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Infinite Mixtures of Infinite Factor Analysers

Keefe Murphy∗, Cinzia Viroli†, and Isobel Claire Gormley‡,§

Abstract. Factor-analytic Gaussian mixtures are often employed as a model-
based approach to clustering high-dimensional data. Typically, the numbers of
clusters and latent factors must be fixed in advance of model fitting. The pair
which optimises some model selection criterion is then chosen. For computational
reasons, having the number of factors differ across clusters is rarely considered.

Here the infinite mixture of infinite factor analysers (IMIFA) model is intro-
duced. IMIFA employs a Pitman-Yor process prior to facilitate automatic in-
ference of the number of clusters using the stick-breaking construction and a
slice sampler. Automatic inference of the cluster-specific numbers of factors is
achieved using multiplicative gamma process shrinkage priors and an adaptive
Gibbs sampler. IMIFA is presented as the flagship of a family of factor-analytic
mixtures.

Applications to benchmark data, metabolomic spectral data, and a handwritten
digit example illustrate the IMIFA model’s advantageous features. These include
obviating the need for model selection criteria, reducing the computational burden
associated with the search of the model space, improving clustering performance
by allowing cluster-specific numbers of factors, and uncertainty quantification.

Keywords: model-based clustering, factor analysis, Pitman-Yor process,
multiplicative gamma process, adaptive Markov chain Monte Carlo.

1 Introduction

In cases where the number of variables p is comparable to or greater than the number
of observations N , many clustering techniques tend to perform poorly or be intractable.
Factor analysis (FA; Knott and Bartholomew, 1999) is a well-known approach to par-
simoniously modelling data. Bai and Li (2012) outline some computational difficulties
which arise when N � p. Model-based clustering methods which rely on latent factor
models have long been successfully utilised to cluster high-dimensional data. Ghahra-
mani and Hinton (1996) propose a mixture of factor analysers model (MFA) with
cluster-specific parsimonious covariance matrices and estimate it via an expectation-
maximisation algorithm; McLachlan and Peel (2000) provide a succinct overview. Esti-
mation of MFA models has also been considered in a Bayesian framework (Diebolt and
Robert, 1994; Richardson and Green, 1997). McNicholas and Murphy (2008) develop a
suite of similar parsimonious Gaussian mixture models. Other related developments in
this area include Baek et al. (2010) and Viroli (2010), among others.
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Clustering using a MFA model typically requires specifying the number of clusters
and factors in advance of model fitting. Generally, a range of MFA models with different
numbers of clusters and factors are fitted and then compared through the use of infor-
mation criteria, such as the Bayesian Information Criterion (BIC; Kass and Raftery,
1995) or the Deviance Information Criterion (Spiegelhalter et al., 2002, 2014). Within
a Bayesian framework Fokoué and Titterington (2003) use a stochastic model selection
approach but do not simultaneously choose the optimal number of clusters and factors.
Conducting an exhaustive search of the model space is computationally expensive; the
cost is typically reduced by only considering models in which the number of factors
is common across clusters. Regardless, even searching the reduced model space can be
computationally onerous. The problem of identifying the optimal model is exacerbated
by the fraught task of choosing among the range of model selection tools available, which
often suggest different optimal models. Moreover, enforcing a common number of factors
across clusters may lead to poor clustering performance due to a lack of flexibility.

The infinite mixture of infinite factor analysers (IMIFA) model is introduced here. It
theoretically allows infinitely many components and infinitely many factors within each
component. The need to select a model selection criterion is obviated and quantification
of the uncertainty in the optimal numbers of non-empty clusters and cluster-specific
factors is facilitated. IMIFA relies on an infinite mixture model through the use of
a nonparametric Pitman-Yor process (PYP) prior (Perman et al., 1992; Pitman and
Yor, 1997), of which the well-known Dirichlet process (DP; Ferguson, 1973) is a special
case. The infinite mixture model framework allows the number of clusters present to
be automatically inferred; here the stick-breaking construction (Pitman, 1996) and an
independent slice-efficient sampler (Kalli et al., 2011) are employed to facilitate this.

By allowing infinitely many factors within each cluster, IMIFA addresses the diffi-
culty in choosing the optimal number of factors. This facilitates fitting factor-analytic
models which are more flexible, in the sense that the number of factors may be cluster-
specific, thereby potentially improving clustering performance. This is achieved by as-
suming multiplicative gamma process (MGP) shrinkage priors (Bhattacharya and Dun-
son, 2011; Durante, 2017) on the cluster-specific factor loading matrices, thus generalis-
ing the MGP prior to the mixture setting. Such a prior allows the degree of shrinkage of
the factor loadings towards zero to increase as the factor number tends towards infinity.
The number of factors with non-negligible loadings can be considered as the ‘active’
number of factors within each cluster. Following Bhattacharya and Dunson (2011), a
computationally efficient adaptive Gibbs sampling algorithm is employed for estimation.
Thus, the choice of the numbers of active factors in different clusters is automated.

The IMIFA model with its PYP-MGP prior thus offers a single-pass and therefore
computationally efficient approach to clustering high-dimensional data. It can be viewed
as the most flexible model at the head of a family of Bayesian factor-analytic mixture
models. Section 2 develops the hierarchy of the IMIFA model family, beginning with the
MFA model and concluding with the flagship IMIFA model. Between these extremes the
novel finite mixture of infinite factor analysers model (MIFA) is introduced. Overfitted
factor-analytic mixtures (Papastamoulis, 2018) also belong to the IMIFA family; the
overfitted mixture of infinite factor analysers (OMIFA) model is also introduced here.
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Section 3 considers implementation of the IMIFA family of models. A benchmark-
ing experiment is conducted on the well-known Italian olive oil data set. A real data
application follows through the cluster analysis of spectral metabolomic data from an
epilepsy study. Finally an illustrative application is provided through clustering United
States Postal Service handwritten digit data, a setting for which fitting sub-models of
the IMIFA family is practically infeasible. Comparisons against other clustering methods
are provided throughout. Simulation studies demonstrating the performance of IMIFA
under different scenarios are deferred to the supplementary material (Murphy et al.,
2019a). Section 4 concludes the article with a discussion of IMIFA and thoughts on
future research directions.

A software implementation for IMIFA and its family of sub-models is provided by
the associated R package IMIFA (Murphy et al., 2019b), which is freely available from
www.r-project.org (R Core Team, 2019), with which all results were generated.

2 The IMIFA Model Family

The hierarchy of the IMIFA family of models is delineated herein, including a review
of extant methodologies, the introduction of novel sub-models, and concluding with
the flagship IMIFA model. Prior specifications, Markov chain Monte Carlo (MCMC)
inferential procedures, approaches to posterior predictive model checking, and model-
specific implementation issues that arise in practice are addressed.

2.1 Mixtures of Factor Analysers

Mixtures of factor analysers are Gaussian latent variable models used for clustering
high-dimensional data. For each of G clusters in these finite mixtures, the cluster-
specific FA model in cluster g is given by xi − μg = Λgηi + εig. The observed feature
vector xi = (xi1, . . . , xip)

�
with mean μg and covariance matrix Σg is assumed to lin-

early depend on a q-vector (q � p) of latent common factor scores ηi and additional
sources of variation called specific factors εig. It is assumed that ηi has a q-variate
Gaussian distribution Nq(0,Iq), where Iq denotes the q × q identity matrix, and that
εig ∼ Np(0,Ψg), where Ψg is a diagonal matrix with non-zero elements ψ1g, . . . , ψpg

known as uniquenesses. Here, Λg denotes the p × q factor loadings matrix of cluster g
and notably q = 0 is permitted.

To facilitate estimation, a latent cluster indicator vector zi = (zi1, . . . , ziG)
� is in-

troduced such that zig = 1 if observation i belongs to cluster g and zig = 0 other-
wise. Hence, zi has a Mult(1,π) distribution where π = (π1, . . . , πG)

�
are the clus-

ter mixing proportions which sum to 1. A symmetric uniform Dirichlet prior π ∼
Dir(α = (α, . . . , α) = 1) is assumed. Upon marginalising out zi and ηi, MFA yields
a parsimonious finite sum covariance structure for the observed data

f(xi |θ) =
G∑

g=1

πgNp

(
xi;μg,Σg = ΛgΛ

�
g +Ψg

)
, (1)

file:www.r-project.org
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where Np(xi; ·, ·) is the density of a p-variate Gaussian distribution evaluated at xi and
θg = {μg,Λg,Ψg} are the cluster-specific FA parameters for which inference is straight-
forward under a Gibbs sampling scheme. Imposing constraints on Ψg (McNicholas and
Murphy, 2008) and/or fixing πg = 1/G ∀ g may be useful in some settings.

Prior Specification and Practical Issues

The conditionally conjugate nature of the various prior distributions detailed below
facilitates MCMC sampling via straightforward Gibbs updates. A multivariate Gaussian
prior is assumed for the factor loadings of the variable j across the q factors of cluster
g: Λjg = (λj1g, . . . , λjqg) ∼ Nq(0,Iq). Similarly, a diffuse multivariate Gaussian prior is
assumed for the component means, μg ∼ Np

(
μ̃, ϕ−1Ip

)
, where μ̃ is the overall sample

mean and the scalar ϕ controls the level of diffusion.

An inverse gamma prior ψjg ∼ IG(α, βj) is assumed for the uniquenesses of vari-
able j in cluster g. Guided by Frühwirth-Schnatter and Lopes (2010), hyperparameters
are chosen to ensure ψjg is bounded away from 0, thereby avoiding Heywood prob-
lems. With sufficiently large shape α, variable-specific scales are derived from the sam-
ple precision matrix S� = S−1 via βj = (α− 1)/S�

jj . However, when N/p is close to

or less than 1, or when S−1 is otherwise unavailable, S� is replaced by a ridge-type

estimator Ŝ−1 =
(
β0 + N/2

)(
β0Ip + 0.5

∑N
i=1 xix

�
i

)−1
, where β0 is a hyperparame-

ter. For unstandardised data, this estimator is constructed for the inverse correlation
matrix and then appropriately scaled using the diagonal entries of S (Wang et al.,
2015). When the variances are roughly balanced, constraining Ψg to ψgIp , and/or
using βj = β = (α− 1)/max(diag(S�)), provides additional parsimony. Notably, the
isotropic constraint provides the link between factor analysis and probabilistic principal
component analysis (Tipping and Bishop, 1999).

The rotational invariance property which makes FA models non-identifiable is well
known: most covariance matricesΣ cannot be uniquely factored asΛΛ�+Ψ when q > 1.
Though identifiability of Λ is not strictly necessary for the purposes of clustering or
inferring Σ, addressing the identifiability problem offline using the parameter expanded
approach of Ghosh and Dunson (2008) in tandem with Procrustean methods, as in
McParland et al. (2014), yields interpretable posterior summaries. Another practical
issue is the label switching phenomenon (Frühwirth-Schnatter, 2010) which is addressed
offline using the cost-minimising permutation given by the square assignment algorithm
(Carpaneto and Toth, 1980). Finally, optimal FA and MFA models are chosen using the
BIC-MCMC criterion (Frühwirth-Schnatter, 2011) where necessary in what follows.

2.2 Mixtures of Infinite Factor Analysers

To overcome the requirement to specify q, infinite factor analysis (IFA) models are
employed (Bhattacharya and Dunson, 2011). The IFA model is a factor analysis model
which assumes a multiplicative gamma process (MGP) shrinkage prior on the loadings
matrix. This prior allows the degree of shrinkage towards zero to increase as the column
index k → ∞, mitigating against the factor splitting phenomenon. Here the IFA model
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is generalised to the mixture setting, leading to the novel mixture of infinite factor
analysers (MIFA) model. Under MIFA, the MGP prior is placed on each parameter
expanded Λg matrix with no restrictions on its entries, thereby making the induced
prior on Σg invariant to the ordering of the variables. The MGP prior is conditionally
conjugate, facilitating block Gibbs updates of the loadings and hence rapid mixing.
Thus, the MGP prior in mixture settings is given by

λjkg |φjkg, τkg, σg ∼ N1

(
0, φ−1

jkgτ
−1
kg σ−1

g

)
, φjkg ∼ Ga(ν1, ν2) ,

τkg =

k∏
h=1

δhg , σg ∼ Ga(1, 2) ,

δ1g ∼ Ga(α1, β1) , δhg ∼ Ga(α2, β2) ∀ h ≥ 2,

where τkg is a column shrinkage parameter for the k-th column in the g-th cluster’s
loadings matrix Λg ∀ k = 1, . . . ,∞, and Ga(α, β) denotes the gamma distribution with
mean α/β. The role of the local shrinkage parameters φ1kg, . . . , φpkg for the p elements
in column k of Λg is to favour sparsity while also preserving the signal of non-zero
loadings. Lastly, the cluster shrinkage parameter σg reflects the belief that the degree
of shrinkage is cluster-specific. A schematic illustration of the MGP prior is given in
Figure 1; note that loadings can shrink arbitrarily close, but not exactly, to zero.

Bhattacharya and Dunson (2011) fix β1 = β2 = 1 and recommend that α2 > β2.
However, Durante (2017) elaborates on the cumulative shrinkage properties and roles
played by hyperparameters, showing in particular that α2 > β2+1 is necessary in order
to have variances that decrease in expectation with k. It is also recommended that α2 be
moderately large relative to α1 and to avoid excessively high values for α1. While Bhat-
tacharya and Dunson (2011) assume Ga(ν, ν) priors for the local shrinkage parameters,
here more general settings are used to allow control over prior non-informativity. In
the spirit of Durante (2017), the expectation ν2/(ν1 − 1) of the induced inverse gamma
prior on φ−1

jkg is suggested to be ≤ 1 to induce sparsity on average. It is generally
advisable that MGP hyperparameters are chosen such that the first two moments of
the associated hyperprior are defined. In the mixture setting, α1 and α2 may need to
be higher than the values suggested by Durante (2017) to enforce a greater degree of

Figure 1: Density of a typical element in the first, second, and third columns of a
cluster-specific loadings matrix under the MGP shrinkage prior.



942 Infinite Mixtures of Infinite Factor Analysers

shrinkage in clusters with few units; this aspect is highlighted in simulation studies in
Appendix B.

The Adaptive Gibbs Sampler

An adaptive Gibbs sampler (AGS) is employed when performing inference for MIFA.
This dynamically shrinks the loadings matrices (and the infinite scores matrix η) to
have finite numbers of columns, by selecting the number of ‘active’ factors. This prac-
tically facilitates posterior computation while closely approximating the IFA model,
without requiring specification of Q = (q1, . . . , qG)

�
. However, a strategy is required

for choosing appropriate truncation levels, q̂g, that strike a balance between missing
important factors and wasting computational effort. For computational reasons, a con-
servatively high upper bound is used, such that q�g = min

(
	3(p)
 , N −1, p−1

)
∀ g. The

number of factors in each Λg is then adaptively tuned as the MCMC chain progresses.
Adaptation can be made to occur only after the burn-in period, in order to ensure
the true posterior distribution is being sampled from before truncating the loadings
matrices.

At the t-th iteration, adaptation occurs with probability p(t) = exp(−b0 − b1t),
with b0 and b1 chosen so that adaptation occurs often at the beginning but then de-
creases exponentially fast in frequency. Here b0 = 0.1 and b1 = 5× 10−5 are used. With
probability p(t), loadings columns having some pre-specified proportion of elements ς
in a small neighbourhood ε of zero are monitored. If there are no such columns, an
additional column is added by simulation from the MGP prior. Otherwise redundant
columns are discarded and the AGS proceeds with all parameters corresponding to non-
redundant columns retained. Choice of ς and ε can be delicate: here ς = 	0.7 × p�/p
and ε = 0.1 are found to strike an appropriate balance. The dimension of the matrix η
of factor scores at a given iteration are set to p× q = p×max (Q (t)); rows correspond-
ing to observations currently assigned to a cluster with fewer latent factors than q are
padded with zeros. Notably, here q̂g may shrink to 0 thus allowing diagonal covariance
structure within a component. If this occurs, the decision to simulate a new column
is based on a binary trial with probability 1 − ς as there are no loadings columns to
monitor.

The numbers of active factors in each cluster for each retained posterior sample
can be used to construct a barchart approximation to the posterior distribution of qg.
The posterior mode is used to estimate each qg, with credible intervals quantifying
uncertainty. The main advantages of MIFA are that different clusters can be modelled
by different numbers of factors and that the model search is reduced to one for G only, as
qg is estimated automatically during model fitting. Here, for MIFA models, the optimal
G is chosen via the BICM (BIC-Monte (Carlo)) proposed by Raftery et al. (2007), with

BICM = 2 ln
(
L̃
)
− 2s2l ln(N), where L̃ is the largest log-likelihood value calculated for

each retained posterior sample and s2l is the sample variance thereof. This criterion is
particularly useful in the context of nonparametric models where the number of free
parameters is difficult to quantify.
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Other Infinite Factor Models

This work offers an extension of the MGP prior and its related AGS routine to the mix-
ture modelling context. Wang et al. (2016) develop a related model employing a mul-
tiplicative exponential process prior. Other nonparametric approaches to inferring the
number of factors include Knowles and Ghahramani (2007), in which a two-parameter
Indian Buffet Process (IBP) prior is assumed on an infinite binary matrix underlying
the factor scores, thus selecting features of interest, with associated standard Gaussian
weights. A closely related approach using the Beta process (BP) is provided by Paisley
and Carin (2009). In Knowles and Ghahramani (2011) and Ročková and George (2016),
an IBP prior is instead assumed for sparsifying the loadings. These models assume a
single sparse infinite factor model for the whole data set. However, embedding them in
a mixture modelling setting, similar to the IMIFA framework, is intuitively feasible.

Indeed, Chen et al. (2010) employ the BP prior, coupled with a Dirichlet process
prior, to perform clustering in a manifold learning setting. While the BP and IBP priors
achieve exact sparsity, which may be advantageous in certain applications, the MGP
prior has a weaker notion of sparsity by virtue of cumulatively shrinking an infinite series
arbitrarily close to zero, thereby preserving small signals. The block updates of each row
of Λg facilitated by the MGP prior and parameter expansion mean the AGS approach
is a simpler, more computationally efficient alternative to the BP and IBP priors.

2.3 Overfitted Mixtures of (Infinite) Factor Analysers

While MIFA obviates the need to pre-specify Q, the issue of model choice is not yet fully
resolved. Overfitted mixtures (Rousseau and Mengersen, 2011; van Havre et al., 2015)
are one means of extending MIFA; indeed Papastamoulis (2018) proposes an overfitted
mixture of factor analysers (OMFA), albeit with finite factors. Here, the overfitted
mixture of infinite factor analysers (OMIFA) model is introduced.

In overfitted mixtures the symmetric Dirichlet prior on π plays an important role.
Estimation is approached by initially overfitting the number of clusters expected to be
present. Small values of the hyperparameter α encourage emptying out excess compo-
nents in the posterior distribution; the uniform prior with α = 1 is rather indifferent
in this respect. The sampler is initialised with a conservatively high number of compo-
nents: G� = max

(
�3 ln(N)
 , 25, N − 1

)
, though this may be too high if it is close to N .

While G̃ = G� remains fixed throughout the MCMC chain, the number of non-empty

clusters is recorded at each iteration of the sampler as G0 = G̃−
∑G̃

g=1 1
(∑N

i=1 zig = 0
)

where 1(·) is the indicator function. The true G is estimated by Ĝ, the G0 value visited
most often. Cluster-specific inference is conducted only on samples corresponding to
those visits. For the OMIFA model, the AGS is modified to handle empty components:
the MGP-related parameters are simulated from the relevant priors and each corre-
sponding Λg matrix is restricted to having q factors, i.e. the same number of columns
currently in the matrix of factor scores η, either by truncation or by padding with zeros,
as required.
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2.4 Infinite Mixtures of (Infinite) Factor Analysers

Embedding MFA and MIFA in an infinite mixture setting leads, respectively, to the infi-
nite mixture of finite factor analysers model (IMFA) and the flagship infinite mixture of
infinite factor analysers model (IMIFA). These models employ a nonparametric Pitman-
Yor process (PYP) prior which is easily incorporated into the MCMC sampling scheme.

The PYP is a stochastic process whose draws are discrete probability measures:
H ∼ PYP(α, d,H0) denotes a PYP probability distribution H, with base distribution
H0 interpreted as the mean of the PYP, discount parameter d ∈ [0, 1), and concentration
parameter α > −d. For the PYP mixture model IMFA and the PYP-MGP mixture
model IMIFA H0 comes from the factor-analytic mixture (1), hence

f(xi |θ) =
∞∑
g=1

πgNp

(
xi;μg,ΛgΛ

�
g +Ψg

)
. (2)

The stick-breaking representation of the PYP (Pitman, 1996) is used as a prior process
for generating the mixing proportions in (2). This construction views {π1, π2, . . .} as
pieces of a unit-length stick that is sequentially broken in an infinite process, with
stick-breaking proportions Υ = {υ1, υ2, . . .}, summarised as

υg ∼ Beta(1− d, α+ gd) , θg ∼ H0 ,

πg = υg

g−1∏
l=1

(1− υl) , H =

∞∑
g=1

πgδθg ∼ PYP(α, d,H0) ,

where δθg is the Dirac delta centred at θg, such that draws are composed of a sum
of infinitely many point masses. The PYP reduces to the DP when d = 0, in which
case mass shifts to the right with increasing dispersion as α increases, implying an a
priori larger number of components. However, some important distributional features
fundamentally differ when d �= 0 (De Blasi et al., 2015). The PYP exhibits heavier tail
behaviour and allows the stick-breaking distribution to vary according to the component
index g, without sacrificing much in the way of tractability. In particular, increasing d
values have the effect of flattening the prior, controlling its degree of non-informativity.

Slice sampling (Walker, 2007; Kalli et al., 2011) is used here to yield samples from
the PYP by adaptively truncating the number of components needed to be sampled
at each iteration. By introducing an auxiliary variable ui > 0 which preserves the
marginal distribution of the data, and denoting by ξ = {ξ1, ξ2, . . .} a positive se-
quence of infinite quantities which sum to 1, the joint density of (x,u) is given by
f(x,u |θ, ξ) =

∑∞
g=1 πgUnif(u; 0, ξg) f(x |θg). Since only a finite number of ξg are

greater than u, the conditional density of x |u can be written as a finite mixture with
G̃ = max1≤i≤N |Aξ(ui) | ‘active’ components at each iteration, where | · | denotes cardi-
nality and Aξ(u) = {g : u < ξg}. Though G is infinite in theory, G̃ can be at most equal
to N . Thus, the infinite mixture of (infinite) factor analysers models can be sampled
from. Typical implementations of the slice sampler arise when ξg = πg (Walker, 2007)
but independent slice-efficient sampling (Kalli et al., 2011) allows for a deterministic
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decreasing sequence, e.g. geometric decay, given by ξg = (1− ρ) ρg−1 where ρ ∈ [0, 1) is
a fixed value to be chosen with care. Higher values generally lead to better mixing but
longer run-times, as the average cardinality of Aξ(u) increases, and vice versa. Setting
ρ = 0.75 appears to strike an appropriate balance in the applications considered here.

Inference for Infinite Mixtures of Factor Analysers Models

For clarity, what follows focuses on the IMIFA model where inference proceeds via the
independent slice-efficient sampler with geometric decay. Inference for other models in
the IMIFA family is closely related. The joint density of the IMIFA model is

f(X,η,Z,u,Υ,θ) ∝ f(X |η,Z,u,Υ,θ) f(η) f(Z,u |Υ,π) f(Υ |α, d) f(θ)

=

{
N∏
i=1

∏
g∈Aξ(ui)

Np

(
xi;μg +Λgηi,Ψg

)zig}{
N∏
i=1

Nq

(
ηi;0,Iq

)}
{

N∏
i=1

∞∏
g=1

(
πg

ξg
1
(
ui < ξg

))zig
}{ ∞∏

g=1

(1− υg)
α+gd−1

υd
g B(1− d, α+ gd)

}
f(θ) ,

where B(·) is the Beta function and f(θ) is the product of the previously defined collec-
tion of conditionally conjugate priors with additional layers for hyperparameters. Only
the parameters of the G̃ active components are sampled at each iteration. The algo-
rithm is initialised with the same G� value detailed in Section 2.3, typically above the
anticipated number to which the algorithm will converge, in the spirit of Hastie et al.
(2014). Here, however, G̃ can theoretically exceed this value. For computational reasons,

a finite upper limit is placed on G̃ with max(G�,min(N − 1, 50)) found to be sufficiently

large. However, G̃ is only regarded as a set of proposals as to where to allocate obser-
vations; as in Section 2.3, it is the subset of non-empty clusters G0 that is of inferential
interest.

Bayesian approaches to clustering are known to be sensitive to initial cluster allo-
cations. While starting values for zi can be obtained by any means, model-based agglom-
erative hierarchical clustering (Scrucca et al., 2016) is used here. Though this is fast and
intuitive given that IMIFA models are initialised at a conservatively high number of com-
ponents, which are then merged as the sampler proceeds, heavily imbalanced initial clus-
ter sizes are cautioned against. By extension, initial cluster means and mixing propor-
tions are computed empirically. Other parameter starting values are simulated from their
relevant prior distributions. The adaptive inferential algorithm for IMIFA then proceeds
mostly via Gibbs updates (see Appendix A). For those which are multivariate Gaussian,
using the Cholesky factor of the covariance matrices and employing block updates speeds
up the algorithm (Rue and Held, 2005). The allocations zi are sampled in a fast, nu-
merically stable fashion (see Appendix A), using the Gumbel-Max trick (Yellott, 1977).
Finally, state spaces for applications of IMIFA to real data can be highly multimodal
with well-separated regions of high posterior probability coexisting, corresponding to
clusterings with different numbers of components. Thus, label switching moves (Pa-
paspiliopoulos and Roberts, 2008) are incorporated in order to improve mixing.
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Assessing Model Fit and Mixing

As is good statistical practice, posterior predictive model checking (Gelman et al., 2004)
is employed. Sampled model parameters from the MCMC chain are used to generate
replicate data from the posterior predictive distribution. Valid posterior samples, after
conditioning on Ĝ, are those for which max{Q (t)} ≥ max

{
q̂1, . . . , q̂Ĝ

}
such that the

dimension of the estimated scores matrix η̂ is preserved. To assess model fit, histograms
of the modelled data X are compared to histograms of the replicate data in a global
sense using the Posterior Predictive Reconstruction Error (PPRE), calculated as follows:

1. Gather the histogram bin counts of each variable in X into the h×p matrix H, where h is
the maximum number of bins across all variables and H is padded with zeros as required.

2. Generate r ∈ {1, . . . , R} data sets X (r) from the posterior predictive distribution.

3. Create a similar matrix of histogram bin counts H(r) for each X (r) using the same
break-points with which H was constructed (with endpoint bins extended to ±∞).

4. Compute the Frobenius norm ‖·‖F between H and H(r), standardising to the 0-1 scale

using the triangle inequality
∣∣∣∥∥H∥∥

F −
∥∥H(r)

∥∥
F

∣∣∣ ≤ ∥∥H−H(r)
∥∥
F ≤

∥∥H∥∥
F +

∥∥H(r)
∥∥
F .

The distribution of PPRE values can be visualised using boxplots and summarised by
the median, with credible intervals. This discrepancy measure is well-suited to assessing
model adequacy for mixtures of multivariate data: it accounts for inherent multimodality
and gives a global quantitative measure of agreement between the distributions of the
observed variables and their posterior predictive counterparts.

Convergence of the MCMC chains is assessed using the potential scale reduction
factor (PSRF; Brooks and Gelman, 1998; Plummer et al., 2006). Random allocations
of the initial cluster labels, resulting in different draws from the relevant priors for pa-
rameter initialisation, are used to construct the multiple overdispersed chains required.
The MAP labels of each chain are matched to the main chain prior to computing the
diagnostics; Λg matrices are also rotated to a common template for each cluster. Good
convergence is indicated by upper PSRF 95% confidence interval limits close to 1; this
is a stricter requirement than the PSRF values themselves being near 1.

Comparing the IMIFA Family Models

Though IMIFA and OMIFA come with the computational complexities inherent in non-
parametric methods, diminishing adaptation, and extra tuning parameters, their advan-
tages over other models in the IMIFA family are numerous: i) flexibility, in the sense that
models where qg �= q′g can be fitted, ii) computational efficiency, in the sense that the
burden is reduced relative to searching over a range of fitted MFA or MIFA models,
iii) removing the need for model selection criteria, and iv) the ability to quantify the
uncertainty in Ĝ and q̂g. Both methods offer simpler alternatives to reversible jump
MCMC (Richardson and Green, 1997) and birth-death MCMC (Stephens, 2000). Hence,
among the IMIFA family, the infinite factor models are recommended over the finite
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factor models and the infinite and overfitted mixtures are recommended over the finite
mixtures. However, the MIFA model is appropriate if one wishes to fix G but infer qg.

While infinite mixtures are often used for density estimation, they are also employed
to infer the number of components in cluster analyses (e.g. Kim et al. 2006; Xing et al.
2006; Yerebakan et al. 2014). However, Miller and Harrison (2013, 2014) raise concerns
about the guarantee of posterior consistency for the number of non-empty clusters,
showing the number uncovered is typically greater than or equal to the truth, often with
several vanishingly small clusters inferred. These concerns highlight the need for practi-
tioners to pay due consideration to the uncertainty in the number of clusters offered by
IMIFA models. Relatedly, Frühwirth-Schnatter and Malsiner-Walli (2019) compare in-
finite mixtures to overfitted (‘sparse finite’) mixtures. They highlight that overfitted
mixtures are useful for applications in which the data arise from a moderate number of
clusters, even as the sample size increases, whereas infinite mixtures are suited to cases
where the number of clusters also increases. However, they show that clustering results
are driven less by the assumption of whether the data arose from a finite or infinite
mixture, but by the hyperprior on the DP parameters or the sparseness of the Dirichlet
prior in the overfitted setting. Indeed, they show that overfitted and infinite mixtures
yield comparable clustering performance on the observed data when these hyperpriors
are matched. This matching leads to ‘sparse’ infinite mixtures that avoid overfitting the
number of clusters. Similar behaviour is observed in the applications in Section 3, where
the IMIFA and OMIFA models, with matched hyperpriors, give comparable results.

The issue of choosing α can make implementing overfitted models challenging.
With fixed α = γ/G�, the prior approximates a DP with concentration parameter
γ as G� tends to infinity (Green and Richardson, 2001). Here, following Frühwirth-
Schnatter and Malsiner-Walli (2019), a Ga(a, bG�) hyperprior is assumed for α. This
favours small values and allows α to be updated via Metropolis-Hastings. In the in-
finite mixture setting, learning the PYP parameters (which also requires Metropolis-
Hastings steps) and adopting the label-switching moves enables accurate inference on
G0. A joint hyperprior p(α, d) = p(α | d) p(d) is assumed (Carmona et al., 2019) where
p(α | d) = Ga(α+ d; a, b); choosing a large b encourages clustering (Müller and Mitra,
2013). A spike-and-slab hyperprior d ∼ κδ0 + (1− κ) Beta(a′, b′) is assumed. The esti-
mated proportion κ̂ can then be used to assess whether the data arose from a DP or a
PYP at little extra computational cost. See Appendix A for further details.

3 Illustrative Applications

The flexibility and performance of the IMIFA model and its related model family are
demonstrated below through application to benchmark and real data sets. All results are
obtained through the IMIFA R package; code to reproduce many of the results is available
in the associated vignette1. Appendix B reports on simulation studies demonstrating
the performance of IMIFA under different scenarios, including effects of the N/p ratio,
the PYP parameters, imbalanced cluster sizes, uncommon qg and the degree of loadings
sparsity, while Appendix C explores the robustness of IMIFA.

1 https://cran.r-project.org/web/packages/IMIFA/vignettes/IMIFA.html

https://cran.r-project.org/web/packages/IMIFA/vignettes/IMIFA.html
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Parameter(s) Hyperparameter(s) Value(s)
μg ϕ 0.01
Ψg (α, β0) (2.5, 3)
φjkg (ν1, ν2) (3, 2)
δ1g (α1, β1) (2.1, 1)
δkg (α2, β2) (3.1, 1)
σg (1, 2) (3, 2)
α (a, b) (2, 4)
d (a′, b′, κ) (1, 1, 0.5)

Table 1: Hyperparameter specifications for the IMIFA model. Note that the specification
of the beta distribution in the prior for d amounts to a standard uniform.

MCMC chains were run for 50,000 iterations, except for Section 3.3 in which 20,000
were run. Every 2nd sample was thinned and the first 20% of iterations were discarded
as burn-in. All computations were performed on a Dell Latitude 5491 laptop, equipped
with a 2.60 GHz Intel Core i7-8850H processor and 16 GB of RAM. Where necessary,
the optimal finite and infinite factor models are chosen by the BIC-MCMC and BICM
criteria, respectively. Throughout, ·̂ denotes the posterior mode, posterior mean, or
relevant optimal value. Unless otherwise stated data were mean-centred and unit-scaled
and no constraints were imposed on the uniquenesses. Hyperprior specifications are
detailed in Table 1. While there are many hyperparameters to select, the choices are
all reasonably standard. However, poor settings may introduce additional factors or
clusters to maintain flexibility and so care in specifying hyperparameters is advised.

3.1 Benchmark Data: Italian Olive Oils

The Italian olive oil data (Forina et al., 1983) is often clustered using factor-analytic
models, e.g. McNicholas (2010). The data detail the percentage composition of 8 fatty
acids in 572 Italian olive oils, known to originate from three areas: southern and northern
Italy and Sardinia. Each area is composed of different regions: southern Italy comprises
north Apulia, Calabria, south Apulia, and Sicily; Sardinia is divided into inland and
coastal Sardinia; and northern Italy comprises Umbria and east and west Liguria. Hence,
the true number of clusters is hypothesised to correspond to either 3 areas or 9 regions.

The full family of IMIFA models is fitted to the olive oil data with results detailed in
Table 2. Models relying on pre-specification of finite ranges of G and/or q are based on
G = 1, . . . , 9 and q = 0, . . . , 6. Clustering performance is evaluated using the adjusted
Rand index (ARI; Hubert and Arabie, 1985) and the misclassification rate, compared
to the 3 area labels. The α parameter is reported as its fixed value or posterior mean, as
appropriate. Table 2 shows the flexibility and accuracy of the developed model family,
and of the IMIFA model in particular which has the best clustering performance. Addi-
tionally, IMIFA is the most computationally efficient model considered, among those in
the IMIFA family achieving clustering, as it requires only one run. This speed improve-
ment would be exacerbated with larger data sets. However, methods requiring fitting
of multiple models were run here in series; parallel implementations would reduce run-



K. Murphy, C. Viroli, and I. C. Gormley 949

Model # Models Relative Time α d G Q ARI Error (%)
IMIFA 1 1.00 0.48 0.01 4 6, 3, 6, 2 0.94 8.39
IMFA 7 4.14 0.62 0.01 5 6, 6, 6, 6, 6 0.91 14.86
OMIFA 1 1.19 0.02 – 4 6, 3, 6, 4 0.93 9.97
OMFA 7 5.11 0.03 – 5 6, 6, 6, 6, 6 0.85 15.56
MIFA 9 3.41 1 – 5 6, 3, 6, 6, 4 0.92 10.31
MFA 63 13.86 1 – 2 5, 5 0.82 17.13
IFA 1 0.11 – – 1 6 – –
FA 7 0.37 – – 1 6 – –

mclust 115 0.01 – – 6 – 0.56 38.64
MFMA 1, 350 4.68 – – 4 5, 5, 5, 5 0.68 20.28
pgmm 588 4.46 – – 5 6, 6, 6, 6, 6 0.53 35.84

Table 2: Results of fitting a range of models, including the full IMIFA family, to the
Italian olive oil data, detailing the number of candidate models explored, the run-time
relative to the IMIFA run, the posterior mean or fixed value of α, the posterior mean
of d, modal estimates of G and Q, and the ARI and misclassification rate as evaluated
against the known area labels, under the optimal or modal model as appropriate.

times. Finally, models with different numbers of cluster-specific factors show improved
clustering performance compared to the corresponding finite factor model in every case.

The IMIFA model’s performance also compares favourably to the best parsimonious
Gaussian mixture model, fit via the pgmm R package (McNicholas et al., 2018) and
the best mixture of factor mixture analysers (MFMA) model (Viroli, 2010), evaluated
with 1, . . . , 5 components in both layers. Models with zero factors were not considered in
either case. IMIFA also outperforms the best constrained Gaussian mixture model fitted
using mclust (Scrucca et al., 2016). These finite mixtures are fit via maximum likelihood
and use the BIC for model selection after fitting a large number of candidate models.

It is also notable that within the set of IMIFA models relying on information criteria,
those deemed optimal were not necessarily optimal in a clustering sense. For instance,
the 4-cluster MIFA model yields an ARI of 0.94 and a misclassification rate of 6.99%,
with respect to the 3 area labels, despite its sub-optimal BICM. Similarly, the BICM
and BIC-MCMC criteria suggest different optimal MFA models. For the IMIFA model
κ̂ ≈ 0.89, suggesting similar inference would have resulted under a DP prior. Indeed,
the results obtained by the OMIFA and OMFA models are similar to those of their
infinite mixture counterparts, though the latter provide a better fit to the data (see
Figure 5).

Figure 2 shows a barchart approximation to the posterior distribution of G under the
IMIFA model. The modal value of 4, visited in ≈ 90% of posterior samples, is used as
the estimate of the true number of clusters (with 95% credible interval [4, 5]). Table 3a
tabulates the MAP clustering against the 3 area labels and suggests this solution makes
geographic sense, in that northern oils are cleanly split into two sub-clusters. Cluster 1
contains all of the 323 southern Italy oils: this large cluster requires the largest number of
factors (q̂1 = 6 [5, 6], with 95% credible intervals in brackets). Some of the other clusters
require notably fewer (q̂2 = 3 [1, 6], q̂3 = 6 [3, 6], and q̂4 = 2 [1, 4]). Table 3b gives the
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Figure 2: Posterior distribution of G under the IMIFA model for the olive oil data. The
number of clusters is estimated by the modal value, Ĝ = 4.

(a) 3 area cross tabulation

1 2 3 4
Southern Italy 323 0 0 0
Sardinia 0 98 0 0
Northern Italy 0 0 103 48

(b) 4 area cross tabulation

1 2 3 4
Southern Italy 323 0 0 0
Sardinia 0 98 0 0
East Liguria&Umbria 0 0 100 0
West Liguria 0 0 3 48

Table 3: Confusion matrices of the MAP IMIFA clustering of the Italian olive oils against
(a) the known 3 area labels and (b) the new labelling in which northern Italy is split
into its constituent sub-regions.

confusion matrix with oils from the north labelled by their associated region(s), yielding
an ARI of 0.994 and a misclassification rate of 0.52%. Figure 3 shows the uncertainty
in the allocations to these clusters. Only three oils have large probability of belonging
to a cluster other than the one to which they were assigned by the IMIFA model.

Figure 3: Clustering uncertainties for the IMIFA model for the olive oil data. Oils
misclassified according to the labels in Table 3b are highlighted in red.
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Figure 4: Boxplots of the upper PSRF limits for all cluster means, uniquenesses, load-
ings, and mixing proportions in the overdispersed IMIFA chains fit to the olive oil data,
with red reference line at 1.

Figure 5: Boxplots of the PPRE values for the full family of IMIFA models fit to the
olive oil data. Values close to zero indicate good model fit.

To assess sensitivity to starting values, the IMIFA model was re-fitted using mul-
tiple random initial allocations, implying also different random draws from the priors
for parameter starting values. These runs led to identical inference about Ĝ and Q̂ and
equivalent clustering performance. These overdispersed chains were used to compute the
upper 95% PSRF confidence limits depicted in Figure 4, which indicate good conver-
gence. The PPRE boxplots in Figure 5 demonstrate the superior fit of the IMIFA model
(with a median PPRE of 0.10) to the olive oil data, compared to the other IMIFA family
models. Histograms comparing the bin counts between the modelled and replicate data
sets for each variable, under the IMIFA model, are given in Appendix D.

3.2 Spectral Metabolomic Data

IMIFA is employed to cluster spectral metabolomic data for which N � p (Figure 6).
The data are nuclear magnetic resonance spectra consisting of p = 189 spectral peaks
from urine samples of N = 18 participants, half of which are known to have epilepsy
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Figure 6: Raw spectral metabolomic data.

Figure 7: Posterior distribution of qg under the IMIFA model fit to the metabolomic
data.

(Carmody and Brennan, 2010; Nyamundanda et al., 2010). Interest lies in uncovering
any underlying clustering structure given the N � p setting.

Data were mean-centred and Pareto scaled (van den Berg et al., 2006). Although
N � p, no restrictions are imposed on the uniquenesses as the sample variances are quite
imbalanced. Fitting MIFA models for G = 1, . . . , 5 is feasible as N is small. The BICM
criterion chooses Ĝ = 2 as optimal and one participant is misclassified. IMIFA, however,
unanimously visits a 2-cluster model and perfectly uncovers the group structure.

The modal estimates of the number of factors in each IMIFA cluster are q̂1 = 3 [2, 9]
and q̂2 = 5 [4, 13] (see Figure 7). Cluster 1 corresponds to the control group and Cluster
2 to the epileptic participants. Figure 8 illustrates the p× q̂g posterior mean loadings
matrices, based on retained samples with q̂g or more factors, after Procrustes rotation to
a common template for both clusters. The sparsity and shrinkage induced by the MGP
prior is apparent, as is the greater complexity in Cluster 2, given the greater variation in
colour and larger number of factors. For instance, many elevated loadings are visible for
chemical shift values between 8 and 10 for the first two factors in Cluster 2; this activity
is not present for other factors in either cluster. In general, the distributions of the
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Figure 8: Heat maps, calibrated to a common colour scale, of posterior mean loadings
matrices in the clusters uncovered by fitting IMIFA to the spectral metabolomic data.

loadings within a factor exhibit narrow spread around zero, particularly for the cluster
of control participants, with the exception of the regions of the spectrum corresponding
to the large peaks between chemical shifts of 3 and 5 in Figure 6.

IMIFA outperforms the optimal Ĝ = 3 mclust model and the optimal Ĝ = 2, q̂ = 5
pgmm model, with respective ARI values of 0.73 and 0.27. The clustering performance of
the optimal MFMA model is identical to the optimal MIFA model described above.
Given the N � p nature of the data, spectral clustering with the Gaussian kernel (Ng
et al., 2001) is also considered. The eigengap heuristic suggests Ĝ = 2 and a perfect
clustering is achieved almost instantaneously. However, the approach does not charac-
terise the uncovered clusters in an interpretable manner, nor provide estimates of cluster
membership uncertainty as given by model-based clustering approaches such as IMIFA.

The median PPRE for the IMIFA model of 0.21 [0.18, 0.24] shows good model fit,
given the size and dimensionality of the data. The median PSRF upper 95% confidence
limits, using three randomly initialised auxiliary chains, for the cluster means, unique-
nesses, loadings, and mixing proportions of 1.01 (0.01), 1.00 (< 0.01), 1.01 (0.08), and
1.00 (< 0.01) respectively, show good mixing also (standard deviations in parentheses).
Notably, all chains yield the same inference about Ĝ and Q̂. So too, again, does the
OMIFA model, although its model fit is inferior (median PPRE=0.26).

3.3 Handwritten Digit Data

A final illustration of IMIFA is given through its application to handwritten digit data
from the United States Postal Service (USPS; Hastie et al., 2001). Here N = 7, 291
images of the digits 0, . . . , 9 are considered, taken from handwritten zip codes. The



954 Infinite Mixtures of Infinite Factor Analysers

0 1 2 3 4 5 6 7 8 9 π̂g q̂g
1 359 0.05 4 [2, 8]
2 58 12 3 2 0.01 3 [2, 7]
3 108 0.01 2 [1, 4]
4 9 0.00 16 [3, 16]
5 95 0.01 4 [1, 8]
6 308 3 0.04 7 [4, 10]
7 844 2 0.12 2 [0, 4]
8 133 1 0.02 1 [0, 4]
9 2 392 10 1 0.05 7 [5, 12]
10 59 121 93 19 91 13 2 25 4 0.06 12 [9, 16]
11 136 64 0.03 5 [2, 9]
12 38 1 1 0.01 2 [0, 8]
13 25 3 7 98 51 2 36 59 28 0.04 8 [5, 12]
14 48 73 61 62 135 32 1 16 6 0.06 8 [6, 12]
15 1 83 0.01 3 [1, 7]
16 1 74 0.01 2 [1, 5]
17 2 4 19 381 2 0.06 2 [1, 6]
18 207 0.03 4 [1, 8]
19 123 8 129 348 247 184 77 26 420 84 0.23 6 [3, 9]
20 16 1 3 120 1 338 19 451 0.13 2 [1, 6]
21 62 3 34 71 0.02 3 [1, 6]

Table 4: Cross tabulation of the IMIFA model’s MAP clustering (rows) against true
digit labels (columns) for the USPS data. Cells that are 0 are blank for clarity. Posterior
means π̂g and modal estimates q̂g, with associated 95% credible intervals, are also given.

data are not balanced in terms of digit labels. Each image is a 16 × 16 grayscale grid
concatenated into a p = 256-dimensional vector; data were mean-centred but not scaled.
Such data are often considered in the context of manifold learning, positing that the
data dimensionality is artificially high.

Given N and p, fitting a range of MFA or MIFA models is practically infeasible.
Results of a single IMIFA run are presented here. For these data, it is reasonable to
expect the number of components to grow as the sample size grows. It is anticipated that
the flexibility afforded by having cluster-specific numbers of factors will help characterise
digits with different geometric features.

The IMIFA model visited a Ĝ = 21 cluster solution in all posterior samples; Ta-
ble 4 cross-tabulates the MAP clustering against the known digit labels and achieves
an ARI of 0.33. The median PPRE of 0.05 [0.04, 0.06] indicates good model fit. The
overdispersed chains used to compute the PSRF diagnostics lead to identical inference
about the number of clusters but slightly different inference about the modal numbers of
cluster-specific factors. The ARI values between each resulting pair of MAP partitions
were all in excess of 0.93. As before, good mixing is indicated by median PSRF up-
per 95% confidence limits for the cluster means, uniquenesses, and mixing proportions
of 1.01 (0.01), 1.01 (0.01), and 1.01 (< 0.01), respectively. In computing the diagnostic
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Figure 9: Posterior mean images for clusters uncovered by fitting IMIFA to the USPS
data. Plots are ordered according to Table 4 and labelled with the modal q̂g.

for the loadings – 1.14 (0.35) – only the first factor, common to all loadings matrices
across all clusters in all chains, was considered for reasons of fairness and computational
resource constraints.

Generally, IMIFA assigns images of the same digit, albeit written differently, to dif-
ferent clusters. Posterior mean images for each cluster are shown in Figure 9, ordered, as
is Table 4, from 0 to 9 according to the digit most frequently assigned to the related
cluster. Cluster 7 and the smaller cluster 8 capture the digit 1 written in a straight and
slanted fashion, respectively. Clusters 15, 16, and 17 represent the digit 6 written with
extended, medium, and compact loop curvature, respectively. Notably, cluster 15 re-
quires more factors than clusters 16 and 17. A similar interpretation follows for clusters
20 and 21 (q̂20 = 2, q̂21 = 3), capturing the digit 9 with a small and large loop, respec-
tively. Cluster 19 appears to represent the digit 8 and has a large number of factors
(q̂19 = 6) in comparison, say, to clusters 7 and 8 (q̂7 = 2, q̂8 = 1) which capture the digit
1. This is intuitive, as 8 is a more geometrically complex than 1. Many clusters capture
the digit 0, with differing degrees of elongation and border thickness. Of concern here
is cluster 4, containing just 9 observations; that q̂4 = 16, the upper AGS limit, suggests
the model struggles to shrink the number of factors in poorly populated clusters. This
difficulty is highlighted further in the simulation studies in Appendix B. Finally, Table
4 indicates that clusters 10, 13, and 14 also capture several other digits, all of which are
reflected in the blurriness of the resulting posterior mean images and in q̂10, q̂13, and q̂14
being quite large. The cluster-membership uncertainties are visualised in Appendix D.

It is computationally infeasible to run mclust, pgmm, or MFMA on these large data,
as an exhaustive model search would be too vast. For comparative purposes, a DP-BP
model (Chen et al., 2010) is fitted; this approach also simultaneously assumes infinitely
many components and factors. It finds 43 clusters, each with around 14 factors, and
achieves an ARI of 0.32. Cross tabulating this clustering against the 21 clusters of the
IMIFA model shows that some of the DP-BP clusters are encapsulated by the larger
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IMIFA clusters. IMIFA is thus the more parsimonious approach and affords greater
cluster-specific factor flexibility. Additionally, a finite mixture of matrix-normal distribu-
tions (Viroli, 2011) is also fitted. This approach accounts for the grid nature of the data,
but is computationally infeasible for G > 15 and requires a model selection strategy.
The optimal model according to BIC yields Ĝ = 12 and ARI = 0.38. While neither
IMIFA nor the DP-BP model account for the spatial structure in the data, they demon-
strate comparative performance without the need for a computationally expensive model
search.

4 Discussion

The IMIFA model is a Bayesian nonparametric approach to clustering high-dimensional
data using factor-analytic mixture models. By extending the MGP prior (Bhattacharya
and Dunson, 2011) to the PYP-MGP setting, the model sidesteps the fraught and
computationally intensive task of determining the optimal number of clusters and factors
using model selection criteria. Thus, the IMIFA model is recommended when fitting
factor-analytic mixtures in settings where an exhaustive model search is computationally
infeasible. Though IMIFA is not entirely choice-free, it achieves improved clustering
results by allowing factor-analytic models of different dimensions in different clusters. If
small clusters are inferred, one may wish to prune or merge small clusters with the larger
clusters (West et al., 1994) or assess whether the small clusters are in fact of domain-
specific interest. While comparative performance can be achieved by the IMIFA and
OMIFA models, one may wish to fit a MIFA or OMIFA model when the expectation is
that the number of clusters is fixed or unlikely to grow with N , respectively.

Future research directions are varied and plentiful. Incorporating covariates, in the
spirit of Bayesian factor regression models (West, 2003; Carvalho et al., 2008), would
allow for direct inclusion of the weight and urine pH covariates available with the
metabolomic data, for example. Furthermore, the models could be extended to the
(semi-)supervised model-based classification setting where all (or some) of the data
are labelled. While constraints on the uniquenesses across variables and/or clusters are
allowed, there is scope for also constraining the loadings across clusters. Though the
number of factors would no longer be cluster-specific, the common number of loadings
columns would be estimated in a similarly automatic fashion. However, incorporating
covariance matrix constraints in the IMIFA model family problematically reintroduces
the need for model selection strategies, in order to choose between them.

As proposed by Bhattacharya and Dunson (2011), the MGP hyperparameters could
be learned via Metropolis-Hastings, and thus also be made cluster-specific. This could
help combat some difficulties identified in the simulation studies in Appendix B. For
example, learning those related to local shrinkage may help when loadings are notably
dense. Learning those related to column shrinkage may help in settings with many small
clusters, where IMIFA struggles to adaptively truncate loadings columns. In principle, a
further global shrinkage parameter � could be added to the MGP prior to borrow infor-
mation across clusters, i.e. λjkg | . . . ∼ N1

(
0, φ−1

jkgτ
−1
kg σ−1

g �−1
)
. Alternatively, the infi-

nite factor prior of Legramanti et al. (2019) could be employed, which decouples control
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over the shrinkage rate and the active loadings terms. Finally, the IMIFA family can in
fact be considered as wider than the range of models presented here. For example, the
IBP prior (Knowles and Ghahramani, 2007, 2011; Ročková and George, 2016) could be
extended to the infinite mixture setting, as per the DP-BP model of Chen et al. (2010).

For applied problems, a mismatch between the assumed model and the data distri-
bution will impact inference. Miller and Harrison (2013, 2014) highlight that posterior
consistency for the number of non-empty clusters in infinite mixtures is contingent on
correct specification of the component distributions. While they do not discourage the
use of infinite mixtures for clustering, they show that a few tiny extra clusters are typ-
ically fitted and suggest robustifying inference. If the data distribution is close to but
not exactly a finite mixture of Gaussians, an infinite Gaussian mixture will introduce
more components as the amount of data increases. Potential avenues of exploration thus
include considering the IMIFA model with the heavy tailed multivariate t-distribution
(Peel and McLachlan, 2000). Similarly, modelling of complex component distributions
can be achieved by considering the MFMA approach in the context of infinite factor
models. Defining robust inference functions as in Lee and MacEachern (2014) or using
nonparametric unimodal component distributions as in Rodriguez and Walker (2014)
may also prove fruitful. Another means of robustifying inference is to explicitly include a
noise component with zero factors to capture outliers which depart from the component
multivariate normality assumption. Finally, a ‘coarsened’ posterior (Miller and Dunson,
2018) could be used for addressing misspecification, by conditioning on the event that
the model generates data close to the observed data in a distributional sense.

Supplementary Material

Supplementary material: infinite mixtures of infinite factor analysers.
(DOI: 10.1214/19-BA1179SUPP; .pdf).

References
Baek, J., McLachlan, G. J., and Flack, L. K. (2010). “Mixtures of factor analyzers
with common factor loadings: applications to the clustering and visualization of high-
dimensional data.” IEEE Transactions on Pattern Analysis and Machine Intelligence,
32(7): 1298–1309. 937

Bai, J. and Li, K. (2012). “Statistical analysis of factor models of high dimension.”
The Annals of Statistics, 40(1): 436–465. MR3014313. doi: https://doi.org/10.1214/
11-AOS966. 937

Bhattacharya, A. and Dunson, D. B. (2011). “Sparse Bayesian infinite factor mod-
els.” Biometrika, 98(2): 291–306. MR2806429. doi: https://doi.org/10.1093/biomet/
asr013. 938, 940, 941, 956

Brooks, S. P. and Gelman, A. (1998). “Generative methods for monitoring convergence
of iterative simulations.” Journal of Computational and Graphical Statistics, 7(4):
434–455. MR1665662. doi: https://doi.org/10.2307/1390675. 946

https://doi.org/10.1214/19-BA1179SUPP
http://www.ams.org/mathscinet-getitem?mr=3014313
https://doi.org/10.1214/11-AOS966
https://doi.org/10.1214/11-AOS966
http://www.ams.org/mathscinet-getitem?mr=2806429
https://doi.org/10.1093/biomet/asr013
https://doi.org/10.1093/biomet/asr013
http://www.ams.org/mathscinet-getitem?mr=1665662
https://doi.org/10.2307/1390675


958 Infinite Mixtures of Infinite Factor Analysers

Carmody, S. and Brennan, L. (2010). “Effects of pentylenetetrazole-induced seizures
on metabolomic profiles of rat brain.” Neurochemistry International , 56(2): 340–344.
952

Carmona, C., Nieto-barajas, L., and Canale, A. (2019). “Model based approach
for household clustering with mixed scale variables.” Advances in Data Analy-
sis and Classification, 13(2): 559–583. MR3954522. doi: https://doi.org/10.1007/
s11634-018-0313-6. 947

Carpaneto, G. and Toth, P. (1980). “Solution of the assignment problem.” ACM Trans-
actions on Mathematical Software, 6(1): 104–111. MR0551750. doi: https://doi.org/
10.1145/355853.355872. 940

Carvalho, C. M., Chang, J., Lucas, J. E., Nevins, J. R., Wang, Q., and West, M. (2008).
“High-dimensional sparse factor modeling: applications in gene expression genomics.”
Journal of the American Statistical Association, 103(484): 1438–1456. MR2655722.
doi: https://doi.org/10.1198/016214508000000869. 956

Chen, M., Silva, J., Paisley, J., Wang, C., Dunson, D. B., and Carin, L. (2010). “Com-
pressive sensing on manifolds using a nonparametric mixture of factor analyzers: al-
gorithm and performance bounds.” IEEE Transactions on Signal Processing , 58(12):
6140–6155. MR2790088. doi: https://doi.org/10.1109/TSP.2010.2070796. 943, 955,
957

De Blasi, P., Favaro, S., Lijoi, A., Mena, R. H., Prünster, I., and Ruggiero, M. (2015).
“Are Gibbs-type priors the most natural generalization of the Dirichlet process?”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2): 212–229.
944

Diebolt, J. and Robert, C. P. (1994). “Estimation of finite mixture distributions through
Bayesian sampling.” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 56(2): 363–375. MR1281940. 937

Durante, D. (2017). “A note on the multiplicative gamma process.” Statistics & Prob-
ability Letters, 122: 198–204. MR3584158. doi: https://doi.org/10.1016/j.spl.2016.11.
014. 938, 941

Ferguson, T. S. (1973). “A Bayesian analysis of some nonparametric problems.” The
Annals of Statistics, 1(2): 209–230. MR0350949. 938
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