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ABSTRACT
Optical satellite data is an efficient and complementary method to hydrographic surveys for
deriving bathymetry in shallow coastal waters. Empirical approaches (in particular, the models
of Stumpf and Lyzenga) provide a practical methodology to derive bathymetric information
from remote sensing. Recent studies, however, have focused on enhancing the performance
of such empirical approaches by extending them via spatial information. In this study, the
relationship between multibeam depth and Sentinel-2 image bands was analyzed in an
optically complex environment using the spatial predictor of kriging with an external drift
(KED), where its external drift component was estimated: a) by a ratio of log-transformed
bands based on Stumpf’s model (KED_S) and b) by a log-linear transform based on Lyzenga’s
model (KED_L). Through the calibration of KED models, the study objectives were: 1) to better
understand the empirical relationship between Sentinel-2 multispectral satellite reflectance
and depth, 2) to test the robustness of KED to derive bathymetry in a multitemporal series of
Sentinel-2 images and multibeam data, and 3) to compare the performance of KED against
the existing non-spatial models described by Stumpf et al. and Lyzenga. Results showed that
KED could improve prediction accuracy with a decrease in RMSE of 89% and 88%, and an
increase in R2 of 27% and 14%, over the Stumpf and Lyzenga models, respectively. The
decrease in RMSE provides a worthwhile improvement in accuracy, where results showed
effective prediction of depth up to 6 m. However, the presence of higher concentrations of
suspended materials, especially river plumes, can reduce this threshold to 4 m. As would be
expected, prediction accuracy could be improved through the removal of outliers, which were
mainly located in the channel of the river, areas influenced by the river plume, abrupt
topography, but also very shallow areas close to the shoreline. These areas have been
identified as conflictive zones where satellite-derived bathymetry can be compromised.
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1. Introduction

Coastal areas are highly dynamic environments, subject
to anthropogenic (e.g. seafloor installations; fishing,
habitat modification) and natural pressures (e.g. hazar-
dous storms, erosion, floods) that can be enhanced by
climate change effects (Halpern et al. 2008; Lipiec et al.
2018; Gamito et al. 2019). Detailed and frequently
updated information about coastal morphology and
bathymetry is essential for a variety of commercial,
scientific and societal purposes and considered crucial
to humankind (Wölf et al. 2019). Bathymetric data can be
used for geohazard assessment (Ridente et al. 2014), to
monitor seafloor change over time (Chiocci, Cattaneo,
and Urgeles 2011; Mielck et al. 2019) and to model
change in anticipation of future scenarios (Plecha et al.
2010; Barnard et al. 2019). Wave propagation or bottom
currents can produce intensive sediment transport

involving important spatial and temporal alterations in
the sea bottom topography (Amal et al. 2019; Fan et al.
2019). These intensive and frequent changes in coastal
areas demand efficient monitoring methodologies that
can produce repetitive updating of bathymetric and
seafloor topography information. Precise seafloor infor-
mation is also required to work toward the goal for
protecting at least 10% of the world’s oceans by 2020
(Sala et al. 2018) and to support the achievement of SDG
14 - Life below water of the Agenda 2030 for Sustainable
Development (Wölf et al. 2019).

Single-or multi-beam echosounders located on board
vessels enable high-resolution bathymetric surveys.
However, both methods are costly, time-consuming and
restricted by coastal morphology, navigation hazards, and
protected areas. Their temporal and spatial coverage are
dependent on access to the required infrastructure and
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the associated costs. The use of the airborne LiDAR pro-
vides an alternative to extract bathymetry in shallow
coastal areas (Chust et al. 2010; Eren et al. 2018), but
spatial continuity, hardware, and operational costs,
coupled with and logistical requirements reduce the fre-
quency of survey updates. Optical satellite data provide
an efficient alternative for bathymetric derivation in shal-
low coastal waters overcoming financial, temporal and
logistical constraints. Interest in this remote sensing solu-
tion has increasedwith the recent availability of Sentinel-2
Multispectral Imager (MSI) that offers improved technical
capabilities in comparison with previous optical sensors
such as Landsat or SPOT. The MSI instruments on the
Sentinel-2A and −2B satellites provide 13 spectral chan-
nels ranging from the Visible and the Near-Infrared (VNIR)
to the Shortwave Infrared (SWIR), with four bands having
a spatial resolution of 10 m. Moreover, the Sentinel-2
mission, being based on a constellation of two identical
satellites in the same orbit, offers a nominal revisit time of
5 days, depending on the latitude of the site.

The extraction of bathymetric information from opti-
cal remote sensing data can be generally divided into
two methodologies: empirical and physics-based model
inversion approaches. Strictly, both approaches are phy-
sics-based in that they encompass physical concepts of
light transmission through water, such as the assump-
tion that light is attenuated exponentially with depth
(Lyzenga 1985). The difference is that empirical methods
rely on known bathymetry data points to estimate
unknowns through a regression fit, e.g. the rate of spec-
tral light attenuation in the water as a function of depth,
whereas model inversion methods more tightly con-
strain these unknowns and attempt to derive them at
each pixel in the image (Brando et al. 2009; Dekker et al.
2011; Hedley et al. 2016). Physics-based approaches can
be applied without a-priori known bathymetry points
but are more challenging to implement and computa-
tionally demanding, hence empirical approaches remain
a common and practical method for deriving bathyme-
try from optical remote sensing data.

Among empirical approaches, the most commonly
used are the linear band model (Lyzenga 1985) and the
band ratio model (Stumpf, Holderied, and Sinclair 2003).
These regression algorithms have been applied to multi-
spectral and hyperspectral sensors with different spatial
and spectral resolutions (Lyons, Phinn, and Roelfsema
2011; Bramante, Raju, and Sin 2013; Pacheco et al. 2015;
Vahtmäe and Kutser 2016; Traganos et al. 2018).
Following these methodologies, recent studies have
focused on enhancing the performance of these

empirical models by utilizing spatial information
(Curtarelli et al. 2015; Chybiki 2018; Wang et al. 2019).
Studies have shown these spatial models to significantly
outperform the regular empirical models (Hamylton,
Hedley, and Beaman 2015; Su, Liu, and Wu 2015; Kibele
and Shears 2016; Cahalane et al. 2019). Among spatial
prediction models, kriging is commonly used as it quan-
tifies and exploits the spatial autocorrelation in the data
and provides optimal predictions at unsampled loca-
tions (Goovaerts 2000). There are also many forms of
kriging, where in this study, kriging with an external
drift (KED) (see Chiles and Delfiner 1999) was chosen.
In KED the spatial autocorrelation effects are accounted
for through the residuals of a linear trend fit between the
variable of interest (i.e. water depth) and contextual
factors (i.e. the reflectance data). In this study, the linear
trend (i.e. external drift component) of KED is informed
by either a linear combination of log-transformed bands
(as in Lyzenga’s model) or a ratio of log-transformed
bands (as in Stumpf’s model) reflecting correlations
between reflectance and water depth only. It is expected
that the use of KED with either trend/drift component
will improve the accuracy of water depth prediction (Su,
Liu, and Wu 2015).

In the case of Ireland, much progress in mapping the
seafloor has been achieved through the INFOMAR pro-
gramme, which is currently focused on shallower waters
such as bays, with three priority areas located in the east
and south of the country. Access to such bays for ocea-
nographic vessels or small boats with acoustic equip-
ment on board is not easy due to associated
navigational hazards. In this respect, satellite-derived
bathymetry offers an alternative to costly and time-
consuming traditional methods such as acoustic surveys.
However, the inherent conditions of optically complex
waters such as the ones present the Irish coast, have
often compromised the results obtained (Coveney and
Monteys 2011).

The objectives of this study are: 1) to better understand
the empirical relationship between Sentinel-2 multispec-
tral satellite reflectance and depth, 2) to test the robust-
ness of KED to derive bathymetry in a multitemporal
series of Sentinel-2 images and multibeam data, and 3)
to compare the performance of KED against the existing
non-spatial models of Stumpf and Lyzenga. Previous stu-
dies have shown the value in using spatial models for
bathymetry prediction in Dublin Bay (Monteys et al.
2015). However, the novelty of this study lies on testing
the ability of Sentinel-2 products over different time
frames, coupled with the removal of outliers to better
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inform these models in a practical capacity, rather than
the assessment of the models themselves.

2. Materials and methods

2.1 Study area

Dublin Bay is a wide C-shaped inlet located on the east
coast of Ireland with an approximately 10 km entrance
enclosing an area of about 296 km2 (Figure 1). This includes
the intertidal zone of about 16 km2 (Brooks et al. 2016) in
a relatively flat topography interrupted by tidally controlled
related features, such as drainage channels and inlets. The
estuary is macro-tidal (Dyer 1973) having a mean tidal
range of 2.75 m with an average spring and neap tides of
3.6m and 1.9m, respectively (Mansfield 1992). The subtidal
benthic area (175 km2) varies in depth from 25m to a large
inner area less than 5m (Mansfield 1992). The shores of the
bay naturally comprise small areas of rocky and pebbly
substrates and very large areas of predominantly fine
sand (Brooks et al. 2016). The bay is joined and bisected
by the river Liffey in the south and north.

Despite the loss of a significant part of the estuary
due to infills, Dublin Bay remains one of the five most
important wetlands in the country (Crowe, Boland, and
Walsh 2012) with a range of natural habitats that have
been designated as part of the European Union Natura
2000 network and recognized by the UNESCO as

a Biosphere in 2015 (DCC 2014). High nutrient loads,
the deposition of large quantities of organic matter
and regular dredging influence the water column con-
ditions (O’Higgins and Wilson 2005). High biomass phy-
toplankton blooms are frequent in this area which can
also reduce optical clarity.

2.2 Multibeam depth data

A number of multibeam transects were acquired on two
consecutive years. Survey lines were carried out on the
25/07/2017 and on the 24/03/2018 (Figure 1). Multibeam
data were not coincident with satellite overpass; how-
ever, their difference in time can be considered accep-
table for the aim of this study. The multibeam data have
been processed using the hydrographic CARIS HIPS™
suite. Vertical tidal corrections were applied and reduced
to LAT (Lowest Astronomical Tide). The resultant depth
data meets International Hydrographic Organization
(IHO) order 1 standard. Between 0 and 10 m water
depth, position uncertainty and the depth error uncer-
tainty were less than 0.5 m and 0.1 m, respectively. The
depth data were gridded to 5 m x 5 m using an inverse
distance weighted algorithm and subsequently ran-
domly reduced to approximately 2000 data points to
optimize computation time for the study prediction
models. Only water depths between 0 and 10 m were
considered for the subsequent analysis.

Figure 1. Dublin Bay Study Area (a) location map of study area (b) overlapped the multibeam data registered in 2017 and (c)
overlapped the multibeam data registered in 2018. Transects (T1-T4) were individually considered to study the influence of the water
column and bottom type in different regions of the bay. T2 is deliberately skipped in figure (b) to keep consistency in terminology
between 2017 and 2018 transects.
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2.3 Remote sensing imagery data

Six Sentinel-2 images were downloaded from the
Copernicus Scientific Data Hub website as Level-1C, top-of
atmosphere (TOA) reflectance in 100 km x 100 km tiles
format and aUTM/WGS84 projection (Figure 2). The images
were selected to represent different conditions of the study
area: low/high tide, clear/turbidwaters and varying degrees
of sun glint. Before the application of the study models, all
the imageswere resized to the study area, landwasmasked
out, and atmospheric correction was applied using C2RCC
processor (Brockman et al. 2016). C2RCC (Doerffer and
Schiller 2007) relies on a large database of simulated
water leaving reflectances and related TOA radiances.
Neural networks are trained in order to perform the inver-
sion of spectrum for the atmospheric correction, i.e. the
determination of the water leaving radiance from the
TOA, as well as the retrieval of inherent optical properties
of thewaterbody (Brockmann et al. 2016). Outputs as water
leaving reflectances or remote sensing reflectances can be
selected; however, in our case, the latter option was pre-
ferred. Previous analysis showed that this processor reduces
sun glint effects in the same study area (Casal et al. 2019),
for this reason, no additional sun glint correction has been
subsequently applied.

Only the 10 m spatial resolution bands B2 (497 nm),
B3 (560 nm), and B4 (665 nm) were considered.
A preliminary assessment including band B1 was carried

out (Casal et al. 2019), but due to its lower spatial resolu-
tion (60 m) and its high collinearly with band B2, band B1
was ultimately ruled out of the analyses.

2.4 Geostatistical modeling

The empirical relationships between the multibeam
depth data and the Sentinel-2 image bands were statis-
tically analyzed using KED and its drift components. As
with any kriging model, KED makes use of the spatial
autocorrelation between neighboring observations to
predict values at unsampled places together with their
uncertainties (Delhomme 1978; Goovaerts 1997; Chiles
and Delfiner 1999). KED was chosen for this study as it
had previously performed well in the same study area
(Monteys et al. 2015), and its use is highly recommended
in the physical sciences (Li and Heap 2011). KED model
results were assessed and contextualized based on
expert knowledge of the study area and previous experi-
ence (Monteys et al. 2015).

2.4.1 Exploratory analysis for KED parameterization
To assess the potential of a KED approach, a set of
exploratory analyses was carried out. First, a linear cor-
relation analysis between (multibeam) depth and the
above-water reflectance (Rw) data was conducted to
assess the strength of these relationships. Second, the

Figure 2. Sentinel-2 images (RGB) included in the study. Acquisition time (UTC) and tide height (m) are showed in each image. Tide
height (m) information was provided by the Irish National Tide Gauge Network.
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residuals from predicting depth using the linear band
regression model (Lyzenga 1985) and the residuals from
predicting depth using the band ratio regression model
(Stumpf, Holderied, and Sinclair 2003) were assessed for
spatial autocorrelation through the empirical residual
variogram γr(h):

γr hð Þ ¼
PNh

i¼1 r si þ hð Þ � rðsi½ Þ�2
2N hð Þ (1)

where r(si) is the value of the residual from the given
regression fit at sampling site si, r(si+h) is the value of
the residual separated from si by a distance h (measured
in meters), N(h) is the number of pairs of observations
separated by the distance or lag (h), and si (i = 1, 2, . . ., n)
are the n sampled sites.

The variogram is calculated for several lag distances
and plotted as a two-dimensional graph with semivar-
iance and distance as the axes. To aid interpretation,
a variogram model was fitted to the empirical residual
variograms through a weighted least squares (WLS) fit
(Cressie 1985). We chose an exponential model form,
following that used in Monteys et al. (2015). Variogram
parameters: nugget, sill, and range were extracted. The
nugget captures small-scale variation; the sill captures
structural spatial variation; and the range can be inter-
preted as the distance beyond which no spatial depen-
dence among the data (in this case, residuals) exists.

The value of the variogram plots is that they graphi-
cally illustrate the spatial dependence of the residuals
from the Stumpf and Lyzenga models (i.e. the deviations
of the Stumpf/Lyzenga model predictions of depth from
the actual (multibeam) values of depth). If residual spa-
tial dependence is found to be weak or absent (i.e.
a pure nugget variogram), then there would be no
value in applying KED, as it would simply default to the
respective Stumpf and Lyzenga model fits. A further
refinement was also investigated to alleviate the effects
of any additional (global) trend in the data (indicated by
a linear or parabolic behavior in the variogram). This was
done by including the location coordinates to the
Lyzenga/Stumpf regression models and re-calculating
the regression residuals, accordingly. Observe this resi-
dual-based analysis serves for exploratory purposes only.
It can have a strong bias due to the ordinary least
squares (OLS) estimation of the Lyzenga’s and Stumpf’s
models and also the WLS estimation of the variogram
models. This bias is however addressed on estimating
the KED model.

2.4.2 Kriging with external drift (KED)
KED is a random function model taking into account,
simultaneously, the spatial dependence of the variable

of interest (in this case, multibeam data) and its linear
relation to one or more explanatory variables (in this
case, Sentinel-2 reflectance and also the coordinates).
KED consists of a trend (or drift) component and
a residual component, where the former is modeled by
some linear function (in this study, linear regressions
based on the Lyzenga/Stumpf models), while the latter
is modeled through ordinary kriging (OK) of the residuals
resulting from the linear fit. Depending on how the KED
parameters are estimated, there are equivalent models,
such as universal kriging and regression kriging (Hengl,
Heuvelink, and Rossiter 2007).

In this study, multibeam water depth data can be
denoted with their locations as z (s1), z (s2), . . . z (sn)
where we can consider s to be a two-component vector
s = (x, y) representing a pixel in the image. For KED,
a prediction ẑ sð Þ of depth at any un-sampled location
(s) is found by the sum of the regression prediction, m̂ sð Þ
and its residual OK prediction, r̂ sð Þ:

ẑ sð Þ ¼ m̂ sð Þ þ r̂ sð Þ (2)

where for this study, m̂ sð Þ is found in two different
ways: 1) the prediction of multibeam depth data based
on the band ratio regression model (Stumpf, Holderied,
and Sinclair 2003) plus coordinates (denoted KED_S):

m̂ðsÞKED S ¼ f
ln cRw λk;s

� �� �
ln cRw λl;s

� �� �
 !

(3)

where Rw corresponds to the above-water reflectance
for the spectral bands k and l after sun glint correction at
location s, in our case B2 (470 nm – blue) and B3 (560
nm – green), and c is a fixed constant for ensuring
positive log values and a linear response; and 2) the
prediction of multibeam depth data based on the linear
inversion regression model (Lyzenga 1978, Lyzenga
1985; Lyzenga et al. 2006) plus coordinates (denoted
KED_L):

m̂ðsÞKED L ¼ f
XB
i¼1

αiln cRwðλiÞs
� � !

(4)

where B corresponds to the number of the spectral
bands considered, αi (i = 0,1, . . . B) are the model
coefficients to be estimated, Rw (λj) is the above-
water reflectance for the spectral band λj after sun
glint correction. In this study, B2 (470 nm – blue), B3
(560 nm – green), and B4 (665 nm – red) were incor-
porated to the model.

The residuals r̂ sð Þ in KED were predicted at any un-
sampled location (s) using OK:

r̂ sð Þ ¼
Xn
i¼1

wi sð Þ � rK sið Þ (5)
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Xn
i¼1

wi sð Þ ¼ 1 (6)

where rK sið Þ represents the residuals from either m̂ðsÞKED S

or m̂ðsÞKED L; and wi (s) represents the weights determined
by the covariance matrix of rKðsiÞ (i.e. as dictated by the
estimated nugget, sill and range parameters of the vario-
gram model).

Observe the residuals r(si) defined for exploration in
Section 2.4.1 and the residuals rK sið Þ defined for KED origi-
nate from the same Lyzenga/Stumpf-based regression
models, but r(si) are biased as they stem from a basic OLS
regression estimation, while rK sið Þ are estimated in
a statistically optimal and unbiased fashion. For KED, the
regression parameters are now estimated concurrently
with the variogram parameters through a generalized
least squares (GLS) approach (e.g. Hengl, Heuvelink, and
Rossiter 2007), where for this study restricted maximum
likelihood (REML) estimation serves this purpose (e.g.
Chiles and Delfiner 1999).

KED is applied using a global prediction neighborhood,
as opposed to experimentation with local neighborhoods
(where any non-stationarity in depth to reflectance rela-
tionships would be accounted for, see Monteys et al.
2015). KED can be viewed as statistically optimal, provided
the regression and variogram parameters are estimated
using REML and provided a global kriging neighborhood
is specified. In this form, KED is computationally expensive
but is required for best linear-unbiased prediction (BLUP).
Accuracy of the KED predictions was measured by the
mean prediction error (MPE), the root mean squared pre-
diction error (RMSPE), the relative root mean squared
prediction error (RRMSPE) (where the prediction error is
the actual depth minus the predicted depth) and the
correlation coefficient (r) between the actual and pre-
dicted data. For accurate and unbiased prediction, MPE
should be zero, RMSPE and RRMSPE should tend to zero
and r should be 1. KED is applied using a “leave-one-out”
cross-validation procedure to assess the model’s ability to
predict depth.

Large prediction errors from KED were also used to
identify multibeam depth outliers and the same metho-
dological steps of an exploratory analysis for KED and
the optimal fit of KED itself were repeated with the

outliers removed. Outliers were identified using the
Interquartile Range (IQR), which is a simple dispersion
measure that can be used to monitor process dispersion
in the quality control of the data (Riaz 2013).
Methodological steps (exploratory analysis, variograms
and KED) were repeated once outliers were identified
and removed. This process allowed the identification of
conflictive zones for bathymetric derivation as well as
zones where this methodology can be considered opti-
mal and applied in a practical context.

3. Results

3.1 Exploratory analysis

The Sentinel-2 image bands for the six images of Figure 2
were log-transformed after atmospheric correction and
a constant (c = 10,000) was added to ensure positive log
values (e.g. Stumpf, Holderied, and Sinclair 2003;
Bramante, Raju, and Sin 2013). The multibeam depth
data were not transformed to maintain interpretability
of the analysis results.

Linear correlation coefficients between the multibeam
depth data and the single log-transformed bands and
ratios indicated image dependent relationships (Table 1).
As described in previous studies (Casal et al. 2019), the
strongest image band correlationwith depthwas observed
with the log-transformed Band 3 (560 nm) (r = −0.96),
indicating that the green band has the highest penetration
into the water column. Taking into account all correlations,
the weakest correlations were found on 04/08/2017 with
r values ranging between −0.08 and 0.12. The strongest
r values were found on 07/06/2017 with r values ranging
between −0.92 and −0.96 for log-transformed bands. The
ratio of log-transformed bands showed r = 0.86 for the
same date. The correlations between the multibeam
depth data and the log-transformed bands tended to be
negative, since as the bottom contributes to the reflec-
tance, the reflectance becomes less as water becomes
deeper. The correlations between the multibeam depth
data and the ratio of log-transformed bands tended to be
positive, as this is a function of the relative attenuation in
the bands, and therefore depends on which way around
the ratio is formed.

Table 1. Linear correlation coefficients between the multibeam depth data and each variable derived from the Sentinel-2 bands, after
atmospheric correction, using C2RCC processor, and log transformation have been applied.
Date Longitude Latitude ln(Rw (B2) ln(Rw (B3) ln(Rw (B4) ln(Rw (B2)/ln(Rw (B3)

08/04/2017 0.61 −0.29 0.12 0.1 0.02 −0.08
17/06/2017 0.61 −0.29 −0.79 −0.83 −0.68 0.69
17/07/2017 0.61 −0.29 −0.86 −0.89 −0.79 0.62
07/06/2018 0.66 −0.64 −0.94 −0.96 −0.92 0.86
02/07/2018 0.66 −0.64 −0.76 −0.87 −0.78 0.68
05/09/2018 0.66 −0.64 −0.20 −0.66 −0.81 0.62
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It was also useful to identify strong correlations of
depth with the coordinates as this can capture broad
spatial trends in the data. Since the coast is to the West
and depth increases to the East, longitude showed posi-
tive correlations with the multibeam depth data for all
years in which multibeam data were acquired. However,
latitude showed negative correlations with different
strengths depending on the image year. In 2018, the
correlation of depth with latitude increased in

comparison to 2017 due to a change in the spatial dis-
tribution/orientation of the sampling transects. Overall
the spatial pattern of the multibeam data confirms an
expected increment in depth in the East-West direction
and the NE orientation of the bay.

Several multibeam depth transects (T1, T2, T3, and T4)
(Figure 1) located in homogenous bottom type areas
and eliminating conflictive areas were also individually
considered using scatterplots (Figures 3 and 4). In this

Figure 3. Scatterplots showing the relation between the ratio of atmospherically corrected log-transformed bands (B2 and B3) and
multibeam depth for the Sentinel images registered in 2017. T1, T3, and T4 correspond to the multibeam transects carried out in 2017
(shown in Figure 1).
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case, the relation between the ratio of log-transformed
blue and green bands (ln (Rw (B2)/ln (Rw (B3)) against
multibeam depth data was plotted. These relations can
illustrate the changes in water column conditions and
can help to interpret the KED outputs.

For the 2017 images (Figure 3), it can be appreciated
how the conditions of turbidity affected the southern
part of the bay. This is reflected in the scatterplots cor-
respondent to the image registered on 08/04/2017, the
image of highest turbidity registered in 2017. In this
case, the increasing linear relationship between reflec-
tance and in situ depth is strong until only 4 m in trans-
ects T1 and T3, while this increasing linear relationship is
maintained until 6 m in transect T4. The T3 transect is
located close to the river channel and thus influenced by
water column conditions. The T4 transect is located over
a homogenous bottom type area, and thus more likely
to ensure a linear relationship at greater depths.

The transect scatterplots of the 2018 images (Figure 4)
showed consistence with the ones obtained in 2017. The
ratio of log-transformed bands (ln (Rw (B2)/ln (Rw (B3))
showed strong linearity with multibeam data until
6 m in transects T1 and T2. The transects sampled in
2018 cover in greater extent the southern part of the
Bay confirming that Sentinel-2 images can retrieve
depth until 6 m in this part. Due to its proximity to the
river channel, the scatterplots of transect T3 are more
difficult to interpret. In the case of the image registered
on 02/07/2018, a clear plume from the river can be appre-
ciated following north direction (Figure 2). This plume
affects transects T2, T3, and T4 and consequently provides
weaker relationships in the scatterplots. In the case of the
image registered on 05/09/2018, also with a high turbid-
ity, the river plume is more diluted and with different
spatial distribution affecting transect T2 the most. In this
image (05/09/2018), suspension material is affecting

Figure 4. Scatterplots showing the relation between the ratio of atmospherically corrected log-transformed bands (B2 and B3) and
multibeam depth for the Sentinel images registered in 2018. T1, T2, T3, and T4 correspond to the multibeam transects carried out in
2018 (shown in Figure 1).
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homogenously the entire study area resulting in
a brighter color and consequently, in higher reflectance
values. These results suggest that the plume of the river
has a greater influence than the suspendedmaterial in the
level of linearity between the ratio of log-transformed
bands and depth.

The exploratory residual variogram analysis in the
years 2017 and 2018 consisted of assessing the spatial
dependence of the OLS estimated band ratio and linear
band regression residuals (noting that both OLS fits were
also informed by the coordinates), as well as the influ-
ence of outliers. The resultant (outlier removed) residual
variograms (12 in total) are given in Figure 5 for residuals
from (1) the ratio of log-transformed bands model (i.e.
exploration for KED_S parameterization) and (2) the log-
transformed linear band model (i.e. exploration for
KED_L parameterization).

All residual variograms depicted a clear spatial depen-
dence indicating residuals at nearby locations are more
similar than those further apart. As would be expected,
the removal of outliers, corresponding with conflictive
areas for bathymetry derivation, lowered the residual
variogram sill (i.e. the sample variance) over that found
with outliers included. The correlation range, i.e. the
distance at which the residuals are no longer correlated

with themselves, was approximately 1500 m for many
residual variograms, but the variograms associated with
the Stumpf’s model tended to show a longer range
(average 3955 m) than those associated with the
Lyzenga’s model (average 1060 m). The elimination of
outliers in general increased the correlation range. To
assess the two different sampling strategies carried out
in 2017 and 2018, residual variograms for 2018 were
fitted using only the sampling points coincident in loca-
tion with the ones of 2017. However, little differences
were observed. This suggests that, in the context of this
study, the sample design was not a major influence on
the apparent spatial patterns of association in the resi-
duals from OLS model fits.

3.2 Evaluation of the KED results

Through the statistically unbiased REML parameteriza-
tion of all KED models (outliers included or not), all
image bands were found to be statistically significant
predictors of depth (p-value ≤ 0.05) with the exception
of B3 (560 nm) and B4 (665 nm) in Lyzenga’s model for
images registered on the 08/04/2018 and 05/09/2018.
The “leave-one-out” prediction accuracy performance
for KED_S and KED_L is shown in Table 2, with and

Figure 5. Residual variograms for the ratio of log-transformed bands model, approximation of Stumpf’s model (KED_S) and the log-
transformed linear band model, approximation of Lyzenga’s model (KED_L) – all once the outliers have been removed. Exponential
model was used for the WLS fitting (solid lines).
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without outliers. In general, little difference in prediction
accuracy was found with KED_S and KED_L when out-
liers were accounted for and the results tended to be
image dependent. As would be expected, prediction
accuracy improved through the removal of outliers,
where KED_S tended to provide more accurate predic-
tions than KED_L. Thus, KED_L was more susceptible to
outliers, and for this reason, we could consider KED_S as
the best predictor for water depth in Dublin Bay.

Scatterplots of actual versus KED predictions for KED_S
and KED_L showed the largest prediction errors in shal-
low waters (<1 m) and areas deeper than 6 m. The largest
prediction errors occur around the deep channel and in
areas close to the Howth peninsula and can be a result of
both over- and under-prediction. Both areas present
a rough topography, with rock outcrops in the case of
the Howth area, and high backscatter in the multibeam
data (Monteys et al. 2015). The influence of variations in
water column optical properties on the satellite-derived
depth has been evaluated through the scatterplots of
KED prediction errors versus KED predicted depth, once
outliers were removed (Figure 6). The results of both KED
models were again coincident indicating a reduction in
prediction accuracy at 6 m depths and below in all the
images (noting that for some transects, this threshold is
likely to be 4 m, from the scatterplots in Figures 3 and 4).
KED prediction accuracy at shallow depths under 1 m was
also found to vary between models and data sets.

Identified outliers were mapped as a simple way to
visually examine the spatial distribution of conflictive

zones for bathymetry derivation in Dublin Bay and to
get a handle on their causes (Figure 7). Outliers identi-
fied in both models, KED_S and KED_L, were located in
very specific areas that were coincident in both cases.
These areas mainly corresponded to the channel of the
Liffey River (high turbidity), an area off the Howth penin-
sula, coincident with abrupt topography and rock out-
crops, and very shallow areas close to the shoreline. The
transects carried out in 2017 also showed a conflictive
zone close to the piers of Dun Laoghaire Harbor.
However, this issue could not be evaluated in the images
of 2018 due to the lack of transects in this area.

Finally, for context, it is important to compare KED
results with results from their respective trend or drift
component fits – i.e. the OLS regression models devel-
oped by Stumpf and Lyzenga. Here their extensions to
a spatial form in KED_S and KED_L performed more accu-
rately with a decrease in RMSE of 89% and 88%, and an
increase in R2 of 27% and 14%, over their Stumpf ‘s and
Lyzenga’s models (Casal et al. 2019), respectively. This
improvement in performance is shown in Figure 8,
where KED clearly reduces predictions error. In the case
of the OLS models, the highest under-predicted and over-
predicted depths were limited to specific areas. For exam-
ple, the OLS models tended to under-predict depth in
shallow areas while in deep areas tended to over-
predict. However, the highest prediction errors tended
to be located in the same areas, for all models applied.

Observe that we have not presented KED prediction
maps of the whole study area, as their quality can, in

Table 2. Leave-one-out prediction accuracy results between measured and predicted depth for KED_S and KED_L. n = number of
points, MPE = mean prediction error and RMSPE = root mean squared prediction error, RRMSPE = relative root mean squared
prediction error.
Date Model Outliers n MPE RMSPE Relative RMSPE Correlation

08/04/2017 KED_S yes 1651 0.000 0.123 0.045 0.999
08/04/2017 KED_L yes 1651 0.000 0.136 0.050 0.999
08/04/2017 KED_S no 1415 0.001 0.103 0.039 0.999
08/04/2017 KED_L no 1409 0.001 0.106 0.040 0.999
17/06/2017 KED_S yes 1649 0.000 0.148 0.055 0.999
17/06/2017 KED_L yes 1649 0.000 0.122 0.046 0.999
17/06/2017 KED_S no 1407 0.001 0.090 0.034 0.999
17/06/2017 KED_L no 1507 0.001 0.089 0.033 0.999
17/07/2017 KED_S yes 1649 0.000 0.168 0.062 0.998
17/07/2017 KED_L yes 1649 0.000 0.123 0.046 0.999
17/07/2017 KED_S no 1428 0.001 0.073 0.027 1.000
17/07/2017 KED_L no 1508 0.000 0.087 0.046 0.999
07/06/2018 KED_S yes 1710 0.000 0.050 0.014 0.999
07/06/2018 KED_L yes 1710 0.000 0.078 0.022 0.999
07/06/2018 KED_S no 1494 0.001 0.041 0.012 1.000
07/06/2018 KED_L no 1564 0.001 0.052 0.015 1.000
02/07/2018 KED_S yes 1710 0.000 0.050 0.014 0.999
02/07/2018 KED_L yes 1710 0.000 0.073 0.020 0.999
02/07/2018 KED_S no 1501 0.001 0.042 0.012 1.000
02/07/2018 KED_L no 1512 0.000 0.067 0.019 1.000
05/09/2018 KED_S yes 1710 0.000 0.050 0.014 0.999
05/09/2018 KED_L yes 1710 0.000 0.050 0.014 0.999
05/09/2018 KED_S no 1594 0.000 0.040 0.011 1.000
05/09/2018 KED_L no 1504 0.001 0.040 0.012 1.000
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part, be dependent on the spatial configuration of in-situ
data (given in Figure 1) which are very linear in nature.
This may give rise to spurious spatial artifacts on the KED
surface. It is recommended that future ground-reference
in-situ sampling should ensure a better spatial represen-
tation of the entire bay.

4. Discussion

Through this study’s exploratory analysis, the Sentinel-2
band that exhibited the highest correlation with in situ
depth was Band 3 (560 nm) corresponding to the green
part of the electromagnetic spectrum. This result is

consistent with previous studies carried out in the
same study area (Casal et al. 2019) and with other studies
carried out in turbid waters (Vahtmäe and Kutser 2016).
While in clear waters the blue band should be selected
for bathymetry retrieval due to its higher penetration
into the water column, in waters containing dissolved
organic matter (CDOM) the optimal bands shift to longer
wavelengths such as green and yellow spectral regions.
The correlation between reflectance and in situ depth
was also image dependent indicating that the local
water column conditions at the time of the image acqui-
sition can affect the relation between reflectance and
depth.

Figure 6. Scatterplots for satellite predicted depth using KED_S and KED_L and the corresponding KED prediction errors after outliers
have been removed. Prediction errors are represented in meters (m). The green line marks the depth where KED prediction errors
increase and scatter the most. The red lines mark the KED prediction errors above +1 and below −1.
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Through a spatially explicit analysis of the data,
a greater understanding of the relationship between
depth and Sentinel-2 bands is possible. Results showed
consistence between images where models seemed to
be less sensitive to water quality conditions. Spatial
models in KED_S and KED_L performed better in com-
parison with their non-spatial counterparts with smaller
prediction errors (see Casal et al. 2019), which is viewed
as a significant improvement in prediction accuracy.

This improvement in prediction accuracy by the spa-
tial prediction models was also found in comparison
with other studies that used empirical algorithms and

Sentinel-2 data. For example, Traganos et al. (2018) pre-
dicted bathymetry (0–12 m) from Sentinel-2 data using
Lygenza’s and Stumpf’s models, including blue and
green bands, in the coastal areas of the Aegean Sea.
For Lyzenga’s model, these authors reported an R2 of
0.69, while for Stumpf’s model they reported an R2 of 0.5,
being these values lower than the ones obtained here
using spatial prediction models. In the study of Traganos
et al. (2018) the highest R2 value (R2 = 0.9) was obtained
for Lyzenga’s model after applying optimization steps
such as a 3 × 3 smoothed filter and a normalized median
Sentinel-2 composite. Studies assessing the application

Figure 8. Example of mapped prediction errors (in meters) for the Sentinel-2 image registered on 17/07/2017. a) Stumpf’s OLS
regression method (Casal et al. 2019). b) KED_S.

Figure 7. Outliers resultant from the KED_L (red) and KED_S (blue) calibration. Outliers coincident in both calibrations, KED_SL, are
shown in yellow. Only sampling points coincident in both campaigns 2017 and 2018 have been considered.
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of spatial prediction models to Sentinel-2 data are still
scarce and only a few examples have been found for
comparison with our study. We could mention the study
carried out by Chybicki in 2018 (Chybiki 2018) that
developed a novel spatial prediction method (spatial
prediction three-dimensional geographically weighted
inverse regression) to derive bathymetry in the Baltic
Sea and reported correlation coefficients (r) of actual
versus predicted between 0.92 and 0.96.

Spatial studies using other satellite products include
that of Hamylton, Hedley, and Beaman (2015) for two
sites on the Great Barrier Reef using WorldView-2
images, where models based on Stumpf’s (using blue
and green bands) and optimization methods such as
the adaptive look-up table (ALUT) model inversion
method (Hedley, Roelfsema, and Phinn 2009; Hedley
et al. 2012) were assessed. An extension to a spatial
error model was constructed which significantly
improved model performance, reporting R2 values of
0.95. Su, Liu, and Wu (2015) compared Lyzenga’s model
with its extension to regression kriging (which is math-
ematically equivalent to KED, see Hengl, Heuvelink, and
Rossiter 2007) on the coast of Hawaii using IKONOS
multispectral images. Here, the regression kriging
model (R2 = 0.95) only increased R2 by 2% in compar-
ison with the Lyzenga’s model (R2 = 0.93). This small
gain could be in part explained due to the temporal
difference between the LiDAR in situ depth (2000) and
the IKONOS image (2005) used, and also the use of
different datasets for model calibration and validation.
Our findings and comparisons demonstrate that the
combination of Sentinel-2 data and KED is a powerful
and consistent method to derive accurate bathymetry
in coastal shallow waters.

A key outcome of our study was the identification of
areas where the derivation of bathymetry using satellite
imagery can be compromised. Outliers identified for
KED_S and KED_L were coincident in location for all ana-
lyzed images. These areas corresponded to the channel of
the Liffey River, an area off the Howth Peninsula and very
shallow areas close to the shoreline. These areas were
similarly identified in Monteys et al. (2015) using spatial
models but a single RapidEye image. Results indicate that
the discharges of the river and the abrupt topography of
the channel have an important influence on the relation-
ship between reflectance and in situ depth. This influence
is critical even when turbid events do not occur. The
northern part of the bay, close to Howth Peninsula, is
affected by the river plume due to the hydrodynamic
conditions of the bay (Dublin Port Company 2017),
where this area also corresponds with an abrupt topogra-
phy and rock outcrops. Outliers were also detected close
to the shoreline indicating the influence of the bottom

type in satellite-derived depth. Both KED_S and KED_L
performed similarly across all study images, but when
outliers were removed, KED_S provided better fit, which
could be explained by the Stumpf’s model premises.
Stumpf’s algorithm assumes that changes in bottom
reflectance affect the band ratio insignificantly compared
to changes in depth. A change in bottom albedo affects
both bands similarly, while changes in depth have a more
pronounced effect on the band with greater attenuation.
This algorithm has also been shown to better account for
turbidity (Stumpf, Holderied, and Sinclair 2003).

Study results showed that turbidity, especially river
plumes, bottom type, and topography exert an influence
on the accuracy and precision of satellite-derived bathy-
metry and these factors need to be considered to obtain
accurate bathymetric maps. Wave environment and nat-
ural spring-neap-spring cycles have been reported to be
the main drivers of turbidity events in Dublin Bay (Dublin
Port Company 2017). In our case, three out of the six
images presented different degrees of turbidity condi-
tions. The highest intertidal range (3 m) found in the
Sentinel-2 image registered on the 02/07/2018 could be
a possible explanation about the more located turbidity
close to the coast. In the images registered on the 08/04/
2017 and on the 05/09/2018, practically the entire bay is
affected by turbidity that could be a consequence of
suspension material produced by high waves of Storms
Doris (late February 2017) and Ernesto (mid-August 2018).
In our case, sample design proved to have little influence
on model performance, as the transect orientations and
distributions were similar across data sets. Here, the avail-
ability of in situ data covering all bottom types and water
quality conditions is likely to improve prediction accuracy
(Monteys et al. 2015; Casal et al. 2019).

This influence of bottom type and water transparency
has been reported by other studies (e.g. Lafon et al.
2002; Vahtmäe and Kuster 2016; Caballero and Stumpf
2019) where water turbidity has been stated as the most
significant factor in influencing satellite-derived bathy-
metry precision (Dekker et al. 2011). Suspended particu-
late matter, a main contributor of turbidity, backscatters
light from the water column, typically producing an
under-prediction of depth. Additionally, waters with dif-
fering degrees of turbidity can scatter the incoming
radiation differently, introducing further complexity in
highly dynamic coastal regions (Caballero and Stumpf
2019). For this reason, the availability of methods that
can make a first assessment about the relation between
reflectance and real depth, taking into account local
conditions, as with the robust spatial models of this
study, is fundamental.

This study demonstrated that in Dublin Bay, where
homogenous bottom and no turbidity events such as
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suspension material or river plumes exist, bathymetry can
be reliably derived up to a depth of 6 m using Sentinel-2
data. This result is coincident with previous studies using
non-spatial empirical methods and Sentinel-2 data in the
same study area (Casal et al. 2019), confirming 6 m as the
critical depth for “optimal” satellite-derived bathymetry. In
other studies, carried out in Dublin Bay, bathymetry was
reported to be satisfactorily retrieved up until 12 m using
spatial empirical methods and a RapidEye image
(Monteys et al. 2015). These differences are likely due to
the different distribution of the in-situ depth sampling
points that in the case of the RapidEye analysis were
homogeneously distributed over the whole study area.
Conversely, other studies carried out in turbid waters such
as the Guadiana estuary (Spain) (Sánchez-Carnero et al.
2014) or South Florida (USA) (Caballero and Stumpf 2019)
reported a similar depth limit of 6 m, using SPOT images
and Sentinel-2 with a 10 m spatial resolution. This sug-
gests a limit of around 6 m could be a conservative
approximation for turbid waters in general.

5. Conclusions

In this study, the empirical relationship betweenmultibeam
depth data and Sentinel-2 was analyzed using the spatial
predictionmethod of krigingwith an external drift (KED) for
Dublin Bay, Ireland, across multiple years. Results showed
improved prediction accuracies in satellite-derived bathy-
metry in comparison with simpler non-spatial construc-
tions, decreasing RMSE by more than 80%. Results
suggest that Sentinel-2 data could be used to effectively
capture depth in Dublin Bay until 6 m. However, the pre-
sence of higher concentration of suspended materials,
especially river plumes, can influence these results reducing
this threshold to 4 m. The combined use of Sentinel-2 data
(10 m bands) and KED is considered a powerful and robust
tool to derive accurate bathymetry in coastal shallow
waters and to define local conflictive areas for this purpose.

Highligths

● Spatial prediction models can accurately derive satellite
depth until 6 m in Dublin Bay

● KED improved depth prediction accuracy in comparison
with simpler non-spatial models

● Turbidity, abrupt topography, and bottom signal are the
main factors influencing satellite-derived bathymetry
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