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Abstract

We consider model-based clustering methods for continuous, correlated data
that account for external information available in the presence of mixed-type �xed
covariates by proposing the MoEClust suite of models. These models allow di�er-
ent subsets of covariates to in�uence the component weights and/or component
densities by modelling the parameters of the mixture as functions of the covari-
ates. A familiar range of constrained eigen-decomposition parameterisations of
the component covariance matrices are also accommodated. This paper thus
addresses the equivalent aims of including covariates in Gaussian parsimonious
clustering models and incorporating parsimonious covariance structures into all
special cases of the Gaussian mixture of experts framework. The MoEClust mod-
els demonstrate signi�cant improvement from both perspectives in applications
to both univariate and multivariate data sets. Novel extensions to include a uni-
form noise component for capturing outliers and to address initialisation of the
EM algorithm, model selection, and the visualisation of results are also proposed.

Keywords: Model-based clustering, mixtures of experts, EM algorithm, parsimony,
multivariate response, covariates, noise component.

1 Introduction

In many analyses using the standard mixture model framework, a clustering method is
typically implemented on the outcome variables only. Reference is not made to the as-
sociated covariates until the structure of the produced clustering is investigated in light
of the information present in the covariates. Therefore, interpretations of the values
of the model parameters within each component are guided by covariates that are not
actually used in the construction of the clusters. It is desirable to have covariates incor-
porated into the clustering process and not only into the interpretation of the clustering
structure and model parameters, thereby making them endogenous rather than exoge-
nous to the clustering model. This both informs the construction of the clusters and
provides richer insight into the type of observation which characterises each cluster.

When each observation consists of a response variable yi on which the clustering is
based and covariates xi there are, broadly speaking, two main approaches in the litera-
ture to having covariates guide construction of the clusters, neatly summarised by La-
mont et al. (2016) and compared in Ingrassia et al. (2012). Letting zi denote the latent
cluster membership indicator vector, where zig = 1 if observation i belongs to cluster g
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and zig = 0 otherwise, the �rst approach assumes that zi a�ects the distribution of xi.
In probabilistic terms, this means to replace the actual group-speci�c conditional distri-
bution f

(
yi |xi, zig = 1

)
Pr
(
zig = 1

)
with f

(
yi|xi, zig = 1

)
f
(
xi | zig = 1

)
Pr
(
zig = 1

)
.

The name `cluster-weighted model' (CWM) is frequently given to this approach, e.g.
Dang et al. (2017) and Ingrassia et al. (2015); the latter provides a recent exten-
sion allowing for mixed-type covariates, with a further generalisation presented in
Punzo & Ingrassia (2016). Noting the use of the alternative term `mixtures of re-
gressions with random covariates' to describe CWMs (e.g. Hennig 2000) provides
opportunity to clarify that the remainder of this paper focuses on the second ap-
proach, with �xed potentially mixed-type covariates a�ecting cluster membership via
f
(
yi |xi, zig = 1

)
Pr
(
zig = 1 |xi

)
.

This is achieved using the mixture of experts (MoE) paradigm (Dayton &Macready,
1988; Jacobs et al., 1991) in which the parameters of the mixture are modelled as func-
tions of �xed, potentially mixed-type covariates. We present, for �nite mixtures of mul-
tivariate, continuous, correlated responses, a unifying framework combining all of the
special cases of the Gaussian MoE model with the �exibility a�orded by the covariance
constraints in the Gaussian parsimonious clustering model (GPCM) family (Ban�eld
& Raftery, 1993; Celeux & Govaert, 1995). This has, to date, been lacking for all but
the mixture of regressions and the mixture of regressions with concomitant variables
where the same covariates enter both parts of the model (Dang & McNicholas, 2015).

Parsimony is obtained in GPCMs by imposing constraints on the elements of an
eigen-decomposition of the component covariance matrices. For MoE models, reducing
the number of covariance parameters in this manner can help o�set the number of re-
gression parameters introduced by covariates, which is particularly advantageous when
model selection is conducted using information criteria with penalty terms involving
parameter counts. The main contribution of this paper is the development of a frame-
work combining GPCM constraints with all of the special cases of the Gaussian MoE
framework whereby di�erent subsets of covariates can enter either, neither, or both
the component densities and component weights. We also consider the special cases
of the MoE framework for univariate response data with equal and unequal variance
across components. Thus, this paper addresses the aim of incorporating potentially
mixed-type covariates into the GPCM family and the equivalent aim of bringing GPCM
covariance constraints into the Gaussian MoE framework, by proposing the MoEClust
model family. The name MoEClust comes from the interest in employing MoE models
chie�y for clustering purposes. From both perspectives, MoEClust models show signif-
icant improvement in applications to both univariate and multivariate response data.

Other novel contributions include the addition of a noise component for capturing
outlying observations, and proposed solutions to initialising the EM algorithm sensi-
bly, addressing the issue of model selection, and a means for visualising the results of
MoEClust models. We also expand the number of special cases in the MoE framework
from four to six, by considering more parsimonious counterparts to the standard mix-
ture model and the mixture of regressions by constraining the mixing proportions. In
addition, a software implementation of the full suite of MoEClust models is provided
by the associated R package MoEClust (Murphy & Murphy, 2020), which is available
from www.r-project.org (R Core Team, 2020), with which all results were obtained.
The syntax of the popular mclust package (Scrucca et al., 2016) is closely mimicked,
with formula interfaces for specifying covariates in the gating and/or expert networks.
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The structure of the paper is as follows. For both Gaussian mixtures of experts and
MoEClust models, the modelling frameworks and inferential procedures are described,
respectively, in Section 2 and Section 3. Section 3.3 describes the addition of a noise
component for capturing outliers. Section 4 discusses proposals for addressing some
practical issues a�ecting performance, namely the initialisation of the EM algorithm
used to �t the models (Section 4.1), and issues around model selection (Section 4.2).
The performance of the proposed models is illustrated in Section 5 with applications to
univariate response CO2 emissions data (Section 5.1) and multivariate response data
from the Australian Institute of Sports (Section 5.2). Finally, the paper concludes with
a brief discussion in Section 6, with some additional results deferred to the Appendices.

2 Modelling

This section builds up the MoEClust models by �rst describing the mixture of experts
(MoE) modelling framework in Section 2.1 � elaborating on the special cases of the
MoE model in Section 2.1.1 � and then extending to the family of MoEClust models
comprising Gaussian mixture of experts models with parsimonious covariance struc-
tures from the GPCM family in Sections 2.2 and 2.3. Finally, a brief review of existing
models and software is given in Section 2.4.

2.1 Mixtures of Experts

The mixture of experts model (Dayton & Macready, 1988; Jacobs et al., 1991) extends
the mixture model used to cluster response data yi by allowing the parameters of
the model for observation i to depend on covariates xi. An independent sample of
response/outcome variables of dimension p, denoted by Y = (y1, . . . ,yn), is modelled
by a G-component �nite mixture model where the model parameters depend on the
associated covariate inputs X = (x1, . . . ,xn) of dimension d. The MoE model is often
referred to as a conditional mixture model (Bishop, 2006) because, given the set of
covariates xi, the distribution of the response variable yi is a �nite mixture model:

f
(
yi |xi

)
=

G∑
g=1

τg(xi) f
(
yi |θg (xi)

)
.

Each component is modelled by a probability density function f
(
yi |θg (xi)

)
with

component-speci�c parameters θg (xi) and mixing proportions τg(xi) which are only

allowed to depend on covariates when G ≥ 2. As usual, τg(xi) > 0 and
∑G

g=1 τg(xi) = 1.
The MoE framework facilitates �exible modelling. While the response variable yi is

modelled via a �nite mixture, model parameters are modelled as functions of related
covariates xi from the context under study. Both the mixing proportions and the
parameters of component densities can depend on xi. The terminology used to describe
MoE models in the machine learning literature often refers to the component densities
f
(
yi |θg (xi)

)
as `experts' or the `expert network', and to the mixing proportions τg(xi)

as `gates' or the `gating network', hence the nomenclature mixture of experts. Given
that covariates can be continuous and/or categorical with multiple levels, we let d+ 1
denote the number of columns in the corresponding design matrices, accounting also
for the intercept term, in contrast to the number of covariates r, with d ≥ r.
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In the original formulation of the MoE model for continuous data (Jacobs et al.,
1991), the mixing proportions (gating network) are modelled using multinomial logistic
regression (MLR), though this need not strictly be the case; Geweke & Keane (2007)
impose a multinomial probit structure here instead. The mixture components (expert
networks) are generalised linear models (GLM; McCullagh & Nelder, 1983). Thus,

τ̂g(xi) =
exp
(
x̃iβ̂g

)∑G
h=1 exp

(
x̃iβ̂h

) , (1)

and

θ̂g(xi) =
{
ψ
(
x̃iγ̂g

)
, Σ̂g

}
, (2)

for some link function ψ (·), with a collection of parameters in the component densities
(comprising a (d+ 1) × p matrix of expert network regression parameters γ̂g and the
p × p component covariance matrix Σ̂g), a (d+ 1)-dimensional vector of regression
parameters β̂g in the gates in (1), and x̃i = (1,xi). Note that expert network covariates
in�uence only the component means, and not the component covariance matrices.
Henceforth, we restrict our attention to continuous outcome variables as per the GPCM
family. Therefore, component densities are assumed to be the p-variate Gaussian
φ (yi | ·), and the link function ψ (·) in (2) is simply the identity, such that covariates
are linearly related to the response variables, i.e.

f
(
yi |xi

)
=

G∑
g=1

τg(xi)φ
(
yi |θg (xi) =

{
x̃iγg,Σg

})
. (3)

2.1.1 The MoE Family of Models

It is possible that some, none, or all model parameters depend on the covariates. This
leads to the four special cases of the Gaussian MoE framework shown in Figure 1, with
the following interpretations, due to Gormley & Murphy (2011):

(a) in the mixture model the distribution of yi depends on the latent cluster mem-
bership variable zi, the distribution of zi is independent of the covariates xi, and
yi is independent of xi conditional on zi : f

(
yi
)
=
∑G

g=1 τgφ
(
yi |θg =

{
µg,Σg

})
.

(b) in the expert network MoE model the distribution of yi depends on the covariates
xi and the latent cluster membership variable zi, and the distribution of zi is
independent of xi : f

(
yi |xi

)
=
∑G

g=1 τgφ
(
yi |θg

(
xi
)
=
{
x̃iγg,Σg

})
.

(c) in the gating network MoE model the distribution of yi depends on the latent
cluster membership variable zi, zi depends on the covariates xi, and yi is inde-
pendent of xi conditional on zi : f

(
yi |xi

)
=
∑G

g=1 τg
(
xi
)
φ
(
yi |θg =

{
µg,Σg

})
.

(d) in the full MoE model, given by (3), the distribution of yi depends on both the co-
variates xi and on the latent cluster membership variable zi, and the distribution
of the latent variable zi depends in turn on the covariates xi.

For models (c) and (d), zi has a multinomial distribution with a single trial and proba-
bilities equal to τg(xi). The full MoE model thus has the following latent variable rep-
resentation:

(
yi |xi, zig = 1

)
∼ φ

(
yi |θg (xi) =

{
x̃iγg,Σg

})
,Pr(zig = 1 |xi) = τg(xi).
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(a) Mixture model.
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(b) Expert network MoE model.
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(c) Gating network MoE model.
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(d) Full MoE model.

Figure 1: The graphical model representation of the mixture of experts models. The di�erences
between the special cases are due to the presence or absence of edges between the covariates X and
the latent variables Z and/or response variables Y. Note that di�erent subsets of the covariates in X
can enter these two di�erent parts of the full MoE model in (d).

The MoE family can be expanded further, from four to six special cases, by con-
sidering the models in (a) and (b), under which covariates do not enter the gating
network, by constraining the mixing proportions to be equal across components, i.e.
τg = 1/G ∀ g. This leads, respectively, to the equal mixing proportion mixture model and
equal mixing proportion expert network MoE model. Such models are more parsimo-
nious than their counterparts with unconstrained τ , as they require estimation of G−1
fewer parameters. Note that the size of a cluster is proportional to τg, which is dis-
tinct from its volume (Celeux & Govaert, 1995). Thus, situations where τig = τg(xi),
τig = τg, or τig = 1/G can all be accommodated. The six special cases of this MoE
framework can be applied to both univariate and multivariate response data.

It is worth noting that CWMs most fundamentally di�er from MoE models in their
handling of the mixing proportions τg and in how the joint density f (xi, zig = 1) is
treated, either as Pr(zig = 1 |xi) = τg(xi) (MoE) or f (xi | zig = 1)Pr(zig = 1) (CWM).
In other words, the direction of the edge between X and Z in the full MoE model in
Figure 1d is reversed under CWMs (Ingrassia et al., 2012). By virtue of modelling the
distribution of the covariates, CWMs are also inherently less parsimonious. The same
covariate(s) can enter both parts of full MoE models, in principle. Such models can
provide a useful estimation of the conditional density of the outcome given the covari-
ates, but the interpretation of the clustering model and the e�ect of the covariates
becomes more di�cult in this case. Conversely, allowing di�erent covariates enter dif-
ferent parts of the model further di�erentiates MoE models from CWMs. It is common
to distinguish among the overall set of covariates between concomitant gating network
variables and explanatory expert network variables. Thus, for clarity, x

(G)
i and x

(E)
i will

henceforth refer, respectively, to the possibly overlapping subsets of gating and expert
network covariates, such that xi =

{
x
(G)
i ∪ x

(E)
i

}
, with the dimensions of the associ-

ated design matrices given by dG+1 and dE +1. Higher order terms, transformations,
and interaction e�ects between covariates are also allowed in both networks.
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2.2 Gaussian Parsimonious Clustering Models

Parsimony has been considered extensively in the model-based clustering literature.
In particular, the volume of work on Gaussian and/or parsimonious mixtures has in-
creased hugely since the work of Ban�eld & Raftery (1993) and Celeux & Govaert
(1995). These works introduced the family of GPCMs, which are implemented in the
popular R package mclust (Scrucca et al., 2016). The in�uence of GPCMs is clear on
many other works which obtain parsimony in the component covariance matrices; e.g.,
using constrained factor-analytic structures (McNicholas & Murphy, 2008), the multi-
variate t-distribution and associated tEIGEN family (Andrews & McNicholas, 2012),
and the multivariate contaminated normal distribution (Punzo & McNicholas, 2016).

Parsimonious covariance matrix parameterisations are obtained in GPCMs by means
of imposing constraints on the components of an eigen-decomposition of the form
Σg = λgDgAgD

>
g , where λg is a scalar controlling the volume, Ag is a diagonal ma-

trix, with entries proportional to the eigenvalues of Σg with det(Ag) = 1, specifying
the shape of the density contours, and Dg is p × p orthogonal matrix, the columns
of which are the eigenvectors of Σg, governing the corresponding ellipsoid's orienta-
tion. Imposing constraints reduces the number of free covariance parameters from
Gp (p+ 1) /2 in the unconstrained (VVV) model. This is desirable when p is even
moderately large. Thus, GPCMs allow for intermediate component covariance matri-
ces lying between homoscedasticity and heteroscedasticity. Table 1 summarises the
geometric characteristics of the GPCM constraints, which are then shown in Figure 2.

Note for models with names ending with I that the number of parameters is linear
in the data dimension p. Thus, the diagonal models are especially parsimonious and
useful in n ≤ p settings. While there are 2 variance parameterisations for mixtures of
univariate response data, and 14 covariance parameterisations for mixtures of multi-
variate response data, considering the equal mixing proportion constraint doubles the
number of models available in each of these cases.

Table 1: Nomenclature, descriptions, and parameter counts of the parameterisations of the component
covariance matrices Σg available under GPCMs, all of which are available when there is no dependency
in any way on covariates. † indicates availability in the �rst four special cases of the Gaussian MoE
framework shown in Figure 1 and the MoEClust family; • indicates other models available in the
MoEClust family. While all models are possible when G = 1, they are all equivalent to one of the
highlighted available models, otherwise missing entries correspond to models which are never available.
The other central columns refer to G > 1 settings.

Name Model G = 1 n > p n ≤ p Distribution Volume Shape Orientation Covariance Parameters

E σ † • (univariate) equal 1
V σg † (univariate) variable G
EII λI † • • spherical equal equal � 1
VII λgI • • spherical variable equal � G
EEI λA • • • diagonal equal equal axis-aligned p
VEI λgA • • diagonal variable equal axis-aligned G+ (p− 1)
EVI λAg • • diagonal equal variable axis-aligned 1 +G(p− 1)
VVI λgAg † † diagonal variable variable axis-aligned Gp
EEE λDAD> • • ellipsoidal equal equal equal p(p+ 1)/2
EVE λDAgD> • ellipsoidal equal variable equal 1+p(p−1)/2+G(p−1)
VEE λgDAD> • ellipsoidal variable equal equal G+p(p−1)/2+(p−1)
EEV λDgAD>

g • ellipsoidal equal equal variable 1+Gp(p−1)/2+(p−1)

VEV λgDgAD>
g • ellipsoidal variable equal variable G+Gp(p−1)/2+(p−1)

EVV λDgAgD>
g • ellipsoidal equal variable variable 1+Gp(p−1)/2+(p−1)

VVE λgDAgD> • ellipsoidal variable variable equal G+p(p−1)/2+G(p−1)
VVV λgDgAgD>

g † ellipsoidal variable variable variable Gp(p+ 1)/2
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EII VII EEI VEI EVI VVI EEE

EVE VEE EEV VEV EVV VVE VVV

Figure 2: Ellipses of isodensity for each of the 14 parsimonious eigen-decomposition covariance pa-
rameterisations for multivariate data in GPCMs, with three components in two dimensions.

2.3 The MoEClust Family of Models

Interest lies in bringing parsimonious covariance structures to Gaussian MoE models
with network-speci�c subsets of covariates:

f
(
yi |xi

)
=

G∑
g=1

τg
(
x
(G)
i

)
φ
(
yi
∣∣ θg(x(E)

i

)
=
{

x̃
(E)
i γg,Σg

})
,

where Σg can follow any of the GPCM constraints outlined in Table 1. It is equivalent
to say that interest lies in incorporating covariate information into the GPCM model
family. Using the covariance constraints, combined with the six special cases of the
MoE model described in Section 2.1.1, yields the MoEClust family of models, which
are capable of dealing with correlated responses and o�ering additional parsimony in
the component densities compared to current implementations of Gaussian MoE mod-
els, by virtue of allowing the size, volume, shape, and/or orientation to be equal or
unequal across components. For MoE models, every continuous covariate added to the
gating and expert networks introduces G − 1 and Gp additional regression parame-
ters, respectively. Parsimonious MoEClust models allow the increase in the number of
regression parameters to be o�set by the reduction in the number of covariance param-
eters. This can be advantageous when model selection is conducted using information
criteria which include penalty terms based on parameter counts (see Section 4.2).

2.4 Existing Models and Software

A number of tools for �tting MoE models are available in the R programming envi-
ronment (R Core Team, 2020). These include flexmix (Grün & Leisch, 2007, 2008),
mixtools (Benaglia et al., 2009), and others. Tools for �tting GPCMs without covari-
ates include mclust (Scrucca et al., 2016) and Rmixmod (Lebret et al., 2015).

The flexmix package (Grün & Leisch, 2007, 2008) can accommodate the full range
of MoE models outlined in Section 2.1.1, excluding those for which τ is constrained to
be equal, in the case of univariate yi, though only models with unequal variance can
be �tted. The user can specify the form of the GLM and covariates (if any) to be used
in the gating and expert networks, for which the package has a similar interface to
the glm functions within R. In the case of a multivariate continuous response, there is
functionality for multivariate Gaussian component distributions though only for models
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without expert network covariates. Furthermore, only the VVI and VVV constraints
and models with unequal mixing proportions or gating concomitants are facilitated.

For univariate data, the mixtools package (Benaglia et al., 2009) can accommodate
the expert network MoE model with equal or unequal variance; it can also accommo-
date the full MoE model, though only for G = 2, with unequal variance, and with the
restriction that all covariates enter both part of the model. The package allows for
nonaparametric estimation of the functional form for the mixing proportions (gating
networks) and the component densities (expert networks), so it o�ers further �exibil-
ity beyond flexmix in these cases. However, the multivariate models in mixtools

use the local independence assumption, so it does not directly o�er the facility to
model multivariate Gaussian component densities with non-diagonal covariance ma-
trices. Furthermore, multivariate response models in mixtools do not yet incorporate
covariates in any way, and the equal mixing proportions constraint is not facilitated in
any way either.

The mclust package (Scrucca et al., 2016) and Rmixmod package (Lebret et al.,
2015) can accommodate the full range of covariance constraints in Table 1, and are
thus examples of existing software which can �t GPCMs, but only using the standard
�nite mixture model (model (a) in Figure 1) or the equal mixing proportions mixture
model; i.e., they do not facilitate dependency on covariates in any way.

Another important contribution in this area is by Dang & McNicholas (2015). This
work introduces eigen-decomposition parsimony to the MoE framework, though only
for the expert network MoE model and the full MoE model. However, for the full MoE
model, all covariates are assumed to enter into both parts of the model. Thus, the
MoEclust model family completes the work of Dang & McNicholas (2015) by consider-
ing all six special cases of the MoE framework, whereby di�erent subsets of covariates
can enter either, neither, or both the component densities and/or component weights,
as well as models with equal mixing proportions. In addition, our unifying MoEClust
framework also incorporates such parsimonious models for univariate response data.

Finally, it should be noted that eigen-decomposition parsimony has been introduced
to the alternative CWM framework, in which all covariates enter the same part of the
model, by Dang et al. (2017), for the multivariate Gaussian distributions of both the
response variables and the covariates, assuming only continuous covariates; see also
Punzo & Ingrassia (2015) for eigen-decomposition parsimony applied to the covariates
only. The flexCWM package (Mazza et al., 2018) allows GPCM covariance structures
in the distribution of the continuous covariates only, though only univariate responses
are accommodated. It also allows, simultaneously or otherwise, covariates of other
types, as well as omitting the distribution for the covariates entirely, leading to non-
parsimonious mixtures of regressions, with or without concomitant variables.

3 Model Fitting via EM

To estimate the parameters of MoEClust models, we focus on maximum likelihood
estimation using the EM algorithm (Dempster et al., 1977). This is outlined �rst for
MoE models in Section 3.1 and then extended to MoEClust models in Section 3.2.
Model �tting details are described chie�y for the full MoE model only, for simplicity.
A simple trick involving the residuals of the weighted linear regressions in the expert
network assists �tting when using GPCM constraints. A uniform noise component
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to capture outlying non-Gaussian observations is added in Section 3.3. When gating
concomitants are present, the noise component is treated in two di�erent ways.

3.1 Fitting MoE Models

For the full mixture of experts model, the likelihood is of the form

L(β,γ,Σ |Y,X) =
n∏
i=1

G∑
g=1

τg
(
x
(G)
i

)
φ
(
yi |θg

(
x
(E)
i

))
,

where τg
(
x
(G)
i

)
and θg

(
x
(E)
i

)
are as de�ned by (1). The data are augmented by imputing

the latent cluster membership indicator zi = (zi1, . . . , ziG)
>. Thus, the conditional

distribution of
(
yi, zi |xi

)
is of the form

f
(
yi, zi |xi

)
=

G∏
g=1

[
τg
(
x
(G)
i

)
φ
(
yi |θg

(
x
(E)
i

))]zig
.

Hence, the complete data likelihood is of the form

Lc(β,γ,Σ |Y,X,Z) =
n∏
i=1

G∏
g=1

[
τg
(
x
(G)
i

)
φ
(
yi |θg

(
x
(E)
i

))]zig
,

and the complete data log-likelihood has the form

`c(β,γ,Σ |Y,X,Z) =
n∑
i=1

G∑
g=1

zig

[
log τg

(
x
(G)
i

)
+ log φ

(
yi |θg

(
x
(E)
i

))]
=

n∑
i=1

G∑
g=1

zig log τg
(
x
(G)
i

)
+

n∑
i=1

G∑
g=1

zig log φ
(
yi |θg

(
x
(E)
i

))
.

(4)

The iterative EM algorithm for MoE models follows in a similar manner to that for
standard mixture models. It consists of an E-step (expectation) which replaces for each
observation the missing data zi with their expected values ẑi, followed by a M-step
(maximisation) which maximises the expected complete data log-likelihood, computed
with the estimates Ẑ = (ẑ1, . . . , ẑn), to provide estimates of the component weight
parameters τ̂g

(
x
(G)
i

)
and the component parameters θ̂g

(
x
(E)
i

)
. Aitken's acceleration

criterion is used to assess convergence of the non-decreasing sequence of log-likelihood
estimates (Böhning et al., 1994). Parameter estimates produced on convergence achieve
at least a local maximum of the likelihood function. Upon convergence, cluster mem-
berships are estimated via the maximum a posteriori (MAP) classi�cation. The E-step
involves computing

ẑ
(t+1)
ig = E

(
zig
∣∣ yi,xi, β̂

(t), γ̂(t), Σ̂(t)
)
=

τ̂
(t)
g

(
x
(G)
i

)
φ
(
yi | θ̂(t)

g

(
x
(E)
i

))∑G
h=1 τ̂

(t)
h

(
x
(G)
i

)
φ
(
yi | θ̂(t)

h

(
x
(E)
i

)) ,
where

{
β̂(t), γ̂(t), Σ̂(t)

}
are the estimates of the parameters in the gating and expert

networks on the t-th iteration of the EM algorithm.
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For the M-step, we notice that the complete data log-likelihood in (4) can be
considered as a separation into the portion due to the gating network and the portion
due to the expert network. Thus, the expected complete data log-likelihood (5) can
be maximised separately under the EM framework:

E
[
`c
(
β,γ,Σ |Y,X,Z, β̂(t), γ̂(t), Σ̂(t)

)]
=

n∑
i=1

G∑
g=1

ẑ
(t+1)
ig log τg

(
x
(G)
i

)
+

n∑
i=1

G∑
g=1

ẑ
(t+1)
ig log φ

(
yi |θg

(
x
(E)
i

))
.

(5)

The �rst term is of the same form as a MLR model, here written with component 1 as
the baseline reference level, for identi�ability reasons:

log
τg
(
x
(G)
i

)
τ1
(
x
(G)
i

) = log
Pr
(
ẑ
(t+1)
ig = 1

)
Pr
(
ẑ
(t+1)
i1 = 1

) = x̃
(G)
i βg ∀ g ≥ 2, where β1 = (0, . . . , 0)>.

Thus, methods for �tting such models can be used to maximise this term and estimate
the parameters in the gating network. The second term is of the same form as �tting
G separate weighted multivariate linear regressions, and thus methods for �tting such
models can be used to estimate the expert network parameters. Note that these are
multivariate in the sense of a multivariate outcome yi; the associated design matrix
having dE + 1 columns means these regressions are possibly also multivariate in terms
of the explanatory variables. Thus, �tting MoE models is straightforward in principle.

3.2 Fitting MoEClust Models

Maximising the second term in (5), corresponding to the expert network, gives rise to
the following expression

−1

2

(
p log 2π +

n∑
i=1

G∑
g=1

ẑ
(t+1)
ig log|Σg|+

n∑
i=1

G∑
g=1

ẑ
(t+1)
ig

(
yi − x̃

(E)
i γg

)>
Σ−1g

(
yi − x̃

(E)
i γg

))
.

(6)

When the same set of regressors are used for each dependent variable, as is always
the case for MoEClust models, or when Σg is diagonal, it can be shown that γg does
not depend on Σg, much like a Seemingly Unrelated Regression model (SUR; Zellner,
1962). We �rst estimate γ̂g and then Σ̂g. Fitting G separate multivariate regressions
(weighted by ẑig), yieldsG sets of n×p SUR residuals r̂ig = yi − x̃

(E)
i γ̂g which, crucially,

satisfy
∑n

i=1 ẑigr̂ig = 0. Thus, maximising (6) is equivalent to minimising

n∑
i=1

G∑
g=1

ẑ
(t+1)
ig log|Σg|+

n∑
i=1

G∑
g=1

ẑ
(t+1)
ig r̂>igΣ

−1
g r̂ig , (7)

which is of the same form as the criterion used in the M-step of a standard Gaussian �-
nite mixture model with component covariance matrices Σ̂, component means equal to
zero, and new augmented data set R̂. Thus, when estimating the component covari-
ance matrices via (7), the same M-step function as used within mclust can be applied
to augmented data, constructed so that each observation is represented as follows:
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1. Stack the G sets of SUR residuals
into the (n×G)× p matrix R̂:

R̂ =



r̂111 r̂112 . . . r̂11p
r̂211 r̂212 . . . r̂21p
...

...
. . .

...
r̂n11 r̂n12 . . . r̂n1p

r̂121 r̂122 . . . r̂12p
r̂221 r̂222 . . . r̂22p
...

...
. . .

...
r̂n21 r̂n22 . . . r̂n2p

...
...

. . .
...

r̂1G1 r̂1G2 . . . r̂1Gp

r̂2G1 r̂2G2 . . . r̂2Gp

...
...

. . .
...

r̂nG1 r̂nG2 . . . r̂nGp



2. Create the (n×G)×G block-diagonal
matrix ζ̂ from the columns of Ẑ:

ζ̂ =



ẑ11 0 . . . 0
ẑ21 0 . . . 0
...

...
. . .

...
ẑn1 0 . . . 0
0 ẑ12 . . . 0
0 ẑ22 . . . 0
...

...
. . .

...
0 ẑn2 . . . 0

...
...

. . .
...

0 0 . . . ẑ1G
0 0 . . . ẑ2G
...

...
. . .

...
0 0 . . . ẑnG


Structuring the model in this manner allows GPCM covariance structures to be easily
imposed on Gaussian MoE models with gating and/or expert network covariates. In
the end, the M-step involves three sub-steps, each using the current estimate of Ẑ:
i) estimating the gating network parameters β̂g and hence the component weights
τ̂g
(
x
(G)
i

)
via MLR, ii) estimating the expert network parameters γ̂g and hence the

component-speci�c means via weighted multivariate multiple linear regression, and iii)
estimating the constrained component covariance matrices Σ̂g using the augmented
data set comprised of SUR residuals, as outlined above.

In the absence of covariates in the gating and/or expert networks, under the special
cases outlined in Section 2.1.1, their respective contribution to (5) is maximised as per
the corresponding term in a standard GPCM. In other words, the gating and expert
networks without covariates can be seen as regressions with only an intercept term.
Thus, the augmented data structure is not required when there are no expert covariates
and the formula for estimating τ in the absence of concomitant variables is τ̂g =
n−1

∑n
i=1 ẑig, rather than (1). As described in Section 2.1.1, it is sometimes useful to

expand the model family further by considering more parsimonious alternatives to the
special cases of models (a) and (b) in Figure 1, where gating covariates are omitted, by
constraining the mixing proportions to be equal and �xed, i.e. τg = 1/G ∀ g. Similarly,
removing the corresponding regression intercept(s) from the part(s) of the model where
covariates enter can yield further parsimony in appropriate settings, e.g. when there are
strong a priori physical reasons for believing E

(
Y |X(E) = 0

)
= 0 (Eisenhauer, 2003).

3.3 Adding a Noise Component

For models with expert network covariates, and/or when the volume and/or shape
di�er across components, the mixture likelihood is unbounded. We restrict our in-
terest only to solutions for which the log-likelihood at convergence is �nite. As per
the eps argument to the mclust R package's emControl function (Scrucca et al., 2016),
we monitor the conditioning of the covariances and add a tolerance parameter (set to
the relative machine precision, i.e. 2.220446e-16 on IEEE compliant machines) to the
M-step estimation of the component covariances to control termination of the EM algo-
rithm on the basis of small eigenvalues. For models with unconstrained Σg, each cluster
must contain at least p+1 units to avoid computational singularity. Thus, in practice,
such spurious solutions with in�nite likelihood occur especially for higher G values,
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whereby either solutions with empty components reduce to ones with fewer compo-
nents, or uninteresting solutions with degenerate components containing too few units
or even singletons are found. Sensible initial allocations (see Section 4.1) and/or the
equal mixing proportion constraint, which help avoid empty or otherwise poorly pop-
ulated clusters, can help to alleviate this problem. García-Escudero et al. (2018) o�er
an excellent discussion of the notions of spurious solutions and degenerate components.

Further extending MoEClust models via the inclusion of an additional uniform noise
component can also help in addressing these issues, by capturing outlying observations
which do not �t the prevailing pattern of Gaussian clusters and thus would otherwise
be assigned to (possibly many) small clusters. In particular, the noise component
for encompassing clusters with non-Gaussian distributions is here distributed as a
homogeneous spatial Poisson process, as per Ban�eld & Raftery (1993). Such a noise
component can be included regardless of where covariates (if any) enter, and regardless
of the GPCM constraints employed. Model-�tting via the EM algorithm is not greatly
complicated by the addition of a noise component, though it is required to estimate
V , the hypervolume of the region from which the response data have been drawn, or
to consider V as an independent tuning parameter as per Hennig & Coretto (2008),
especially if n ≤ p. For univariate responses V is given by the range of y1, . . . , yn. For
multivariate data, V can be estimated by the hypervolume of the convex hull, ellipsoid
hull, or smallest hyperrectangle enclosing the data. We focus on the latter method.

For initialisation, a column in which each entry is τ0 (the guess of the prior prob-
ability that observations are noise) is appended to the starting Z matrix, with other
columns corresponding to non-noise components then multiplied by 1− τ0. The initial
τ0 should not be too high; it is set to 0.1 here. For models with a noise component and
no gating concomitants, the mixing proportions can be, as before, either constrained
or unconstrained. In the latter case, we estimate τ0 and then constrain the remaining
proportions. We add the extension that concomitants, when present, are allowed to af-
fect (8) or not a�ect (9) the mixing proportion of the noise component. Henceforth, for
clarity, we refer to these settings as the gated noise (NG) and non-gated noise (NGN)
models, respectively. The NGN model assumes τ0 is constant across observations and
covariate patterns. It is thus the more parsimonious model; it requires only 1 extra
gating network parameter, rather than dG+1 under the GN model, relative to models
without a noise component, though it is only de�ned for G ≥ 2.

GN : f
(
yi |xi

)
=

G∑
g=1

τg
(
x
(G)
i

)
φ
(
yi
∣∣ θg(x(E)

i

)
=
{

x̃
(E)
i γg,Σg

})
+
τ0
(
x
(G)
i

)
V

. (8)

NGN : f
(
yi |xi

)
=

G∑
g=1

τg
(
x
(G)
i

)
φ
(
yi
∣∣ θg(x(E)

i

)
=
{

x̃
(E)
i γg,Σg

})
+
τ0
V
. (9)

4 Practical Issues

In this section, factors a�ecting the performance of MoEClust models are discussed;
namely, the necessity of a good initial partition to prevent the EM algorithm from
converging to a suboptimal local maximum (Section 4.1), and the necessity of model
selection with regard to where and what covariates (if any) enter the model to yield
further parsimony by reducing the number of gating and/or expert network regression
parameters (Section 4.2). Novel strategies for dealing with both issues are proposed.
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4.1 EM Initialisation

With regards to initialisation of the EM algorithm for G > 1MoEClust models, model-
based agglomerative hierarchical clustering and quantile-based clustering have been
found to be suitable for multivariate and univariate data, respectively. Both flexmix

and mixtools randomly initialise the allocations, despite the obvious computational
drawback of the need to run the EM algorithm from multiple random starting points.
However, when explanatory variables x

(E)
i enter the expert network, it is useful to use

them to augment the initialisation strategy with extra steps. Algorithm 1 outlines
the proposed initialisation strategy, similar to that of Ning et al. (2008). It takes
the initial partition of the data (whether obtained by hierarchical clustering, random
initialisation, or some other method) and iteratively reallocates observations in such a
way that each subset can be well-modelled by a single expert.

When using a deterministic approach to obtain the starting partition for Algorithm
1, initialisation can be further improved by considering information in the expert net-
work covariates to �nd a good clustering of the joint distribution of

(
yi,x

(E)
i

)
. When

x
(E)
i includes categorical or ordinal covariates, the model-based approach to cluster-

ing mixed-type data of McParland & Gormley (2016) can be employed at this stage,
though this is not considered further here.

Algorithm 1: Iterative reallocation initialisation with expert network covariates

0 Concatenate the response data and expert network covariates into a matrix.
1 Obtain some non-overlapping hard starting partition Ω1,Ω2, . . . ,ΩG.

2 Estimate the expert network regression ηg(γg, ·) on every subset {Ωg}Gg=1.

3 Compute the �tted values ŷig = ηg
(
γ̂g,x

(E)
i

)
∀ (i, g) and hence the residuals r̂ig = yi − ŷig.

4 Compute Ψ̂g = Cov
(
R̂g

)
= 1

n−dE−1R̂>g R̂g ∀ g.
5 Compute the squared Mahalanobis distance M̂ig = d2M

(
yi, ŷig

)
= R̂>g Ψ̂−1g R̂g .

6 Let ki = argminh∈{1,...,G}
(
M̂ih

)
and reassign observation i to subset Ωki .

7 Repeat Steps 2�6 until convergence is achieved, i.e. until the partition ceases to change.

If at any stage a level is dropped from a categorical variable in subset Ωg the
variable itself is dropped from the corresponding regressor for the observations with
missing levels. Convergence of the algorithm is guaranteed and the additional com-
putational burden incurred is negligible. By using the Mahalanobis distance metric
(Mahalanobis, 1936), each observation is assigned to the cluster corresponding to the
Gaussian ellipsoid to which it is closest. This has the added advantage of potentially
speeding up the running of the EM algorithm. The estimates of γ̂g at convergence are
used as starting values for the expert network. The gating network is initialised by
considering the partition itself at convergence as a discrete approximation of the gates.

While convergence is monitored via the partition itself, Algorithm 1 implicitly �nds
the hard partition which minimises the total intra-component regression error criterion

G∑
g=1

min
{ηg ,γg}

( ∑
i∈Ωg

d2
M

(
yi, ηg

(
γg,x

(E)
i

)))
. (10)

However, there are a few small caveats. Firstly, it su�ces to use the Euclidean distance
in place of the Mahalanobis distance for applications to univariate response data.
Secondly, the Moore-Penrose pseudo-inverse (Moore, 1920) or p-dimensional identity
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matrix Ip is used in place of Ψ̂−1g when n ≤ p. Finally, we note that Algorithm 1
applies only to the non-noise components; in the presence of a noise component, the
Ẑ matrix outputted by the algorithm at convergence is modi�ed in the usual way.

Figure 3 illustrates the necessity of this procedure using a toy data set, with a
single continuous covariate and a univariate response clearly arising from a mixture of
two linear regressions, which otherwise would not be discerned without including the
covariate in the initialisation routine via Algorithm 1. A further demonstration of the
utility of this strategy is shown in AppendixB. Similar to the EM algorithm's suscep-
tibility to local maxima, a limitation of our initialisation strategy is that the result at
convergence may represent a suboptimal local minimum. However, the problem is
transferred from the di�cult task of initialising the EM algorithm to initialising Algo-
rithm 1. Thus, it is feasible to repeat the algorithm with many di�erent partitions and
choose the best result, in the sense of minimising the criterion in (10), to initialise one
run of the EM algorithm, since Algorithm 1 converges very quickly, requires much less
computational e�ort than the EM algorithm itself, and generally reduces the number of
required EM iterations. However, we caution against using the total intra-component
regression error criterion to guide the inclusion of expert network covariates.
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response variables only.
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(c) Partition obtained via Algorithm 1.

Figure 3: Initial 2-component hard partitions on univariate data clearly arising from a mixture of
two linear regressions, obtained using (a) agglomerative hierarchical clustering, (b) random alloca-
tion, and (c) Algorithm 1 applied to the initialisation in (b) upon convergence after 6 iterations,
demonstrating the improvement achieved by incorporating expert network covariates into the initial-
isation strategy. Allocations are distinguished by blue circles and red triangles. Corresponding �tted
lines are also shown.

4.2 Model Selection

Whether a variable should be considered as a covariate or part of the response is usually
clear from the context of the data being clustered. However, within the suite of MoE
models outlined in Section 2.1.1, it is natural to question which covariates, if any, are to
be included, and if so in which part(s) of the MoE model. Unless the manner in which
covariates enter is guided by the question of interest in the application under study,
this is a challenging problem as the space of MoE models is potentially very large
once variable selection for the covariates entering the gating and expert networks is
considered. Thus, only models where covariates enter all mixture components or all
component weights in a linear manner are typically considered in practice in order to
restrict the size of the model search space. However, even within this reduced space,
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there are 2r models to consider when G = 1 and 22r models to consider otherwise.
Thus, the model space increases further if the number of components G is unknown.

Model comparison for the MoEClust family is even more challenging, especially for
multivariate response data for which there are potentially 14 di�erent GPCM covari-
ance constraints to consider for models with G ≥ 2 and 3 otherwise. When p = 1,
there are 2 covariance constraints to consider when G ≥ 2 and 1 otherwise. Consid-
ering constraints on the mixing proportions further increases the model search space.
However, model selection can still be implemented in a similar manner to other model-
based clustering methods: the Bayesian Information Criterion (BIC; Schwarz, 1978)
and Integrated Completed Likelihood (ICL; Biernacki et al., 2000) have been shown to
give suitable model selection criteria, both for the number of component densities (and
thus clusters) required and for selecting covariates to include in the model. The num-
ber of free parameters in the penalty term for these criteria of course depends on the
included gating and expert network covariates and the GPCM constraints employed.

For MoEClust models involving mixtures of GLMs, stepwise variable selection app-
roaches can be used to �nd the optimal covariates for inclusion in either the multinomial
logistic regression (gating network) or the weighted linear regression (expert network).
Indeed, more parsimony can be achieved using variable selection, as there are a total of
G (dG + 1) +Gp (dE + 1) intercept and regression coe�cients to estimate for a G > 1
full MoE model. However, the selected covariates may only be optimal for the given
G and the given set of GPCM covariance matrix constraints. MoEClust models also
allow for covariates entering only one part of the model. Thus, we propose a greedy
stepwise search whereby each step could involve adding/removing a component or
adding/removing a single covariate in either the gating or expert networks. We adopt a
forward search, starting from a G = 1 model, as backward selection can be particularly
cumbersome when r is large. In the considered applications, it su�ced to consider only
additions (of components and covariates) rather than additions and removals in the
sense that the same �nal model was obtained despite fewer models being evaluated over
the course of the search. Hence, the recommended forward search algorithm proceeds
as follows:

Algorithm 2: Greedy forward stepwise search for MoEClust models

1 Choose the best G = 1 model with no covariates among all allowable model types.
2 Either:
• increase G by 1,
• add an explanatory variable to the expert network,
• add a concomitant variable to the gating network (only when G ≥ 2).

3 For every action in Step 2, consider the full range of allowable GPCM constraints.
4 Accept the change which yields the best improvement in terms of BIC or ICL.
5 Repeat Steps 2�4 until there is no further improvement in the selection criterion.

While one could consider changing the GPCM constraints as another potential ac-
tion in Step 2 of Algorithm 2, our experience suggests that increasing G or adding
covariates (especially in the expert network) can radically alter the covariance struc-
ture. Thus, we advise changing the GPCM constraints simultaneously and identifying
the optimum action by �rst �nding the optimum constraints for each action. While
this is more computationally intensive than altering the GPCM constraints as a step
in itself, this makes the search less likely to miss optimal models as it traverses the
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model space. See Appendix A for an example of how to conduct such a stepwise search
using code from the MoEClust R package (Murphy & Murphy, 2020).

In certain special instances, some extra steps can be considered. When there are
no gating network concomitants, a choice can be made, for each action, between �t-
ted models with equal or unequal mixing proportions. We distinguish between G-
component models without a noise component and models with G− 1 Gaussian com-
ponents plus an additional noise component. Thus, we recommend treating models
with a noise component di�erently, by running a stepwise search for models excluding
the possibility of a noise component, running a separate stepwise search starting from
a G = 0 noise-only model, and ultimately choosing between the optimal models with
and without a noise component identi�ed by each search. In the presence of a noise
component, one can also �t the GN and NGN models, given by (8) and (9) respectively,
when evaluating every action involving models with gating network concomitants.

When r is not so prohibitively large as to render an exhaustive search infeasible,
Gormley & Murphy (2010) demonstrate how model selection criteria such as the BIC
can be employed to choose the appropriate number of components and guide the in-
clusion of covariates across the six special cases of the MoE model described in Section
2.1.1. Adapting this approach to MoEClust models where GPCM constraints must
also be chosen requires �xing the covariates to be included in the component weights
and densities and �nding the G value and GPCM covariance structure which together
optimise some criterion. Di�erent �ts with di�erent combinations of covariates are then
compared according to the same criterion. However, due to the highlighted computa-
tional di�culties when r is large, Algorithm 2 remains the recommended approach.

5 Results

The clustering performance of the MoEClust models is illustrated by application to
two well-known data sets: univariate CO2 data (Section 5.1) and multivariate data
from the Australian Institute of Sports (Section 5.2). Additional results are provided
for each data set in the Appendices. In particular, code examples (Appendix A) and
details of the initialisation (Appendix B) for the CO2 data and results of the stepwise
search (Appendix C) for the AIS data are given.

Hereafter, any mention of methods for initialising the allocations, when covariates
enter the expert network, refers to �nding a single initial partition for Algorithm 1.
The BIC and the stepwise search strategy outlined in Algorithm 2 were used to �nd the
optimal number of components, choose the covariance type, and select the best subset
of covariates, as well as where to put them. Results of exhaustive searches are also
provided for demonstrative purposes. All results were obtained using the R package
MoEClust (Murphy & Murphy, 2020).

5.1 CO2 Data

As a univariate example of an application of MoEClust, data on the CO2 emissions
of n = 28 countries in the year 1996 (Hurn et al., 2003) are clustered, with Gaussian
component densities. Studying the relationship between CO2 and the covariate Gross
National Product (GNP), both measured per capita, is of interest. As consideration is
only being given to inclusion/exclusion of a single covariate in the gating and/or expert
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networks, an exhaustive search is feasible. A range of models (G ∈ {1, . . . , 9}) are
�tted, with either the equal (E) or unequal variance (V) models from Table 1. Quantile-
based clustering of the CO2 values is used to initialise Algorithm 1 when the expert
network excludes GNP, otherwise hierarchical clustering of both CO2 and GNP is used.

Table 2 gives BIC and ICL values for the top model under each of the six special
cases of the MoE framework. The chosen model had G = 3, equal variances (i.e. the E
constraint), equal mixing proportions, and GNP in the expert network; thus, this is an
equal mixing proportion expert network MoE model. This model maximised both the
BIC and ICL criteria, and was also identi�ed by the forward stepwise search described
in Algorithm 2, starting from a G = 1 model (BIC=−163.90), adding a component
(BIC=−163.16), adding GNP to the expert network and changing to the V model
type (BIC=−157.20), and �nally adding a further component, constraining the mixing
proportions, and changing back to the E model type (BIC=−155.20). Thereafter,
neither adding a component nor adding GNP to the gating network improved the BIC.
Code to reproduce both the exhaustive and stepwise searches using the MoEClust R

package is given in Appendix A.

Table 2: The MoEClust BIC and ICL values of the top models under the six MoE special cases for
the CO2 data. Each row is optimal with respect to G and GPCM type, given the included covariates.

Special Case Gating Expert G GPCM BIC ICL

Mixture Model 2 E −163.16 −163.91
Expert Network MoE Model GNP 2 V −157.20 −160.04
Gating Network MoE Model GNP 2 E −166.05 −166.68
Full MoE Model GNP GNP 2 V −159.25 −161.47
Equal Mixing Proportion Mixture Model Equal 2 V −165.19 −184.71
Equal Mixing Proportion Expert Network MoE Model Equal GNP 3 E −155.20 −159.06

Repeating both the exhaustive and stepwise searches with the addition of a noise
component for all models also failed to yield any model with an improved BIC. The
fourth row of Table 2 corresponds to a full MoE, with GNP included in both parts of the
model; its sub-optimal BIC highlights the bene�ts of the model selection approach. The
parameters of the optimal model are given in Table 3. Its �t is exhibited in Figure 4,
which shows that the relationship between CO2 and GNP is clustered around three di�-
erent linear regression lines; one cluster of 8 countries with a large slope value and two
equally-sized clusters, each with di�erent intercepts but similar near-zero slope values.
Clustering uncertainties, given by Ûi = ming ∈{1,...,Ĝ}(1− ẑig), are also shown.

Table 3: Estimated parameters of the optimal MoEClust model �t to the CO2 data.

Parameter Component 1 Component 2 Component 3

Proportion 1/3 1/3 1/3
(Intercept) 1.41 7.29 10.84

GNP 0.68 −0.04 −0.04
σ2
g 0.98 0.98 0.98
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works, the latter of which includes GNP as a covariate.

Figure 4: Scatter plots of GNP against CO2 emissions for n = 28 countries with three linear regression
components from the optimal MoEClust model with equal variances and mixing proportions.

The optimal model contains GNP in the expert network and has constraints on the
component variances and mixing proportions. These are features of the MoEClust
models which neither MoE nor GPCM models can fully accommodate. While flexmix
and mixtools can �t the sub-optimal expert network MoE model in row four of Table
2, with unequal variances and mixing proportions (which achieves the second highest
BIC value), our initialisation strategy ultimately leads to the same or higher BIC
estimates. Across 50 random starts, BIC values of −157.29 and −157.20 are achieved
using flexmix and mixtools, respectively. Among these random starts, BIC values
as low as −163.67 are obtained. However, the MoEClust R package, with Algorithm 1
invoked, achieves a BIC of−157.20 using only a single initial partition. Using MoEClust
without this initialisation strategy also yields the lower BIC value of−163.67. A further
demonstration of the advantages of our initialisation strategy, using instead the optimal
model for the the CO2 data, is provided in Appendix B.

5.2 Australian Institute of Sport (AIS) Data

Various physical and hematological (blood) measurements were made on 102 male and
100 female athletes at the Australian Institute of Sport (AIS; Cook & Weisberg, 1994).
The thirteen variables recorded in the study are detailed in Table 4.
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Table 4: Australian Institute of Sports data variables. The p = 5 in the �rst column are hematological
response variables and the others, the r = 8 covariates, are physical measurements for the athlete.

Response Description Covariate Description (Units)

RCC red cell count BMI body mass index (kg/m2)
WCC white cell count SSF sum of skin folds (mm)
Hc Hematocrit Bfat body fat percentage (%)
Hg Hemoglobin LBM lean body mass (kg)
Fe plasma ferritin Ht height (cm)

concentration Wt weight (kg)
sex a factor with levels: female, male
sport a factor with levels: Basketball, Field, Gymnastics, Netball,

Rowing, Swimming, Tennis, Track 400m, Track Sprint, Water Polo

MoEClust models are used to investigate the clustering structure in the athletes'
hematological measurements and investigate how covariates may in�uence these mea-
surements and the clusters. Cluster allocations are initialised using model-based ag-
glomerative hierarchical clustering. Results of the forward stepwise model search desc-
ribed in Algorithm 2, with all covariates considered for inclusion, are given in Appendix
C. The optimal model (BIC=−4010.14) is a 2-component EVE equal mixing proportion
expert network MoE model, which thus has clusters of equal size, volume, and orienta-
tion, and unequal shape. Notably, the only covariate (sex), only enters in one part of
the model, the expert network.

The sub-optimal BIC values for the best model with all covariates in both parts
of the model (G = 2, VVE, BIC=−4563.12), the best model with all covariates in the
expert network only (G = 1, EEE, BIC=−4234.79), regardless of τ being constrained
or not, and the best model with all covariates in the gating network only (G = 2, VEE,
BIC=−4092.79), highlight the need for the model selection strategy employed. As the
optimal model uses the EVE constraints, it has 19 covariance parameters; an other-
wise exactly equivalent VVV model, having 30 such parameters, yields a lower BIC
of −4056.19, thus showcasing the bene�ts of the parsimonious covariance constraints.
The di�erence of 11 covariance parameters between these models is exactly one more
than the number of regression parameters introduced by the expert network covariate.

Subsequently, and purely for the purposes of comparing certain special cases of
interest, an exhaustive search over a range of MoEClust models is conducted, with
G ∈ {1, . . . , 9}. This is rendered feasible by only considering the covariates BMI and
sex; allowing either, neither, or both to enter either, neither, or both of the gating
and expert networks. Note that BMI is itself computed using the covariates measuring
weight (Wt) and height (Ht). With 3 permissible covariance parameterisations for
the single component models (i.e. those without gating network covariates) and 14
otherwise, 16 possible combinations of gating and/or expert network covariate settings,
and consideration also being given to G > 1 models with equal mixing proportions,
this still requires �tting 2, 252 MoEClust models. However, some 26 spurious solutions
were found (and ultimately discarded), particularly for higher values of G, in the sense
that models with empty components or degenerate components with few observations
reduced to equivalent models with fewer non-empty components (see Section 3.3).
Table 5 gives the BIC and ICL values of a selection of these �tted models, representing
the optimal models for certain special cases of interest.
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Table 5: The BIC and ICL values for a selection of MoEClust models �tted to the Australian Institute
of Sports data. Rows 1 and 2 give the optimal models under settings available in flexmix; models
without expert network covariates, using either the VVV or VVI covariance constraints. Among the
more general MoEClust family, the last row gives the top model according to the ICL criterion and
the remaining rows give the top models according to the BIC criterion for each of the six special cases
of the MoE framework. Thus, row 3 corresponds to the optimal model according to mclust.

Rank (BIC) Gating Expert G GPCM BIC ICL No. Parameters

198 sex 2 VVV −4113.31 −4121.32 42
880 sex 5 VVI −4319.85 −4345.55 58
293 2 EVE −4146.16 −4201.61 30
3 sex 2 EVE −4015.35 −4059.54 40
24 sex 3 EVE −4037.32 −4066.66 42
2 BMI sex 2 EVE −4013.40 −4074.11 41

269 Equal 2 EVE −4140.98 −4192.21 29
1 Equal sex 2 EVE −4010.14 −4057.87 39
26 BMI, sex 3 EEE −4038.75 −4043.01 36

Clearly, the inclusion of covariates improves the �t compared to GPCM models.
Similarly, using GPCM covariance constraints improves the �t compared to standard
Gaussian MoE models. In particular, it is notable that the optimal models using the
VVV and VVI constraints only have covariates enter the gating network. This suggests
that the parsimony a�orded by the remaining GPCM settings somewhat o�sets the
number of regression parameters introduced to the expert network.

The top three models according to BIC all have 2 components, the EVE covariance
constraints, and the covariate sex in the expert network; they di�er only in their
treatment of the gating network. Models with equal and unequal mixing proportions,
and with BMI as a gating concomitant, have zero, one, and two associated gating
network parameters, respectively. The optimal model has equal mixing proportions
and was also identi�ed above via Algorithm 2. The full MoE model with BMI in the
gating network and sex in the expert network is an interesting case as it does not �t the
framework of Dang & McNicholas (2015), which assumes that when covariates enter
the model, they enter in both parts. The best such model has `sex' in both networks
(G = 2, EVE) and achieves a BIC of −4020.22 with a corresponding rank of 8.

Up to now, models with a noise component have not yet been considered for the AIS
data. Thus, another stepwise search is conducted, including a noise component for all
candidate models and starting from a G = 0 noise-only model (see Appendix C). Con-
sideration was also given to both the GN and NGN model types, in (8) and (9) respec-
tively, where models included gating concomitants, and to models with equal/unequal
mixing proportions for the non-noise components for models without gating concomi-
tants. The optimal full MoE model thus found has two EEE Gaussian clusters and an
additional noise component. The covariate `sex' enters the expert network (see Table
6). Both `SSF' and `Ht' enter the gating network, though not for the noise component,
which has a constant mixing proportion (τ̂0 ≈ 0.08), as per the NGN model in (9).
Thus, the Gaussian clusters have equal volume, shape, and orientation, but unequal
size. This model achieves a BIC value of −3989.83, which compares favourably to the
previously optimal model from Table 5, adding a noise component to a model otherwise
identical to the optimal model from Table 5 (BIC=−3992.81), and to models with a
noise component but no stepwise selection of covariates (or no covariates at all).
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Table 6: Coe�cients of the expert network linear regressions for the G = 2 Gaussian clusters in the
optimal `full' MoEClust model (with an extra noise component and gating concomitants entering
the non-noise clusters only) �t to the AIS data, with female as the reference level for the explanatory
variable `sex'.

RCC WCC Hc Hg Fe

Cluster 1
(Intercept) 4.56 6.89 42.33 14.08 49.73
sexmale 0.42 0.12 2.95 1.30 28.19

Cluster 2
(Intercept) 4.26 6.93 38.91 13.11 59.70
sexmale 0.86 0.59 7.36 2.80 132.66

The gating network has an intercept of 10.58 and slope coe�cients of 0.04 (SSF) and
−0.08 (Ht) with corresponding odds ratios of 1.04 and 0.93. Thus, higher SSF values
increase the probability of belonging to the second Gaussian cluster, to which taller
athletes are less likely to belong, and the probability of belonging to the noise com-
ponent is constant. Though every observation has its own mean parameter in the
presence of expert covariates, given by the �tted values of the expert network (shown
in Table 6), the means are summarised in Table 7 by the posterior mean of the �tted
values of the model according to (11). The noise component is accounted for by V ,
the p-dimensional centroid of the region used to estimate V :

µ̂g =

∑n
i=1 ẑigŷi∑n
i=1 ẑig

=

∑n
i=1 ẑig

(∑G
g=1 ẑig

(
x̃
(E)
i γ̂g

)
+ ẑi0V

)∑n
i=1 ẑig

. (11)

Given that there exists a binary variable, `sex', in the expert network for the optimal
MoEClust model, there are e�ectively four Gaussian components plus an additional
noise component. By virtue of the EEE constraint on the Gaussian components, all
four components and thus both clusters in fact share the same covariance matrix.
Components 1 and 2, corresponding to females and males in Cluster 1, share the same
covariance matrix but di�er according to their means. The same is true for females
and males (Components 3 and 4) in Cluster 2. Table 7 gives the means and average
gates in terms of both components and clusters, as well as the common Σ̂ matrix.

Table 7: Estimated parameters of the G = 2 Gaussian clusters in the optimal `full' MoEClust model
�t to the AIS data (with an extra noise component and gating concomitants entering the non-noise
clusters), with further splitting due to the binary covariate sex in the expert network, giving average
gates and component means (for females and males) and the common EEE covariance matrix. While
every observation has its own mean parameter, given by the �tted values of the expert network in
Table 6, the means are summarised by the posterior mean of the model's �tted values, given by (11).

Cluster 1 Cluster 2
Σ̂ (EEE)

All Female Male All Female Male

τ̂g(xi) 0.60 0.21 0.39 0.33 0.25 0.08 RCC WCC Hc Hg Fe
RCC 4.81 4.51 4.98 4.51 4.33 5.12 0.08 0.08 0.46 0.15 −0.83
WCC 7.02 6.95 7.06 7.10 6.96 7.57 2.50 0.60 0.21 5.12
Hc 44.06 41.79 45.35 41.14 39.61 46.29 3.84 1.33 −7.55
Hg 14.88 13.94 15.51 13.91 13.32 15.90 0.57 −1.05
Fe 70.18 53.05 79.87 87.84 58.96 184.67 821.68

Though the plots in Figure 4 are suitable for univariate data with a single continu-
ous expert network covariate, visualising MoEClust results for multivariate data with
r > 1 mixed-type covariates constitutes a much greater challenge. For the optimal
full MoE model �t to the AIS data, the data and clustering results are shown using
a generalised pairs plot in Figure 5. This plot depicts the pairwise relationships be-
tween the hematological response variables, the included gating and expert network
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covariates, and the MAP classi�cation, coloured according to the MAP classi�cation.
The marginal distributions of each variable are given along the diagonal. For the
hematological response variables, ellipses with axes related to the within-cluster co-
variances are drawn. For the purposes of visualising Figure 5, owing to the presence of
an expert network covariate in the �tted model, the multivariate Gaussian ellipses in
panels depicting two response variables are centred on the posterior mean of the �tted
values, as described in (11). Their shape and size are also modi�ed for the same rea-
son: they are derived by adding the extra variability in the component means to Σ̂g.
Thus, the depicted ellipses do not conform to the EEE covariance constraints of the
optimal model.
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Figure 5: Generalised pairs plot for the optimal `full' MoEClust model �t to the AIS data, depicting
pairwise relationships between the hematological response variables, the expert network covariate sex,
the gating concomitants SSF and Ht, and the MAP classi�cation. Colours and plotting symbols
correspond to the MAP classi�cation: blue circles and red squares for the two Gaussian clusters; grey
crosses for the 4 female and 9 male outlying observations assigned to the uniform noise component.
Mosaic plots are used to depict two categorical variables, scatter plots are used for panels involving
two continuous variables, and a mix of box-plots and jittered strip-plots are used for mixed pairs.
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It is clear from Figure 5 that the variables `Hematocrit' (Hc), `Hemoglobin' (Hg),
and `plasma ferritin concentration' (Fe), and the gating network concomitants `SSF'
and `Ht', are driving much of the separation between the clusters. On the other hand,
the expert network covariate `sex' is driving separation within the Gaussian clusters.
The correspondence between the MAP classi�cation and the sex label is notably poor,
with an adjusted Rand index (Hubert & Arabie, 1985) of just 0.11. This index is
higher for models where sex does not enter the expert network, especially when it
instead enters the gating network, though such �tted models all have sub-optimal BIC
values (see Table 5). This is because, under the optimal model, the athletes' size in
terms of their SSF and height measurements, rather than their sex, in�uences the
probability of cluster membership, and athletes are divided by sex within each cluster
rather than the clusters necessarily capturing their sex.

Indeed, Table 6 implies that males, on average, have elevated levels of all �ve blood
measurements in both Gaussian clusters. However, the magnitude of this e�ect is more
pronounced in Cluster 2, related to athletes with higher average SSF measurements (a
proxy for body fat) and lower average height. Interestingly, Figure 5 also shows that
females have higher average SSF measurements and lower average height; this may
explain why there are more males than females in Cluster 1, and the reverse in Cluster
2, given the signs of the gating network coe�cients for SSF (0.04) and Ht (−0.08).

6 Discussion

The development of a suite of MoEClust models has been outlined, clearly demonstrat-
ing the utility of mixture of experts models for parsimonious model-based clustering
where covariates are available. A novel means of visualising such models has also been
proposed. The ability of MoEClust models to jointly model the response variable(s)
and related covariates provides deeper and more principled insight into the relations
between such data in a mixture-model based analysis, and provides a principled method
for both creating and explaining the clustering, with reference to information contained
in covariates. Their demonstrated use to cluster observations and appropriately cap-
ture heterogeneity in cross-sectional data provides only a glimpse of their potential
�exibility and utility in a wide range of settings. Indeed, given that general MoE mod-
els have been used, under di�erent names, in several �elds, including but not limited
to statistics (Grün & Leisch, 2007, 2008), biology (Wang et al., 1996), econometrics
(Wang et al., 1998), marketing (Wedel & Kamakura, 2012), and medicine (Thompson
et al., 1998), MoEClust models could prove useful in many domains.

Improvement over GPCM models has been introduced by accounting for external
information available in the presence of potentially mixed-type covariates. Similarly,
improvement over Gaussian mixture of experts models which incorporate �xed co-
variates has been introduced by allowing GPCM family covariance structures in the
component densities. MoEClust models are thus Gaussian parsimonious MoE models
where the size, volume, shape, and/or orientation can be equal or unequal across com-
ponents. MoEClust models have been further extended to accommodate the presence
of an additional uniform noise component to capture departures from Gaussianity, in
such a way that observations are smoothly classi�ed as belonging to Gaussian clusters
or as outliers. In particular, two means of doing so have been proposed for models
which include gating concomitants. Due to sensitivity of the �nal solution obtained by
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the EM algorithm to the initial values, an iterative reallocation procedure based on the
Mahalanobis distance has been proposed to mitigate against convergence to suboptimal
local maxima for models with expert network covariates. This initialisation algorithm
converges quickly and also speeds up convergence of the EM algorithm itself.

Previous parsimonious Gaussian mixtures of experts (Dang & McNicholas, 2015)
accommodated only the cases where all covariates enter the expert network MoE model,
or the full MoE model with the restriction that all covariates enter both parts of
the model. MoEClust constitutes a unifying framework whereby di�erent subsets of
covariates can enter either, neither, or both the gating and/or expert networks of
Gaussian parsimonious MoE models. Considering the standard mixture model (with
no dependence on covariates), or the expert network MoE model, with the equal mixing
proportion constraint expands the model family further.

On a cautionary note, care must be exercised in choosing how and where covariates
enter when a MoEClust model is used as a clustering tool, as the interpretation of
the analysis fundamentally depends on where covariates enter, which of the six special
cases of the MoE framework is invoked, and on which GPCM constraints are employed.
To this end, a novel greedy forward stepwise search algorithm has been employed for
model/variable selection purposes. This strategy has the added advantage of introduc-
ing additional parsimony, by potentially reducing the number of regression parameters
in the gating and/or expert networks.

Gating network MoEClust models may be of particular interest to users of GPCMs;
while concomitants in�uence the probability of cluster membership, the correspondence
thereafter between component densities and clusters has the same interpretation as
in standard GPCMs. When covariates enter the component densities, we warn that
observations with very di�erent response values can be clustered together, because
they are being modelled using the same GLM; similarly, regression distributions with
distinct parameters do not necessarily lead to well-separated clusters.

MoEClust models allow the number of parameters introduced by gating and expert
network covariates to be o�set by a reduction in the number of covariance parameters.
This is particularly advantageous when model selection is conducted using the BIC or
ICL, which include a penalty term based on the parameter count. Thus, MoEClust
models may tend to favour including covariates more than standard Gaussian MoE
models would. This is particularly true for explanatory variables in the expert network,
which tend to necessitate more regression parameters (Gp) than concomitant variables
in the gating network (G−1) per additional continuous covariate or level of categorical
covariates included. Thus, in cases where a MoE model might elect to include a
concomitant variable in the gating network, a MoEClust model with fewer covariance
parameters may elect to include it as an explanatory expert network variable instead.
While this does lead to a better �t, it can complicate interpretation.

Possible directions for future work in this area include investigating the utility of
nonparametric estimation of the gating network (Young & Hunter, 2010), as well as
exploring the use of regularisation penalties in the gating and expert networks to help
with variable selection when the number of covariates r is large. Regularisation in
another, Bayesian sense, by specifying a prior on the component variances/covariances
in the spirit of Fraley & Raftery (2007), and/or component regression parameters,
could also prove useful for avoiding spurious solutions due to computational singularity
described in Section 3.3. MoEClust models could also be developed in the context of
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hierarchical mixtures of experts (Jordan & Jacobs, 1994), and/or extended to the
supervised or semi-supervised model-based classi�cation settings, where some or all
observations are labelled.

Beyond the family of GPCM constraints, MoEClust models could be extended to
avail of parsimonious factor-analytic covariance structures for high-dimensional data
(McNicholas & Murphy, 2008). These could be incorporated into Gaussian mixture of
experts models using residuals in an equivalent fashion to Section 3.2 above. Similarly,
MoEClust models could bene�t from the heavier tails of the multivariate t-distribution,
and the robustness to outliers it a�ords, by considering the associated tEIGEN family
of covariance constraints (Andrews & McNicholas, 2012). However, the inclusion of a
uniform noise component has the advantage of drawing a clearer distinction between
observations belonging to clusters or designated as outliers.
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Appendices

Appendix A CO2 Data: Code Examples

Code to reproduce both the exhaustive (Listing 1) and greedy forward stepwise (Listing
2) searches for the CO2 data described in Section 5.1, using the MoEClust R package
(Murphy & Murphy, 2020), is provided below. The code in Listing 1 can be used to
reproduce the results in Table 2.

Listing 1: Exhaustive search R code for the CO2 data.

library(MoEClust)

data(CO2data)

CO2 <- CO2data$CO2

GNP <- CO2data$GNP

# Fit models under the 6 special cases of the MoE framework

m1 <- MoE_clust(CO2 , G=1:9)

m2 <- MoE_clust(CO2 , G=2:9, gating=~GNP)

m3 <- MoE_clust(CO2 , G=1:9, expert=~GNP)

m4 <- MoE_clust(CO2 , G=2:9, gating=~GNP , expert=~GNP)

m5 <- MoE_clust(CO2 , G=2:9, equalPro=TRUE)

m6 <- MoE_clust(CO2 , G=2:9, expert=~GNP , equalPro=TRUE)

# Collate results and rank (by BIC) only the 6 optimal models

res <- list(m1=m1, m2=m2, m3=m3, m4=m4, m5=m5, m6=m6)

(comp <- MoE_compare(res , optimal.only=TRUE))

Listing 2: Stepwise search R code for the CO2 data.

library(MoEClust)

data(CO2data)

CO2 <- CO2data$CO2

GNP <- CO2data$GNP

# Conduct a stepwise search

(mod1 <- MoE_stepwise(CO2 , GNP))

# Conduct a stepwise search for models with a noise component

(mod2 <- MoE_stepwise(CO2 , GNP , noise=TRUE))

# Compare both sets of results to choose the optimal model

(best <- MoE_compare(mod1 , mod2 , optimal.only=TRUE)$optimal)
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Appendix B CO2 Data: EM Initialisation

The regression lines for the optimal G = 3 equal mixing proportion expert network
MoEClust model with equal component variances and the explanatory variable GNP
�tted to the CO2 data, with and without the initial partition obtained by model-
based agglomerative hierarchical clustering being passed through Algorithm 1, are
shown in Figure B.1. A BIC value of −155.20 is achieved after 21 EM iterations
(starting, after 6 iterations of our proposed initialisation strategy, from a log-likelihood
of −66.01) compared to a value of −161.06 after 28 EM iterations without Algorithm 1
(starting from a log-likelihood of −76.39). While the models di�er only in terms of the
initialisation strategy employed, Table 2 shows that the model would not have been
identi�ed as optimal according to the BIC criterion had Algorithm 1 not been used.
The superior solution in Figure B.1a has one cluster with a steep slope and two clusters
with near-zero slopes but di�erent intercepts. Notably, supplying 100 random starts
to Algorithm 1 did not yield an improved BIC in any instance. Similarly, the optimal
BIC value obtained by supplying 100 random starts to the EM algorithm directly was
greater than −161.06 but still less than −155.20.
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(a) With Algorithm 1 invoked for initialisation, achieving
a BIC value of −155.20.
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(b) Without Algorithm 1 invoked for initialisation, achiev-
ing a BIC value of −161.06.

Figure B.1: Scatter plots of GNP against CO2 emissions for n = 28 countries showing G = 3 coloured
linear regression components from MoEClust models with equal variances and mixing proportions,
with (a) and without (b) the initialisation strategy described in Algorithm 1 invoked.
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Appendix C AIS Data: Stepwise Model Search

For the AIS data, Table C.1 gives the results of the greedy forward stepwise model
selection strategy described in Algorithm 2, showing the action yielding the best im-
provement in terms of BIC for each step. This forward search is less computationally
onerous than its equivalent in the backwards direction. A 2-component EVE equal mix-
ing proportion expert network MoE model is chosen, in which the mixing proportions
are constrained to be equal and sex enters the expert network. This same model was
identi�ed after an exhaustive search over a range of G values, the full range of GPCM
covariance constraints, and every possible combination of the BMI and sex covariates
in the gating and expert networks (see Table 5). Note, however, that the remaining
covariates in Table 4 are also considered for inclusion here.

To give consideration to outlying observations departing from the prevailing pattern
of Gaussianity, a separate stepwise search is conducted, starting from a G = 0 noise-
only model, with all candidate models having an additional noise component. Thus, a
distinction is made between the model found by following the steps shown in Table C.1
with G = 2 EVE Gaussian components, and the model found by the second stepwise
search described in Table C.2 with three, of which two are EEE Gaussian and one is
uniform. Ultimately, the model with the noise component identi�ed in Table C.2 is
chosen, based on its superior BIC. Aside from the noise component, it similarly includes
`sex' in the expert network, but di�ers in its treatment of the gating network and the
GPCM constraints employed for the Gaussian clusters. It is a full MoE model where
the Gaussian clusters have equal volume, shape, and orientation, the expert network
includes the covariate `sex', and the both `SSF' and `Ht' in�uence the probability of
belonging to the Gaussian clusters but not the additional noise component, as per (9).

Table C.1: Results of the forward stepwise model selection algorithm applied to the AIS data where
candidate models do not include a noise component. All covariates in Table 4 are considered for
inclusion in both parts of the model. The optimal action and associated BIC value is detailed for
each step. The resulting models are described in terms of the number of Gaussian components G, the
GPCM constraints used, and the treatment of the gating and expert networks.

Step Optimal Action G GPCM Gating Expert BIC

1 � 1 EEE � −4202.79
2 Add explanatory variable (Expert) 1 EEE � sex −4050.64
3 Add component and constrain mixing proportions 2 EVE Equal sex −4010.14
4 Stop 2 EVE Equal sex −4010.14

Table C.2: Results of the forward stepwise model selection algorithm applied to the AIS data where
all candidate models explicitly include a noise component. All covariates in Table 4 are considered
for inclusion in both parts of the model. The optimal action and associated BIC value is detailed for
each step. The resulting models are described in terms of the number of Gaussian (i.e. non-noise)
components G, the GPCM constraints used, and the treatment of the gating and expert networks.
When gating concomitants are included, the chosen models here correspond to the NGN model in (9).
Thus, the noise component's mixing weight is constant and independent of the included concomitants.

Step Optimal Action G GPCM Gating Expert BIC

1 � 0 � � � −4869.82
2 Add component 1 EEE −4149.46
3 Add explanatory variable (Expert) 1 EEE sex −4013.55
4 Add component 2 EVE sex −3992.81
5 Add concomitant (Gating) 2 EVE NGN: SSF sex −3990.09
6 Add concomitant (Gating) 2 EEE NGN: SSF, Ht sex −3989.83
7 Stop 2 EEE NGN: SSF, Ht sex −3989.83
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