improve the surface quality and the polished average surface
roughness was measured as 60.1 lm. The specimen geometry
design and the mechanical test protocol followed the ASTM E606
standard [51]. The as-built sample had a length of 16 mm and
diameter of 8 mm at the gauge section, The shoulder radius of
the testing specimen was 40 mm. The grip section had a diameter
of 16 mm.

SEM and EBSD were used to scan the microstructure and recon-
struct the grain map to measure phase information, as well as the
orientation map. EBSD scans were taken using a Jeol JSM-7100F
field emission SEM located at the University of Nevada, equipped
with an Oxford EBSD detector. A microstructural sample was cut
from the gauge area using a scan area of 300� 300 lm and a step
resolution of 0.5 lm to detect the austenite and martensite phases
together with their crystallographic orientation texture. Axial ten-
sile test and strain-controlled fatigue tests were conducted under
ambient air conditions using a servo-hydraulic tension–torsion
Instron load frame equipped with the 8800 controller. The test
machine has a maximum loading force capacity of 222 kN to char-
acterise the plasticity and fatigue behaviour of the SS17-4PH mate-
rial and to facilitate constitutive behaviour calibration of the CPFE
model. Both tests were equipped with an extensometer with a
gauge length of 12.7 mm to monitor and measure the strain evolu-
tion. The tensile test was conducted under displacement control
with an approximated strain rate of 8� 10�4 s�1. Fully reversed
strain-controlled fatigue tests were conducted with the testing fre-
quency from 0.2 Hz to 10 Hz according to the strain amplitude
ranging from 1:5� 10�3 to 1:0� 10�2. The strain limit is 40% in
the monotonic tensile test and �10% in the fatigue test. During
individual cycles in the fatigue test, a minimum of 200 data points
were recorded and the fatigue failure was considered to take place
once the maximum stress was reduced by 5% compared to the sta-
bilized peak value.
2.2. CPFE based dataset generation

The data-driven model requires structure–property relationship
data for training the DNNmodel. In the absence of large datasets of
experimental testing for structure–property relationships of PBF-
LB manufactured stainless steel, CPFE models are adopted here as
a reasonable method to produce a broad map of property-
structure linkage information for the DL tool. The VT based grain
maps were generated using DREAM3D [52]. The advantage of this
tool is that it permits random grain nucleation while maintaining a
constant phase fraction ratio. This feature is beneficial to imitate a
batch of samples with the same print parameters.

An efficient simulation framework was developed to batch gen-
erate and solve large groups of dual-phase VT models automati-
cally. Each model contains approximately 100 grains of average
grain size 10.36 lm and each grain is meshed with approximately
100 linear solid hexahedral (C3D8) finite elements in the general
purpose finite element solver ABAQUS [53]. This voxel mesh per-
mits direct conversion from image pixels to a finite element mesh
[54] and also facilitates a consistent DNN input size for all models
thus minimizing the potential bias of DNN input size [55]. This
three-dimensional solid element as a recommended stress/dis-
placement element [56], has also been shown to have better accu-
racy compared to linear tetrahedron mesh for plasticity
simulations [57]. 200 unique CPFE models were generated for each
martensite volume fractions (Vf ;mÞ of 5, 20, 50, 80, 95%, with a con-
stant grain size distribution and phase fraction. Crystallographic
orientation is assigned to individual grains according to the inverse
pole figures (IPFs), to generate 1000 unique polycrystalline realiza-
tions in total. Fig. 2 shows sample models from the 80% Vf ;m model
set. The martensite phase is shown in black with austenite in white



Fig. 1. Schematic of the integrated CPFE-DNN architecture, two images containing phase fraction and orientation information act as input to predict mechanical properties.
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and corresponding grain morphology and orientation data shown
in colour. Materials consisting of more than two phases would
require a colour map for complete phase data description.

Periodic boundary conditions (PBC) [58] were applied to the
free surfaces in the CPFE models together with a strain of 1.0%,
which is sufficient to calculate bulk yield strength value while
keeping an acceptable CPFE running time. A customized script
was applied to schedule the job and perform results extraction
once the simulation finishes. These post-processed property data
(stress–strain and fatigue data) act as the output of the DNN
model.
2.3. Crystal plasticity model

The CPFE model implements large deformation theory, and the
deformation is determined by crystallographic slip only. Table 1
lists the calibrated constitutive parameters used in this paper.

The power law flow adopted here was first introduced by Huang
[59] and improved by Sweeney [60] implementing an Armstrong–
Frederick rule to describe non-linear kinematic hardening beha-
viour in fatigue problems:

_ca ¼ _asgn sa � xað Þ sa�xaj j
gaj j

n on ð1Þ

where _ca is the crystallographic slip rate on slip system a, _a is the
reference strain rate component, sa is the resolved shear stress of
the slip system, n is rate sensitivity exponent, and ga defines the iso-
tropic strain hardening coefficient.

This dual phase CPFE model contains 24 slip systems, 12 for the
FCC lattice structure austenite phase, and another 12 for the BCC
martensite phase [61,62], shown in Fig. 3.

The hardening behaviour is described by:

_xa1 ¼ C1 _ca � D1xa1 _caj j ð2Þ

where C1 and D1 together determine the back-stress evolution by
controlling the rate of decay, for the simulation of kinematic
hardening.
4

In order to predict the FCI life here, it is important to use a scale-
consistent fatigue indicator parameter (FIP). In this case, based on
previous work, two FIPs, namely accumulated effective crystallo-
graphic slip p [63], and cumulative energy dissipation W [64,65]
were calculated. Eqs. (5)–(7) define the calculation of these two
FIPs. The two FIPs have successfully been utilized in previous
research [6,56] to determine fatigue crack initiation.

Accumulated effective crystal slip p, aggregated over all slip sys-
tems including the effects of mean stress, is successfully imple-
mented with CPFE to predict fatigue behaviour as follows:

_p ¼ 2
3 L

p : Lp
� �1

2 ð3Þ

p ¼ R t
0
_pdt ð4Þ

Further development of this FCI prediction approach considers
the accumulated strain energy dissipation parameter W which
sums up the energy consumption on all the crystal slip systems
by considering both microscale shear stress and slip rate, as
follows:

W ¼ P
a

R t
0 s

a _cadt ð5Þ
It has been found that the two FIPs tend to evolve and reach a

stabilised value after a small number of cycles during CPFE mod-
elling. Thus, it is reasonable to predict the numbers of cycles for
FCI by dividing a critical FIP value FIPcrit by that of the stabilized
fatigue cycle FIPcyc , as shown below:

pcyc ¼ pt � pt�Dtcyc ð6Þ

Wcyc ¼ Wt �Wt�Dtcyc ð7Þ

Ni;p ¼ pcrit
ðpcycÞb1 ð8Þ

Ni; W ¼ Wcrit

Wcycð Þb2 ð9Þ

where Dtcyc is the modelling time consumed to finish one fatigue
cycle.



Fig. 2. A sample of 85 automatically generated CPFE big data generation results with unique grain morphology, crystallographic orientation and phase volume fraction
information for five different martensite phase fractions. Each individual square represents a 100 � 100 lm sample.

Table 1
Calibrated parameters for dual phase CPFE model.

Parameter Martensite BCC Austenite FCC

_a 0.001 s�1 0.001 s�1

n 50 50
g0 466 MPa 192.5
g1 740 MPa 402.5
h0 20 MPa 20 MPa
C11 262 GPa 204.6 GPa
C12 150 GPa 137.7 GPa
C44 112 GPa 126.2 GPa
C1 10,000
D1 200
b 1.58

Fig. 3. Slip systems and crystallographic lattice of austenite and martensite phase.
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The critical FIP values are identified and validated by comparing
the CPFE-predicted and measured FCI data for certain sample tests.
The exponent b is solved through the experimental data-fitting
process by a nonlinear least-squares algorithm. This power-law
approach was considered necessary to improve the fatigue predic-
tion [66–68].

The integrated algorithmwas written in a user material subrou-
tine (UMAT) [60] for ABAQUS. More details about self-hardening
and latent-hardening moduli definitions can be found in prior liter-
ature [58,69,70].
5

2.4. Deep neural network model

2.4.1. Deep neural network architecture
The commonly used machine learning methodologies include

DNNs, ANNs, SVMs, gradient boosting, and random forests etc. This
work adopts the DNN approach as it has previously been shown to
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be effective for image recognition and the labor-intensive process
of feature engineering [71]. Specifically, the inputs of the DL model
are the microstructural images containing phase and orientation
data, and the output value is the predicted tensile stress–strain
curve. The 100� 100 pixel (nodes in CPFE) microstructural images,
representing phase composition and orientation, were converted
to DNN input data format, which contained the RGB values respec-
tively, for the complete model. Thus, the phase map input and the
orientation map use 100� 100� 3 array sizes. A customized
Python code was developed for calculating the macroscopic stress
based on the CPFE-predicted reaction force, and the result together
with its strain value, was recorded with an interval of 0.00025
strain. Consequently, 40 data points were extracted and used to
plot the stress–strain curves, which also acted as the DNN output,
with an array dimension of 40� 2. In this work, two different types
of DNN architecture are considered. A standard sequence DNN net-
work [49,72] is firstly developed where inputs go through a single
pipeline shown in Fig. 4 (a). As the microstructural inputs have two
variables, the sequence DNN design may not be appropriate. Thus,
an optimized non-sequence (Siamese) DNN structure [73] with
two pipelines, shown in Fig. 4 (b), was also developed to capture
the structural features of phase and crystallographic orientation
(represented as IPF colour) data separately.

The base module of the DNN model implements TensorFlow
and convolution neural networks (CNN) as the kernels to extract
information from the microstructure images. CNN is generally
designed to handle the problem of processing grid-shaped data
which are difficult to process via traditional deep learning models.
It utilizes several small filters and pooling layers to efficiently
extract features which are useful for downstream tasks. Further
Fig. 4. (a) Single pipeline sequence DNN (before optimization) and (b

6

general information on convolution layer design can be found else-
where [74]. In this study, the design of the CNN contains the fol-
lowing layers: convolution layer [75], pooling layer and dropout
layer.

The convolution layer only needs a small part for each compu-
tation (usually 3 � 3 or 5 � 5), resulting in a much smaller number
of parameters. It consists of several filters which capture the distri-
butions of the specific characteristic on the data (i.e. in which part
the characteristic is more significant when predicting the result,
also denoted by a weight parameter) by performing matrix multi-
plication with a part of the data. In this way, the filters are a set of
matrices whose elements (parameters) are implicitly and automat-
ically learned during the training process of model development.
The stress–strain property of each instance is influenced by differ-
ent characteristics of the data. The goal of the convolution layer is
to determine the implicit characteristics that contribute to the
stress property. The hyper-parameters were defined based on a
(published) recommended stable value [76], without an explicit
hyper-parameter search, as it was observed that the predicted out-
put was not sensitive to minimal change in hyper-parameter.

Integrating the two different CNNs to extract the characteristic
of phase and orientation separately while aggregating the outputs
together at the last 3 layers (as shown in Fig. 4) is a key novelty in
this study. In a standard sequence DNN design, the two images are
usually imported at the first layer where rich semantic information
could be lost. However, in the new model, by aggregating the
images in the last 3 layers, it can better capture their common
points and differentiate their features thus leading to an improved
prediction [77].
) non-sequence multi-pipeline Siamese DNN (after optimization).



Y. Tu, Z. Liu, L. Carneiro et al. Materials & Design 213 (2022) 110345
2.4.2. DNN model training and validation
The DNN inputs consist of 1000 varying microstructural images

including phase and crystallographic orientation variations, each
with 10,000 pixels, thus 2�107 data features in total. There is no
fixed value for optimal ratio of size of training sample dataset to
size of validation sample dataset, as this parameter depends on
the signal-to-noise ratio in the data and the training sample size.
The effect of this ratio selection has been discussed in a previous
study [55], showing that an increase in the training set percentage
can lead to an unstable estimation of the true performance of the
DNN model, while a reduced training set percentage can lead to
a poor model due to insufficient amount of training data. In this
study, a range of ratios was examined, as shown in Table 2, where
a training to validation ratio of 75:25 was found to give the lowest
mean absolute error (MAE) in yield strength predictions. Conse-
quently, the CPFE predicted 1000 structure–property relationships
are randomly divided into two groups: 750 for training and 250 for
validation.

The DNN architecture (i.e. the combination of DNN layers) was
modified through parameter tuning during the training process to
obtain a satisfactory accuracy and learning rate. MSE (mean
squared error) is adopted to train the model and optimize the
parameters. The definition of MSE is presented in Equation (11)
below:

MSE ytrue ;ypredð Þ ¼ ytrue � ypred
� �2 ð11Þ

where ytrue is the ground truth of the stress property from CPFE
modelling results, and ypred is the predicted value by DNN, and L
is the MSE loss function.

The DNN architecture can be summarized in the formula below:

ypred ¼ £L hL;£L�1 hL�1 � � �£1 h1; x
� � � � �� �� � ð12Þ

where x is the input into this model, hL is the Lth layer’s parameters
(note that there may be more than 1 parameter existing in a neural
network layer, but they are all represented by a single h here), and

£L means the activation function and layer type of the Lth layer.
Hence, the loss function can be rewritten as:

L ytrue;£
L hL;£L�1 hL�1 � � �£1 h1; x

� � � � �� �� �� �

¼ abs ytrue �£L hL;£L�1 hL�1 � � �£1 h1; x
� � � � �� �� �� � ð13Þ

Therefore, for each h, it is possible to compute its gradient with
a chain rule. This back propagation (BP) algorithm was adopted for
the training of the DNN [71]. For example, considering h1 the gra-
dient is:

dL
dh1

¼ dL
d£L

d£L

d£L�1 � � � d£
1

dh1
ð14Þ

After getting the gradient of parameter h, it is updated as:

h
0 ¼ h� a dL

dh
ð15Þ

where a is referred to as a learning rate.
The Keras library and the efficient implementation of BP (SGD)

were adopted in this optimization process [78].
Table 2
Relationship between DNN performance and the
training/validation ratio setting.

Training/validation ratio MAE in YS (MPa)

50–50 332.0
60–40 317.8
70–30 45.3
75–25 37.1
80–20 38.6
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The remaining unseen unique 250 sets of CPFE predicted struc-
ture–property relationships are used to validate the reliability of
the trained DNN model. Two criteria, MAE and regression residual
are used for determining the DNN model performance in both effi-
ciency and accuracy. MAE quantifies the error between the pre-
dicted values and ground truth of the 250 data points. The
regression residual is computed as jytrue � ypredj=ytrue and reported
in percentage terms.

2.5. DNN validation with new phase fraction dataset

The effectiveness of the DNN model predictive capability for
other phase fraction combinations was then assessed. Thus, 200
more synthetic microstructure images were generated for two
martensite fractions (Vf ;m = 35%, 65%) that are between previous
fraction values (5, 20, 50, 80, 95%). In this case, no re-training of
the DNN model was performed; however, CPFE analyses were per-
formed for validation of the predicted yield strength.

2.6. DNN application on realistic microstructural images

CPFE modelling based directly on realistic microstructure
images, (based on SEM or EBSD scans) is considered to more accu-
rately represent microstructure with complex grain morphologies
and special textures common in AM metals, [19,21,79,80] than
using synthetic (e.g. VT-based) images. However, this real image-
based model usually has higher computational cost and larger
computational memory requirements [81]. Furthermore, time-
consuming sample preparation and pre-processing of the raw data,
including non-indexed fill and grain cleaning, is necessary to avoid
excessive numbers of local singularities.

The DNN model is potentially capable of addressing the exces-
sive computational cost issue associated with solving EBSD-CPFE
models. To test this capability, a 400� 400 pixel EBSD scan of
17-4PH material was performed. The EBSD images were converted
to a phase image together with an IPF coloured orientation map
(for texture data) with which the trained DNN is familiar. Mean-
while, an EBSD image-based CPFE model was constructed using a
previously published approach [19]. To distinguish from the VT-
generated CPFE model, all models from direct EBSD image-based
conversion are subsequently denoted as CPFE-E. The DNN and
CPFE-E predicted stress–strain curves using realistic microstruc-
tural images were compared to the experimental test to determine
predictive accuracy. The computational costs were also measured
to compare efficiency.
3. Results

3.1. CPFE model calibration and property prediction

This study started with CPFE model calibration against the
mechanical tests. Fig. 5 shows a statistically equivalent RVE model
(21% austenite phase and equivalent texture), based on microstruc-
tural characterization from EBSD measurement, for this parameter
calibration process. Fig. 6 shows a comparison between CPFE-
predicted and measured experimental tensile stress–strain
response. This CPFE model shows close agreement up to the strain
of 1%, including good agreement of yield stress (1066 and
1087 MPa).

The next step was to validate the performance for steels with
different phase fractions. For ease of results visualization and com-
parison, Fig. 7 shows the 0.2% offset yield stress (YS) values
extracted from the 1000 CPFE models with five different phase
fractions. The CPFE model predicted an increasing tensile strength
as the martensite fraction increases with the predicted YS median



Fig. 5. Reconstructed EBSD crystallographic orientation map coloured in inverse pole figure (IPF), phase fraction map (79% martensite in green and 21% austenite in red), and
the statistically equivalent VT-generated CPFE model.
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values being 532 MPa, 567 MPa, 702 MPa, 1003 MPa and 1216 MPa
for the groups with 5, 20, 50, 80, 95% martensite phase, respec-
tively. The CPFE-predicted YS ranges are also compared with ten-
sile test data for other AM steels for a range of martensite phase
fractions in Table 3.

Fig. 8 shows the CPFE-predicted stabilized hysteresis stress–
strain loop relationship at three strain amplitudes, ±0.4%, ±0.7%,
and ± 1.0%. FCI is assumed to correspond to a critical FIP W value,
which is calibrated against the ± 1.0% CPFE result as
Fig. 6. Experimental fit and CPFE parameters calibration for SLM manufactured 17-
4PH steel.
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8:26� 105MJm�3. The maximum localized FIPW is adopted to indi-
cate the predicted FCI life. Table 4 shows a comparison between
predicted and measured stress amplitudes and FCI lives. Both FIPs
show a decreasing trend until they finally become stable after 8
cycles. The FIP energy dissipation W result from the tensile test
simulation can, to some extent, represent the cyclic FIP result by
multiplying it by a factor of four while the plastic slip p result
shows overestimation when predicting maximum localization val-
ues. A previous study [58] also showed a more reliable prediction
on fatigue behaviour using W rather than p. Due to the above rea-
sons, this work only considers energy dissipation W values as the
FIP and uses tensile CPFE modelling results for the DNN training
to save computational cost.

Fig. 9 shows the 1000 maximum localized FIP W distribution
results extracted from big data CPFE models. It can be observed
that for a group of randomly generated models with a constant
phase fraction definition but unique morphology and texture, there
is approximately a 3% possibility for the CPFE models to predict
double the localized FIP values compared to the mean FIP of the
phase group. The CPFE models have predicted a wide range of FIPs
although their phase compositions are statistically equivalent. One
reason is the difference in RVE size for a monotonic stress–strain
prediction and the RVE size for maximum FIP value prediction.
The RVE size used here meets the requirements for monotonic
stress–strain but may not suffice for some model FIP predictions.
It is known that the predicted fatigue life reduces as the RVE size
increases [19]; however model size in this work (of 1000 CPFE
models) had to be balanced with computational costs of the CPFE
analysis. In addition, the FIP prediction has proved to be more sen-



Fig. 7. CPFE predicted effect of martensite phase fraction on yield stress.

Table 3
Comparison of CPFE predicted results with literature on yield strength.

Martensite Fraction (%) CPFE YS ranges (MPa) Test YS (MPa)

5 509.7–557.9 440–520 [82–84]
20 534.4–600.0 570 [85]
50 623.8–793.5 750–798 [34,86]
80 824.9–1094.3 1087 [33]
95 1138.8–1270.0 1170 [30]

Y. Tu, Z. Liu, L. Carneiro et al. Materials & Design 213 (2022) 110345
sitive to the initial texture than to grain morphology. The texture is
randomly assigned to the models within the same phase group and
is unique in individual RVEs. In each phase group, there are
approximately 5 FIP predictions considerably higher than the
Fig. 8. Comparison of CPFE-predicted stabilized hysteresis loop (lines) with experimenta
0.7% and 1.0% cyclic strain amplitudes.

9

mean. It is worth noting that although a bigger RVE decreases
the possibility of large scatter in the FIP prediction, it is unlikely
to account for all scatter [87]. Fig. 10 shows von Mises stress, prin-
cipal strain, and FIP W contour plots for phase fractions of 20% and
80% at the strain of 1%. The 80% martensite material gives a higher
von Mises stress and fewer deformed regions due to increased
harder phase components. The FIP W shows a similar distribution
to the principal strain contour plot, while its magnitude is influ-
enced by both stress and strain localization values.
3.2. DNN training and validation performance

The hardware requirement for the developed DNN model is low
and all DNN code in this work run on an office grade laptop with 4-
l data (symbols), for the 79% martensite phase fraction in 17-4PH AM steel, at 0.4%,



Table 4
Comparison between experimental tests and CPFE predicted results on cyclic stress and fatigue crack initiation life.

Strain amplitude Experiment Dr=2 CPFE Dr=2 Ni Test (cycles) Ni CPFE (cycles)

±0.4% 792 MPa 748 MPa 11,271 11,399
±0.5% 921 MPa 862 MPa 4011 3352
±0.7% 1014 MPa 994 MPa 633 956
±1.0% 1060 MPa 1108 MPa 129 125

Fig. 9. Predicted effect of martensite phase fractions on the maximum localized energy dissipation FIP W over full RVE extracted from CPFE models.
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core CPU and 16 GB RAM. The design and arrangement of DNN lay-
ers has a significant impact on training time and convergence val-
ues, but not on the convergence speed. The optimised non-
sequence DNN model in Fig. 4 (b), with 2 input layers and 3 CNN
layers for each branch, had an accuracy of 91% (compared to the
standard sequence DNN model of 65%) but required a larger train-
ing time of 25 min (compared to 15 min).

Fig. 11 compares the training loss and validation loss curves for
the standard sequence DNN (a) and the advanced non-sequence
DNN after model optimization (b). From these two figures, it can
be concluded that after optimization, the latter model creates far
better predictions with significantly reduced MAE. The MAE curve
for the model before optimization fails to converge, as shown in
Fig. 11 that after 25 epochs the validation loss is still not steady.
After improving the DNN to non-sequence multi-pipeline type,
the loss curves begin to converge after 20 epochs, giving a more
robust model. To further distinguish the two DNN model types,
Fig. 12 plots the regression residual for the two network structures.
Similar to the conclusion drawn by MAE, after optimization, the
mean of regression residual has decreased, indicating that the
10
model can perform more accurate prediction and the variance of
the regression residual has also decreased indicating that the opti-
mized model is less likely to produce outliers. Table 5 and Table 6
list the structural parameters of the two models before and after
optimization. Although the optimized model adds more parame-
ters in total which may lead to slightly more training time, it
results in largely improved performance. Thus, all DNN models
hereafter in this study employ the optimized non-sequence
structure.

It takes 3 s for the DNN to give stress–strain relationships for
all 250 models in the validation group, while it takes 4 days to
complete CPFE modelling of the equivalent data set. Fig. 13 show
the stress–strain curve comparison from two randomly picked
models in the 250 validation group of 80% martensite phase
fraction. Fig. 14 plots the comparison between 0.2% offset yield
strength predicted by CPFE modelling and DNN machine learn-
ing, including both training and validation groups. The validation
group tends to overpredict the YS value for the 50% phase frac-
tion group, but the general predicting error is controlled within
�15% margin.



Fig. 10. Predicted effect of martensite phase fraction on CPFE-predicted distribution of von-Mises stress, maximum principal strain and W FIP.

Fig. 11. MAE loss curves (loss for training group and val_loss for validation group) of the DNN network (a) before and (b) after optimization.

Y. Tu, Z. Liu, L. Carneiro et al. Materials & Design 213 (2022) 110345

11



Fig. 12. Regression residual (residual %) boxplot of the DNN network performance (a) before and (b) after optimization.

Table 5
Standard DNN structure design parameters before optimization.

Layer (type) Output Shape Param #

Conv2D (BATCH, 98, 98, 32) 896
MaxPooling2D (BATCH, 49, 49, 32) 0
Conv2D (BATCH, 47, 47, 64) 18,496
MaxPooling2D (BATCH, 23, 23, 64) 0
Conv2D (BATCH, 21, 21, 64) 36,928
Flatten (BATCH, 28224) 0
Dense (BATCH, 64) 1,806,400
Dense (BATCH, 1) 65
Total 1,862,785

Table 6
Non-sequence (Siamese) DNN structure design parameters after optimization.

Layer (type) Output Shape Param #

Conv2D (BATCH, 98, 98, 32) 896
MaxPooling2D (BATCH, 49, 49, 32) 0
Conv2D (BATCH, 47, 47, 64) 18,496
MaxPooling2D (BATCH, 23, 23, 64) 0
Conv2D (BATCH, 21, 21, 64) 36,928
Flatten (BATCH, 28224) 0
Dense (BATCH, 32) 903,200
Conv2D (BATCH, 98, 98, 32) 896
MaxPooling2D (BATCH, 49, 49, 32) 0
Conv2D (BATCH, 47, 47, 64) 18,496
MaxPooling2D (BATCH, 23, 23, 64) 0
Conv2D (BATCH, 21, 21, 64) 36,928
Flatten (BATCH, 28224) 0
Dense (BATCH, 32) 903,200
Concatenate (BATCH, 64) 0
Dense (BATCH, 64) 1040
Dense (BATCH, 1) 17
Total 1,920,097
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Fig. 15 shows the CPFE and DNN predicted contour plots of von
Mises stress (CPFE) and heat-map (weight factor) for contributing
pixels (DNN) at 1% strain for 20%, 50% and 80% martensite fraction
models, respectively. The contour plots on the left side are directly
from CPFE modelling showing von Mises stress, while the contour
plots on the right side are the weight factor distribution extracted
from the DNN convolutional layer to the overall stress–strain
response. It should be noted that the DNN model is not designed
to predict the von Mises stress contour plot, but these images are
12
presented to indicate the relative contribution that each grain
makes to the DNN response prediction. The weight factor heatmap
shows the correlation of microstructural images to the stress prop-
erty after DNN training, where the red regions contribute most to
the overall stress (DNN output property) while the blue regions
have the least positive effect on the property. It is obvious that
the black phase (martensite) has the higher weight factor leading
to a higher stress localization, which is consistent with the CPFE
model prediction because martensite is defined to be harder.
Fig. 16 shows a similar comparison between the CPFE contour plot
of FIP W and the corresponding DNN predicted heat map for FIP W.
The CNN weight factor heatmap reveals what the DNN model has
interpreted. The comparison between the heatmap and the rele-
vant physical-based CPFE model stress contour plot, helps assess
and improve the DNN performance. Besides, the localized mechan-
ical property prediction, rather than a macroscopic stress–strain
curve, offers a more visible and straightforward reference for tai-
lored microstructure design or localized quality assessment.

3.3. DNN structure–property prediction on customized multiphase
steels.

The developed DNN tool was adopted for predicting the YS val-
ues out of the newly generated 400 models with 35% and 65%
martensite fractions, respectively. CPFE modelling result with the
same phase fraction was only adopted for validating the DNN pre-
dictions. Fig. 17 shows a randomly selected example from the 200
models and compares the predicted stress localization contour
plots. Together with the previous 1000 models for DNN training
and validation, Fig. 18 shows the DNN predicted structure–prop-
erty relationship curve defined by YS and phase fraction including
7 phases totally. The averaged YS values from the two selected
CPFE models in Fig. 17 were plotted (in black diamonds) to validate
the two new phase DNN predictions. A third order polynomial
equation was implemented here to quantify the trend relationship
as YS ¼ f ðVf ;mÞ, which shows a similar trend compared to the hard-
ness testing data for similar materials in the literature [88].

3.4. DNN structure–property prediction on a realistic EBSD scan.

Fig. 19 (a) shows the EBSD data and images containing phase
and orientation information as the DNN input. The realistic EBSD
image has 321,602 pixels, equal to the number of nodes required
in the converted CPFE-E model. The reconstructed EBSD map with
24,406 grains is meshed with C3D8 hexagonal voxels as shown in



Fig. 13. Comparison between CPFE- and DNN-predicted tensile stress–strain response up to 0.8% strain for 80% phase fraction of martensite.
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Fig. 19 (b). One key benefit of the DNN model is again the much
higher computational efficiency. It takes 45 min for the customized
code to generate the necessary CPFE-E input file. It takes 13 h to
finish the real image-based CPFE-E modelling due to the model size
and higher resolution. Yet it only takes 1.27 s for the trained DNN
tool to output the stress prediction and most of that time is con-
sumed with data transfer.

Fig. 20 shows the stress–strain curve comparison between
CPFE-E, DNN prediction and the experiment test. The YS prediction
from CPFE-E and DNN are 1049 MPa and 1095 MPa respectively,
compared to the experimentally obtained 1087 MPa. The DNN pre-
dicted stress–strain behaviour after yield is slightly closer to the
experimental test in this case. In this case, the higher predicted
stress from CPFE-E might be due to the small size of some austenite
grains and could be solved using a higher resolution. However, this
solution further increases the computational cost. In this real
image based study, while both CPFE-E and DNN models success-
fully predict stress–strain curves, the developed DNN model has
shown higher efficiency and accuracy when predicting mechanical
properties, albeit with a non-smooth computational stress–strain
curve.
4. Discussion

This study has presented a CPFE trained DNN tool with the abil-
ity to predict mechanical response based on microstructural
images. In CPFE, the phase and orientation data determine the indi-
vidual grain properties in microscale finite element based mod-
elling of grain deformation and interaction under a given loading
condition. Within the DNN tool (trained from prior CPFE analyses),
microstructural detail such as phase and orientation are regarded
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as a combination of pixels with different weight factors for the pre-
diction. Every pixel in the image contributes to the prediction
depending on this weight factor, and together they determine
the mechanical response metrics. The predicted contour plots
and heat maps are shown in Fig. 15 and Fig. 16 to demonstrate this
principle. Both CPFE contour plots represent the localised mechan-
ical response while the hottest region in the DNN heatmap repre-
sents the pixels with the most significant influence (high weight
factor) on the DNN predicted mechanical property. From these
contours, the DNN successfully captures the stress localization at
similar hot spots to the CPFE results. The difficulty lies around
the grain boundary when DNN knows to assign different weight
factors on the grain boundary curves but fails to always find the
correct trends. Precise grain boundary modelling is also a challenge
for CPFE modelling. The consistent fit between stress distribution
maps explains the satisfying prediction of stress–strain behaviour
and yield strength. Moreover, it can be deduced that the integrated
CPFE-DNN tool developed in this paper has the potential to predict
hysteresis loops by extending current CPFE tensile models to fati-
gue, without the need to change the DNN model architecture.

When it comes to FIP prediction, see Fig. 21, the MAE curve fails
to converge, even with sufficient training iterations (200 epochs),
using the same optimized DNN model. Fig. 16 visually shows
how the DNN model fails to identify the dominant grains for FIP
W contribution (per the CPFE result). FIP is an extremely localized
value for predicting strong mechanical behaviour such as crack ini-
tiation. Thus, fewer clues exist in the training data for the DNN
which causes the reduced predictive accuracy. This is in contrast
to Fig. 15, where most pixels in the structural input image appro-
priately contribute to a weight factor when determining bulk ten-
sile stress–strain behaviour as well as the stress localization
distribution, resulting in accurate stress–strain prediction.



Fig. 14. Comparison between CPFE and DNN (optimized) predicted yield stress values in the training (red) and validation (blue) group. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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DNN architecture optimization has a significant effect on the
predicting accuracy in this work. Despite the different settings of
the standard and Siamese DNN, they are quite similar in layers
and depth. However, the latter achieved lower MAE and regression
residual as shown in Figs. 11 and 12, which indicate a better capac-
ity in prediction. The reasons for the results are as follows. (1) The
Siamese DNN separates the microstructure inputs Phase and IPF
data into two separate pipelines, which enables the model to cap-
ture their individual characteristics in different ways without
interference. (2) The two different characteristics are merged in
the last 3 layers, which guarantees that the model can also capture
the common points between Phase and IPF data during the BP
algorithm. (3) The Siamese DNN has more parameters compared
to the standard type, providing better capability in fitting and pre-
dicting the more complex CPFE data.

The two results introduced in Sections 3.3 and 3.4 broaden
the practical applications of the developed DNN tool. DNN suc-
cessfully predicts the structure–property relationship of two
new customized phase fraction dual phase steels, even though
the DNN model was not specifically trained on that phase frac-
tion or data (EBSD) type. This indicates strong potential for such
tools to read in geometrically gradient microstructure images,
e.g. growing martensite fraction along built direction and predict
the changing property from layer to layer. If the DNN model is
designed for the purpose of predicting gradient or flexible phase
composition, the phase fraction in training data can be specified
to be continuous within the desired range, rather than the dis-
crete values, to further improve the predicting accuracy. The
developed DNN model has the ability to predict the structure–
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property relationships for a real image within milliseconds, pro-
viding a rapid non-destructive tensile testing solution once inte-
grated with a high speed in-situ cameras providing live
microstructure imaging of a solidified layer. This potential appli-
cation offers a step towards an instant / real-time determination
of tensile mechanical performance based on live process quality
control data, for example, the next generation of PBF machines
could give a live read-out of the tensile strength of the layer
which has just solidified. It is noted that such in-process
microstructural imaging captures as-solidified microstructure
and so future code surrogates could be expanded to include
microstructural evolution predictive steps to account for changes
that may occur during cooling or subsequent post-build heat-
treatment. In addition, this DNN tool could be expanded to
include PBF process-structure modelling capability [89,90], to
give a complete process-structure–property instant predictive
capability based on selected process parameters and CAD layer/
slice data. Further uptake of the developed CPFE-DNN method
could be via a non-destructive inspection tool which gives quick
and accurate reports on void and microstructural defect charac-
terization, to accompany the existing microscopy techniques.

Furthermore, this model could be reversed to assist microstruc-
ture design (determining required microstructural features) for a
desired strength response, or use in decision making on the pow-
der mixture ratio for a desired functional gradient material prod-
uct. The CPFE-DNN method presented can also be easily
extended to multiple-phase materials with other chemical
compositions.



Fig. 15. Effect of martensite phase fraction on CPFE-predicted von Mises stress distribution (left) and corresponding weight factors for CNN layer (right).

Fig. 16. A comparison of the predicted FIP W contour plot from (a) CPFE modelling and (b) CNN layer weight factor.
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Fig. 17. CPFE and DNN predicted contour plot comparison. 35% martensite phase fraction model: (a) CPFE predicted von-Mises stress distribution and (b) CNN layer weight
factor predicted from DNN model. 65% martensite phase fraction model: (c) CPFE predicted von-Mises stress and (d) DNN model weight factor.
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5. Conclusions

The Deep Learning model presented here demonstrates one
future option for an instant non-destructive property predicting
tool, trained by crystal plasticity finite element analysis of
microstructure-property relationship and experimental testing.
The near-instant strength prediction performance makes it feasible
to implement this DL model as a surrogate tool of CPFE and other
computationally expensive models, to give rapid prediction of
additive manufacturing part performance within a process-
monitoring quality control tool. The dual-phase crystal plasticity
and DNN models have been developed for relating microstructural
features and mechanical response including tensile stress–strain
and fatigue indicator parameter behaviour. The CPFE study was
scripted and automated for big data generation and an optimized
DNN model was implemented with the automated CPFE for data-
driven model training. The key conclusions for this research are:

(1) It is viable to develop and train a CPFE-DNN model to suc-
cessfully predict the stress–strain curve and yield strength
to within �15% error.

(2) The DNN model, while predicting the structure–property
relationship as viable alternative tool for CPFE, enables sig-
nificant computational cost savings (once trained). (The
DNN takes 12 ms for VT generated 100-grain predictions
and 1.27 s for real EBSD image converted 24406-grain pre-
dictions compared to 25 mins and 13 h, respectively, when
using full CPFE modelling.)
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(3) A data-driven DNN model requires a large number of CPFE
predicted samples for training, with 75:25 training:valida-
tion ratio recommended. For dual-phase materials, phase
fraction and crystallographic texture are sufficient inputs
to provide a reliable yield stress for the AM steels.

(4) The design of the DNN hidden layers architecture is impor-
tant in machine learning parameter optimization. In this
case, the prediction accuracy increases from 65% to 91% after
improving the sequence DNN to multi-pipeline non-
sequence architecture.

(5) It is necessary to run multiple models of the same phase
fraction for FIP characterization to account for possible
over-prediction of the maximum FIP values.

(6) The DNN model, trained on VT-CPFE data, can identify the
main contributing grains to the stress distribution profile,
and can accurately predict the tensile stress–strain curve
but is less accurate in predicting FIP localization results.

(7) The trained DNN model can be applied to multiple ranges of
phase fraction steels, including phase fractions not used in
the training data. Most importantly, it is capable of predict-
ing the mechanical response from real EBSD images, despite
being trained only on VT models. This is a key step towards a
tool for in-situ microstructure-property prediction in real-
time.



Fig. 18. DNN predicted relationship between martensite phase fraction and yield strength, and comparison with measured effect on hardness.

Fig 19. (a) EBSD map data inputs in DNN tool with 321602 pixels: phase composition and IPF coloured crystallographic orientation imaging information. (b) Direct EBSD
converted CPFE-E model with 24406 grains using C3D8 hexagonal mesh.
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Fig. 20. A comparison of the bulk stress–strain relationship between EBSD image-
based DNN model, CPFE-E model and the experimental test.

Fig. 21. MAE convergence curve for W FIP prediction during DNN training.
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