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A B S T R A C T   

Additive manufacturing processes, such as Laser Powder Bed Fusion (L-PBF), facilitates the manufacture of 
porous biomaterials structures, which can be used for example to enhance bone tissue regeneration. In-situ 
process monitoring techniques such as meltpool emission monitoring are increasingly being applied for the 
monitoring of the L-PBF processes. This paper investigates the use of statistical anomaly detection to analyse in- 
situ process monitoring data obtained during L-PBF. 

In this study a Renishaw 500M was used to produce porous structures, using Ti-6Al-4 V feedstock powder. 
During the L-PBF process, a co-axial photodiode-based process monitoring system was utilised to generate data 
relating to both the meltpool and the operational behaviour of the laser. Porous structures were created with 
intentionally defective layers, whereby the laser power was selectively reduced at specific layers. Control sam-
ples were also created where no intentionally defective layers were created. In addition, an un-intentionally 
defective sample was also analysed. The Generalized Extreme Studentized Deviate (GESD) test was employed 
to identify any defective layers within the structures. When this approach was applied to data generated during 
the processing of the structures with reduced input energy layers, the number of defective layers identified 
corresponded exactly with the known amount. When the test was run on the meltpool data, corresponding to the 
un-intentional defective structure, 30 layers were identified as defective. When examined, the identified layers 
corresponded to the physical location of the defect within the sample. 

The results obtained in this study indicate that the GESD test is an effective and computationally inexpensive 
method of identifying defective layers created during the L-PBF process.   

Introduction 

Laser Powder Bed Fusion (L-PBF) involves the melting of powder 
together, using a layer by layer approach [1]. This additive 
manufacturing (AM), process facilitates the fabrication of intricate 
structures that cannot be fabricated using traditional manufacturing 
methods [2]. In recent years, the increased need for individual part 
customisation in medical applications and the need for lightweight parts 
in the aerospace and automotive industries, has seen a rapid develop-
ment in AM technologies [3–5]. 

L-PBF allows for the production of porous metallic structures, 
composed of internal micro-scaled architectures. This in turn can allow 
for the creation of porous biomaterials, with site specific mechanical 
properties that match the surrounding natural bone [6]. The open nature 
of the structure can also promote better bone ingrowth, resulting in a 

strong bone-implant interface [10,11]. Combining both the freeform 
geometries that L-PBF can facilitate and the advantageous biological 
properties of these structures, extensive research has been carried out on 
the use of porous-biomaterials as bone replacing implants [7–9]. 

Although L-PBF offers several advantages and opportunities, con-
cerns around the quality of parts produced demands a high level of post 
build quality control (QC) [12]. Computer tomography (CT) is a com-
mon QC technique, which is routinely in the AM industry [13]. Although 
this method of QC is effective, it is also costly and time-consuming. 
Further to this the components that fail to meet the required standards 
are scrapped, resulting in increased levels of process waste, a potential 
delay in production times and consequentially results in increase part 
cost [14]. Therefore, in order to render the need for such post build QC 
checks redundant, methods of identifying defective components based 
on in-situ process monitoring data are critical. 
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Several studies have been published that assess the use of process 
monitoring (PM) systems during the L-PBF processes [15–18]. These 
systems typically consist of one or more photodiodes to monitor the 
emissions generated by the meltpool. These studies typically assess the 
emissions generated during the processing of single line scans or prim-
itive cubic test samples. 

In our previous study, a strong correlation was demonstrated be-
tween PM data and the mechanical properties of diamond based cellular 
structures [19]. It was demonstrated that as the strength of the struc-
tures increased, with increasing input energy, a linear increase in the 
intensity of the meltpool and laser monitoring signal occurred. In a 
follow up study, the effect that reducing the laser power at specific 
layers within porous structures, on the structures load bearing capacity 
and strut formation was also demonstrated [20]. This study also 
demonstrated a correlation between the deviation in PM data, between 
control data and the build data, with a reduction in the load bearing 
capacity of the structures. 

While these studies provide some insight into the application of PM 
systems during the AM of porous structures, there have been very few 
publications on the use of anomaly detection to detect defective layers 
created during the metal additive manufacturing. One such study was 
carried out by Okaro et al. [21], in their study a machine learning al-
gorithm was applied to PM data in order to identify faulty tensile sam-
ples. Okaro used the semi-supervised Gaussian Mixture Model (GMM) 
technique to classify each tensile bar as “faulty” or “acceptable”. In their 
work however, no classification of individual layers was determined. 

Statistical analysis techniques, such as anomaly detection tests, have 
been published for several decades. One such test is that developed by 
Grubbs et al. who developed procedures and equations to determine 
whether or not the highest, lowest or highest & lowest values in a data 
set are statistical anomalies [22]. Grubbs defined an anomaly as an 
observation that is the result of a gross deviation from the prescribed 
procedure or as a manifestation of the random variability inherent 
within the data set. Jain et al. compared the performance of the Grubbs 
anomaly test and the Extreme Studentized Deviate (ESD) anomaly 
detection test, to identify anomalies in environmental and chemical data 
[23]. These authors concluded that in general the ESD technique pro-
vided a better fit, when compared with the Grubbs test, for the detection 
of multiple anomalies in the data sets studied. 

Rosner et al. reported on a procedure to detect multiple (between 1 
and k) anomalies in a data set [24]. Rosner’s study demonstrated that 
the modified ESD test, known as the Generalized Extreme Studentized 
Deviate (GESD), was shown to be accurate using Monte Carlo simula-
tion, at detecting up to 10 anomalies in a sample size of just 25. Rosner 
concluded that the GESD test was a superior approach to the detection of 
multiple anomalies in a data, compared with that obtained by ESD. 

Mirapeix et al. employed optical spectroscopy to detect defects in 
laser welded seems [25]. In their work Mirapeix showed that a spike in 
the wavelength of the emissions detected correlated with the location of 
a defect in the weld seem. Mirapeix also applied sliding average 
smoothening technique to remove background noise from the signals 
generated. This according to the authors resulted in better results, 
however the effect of the sliding window size was not demonstrated and 
according to the should be the investigated further to assess its effect. 

The aim of this current study is to assess if the Generalized Extreme 
Studentized Deviate (GESD) anomaly detection test can be utilised to 
detect defective layers created during the AM of porous structures. This 
study presents, for the first time, the application of the GESD anomaly 
detection test on data generated by an in-situ process monitoring system 
during metal additive manufacturing. The aims of this study are to:  

- Apply a statistical anomaly detection technique to meltpool and laser 
related process monitoring data, to identify defective layers within 
porous structures.  

- Evaluate if the GESD test can be used to determine if a layer is 
defective or not.  

- Assess the effect of the sliding window size, on the performance of 
the detection technique. 

- Determine if by comparing build data, to benchmark data and sub-
sequently applying the anomaly detection test, can be used to iden-
tify defective layers. 

Experimental setup 

Material & machine setup 

Porous structures were created using a Renishaw RenAM500 M, 
equipped with the InfiniAM in-situ process monitoring (PM) system. All 
test pieces were fabricated using Ti-6Al-4 V grade 23 powder, obtained 
from AP & C, with powder particle diameters in the range of 15–45 μm. 
Prior to the build commencing, a vacuum was used to reduce the level of 
oxygen in the chamber, following which argon gas was introduced to 
achieve an inert atmosphere. 

The test specimen used in this work consisted of a 15 × 15 × 28 mm 
(L x W x H) lattice structure, composed of 1.5 mm diamond unit cells. 
The structure created conformed to ISO 13314, the ISO standard 
describing the method of compression testing of porous metallic struc-
tures. Each sample was created using the single exposure scan strategy, 
whereby the process parameters determine the strut diameter. In this 
study an exposure time and laser power of 750 μs and 150 W were 
utilised respectively, at a layer height of 30 μm. 

Test specimen 
In this study three types of test samples were produced, they were (i) 

control samples, (ii) an un-intentionally defective sample and (iii) a 
series of intentionally defective samples, that contained layers processed 
with a reduction in input energy. The control samples exhibited no de-
fects and were used as the benchmark in this study. The reduced input 
energy samples consist of a controlled number of layers processed with a 
reduction in input energy. Finally, the defective sample consists of a 
gross defect caused by wiper damage. In this study the control samples 
and the reduced input energy samples studied were repeated 4. 

The reduced input energy samples consist of a controlled number of 
layers processed with a reduction in input energy. These were obtained 
by systematically reducing the laser power, by 33 %, 66 % and 100 %, 
for between 1 and 7 layers. Full details on the samples containing 
reduced input energy layers, and their effect on the mechanical prop-
erties of the structure can be seen in [20]. For these samples, the laser 
power was intentionally reduced in an attempt to mimic, what Sharratt 
et al. described, an equipment induced defect [26]. Although they have 
been intentionally designed, for this study these layers are considered as 
defective. In the following text the SxVy notation is used, where x in-
dicates the level of energy reduction (between 33 and 100 %) and y 
indicates the number of effected layers (from 1 to 7), as detailed in 
Table 1. For example, the S2V9 sample was fabricated with a 66 % 
reduction in input energy, for 9 consecutive layers. 

Table 1 
Notation associated with each defective sample produced in this study. Where 
the S value indicates the level of reduction in laser power for the number of 
layers given by the V value.   

Reduction in laser power 

No. of layers S1: 33 % S2: 66 % S3: 100 % 

1 S1V1 S2V1 S3V1 
3 S1V3 S2V3 S3V3 
5 S1V5 S2V5 S3V5 
7 S1V7 S2V7 S3V7 
9 S1V9 S2V9 N/A  
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Data acquisition & statistical analysis 

Data type & acquisition 

During the L-PBF processes, an in-situ monitoring system was utilised 
to gather meltpool and laser related data at a rate of 100 kHz. The system 
uses one photodiode to provide feedback on the laser energy input, 
known as the Beam Dump (BD) signal. The system employs a further two 
photodiodes to provide information about the emissions emitted from 
the meltpool during the melting process, known as the photodiode 1 
(PD1) and photodiode 2 (PD2). These meltpool monitoring photodiodes 
detect in two different wavelength ranges, providing information 
relating to the plasma (PD1) and IR (PD2) emissions created during the 
L-PBF process [27]. 

In this study analysis was carried out on each structure created after 
the build was complete. To do this, the data associated with each sample 
was first plotted as a function of build plate location. Following this, a 
region of interest (ROI), 16 × 16 mm, was then taken around each 
structure. For each of the three photodiodes the mean, maximum, 
minimum, standard deviation and the sum of the signals generated 
within each ROI was calculated, per layer. In this paper only the results 
obtained through analysing the respective mean signal are presented. 
After carrying out these pre-processing steps, a total of 14,265 data 
points were generated per sample (951 layers x 3 photodiodes x 5 re-
cordings each = 14,265). Analysis was carried out on 57 samples, 
equating to approximately 350 MB of data. To further reduce the 
amount of data, the initial 8 mm of the build was neglected, as this acted 
as support material and was subsequently removed during the sample 
preparation stages. This resulted in a total of 665 layers (~20 mm) been 
analysed. 

Statistical analysis 

This data generated by the PM system during the AM process, was 
analysed using the Matlab R2019a software. Firstly, the photodiode data 
was smoothed using a moving mean function, to remove any signal 
noise, similar to that carried out by [25]. This function computes a 
centred moving average by sliding a window of length WL along the data 
set. Each element of output is the local mean of the corresponding values 
of the input data set, inside the respective window. This step was carried 
out to reduce the level of noise in the data sets. Following this, the 
Generalized Extreme Studentized Deviate (GESD) test was applied to the 
smoothed data sets. 

The GESD test is an iterative method that removes one anomaly per 
iteration. It may offer improved performance over ’Grubbs’ when there 
are multiple anomalies that mask one another [22]. The GESD test is 
used to detect one or more anomalies in a univariate data set that follows 
an approximately normal distribution. In the GESD test, the null hy-
pothesis is that the data has no anomalies verses the alternative hy-
pothesis that there are at most k anomalies [24]. 

Results & discussion 

Firstly, this section the methodology for selecting the appropriate 
window length (WL) value is presented and discussed. Secondly, the 
results obtained when the GESD test was applied to the benchmark 
samples mean Beam Dump (BD) data set is presented. This was carried 
out in order to demonstrate that no defective layers occurred during the 
build process. Following on from this, the GESD test was applied to the 
mean BD signal, generated during the processing of the samples con-
taining reduced input energy layers. This was carried out to verify that 
the GESD test can detect a known number of defective layers and that 
the analysis methodology developed is suitable at detecting defective 
layers. Finally, the GESD test was applied to the data generated during 
the processing of a sample that contained a gross defect. This sample was 
intended to be a further control sample; however, it was subject to wiper 

damage during the build process. 

WL selection optimisation 

During this study it was observed that the selection of the WL value 
plays a key role in the identification of defective layers, and that 
selecting this value is not a trivial task. A value too small and the number 
of false positives can increase dramatically. On the contrary, too large of 
a WL value could result in defective layers going undetected. Conse-
quently, the selection of the WL value is critical to the accuracy of the 
anomaly test. 

To overcome this issue, the GESD test was run at a varied number of 
WL values. Following this, only layers that were identified as defective 
by each iteration of the test and were subsequently found to be common 
to each iteration, were highlighted as defective layers. While this 
allowed for the selection of the WL value to be resolved, it raised the 
issue of how many iterations of the test to run before determining the 
commonly identified layers. To overcome this issue, the following 
analysis was carried out. For each of the data sets analysed, the GESD 
test was initially set to run 150 times with the WL value increasing from 
1 to 150. It was observed that number of defective layers identified 
varied substantially depending on the WL value. In order to determine a 
suitable maximum WL value, the number of identified layers verses the 
WL value was plotted, an example of this can be seen in Fig. 1. This 
demonstrates that as the WL value increases the number of identified 
layers converges to around 87 layers. When the number of identified 
layers converged, no more iterations of the test were carried out. In this 
study convergence was deemed to have occurred when the slope of the 
three most recent iterations of the test was ≤ 0. The WL value associated 
with the converged curve was then selected as the maximum WL value, 
in the example in Fig. 1 the maximum WL value was 38. After the 
maximum WL value was determined the layers that were commonly 
identified as defective by each iteration prior to this, were determined 
and taken as the true defective layers. 

This process of running the GESD test at an arbitrarily high number 
in order to determine when the number if identified layers converges, 
was carried out on each data set discussed in the following sections. This 
method helped negate the issue of choosing a WL and removed any 
potential bias from the test. Interestingly, it was found, that running the 
GESD test several times on the data sets studied was a computationally 
inexpensive method of analysis. For example, when the test was run for 
4 iterations, the total run time took less than 0.2 s to compute. 

Benchmark & reduced input energy samples 

The results of running the GESD test, along with the WL selection 
technique outlined previously, on the mean Beam Dump signal gener-
ated by both the control samples as well as a number of samples con-
taining the reduced input energy layers are given in Figs. 2 and 3. 

When the GESD test was applied to the mean control samples BD data 
no layers were identified as defective, irrespective of the WL value. As 
the BD signal is representative of the operational behaviour of the laser, 
this result indicates that the laser operated normally during the build 
process. 

Fig. 2 presents the mean BD data generated during the processing of 
the sample containing 1 layer with a 33 % reduction in input energy 
(S1V1). The peaks observed in the data correspond to layers where the 
energy input was higher than other layers, specifically at node junctions 
(i.e. where individual struts join) within the porous structure. For this 
sample the number of layers identified as defective converged at a WL 
value of 14. When the GESD test was run with a WL value of 1, the 
number of layers identified as defective was 88, the majority of these 
layers corresponded to layers where the node junctions occurred. This 
result highlights the issue of selecting a WL value that is too small. When 
the WL value was increased to 2, the number of layers identified as 
defective reduces greatly to just 2, one of which been the known reduced 
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input energy layer. As the WL value increases further to 14, the number 
of defective layers identified by the GESD test increased to 15. This in-
crease in identified layers is directly related to the higher WL value used. 
As the WL value increases the data is smoothed out over a greater 
number of layers, therefore the one known defective layer, at layer 617, 
was smoothed out over a greater number of layers. This highlights the 

issue of selecting WL value that is too large. When the layers identified as 
defective at each WL value were analysed however, only one layer was 
common between each test. Layer 617 was identified as defective at each 
of the WL values used, indicating that this layer is the only true defective 
layer. This commonly identified layer corresponds to the one layer 
processed with reduced input energy. This result indicates that the 

Fig. 1. Defective layers identified vs. WL value used, for the sample containing a gross defect.  

Fig. 2. GESD test applied to the mean Beam Dump data for the S1V1 sample. Defective layers were detected where the laser power was intentionally reduced by 33 
% for 1 layer. 

Fig. 3. GESD test applied to the mean Beam Dump data for the S3V5 sample. Defective layers were detected where the laser power was intentionally reduced by 100 
% for 5 layers. 

D.S. Egan et al.                                                                                                                                                                                                                                  



Journal of Manufacturing Processes 64 (2021) 1248–1254

1252

methodology of determining the maximum WL value and subsequently 
taking only the commonly identified defective layers, is effective in 
addressing the issue of selecting suitable WL values. 

Fig. 3 presents the mean BD data generated during the processing of 
the sample containing 5 layers with a 100 % reduction in input energy 
(S3V5), i.e. the laser was switched off for 5 layers. When the GESD test 
was run with a WL value of 1, 5 layers were identified as defective. These 
layers correspond directly to the 5 layers processed with a known 
reduction in input energy. Unlike the S1V1 sample however, a WL value 
of 1 could detect the true number of defective layers. This is of course 
only known as the number of defective layers present are controlled and 
known prior analysing the data. Similar to the S1V1 sample however, 
when the WL value was increased, the number of layers identified as 
defective also increased, to a maximum value of 45, at which point the 
curve converged at a WL value of 26. When the layers that were 
commonly identified by each of the 26 iterations, the only layers com-
mon to each were layers 615–619. These commonly identified layers 
correspond directly to the layers processed with a reduced input energy. 
Thus, further indicating that by only taking the layers that were 
commonly identified at each WL value, the number of defective layers 
could be precisely identified. 

Un-intentional defective sample 

During the build process a sample which was designed to be a control 
sample was subject to interference from wiper damage, which resulted 
in the formation of a gross defect occurring within the sample. When 
viewed in the build chamber, prior to removing the build platform from 
the powder, the sample appeared to build relatively successfully, as 
demonstrated in Fig. 4 left. As this sample was un-intentionally defective 
and yet managed to build somewhat successfully, it provides a very real- 
world example of a part failure during the L-PBF process. 

Fig. 4 left illustrates a layer of the structure before the defect 
occurred, while Fig. 4 centre illustrates a layer after the defect occurred. 
These images were captured using a camera mounted within the build 
chamber. In these figures, the yellow box indicates the location of the 
defective sample, while the white arrow indicates where the defect 
occurred within sample. Fig. 4 right, shows the effect that the wiper 
damage had on the defective sample, when examined post build. 

Deviation of defective data from benchmark data 
In our previous investigations, it was demonstrated that by 

comparing build data to benchmark data and by calculating the per-
centage deviation between the respective signals on a layer-by layer 
basis, insight into the structural integrity of the structures could be ob-
tained [20]. In this study the percentage deviation between the defective 
sample and the benchmark samples mean Beam Dump was calculated 
and plotted as a function of layer ID. When the GESD test was applied to 
this data set, using the methodology outlined in Table 2, no layers were 
identified as defective. Thus, indicating that the laser operated as 
normal when processing this defective sample. 

A plot of the deviation between the defective and benchmarks 
meltpool photodiode signal (Photodiode 1), plotted as a function of 
layer ID, is given in Fig. 6. Photodiode 1 (PD1) provides a measure of the 
plasma emissions created by the meltpool during the L-PBF process. 
Therefore, any change in the build conditions, that may affect the 
meltpool will have an influence on this signal. When the GESD test was 
applied to this data, the number of layers identified as defective, 83, 
converged at a WL value of 38, see Fig. 1. The histogram shown in Fig. 5 
left demonstrates the distribution of the each layer identified by all 38 
iterations of the GESD test. This figure demonstrates that despite the WL 
value, all identified layers were between layer 676 and 759, indicating 
that no iteration of the test detected defective layers outside of this re-
gion. When the layers identified by each of the 38 iterations were further 
analysed, only 30 layers were common to each. These 30 layers occurred 
between layer 693 and 732, the distribution of these layers can be seen 
in the histogram in Fig. 5 right. Upon inspection, these defective layers 
correspond to the layers immediately after the wiper damage occurred, 
that subsequently resulted in the gross defect occurring. 

The data shown in Fig. 6 is the deviation between the benchmark and 
the defective samples meltpool data set, as a function of layer height. 
Also shown in this figure are the 30 layers that were commonly identi-
fied when the GESD test was run 38 times on this data set. The level of 
deviation between the benchmark sample set and the defective sample 
set is between 0 and -10 %, however at layer 692, the layer where the 
wiper damage occurs, the deviation between the data sets increased to 
just over 27 %, an increase of 34 % from the previous layer. The gradual 
decrease in the level of deviation between the respective data sets oven 
the subsequent layers indicates that the structure is recovering from the 
initial incident. This conclusion is supported up by the image of the 
structure in Fig. 4 right, where it can be seen that the void (the defect) 
created in the sample reduces in size as the layer height increases. The 
structure recovers to a point where no void is present in the structure, at 
which point the deviation signal returns to a value similar to that 
observed before the defect occurred. 

The results presented in this section demonstrate that the method of 
comparing meltpool data to a benchmark meltpool data set, calculating 
the percentage deviation between the two layer-by-layer, followed by 
applying the GESD test at multiple WL values, is an effective method at 
identifying defective layers created during the L-PBF process. 

Fig. 4. Left: layer before defect occurred. Center: Layer after defect occurred. Right: Un-intentional defect created within the structure (build direction is up).  

Table 2 
Steps carried out generate the deviation data and to apply the GESD test.  

Step: Task: 

1. Generate benchmark data. 
E.g. Mean meltpool data, Mean Beam Dump data. 

2. Calculate the percentage deviation between benchmark and build data sets, 
on a layer-by-layer basis. 

3. Plot percentage deviation as a function of layer ID. 
4. Apply GESD anomaly detection test to this deviation data, at several WL 

values. 
5. Determine maximum WL value. 
6. Analyse layers that were commonly identified at each GESD iteration.  
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Conclusions 

In this study a statistical analysis approach was investigated to 
identify defective layers created during the L-PBF process. The GESD 
anomaly detection test was applied laser and meltpool related in-situ 
process monitoring data generated during the L-PBF process. Bench-
mark control structures, structures containing intentionally reduced 
input energy layers and a defective sample were analysed during this 
study, with the aim of successfully identifying any defective layers 
within each. 

The data generated was subject to a moving mean function prior to 
running the GESD test. The moving mean function computes a centred 
moving average by sliding a window, of length WL, along the raw data 
set. To optimise the selection of the WL value in this study, the GESD test 
was applied using a range of WL values, until the number of identified 
layers converged. Layers that were commonly identified as defective at 
each WL value, were then taken as true defective layers. 

When the GESD test was applied to the benchmark samples meltpool 
and laser related data sets, no defective layers were identified. The test 
was then applied to the data generated by the structures containing a 
varying number of, intentionally created, reduced input energy layers. 
This was carried out to determine the effect that varying the WL value 

had on the effectiveness of the test and to determine if the analysis 
methodology outlined was suitable for identifying defective layers. It 
was demonstrated that when only the commonly identified defective 
layers were selected, the test could detect the exact number of reduced 
input energy layers within the structures. Demonstrating the ability of 
the GESD test to identify layers processed with a reduction in laser input 
energy. 

The GESD test was applied to the sample containing a gross, un- 
intentionally created, defect. This sample provided a real-world 
example, where the structure failed unexpectedly. For this sample, the 
meltpool build data was compared to benchmark meltpool data on a 
layer by layer basis, with the percentage difference between the two 
been calculated and plotted as a function of layer height. When the 
GESD test was applied to this deviation data, 30 layers were commonly 
identified as defective. All 30 commonly identified defective layers 
corresponding to the physical location where the gross defect occurred. 
Thus, indicating that the analysis method carried out is an effective and 
computationally inexpensive method for detecting defective layers 
created during the L-PBF process. 

In this study this computationally in-expensive analysis was carried 
out post build. This method of analysis however has the potential to be 
applied in near real time to automatically identify defective layers as 

Fig. 5. Left: Histogram showing distribution of layers identified as defective by all 38 iterations of the GESD test. Right: Histogram showing distribution of layers that 
were commonly identified as defective by all 38 iterations. 

Fig. 6. Percentage deviation between the defective sample and the benchmark sample’s Photodiode 1 signal, for each layer. A deviation of nearly 0% was obtained 
throughout the majority of the structure. Between layer 693 and 732 however, a series of defective layers were detected. 
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they occur, using a similar method to that described in [28]. 
Going forward there is the potential to apply the GESD test technique 

to live AM data streams. Amongst the factors to be considered are the 
data acquisition rate and the rate at which the data is formatted, as well 
as how to make it available for analysis. Further to this, enhancing the 
method of noise reduction in the data and improving on the window 
length (WL) selection method will require further investigation. A 
further consideration is the development of a feedback mechanism, 
which could be used to take corrective measures once an anomaly is 
detected during the build process. 
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