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1. Introduction

Global surface temperatures are a broadly used indicator of climate change and defined as
an essential climate variable (ECV) by the Global Climate Observing System [2]. There is not
one single “surface temperature” but rather a family of closely related but nonidentical
temperatures: land surface air temperature (LSAT), land surface temperature, marine air
temperature (MAT), sea surface temperature (SST), ice surface temperature, lake surface
temperature, etc. [43]. Typical historical global surface temperature change estimates are
derived from combining LSAT arising from fixed meteorological sites with SST estimates
arising from ships and, more latterly, buoys, whereas model-based projections generally
use surface air temperature everywheredequivalent to observed LSAT and MAT.

Analyses of global surface temperatures have a rich heritage [20], with the first estimate of
a globally averaged surface temperature evolution dating from over 80 years ago [7]. Over
time, methods, data sources, and computational capabilities have evolved and improved.
But even these pioneering efforts at global surface temperature analyses stack up well against
modern-day estimates [20].

The Working Group 1 contribution to the Fifth Assessment Report of the Intergovern-
mental Panel on Climate Change [26] concluded that:

The globally averaged combined land and ocean surface temperature data as calculated by a linear trend,
show a warming of 0.85 [0.65 to 1.06]�C, over the period 1880 to 2012, when multiple independently produced
datasets exist. The total increase between the average of the 1850e1900 period and the 2003e12 period is 0.78
[0.72 to 0.85]�C, based on the single longest dataset available.

The statement was made as a statement of fact, with no confidence or likelihood statement
attached. Such factual statements were few and far between within the assessment and
reserved only for the very few most certain aspects of the science. That the world has warmed
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since the start of the instrumental record is unequivocal. The remainder of this chapter
outlines the observational and analytical basis that underlies this statement as well as new
and emerging science questions.

2. Basic data availability

The basic building block of any analysis is the original observation. But observations never
have been and never will be taken continuously across the globe at high resolution or specif-
ically to monitor climate. Rather, observations have been taken where people live and for a
myriad of reasons including shipping routing, aviation, agriculture, infrastructure, energy, or
just personal or professional interest. Over land, stations appear and are retired continuously,
and where, why, and how the measurements have been taken has changed substantially
through time. Over the ocean, with the exception of moored buoys or platforms, all measure-
ments are vector measurements whereby the instruments themselves are constantly moving.
Drifting buoys move with the currents while ships, and particularly commercial shipping,
tend to follow well-worn shipping routes.

Substantial effort has been made to collate holdings of both LSAT and SST data in national,
regional, and international holdings with major advances in curation of global data collec-
tions in recent years [18,46]. The percentage of both land and ocean observed in available
global holdings has generally improved with time (Fig. 5.1). Recent innovations in land
data curation have greatly improved access to recent observations (compare red and black
traces in the top panel of Fig. 5.1). The impacts of the two world wars on marine activity
are clearly evident in the SST panel. The impact is twofold. First, there was a general
reduction in shipping. Second, it was rather unwise to turn on a light at night to take a
measurement as that may alert unfriendly forces to your location and invite an attack.

There remains considerable scope to further improve these holdings in future. Very many
pre-1950 data in particular remain in hardcopy or image form only. There have been a range
of activities to rescue these data that have been increasingly successful including citizen
science projects such as old weather [3] and weather rescue [21], and classroom-based
approaches [50] can augment traditional paid-for-digitization approaches. Substantial efforts
are being made to coordinate data rescue activities globally under the auspices of both WMO
and the Copernicus Climate Change Service (https://datarescue.climate.copernicus.eu/).
There are also many data in digital form that have yet to be integrated including many
pre-1850 records [4]. Renewed efforts are being made to improve access to these data and
integrate them into global holdings [57].

3. Analyses of land surface air temperature

The basic LSAT data holdings contain myriad data artifacts that arise from factors as
diverse as follows:

• Station moves
• Instrument changes
• Observer changes
• Automation
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• Time of observation biases
• Microclimate exposure changes
• Urbanization
• And so on.

By way of illustration, an example from Reno, NV, is given in Fig. 5.2. Until the mid-1930s,
the station was on the (probably white painted) roof of the P.O. building in the town. In the
1930s, with the advent of aviation, there was a need for observations at the airport so the site
was moved to the airport which was a considerable distance from the town and its associated
Urban Heat Island. With time, the urban area has expanded, and that encroaching heat island
has led to a spurious multidecadal warming trend since the 1970s at the site. Finally, in the

FIGURE 5.1 Change in percentage of possible sampled area for land records (top panel) showing improvement in
availability arising from recent data curation efforts (note that data post 2010 continues at c.85% coverage); and
marine records (lower panel). Land data come from the ISTI databank and marine data from the ICOADS in situ
record. Coverage is defined as data present within a 5� grid box over land and 2� grid box over marine. Panels courtesy
Jared Rennie (CICS-NC) and Chunying Liu (Riverside Inc.), respectively.
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late 1990s, they moved the station from one end of the runway to the other and then back
again. There is a clear thermal gradient along the length of the runway, which caused a
temporary bias until they relocated the instrument back to its original airport location.

There exist numerous national, regional, and global analyses that attempt to adjust for the
nonclimatic artifactsda process termed homogenization. In general, the regional analyses are
in concordance with the global analyses and so are not considered further here [19]. There are
a variety of approaches to the challenge of homogenization. Early techniques tended to
consider the stations in isolation or their characteristics relative to some composite of series
from neighboring stations. Consideration of a station in isolation risks misdiagnosing a
real change in climate system behavior as a break in the series, thus adjusting away the
real climate signal. Consideration of a neighbor composite has issues if the neighbors
themselves contain biases. Such issues become critical when all or a substantial subset of
the neighbors contains a common bias.

Most modern techniques utilize some form of pairwise neighbor comparison to identify the
breaks [40,61]. These identify breaks in multiple candidate pairs of target minus neighbor sta-
tion series and then seek to deconvolve the problem. For example, taking a network of 20 sta-
tions, it may be that a break is found to occur in 1950 in 15 of the pairwise comparisons. In 15
stations, this break is found once, and in the 16th, it occurs 15 times. In this case, it is this latter
station that contains the real break. Once breaks have been attributed, they can either be
adjusted [42] or the segments treated as effective stations for each homogeneous segment [49].

Several state-of-the-art homogenization techniques have been assessed against benchmark
test cases [61,63]. Such test cases involve presenting to the data set creators with data which

FIGURE 5.2 Example station series arising from Reno, Nevada, United States. Panel (A) is in absolute annual
values. Panel (B) is in terms of differences from neighbors. The black line is the original series, and the blue line denotes
the homogenized series after [40]. M.J. Menne, C.N. Williams, Homogenization of temperature series via pairwise com-
parisons, J. Clim. 22 (2009) 1700e1717.
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have been synthetically produced and where the data originators know what the data issues
required to be found and adjusted for are [62]. Benchmarking exercises undertaken to date
show that modern techniques tend to improve the consistency and “correctness” of the
records but that no technique is perfect. Unsurprisingly, techniques tend to struggle when
the data artifacts are small, numerous, or both. It is therefore important to understand fully
the likely impacts of common changes that have occurred across the global network. To this
end, a number of comparisons have been undertaken between modern and historical instru-
mentation at several sites [1,5].

There exist myriad ways to assess LSAT changes. Currently, there are five principal global
analyses [28,36,42,49,64]. Each analysis takes a distinct approach to one or more of station
selection, quality control and homogenization, interpolation, and area averaging. The use
of independent approaches serves to highlight the degree of sensitivity of resulting findings
to methodological choices. However, the true methodological degrees of freedom are less
than the implied five given commonalities across some methods and the use of similar or
identical source data. The different estimates are in broad agreement throughout the record,
with differences becoming larger earlier in the record. In this early record, data sparsity
increases, but also this preceded efforts to standardize temperature scales and methods of
observation, which only really began around the turn of the 20th century, and so there is
far greater heterogeneity in the individual station records that do exist. Differences between
estimates in the global mean are substantively smaller than the long-term warming trend
common to all estimates.

4. Analyses of sea surface temperature

The basic SST holdings have arisen from a broad range of measurement platforms using an
array of measurement techniques that have changed substantially through time [33]. Biases in
SST records are both larger and more systematic in nature than for LSAT, and hence, homog-
enization is essential. Measurements up until the 1940s were almost exclusively from buckets
whereby a sample of the sea water from just below the surface would be hauled onto the ship
deck and measured. Since World War II, there has been a preponderance for either engine
room intakeebased measurement or hull contact sensors. Then since the 1990s, there has
been an increasing ubiquity of drifting buoys so that today approximately 90% (by number
but not coverage) of all measurements arise from this method. Each of these techniques has a
distinct bias relative to the true SST, and failing to account for these effects would add
substantial spurious multidecadal variability to the records. Taking these in turn:

• Measurements based on buckets tended to be cold biased due to the effects of evapora-
tive cooling that occurs between sampling the water and its subsequent measurement.
Quite how cold biased depends upon the insulation efficiency of the bucket, the ship
deck height, the delay between sampling and measurement, and the ambient weather
conditions [17]. The effect is greatest when windy and when the atmosphere is substan-
tially warmer or colder than the sea surface. Without accounting for these effects,
pre-1942 measurements would be too cold by c.0.3�C globally averaged.

• Engine room intakes and hull contact sensors tend to sample water that has been
warmed relative to the ambient temperature by the ship itself and therefore be warm-
biased.
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• Drifting buoys exhibit little obvious bias and substantially smaller spread than
ship-based measurements. They measure temperatures that are about 0.12e0.18�C colder
than the modern ships which are mainly engine room intake or hull sensorebased
measurements (Fig. 5.3).

Several global SST analyses have been undertaken which attempt to ascertain and adjust
for biases to either some subset of the record or the entire record. Three analyses exist that
consider global changes over the entire period of record [23,24,34]. These estimates take
substantively different approaches to the problem. Despite this, they are closer to each other
than they are to the original basic data on which they are based. Largest differences occur
around the times of major transitions within the observing system (Fig. 5.3) or times when
the observational record is dominated by ships flying under a single flag (ship-based
measurement protocols are broadly dictated on a national basis). For example, in World
War II, most measures arise from the US fleet which took measurements that were system-
atically warmer than most other nations. Having a mix of nations measure prior to 1939
and after 1945, but mainly US measurements in the middle therefore yield a potential
spurious SST maximum in the early 1940s in the raw data [54].

Overall, there is a greater sensitivity to data set construction method choices in SST than
there is in LSAT. Furthermore, the differences between the raw and adjusted data records are
substantially larger at the global mean scales. Whereas LSAT station biases tend to cancel
somewhat regionally and globally, SST records afford no such luxury.

5. Global changes

Global surface temperature data sets arise from combining underlying data sets of LSAT
and SST. Choices are required as to which underlying data sets are to be merged and how, if

FIGURE 5.3 Best understanding of the changing mix of marine in situ observations since 1850. Blue is buoys with
wooden to canvas bucket transition occurring between 1850 and 1920 (dashed line, approximate) and from 1954 to
1975 an uncertain switch from uninsulated to insulated buckets. Engine room intake/hull contact measures are in
green. Unknown measurement type is yellow and buoys are red. The y-axis is fractional contribution to global
average and not observation count. Modified from J.J. Kennedy, N.A. Rayner, R.O. Smith, M. Saunby, D.E. Parker,
Reassessing biases and other uncertainties in sea-surface temperature observations since 1850 part 1: measurement and sam-
pling errors, J. Geophys. Res. 116 (2011) D14103. http://ds.doi.org/10.1029/2010JD015218 and courtesy John Kennedy.
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at all, attempts are made to account for areas of missing data by interpolation. The choice of
whether to interpolate or not can have a significant impact, particularly on decadal timescale
behavior. Sampling is not uniform in space or in time, and many regions have never been
adequately sampled (deserts, rainforests, polar regions, and regions of seasonal or perennial
sea ice). If the temperatures in the unsampled regions are behaving in a way that is not
represented in the remainder of the sampled portion of the globe, then a biased estimate
will result [11,30,51]. It appears that over the past 20 years, in particular, interpolation has
a distinct effect upon apparent global mean behavior with interpolated analyses showing
greater warming in the global mean [11,30]. As of 2020, all data sets now undertake interpo-
lation to some extent as a result of these recent insights.

There are at least seven peer-reviewed data sets that estimate global average surface
temperatures from direct in situ observations [11,30,36,44,65,66]. These products combine
underlying SST and LSAT data sets in different ways and/or make distinct choices in how
to then calculate spatial and global averages. However, similarities in data sources and/or
approaches mean that there are fewer true degrees of freedom than implied by having seven
estimates. For example, these seven estimates are based upon solely two underlying SST data
sets and three underlying LSAT data sets. Indeed, two families of data sets differ solely in
their postprocessing of the underlying data, sharing the choice of both underlying LSAT
and SST products. The different data sets broadly agree in their characterization of global
mean changes on the longest timescales. But there exist substantial regional variations driven
predominantly by interpolation choices in data sparse regions.

Traditional in situ products are increasingly being supplemented by reanalysis and satellite-
based estimates. Reanalyses are modern data assimilation and forecast systems that are run
retrospectively using available historical observations. Over successive generations, these
products have become increasingly suitable for long-term climate analysis. Recent products
compare very favorably with in situ products [22,52], and the ERA5 analysis is now regularly
used in climate monitoring monthly statements by the Copernicus Climate Change Service.
Sparse-input centennial scale reanalyses have also been shown to reasonably track much
longer-term LSAT evolution [9]. Satellite data have also been increasingly used either to inform
directly estimation of changes [45] or to validate in situebased estimates [53]. Available rean-
alysis and satellite-based estimates build substantial confidence in the in situ records.

The global mean surface temperature has undoubtedly increased since the mid-19th cen-
tury (Fig. 5.4). The change has not been linear in nature. There exist several decade-plus
stretches of either little change or even cooling. This includes the early 21st century. This
period had been dubbed a “hiatus” and elicited much scientific and public interest, leading
to its inclusion as a box in the IPCC Fifth Assessment Report [16]. As is clear from Fig. 5.4,
such periods are not atypical of the longer record [37]. At the time, this elicited much debate
around the nature, causes, and implications of the feature ([8,35,39,48,59] and numerous
others). This was understandable given that it raised legitimate questions around the short-
to medium-term future trajectory of the system.

The suite of literature published on the matter strongly supported the assessment findings
of Ref. [16] that the hiatus arose from a combination of natural climate system variability and
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changes in short-lived, predominantly natural, climate system forcers. In addition, better
accounting for modern data biases in SSTs arising from the ship-buoy transition [24,34]
and improved station coverage over land [46] reduced the magnitude of the apparent hiatus.
Regardless, since 2014, warming has resumed, and the five warmest years on record have all
occurred since 2015.

In the same way that the global average change has not been linear, the global pattern of
changes has not been uniform. Reasonable global spatial trend estimation is only possible
since the start of the 20th century when the southern hemisphere sampling became suffi-
ciently complete to estimate spatial anomaly patterns. It should be noted that estimation of
a global average requires substantially fewer observations so long as they are well spaced.
This is because anomalies in temperatures have large spatial scales. If it is unusually warm
in London, the chances are that it is unusually warm also in Dublin, Edinburgh, Brussels,
and Paris. In reality of the order, 150 well-spaced sites would adequately characterize the
global mean LSAT [27,58], and similar density would characterize SST. But, obviously, these
would not provide local information. Overall, land has warmed faster than the oceans, and
the Arctic region has warmed more than any other region of the planet (Fig. 5.5).

6. Uncertainty quantification

Increasing attention is being paid to the quantification of uncertainties within surface tem-
perature estimates. There exist several “flavors” of uncertainty [55]. The most important are
structural and parametric uncertainties. Structural uncertainties arise through choices of over-
all method and can be quantified by comparing the estimates arising from different groups of
analysts. Proper quantification would require a large ensemble of data sets that are produced

FIGURE 5.4 Global average surface temperature estimates from a range of global data sets including two
reanalysis products (JRA-55 and ERA5). Figure courtesy John Kennedy and sourced from https://www.metoffice.gov.uk/
hadobs/monitoring/temperature.html. Figure British Crown Copyright 2020 provided by the Met Office Hadley Centre under
Open Government License version 3.
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independently. This is only partially true for surface temperature data sets (see earlier discus-
sion). Parametric uncertainty involves the creation of an ensemble of estimates for a given
data set assessing sensitivity to uncertain choices within the methodology. For example,
whether a break in a station series is assigned at 1%, 5%, or 10% significance threshold for
the breakpoint detection statistical test is not a choice with an a priori correct answer. There
exist numerous such semisubjective choices in all algorithms.

Several parametric uncertainty estimates have been constructed for SST [25,34,39] and
[42,44,63] and LSAT [43,45,64] and combined [25,36,44]. These result in ensembles of possible
realizations. Other approaches have also been applied to uncertainty quantification that does
not result in ensembles (e.g., Ref. [66]). However, ensembles are intuitively appealing because
they allow the expression of uncertainties at various space and timescales to support users who
may be interested in more than, e.g., global and hemispheric mean timeseries.

Both structural and parametric uncertainties to the extent thus far quantified are an order
of magnitude smaller than the estimated global mean changes since the start of the instru-
mental record of surface temperatures. It would require a substantial hitherto unrecognized
source of uncertainty to be discovered to call into question the conclusion that the globe has
warmed on multidecadal timescales. Further support for the conclusion that the world has
warmed arises from our understanding of changes in a suite of correlated variables such
as tropospheric temperatures, glacier volume, sea ice, surface humidity, and ocean heat
content. A variety of data sets produced by a myriad of scientific groups for each of these
covariates conclude that they are changing in the manner that would be expected if the world
is indeed warming [31] (Fig. 5.6). It is a combination of the confidence in direct measurements
and changes in these correlated variables that have led scientists, through the IPCC, to
conclude that the warming is unequivocal.

FIGURE 5.5 Spatial pattern of warming trends 1900e2019 taken from NASA GISS using the public plotter
available at https://data.giss.nasa.gov/gistemp/maps/index_v4.html. The continents are warming faster than the
oceans, and the Arctic is warming fastest of all. The number in the top right denotes the globally averaged trend over
the period.
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7. Characterization of extremes and variability

Society experiences the weather and not the climate. Specifically, the major climatic
temperature effects upon society relate to extremes of heat or cold or passing thresholds
such as the need to heat or cool buildings or being able to grow certain crop types. For

FIGURE 5.6 Changes in a suite of variables consistent with changes in surface temperatures support the
contention that the globe is warming. Figure sourced from https://www.metoffice.gov.uk/hadobs/indicators/11keyindicators.
html and courtesy John Kennedy. Figure British Crown Copyright 2020 provided by the Met Office Hadley Centre under Open
Government License version 3.
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such cases, global mean anomaly series discussed thus far in this chapter are of limited value.
Several daily and subdaily data holdings exist [14,41] and are used to monitor extremes and
various societally relevant indices over land [15]. The Commission for Climatology Expert
Team on Climate Change Detection and Indices (ETCDDI) has defined 27 core indices of
which 16 are directly related to temperatures [67]. Several data sets have been created that
composite gridded trends in these ETCDDI (e.g., Ref. [6,15]). These provide useable and
actionable information upon aspects such as the changing temperature of the warmest day
in the year (Fig. 5.7). Overall, warm extremes have increased, and cold extremes have
decreased in both frequency and severity over the period of record. This is consistent with
the observed warming in the mean climate. Changes to the tails of the distribution need
not follow changes in the mean, however. Daily and subdaily holdings generally do not
go as far back as monthly holdings, and so information on these aspects only becomes really
globally representative post-1950.

8. Future research directions

In the latter part of the 20th century, the preeminent questions were around whether the
mean climate was changing, how much it was changing, and to what extent humans were
responsible for those changes. Now demands as well as the expectations are different.
Scientifically, it is unequivocal that the world has warmed, and it is certain that humans
are primarily responsible. Society, governments, and industry require actionable information
at local scales to make informed decisions. Actionable information begets openness and trans-
parency, regional detail, and useable uncertainty estimates as well as information at daily and
subdaily timescales. The global science community is addressing this need through activities
such as the ETCCDI and the International Surface Temperature Initiative [56] and renewed

FIGURE 5.7 Trend in the annual warmest day per decade from HadEX3 over 1950 to 2018 (downloaded from
metoffice.gov.uk/hadobs/hadex3). Figure British Crown Copyright 2020 provided by the Met Office Hadley Centre
under Open Government License version 3.
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efforts to improve land and marine data holdings. New and improved data sets as summa-
rized in prior sections are constantly improving our understanding.

Over recent years, there has been an increasing recognition that surface temperatures
actually consist of a family of related parameters [43] and in particular that SST and MAT
are not equivalent measurements [12,47,52]. The MAT is estimated to warm slightly more
than SST in climate models [47], with some limited support from reanalyses [52]. While there
are an increasing number of night MAT estimates available [10,29,45], these estimates are less
spatially complete and less scientifically mature than available SST estimates. Given uncer-
tainties, the direct observational evidence cannot shed much light on the issue presently
[29,34]. The potential nonequivalence arises an issue because analysts regularly use 2 m air
temperature over all surfaces from climate models for projections. The mismatch at the
join between historical estimates using SST and projections using MAT is potentially
becoming increasingly large with time. Whether and if so how to account for these effects
has important implications for aspects such as when warming may pass certain thresholds
and how much additional carbon can be emitted while avoiding such thresholds.

There is also an increasing need to consider the homogeneity of daily or subdaily land-
based data [13,60]. This is a much harder problem than homogenization of monthly
timeseries, and there have been only limited efforts at benchmarking to date which have
shown mixed success [34]. On monthly timescales, effects of weather on the biases tend to
cancel. For homogenization at daily and subdaily timescales, it is likely that more physically
based corrections are required. That is, it matters a lot more at these scales whether it was
sunny, rainy, windy, or calm as to whether and if so how much to adjust individual values
in the series. Initial efforts are being made to build a database of parallel measurements
where old and new measurements have been taken side-by-side to better understand these
covariate effects [1,5].

9. Conclusions

It is unequivocal that the global surface temperatures have warmed since the instigation of
instrumental records. This change has not been linear and has varied substantially geograph-
ically. Important uncertainties and challenges remain to be addressed regarding, for example,
data availability, measurement understanding, and providing high temporal resolution data
suitable for many applications. These challenges may alter important aspects of our under-
standing of surface temperatures but are very unlikely to affect the bottom-line conclusion
that the world has warmed.
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