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Contributed Discussion

Estevão B. Prado†,‡,§,∗, Eoghan O’Neill¶, Belinda Hernández‖,
Andrew C. Parnell†,‡,§, and Rafael A. Moral†,‡

1 Discussion

We congratulate the authors for their stimulating and excellent work on applying
Bayesian trees to causal inference modelling. In this discussion, we extend the authors’
work by evaluating the models on higher dimensional data sets. We remark in passing
that it seems odd that the paper only contains model performance metrics on training
data, but to allow for valid comparisons, we follow their approach. In particular we show
that, for higher dimensions, some of the existing (non-causal) models have equivalent
or superior performance to BCF for the simulations used in the paper.

We carried out a small simulation study to investigate the performance of BCF,
ps-BART, Causal RF and other methods. We extend the simulations carried out in the
paper by setting n = 250, p = (5, 50, 100, 500) and consider the structure for τ(x), μ(x)
and π(x) presented in Section 6.1. By varying the number of covariates, we aim to see
how BCF and ps-BART behave as well as motivate other algorithms that are designed
to deal with large p. For instance, Hernández et al. (2018) propose a BART-based al-
gorithm suitable for high-dimensional data (in particular when p > 10, 000), named
BART-BMA, that uses Bayesian model averaging and does not utilise an MCMC algo-
rithm. Via simulation studies, they show that BART-BMA outperforms the standard
BART when the number of covariates is large. In this context, Linero (2018) introduces
Dirichlet BART (DART) that modifies the variable selection in BART by updating the
probability of a predictor being selected as a split variable via a Dirichlet distribution.
With this change, DART tends to produce more accurate predictions than BART in
situations where p is large. We also explored MOTR-BART (Prado et al., 2020), which
is an algorithm that generalises BART by generating the predictions based on piece-wise
linear functions rather than terminal node constants. Here, we are specially interested
in seeing how MOTR-BART (with 10 trees) performs when μ(x) is linear, as the regu-
larised linear regression with the horseshoe prior presented the best results in Table 2
of Section 6.1.

In Figure 1, we present the RMSE obtained from 50 Monte Carlo simulations for
the Conditional Average Treatment Effect (CATE), and measured the methods’ per-
formance on the training sets considering an estimate of the propensity score as a
covariate for the non-causal algorithms. When p = 500, it was not possible to run BCF
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Figure 1: Simulation study results of RMSE for Conditional Average Treatment Effect
(CATE).

due to numerical errors. Firstly, we see that the Causal RF algorithm is highly sen-
sitive to the number of covariates. For all combinations of τ(x), μ(x) and estimands,
the RMSE values for Causal RF tend to increase as p gets bigger. When τ(x) is het-
erogeneous, we see that ps-MOTR-BART is competitive even when the structure of
μ(x) is nonlinear. In addition, ps-DART presents lower RMSE values than ps-BART,
which might suggest that ps-DART could be an alternative in situations where p is
large (Santos and Lopes, 2018). On the right-hand side of Figure 1, the results of
RMSE for CATE are shown when τ(x) is homogeneous, which we believe is unreal-
istic in practice. Here, we see that for p < 500 and linear μ(x) that ps-BART, ps-
DART and ps-MOTR-BART present excellent levels of accuracy. For instance, when
p = (5, 50 and 100), they produce similar results with the three generating more accu-
rate estimates than BCF. With τ(x) homogeneous and a nonlinear structure for μ(x),
however, we note that MOTR-BART does not produce as accurate estimates as ps-
BART and ps-DART.

In Figure 2, we see that the results for the Average Treatment Effect (ATE) are
similar. That is, ps-BART and ps-DART perform well across all simulations and ps-
MOTR-BART performs particularly well in data with heterogeneous effects and lin-
ear μ(x). Also, BCF does not give better results than ps-BART or ps-DART in any
setting, although it outperforms Causal RF and ps-BART-BMA.
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Figure 2: Simulation study results of RMSE for Average Treatment Effect (ATE).

Although not shown, we also explored the methods’ performance on test data. Per-
haps due to the non-stochastic nature of the simulation equations, we did not observe
large differences between the results in training versus test performance. The results
presented here can be reproduced by using the R scripts available at https://github.
com/ebprado/BCF-discussion-paper.
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