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Abstract
Bayesian additive regression trees (BART) is a tree-based machine learning method that has been successfully applied to
regression and classification problems. BART assumes regularisation priors on a set of trees that work as weak learners
and is very flexible for predicting in the presence of nonlinearity and high-order interactions. In this paper, we introduce
an extension of BART, called model trees BART (MOTR-BART), that considers piecewise linear functions at node levels
instead of piecewise constants. In MOTR-BART, rather than having a unique value at node level for the prediction, a linear
predictor is estimated considering the covariates that have been used as the split variables in the corresponding tree. In our
approach, local linearities are captured more efficiently and fewer trees are required to achieve equal or better performance
than BART. Via simulation studies and real data applications, we compare MOTR-BART to its main competitors. R code for
MOTR-BART implementation is available at https://github.com/ebprado/MOTR-BART.

Keywords Bayesian Trees · Linear models · Machine learning · Bayesian nonparametric regression

1 Introduction

Bayesian additive regression trees (BART) is a statistical
method proposed by Chipman et al (2010) that has become
popular in recent years due to its competitive performance
on regression and classification problems, when compared
to other supervised machine learning methods, such as ran-
dom forests (RF) (Breiman 2001) and gradient boosting
(GB) (Friedman 2001). BART differs from other tree-based
methods as it controls the structure of each tree via a prior
distribution and generates the predictions via an MCMC
backfitting algorithm that is responsible for accepting and
rejecting the proposed trees along the iterations. In prac-
tice, BART can be used for predicting a continuous/binary
response variable through R packages, such as dbarts
(Chipman et al 2010), BART (McCulloch et al 2019) and
bartMachine (Kapelner and Bleich 2016).

In essence, BART is a nonparametric Bayesian algorithm
that generates a set of trees by choosing the covariates and
the split points at random. To generate the predicted values
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for each terminal node, the normal distribution is adopted
as the likelihood function as well as prior distributions are
placed on the trees, predicted values and variance of the
predictions. Through a backfitting MCMC algorithm, the
predictions from each tree are obtained by combining Gibbs
Sampler andMetropolis–Hastings steps. The final prediction
is then calculated as the sum of the predicted values over all
trees. In parallel, samples from the posterior distributions of
the quantities of interest are naturally generated along the
MCMC iterations.

In this paper, we introduce the algorithm MOTR-BART,
which combines model trees (Quinlan 1992) with BART to
deal with local linearity at node levels. In MOTR-BART,
rather than estimating a constant as the predicted value
as BART does, for each terminal node a linear predic-
tor is estimated, including only the covariates that have
been used as a split in the corresponding tree. With this
approach, we aim to capture linear associations between the
response and covariates and then improve the final predic-
tion. We observe that MOTR-BART requires fewer trees to
achieve equal or better performance than BART as well as
reaches faster convergence, when we look at the overall log-
likelihood. Through simulation experiments that consider
different number of observations and covariates, MOTR-
BART outperforms its main competitors in terms of RMSE
on out-of-sample data, even using fewer trees. In the real
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data applications, MOTR-BART is competitive compared to
BART and other tree-based methods.

This paper is organised as follows. In Sect. 2, we briefly
introduce BART, some related works and model trees. Sec-
tion 3 presents the mathematical details of BART and how
it may be implemented in the regression context. In Sect. 4,
we introduce the MOTR-BART, providing the mathematical
expressions needed for regression and classification. Sect. 5
shows comparisons between MOTR-BART and other algo-
rithms via simulated scenarios and real data applications.
Finally, in Sect. 6, we conclude with a discussion.

2 Tree-basedmethods

2.1 Related works

BART considers that a univariate response variable can be
approximated by a sum of predicted values from a set of
trees as ŷ = ∑m

t=1 g(X; Mt , Tt ), where g(·) is a function
that assigns a predicted value based on X and Tt , X is the
design matrix, Mt the set of predicted values of the tree t and
Tt represents the structure of the tree t . In BART, a tree Tt can
be modified using four moves (growing, pruning, changing
or swapping), and the splitting rules that create the termi-
nal/internal nodes are randomly chosen. To sample from the
full conditional distribution of Tt , the Metropolis–Hastings
algorithm is used. Further, each componentμt� ∈ Mt is sam-
pled from its full conditional via a Gibbs sampler step. Then,
the final prediction is calculated by adding up the values of
μt� from all the m trees. Further details are given in Sect. 3.

BART’s versatility has made it an attractive option with
applications in credit risk modelling (Zhang and Härdle
2010), identification of subgroup effects in clinical trials
(Sivaganesan et al 2017; Schnell et al 2016), competing risk
analysis (Sparapani et al 2019), survival analysis of stem cell
transplantation (Sparapani et al 2016), proteomic biomarker
discovery (Hernández et al 2015) and causal inference (Hill
2011; Green andKern 2012; Hahn et al 2020). In this context,
many extensions have been proposed, such as BART for esti-
mating monotone and smooth surfaces (Starling et al 2019,
2020; Linero and Yang 2018), categorical and multinomial
data (Murray 2017; Kindo et al 2016b), high-dimensional
data (Hernández et al 2018;He et al 2019; Linero 2018), zero-
inflated and semi-continuous responses (Linero et al 2018),
heterocedastic data (Pratola et al 2017) and BART with
quantile regression and varying coefficient models (Kindo
et al 2016a; Deshpande et al 2020). Recently, some papers
have developed theoretical aspects related to BART (Linero
2017b; Ročková and van der Pas 2017; Ročková and Saha
2018; Linero and Yang 2018).

Some of the works mentioned above are somewhat related
toMOTR-BART. For instance, Linero andYang (2018) intro-

duce the soft BART in order to provide an approach suitable
for both estimating a target smooth function and dealing with
sparsity. In soft BART, the observations are not allocated
deterministically to the terminal nodes, as it is commonly
done in the conventional trees. Instead, the observations are
assigned to the terminal nodes based on a probability mea-
sure, which is a function of a bandwidth parameter and of the
distance between the values of the covariates and the cut-offs
defined by the splitting rules. Through empirical and theoret-
ical results, they show that soft BART is capable of smoothly
approximating linear and nonlinear functions as well as that
its posterior distribution concentrates, undermild conditions,
at the minimax rate. The main differences between MOTR-
BART and soft BART are: (i) MOTR-BART does not use
the idea of soft trees, where the observations are assigned to
the terminal based on a probability measure, and (ii) MOTR-
BART uses a linear predictor rather than a piecewise constant
to generate the predictions at node level.

In this sense, Starling et al (2020) propose the BART
with targeted smoothing (tsBART) by introducing smooth-
ness over a covariate of interest. In their approach, rather
than predicting a piecewise constant as the standard BART,
univariate smooth functions of a certain covariate of interest
are used to generate the node-level predictions. In tsBART,
they place a Gaussian process prior over the smooth func-
tion associated with each terminal node and grow the trees
using all available covariates, apart from the one over which
they wish to introduce the smoothness. Although tsBART
and MOTR-BART have some similarities, since both do not
base their predictions on piecewise constants and both aim
to provide more flexibility at the node-level predictions, they
differ as MOTR-BART allows for more than one covariate to
be used in the linear predictors and do not assume a Gaussian
process prior on each linear predictor.

In addition, Deshpande et al (2020) propose an exten-
sion named VCBART that combines varying coefficient
models and BART. In their approach, rather than approx-
imating the response variable itself, each covariate effect
in the linear predictor is estimated by using BART. They
also provide theoretical results about the near minimax opti-
mal rate associated with the posterior concentration of the
VCBART considering non-i.i.d errors. Although the linear
model is a particular case of the varying coefficients model,
MOTR-BART and VCBART are structurally different. For
instance, VCBART considers that a univariate response vari-
able can be approximated via an overall linear predictor in
which the coefficients are estimated via BART. In contrast,
MOTR-BART approximates the response by estimating a
linear predictor for each terminal node in each tree, where
normal priors are placed on the coefficients in order to esti-
mate them.

Regarding non-Bayesian methods, we highlight the algo-
rithms introduced by Friedberg et al (2018) and Künzel et al
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(2019), named local linear forests (LLF) and linear ran-
dom forests (LRF), respectively. In their work, RF-based
algorithms are proposed, where the predictions for each
terminal node are generated from a local ridge regression.
Furthermore, the LLF algorithm also provides a pointwise
confidence interval based on the RF delta method proposed
byAthey et al (2019) and theoretical results related to asymp-
totic consistency and rates of convergence of the forest.

2.2 Model trees

Quinlan (1992) introduced the term model trees when
proposing the M5 algorithm, which is a tree-based method
that estimates a linear equation for each terminal node and
then computes the final prediction based on piecewise linear
models and a smoothing process. Initially introduced in the
context of regression, extensions and generalisations for clas-
sificationwere presented byWang et al (1997) and Landwehr
et al (2005).

Unlike BART, RF and GB, where multiple trees are gen-
erated to predict the outcome, the algorithm M5 generates
only one tree. For the growing process, the variance reduction
(VR) is adopted as the splitting criterion. When estimating
the coefficients for the linear equation at a terminal node, the
covariates are selected based on tests, and depending on their
significance, the linear equation can be reduced to a constant,
if all covariates do not show any significance. At the end, the
prediction is calculated based on the linear predictors from
all terminal nodes and then is averaged over the predictions
from the terminal nodes along the path to the root.

3 BART

Introduced by Chipman et al (2010), BART is a tree-based
machine learning method that considers that a univariate
response variable y = (y1, . . . , yn)� can be approximated
by a sum of trees as

yi =
m∑

t=1

g(xi ; Tt , Mt ) + εi , εi ∼ N(0, σ 2),

where g(xi ; Tt , Mt ) is a function that assigns a predicted
value μt� based on xi , xi = (xi1, . . . , xid) represents the i th
row of the design matrix X, Tt is the set of splitting rules
that defines the t th tree and Mt = (μt1, . . . , μtbt ) is the
set of predicted values for all nodes in the tree t , with μtbt
representing the predicted value for the terminal node bt .
The splitting rules that define the terminal nodes for the tree
t can be defined as partitions Pt�, with � = 1, . . . , bt , and
g(xi ; Tt , Mt ) = μt� for all observations i ∈ Pt�, based on
the values of xi .

Fig. 1 An example of a single tree generated by BART. In practice,
BART generates multiple trees for which the predictions are added
together. The covariates and split points that define the terminal nodes
are proposed uniformly and optimised via an MCMC algorithm. The
quantities x1, x2 and x3 represent covariates; μ̂� is the predicted value
of node �

In BART, each regression tree is generated as in Chip-
man et al (1998) (see Fig. 1) where, through a backfitting
algorithm, a binary tree can be created or modified by four
movements: grow, prune, change or swap. A new tree is
created by one of these four movements and compared to
the previous version via a Metropolis–Hastings step on the
partial residuals. In the growing process, a terminal node
is randomly selected and is separated into two new nodes.
Here, the covariate that is used to create the new terminal
nodes is picked uniformly as is its associated split point. In
other words, the splitting rule is fully defined assuming the
uniformdistribution over both the set of covariates and the set
of their split points. During a prune step, a parent of two ter-
minal nodes is randomly chosen and then its child nodes are
removed. In the change movement, a pair of terminal nodes
is picked at random and its splitting rule is changed. In the
swap process, two parents of terminal nodes are randomly
selected and their splitting rules are exchanged.

In order to control the depth of the tree, a regularisation
prior is considered as

p(Tt ) =
∏

�∈L I

[
α(1 + dt�)

−β
] ×

∏

�∈LT

[
1 − α(1 + dt�)

−β
]
,

(1)

where L I and LT denote the sets of indices of the internal and
terminal nodes, respectively, dt� is the depth of node � in tree
t , α ∈ (0, 1) and β ≥ 0. Chipman et al (2010) recommend
α = 0.95 and β = 2. In essence, α(1+ dt�)−β computes the
probability of the node � being internal at depth dt�.

To estimate the terminal node parameters,μt�, and overall
variance, σ 2, conjugate priors are used:
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μt�|Tt ∼ N(0, σ 2
μ),

σ 2 ∼ IG(ν/2, νλ/2),

where σμ = 0.5/(c
√
m), 1 ≤ c ≤ 3, IG denotes the inverse

gammadistribution andm is the number of trees. The division
by m has the effect of reducing the predictive power of each
tree and forcing each to be a weak learner. The joint posterior
distribution of the trees and predicted values is given by

p((T , M), σ 2|y,X) ∝ p(y|X, T , M, σ 2)p(M |T )p(T )p(σ 2),

∝
⎡

⎣
m∏

t=1

bt∏

�=1

∏

i :xi∈Pt�

p(yi |xi , Tt , Mt , σ
2)

⎤

⎦

×
[

m∏

t=1

bt∏

�=1

p(μt�|Tt )p(Tt )
]

p(σ 2).

Chipman et al (2010) initially decompose this joint posterior
into two full conditionals. The first one generates all μt� for
each tree t = 1, . . . ,m, and is given by

p(Tt , Mt |T(−t), M(−t), σ
2,X, y), (2)

where T(−t) represents the set of all trees without the com-
ponent t ; similarly for M(−t). To sample from (2), Chipman
et al (2010) noticed that the dependence of the full conditional
of (Tt , Mt ) on T(−t), M(−t) is given by the partial residuals
through

Rt = y −
m∑

k 	=t

g(X; Tk, Mk).

Thus, rather than depending on the other trees and their pre-
dicted values, the joint full conditional of (Tt , Mt ) may be
rewritten as p(Tt , Mt |Rt , σ

2,X), with Rt acting like the
response variable. This simplification allows us to sample
from p(Tt , Mt |Rt , σ

2,X) in two steps:

(a) Propose a new tree either growing, pruning, changing or
swapping terminal nodes via

p(Tt |Rt , σ
2) ∝ p(Tt )

∫

p(Rt |Mt , Tt , σ
2)p(Mt |Tt )dMt ,

∝ p(Tt )p(Rt |Tt , σ 2),

∝ p(Tt )
bt∏

�=1

⎡

⎣

(
σ 2

σ 2
μnt� + σ 2

)1/2

× exp

(
σ 2

μ

[
nt� R̄�

]2

2σ 2(σ 2
μnt� + σ 2)

)]

,

where R̄� = ∑
i∈Pt�

ri/nt�, ri ∈ Rt and nt� is the num-
ber of observations that belong to Pt�. This sampling is

carried out through a Metropolis–Hastings step, as the
expression does not have a known distributional form;

(b) Generate the predicted valuesμt� for all terminal nodes in
the corresponding tree. As all μt� are independent from
each other, it is possible to write p(Mt |Tt , Rt , σ

2) =
∏bt

�=1 p(μt�|Tt , Rt , σ
2). Hence,

p(μt�|Tt , Rt , σ
2) ∝ p(Rt |Mt , Tt , σ

2)p(μt�),

∝ exp

(

− 1

2σ 2∗

(
μt� − μ∗

t�

)2
)

,

which is a

N

(
σ−2 ∑

i∈Pt�
ri

nt�/σ 2 + σ−2
μ

,
1

nt�/σ 2 + σ−2
μ

)

.

Then, after generating all predicted values for all trees, σ 2

can be updated based on

p(σ 2|T , M,X, y) ∝ p(y|X, T , M, σ 2)p(σ 2)

∝ (σ 2)−( n+ν
2 +1) exp

(

− S + νλ

2σ 2

)

, (3)

where S = ∑n
i=1(yi − ŷi )2 and ŷi = ∑m

t=1 g(xi ; Tt , Mt ).
The expression in (3) is an IG((n + ν)/2, (S + νλ)/2), and
drawing samples from it is straightforward.

In Algorithm 1, we present the full structure of the BART
algorithm. Firstly, the response variable and design matrix
are required. The trees, hyper-parameters, partial residuals
and the number of MCMC iterations have to be initialised.
Later, within each MCMC iteration, candidate trees (T ∗

t ) are
sequentially generated,whichmight be accepted (or rejected)
as the current trees with probability α(Tt , T ∗

t ). After that,
the predicted values μt� are generated for all terminal nodes,
and then, the partial residuals are updated. Finally, the final
predictions and σ 2 are obtained.

4 Model trees BART

In MOTR-BART, we consider that the response variable is a
sum of trees in the form of

y =
m∑

t=1

g(X; Tt , Bt ) + ε,

where Bt is the set of parameters of all linear predictors of
the tree t . In terms of partial residuals, MOTR-BART can be
represented as

ri |xi ,β t�, σ
2 ∼ N(xiβ t�, σ

2),
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Algorithm 1: BART Algorithm
Result: A posterior distribution of trees T
Data: y (response variable) and X (design matrix);
Initialise: T = (T1, . . . , Tm) to stumps, {μt�} = 0, R(1)

1 = y, α,
β, σ 2

μ, ν, λ, σ
2, number of trees (m) and the number of MCMC

iterations (burn-in and post-burn-in) (nI ter ).
for k in 1:nIter do

for t in 1:m do
Propose a new tree T ∗

t by growing, pruning, changing or
swapping, where each movement has probability of 0.25
to be chosen;

Compute α(Tt , T ∗
t ) = min

{

1, p(R(k)
t |T ∗

t ,σ 2)p(T ∗
t )

p(R(k)
t |Tt ,σ 2)p(Tt )

}

;

Sample u ∼ U [0, 1];
if u < α(Tt , T ∗

t ) then Tt = T ∗
t else Tt = Tt ;

for � in 1:bt do
Update μt� from p(μt�|Tt , Rt , σ

2);
end

Update R(k)
t = y − ∑m

j 	=t g(X; Tj , Mj );
end

Update ŷ(k) = ∑m
t=1 g(X, Tt , Mt );

Update σ 2 sampling from p(σ 2|T , M,X, y).
end

where ri = yi − ∑m
j 	=t g(xi ; Tj , Bj ), β t� is the parameter

vector associated with the terminal node � of the tree t . In
this sense, all observations i ∈ Pt� will have predicted values
based onβ t� and the values of their covariatesXt�. Thus, each
observation i ∈ Pt� may have different predicted value.
The priors for β t� and σ 2 are

β t�|Tt ∼ Nq(0, σ 2V),

σ 2|Tt ∼ IG(ν/2, νλ/2), (4)

where V = τ−1
b × Iq and q = pt� + 1, with pt� representing

the number of covariates in the linear predictor of the terminal
node � of the tree t . The additional dimension in V is due to
a column filled with 1’s in the design matrix Xt�. Here, the
role of the parameter τb is to balance the importance of each
tree on the final prediction by keeping the components of β t�
close to zero, thus avoiding that one tree contributes more
than other. Since the prior on the vector β t� assumes that all
entries have the same variance, we scale the predictors inXt�

in order tomake this assumption valid. In our simulations and
real data applications, we have found that τb = m worked
well.

Another possibility is to penalise the intercept and the
slopes differently. In this sense, the specification of intercept-
and slope-specific variances may be done by setting V as a
q×q diagonalmatrixwithV1,1 = τ−1

β0
andV j+1, j+1 = τ−1

β .
In addition, we may assume conjugate priors such as τβ0 ∼
G(a0, b0) and τβ ∼ G(a1, b1) to be able to estimate both
variances via Gibbs sampling steps. In this case, we would
end up with the following full conditionals:

τβ0 |− ∼ G

(∑m
t=1 bt
2

+ a0,
β�
0 β0

2σ 2 + b0

)

,

τβ |− ∼ G

(∑m
t=1

∑bt
�=1 pt�

2
+ a1,

β�∗ β∗
2σ 2 + b1

)

,

where β0 is a vector with the intercepts from all terminal
nodes of all trees and β∗ contains the slopes from all linear
predictors of all trees. In our software, we have implemented
an option, through the argument vars_inter_slope =
TRUE/FALSE, that allows the user to either estimate τβ0

and τβ or use τb = m. In Sect. 5, we show the results of
MOTR-BART using both approaches.

Hence, the full conditionals are

p(β t�|Xt�, Rt , σ
2, Tt ) ∝ p(Rt |Xt�,β t�, σ

2, Tt )p(β t�),

which is a

Nq

(
μt�, σ

2�t�

)
,

whereμt� = �t�(X�
t�rt�),�t� = (X�

t�Xt� +V−1)−1 andXt�

is an nt� × q matrix with all elements of the design matrix
such that i ∈ Pt�. The full conditional of σ 2 is similar to the
expression in (3), but with ŷi = ∑m

t=1 g(xi ; Tt , Bt ). Finally,
the full conditional for Tt is given by

p(Tt |X, Rt , σ
2) ∝ p(Tt )

∫

p(Rt |X, Bt , σ
2, Tt )p(Bt )dBt ,

∝ p(Tt )p(Rt |X, σ 2, Tt ),

where

p(Rt |X, σ 2, Tt ) = (σ 2)−n/2
bt∏

�=1

[
|V|−1/2|�t�|1/2 ×

× exp

(

− 1

2σ 2

[
−μ�

t��
−1
t� μt� + r�

t�rt�
])]

.

The main difference between BART and MOTR-BART is
shown in Fig. 2. Now, rather than having a constant as the
predicted value for each terminal node, the prediction will be
obtained from a linear predictor at node level. The purpose
of introducing a linear predictor is to try to capture local lin-
earity, reduce the number of trees and then possibly improve
the prediction at node level.

The key point inMOTR-BART is which covariates should
be considered in the linear predictor of each terminal node.At
first glance, one might think that it would be advantageous
to use variable selection techniques for regression models,
such as ridge regression, lasso (Tibshirani 1996) or horseshoe
(Carvalho et al 2010). Under the Bayesian perspective, these
methods assume different priors on the regression coefficient
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Fig. 2 An example of a tree generated based on MOTR-BART. The
quantities x1, x2 and x3 represent covariates; Xt� is a subset of the
design matrix X such that i ∈ Pt�; and β̂ t� = (β̂0t�, β̂1t�, . . . , β̂pt�t�)

�
is the parameter vector associated with the node � of the tree t

vector and then estimate its components. In the ridge and
horseshoe regressions, aGaussianwithmean zero is assumed
as the prior on the parameter vector. For lasso regression, a
Laplace distribution is considered. For MOTR-BART, we
assume a normal distribution with mean zero on β t�, but as
the trees might change their dimensions depending on the
moves growing and pruning, it is not possible to obtain the
posterior distribution associated with each component of β t�
and then perform the variable selection.

Our idea to circumvent this issue is to consider in the linear
predictor only covariates that have been used as a split in the
corresponding tree. For instance, in Fig. 2 three covariates
are used as a split (x1, x2 and x3). The plan is to include
these three covariates in each of the five linear predictors. The
intuition in doing so is that if a covariate has been utilised as a
split, it means that it improves the prediction either because it
has a linear or a nonlinear relation with the response variable.
If this relation is linear, this will be captured by the linear
predictor. However, if the relation is nonlinear, the coefficient
associated with this covariate will be close to zero and the
covariate will not have impact on the prediction.

We have also explored using only the ancestors of the
terminal nodes in the linear predictor as well as replacing the
uniform branching process, where the covariates are selected
with equal probability, by the Dirichlet branching process
proposed by Linero (2018). To illustrate the first approach,
we recall Fig. 2, where there are five terminal nodes and
three covariates are used in the splitting rules. For the two
leftmost terminal nodes, only the covariates x1 and x2 would
be considered in both linear predictors. For the terminal node
3, only x2. For the rightmost terminal nodes, x3 and x2 would
be used. In relation toLinero’s approach, rather than selecting
the covariateswith probability 1/p, aDirichlet prior is placed
on the vector of splitting probability so that the covariates that
are frequently used to create the internal nodes aremore likely
to be chosen. In the supplementary material, we show the
performance of these and other strategies thatwe investigated
to select the covariates that should be considered in the linear
predictor.

4.1 MOTR-BART for classification

The version of MOTR-BART that was presented in Sect. 4
assumes that the response variable is continuous. In this sec-
tion, we provide the extension to the case when it is binary
following the idea of Chipman et al (2010), which used the
strategyof data augmentation (Albert andChib 1993). Firstly,
we consider that yi ∈ {0, 1} and we introduce a latent vari-
able

zi ∼ N

(
m∑

t=1

g(xi , Tt , Bt ), 1

)

, with i = 1, . . . , n

such that yi = 1 if zi > 0 and yi = 0 if zi ≤ 0.
With this formulation, we have that p(yi = 1|xi ) =
8(

∑m
t=1 g(xi , Tt , Bt )), where 8(·) is the cumulative distri-

bution function (cdf) of the standard normal, which works as
the link function that limits the output to the interval (0, 1).
Here, there is no need to estimate the variance component
as it is equal to 1. The priors on Tt and Bt are the same as
in (1) and (4), respectively. Finally, as the latent variable zi
is introduced, it is necessary to compute its full conditional,
which is given by

zi |[yi = 0] ∼ N(−∞,0)

(
m∑

t=1

g(xi , Tt , Bt ), 1

)

,

zi |[yi = 1] ∼ N(0,∞)

(
m∑

t=1

g(xi , Tt , Bt ), 1

)

,

where N(a,b)(·) denotes a truncated normal distribution con-
strained to the interval (a, b). Going back to Algorithm 1,
some steps need to be modified or included:

1. The update of σ 2 is no longer needed, because we set
σ 2 = 1;

2. The predicted values now consider the cdf of the stan-
dard normal as a probit model in the form of ŷ(k) =
8
(∑m

t=1 g(X, Tt , Bt )
)
;

3. A Gibbs sampling step needs to be created to update the
latent variables at each MCMC iteration. The update is
done by drawing samples from p(zi |yi );

4. Rather than calculating the partial residuals taking into
account the response variable, we have that R(k)

t = z(k) −∑m
j 	=t g(X, Tj , Bj ), where z(k) is the vector with the all

latent variables at iteration k. For the first iteration, the
vector z(1) needs to be initialised and R(1)

1 = z(1).

5 Results

In this section, we compareMOTR-BART to BART, RF, GB,
lasso regression, soft BART and LLF via simulation scenar-
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ios and real data applications using the root mean square
error (RMSE) as the accuracy measure. All results were gen-
erated by using R (R Core Team 2020) version 3.6.3 and the
packages dbarts (Chipman et al 2010), ranger (Wright
and Ziegler 2017), gbm (Greenwell et al 2019), glmnet
(Friedman et al 2010), SoftBart (Linero 2017a) and grf
(Tibshirani et al 2020). We use the default behaviour of these
packages, except where otherwise specified below. We also
tried running the linear random forests (LRF, Künzel et al
(2019)) algorithm. However, we got errors when using the
forestry R package and then we decided not to consider
the LRF in our comparisons.

Throughout this section, we present results for two ver-
sions of ourmethod. The first one isMOTR-BART (10 trees),
which uses the Dirichlet branching process and estimates τβ0

and τβ , while the second is MOTR-BART (10 trees, fixed
var), which uses the uniform branching process and sets
τb = m. As a default version, we recommend the MOTR-
BART (10 trees).

5.1 Simulation

To compare the algorithms, we simulate data from the equa-
tion proposed by Friedman (1991). This data set is widely
used in testing tree-based models and has been used repeat-
edly to evaluate the performance of BART and extensions
(Friedman 1991; Chipman et al 2010; Linero 2018). We gen-
erate the response variable considering five covariates via:

yi = 10sin(πxi1xi2) + 20(xi3 − 0.5)2 + 10xi4 + 5xi5 + εi ,

where the covariates xip ∼ U(0, 1), with p = 1, . . . , 5, and
εi ∼ N(0, 1). For the simulation, we created 9 data sets with
different numbers of observations (200, 500 and 1000) and
covariates (5, 10 and 50). For those scenarios with 10 and 50
covariates, the additional x values do not have any impact on
the response variable.

Each simulated data set was split into 10 different training
(80%) and test (20%) partitions. For MOTR-BART, 10 trees
were considered, 1000 iterations as burn-in, 5000 as post-
burn-in, alpha = α = 0.95 and beta = β = 2. To choose
the number of trees (10) forMOTR-BART,we initially tested
a range of possible values, such as 3, 10 and 50, and then,
we used cross-validation to select that setting that presented
the lowest RMSE. The set up for dbarts was similar to
MOTR-BART, except for the number of trees (10 and 200,
the default). For the packages ranger and gbm, the default
options were kept, except for the number of trees (200)
and the parameter interaction.depth = 3. For the
glmnet, we followed the manual and used a 10-fold cross-
validation with type.measure = ‘mse’ to obtain the
estimate of the regularisation parameter lambda.min,
which is the value that minimises the cross-validated error

under the loss function chosen in type.measure. As
in Chipman et al (2010), we evaluate the convergence of
MOTR-BART and BART by eye from the plot of σ 2 after
the burn-in period.

In Fig. 3, we present the comparison of the algorithms
MOTR-BART, BART, RF, GB, lasso, soft BART and LLF in
terms of RMSE on test data. Note that we have BART (10
trees) and BART (200 trees; default). The first version con-
siders 10 trees and was run to see how BART would perform
with the equivalent number of trees ofMOTR-BART.We can
see that for different combinations of number of observations
(n) and covariates (p), soft BART and MOTR-BART (10
trees) consistently presented the best results for all scenar-
ios. When compared to both versions of the original BART,
both versions of MOTR-BART present lower median val-
ues of RMSE and slightly greater variability. However, the
variability reduces as n and p increase. Further, we notice
that MOTR-BART (10 trees) benefits from penalising the
intercepts and slopes differently. In addition, it is possible to
observe that the number of noisy covariates impacts on the
performance of RF and LLF. For all values of n, their RMSEs
increase with the number of covariates.

To further analyse the improvements given by MOTR-
BART over standard BART, in Appendix A we present
Tables 1, 2, 3, which shows the mean of the total number of
terminal nodes utilised for BART to calculate the final pre-
diction taking into account all the 5000 iterations. The idea
of Table 3 is to show that MOTR-BART has similar or bet-
ter performance while using fewer parameters than standard
BART. As the default version of BART defaults to 200 trees,
which is far more trees than MOTR-BART uses, we created
Table 3 to highlight that although MOTR-BART estimates
fewer parameters, it still remains competitive to the default
BART. ForMOTR-BART, we consider the mean of the num-
ber of parameters estimated in the linear predictors.AsBART
and soft BART predict a constant for each terminal node, the
number of ‘parameters’ estimated is equal to the number
of terminal nodes. On the other hand, MOTR-BART esti-
mates an intercept, which is equivalent to the constant that
BART predicts, plus the parameters associated with those
covariates that have been used as a split in the correspond-
ing tree. For instance, if a tree has 5 terminal nodes and
2 numeric variables are used in the splitting rules, MOTR-
BART will estimate 15 parameters. For BART, we set the
argument keepTrees = TRUE, and then, we extracted
from the sampler object fit the content of getTrees().
For both MOTR-BART and BART, we firstly summed the
number of parameters for all trees along the MCMC itera-
tions and then averaged it over the 10 sets.

In Table 3, we can observe, for example, for the Friedman
data set with n = 1000 and p = 50 that BART (10 trees)
utilised 212,421 parameters on average to calculate the final
prediction, whileMOTR-BART (10 trees), BART (200 trees)
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Fig. 3 Comparison of RMSE for Friedman data sets on test data for
different combinations of n (200, 500 and 1000) and p (5, 10 and 50)

and soft BARTused 391,193, 2,371,140 and 255,155, respec-
tively. For all simulated data sets, MOTR-BART presented
lowerRMSE thanBART (200 trees), even though it estimates
far fewer parameters. FromTable 3, it is possible to obtain the
mean number of terminal nodes per tree by dividing the col-
umn ‘Mean’ by the number ofMCMC iterations (5000) times
the number of trees (10 or 200). In this case, we note that both
versions of BART produce small trees with the mean number
of terminal nodes per tree varying between 2 and 5. Due to
the greater number of trees, BART (200 trees) has the lowest
mean, regardless the number of observations and covariates.

In contrast, MOTR-BART has the mean number of param-
eters per tree varying from 5 to 8. Comparatively speaking,
this is somewhat expected once MOTR-BART estimates a
linear predictor. In this way, the trees from MOTR-BART
tend to be shallower than those from BART (10 trees), but
with more parameters estimated overall. It is important to
highlight that the numbers from BART and MOTR-BART
cannot be compared to those from RF, as the former work
with the residuals and the latter with the response variable
itself. The numbers for GB are not shown as the quantity
of terminal nodes in each tree is fixed due to the parameter
settings interaction.depth = 3.

In our simulations, MOTR-BART utilised just 10 trees
and its results were better than RF, GB, BART (10 and 200
trees) and LLF. In practice, different number of trees may
be compared via cross-validation and hence a choice can be
made such that the cross-validated error is minimised.

5.2 Application

In this section, we compare the predictive performance of
MOTR-BART to RF, GB, BART, soft BART and LLF in
terms of RMSE on four real data sets. The first one (Ankara)
has 1609 rows and contains weather information for the city
of Ankara from 1994 to 1998. The goal is to predict the mean
temperature based on 9 covariates. The second is the Boston
Housing data set, where the response variable is the median
value of properties in suburbs ofBoston according to the 1970
US census. This data set has 506 rows and 18 explanatory
variables. The third data set (Ozone) has 330 observations
and 8 covariates and is about ozone concentration in Los
Angeles in 1976. The aim is to predict the amount of ozone in
parts permillion (ppm) based onwind speed, air temperature,
pressure gradient, humidity and other covariates. The fourth
data set (Compactiv) refers to a multi-user computer that had
the time of its activity measured under different tasks. The
goal is to predict the portion of time that the computer runs
in user mode for 8192 observations based on 21 covariates.
These data sets are a subset of 9 sets considered by Kapelner
and Bleich (2016).

As with the Friedman data, we consider two versions of
BART (10 and 200 trees) andMOTR-BART (10 trees and 10
trees, fixed var), and we split the data into 10 different train
(80%) and test (20%) sets. Furthermore, no transformations
were applied to the response variables and all results are
based on the test data.

Figure 4 shows the results of RMSE on test sets. It is pos-
sible to note thatMOTR-BART (10 trees) presents the lowest
or second lowest median RMSE on all data sets, except for
Ozone. For Ankara, RF andGB have quite similar results and
lasso presents the highest RMSE. For Boston, lasso regres-
sion shows the highestRMSE,whileMOTR-BART(10 trees)
and soft BART do not differ much in terms of median and
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Fig. 4 Comparison of RMSE for Ankara, Boston, Ozone and Com-
pactiv data sets on test data

quartiles. For Ozone, it can be seen that MOTR-BART (10
trees) presents the highest RMSE and that LLF, RF and
MOTR-BART (10 trees) have the lowest median values. For
Compactiv, RF and GB show similar results, while MOTR-
BART (10 trees, fixed var) presents the lowest RMSE. To
facilitate the visualisation, the results for lasso are not shown
for the data set Compactiv, as it has RMSEs greater than 9.
In Appendix B, however, Table 4 reports the median and the
first and third quartiles of the RMSE for all algorithms and
data sets.

In Table 5 (seeAppendixB), we show themean of the total
number of parameters/terminal nodes created for BART to
generate the final prediction for each data set. For MOTR-
BART, the numbers correspond to the mean of the total of
parameters estimated. For instance, for the data set Ankara,
304,696 terminal nodes were used on average by BART
(10 trees), while BART (200 trees) estimated 2,250,599 and
MOTR-BART 546,959. As can be seen, MOTR-BART esti-
mates more parameters than BART (10 trees) for all data
sets, as we expect. However, when compared to BART (200
trees), MOTR-BART utilises significantly fewer parameters
to obtain similar or better performance, except forCompactiv.

6 Discussion

In this paper, we have proposed an extension of BART,
called MOTR-BART, that can be seen as a combination of
BART and model trees. In MOTR-BART, rather than hav-
ing a constant as predicted value for each terminal node, a
linear predictor is estimated considering only those covari-
ates that have been used as a split in the corresponding tree.
Furthermore, MOTR-BART is able to capture linear associ-
ations between the response and covariates at node level and
it requires fewer trees to achieve equivalent or better perfor-
mance when compared to other methods.

Via simulation studies and real data applications, we
showed that MOTR-BART is highly competitive when com-
pared to BART, random forests, gradient boosting, lasso
regression, soft BART and LLF. In simulation scenarios,
MOTR-BART outperformed the other tree-based methods,
except soft BART. In the real data applications, four data
sets were considered and MOTR-BART provided great pre-
dictive performance.

Due to the structure of MOTR-BART, to evaluate variable
importance or even to select the covariates that should be
included in the linear predictors is not straightforward. Recall
that model trees were introduced in the context of one tree,
where statistical methods of variable selection such as for-
ward, backwards or stepwise can be performed at node level.
Compared to other tree-basedmethods that consider only one
tree, model trees produces much smaller trees (Landwehr
et al 2005), which helps to alleviate the computational time
required by the variable selection procedures. In theory, one
might think that it would be possible to use such a procedure
for MOTR-BART, but in practice they would be a burden as
they would be performed for each terminal node out of all
trees within every MCMC iteration.

In the Bayesian context, Chipman et al (2010) propose to
use the inclusion probability as a measure of variable impor-
tance. Basically, this metric is the proportion of times that a
covariate is used as a split out of all splitting rules over all
trees and MCMC iterations. However, this measure gives us
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an idea about the covariates that are important for the split-
ting rules and does not say anything about which covariates
that should be included in the linear predictors.

In this sense, the variable selection/importance remains
as a challenge that may be investigate in future work, once
conventional procedures are not suitable. One might try
proposing adaptations of ridge, lasso or horseshoe regres-
sions for trees. Another extension could be replacing the
linear functions by Splines to provide even further flexibility
and capture local nonlinear behaviour, which is a subject of
ongoing work. Finally, model trees can be incorporated to
other BART extensions, such as BART for log-linear mod-
els (Murray 2017), soft BART (Linero and Yang 2018) and
BART for log-normal and gammahurdlemodels (Linero et al
2018).We hope to produce anR package that implements our
methods shortly; current code is available at https://github.
com/ebprado/MOTR-BART.
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Appendix A: Simulation results

In this section, we present results related to the simulation
scenarios shown in Sect. 5.1. In total, 9 data sets were created
based on Friedman’s equation considering some combina-
tions of sample size (n) and number of covariates (p). In
Tables 1 and 2 , the medians and quartiles of the RMSE
are shown for the algorithms MOTR-BART, BART, GB, RF,
lasso, soft BART and LLF. The values in this table were
graphically shown in Fig. 3. In addition, Table 3 presents the
meannumber of parameters utilised byBART,MOTR-BART
and soft BART to calculate the final prediction.

Table 1 Median of the RMSE on test data of the Friedman data sets
when n = 200 and 500

Algorithm p RMSE

n = 200

MOTR-BART 5 1.36 (1.19;1.55)

MOTR-BART (fixed var) 5 1.47 (1.26;1.78)

BART (10 trees) 5 1.80 (1.63;1.99)

BART (200 trees) 5 1.54 (1.38;1.58)

GB 5 1.83 (1.67;1.93)

RF 5 2.41 (2.21;2.63)

Table 1 continued

Algorithm p RMSE

Lasso 5 2.69 (2.30;2.96)

soft BART 5 1.36 (1.22;1.47)

LLF 5 2.30 (2.08;2.52)

MOTR-BART 10 1.55 (1.39;1.64)

MOTR-BART (fixed var) 10 1.70 (1.63;1.80)

BART (10 trees) 10 2.25 (2.07;2.49)

BART (200 trees) 10 1.88 (1.86;2.00)

GB 10 2.18 (2.00;2.24)

RF 10 2.94 (2.76;3.10)

Lasso 10 3.38 (3.15;3.53)

soft BART 10 1.39 (1.24;1.52)

LLF 10 2.91 (2.73;3.25)

MOTR-BART 50 1.27 (1.21;1.38)

MOTR-BART (fixed var) 50 1.43 (1.40;1.63)

BART (10 trees) 50 2.10 (1.94;2.21)

BART (200 trees) 50 1.97 (1.90;2.14)

GB 50 2.13 (2.06;2.22)

RF 50 3.51 (3.23;3.83)

Lasso 50 2.96 (2.84;3.02)

soft BART 50 1.22 (1.12;1.27)

LLF 50 3.17 (3.09;3.28)

n = 500

MOTR-BART 5 1.12 (1.11;1.19)

MOTR-BART (fixed var) 5 1.18 (1.11;1.27)

BART (10 trees) 5 1.44 (1.42;1.50)

BART (200 trees) 5 1.26 (1.17;1.33)

GB 5 1.42 (1.38;1.52)

RF 5 2.00 (1.92;2.12)

Lasso 5 2.48 (2.35;2.53)

soft BART 5 1.09 (1.06;1.15)

LLF 5 1.96 (1.87;1.98)

MOTR-BART 10 1.16 (1.14;1.21)

MOTR-BART (fixed var) 10 1.26 (1.22;1.27)

BART (10 trees) 10 1.53 (1.44;1.57)

BART (200 trees) 10 1.35 (1.28;1.39)

GB 10 1.63 (1.50;1.70)

RF 10 2.46 (2.43;2.53)

Lasso 10 2.68 (2.61;2.95)

soft BART 10 1.16 (1.10;1.19)

LLF 10 2.27 (2.15;2.37)

MOTR-BART 50 1.14 (1.10;1.18)

MOTR-BART (fixed var) 50 1.24 (1.22;1.30)

BART (10 trees) 50 1.74 (1.66;1.77)

BART (200 trees) 50 1.43 (1.38;1.59)

GB 50 1.78 (1.77;1.85)

RF 50 3.35 (3.27;3.40)

Lasso 50 2.80 (2.72;2.92)
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Table 1 continued

Algorithm p RMSE

soft BART 50 1.11 (1.05;1.13)

LLF 50 2.88 (2.83;2.92)

The values in parentheses are the first and third quartiles, respectively

Table 2 Median of the RMSE on test data of the Friedman data sets
when n = 1000

Algorithm p RMSE

n = 1000

MOTR-BART 5 1.09 (1.03;1.12)

MOTR-BART (fixed var) 5 1.11 (1.08;1.17)

BART (10 trees) 5 1.28 (1.20;1.36)

BART (200 trees) 5 1.13 (1.12;1.19)

GB 5 1.27 (1.25;1.36)

RF 5 1.93 (1.76;1.95)

Lasso 5 2.70 (2.62;2.79)

soft BART 5 1.04 (1.03;1.08)

LLF 5 1.81 (1.69;1.89)

MOTR-BART 10 1.14 (1.11;1.17)

MOTR-BART (fixed var) 10 1.17 (1.15;1.23)

BART (10 trees) 10 1.43 (1.42;1.45)

BART (200 trees) 10 1.23 (1.22;1.27)

GB 10 1.44 (1.42;1.47)

RF 10 2.17 (2.10;2.19)

Lasso 10 2.70 (2.61;2.76)

soft BART 10 1.09 (1.07;1.12)

LLF 10 2.02 (1.96;2.08)

MOTR-BART 50 1.12 (1.10;1.15)

MOTR-BART (fixed var) 50 1.18 (1.16;1.21)

BART (10 trees) 50 1.55 (1.50;1.59)

BART (200 trees) 50 1.35 (1.33;1.37)

GB 50 1.57 (1.55;1.61)

RF 50 2.99 (2.85;3.16)

Lasso 50 2.66 (2.59;2.70)

soft BART 10 1.09 (1.07;1.10)

LLF 10 2.59 (2.51;2.81)

The values in parentheses are the first and third quartiles, respectively

Table 3 Friedman data sets: mean and standard deviation of the total
number of terminal nodes created for BART and soft BART to generate
the final prediction over 5000 iterations

Algorithm p Mean SD

n = 200

MOTR-BART 5 302,447 18,210

MOTR-BART (fixed var) 5 263,079 11,990

BART (10 trees) 5 163,468 7393

Table 3 continued

Algorithm p Mean SD

BART (200 trees) 5 2,468,707 6734

soft BART 5 250,615 6599

MOTR-BART 10 326,678 20,309

MOTR-BART (fixed var) 10 258,380 13,530

BART (10 trees) 10 145,458 7380

BART (200 trees) 10 2,470,333 3670

soft BART 10 256,391 5577

MOTR-BART 50 327,751 28,627

MOTR-BART (fixed var) 50 251,469 12,376

BART (10 trees) 50 134,809 4447

BART (200 trees) 50 2,428,259 5368

soft BART 50 256,184 6754

n = 500

MOTR-BART 5 364,786 21,978

MOTR-BART (fixed var) 5 364,258 17,478

BART (10 trees) 5 203,625 7950

BART (200 trees) 5 2,470,900 8739

soft BART 5 257,769 6727

MOTR-BART 10 382,528 24,768

MOTR-BART (fixed var) 10 354,755 25,238

BART (10 trees) 10 206,394 8694

BART (200 trees) 10 2,448,212 9171

soft BART 10 256,465 2829

MOTR-BART 50 384,828 18,099

MOTR-BART (fixed var) 50 330,434 33,566

BART (10 trees) 50 178,779 8700

BART (200 trees) 50 2,407,661 14,314

soft BART 50 254,164 9334

n = 1000

MOTR-BART 5 389,479 23,247

MOTR-BART (fixed var) 5 396,280 29,040

BART (10 trees) 5 271,878 8977

BART (200 trees) 5 2,425,863 8276

soft BART 5 257,656 9,881

MOTR-BART 10 410,517 30,346

MOTR-BART (fixed var) 10 390,274 22,442

BART (10 trees) 10 256,511 7,812

BART (200 trees) 10 2,415,372 8,575

soft BART 10 255,604 6549

MOTR-BART 50 391,193 16,127

MOTR-BART (fixed var) 50 380,365 40,069

BART (10 trees) 50 212,421 5959

BART (200 trees) 50 2,371,140 14,287

soft BART 50 255,155 4400

ForMOTR-BARTs, the values correspond to the mean of the total num-
ber of parameters estimated in the linear predictors
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Appendix B: Real data results

This appendix presents two tables with results associated
with the data sets Ankara, Boston, Ozone and Compactiv.
In Table 4, it is reported the median and quartiles of the
RMSE computed on 10 test sets. The values in this table are
related to the Fig. 4 from Sect. 5.2. Further, Table 5 shows
the mean number of parameters utilised by BART, MOTR-
BART and soft BART to calculate the final prediction for the
aforementioned data sets.

Table 4 Real data sets: comparison of the median RMSE (and first and
third quartiles) for Ankara, Boston, Ozone and Compactiv data sets on
test data

Data set Algorithm RMSE rank

Ankara MOTR-BART 1.20 (1.18;1.22) 2

MOTR-BART (fv) 1.23 (1.20;1.26) 4

BART (200 trees) 1.37 (1.31;1.39) 5

BART (10 trees) 1.48 (1.45;1.55) 8

GB 1.40 (1.35;1.45) 6

RF 1.44 (1.38;1.46) 7

Lasso 1.59 (1.55;1.63) 9

soft BART 1.21 (1.16;1.24) 3

LLF 1.19 (1.17;1.25) 1

Boston MOTR-BART 2.78 (2.51;3.53) 1

MOTR-BART (fv) 2.98 (2.75;3.36) 5

BART (200 trees) 2.90 (2.70;3.27) 3

BART (10 trees) 3.42 (3.34;3.62) 8

GB 2.97 (2.78;3.22) 4

RF 3.10 (3.02;3.33) 6

Lasso 4.69 (4.47;4.89) 9

soft BART 2.85 (2.56;3.50) 2

LLF 3.08 (2.93;3.42) 7

Ozone MOTR-BART 4.68 (4.26;4.87) 9

MOTR-BART (fv) 4.23 (3.99;4.35) 3

BART (200 trees) 4.25 (3.89;4.53) 4

BART (10 trees) 4.42 (4.13;4.59) 6

GB 4.52 (4.03;4.69) 8

RF 4.10 (3.89;4.43) 2

Lasso 4.41 (4.24;4.90) 7

soft BART 4.21 (4.07;4.36) 5

LLF 4.06 (3.95;4.28) 1

Compactiv MOTR-BART 2.23 (2.21;2.26) 2

MOTR-BART (fv) 2.20 (2.15;2.23) 1

BART (200 trees) 2.26 (2.23;2.28) 3

BART (10 trees) 2.44 (2.41;2.51) 7

Table 4 continued

Data set Algorithm RMSE rank

GB 2.41 (2.35;2.46) 6

RF 2.44 (2.39;2.54) 8

Lasso 9.97 (9.51;10.09) 9

soft BART 2.32 (2.29;2.45) 5

LLF 2.28 (2.27;2.43) 4

The acronym ‘fv’ stands for ‘fixed var’

Table 5 Real data sets: mean and standard deviation of the total number
of terminal nodes created for BART and soft BART to generate the final
prediction over 5000 iterations

Data set Algorithm Mean SD

Ankara MOTR-BART 546,959 36,977

MOTR-BART (fv) 485,743 40,840

BART (10 trees) 304,696 8872

BART (200 trees) 2,250,599 11,798

soft BART 312,927 11,539

Boston MOTR-BART 748,468 58,945

MOTR-BART (fv) 414,762 50,705

BART (10 trees) 204,038 10,143

BART (200 trees) 2,389,130 14,244

soft BART 318,171 17,078

Ozone MOTR-BART 272,370 42,809

MOTR-BART (fv) 182,189 8093

BART (10 trees) 137,239 2642

BART (200 trees) 2,343,350 5128

soft BART 268,948 5667

Compactiv MOTR-BART 2,990,494 298,221

MOTR-BART (fv) 1,529,666 102,940

BART (10 trees) 539,621 15,759

BART (200 trees) 2,649,167 29,989

soft BART 711,860 49,087

ForMOTR-BARTs, the values correspond to the mean of the total num-
ber of parameters estimated in the linear predictors. The acronym ‘fv’
stands for ‘fixed var’
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