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a b s t r a c t

The Spine Toolbox is open-source software for defining, managing, simulating and optimising energy
system models. It gives the user the ability to collect, create, organise, and validate model input
data, execute a model with selected data and finally archive and visualise results/output data. Spine
Toolbox has been designed and developed to support the creation and execution of multivector energy
integration models. It conveniently facilitates the linking of models with different scopes, or spatio-
temporal resolutions, through the user interface. The models can be organised as a direct acyclic graph
and efficiently executed through the embedded workflow management engine. The software helps
users to import and manage data, define models and scenarios and orchestrate projects. It supports
a self-contained and shareable entity-relationship data structure for storing model parameter values
and the associated data. The software is developed using the latest Python environment and supports
the execution of plugins. It is shipped in an installation package as a desktop application for different
operating systems.
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. Motivation and significance

Modelling and simulation are crucial methods for many com-
lex scientific and engineering endeavours. Models often utilise
arious sources of input data, some of which requiring complex
rocessing before the data is model compatible. Many topics are
ulti-faceted and multi-scale, requiring several models and pro-
essing tools to be adequately represented. Finally, uncertainties
an be diverse yet critical for robust decision making. Tackling
hese intricacies in a repeatable and dependable fashion requires
ot just reliable models, but also reliable workflow management
hat can deal with the versatile processes and data.

There are several existing open source workflow manage-
ent tools, each with their strengths and weaknesses. Some of

he present authors are experienced power and energy system
odellers who understand the modelling workflow challenges

n their domain. One specific challenge is to manage not just
he execution of the tools but also to represent manifold data
nd scenarios. Most generic workflow management tools do not
ave explicit means to represent data as part of the workflow,
nd this was a focal point for Spine Toolbox, which will be
escribed further below. At the same time, workflow tools (or
modelling frameworks’) in the energy domain typically fall short
n their capabilities to orchestrate complex workflows. In the next
aragraphs we will highlight these aspects using a diverse sample
f workflow tools sourced both from the generic domain and from
he energy systems specific domain. For a more comprehensive
eview, Atkinson et al. [1] give an overview of workflow manage-
ent tool development over the past ten years, while Ringkjøb
t al. [2] provide an overview of recent energy system modelling
ools.

Workflow management tools (or systems/software) can be
sed to facilitate the design and execution of workflows. Many of
hem are geared towards business processes. However, there are
lso some open source tools that focus on research and analysis
orkflows. Pegasus Workflow Management System (WMS) [3] is
n execution framework built with Java and Python that allows
he users to define workflows as processing plans built from a se-
ection of components. Pegasus, or other similar frameworks, can
e enriched with semantic workflow structures like Workflow
Nstance Generation and Selection (WINGS) [4]. This facilitates
he incorporation of more metadata and guidance for the user,
nd allows the developers to chain components into ready-made
emplate workflows. However, Pegasus only transfers data ‘repli-
as’ from the data ‘catalogue’. It does not offer a unified interface
o the data, and the capability for the user to create scenarios
ased on alternative parameter values, which was one of the
esign criteria for our purposes. Similarly, Apache Airflow [5],
hich executes Directed Acyclic Graphs (DAG) in pure Python,
oes not offer data interfaces. It does not support passing data
etween tools in the DAGs, which is relevant for validating the
ata exchange across different energy systems models. There are
lso tools with a data analytics focus like the Java-based KN-
ME [6] and the Scala-based Apache Spark [7]. These also lack the
apability to easily build scenarios that can be executed in optimi-
ation and simulation models. However, they have powerful data
leaning and processing capabilities and could be incorporated in
Spine Toolbox -based modelling chain providing the first steps.
In the energy system domain, many modelling frameworks

ave their own system of managing data, which is often quite
igid and limited to the immediate inputs and outputs of the tool
e.g. TIMES [8], OSeMOSYS [9] and Calliope [10]). In some cases,
he modelling community has adopted lower level script chaining
ools - like Snakemake [11] in the case of PyPSA [12]. This allows
or much more freedom(providing an API), but requires that the
ser understands the code if workflow changes are needed.

The design criteria for Spine Toolbox was largely drawn from
the requirements of modelling which to supports decision making
under uncertainty. As a consequence, Spine Toolbox offers not
just workflow management, but also versatile data structures and
scenario management. The users can have multiple models and
tools using the same database or databases, which allows groups
of modellers to perform integrated scenario analysis using a suite
of specialised tools. As illustrated in Table 1, the characteristics
of Spine Toolbox are similar to data analytics workflow manage-
ment systems such as KNIME [6] or Alteryx [13]. However, in
comparison with these widely adopted tools, the novelty of Spine
resides in a set of features specialised for decision making under
uncertainty. Furthermore, Spine Toolbox is written in Python,
which facilitates the easy integration of Python based tools that
are widespread in the research community. On the other hand,
Spine Toolbox is a new entrant and lacks many specific data
processing capabilities present in the more mature tools. How-
ever, Spine Toolbox workflows can easily incorporate other data
processing tools available in the open source community.

2. Software description

Spine Toolbox is an open source Python package to man-
age data, scenarios and workflows for modelling and simulation.
Users can have local workflows, but work as a team through
version control and SQL DB. The major features of Spine Toolbox
are the following:

• It implements an application which enables and orches-
trates the data acquisition from multiple (and diverse) data
sources and provides the mechanisms to validate and asso-
ciate those data.

• It provides a generic data model, the Spine Data Struc-
ture, using a generic Entity–Attribute–Value approach with
Classes and Relationships implemented as SQL databases
through SQLAlchemy [17]. The abstract classes and the re-
lationships between them enable the formulation of diverse
models in an object-oriented manner.

• Entities can hold parameters that can be constants, time
series, arrays and multi-dimensional maps. The interface
facilitates the viewing and editing of data.

• Scenarios can be built from alternative parameter values. It
provides all the required interfaces for performing calcula-
tions on the data.

• There are importer, exporter and data manipulation tools
that allow conversion of data between different data struc-
tures and formats (e.g. csv, xlsx, gdf, sql). This facilitates a
wide range of possible analyses.

• A Python based API is available for querying the Spine data.
A similar interface is available for Julia [18] with additional
capabilities for direct model building in Julia/JuMP [19].

• Tool specifications are used to define the requirements for
the execution of various tools.

• Tool specifications can be turned into plug-ins. An exam-
ple plug-in is the SpineOpt.jl Julia package, which oper-
ates on a Spine dataset, by generating and simulating the
optimisation model.

• Execution has been separated from the interface, which
enables parallelisation of the workflow and scenarios as well
as remote execution using the inbuilt server–client system.

2.1. Software architecture

Spine Toolbox can be used to design and execute workflows
consisting of multiple tools and models [20]. It supports prob-
lem independent data and scenarios with user interfaces that
2
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Table 1
Analysis of the offered functionality of commercial/open source packages versus the Spine solution.
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Spine Toolbox ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ (✓) ✓

KNIME [6] ⋄ ✓ × ✓ × (✓) (✓) × (✓) × × ✓ ✓ ✓

Alteryx [13] ⋄ ✓ ✓ ✓ ✓ × × × (✓) (✓) × ✓ ✓ ×

Airflow [14] × ✓ (✓) × ✓ (✓) × × (✓) × ✓ × × ✓

Apache Spark [15] ⋄ ✓ × ⋄ (✓) ✓ (✓) × (✓) × × ⋄ ⋄ ✓

OSeMOSYS [9] ✓ ✓ ✓ ✓ × ✓ × × ✓ × ✓ × × ×

Calliope [10] × × ✓ ✓ × ✓ ✓ × ✓ × ✓ (✓) × ×

PyPSA [16] ✓ ✓ ✓ ✓ (✓) ✓ ✓ ✓ ✓ ✓ × × × ×

Legend: ✓ Fully supported, (✓) Partially supported, ⋄ Supported with additional software or a plugin, × Not supported.

Fig. 1. The Spine Toolbox workflow is composed of 3 optimisation models (red icons with the hammers) and 1 Spine Data tool, and two input/output nodes. The
oal of the workflow is calculating system energy demand and electricity generation from two renewable energy generators using a weather file. The results of the
odels are stored in an output node (a database or CSV file), and the workflow can be executed in parallel with two execution queues (on the right).

utomatically support different data structures as long as they
onform with the entity–attribute–value with relationships and
lasses data model. The user interface is built using the Model-
iew-Controller architectural pattern. The high level structure
trives for modularity, both inside the Spine Toolbox, but also for
he workflows it can execute. For the workflows, an equivalence
etween a composite model and a DAG computational workflow
s assumed, where each node has four main elements: an input
rom the previous node, an output to the successor, some inter-
al operations (workflow step) and an access to external data
ources. As illustrated in Fig. 1, a computational node needs to
eceive the input from the predecessor node, or an empty value
rom the root (node 0) and during the execution interact with
he external data source, both in reading and writing mode. At
he end of the execution, the node will push the output data to
he successor node. The composition of various nodes will result
n a computational workflow equivalent to a DAG. The software
rchitecture of Spine follows the workflow control architectural
attern, using a tight integration [21] between the toolbox and
he other components (described in the following sections).

Fig. 2 illustrates the interaction between the Spine Toolbox
omponents and the plugins developed during the project. All the

Graphical User Interface (GUI) tools are embedded and available
through the Spine Toolbox application. The Spine Data Structure
is accessible through the toolbox that also exchanges data with
the Spine Engine at the execution level. Spine Interface links the
SpineOpt optimisation model with the Spine data structure. The
following subsections describe each of the main components of
the software in more detail.

2.1.1. Spine data structure
The Spine data structure is an entity–attribute–value with

classes and relationships data model for the structured yet flex-
ible storage of data. The classes and relationships define the
structure between different data elements with a strong resem-
blance to graphs. Graph-like structures are prevalent in modelling
and optimisation, which makes the data structure well suited to
the intended purpose. The data structure is further augmented
with the capability to contain multiple alternative values for the
same parameter (i.e. attribute). Sets of alternatives can then be
used to create scenarios. The data structure is an integral part
of Spine Toolbox because it enables the users to work with a
single dataset serving multiple models, thus enabling an efficient,
repeatable and more reliable way of working.
3
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Fig. 2. Overall Spine Software architecture with the different components interacting for the composition and execution of workflows.

.2. Spine DB API

Spine DB API holds the low-level Python functions that can
ccess and modify all the different parts of the Entity–Attribute–
alue data structure while maintaining structural integrity.
pine’s inbuilt importer, exporter, data manipulators and SpineIn-
erface.jl all use Spine DB API. Users can create their own direct
onnections to the Spine database using the Spine DB API.

.2.1. Spine toolbox user interface
Spine Toolbox provides the GUI application that enables the

efinition, management, and execution of energy system models.
t gives the user the ability to collect, create, organise, and vali-
ate model input data, execute a model with selected data and
inally archive and visualise results/output data. Spine Toolbox is
esigned to support the creation and execution of optimisation
nd simulation models as well as data processing tools. It can
lso be used for other applications that can take advantage of the
nbuilt data structure.

.3. Spine DB editor

Part of the GUI of Spine Toolbox is the Spine DB editor. The
ditor allows users to view and modify data, add alternative
ata values, build scenarios and view metadata. It has an undo
unctionality and data changes are submitted through a commit
hat asks for a commit message. The editor consists of four main
omponents:
Entity tree shows entities organised according to the object

and relationship classes and allows filtering in the following data
views.

List view represents data as a list of entities and their param-
eter values. It is the most straightforward interface for viewing
and manipulating both the entities and the parameter values.
A version of the list view also shows the available parameter
definitions for the classes and facilitates their editing.

Tabular view provides a table which can be used to view and
anipulate parameter values of a given entity class. The user
ontrols the data that the two axes contain, which can also be
iltered. The axes can take structural dimensions (classes), index
imensions from the parameter values as well as alternative and
cenario dimensions.

Graph view provides a visual presentation of the data struc-
ture. The various entities of a Spine dataset are represented as
nodes, with vertices signifying the relationships between them.
The end user can choose classes and entities to be displayed.
Parameter data for selected entities can be seen and manipulated
in a separate list view below the graph.

2.3.1. Spine engine
Spine Engine provides the functionality for workflow execu-

tion. The objective of this component is to execute a part of
the workflow or the whole workflow either locally or using a
client–server setup.

During the workflow execution, each of the items in the work-
flow are executed and their outputs passed to the successor
node(s). The main inputs of the Spine Engine are items, specifica-
tions, successors, and execution permits. These inputs are parsed
from a project file which describes the workflow to be executed.
The project file is parsed before the Spine Engine object is instan-
tiated, allowing for the relevant inputs to be made available to the
Spine Engine. The inputs for the Engine are described as:

An Item in the context of a Spine workflow is an object of
computation which can be connected with other items to form
a workflow. The Spine Toolbox provides the interface where
the user can choose the relevant items to construct the desired
workflow. Each item available in the Toolbox interface should
provide a distinct but complimentary functionality to other avail-
able items. The functionality of these items includes the execution
of program files (with direct support for Python, Julia, and General
Algebraic Modeling System (GAMS) code while other tools can be
run through shell executables), importing data, exporting data,
storing data, executing Jupyter notebooks [22], and more.

Tool specifications describe item attributes such as input files,
output files, executable locations, etc. They are instantiated as
items in the workflow.

Successors are mappings from an item name to a list of
successor item names which describe the dependencies between
items in the workflow.

Execution Permits are mappings of an item name to a Boolean
value, describing which items in the workflow should be exe-
cuted. If the Boolean is false then the item will not execute but
its resources will be collected. The interface allows the selection
of any number of items for execution.
4
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Based on the aforementioned inputs, the engine will construct
set of objects called solids. Solids are defined by the items
elonging to the workflow. From the set of solids, a pipeline
s constructed. The use of ‘‘solids’’ and ‘‘pipelines’’ in describing
he inner workings of the Spine Engine is derived from the Dag-
ter [23] library, which the engine utilises to efficiently execute
workflow. Once the pipeline is constructed it is available for
xecution.
Workflow execution is performed in parallel with items in the

orkflow being executed concurrently where item dependencies
llow. Parallelisation of workflow execution is widely used by
stablished workflow engines such as openDIEL [24] and Chi-
on [25] to decrease the execution time of a workflow. However,
pine Engine can also parallelise the execution of scenarios that
ave been built in the Spine DB manager. With the growing
vailability of multi-core CPU’s for desktops and laptops, most
ser hardware should be capable of taking advantage of this Spine
ngine feature.
The engine also offers two modes of execution, the first of

hich is performed from within the Spine Toolbox interface.
hen the engine is executed from the toolbox the user is pro-

ided with a log of item executions along with animations for
tems, which provides the user with a visual representation of
tem execution progress. The second mode is performed in a
eadless manner where the execution is performed from the
ommand line, completely separately from the user interface.
hen executed in the headless mode, the user is provided with

he execution log from within the terminal window.
Spine Engine also has client–server capability for remote ex-

cution. A Spine Toolbox instance on the client side can send a
orkflow to a Spine Engine instance on the server side. Mes-
aging is based on Zero-MQ [26] and the messaging can include
he data required by the workflow. However, when possible, it is
etter to use server-based SQL which the Spine Engine server can
ccess directly given the instructions from the client. This remote
xecution feature is relatively new and is likely to evolve.

.3.2. Spine interface
SpineInterface.jl is a Julia package for interfacing with the Spine

ata Structure within a Julia session. It relies on the Spine DB
PI and, given the URL of a Spine database, it creates a series of
onvenience functions to retrieve the contents of that database in
he Julia module or session where it is called. It allows users to
apidly build Julia tools that use Spine databases. It is especially
seful for building optimisation models in Julia JuMP. SpineOpt.jl
nergy system model is an example of this.

.3.3. SpineOpt
SpineOpt.jl is an open-source energy system modelling frame-

ork that uses Spine Toolbox data structures directly through
pineInterface.jl. It is a Spine Toolbox plugin and can be efficiently
ntegrated into Spine Toolbox workflows. Through a commodity-
gnostic and problem-independent formulation, SpineOpt facil-
tates the modelling of integrated energy systems and can also
ncorporate other phenomena that can be represented with con-
ersions and transfers between nodes. The data-driven approach
f SpineOpt enables user-flexibility to add additional parameters
nd constraints. Ihlelmann et al. [27] provide a detailed overview
f SpineOpt.

. Illustrative examples

The Spine project performed thirteen case studies to validate,

SpineOpt.1 A workflow has been created for each case study,
linking all the required data and tools necessary for its comple-
tion. The workflows are available as Spine projects in the official
git repository.2 Note that while Spine Project has tried to use
open access data where possible, in some instances, some of the
original data was not publicly available and has been omitted or
replaced with dummy data. In the following we will highlight two
case studies.

In the first example (Fig. 3, Case study A33), the goal is to
simulate one year of operation of a subset of Stockholm’s district
heating system. The considered subset includes seven generat-
ing units: one extraction condensing steam turbine, two back-
pressure turbines, one gas turbine and three heat boilers. The
system can get electricity from a wind power facility and im-
port electricity from an external source. It can also shed load
and curtail wind as needed. The workflow has the input data
pre-processed with two Python scripts to perform specific calcu-
lations (two red hammer icons on the left side).. This is useful
when the capabilities of the Spine importer are not sufficient
for the required manipulations. The scripts save data as CSV
files, which are then imported to a Spine data store using the
Spine importer, which takes tabular data and converts it into the
Spine data store format using the user-made specifications in the
importer interface. SpineOpt uses SpineInterface to interact with
the input and output databases based on the resource URLs that
the workflow passes to SpineOpt. Finally, the ’Convert Results’
Python script gets data both from input and output databases in
order to show results that can relate the inputs to the outputs.

The second example (Case study A54) aims to simulate one
week of operation of the Skellefte river in the Swedish hy-
dropower system, which includes fifteen power stations. The
graph view of the database editor displays the structure of the
data as a graph (Fig. 4). All entities and parameters can be edited.

4. Impact

Workflow management tools have had an enormous impact
on the scientific process and they are also extensively used in
businesses and public administration. Supporting decision mak-
ing through modelling creates specific requirements for the work-
flow management tool, and Spine Toolbox strives to address
those. Such decision making is widespread — models are used
to support pandemic responses, city planning, process design, as
well as energy system planning and operation to name a few
examples. The common denominator in these tasks is the need
to consider uncertainty — not all factors are known and therefore
it is important to vary the input parameters through the use of
scenarios. Spine Toolbox fills a niche in the workflow manage-
ment tool landscape by providing an easy-to-use interface for
the combined needs of workflowmanagement, data manipulation
and scenario building. Developers can incorporate manifold tools
into complex workflows that in turn can be operated by less ex-
perienced users. Since Spine Toolbox supports server-based SQL
databases, it facilitates integrated workflows for groups where
individuals have dedicated roles. This can be important when
modelling and analysing complex phenomena like the ongoing
transition of energy systems to meet the requirements of climate
change mitigation.

Spine Toolbox has the potential to have a large impact, but
as the tool is still new, the current known user base consists

1 Case studies summary document: http://www.spine-model.org/pdf/D6.1%
20Summary%20of%20the%20case%20studies.pdf
2 Case studies repository: https://github.com/orgs/Spine-project/repositories
3 A3 Case study source code: https://github.com/Spine-project/spine-cs-a3
4 A5 Case study source code: https://github.com/Spine-project/spine-cs-a5
xpand and demonstrate the capabilities of Spine Toolbox and

5
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Fig. 3. Spine Toolbox workflow for an energy system model of a district heating grid. On the left, there are input data processing scripts and Spine importers that
erve the main Input database. On the right, SpineOpt model feeds results to a processing script, which also takes input data into account.

Fig. 4. SpineOpt model of Skellefteälven. For space limitations, only the Rebnis power station is presented, but the same applies to all stations.

f approximately ten different research groups, all in the energy
omain. Spine Toolbox has a GNU Lesser General Public License
LPGL) license, enabling the commercial use of the tool and it
llowing e.g. commercial plugins even though the core tool must
emain open source. Customising workflows and building ad-hoc
odels and modelling workflows are potential further avenues

or commercial activities.
Spine Toolbox is problem agnostic and allows for rapid de-

elopment of new ad-hoc optimisation and simulation models in
ython, GAMS, and other languages, but especially in Julia [18]
hrough the SpineInterface package. Research groups can build
ools and workflows to support their needs and also to integrate
vailable tools in the wider community. Consequently, Spine
oolbox could facilitate an efficient way of answering a wide
ariety of research and practical questions. The software can be
pplied for modelling and answering a wider range of research
uestions concerning integrating electrified transport and energy
ystems or simulating a complex energy system with very high
enetration of variable renewable generation, including a gas

network converted to hydrogen (Case Study C3). It also sup-
ports modelling capabilities for hydroelectric systems (Case Study
A1), flexibility assessment using building physics and long-term
power grid investment models.

5. Conclusions

Spine Toolbox provides a workflow, data, and scenario man-
agement framework that can combine multiple data sources and
tools while giving the user a full view of the workflow from
sources to outcomes. It allows groups of users to collaborate on
large-scale problems that require data curation as well as multi-
ple tools and models. The toolbox and the data structure features
are capable of performing a wide range of data processing and
modelling tasks with a specific focus on data consolidation and
scenario analysis.
6
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