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Abstract
Transition models are an important framework that can be used to model lon-
gitudinal categorical data. They are particularly useful when the primary inter-
est is in prediction. The available methods for this class of models are suitable
for the cases in which responses are recorded individually over time. However,
in many areas, it is common for categorical data to be recorded as groups, that
is, different categories with a number of individuals in each. As motivation we
consider a study in insect movement and another in pig behaviou. The first study
was developed to understand themovement patterns of female adults ofDiapho-
rina citri, a pest of citrus plantations. The second study investigated how hogs
behaved under the influence of environmental enrichment. In both studies, the
number of individuals in different response categories was observed over time.
We propose a new framework for considering the time dependence in the linear
predictor of a generalized logit transition model using a quantitative response,
corresponding to the number of individuals in each category. We use maximum
likelihood estimation and present the results of the fitted models under station-
arity and non-stationarity assumptions, and use recently proposed tests to assess
non-stationarity. We evaluated the performance of the proposed model using
simulation studies under different scenarios, and concluded that our modeling
framework represents a flexible alternative to analyze grouped longitudinal cat-
egorical data.

KEYWORDS
discrete stochastic process, generalized logit models, multinomial distribution, tests for
stationarity

1 INTRODUCTION

Discrete data are very common in experiments where the focus of interest is the occurrence of an event that is recorded
as a count. Depending upon the focus of the study, the counts may be classified according to certain specific response
categories. When one of the objectives of the experiment is to study the existence of an association between one or more
explanatory variables (factors) and such a discrete response variable, Agresti (2013) describes how the appropriate analysis
is through the use of a regressionmodel for discrete data, which requires the fitting of different discrete distributions such
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as Poisson, binomial, negative binomial, and multinomial. These models belong to the class of generalized linear models
and extensions, and, as in the normal case, there are assumptions that have to be met whenmaking inference using them.
Another issue that must be considered refers to the type of study: cross-sectional or longitudinal. The planning of longi-

tudinal studies deserves special attention because they involve collecting repeated observations on the same experimental
unit, giving correlated observations. Following Diggle, Heagerty, Liang, and Zeger (2002) the analysis of longitudinal data
needs to take into account this dependence structure over timewithin each experimental unit, typically by proposingmod-
els to describe dependence for serially correlated data.Moreover, Zeger, Liang, andAlbert (1988) emphasize that the choice
of model for the analysis of longitudinal data should take into account not only the nature of the response variable but also
the scientific hypotheses of interest. In this context, marginalmodels through generalized estimating equations (GEE) and
subject-specific mixed models are two classical approaches commonly used for longitudinal data analysis. In particular,
marginal models are used when the interest is in the average response over time, whereas in mixed models, the natu-
ral heterogeneity of individuals is considered through the inclusion of appropriate random effects, being useful to tackle
overdispersion problems. Extensions of these two classes of models to categorized data are also already used in the liter-
ature, for example, Hedeker (2003) shows the inclusion of random effects for the generalized logistic model, when there
is an excess of zero counts and Touloumis, Agresti, and Kateri (2013) describe GEE for categorized responses using local
odds ratios parameterizations.
Transitionmodels are also an important framework that can be used tomodel longitudinal categorical data. Thesemod-

els are particularly useful when the interest is in prediction, although dependence can also be measured by a regression
coefficient for the past state (Ware, Lipsitz, & Speizer, 1988). They should be used when the interest is in what happens to
the categorical responses from one moment to another. Marginal models and mixed models are not able to capture these
changes of responses over time and the effects involved (Rodrigues de Lara, Hinde, De Castro, & Da Silva, 2016). In these
cases, the possible dependence within longitudinal data is commonly incorporated through aMarkov type stochastic pro-
cess, where an individual’s current state is influenced by the state of the individual on the previous occasion, but does not
depend on any more general history of the individual’s responses (Stirzaker, 2005). In this case, the individual’s previous
response generally strongly influences his current response and is an important covariate in any prediction. This Markov
type dependency is a strong assumption and has to be checked statistically and, in practice, this can be verified by fitting
appropriate nested models that can be compared using likelihood-ratio tests. Since these models are based on stochastic
processes, they can be divided into two classes. The first is discrete time, that is, when observations of response categories
are measured at predefined occasions, usually equally spaced over time. In contrast, in the class of continuous time pro-
cesses, the set of time values is not predefined, but rather experimentally measured together with the category response
variable for more details see Lindsey (2004)). In this case, Kalbfleisch and Lawless (1985) discuss that the interest is also
in the transition time, for which the transition intensities can be estimated, parameters by which it is possible to describe
average residence time and category change. Continuous time transition models are also known as multi-state models
for which semi-parametric methods are also available (Meira-Machado, de Uña-Àlvarez, Cadarso-Suarez, & Andersen,
2009).
Whether the time parameter is discrete or continuous, the available methods for these classes of models are suitable for

the situation in which responses are recorded over time for each individual (Diggle et al., 2002; Molenberghs & Verbeke,
2005), with the data file presenting a “stacked structure” of states for each individual at measured times (De Rooij, 2011).
However, in the discrete time framework, rather than recording data at the individual level wemay simply have data at the
grouped category level, that is, at each time point the number of individuals in each of the different categories; for example,
this is common when conducting choice tests. The two motivational studies in this work describe experimental setups
designed to observe the behavior of groups of individuals over time. In the first study, groups of 90 female insects (Asian
citrus psyllid) were observed in relation to their choice of four plant species. In the second example, groups of 16 male pigs
had their behavior observed when confined in pens and subjected to two treatments: with and without environmental
enrichment. Similar situations are very common in experiments in entomology and zootechnics, in which, often, the
observation of individual behavior is not possible, but the recording of what happens to the group from one occasion to
another is perfectly possible.
Then, when the collected data in the longitudinal study are arranged in a contingency table, where the response corre-

sponds to frequencies over the many categories at each time point, we are dealing with grouped longitudinal multinomial
data. Although there are non-parametric methods and log-linear models for contingency table data analysis (see Lindsey
(1995)), methodologies for grouped data using transition models are still scarce in the literature. In this context, the pur-
pose of this paper is to extend the methodology of transition models for the analysis of multinomial grouped data over
discrete time. We propose a new framework for considering the time dependence in the linear predictor of a generalized
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logit transition model using a quantitative response. We present a simulation study and illustrate our methodology using
the two real examples mentioned above.

2 MODELING

Initially, we define a transition model for discrete individual level data, and then present the extension to the grouped
case.

2.1 Transition models

Let 𝐲𝑖 = (𝑦𝑖0, 𝑦𝑖1, … , 𝑦𝑖𝑛𝑖 )
′ be the (𝑛𝑖 + 1)-dimensional vector of response variables for the 𝑖th individual, with 𝑖 =

1, 2, … ,𝑁. Also let 𝐱𝑖𝑡 = (𝑥𝑖𝑡1, … , 𝑥𝑖𝑡𝑝)
′ be the 𝑝-dimensional vector of associated covariates, which may or not depend

on time, and 𝐡𝑖𝑡 = (𝑦𝑖(𝑡−1), 𝑦𝑖(𝑡−2), … , 𝑦𝑖(𝑡−𝑞)), the 𝑞-dimensional vector of previous responses, is the (partial) history. A
transition model is specified for 𝑌𝑖𝑡 ∣ 𝐡𝑖𝑡 and the linear predictor is given by:

𝑔(𝜇𝑖𝑡) = 𝜂𝑖𝑡 = 𝜷′𝐱𝑖𝑡 +

𝑠∑
𝑟=1

𝛼𝑟𝑓
∗
𝑟 (𝐡𝑖𝑡), (1)

where 𝑔(⋅) is a link function, 𝜇𝑖𝑡 = E(𝑌𝑖𝑡 ∣ 𝐡𝑖𝑡) and 𝑓∗𝑟 are functions that define the structure of the transition model in
the linear predictor. The vector 𝜹 = (𝜷, 𝜶) represents the weights of the transition probabilities, in which 𝜷, of dimension
𝑝 × 1, is associated with the covariates, and 𝜶 is associated with the previous responses and has a dimension that depends
on both the order 𝑞 and the specific form of the functions 𝑓∗𝑟 . Because these conditional transition models simply have
additional (known) history dependent covariates in the linear predictor, the estimation process is the same as the one used
for generalized linear models and their extensions, that is, their parameters are estimated via maximum likelihood where
the joint likelihood can be formed from the conditionals 𝑌𝑖𝑡 ∣ 𝐡𝑖𝑡, see Diggle et al. (2002).
For a multinomial response, we consider a discrete time process, that is, the set 𝜏 = {0, 1, … , 𝑇} represents the times

on which a process was observed. Moreover, we have a discrete state space, that is, the set 𝑆 = {1, 2, … , 𝑘} represents the
response categories. The first-order Markov assumption establishes that the probability of the current event, 𝑌(𝑡), given
the process history depends only on the previous state of the process, 𝑌(𝑡 − 1), is

𝑃[𝑌(𝑡) = 𝑏 ∣ 𝑌(0) = 𝑦0, 𝑌(1) = 𝑦1, … , 𝑌(𝑡 − 1) = 𝑎] = 𝑃[𝑌(𝑡) = 𝑏 ∣ 𝐡𝑡)] =

= 𝑃[𝑌(𝑡) = 𝑏 ∣ 𝑌(𝑡 − 1) = 𝑎], (2)

which is called the transition probability from 𝑎 to 𝑏 at time 𝜏, with 𝑎, 𝑏 ∈ 𝑆 and 𝑡 ∈ 𝜏. These probabilities can be combined
into a 𝑘 × 𝑘matrix, called the transition probability matrix. They are of central importance as they describe the probabilis-
tic process for changes in response categories over time and, moreover, these probabilities themselves may or may not be
homogeneous over time.When they are not homogeneous over time, in this text, we say that the process is non-stationary
with time dependent transition probabilities. To simplify the notation for these one-step transition probabilities, we write
𝜋𝑎𝑏(𝑡 − 1, 𝑡) = 𝜋𝑎𝑏(𝑡) for the transition probability at time 𝑡 from state 𝑎 to state 𝑏, and 𝐏(𝑡) for the respective transition
probability matrix:

𝐏(𝑡) =

⎛⎜⎜⎜⎜⎝
𝜋11(𝑡) 𝜋12(𝑡) … 𝜋1𝑘(𝑡)

𝜋21(𝑡) 𝜋22(𝑡) … 𝜋2𝑘(𝑡)

⋮ ⋮ … ⋮

𝜋𝑘1(𝑡) 𝜋𝑘2(𝑡) … 𝜋𝑘𝑘(𝑡)

⎞⎟⎟⎟⎟⎠
.

{𝐏(𝑡) ∶ 𝑡 ∈ 𝜏} represents the set of 𝑇 first-order transition matrices and when these depend upon additional covariates
𝐱 we write 𝐏(𝑡; 𝐱). Sometimes, the process is considered homogeneous over time, so then we have that the 𝑇 transition
matrices are identical and so can write, 𝐏(𝑡) = 𝐏 for all 𝑡 ∈ 𝜏; this represents a stationary process.
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To estimate these matrices, especially when there is a set of covariates 𝐱, we use the generalized logit model (Agresti,
2013), which is given by:

𝜂𝑏𝑡 = log

(
𝜋𝑎𝑏(𝑡; 𝐱)

𝜋𝑎𝑘(𝑡; 𝐱)

)
= 𝜆𝑏𝑡 + 𝜹′

𝑏𝑡
𝐱, (3)

in which 𝜹′
𝑏𝑡
= (𝛽𝑏𝑡1, … , 𝛽𝑏𝑡𝑝, 𝛼𝑏𝑡) is the vector of unknown parameters, associated with category 𝑏 (𝑏 = 1, 2, … , 𝑘 − 1),

with 𝑘 the reference category. In general, 𝑘 is the first or last category, depending on the statistical software used. However,
it is possible to fix it according to the researcher’s interest. Finally, 𝜆𝑏𝑡 is an intercept.
In model (3) the vector 𝜹′

𝑏𝑡
varies with each category of response level as well as depending on the 𝑡th time transition

(𝑡 = 1, 2, … , 𝑇). The parameters, 𝜆𝑏𝑡 and 𝜹′𝑏𝑡 (model 3) are estimated bymaximum likelihood, using an iterative procedure as
an extension of the classical method for logit models. This procedure for fitting generalized logit models is implemented in
several computational packages such as VGAM (Yee, 2010), drm (Jokinen, 2013), mlogit (Croissant, 2013), and nnet (Ripley
& Venables, 2016) available for R software (R Core Team, 2019). The estimated probabilities from the fitted model allow
for the prediction of future events, given the history and the effects of covariates. The predicted transition probabilities
can be written as:

�̂�𝑎𝑏(𝑡; 𝐱) =
exp(�̂�𝑏𝑡 + 𝜹′

𝑏𝑡
𝐱)

1 +
∑𝑘−1

𝑏=1
exp(�̂�𝑏𝑡 + 𝜹′

𝑏𝑡
𝐱)
. (4)

As is known, the maximum likelihood estimators are normally distributed asymptotically, which allows for the con-
struction of confidence intervals (CIs) for the model parameters 𝜹′

𝑏𝑡
, as well as for the predicted transition probabilities

𝜋𝑎𝑏(𝑡). As an illustration, consider the stationary model:

𝜂𝑏 = logit(𝜋𝑎𝑏) = log

(
𝜋𝑎𝑏

𝜋𝑎𝑘

)
= 𝜆𝑏 + 𝜷′

𝑏
𝑥 + 𝜶′

𝑏
𝑦(𝑡−1), (5)

where 𝑥 represents a dummy variable (presence or absence of a treatment effect) and 𝑦(𝑡−1) the previous response in the
linear predictor. Also suppose that 𝑎, 𝑏 ∈ 𝑆 = {1, 2, 3}. For a fixed previous state, 𝑎 ∈ 𝑆, an asymptotic 95% confidence

interval for some 𝛽𝑏 is given by: 𝛽𝑏 ± 1.96

√
𝑉𝑎𝑟(𝛽𝑏) ∀ 𝑏 = 1, 2 and category 3 is the reference. Analogously, an asymp-

totic CI can be constructed for the Markov parameter 𝛼𝑏.
Now, to obtain asymptotic confidence intervals for the predicted transition probabilities, note that from Equation (5),

for 𝑎 fixed, we have two logits:

logit(𝜋𝑎1) = log

(
𝜋𝑎1

𝜋𝑎3

)
= 𝜆1 + 𝛽1𝑥 + 𝛼1𝑦(𝑡−1)

and

logit(𝜋𝑎2) = log

(
𝜋𝑎2

𝜋𝑎3

)
= 𝜆2 + 𝛽2𝑥 + 𝛼2𝑦(𝑡−1).

From expression (4) it follows that:

�̂�𝑎1 =
exp(�̂�1 + 𝛽1 + �̂�1)

exp(�̂�1 + 𝛽1 + �̂�1) + exp(�̂�2 + 𝛽2 + �̂�2)
(6)

and

�̂�𝑎2 =
exp(�̂�2 + 𝛽2 + �̂�2)

exp(�̂�1 + 𝛽1 + �̂�1) + exp(�̂�2 + 𝛽2 + �̂�2)
. (7)
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The variance of logit estimator is given by:

𝑉𝑎𝑟[logit(�̂�𝑎𝑏)] = 𝑉𝑎𝑟(�̂�𝑏) + 𝑉𝑎𝑟(𝛽𝑏) + 𝑉𝑎𝑟(�̂�𝑏) + 2𝐶𝑜𝑣(�̂�𝑏, 𝛽𝑏) + 2𝐶𝑜𝑣(�̂�𝑏, �̂�𝑏) + 2𝐶𝑜𝑣(𝛽𝑏, �̂�𝑏),

where the variances and covariances can be obtained from the estimated Fisher information matrix. Thus, a 95% asymp-
totic confidence interval for some logit(𝜋𝑎𝑏), 𝑏 = 1, 2, can be written as follows:

logit(�̂�𝑎𝑏) ± 1.96

√
𝑉𝑎𝑟[logit(�̂�𝑎𝑏)]. (8)

Finally, we apply the inverse logit transformation to the CI in expression (8) to obtain the CI for the predicted transitions
probabilities 𝜋𝑎1 and 𝜋𝑎2.

2.2 Tests to assess stationarity

A relevant modeling issue is the assumption of stationarity, because in that case we have a much simpler process with
fewer parameters. Anderson and Goodman (1957) proposed a classical test to assess stationarity, based on the estimated
transition probabilities under stationarity and non-stationarity. The null hypothesis is H0 ∶ 𝐏(𝑡; 𝐱) = 𝐏(𝐱) for all 𝑡 ∈ 𝜏

and it was originally proposed for nominal data in homogeneous samples where all of the covariates are categorical. Here,
we use likelihood-ratio tests to assess stationarity, as recently proposed by De Lara, Hinde, and Taconeli (2017). The null
hypothesis is

H0 ∶ 𝜹1 = 𝜹2 = 𝜹3 = ⋯ = 𝜹𝑇, (9)

and the alternative hypothesis is that at least one pair of parameter vectors are different. In this version it is not necessary
to estimate the transition probabilities, since the model coefficients are directly associated with them. Indeed, for the
non-stationary process, the 𝑇 vectors 𝜹𝑡 = (𝜷𝑡, 𝜶𝑡) of interest are necessary to define the 𝐏(𝑡; 𝐱)matrices as shown byWare
et al. (1988), whereas in the stationary process only one vector 𝜹 = (𝜷, 𝜶) defines the model and associated transition
matrix 𝐏(𝐱), and estimation involves the sum of individual contributions to the likelihood function (Azzalini, 1983; Diggle
et al., 2002). The test statistic is written as

Λ = −2

[
log(L(𝜹0, 𝐱)) −

𝑇∑
𝑡=1

log(L𝑡(�̂�𝑡, 𝐱))

]
, (10)

where L(𝜹0, 𝐱) = sup[L(𝜹, 𝐱) ∣ 𝜹 ∈ 𝚯0], with 𝚯0 the parameter subspace associated with the null hypothesis H0, and the
contribution under the unrestricted parameter space, 𝚯, is given by the sum of the log-likelihoods over the 𝑇 individual
transitions. Asymptotically, under H0, Λ ∼ 𝜒2

𝑣 , with degrees of freedom 𝑣 = dim(𝚯) − dim(𝚯0).
Alternatively, we can use global and local tests, as proposed by Rodrigues de Lara, Hinde, and Taconeli (2018). In this

case we include an additional covariate for the transition time occasion in the linear predictor and assess the significance
of its interaction with other covariates. To illustrate this, let the transition model for nominal data under stationarity be

𝜂
(𝑠)
𝑏𝑡

= 𝜆𝑏 + 𝜷′
𝑏
(treatment) + 𝜶′

𝑏
𝑦(𝑡−1), (11)

which includes the treatment effect and the previous response in the linear predictor. Now, we add the time transition
factor in the linear predictor and all interactions with this extra factor giving

𝜂
(𝑛𝑠)
𝑏𝑡

= 𝜆𝑏 + 𝜷′
𝑏
(treatment) + 𝜶′

𝑏
𝑦(𝑡−1) + (12)

+ 𝝑′
𝑏
(time) + 𝜶∗′

𝑏
(time × 𝑦(𝑡−1)) + 𝜷∗′

𝑏
(time × treatment).

Model (12) includes additional parameters for the time transition dependence, namely (𝝑′
𝑏
, 𝜶∗′

𝑏
, 𝜷∗′

𝑏
). Now the global null

hypothesis can be written as

H0 ∶ (𝜹𝑏, 𝝑
′
𝑏
, 𝜶∗′

𝑏
, 𝜷∗′

𝑏
) = (𝜹𝑏0 , 𝟎, 𝟎, 𝟎), (13)
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TABLE 1 Grouped data: Structure of a 𝑁 × 𝑇 × 𝑘 contingency table that can be analyzed using transition models for grouped data

Units Time Covariates Categories (𝑺) Unit
𝒊 𝒕 𝐱𝒊𝒕 1 2 … k totals
1 0 𝐱10 𝑤101 𝑤102 … 𝑤10𝑘 𝑚10

1 1 𝐱11 𝑤111 𝑤112 … 𝑤11𝑘 𝑚11

1 2 𝐱12 𝑤121 𝑤122 … 𝑤12𝑘 𝑚12

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

1 𝑇 𝐱1𝑇 𝑤1𝑇1 𝑤1𝑇2 … 𝑤1𝑇𝑘 𝑚1𝑇

2 0 𝐱20 𝑤201 𝑤202 … 𝑤20𝑘 𝑚20

2 1 𝐱21 𝑤211 𝑤212 … 𝑤21𝑘 𝑚21

2 2 𝐱22 𝑤221 𝑤222 … 𝑤22𝑘 𝑚22

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

2 𝑇 𝐱2𝑇 𝑤2𝑇1 𝑤2𝑇2 … 𝑤2𝑇𝑘 𝑚2𝑇

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑁 0 𝐱𝑁0 𝑤𝑁01 𝑤𝑁02 … 𝑤𝑁0𝑘 𝑚𝑁0

𝑁 1 𝐱𝑁1 𝑤𝑁11 𝑤𝑁12 … 𝑤𝑁1𝑘 𝑚𝑁1

𝑁 2 𝐱𝑁2 𝑤𝑁21 𝑤𝑁22 … 𝑤𝑁2𝑘 𝑚𝑁2

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑁 𝑇 𝐱𝑁𝑇 𝑤𝑁𝑇1 𝑤𝑁𝑇2 … 𝑤𝑁𝑇𝑘 𝑚𝑁𝑇

where 𝟎 is a null vector and 𝜹𝑏0 denotes the vector of coefficients associated with covariates and previous responses under
the null hypothesis. The hypotheses (13) and (9) are equivalent and the likelihood-ratio test for this hypothesis (13) is a
global test, whose statistic value is the same as for Equation (10).
If the test is significant, several structures can be formulated, corresponding to submodels of Equation (12), and using

likelihood-ratio tests for nested models (local tests) we can select the best or most parsimonious model. If the selected
model includes the time factor, then there is evidence that the process is non-stationary, which means that the transition
probabilities are not homogeneous, due to the linear predictor changing over time. We give more details of these tests in
our applications. Previous simulation studies developed by Rodrigues de Lara et al. (2018) have shown that the likelihood-
ratio test using the transition model coefficients maintains the level of significance and has power compatible with the
classical test. In addition, the general framework is flexible and can be applied with quantitative and categorical variables
in the linear predictor.

2.3 Extension for grouped data

Consider now the situation where at time point 𝑡 each observational or experimental unit 𝑖 corresponds to a number of
individuals, 𝑚𝑖𝑡. For a closed system with complete observation of individuals at each time point 𝑚𝑖𝑡 is constant for all
𝑡 ∈ 𝜏, however, in many applications this is not the case and so we do not make this restrictive assumption. Writing𝑤𝑖𝑡𝑗 to
represent the associated count for the 𝑖th unit at the 𝑡th time for the 𝑗th response category associatedwith a 𝑝-dimensional
vector of covariates (see Table 1), the total individual count at each time point is

𝑚𝑖𝑡 =

𝑘∑
𝑗=1

𝑤𝑖𝑡𝑗.

The𝑤𝑖𝑡𝑗 individuals of each category at time 𝑡 ∈ 𝜏 can freelymove to other categories at future times. Since we do not have
individual information, we do not knowwhich individuals changed from one state to another, only the numbers that were
observed in each category at each time point. Now, to define the transitionmodel, we consider the vector 𝐲𝑖𝑡 = (1, 2, … , 𝑘)′

as a multivariate response for each unit 𝑖 at time 𝑡, with an associated weights vector𝐰𝑖𝑡 = (𝑤𝑖𝑡1, 𝑤𝑖𝑡2, … , 𝑤𝑖𝑡𝑘)
′ of counts.

To incorporate first-order time dependence, we define 𝐡𝑖𝑡 = (𝑤𝑖(𝑡−1)1, 𝑤𝑖(𝑡−1)2, … ,𝑤𝑖(𝑡−1)𝑘) as a vector of explanatory vari-
ables represented by the observed frequencies of each of the categories at the previous time. Then, the generalized transi-
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tion model for grouped longitudinal categorical data is given by

𝜂𝑏𝑡 = log

(
𝜋𝐡𝑏(𝑡; 𝐱)

𝜋𝐡𝑘(𝑡; 𝐱)

)
= 𝜆𝑏𝑡 + 𝜷′

𝑏𝑡
𝐱 + 𝜶′

𝑏𝑡
𝐡. (14)

Note that (14) is a little different from the usual generalized logit transition model (3), because previous information
here is not the category of response at the previous time but rather the observed frequencies for each of them. Therefore,
these counts are incorporated as additional quantitative explanatory variables in the model. Consequently, the transition
probability to category 𝑏 (𝑏 = 1, 2, … , 𝑘 − 1) at time 𝑡 is given by

𝜋𝐡𝑏(𝑡; 𝐱) =
exp(𝜆𝑏𝑡 + 𝜷′

𝑏𝑡
𝐱 + 𝜶′

𝑏𝑡
𝐡)

1 +
∑𝑘−1

𝑏=1
exp(𝜆𝑏𝑡 + 𝜷′

𝑏𝑡
𝐱 + 𝜶′

𝑏𝑡
𝐡)

, (15)

that is, 𝜋𝐡𝑏(𝑡, 𝐱) does not describe the probability of transition from a particular state to 𝑏 ∈ 𝑆, as in the usual transition
model (3) for individual data. In contrast, we now have the total history of all 𝑘 categories at the previous time. We can
interpret (15) in the following way: 𝜋𝐡𝑏(𝑡; 𝐱) is the probability of transition to category 𝑏 at time 𝑡 given that at time 𝑡 − 1

unit 𝑖 had𝑚𝑖(𝑡−1) individuals arranged as frequencies (𝑤𝑖(𝑡−1)1, 𝑤𝑖(𝑡−1)2, … ,𝑤𝑖(𝑡−1)𝑘) across the 𝑘 categories. Therefore, as
in the traditional case, this probability expresses the propensity for a category change given the history of the experimental
or observational unit 𝑖. We can write the likelihood function at the 𝑡th transition as

𝐿𝑡(𝝀, 𝜷, 𝜶) =

𝑁∏
𝑖=1

[
𝑘∏

𝑏=1

[𝜋𝐡𝑏(𝑡; 𝐱)]
𝑤𝑖𝑡𝑏

]

=

𝑁∏
𝑖=1

⎡⎢⎢⎣
𝑘∏

𝑏=1

⎡⎢⎢⎣
exp(𝜆𝑏𝑡 + 𝜷′

𝑏𝑡
𝐱 + 𝜶′

𝑏𝑡
𝐡)

1 +
∑𝑘−1

𝑏=1
exp(𝜆𝑏𝑡 + 𝜷′

𝑏𝑡
𝐱 + 𝜶′

𝑏𝑡
𝐡)

⎤⎥⎥⎦
𝑤𝑖𝑡𝑏⎤⎥⎥⎦. (16)

Note that for the situation where the units 𝑖 are single individuals, the weights comprise a vector of zeros with a 1
occurring only for the category to which 𝑦𝑖 belongs to at time 𝑡, and hence model (16) provides a generalization of this
framework for grouped data, whose log-likelihood is given by:

𝑙𝑡 = log

{
𝑁∏
𝑖=1

[
𝑘∏

𝑏=1

[𝜋𝐡𝑏(𝑡; 𝐱)]
𝑤𝑖𝑡𝑏

]}

=

𝑁∑
𝑖=1

[
𝑘−1∑
𝑏=1

𝑤𝑖𝑡𝑏(𝜆𝑏𝑡 + 𝜷′
𝑏𝑡
𝐱 + 𝜶′

𝑏𝑡
𝐡) − log

(
1 +

𝑘−1∑
𝑏=1

exp(𝜆𝑏𝑡 + 𝜷′
𝑏𝑡
𝐱 + 𝜶′

𝑏𝑡
𝐡

)]
. (17)

As is common with discrete models, the maximum likelihood estimators of Equation (16) or (17) do not have a closed
analytical form, that is, they are not directly maximized. Therefore, iterative numerical methods are needed. Here,
to maximize the function (16 or 17) we have used an extension of the standard procedure of generalized logit mod-
els, that is, iteratively weighted least squares (Newton–Raphson). As already explained in Section 2, it is also possible
to adapt standard packages, available for R software (R Core Team, 2019), to fit transition models with individual or
grouped data.
Here one must work with a stacked structure for the data, creating a vector for the response variable and their respec-

tive weights, as well as incorporating the category frequencies at the previous time as additional covariates. The compu-
tational implementation was made using the nnet package (Ripley & Venables, 2016) available for the R system (R Core
Team, 2019). An issue with this is the fact that the design matrix is ill-conditioned when the total number of individu-
als in all groups remain unchanged for all observation units. In fact, according to Mandel (1982), the ill-conditioning is
not a statistical problem of the adopted model but is induced by linear combinations of the regression matrix columns.
The author shows that in this case, when changing the regressor matrix for its singular value decomposition, the ill-
conditioning is reflected in the singular values. This suggested examining the condition number of the model matrix,
which is the ratio between the largest and smallest singular values. As alternatives to this problem, Johnson and Wich-



1844 LARA et al.

ern (2007) suggests using the technique of principal components. Another possible solution is to adopt the composi-
tional data transformation technique proposed by Egozcue, Pawlowsky-Glahn,Mateu-Figueras, and Barceló-Vidal (2003).
Although they are distinct procedures, both aim to obtain orthogonal regressive variables. This problem however does
not affect predictions or statistical tests related to the transition model for grouped data. We explain this in more detail in
Section 5.

3 SIMULATION STUDIES

A simulation study was carried out to assess the performance of the proposed model structure for grouped longitudinal
categorical data. We considered a response variable with four nominal response categories, called “A,” “B,” “C,” and “D,”
a treatment factor with two levels and 5, 10, and 20 replicates (depending on the simulation scenario), and three time
occasions. The data were simulated under two first-order Markov chain processes, using the following two functional
structures:

1. Stationary process:

𝜂𝑏𝑡 = log

(
𝜋𝐡𝑏

𝜋𝐡𝑘

)
= 𝜆𝑏 + 𝜷′

𝑏
(treatment) + 𝜶′

𝑏
𝐰, 𝑏 = 1,… , 𝑘 − 1, (18)

which corresponds to an additive structure in the linear predictor for the treatment effect and the Markov covariate,
𝐰 = (𝑤(𝑡−1)1, 𝑤(𝑡−1)2, 𝑤(𝑡−1)3, 𝑤(𝑡−1)4), of the frequencies of categories “A,” “B,” “C,” and “D,” respectively, at the pre-
vious time point;

2. Non-stationary process:

𝜂𝑏𝑡 = log

(
𝜋𝐡𝑏(𝑡)

𝜋𝐡𝑘(𝑡)

)
= 𝜆𝑏 + 𝜷′

𝑏
(treatment) + 𝜶′

𝑏
𝐰 +

+𝝑′
𝑏
(time) + 𝜷∗′

𝑏
(time × treatment) + 𝜶∗′

𝑏
(time ×𝐰), (19)

which corresponds to the inclusion of the interaction between the additive structure of the stationary model and the
transition time, a factor included to account for time dependence.

The true parameter values used are presented in the Appendix. For each scenario we performed 10,000 simulations
taking the group sizes𝑚𝑖𝑡 to be fixed over time and equal for each experimental unit, that is,𝑚𝑖𝑡 = 𝑚 with three different
group size settings (𝑚 = 15, 30, and 60). The discrepancy between the parameter values and the estimates in each scenario
was evaluated using the bias and mean squared error (MSE). The computational implementation was made in the R
software, using the markovchain package (Spedicato, 2017).
We carried out an additional simulation study to compare the efficiency of the estimates associated with the treatments

(𝛽𝑏 and 𝛽∗𝑏 ), when data are available at the individual as compared to the grouped level. The set up was the same as the
one described above, but we conducted it for a situation where the individual data is available following the methodology
in Rodrigues de Lara et al. (2016). In addition to bias and MSE, we also computed the coverage rate of the 95% asymptotic
confidence intervals and their average width. All codes used to produce the simulation studies are made available as
Supporting Information.
The results obtained for the stationary and non-stationary scenarios are presented in the Appendix. For the stationary

scenario, all parameters have lowMSE values that decrease when the groups size𝑚 and the number of replicates increase,
which is what is to be expected as we havemore data, and indicates a good overall performance.When looking at the non-
stationary scenario, all parameters have low bias and MSEs, except 𝛽𝑏 and 𝛽∗𝑏 , both related to the treatment effect. This
may be due to the fact that this model has many more parameters than the stationary one. However, note that again the
bias and MSE decreases with group size𝑚 and number of replicates.
When comparing the coverage rate of the CIs between individual and grouped level data, all coverage rates are very close

to the nominal value of 95%. However the CI width for the individual level data is consistently smaller than the CI width
for the grouped level data, indicating the loss of efficiency when we no longer have the detailed individual information.
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F IGURE 1 Psyllid movement data: observed frequency of psyllids that are observed in each of the four plants (or none) over time. The
lines connect the means over time

This is typically an intrinsic aspect of the design where, for a variety of reasons, it may be impossible to collect data at the
individual level. However, the simulation studies show that the modeling framework proposed in this paper is capable of
recovering well the true parameter values, and the CIs behave as expected.

4 APPLICATIONS

4.1 Psyllid movement data

The Asian citrus psyllid, Diaphorina citri, is a pest of citrus plantations and a vector of bacteria that cause Huanglong-
bing, or the citrus greening disease. To understand the movement patterns of female adults of D. citri for feeding and egg
oviposition in Orange Jessamine plants (Murraya paniculata) (considered an alternative host plant for the pest), an exper-
iment was set up in the Department of Entomology and Acarology of the University of São Paulo (Piracicaba, Brazil),
using a completely randomized design with three treatments and ten replicates. Each experimental unit consisted of a
nylon cage (200×60×40 cm) with a row of four Orange Jessamine plants placed at equal intervals of 50 cm, namely “A,”
“B,” “C,” and “D,” with “A” the closest plant to the entrance and “D” the furthest away. In each experimental unit, 90
female adults were released on plant “A,” and after 24, 48, and 72 hr the numbers of insects on each plant and flying were
observed. To investigate whether the presence of D. citri nymphs (previous infestation) affected adult female movement,
three treatments were used: “high density,” inwhich plant “A” received 35D. citri nymphs prior to the release of the adults,
“low density,” in which plant “A” had 15 nymphs, and control, in which there were no nymphs on any of the plants. The
observed frequencies by category and times are shown in Figure 1. The frequencies observed of the category “None” are
much higher than the others, and seem to increase over time for the “high density” and “low density” treatments, while
remaining constant for the control treatment.
We started by fitting the transition model under stationarity,

𝜂𝑏𝑡 = 𝜆𝑏 + 𝜷′
𝑏
(density) + 𝜶′

𝑏
𝐰

and non-stationarity,

𝜂𝑏𝑡 = 𝜆𝑏 + 𝜷′
𝑏
(density) + 𝜶′

𝑏
𝐰 + 𝝑′

𝑏
(time) + 𝜶∗′

𝑏
(time ×𝐰) + 𝜷∗′

𝑏
(time × density),

and used the likelihood-ratio tests to assess stationarity. The maximized log-likelihoods for the fitted models were
−16440.72 (under stationarity) and −16413.05 (under non-stationarity), indicating that the process is non-stationary
(Λ = 55.34 on 32 df,𝑝 = 0.0064), that is, the transition probabilities are not homogeneous over time.We then fittedmodels
reflecting different non-stationary structures, following the work of Rodrigues de Lara et al. (2018), namely

Model P1: 𝜂𝑏𝑡 = 𝜆𝑏 + 𝜷′
𝑏
(density) + 𝜶′

𝑏
𝐰 + 𝝑′

𝑏
(time)

Model P2: 𝜂𝑏𝑡 = 𝜆𝑏 + 𝜷′
𝑏
(density) + 𝜶′

𝑏
𝐰 + 𝝑′

𝑏
(time) + 𝜶∗′

𝑏
(time ×𝐰)

Model P3: 𝜂𝑏𝑡 = 𝜆𝑏 + 𝜷′
𝑏
(density) + 𝜶′

𝑏
𝐰 + 𝝑′

𝑏
(time) + 𝜷∗′

𝑏
(time × density).



1846 LARA et al.

TABLE 2 Psyllid movement data: parameter estimates (standard errors) for the fitted non-stationary model P3

Category
Parameter B C D None
𝜆𝑏 (Intercept) −0.0011 (0.0001) 0.0003 (0.0001) 0.0003 (0.0001) −0.0015 (0.0001)

𝛼𝑏 (A) −0.0256 (0.0036) −0.0402 (0.0047) −0.0012 (0.0035) −0.0531 (0.0040)

𝛼𝑏 (B) −0.0487 (0.0062) −0.0027 (0.0074) −0.0061 (0.0060) −0.0640 (0.0066)

𝛼𝑏 (C) −0.0628 (0.0107) 0.0146 (0.0126) −0.0347 (0.0106) −0.0482 (0.0114)

𝛼𝑏 (D) 0.0272 (0.0072) 0.0578 (0.0083) 0.0330 (0.0071) 0.0258 (0.0075)

𝛽𝑏 (High) 1.2022 (0.1432) 1.0425 (0.1459) −1.0941 (0.1323) 3.8417 (0.1494)

𝛽𝑏 (Low) 2.3252 (0.1143) −0.4440 (0.1461) −1.6145 (0.1105) 1.0109 (0.1465)

𝜗𝑏 (Time) 0.0719 (0.1322) 0.1090 (0.1317) 0.2049 (0.0978) 0.2732 (0.1571)

𝛽∗
𝑏
(Time×High) −0.6214 (0.2041) −0.5511 (0.2049) −0.4637 (0.1851) −0.6222 (0.2049)

𝛽∗
𝑏
(Time×Low) −0.1527 (0.1656) −0.0664 (0.2045) −0.5545 (0.1627) −0.5508 (0.2061)

low
A

low
B

low
C

low
D

low
none

high
A

high
B

high
C

high
D

high
none

control
A

control
B

control
C

control
D

control
none

0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Number of insects

Tr
an

si
tio

n 
pr

ob
ab

ili
ty

category

A
B
C
D

none

transition
24h − 48h
48h − 72h

F IGURE 2 Psyllid movement data: predicted transition probabilities for each state and treatment level, obtained from the fitted non-
stationary generalized transition model P3. The 𝑥-axis represents the number of insects observed at the previous time on the plant (or none) in
the facet label, with the remaining insects being evenly distributed across the other categories, totalling 90

Likelihood-ratio tests indicated that model P3 represented an improvement in the fit over model P1 (Λ = 33.76 on 8 df,
𝑝 < 0.0001), but model P2 did not (Λ = 18.20 on 16 df, 𝑝 = 0.3125). When testing model P3 versus the full non-stationary
model, the test indicated no improvement (Λ = 20.25 on 16 df, 𝑝 = 0.2091), and hence model P3 was selected as the final
model. The parameter estimates and respective standard errors for model P3 are shown in Table 2.
Although the number of insects observed in each category at the previous time (Markov covariate) must be considered

to study the transition behavior, there is an effect of the interaction between time and nymph density (treatment). This
influences the transition probabilities, making them non-homogeneous over time. We obtained the predicted transition
probabilities based on the non-stationary model P3. We varied the number of insects that belong to each of the five cate-
gories to create a grid, while equally dividing the remaining insects between the other four categories (e.g., for 70 insects
in category “A,” the remaining categories will have 5 insects each, totalling 90). We then created a plot of the predictions
to aid in the understanding of how the different treatments are influencing the transition probabilities, see Figure 2. We



LARA et al. 1847

eating exploring resting

8:30 10:30 12:30 8:30 10:30 12:30 8:30 10:30 12:30

0

5

10

Time of the day

Fr
eq

ue
nc

y
enrichment

with

without

F IGURE 3 Pig behavior data: Observed frequencies of hogs displaying one of three behaviors: “resting,” “eating,” or “exploring,” when
submitted to two rearing conditions: with and without environmental enrichment. The lines connect the means over time

TABLE 3 Pig behavior data: Parameter estimates (standard errors) for the fitted stationary model

Category
Parameter Exploring Resting
𝜆𝑏 (Intercept) 1.3742 (1.7205) −2.0394 (1.6589)

𝛼𝑏 (Eating) −0.0880 (0.2268) −0.0086 (0.2139)

𝛼𝑏 (Resting) −0.1847 (0.1128) 0.0637 (0.1062)

𝛼𝑏 (Exploring) −0.0919 (0.1065) 0.0167 (0.1038)

𝛽𝑏 (Without enrichment) −0.1068 (0.2595) 2.1468 (0.2445)

observe that when there is a high density of nymphs on the first plant (“A”), the transition probability to the “none” cate-
gory is larger when compared to the low density and control. When looking at the low density, the transition probability
to plant “B” is larger compared to the control. Also, for the control it appears that the more the insect advances inside the
cage, it is more likely to remain on the same plant, that is, “C” or “D.”

4.2 Pig behavior data

Castro (2016) studied the effects of environmental enrichment on the behavioral activity in hogs (male pigs used for breed-
ing), at a commercial farm in Brazil in 2014. It involved 256 animals that were exposed to one of the two rearing conditions:
with and without environmental enrichment. This enrichment consisted of the inclusion of simple objects that encour-
aged the animals to play and were intended to reduce stress. The experiment was set up in a completely randomized
design with eight replicates. Each experimental unit initially consisted of a housing pen with 16 pigs, and observations
were taken three times a day for 1 month, namely at 8.30 a.m., 10.30 a.m., and 12.30 p.m. On each occasion, the researchers
registered how many animals were displaying one of three behaviors: “resting,” “eating,” or “exploring.” Here we work
with data obtained on the 21st day since the start of the experiment, that is, after 3 weeks. Because there was mortality
throughout the experiment, some of the experimental units had fewer than 16 pigs. An exploratory plot representing the
observed proportions of behavioral activity by category over time per each treatment is shown in Figure 3. It appears that
the pigs reared with environmental enrichment are more active than their peers who were reared without it (they were
found resting with a lower frequency).
We followed the same procedure as in the previous application: we fitted the transition models under stationarity and

non-stationarity, using the likelihood-ratio test to assess stationarity. The log-likelihoods associatedwith the stationary and
non-stationary models were −452.13 and −447.16, respectively. The likelihood-ratio test statistic was 9.93 on 10 degrees
of freedom, and hence we failed to reject the null hypothesis that the process was stationary (𝑝 = 0.4463). Under the
stationary structure, the Markov covariates of previous state frequencies were significant (Λ = 14.35 on 6 df, 𝑝 = 0.0260),
as also was the environmental enrichment effect (Λ = 108.60 on 2 df, 𝑝 < 0.0001). The parameter estimates and standard
errors of the fitted transition model are presented in Table 3.
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F IGURE 4 Pig behavior data: Predicted transition probabilities for each state and environmental enrichment level, obtained from the
fitted stationary generalized transitionmodel. The 𝑥-axis represents the number of animals at the previous time presenting the behavior for the
category given in the facet label, with the remaining animals evenly distributed across the other categories, totalling 16

In the estimation process, the “eating” and “with enrichment” categories were taken as reference levels. The transi-
tion probabilities in this example are homogeneous over time and vary only according to the levels of treatment and the
numbers of animals in each behavior state at the previous time. Looking at the predicted transition probabilities for each
state and enrichment level, it is clear that in the absence of environmental enrichment pig behavior is affected with hogs
tending to rest more, which translates into less activity (see Figure 4).

5 DISCUSSION

Our modeling framework presents an approach to analyze grouped longitudinal categorical data using transition models.
In a transition model, it is important to incorporate dependence into the stochastic process and, when we have grouped
data, this can be achieved by including the vector of previous frequencies as predictors. As in the individual case, in general,
the frequencies of categories at the previous timemay be interpreted asweights in the transition probabilities, but now they
depend on a set of quantitative variables. Consequently, it becomes difficult to show the transition probability matrices,
because they now vary with different compositions of the weights vector. However, we can represent them elegantly using
graphics, in which it is possible to describe the transition probabilities for each category and interpret their effect for
different treatments, etc.
Although the assumption of stationarity (or homogeneity of transition probabilities) may facilitate estimation by reduc-

ing the number of parameters, the predictions provided by this model can be misleading if this assumption is false.
Therefore, it is very important to verify whether the process is stationary or not, as well to identify the sources of
non-stationarity. Local tests proposed by Rodrigues de Lara et al. (2018) can be helpful at this stage, since a full non-
stationary model may be overparameterized, and hence reduced alternatives may provide better solutions and simpler
interpretations.
A potential issue in the specification of this model is the fact that the design matrix is ill-conditioned when the sum of

the weights across the rows are 𝑚𝑖𝑡, which poses a multicollinearity problem. This can affect the standard errors of the
regression coefficients. However, predictions and the likelihood-ratio test described above are not affected, and these are
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in fact often the two important objectives when using transition models. If there is an interest in computing confidence
intervals for the regression coefficients, then a simple yet effective solution to this problem is to obtain the principal
components of the partition of the design matrix referring to the 𝑤𝑖𝑡𝑏 variables, and use them as the Markov covariates
instead of the raw counts. If the𝑚𝑖𝑡 are constant, then the 𝑘th principal component will be a vector of zeros and therefore
irrelevant. This transformation does not change the log-likelihood or themodel predictions, but solves the ill-conditioning
problem for parameter estimates by inducing orthogonality.
Another alternative is to employ the isometric log-ratio transform (ILR) for compositional data (Egozcue et al., 2003),

which reduces the weights matrix to an orthogonal space with 𝑘 − 1 columns, and again solves the ill-conditioning prob-
lem. The resulting log-likelihoods are not identical to the original model, but are approximately so. One issue with this
method, however, is that whenever there is a zero present for any of the categories, the ILR transform will be equivalent
to the centroid of the simplex space, and this influences prediction.
A general problem that can affect estimation is the sample and group sizes. As is well known, the generalized logit

model has one parameter for each response category and, therefore, with small samples, or excess zeros, may result in
estimation problems. Despite this, the estimation is possible and for our motivational studies and simulation processes
we did not have any problems of this sort. Future studies will consider this type of transition model extension for ordinal
categorical responses, and the impact of limiting factors such as the presence of many non-structural zeros which leads
to sparse tables.
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APPENDIX
A.1 Results from the simulation studies
Here we present all results from the simulation studies. The true values used in the simulations are presented in Table A.1,
and Tables A.2–A.7 display the bias and mean squared errors (MSE) for all parameters resulting from the simulation
studies for stationary and non-stationary models, in which four categories of response were considered (A, B, C, D, with
A as the reference category) and a treatment effect with two levels (1 and 2). The size of the groups (𝑚) varied between 15,
30, and 60. Finally, Tables A.8–A.10 present the confidence interval width and coverage rate for each parameter associated
with the treatment effect, for the stationary and non-stationary scenarios. These tables compare the performance of the
models fitted to the individual level data versus the models fitted to the grouped level data.
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TABLE A . 1 True parameter values used for the simulation study for the stationary and non-stationary models, in which four categories
of response were considered (A, B, C, D with level A taken as the reference category) and a treatment effect with two levels (1 and 2)

Stationary model
Parameter B C D
𝜆𝑏 (Intercept) 0.0003 0.0005 0.001
𝛼𝑏 (A) 0.05 0.08 0.09
𝛼𝑏 (B) −0.01 −0.01 −0.02
𝛼𝑏 (C) −0.02 −0.05 0.01
𝛼𝑏 (D) −0.006 0.004 −0.03
𝛽𝑏 (Treatment level 2) −0.8 −0.7 −1.4

Non-stationary model
Parameter B C D
𝜆𝑏 (Intercept) −0.0002 0.0002 0.0008
𝜗𝑏 (time) −0.0002 −0.0001 −0.0002
𝛼𝑏 (A) 0.05 0.14 0.02
𝛼𝑏 (B) 0.04 −0.04 0.02
𝛼𝑏 (C) −0.07 −0.1 −0.01
𝛼𝑏 (D) −0.02 0.02 0.003
𝛽𝑏 (Treatment level 2) −0.8 −0.8 −1.5
𝛼∗
𝑏
(Time×A) −0.17 −0.134 −0.05

𝛼∗
𝑏
(Time×B) 0.08 0.06 0.06

𝛼∗
𝑏
(Time×C) −0.01 0.06 −0.02

𝛼∗
𝑏
(Time×D) 0.09 0.05 −0.002

𝛽∗
𝑏
(Time×Treatment level 2) 2.8 1.3 2.1

TABLE A . 2 Stationary scenario with five replicates per treatment

𝒎 = 𝟏𝟓

Parameter B (bias) C (bias) D (bias) B (MSE) C (MSE) D (MSE)
𝜆𝑏 (Intercept) −0.000512 −0.000977 −0.002284 0.000023 0.000023 0.000027
𝛼𝑏 (A) −0.005730 −0.006635 −0.006140 0.005540 0.005161 0.006349
𝛼𝑏 (B) 0.011496 0.000893 0.000747 0.008209 0.008061 0.009455
𝛼𝑏 (C) −0.000555 0.010247 −0.001139 0.007976 0.007484 0.008893
𝛼𝑏 (D) −0.003391 −0.002653 0.007268 0.007332 0.007085 0.008130
𝛽𝑏 (Treatment level 2) −0.000555 0.010247 −0.001139 0.007976 0.007484 0.008893

𝒎 = 𝟑𝟎

Parameter B (bias) C (bias) D (bias) B (MSE) C (MSE) D (MSE)
𝜆𝑏 (Intercept) −0.000159 −0.000308 −0.000706 0.000001 0.000001 0.000001
𝛼𝑏 (A) −0.001805 −0.002161 −0.002496 0.001207 0.001139 0.001277
𝛼𝑏 (B) 0.004263 −0.000217 −0.000447 0.002049 0.001882 0.002099
𝛼𝑏 (C) −0.000127 0.003286 0.000055 0.001894 0.001717 0.001902
𝛼𝑏 (D) −0.002109 −0.001152 0.001718 0.001559 0.001388 0.001575
𝛽𝑏 (Treatment level 2) −0.000127 0.003286 0.000055 0.001894 0.001717 0.001902

𝒎 = 𝟔𝟎

Parameter B (bias) C (bias) D (bias) B (MSE) C (MSE) D (MSE)
𝜆𝑏 (Intercept) 0.000072 0.000099 0.000159 0.000000 0.000000 0.000000
𝛼𝑏 (A) 0.000051 −0.000323 −0.000478 0.000310 0.000274 0.000269
𝛼𝑏 (B) 0.001008 −0.000060 0.000293 0.000487 0.000455 0.000444
𝛼𝑏 (C) −0.000266 0.000528 −0.000085 0.000427 0.000392 0.000371
𝛼𝑏 (D) −0.000466 −0.000200 −0.000180 0.000248 0.000220 0.000226
𝛽𝑏 (Treatment level 2) −0.000266 0.000528 −0.000085 0.000427 0.000392 0.000371
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TABLE A . 3 Stationary scenario with 10 replicates per treatment

𝒎 = 𝟏𝟓

Parameter B (bias) C (bias) D (bias) B (MSE) C (MSE) D (MSE)
𝜆𝑏 (Intercept) −0.000615 −0.001019 −0.002341 0.000010 0.000011 0.000015
𝛼𝑏 (A) −0.002732 −0.003323 −0.003779 0.002346 0.002141 0.002661
𝛼𝑏 (B) 0.005498 0.000926 −0.000151 0.003362 0.003195 0.003690
𝛼𝑏 (C) −0.000796 0.005020 −0.000589 0.003293 0.003083 0.003530
𝛼𝑏 (D) −0.001693 −0.001407 0.004398 0.002991 0.002723 0.003252
𝛽𝑏 (Treatment level 2) −0.000796 0.005020 −0.000589 0.003293 0.003083 0.003530

𝒎 = 𝟑𝟎

Parameter B (bias) C (bias) D (bias) B (MSE) C (MSE) D (MSE)
𝜆𝑏 (Intercept) −0.000162 −0.000302 −0.000677 0.000000 0.000000 0.000001
𝛼𝑏 (A) −0.001049 −0.001069 −0.001229 0.000517 0.000472 0.000513
𝛼𝑏 (B) 0.001815 −0.000493 −0.000271 0.000845 0.000785 0.000882
𝛼𝑏 (C) −0.000252 0.002014 −0.000233 0.000761 0.000727 0.000746
𝛼𝑏 (D) −0.000359 −0.000522 0.001425 0.000623 0.000571 0.000639
𝛽𝑏 (Treatment level 2) −0.000252 0.002014 −0.000233 0.000761 0.000727 0.000746

𝒎 = 𝟔𝟎

Parameter B (bias) C (bias) D (bias) B (MSE) C (MSE) D (MSE)
𝜆𝑏 (Intercept) 0.000067 0.000097 0.000160 0.000000 0.000000 0.000000
𝛼𝑏 (A) −0.000101 −0.000403 −0.000358 0.000131 0.000113 0.000117
𝛼𝑏 (B) 0.000368 −0.000025 −0.000025 0.000200 0.000188 0.000189
𝛼𝑏 (C) −0.000201 0.000261 −0.000156 0.000176 0.000156 0.000147
𝛼𝑏 (D) −0.000074 0.000006 0.000147 0.000101 0.000092 0.000092
𝛽𝑏 (Treatment level 2) −0.000201 0.000261 −0.000156 0.000176 0.000156 0.000147

TABLE A . 4 Stationary scenario with 20 replicates per treatment

𝒎 = 𝟏𝟓

Parameter B (bias) C (bias) D (bias) B (MSE) C (MSE) D (MSE)
𝜆𝑏 (Intercept) −0.000590 −0.001063 −0.002302 0.000005 0.000006 0.000010
𝛼𝑏 (A) −0.001230 −0.001275 −0.002300 0.001077 0.000994 0.001191
𝛼𝑏 (B) 0.002317 0.000162 0.000023 0.001519 0.001474 0.001638
𝛼𝑏 (C) 0.000471 0.001873 0.000326 0.001468 0.001423 0.001522
𝛼𝑏 (D) −0.000910 −0.000203 0.002427 0.001362 0.001277 0.001483
𝛽𝑏 (Treatment level 2) 0.000471 0.001873 0.000326 0.001468 0.001423 0.001522

𝒎 = 𝟑𝟎

Parameter B (bias) C (bias) D (bias) B (MSE) C (MSE) D (MSE)
𝜆𝑏 (Intercept) −0.000162 −0.000303 −0.000669 0.000000 0.000000 0.000001
𝛼𝑏 (A) −0.000189 −0.000441 −0.000547 0.000247 0.000216 0.000249
𝛼𝑏 (B) 0.001162 −0.000002 0.000094 0.000385 0.000355 0.000392
𝛼𝑏 (C) −0.000275 0.000529 −0.000203 0.000358 0.000326 0.000349
𝛼𝑏 (D) −0.000565 −0.000176 0.000596 0.000292 0.000265 0.000297
𝛽𝑏 (Treatment level 2) −0.000275 0.000529 −0.000203 0.000358 0.000326 0.000349

𝒎 = 𝟔𝟎

Parameter B (bias) C (bias) D (bias) B (MSE) C (MSE) D (MSE)
𝜆𝑏 (Intercept) 0.000068 0.000100 0.000166 0.000000 0.000000 0.000000
𝛼𝑏 (A) 0.000009 −0.000163 −0.000086 0.000060 0.000052 0.000054
𝛼𝑏 (B) 0.000249 0.000073 0.000025 0.000096 0.000086 0.000085
𝛼𝑏 (C) −0.000040 0.000202 −0.000033 0.000080 0.000073 0.000067
𝛼𝑏 (D) −0.000109 −0.000106 0.000029 0.000045 0.000041 0.000042
𝛽𝑏 (Treatment level 2) −0.000040 0.000202 −0.000033 0.000080 0.000073 0.000067
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TABLE A . 5 Non-stationary scenario with five replicates per treatment

𝒎 = 𝟏𝟓

Parameter B (bias) C (bias) D (bias) B (MSE) C (MSE) D (MSE)
𝜆𝑏 (Intercept) −0.000079 0.001846 −0.001307 0.000068 0.000075 0.000074
𝜗𝑏 (time) 0.000169 −0.002944 0.000211 0.000163 0.000179 0.000172
𝛼𝑏 (A) −0.004643 −0.013579 0.008584 0.031552 0.033251 0.045743
𝛼𝑏 (B) −0.010219 0.002751 −0.004954 0.030798 0.033736 0.044403
𝛼𝑏 (C) 0.007937 0.009046 0.003854 0.030172 0.033125 0.049084
𝛼𝑏 (D) −0.000798 0.039226 −0.000340 0.030498 0.033916 0.037783
𝛽𝑏 (Treatment level 2) 0.032260 −0.006983 0.077624 0.430344 0.448966 0.561741
𝛼∗
𝑏
(A) 0.017207 0.011987 −0.001454 0.070431 0.077631 0.088585

𝛼∗
𝑏
(B) −0.009535 −0.008155 −0.000224 0.083593 0.095158 0.105165

𝛼∗
𝑏
(C) −0.005261 −0.010407 −0.003004 0.072328 0.082262 0.100964

𝛼∗
𝑏
(D) −0.005868 −0.041276 0.000955 0.081002 0.092059 0.091754

𝛽∗
𝑏
(Time×Treatment level 2) −0.137483 −0.053540 −0.155052 2.093177 2.355302 2.474267

𝒎 = 𝟑𝟎

Parameter B (bias) C (bias) D (bias) B (MSE) C (MSE) D (MSE)
𝜆𝑏 (Intercept) −0.000164 0.000977 −0.000339 0.000002 0.000003 0.000002
𝜗𝑏 (Time) 0.000134 −0.001364 0.000189 0.000005 0.000007 0.000005
𝛼𝑏 (A) −0.005988 −0.006965 0.004626 0.007229 0.008209 0.008056
𝛼𝑏 (B) −0.006847 −0.000431 −0.003673 0.006837 0.007820 0.007741
𝛼𝑏 (C) 0.005214 0.004038 0.003331 0.007210 0.007966 0.007868
𝛼𝑏 (D) −0.001036 0.038238 0.000836 0.007068 0.009230 0.007822
𝛽𝑏 (Treatment level 2) 0.009415 −0.027531 0.007415 0.187504 0.217812 0.209387
𝛼∗
𝑏
(A) 0.015755 0.007726 0.002758 0.013785 0.014434 0.014390

𝛼∗
𝑏
(B) −0.001922 0.000792 0.005144 0.015850 0.017712 0.017370

𝛼∗
𝑏
(C) −0.006204 −0.010720 −0.003054 0.014493 0.015056 0.014938

𝛼∗
𝑏
(D) −0.007047 −0.040827 −0.003109 0.015057 0.017633 0.016083

𝛽∗
𝑏
(Time×Treatment level 2) −0.041821 −0.009301 −0.058030 1.226131 1.229573 1.221885

𝒎 = 𝟔𝟎

Parameter B (bias) C (bias) D (bias) B (MSE) C (MSE) D (MSE)
𝜆𝑏 (Intercept) −0.000185 0.000619 0.000208 0.000000 0.000000 0.000000
𝜗𝑏 (Time) 0.000001 −0.000723 −0.000002 0.000000 0.000001 0.000000
𝛼𝑏 (A) −0.004991 −0.004742 0.003660 0.001803 0.002327 0.001690
𝛼𝑏 (B) −0.005756 −0.000435 −0.002609 0.001805 0.002300 0.001667
𝛼𝑏 (C) 0.004196 0.001951 0.003928 0.001876 0.002286 0.001689
𝛼𝑏 (D) −0.002704 0.037596 −0.000147 0.001720 0.003680 0.001665
𝛽𝑏 (Treatment level 2) −0.001857 −0.037069 −0.019304 0.096146 0.131678 0.096636
𝛼∗
𝑏
(A) 0.011856 0.004597 0.001139 0.003562 0.003685 0.003128

𝛼∗
𝑏
(B) −0.001767 0.001117 0.005221 0.003951 0.004245 0.003758

𝛼∗
𝑏
(C) −0.006102 −0.009655 −0.005031 0.003240 0.003471 0.002907

𝛼∗
𝑏
(D) −0.002186 −0.038381 0.000520 0.003206 0.005086 0.003115

𝛽∗
𝑏
(Time×Treatment level 2) 0.000793 0.024735 0.008448 1.132276 0.990963 1.035086
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TABLE A . 6 Non-stationary scenario with 10 replicates per treatment

𝒎 = 𝟏𝟓

Parameter B (bias) C (bias) D (bias) B (MSE) C (MSE) D (MSE)
𝜆𝑏 (Intercept) −0.000183 0.001650 −0.001419 0.000021 0.000025 0.000023
𝜗𝑏 (Time) 0.000358 −0.002633 0.000437 0.000046 0.000054 0.000045
𝛼𝑏 (A) −0.007311 −0.006617 0.003222 0.008090 0.008287 0.009579
𝛼𝑏 (B) −0.004727 0.000235 −0.001907 0.007986 0.008601 0.009367
𝛼𝑏 (C) 0.004630 0.002766 0.003214 0.008013 0.008572 0.008984
𝛼𝑏 (D) −0.001873 0.038120 0.000934 0.007580 0.009892 0.009193
𝛽𝑏 (Treatment level 2) 0.005273 −0.028315 0.009258 0.129831 0.138814 0.157644
𝛼∗
𝑏
(A) 0.016278 0.007604 0.004194 0.016754 0.017211 0.018529

𝛼∗
𝑏
(B) −0.003248 0.000387 0.003608 0.018164 0.020420 0.021004

𝛼∗
𝑏
(C) −0.008237 −0.010611 −0.005716 0.017499 0.019468 0.019160

𝛼∗
𝑏
(D) −0.005410 −0.040565 −0.002425 0.018271 0.021394 0.020842

𝛽∗
𝑏
(Time×Treatment level 2) −0.019846 −0.004296 −0.042713 0.524576 0.592597 0.591808

𝒎 = 𝟑𝟎

Parameter B (bias) C (bias) D (bias) B (MSE) C (MSE) D (MSE)
𝜆𝑏 (Intercept) −0.000172 0.000969 −0.000342 0.000001 0.000002 0.000001
𝜗𝑏 (Time) 0.000160 −0.001343 0.000200 0.000002 0.000003 0.000002
𝛼𝑏 (A) −0.004958 −0.003690 0.003921 0.001993 0.002083 0.002172
𝛼𝑏 (B) −0.004826 −0.001412 −0.002686 0.001878 0.002117 0.002086
𝛼𝑏 (C) 0.003084 0.002262 0.003526 0.001940 0.002202 0.002056
𝛼𝑏 (D) −0.002197 0.037490 0.000255 0.001935 0.003528 0.002055
𝛽𝑏 (Treatment level 2) −0.005417 −0.038943 −0.015283 0.064429 0.073870 0.071370
𝛼∗
𝑏
(A) 0.010779 0.003048 0.000850 0.003813 0.003843 0.003976

𝛼∗
𝑏
(B) −0.001774 0.002221 0.005629 0.004317 0.004579 0.004635

𝛼∗
𝑏
(C) −0.005249 −0.009664 −0.004188 0.003808 0.004144 0.003891

𝛼∗
𝑏
(D) −0.002390 −0.038003 −0.000246 0.004040 0.005819 0.004279

𝛽∗
𝑏
(Time×Treatment level 2) 0.019825 0.023153 −0.004039 0.357508 0.371852 0.367164

𝒎 = 𝟔𝟎

Parameter B (bias) C (bias) D (bias) B (MSE) C (MSE) D (MSE)
𝜆𝑏 (Intercept) −0.000185 0.000617 0.000211 0.000000 0.000000 0.000000
𝜗𝑏 (Time) −0.000005 −0.000713 0.000002 0.000000 0.000001 0.000000
𝛼𝑏 (A) −0.004365 −0.002348 0.003918 0.000520 0.000630 0.000494
𝛼𝑏 (B) −0.005202 −0.001541 −0.002556 0.000519 0.000610 0.000461
𝛼𝑏 (C) 0.002857 0.000840 0.003756 0.000506 0.000622 0.000453
𝛼𝑏 (D) −0.002526 0.037259 −0.000098 0.000504 0.001979 0.000446
𝛽𝑏 (Treatment level 2) −0.008159 −0.043979 −0.028705 0.033784 0.042331 0.032495
𝛼∗
𝑏
(A) 0.009120 0.002119 0.000376 0.001093 0.001022 0.000908

𝛼∗
𝑏
(B) −0.000203 0.003041 0.006296 0.001101 0.001167 0.001100

𝛼∗
𝑏
(C) −0.005933 −0.008925 −0.005062 0.000884 0.001008 0.000788

𝛼∗
𝑏
(D) −0.001589 −0.037991 0.000472 0.000902 0.002395 0.000855

𝛽∗
𝑏
(Time×Treatment level 2) 0.043872 0.029732 0.021620 0.321577 0.293104 0.307585
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TABLE A . 7 Non-stationary scenario with 20 replicates per treatment

𝒎 = 𝟏𝟓

Parameter B (bias) C (bias) D (bias) B (MSE) C (MSE) D (MSE)
𝜆𝑏 (Intercept) −0.000185 0.001609 −0.001390 0.000009 0.000012 0.000011
𝜗𝑏 (Time) 0.000478 −0.002529 0.000517 0.000020 0.000026 0.000019
𝛼𝑏 (A) −0.005417 −0.003005 0.004100 0.003194 0.003237 0.003740
𝛼𝑏 (B) −0.005744 −0.002203 −0.002618 0.003203 0.003393 0.003598
𝛼𝑏 (C) 0.003299 0.002368 0.004255 0.003182 0.003430 0.003501
𝛼𝑏 (D) −0.001441 0.036722 0.000163 0.003145 0.004637 0.003523
𝛽𝑏 (Treatment level 2) −0.002278 −0.035800 −0.017915 0.055593 0.059410 0.068905
𝛼∗
𝑏
(A) 0.011769 0.003300 0.000383 0.006545 0.006739 0.007407

𝛼∗
𝑏
(B) −0.001232 0.001640 0.004024 0.007400 0.008231 0.008285

𝛼∗
𝑏
(C) −0.004656 −0.008944 −0.004130 0.006961 0.007591 0.007716

𝛼∗
𝑏
(D) −0.004705 −0.037614 0.000582 0.007313 0.009300 0.008221

𝛽∗
𝑏
(Time×Treatment level 2) 0.015365 0.011702 0.002749 0.218840 0.232765 0.246963

𝒎 = 𝟑𝟎

Parameter B (bias) C (bias) D (bias) B (MSE) C (MSE) D (MSE)
𝜆𝑏 (Intercept) −0.000182 0.000955 −0.000339 0.000000 0.000001 0.000000
𝜗𝑏 (Time) 0.000154 −0.001324 0.000203 0.000001 0.000002 0.000001
𝛼𝑏 (A) −0.004709 −0.002285 0.003600 0.000825 0.000870 0.000881
𝛼𝑏 (B) −0.004526 −0.001194 −0.001979 0.000779 0.000890 0.000806
𝛼𝑏 (C) 0.002612 0.000742 0.003261 0.000787 0.000871 0.000795
𝛼𝑏 (D) −0.002569 0.036947 0.000221 0.000799 0.002207 0.000819
𝛽𝑏 (Treatment level 2) −0.010015 −0.043645 −0.026470 0.028680 0.032600 0.032244
𝛼∗
𝑏
(A) 0.009746 0.002413 0.001124 0.001611 0.001587 0.001606

𝛼∗
𝑏
(B) −0.000978 0.002239 0.006212 0.001745 0.001967 0.001889

𝛼∗
𝑏
(C) −0.006003 −0.008800 −0.004706 0.001552 0.001651 0.001522

𝛼∗
𝑏
(D) −0.001554 −0.037678 −0.000485 0.001625 0.003113 0.001742

𝛽∗
𝑏
(Time×Treatment level 2) 0.042086 0.025354 0.010838 0.152398 0.154473 0.156488

𝒎 = 𝟔𝟎

Parameter B (bias) C (bias) D (bias) B (MSE) C (MSE) D (MSE)
𝜆𝑏 (Intercept) −0.000186 0.000616 0.000214 0.000000 0.000000 0.000000
𝜗𝑏 (Time) −0.000005 −0.000710 0.000002 0.000000 0.000001 0.000000
𝛼𝑏 (A) −0.004492 −0.001535 0.003888 0.000226 0.000240 0.000209
𝛼𝑏 (B) −0.004624 −0.001603 −0.002152 0.000220 0.000256 0.000187
𝛼𝑏 (C) 0.002698 0.000354 0.003586 0.000212 0.000245 0.000191
𝛼𝑏 (D) −0.002883 0.036934 −0.000134 0.000203 0.001603 0.000180
𝛽𝑏 (Treatment level 2) −0.011449 −0.049124 −0.035157 0.014760 0.020159 0.015069
𝛼∗
𝑏
(A) 0.008993 0.001512 0.000454 0.000483 0.000388 0.000367

𝛼∗
𝑏
(B) −0.000657 0.002824 0.006122 0.000433 0.000476 0.000453

𝛼∗
𝑏
(C) −0.005996 −0.008392 −0.004887 0.000368 0.000432 0.000326

𝛼∗
𝑏
(D) −0.000925 −0.037482 0.000375 0.000357 0.001789 0.000348

𝛽∗
𝑏
(Time×Treatment level 2) 0.053050 0.034962 0.027269 0.132274 0.118883 0.123014
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TABLE A . 8 Comparing average 95% confidence interval width and coverage for the treatment-related parameters (𝛽𝑏) for the stationary
model fitted to the individual versus grouped level data

Grouped level data Individual level data
Replicates 𝒎 Parameter 95% CI width 95% CI coverage 95% CI width 95% CI coverage
5 15 𝛽𝐵 1.5271 0.9489 1.2817 0.9499
5 15 𝛽𝐶 1.4842 0.9462 1.2606 0.9479
5 15 𝛽𝐷 1.6340 0.9509 1.4429 0.9488
5 30 𝛽𝐵 1.1428 0.9462 0.8964 0.9497
5 30 𝛽𝐶 1.1004 0.9479 0.8814 0.9469
5 30 𝛽𝐷 1.1697 0.9491 1.0069 0.9466
5 60 𝛽𝐵 0.8784 0.9499 0.6306 0.9488
5 60 𝛽𝐶 0.8345 0.9537 0.6201 0.9443
5 60 𝛽𝐷 0.8370 0.9516 0.7067 0.9504
10 15 𝛽𝐵 1.0212 0.9477 0.8964 0.9497
10 15 𝛽𝐶 0.9921 0.9509 0.8814 0.9469
10 15 𝛽𝐷 1.0909 0.9512 1.0069 0.9466
10 30 𝛽𝐵 0.7672 0.9475 0.6306 0.9488
10 30 𝛽𝐶 0.7390 0.9455 0.6201 0.9443
10 30 𝛽𝐷 0.7861 0.9490 0.7067 0.9504
10 60 𝛽𝐵 0.5943 0.9471 0.4446 0.9517
10 60 𝛽𝐶 0.5647 0.9520 0.4373 0.9498
10 60 𝛽𝐷 0.5668 0.9490 0.4982 0.9494
20 15 𝛽𝐵 0.7037 0.9490 0.6306 0.9488
20 15 𝛽𝐶 0.6845 0.9439 0.6201 0.9443
20 15 𝛽𝐷 0.7514 0.9457 0.7067 0.9504
20 30 𝛽𝐵 0.5305 0.9477 0.4446 0.9517
20 30 𝛽𝐶 0.5111 0.9485 0.4373 0.9498
20 30 𝛽𝐷 0.5433 0.9490 0.4982 0.9494
20 60 𝛽𝐵 0.4126 0.9514 0.3140 0.9471
20 60 𝛽𝐶 0.3922 0.9473 0.3089 0.9497
20 60 𝛽𝐷 0.3935 0.9499 0.3517 0.9528
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TABLE A . 9 Comparing average 95% confidence interval width and coverage for the treatment-related parameters (𝛽𝑏) for the
non-stationary model fitted to the individual versus grouped level data. This table presents the results using 5 and 10 replicates

Grouped level data Individual level data
Replicates 𝒎 Parameter 95% CI width 95% CI coverage 95% CI width 95% CI coverage
5 15 𝛽𝐵 2.3817 0.9469 1.8221 0.9465
5 15 𝛽𝐶 2.4512 0.9486 1.8268 0.9457
5 15 𝛽𝐷 2.6616 0.9497 2.1241 0.9556
5 15 𝛽∗𝐵 5.0565 0.9478 2.9547 0.9477
5 15 𝛽∗

𝐶
5.3097 0.9504 3.1627 0.9499

5 15 𝛽∗𝐷 5.4123 0.9475 3.3233 0.9483
5 30 𝛽𝐵 1.6507 0.9521 1.2596 0.9491
5 30 𝛽𝐶 1.7419 0.9517 1.2622 0.9490
5 30 𝛽𝐷 1.7422 0.9508 1.4559 0.9502
5 30 𝛽∗𝐵 4.1111 0.9486 2.0231 0.9475
5 30 𝛽∗

𝐶
4.1699 0.9455 2.1676 0.9487

5 30 𝛽∗𝐷 4.2096 0.9457 2.2706 0.9493
5 60 𝛽𝐵 1.1864 0.9483 0.8815 0.9481
5 60 𝛽𝐶 1.3188 0.9464 0.8827 0.9514
5 60 𝛽𝐷 1.1538 0.9441 1.0137 0.9504
5 60 𝛽∗𝐵 3.9073 0.9508 1.4088 0.9482
5 60 𝛽∗

𝐶
3.6799 0.9477 1.5088 0.9516

5 60 𝛽∗𝐷 3.7803 0.9470 1.5782 0.9507
10 15 𝛽𝐵 1.3880 0.9448 1.2596 0.9491
10 15 𝛽𝐶 1.4227 0.9498 1.2622 0.9490
10 15 𝛽𝐷 1.5313 0.9472 1.4559 0.9502
10 15 𝛽∗𝐵 2.7743 0.9515 2.0231 0.9475
10 15 𝛽∗

𝐶
2.8956 0.9527 2.1676 0.9487

10 15 𝛽∗𝐷 2.9468 0.9507 2.2706 0.9493
10 30 𝛽𝐵 0.9832 0.9497 0.8815 0.9481
10 30 𝛽𝐶 1.0302 0.9473 0.8827 0.9514
10 30 𝛽𝐷 1.0352 0.9449 1.0137 0.9504
10 30 𝛽∗𝐵 2.3071 0.9512 1.4088 0.9482
10 30 𝛽∗

𝐶
2.3302 0.9483 1.5088 0.9516

10 30 𝛽∗𝐷 2.3515 0.9467 1.5782 0.9507
10 60 𝛽𝐵 0.7099 0.9482 0.6202 0.9534
10 60 𝛽𝐶 0.7776 0.9444 0.6209 0.9506
10 60 𝛽𝐷 0.6907 0.9473 0.7114 0.9509
10 60 𝛽∗𝐵 2.1557 0.9465 0.9887 0.9545
10 60 𝛽∗

𝐶
2.0440 0.9500 1.0590 0.9485

10 60 𝛽∗𝐷 2.0960 0.9494 1.1069 0.9525
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TABLE A . 1 0 Comparing average 95% confidence interval width and coverage for the treatment-related parameters (𝛽𝑏) for the
non-stationary model fitted to the individual versus grouped level data. This table presents the results using 20 replicates

Grouped level data Individual level data
Replicates 𝒎 Parameter 95% CI width 95% CI coverage 95% CI width 95% CI coverage
20 15 𝛽𝐵 0.9238 0.9501 0.8815 0.9481
20 15 𝛽𝐶 0.9454 0.9466 0.8827 0.9514
20 15 𝛽𝐷 1.0170 0.9497 1.0137 0.9504
20 15 𝛽∗𝐵 1.8117 0.9457 1.4088 0.9482
20 15 𝛽∗

𝐶
1.8873 0.9523 1.5088 0.9516

20 15 𝛽∗𝐷 1.9218 0.9472 1.5782 0.9507
20 30 𝛽𝐵 0.6571 0.9473 0.6202 0.9534
20 30 𝛽𝐶 0.6867 0.9464 0.6209 0.9506
20 30 𝛽𝐷 0.6925 0.9486 0.7114 0.9509
20 30 𝛽∗𝐵 1.5046 0.9468 0.9887 0.9545
20 30 𝛽∗

𝐶
1.5178 0.9477 1.0590 0.9485

20 30 𝛽∗𝐷 1.5328 0.9492 1.1069 0.9525
20 60 𝛽𝐵 0.4756 0.9480 0.4374 0.9456
20 60 𝛽𝐶 0.5179 0.9304 0.4379 0.9479
20 60 𝛽𝐷 0.4634 0.9381 0.5016 0.9472
20 60 𝛽∗𝐵 1.3945 0.9454 0.6966 0.9487
20 60 𝛽∗

𝐶
1.3265 0.9480 0.7463 0.9506

20 60 𝛽∗𝐷 1.3584 0.9474 0.7799 0.9507
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