
Efficient Surfel Fusion Using Normalised Information Distance

Louis Gallagher and John B. McDonald
Maynooth University, Department of Computer Science

Maynooth, Co. Kildare, Ireland
Louis.Gallagher@mu.ie johnmcd@cs.nuim.ie

(i) (ii) (iii)

Figure 1: A handheld camera explores a scene taken from the TUM RGB-D dataset [8]. Green frustums represent the pose
of the camera for fused frames. (i) Initially the NID between frames predicted from the incomplete model and live frames
is quite high so all frames are fused. (ii) The camera continues exploring but selectively decides not to fuse frames that the
NID deems are well explained by the model. (iii) The camera closes a loop and transitions fluidly to purely tracking against
reactivated portions of the model as there is now no need for fusion.

Abstract
We present a new technique that achieves a significant

reduction in the quantity of measurements required for a fu-
sion based dense 3D mapping system to converge to an ac-
curate, de-noised surface reconstruction. This is achieved
through the use of a Normalised Information Distance met-
ric, that computes the novelty of the information contained
in each incoming frame with respect to the reconstruction,
and avoids fusing those frames that exceed a redundancy
threshold. This provides a principled approach for opitmis-
ing the trade-off between surface reconstruction accuracy
and the computational cost of processing frames. The tech-
nique builds upon the ElasticFusion (EF) algorithm where
we report results of the technique’s scalability and the ac-
curacy of the resultant maps by applying it to both the ICL-
NUIM [3] and TUM RGB-D [8] datasets. These results
demonstrate the capabilities of the approach in performing
accurate surface reconstructions whilst utilising a fraction
of the frames when compared to the original EF algorithm.

This research was supported, in part, by the IRC GOIPG scholarship scheme grant GOIPG/2016/1320 and, in
part, by Science Foundation Ireland grant 16/RI/3399 and grant 13/RC/2094 to Lero - the Irish Software Research
Centre (www.lero.ie).

1. Introduction & Background
Dense reconstruction algorithms take advantage of mul-

tiple overlapping surface measurements to estimate a de-
noised surface model. BundleFusion [1], ElasticFu-
sion [12], Kintinuous [10] and KinectFusion [5] are all ex-
emplars of this class of algorithms. Common to each of
these algorithms is a focus on maximising the accuracy of
both the reconstructed models and estimated 6-DOF motion
of the camera without considering the relationship between
the cost of processing and its impact on model quality. In
this paper we propose an general information theoretic ap-
proach to modelling this relationship and demonstrate its
potential in significantly reducing the processing require-
ments of dense surfel fusion with limited impact on accu-
racy.

Although such considerations are not typically required
in the context of a high end GPU processing the output from
a single camera, they become critical when applying these
algorithms in both collborative settings and in compute lim-
ited scenarios. For example, recent work on the develop-
ment of collaborative dense SLAM showed that increasing
the number of sensors in the fusion process rapidly leads
to a degradation in system performance, which drops from
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real-time processing rates of more than 25hz for 1 and 2
camera sessions to interactive rates of just 12hz for 3 cam-
era sessions [2]. In compute limited scenarios common in
much of robotics and augmented reality, additional costs
such as battery usage and heat dissipation highlight the need
for more efficient approaches.

Since the seminal KinectFusion algorithm was intro-
duced there has been a profusion of methods proposed that
use scalable data structures, such as hierarchical trees and
hash tables, for efficiently storing the underlying TSDF
volume[9, 6]. Geometric simplification methods that re-
duce the number of parameters used to represent the map,
such as incremental meshing have also been proposed [11].
These methods, however, must maintain complexity around
surface discontinuities and regions of high frequency detail
and require intermediate map representations from which
they infer simpler models.

Methods that leverage efficient algorithms for camera
tracking and fusion, compact map representations and ge-
ometric simplifications for optimising the whole SLAM
pipeline have also been proposed [10, 4].

In comparison relatively little attention has been paid to
increasing the efficiency of surfel-based SLAM methods.
In model-predictive frameworks, like EF, as map size and
complexity increase so too does the cost of making map
predictions. In the presence of sensor noise and drift in
camera tracking simply fusing every frame can lead to spu-
rious surfels and regions of the surface being over repre-
sented by the map. Though the above approaches could
potentially be helpful in improving the efficiency of surfel
fusion it is the purpose of this work to explore a mode of
keyframing that is based on quantifying the novelty of the
information in incoming frames. The method we propose
more optimally balances the accuracy of dense surfel mod-
els against the computational cost of dense surfel fusion. To
demonstrate the effectiveness of the method we place it in
the pipeline of the EF mapping system [12] and report ini-
tial empirical evidence that this leads to good precision and
scalability characteristics in comparison to the original EF
algorithm. The contributions of this work are: (i) A method
for subsampling frames in a real-time dense reconstruction
pipeline and (ii) An empirical analysis of this method.

2. Approach
In model-predictive camera tracking, once the current

pose of the camera, Pt ∈ SE3, has been estimated it is used
to render a synthetic view of the map, Fp

t .For each frame,
we compute the normalised information distance (NID)
between the appearance distribution of Fp

t and that of the
live frame, F l

t ,

NID(Fp
t ,F l

t) =
H(Fp

t ,F l
t)− I[F

p
t ;F l

t ]

H(Fp
t ,F l

t)
(1)

where,H(X,Y ) and I[X;Y ] are the joint entropy1 and mu-
tual information2, respectively, of two random variables X
and Y . When the NID is high this implies that the live cam-
era frame is not well explained by the current model esti-
mate, and hence the system should fuse that frame. See
Figure 1 and its caption for a detailed example and explana-
tion for NID based sampling.

For each frame we compute two NID scores, one for the
RGB component of the frame, NIDrgb, and one for the
depth component, NIDd. The final NID is the weighted
sum

NID(F l
t ,F

p
t ) = αNID(Ilt, I

p
t ) + (1− α)NID(Dl

t,D
p
t )

(2)
where, α ∈ [0..1] denotes the relative weighting between
the RGB and depth components, I denotes the intensity
image derived from the color channels of the frame, and
D denotes the depth component.

To compute both NID scores we follow the approach out-
lined in [7], except we drop the cubic spline weighting as
we do not require a differentiable histogram. We compute a
joint appearance intensity histogram and a joint appearance
2.5D depth histogram. Each of the bins in the histograms
corresponds to a range of values in F l

t co-ocurring with a
range of values in Fp

t . The histogram P is computed in
a SIMD fashion on the GPU using CUDA atomic instruc-
tions then the marginal entropies and, ultimately, the NID is
derived on the CPU by marginalising over the histogram’s
rows and columns.

2.1. Accounting for Time

The EF map is divided into two subsets; θt, containing
all active surfels that have been fused within a window of
time δt, and φt containing all the inactive surfels. Sur-
fels in θt are used for tracking and fusion. As the camera
loops back around into old regions of the map local loops
are closed between θt and φt and the surfels in φt that are
viewed from the triggering frame are reactivated.

To accommodate long sequences of frames without fu-
sion it is important that we adjust δt in our system so that θt
grows and shrinks and local loop closures are triggered in
much the same way as in the original EF algorithm. This is
achieved by letting δt = δt + δn where δn is the number of
frames since the last frame that was fused. Additionally if
a loop closure (local or global) is triggered then we proceed
with fusion for that frame irrespective of the NID.

We take the current active frame, used for camera track-
ing and current inactive frame, used for closing local loops,
as our reference frame for NID calculation. The depth maps
for both frames are used to determine which values are visi-
ble from the current viewpoint. Doing so allows us to avoid

1H(X,Y ) =
∑

x,y P (x, y)log2P (x, y)
2I[X;Y ] = H(X) +H(Y )−H(X,Y )



(i) τ = 0.9 (ii) τ = 0.8 (iii) τ = 0.7

Figure 2: Qualitative results for the Kt1 sequence from the ICL-NUIM dataset. For these experiments we set λd = 0.75.

Figure 3: Break down of frame processing time for the
Dyson robotics lab sequence. While there is an overhead
to computing the NID this cost is amortised over the course
of the exploration of the office.

a costly re-rendering of a single joint active/inactive frame,
thereby making NID calculation a constant-time cost.

3. Experiments
In this section we provide experimental results of the ap-

plication of the system to a number of datasets. Figure 1
shows different points during the reconstruction of Fri 3
Office sequence [8]. Here, the effect of NID can be seen
in reducing the number of frames fused whilst maintaining
the accuracy and coverage of the reconstruction.

To provide a quantitative evaluation of the system’s per-
formance we use the ICL-NUIM synthetic living room
dataset [3] where we measure the impact of varying both
the NID threshold and the relative weighting factor, α.The
results are displayed in Figure 4 across a number of metrics
(see caption for more details). These results allow direct
comparison to the original EF algorithm where again our
system can maintain comparable accuracy whilst using sig-
nificantly fewer frames and producing significantly fewer
surfels in the final model.

Finally, to measure the scalability of our approach we
used the Dyson lab sequence [12] which consists of over
6500 frames captured during a scan of an office environ-

ment. The sequence contains a mix of segments where the
camera explores new regions and where the camera closes
local loops and re-visits already scanned regions of the of-
fice. These results are shown in Figure 3. Note that in
this plot the NID fusion time includes the time for com-
puting the NID, which, as we see, dominates. Furthermore,
whilst the EF fusion time increases steadily over the log,
the rate of increase for the fusion component of the NID
fusion approach is negligible. This is both due to the NID
based frame selection, and the consequent reduction in sur-
fels. Hence whilst we do not see a substantial difference
in the overall frame processing times of the two approaches
over the time scale of this log, it can be seen that the rates
of growth are very different. Our current focus is on us-
ing an image pyramid to reduce the NID computation time
and achieve a more pronounced benefit from the NID based
approach.

4. Conclusion

We have presented a frame sampling strategy based on
NID that avoids fusing redundant frames in an EF based
3D dense reconstruction pipeline thereby using far fewer
frames to reconstruct models of comparable accuracy to the
original EF algorithm. In future work we aim to perform
a full comparative analysis of NID sampling against other
frame sampling methods such as uniform sub-sampling and
motion thresholding. We also aim to incorporate the tech-
nique into a dense collaborative mapping platform, such as
[2], to significantly increase the scalability of the approach.
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Izadi, and Christian Theobalt. Bundlefusion: Real-time
globally consistent 3d reconstruction using on-the-fly sur-
face reintegration. ACM Trans. Graph., 36(3):24:1–24:18,
May 2017. 1

[2] Louis Gallagher and John B. McDonald. Collaborative dense
slam. In Proceedings of the 2018 IPR, Irish Machine Vision
and Image Processing Conference, 2018. 2, 3

[3] A. Handa, T. Whelan, J.B. McDonald, and A.J. Davison. A
benchmark for RGB-D visual odometry, 3D reconstruction



Figure 4: Results for the ICL-NUIM sequences. We measured the model accuracy, trajectory accuracy, number of surfels
in the final model, number of frames fused and the average NID score as we varied the the NID threshold and the relative
weighting between NIDd and NIDrgb.

and SLAM. In IEEE Intl. Conf. on Robotics and Automation,
ICRA, May 2014. 1, 3

[4] Olaf Kahler, Victor Adrian Prisacariu, Carl Yuheng Ren, Xin
Sun, Philip Torr, and David Murray. Very high frame rate
volumetric integration of depth images on mobile devices.
IEEE Transactions on Visualization and Computer Graphics,
21(11):1241–1250, Nov. 2015. 2

[5] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J. Davison, Push-
meet Kohli, Jamie Shotton, Steve Hodges, and Andrew
Fitzgibbon. Kinectfusion: Real-time dense surface mapping
and tracking. In IEEE Intl. Symposium on Mixed and Aug-
mented Reality, pages 127–136, 2011. 1

[6] Matthias Niessner, Michael Zollhofer, Shahram Izadi, and
Marc Stamminger. Real-time 3d reconstruction at scale us-
ing voxel hashing. ACM Trans. Graph., 32(6):169:1–169:11,
Nov. 2013. 2

[7] Alex Stewart and Paul Newman. Laps - localisation using
appearance of prior structure: 6-dof monocular camera local-
isation using prior pointclouds. In Proc. IEEE International
Conference on Robotics and Automation, May 2012. 2

[8] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of rgb-d slam systems.

In Proc. of the International Conference on Intelligent Robot
Systems (IROS), Oct. 2012. 1, 3

[9] Emanuele Vespa, Nikolay Nikolov, Marius Grimm, Luigi
Nardi, Paul H. J. Kelly, and Stefan Leutenegger. Efficient
octree-based volumetric SLAM supporting signed-distance
and occupancy mapping. IEEE Robotics and Automation
Letters, 3(2):1144–1151, 2018. 2

[10] T. Whelan, M. Kaess, H. Johannsson, M.F. Fallon, J.J.
Leonard, and J.B. McDonald. Real-time large scale dense
RGB-D SLAM with volumetric fusion. Intl. J. of Robotics
Research, IJRR, 2014. 1, 2

[11] T. Whelan, L. Ma, E. Bondarev, P. H. N. de With, and J.B.
McDonald. Incremental and batch planar simplification of
dense point cloud maps. Robotics and Autonomous Systems
(RAS) ECMR ’13 Special Issue, 2014. 2

[12] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison,
and S. Leutenegger. Elasticfusion: Real-time dense slam and
light source estimation. Intl. J. of Robotics Research, IJRR,
2016. 1, 2, 3


