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a b s t r a c t

The present paper investigates the impact of advanced control algorithms on harnessing building energy
flexibility in a smart-grid ready full-electric residential building. The impact on thermal comfort is also
analysed. The building is located in Ireland and is equipped with a geothermal heat pump and a thermal
energy storage system. Two Energy Management systems, based on rule-based and intelligent optimi-
sation algorithm approaches, are developed which use real-time building smart meter and weather data.
This data is utilised by various dynamic flexibility metrics within the respective control algorithms.
Different time of use tariffs, based on data from the Irish Commission for Energy Regulation and
structured on the basis of peak, off-peak and night periods, are also used. Results show that energy cost
reductions of up to 21% and 43% can be achieved by the rule-based and intelligent algorithm, respec-
tively, without compromising the thermal comfort within the building. Moreover, total shifting and
forcing flexibility potential of up to 34 and 54 kWh, respectively, based on the month of January, can be
achieved by the adoption of the intelligent control algorithm.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Increasing global concerns about climate change resulted in the
ratification of the Paris agreement under the United Nations
Framework Convention on Climate Change (UNFCCC), which aims
at maintaining global warming below 2oC to pre-industrial levels
[1]. Following its ratification in 2015, policies dealing with energy
consumption and greenhouse gas (GHG) emissions have been
enhanced by the European Union by establishing the ambitious
targets of 40% carbon emission reduction by 2030 and 60% by 2040,
as well as a binding renewable energy target of at least 32% by 2030
[2].

High penetration of Renewable Energy Sources (RES) - such as,
wind power integration, solar systems, etc. [3] - together with the
electrification of targeted demand categories, are generally recog-
nised as one potential approach to achieve these decarbonisation
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goals [4]. However, the current power system network, requires a
continuous demand/supply balance which can be stressed by the
intrinsic volatility of RES production [5]. The conventional sources
of flexibility at the generation side may not be sufficient to cope
with fluctuations in production generated by RES and, therefore, a
paradigm shift towards a coordinated effort between generation,
transportation and demand sectors is required [6]. This develop-
ment - together with the possibility of implementing algorithms to
control, schedule and optimise end-use energy consumption and
generation - has increased interest in understanding how the po-
tential energy flexibility provided by end-users can be exploited to
mitigate the uncertainties associated with high RES penetration in
the electricity network [5].

The emerging smart grid framework requires the development
of advanced control systems to unlock the deployment of strategies
for demand side management (DSM) capable of optimising end-
user consumption pattern profiles depending on specific targets
and requirements [7e9]. Such a control framework would enable
end-users to activate demand response (DR) strategies by which
voluntary modification of end use consumption (and generation)
patterns can be triggered by direct external requests. For instance,
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specific tariffs or programs can motivate consumers to respond to
changes in the electricity market or to specific network needs, by
adjusting their load profile.

The implementation of Demand Response programs have
attracted a lot of interest over the last decade due to the benefits at
both end-user and power grid network levels. Generally, at the
power grid level, DR programs can offer an alternative approach to
managing peak load periods to peak power plants [10]. An opti-
mised power grid network, capable of coping with peak periods
through a smart management of the demand side, can enhance its
reliability and reduce the capital for infrastructure upgrade other-
wise needed, as well as operating costs and, consequently, elec-
tricity prices. Moreover, DR programs can lead to a reduction of the
overall carbon footprint by unlocking higher penetration of
renewable energy generation, both at a district and a centralised
grid level, as their intrinsically stochastic production can be miti-
gated [11]. On the other hand, the smart control system needed to
unlock and manage DR programs at an end-use level can lead to
more efficient and cost-effective consumption for users. These
controls can also enhance the user-adapted thermal comfort and
cost control while, at the same time, increase user knowledge and
awareness of their own energy consumption [5].

Since the building sector is responsible for about 40% of the
overall energy end-use demand worldwide, with the likelihood of
additional demand over the coming decades [12,13], a network of
connected buildings capable of activating balancing strategies may
represent one potential source of demand flexibility. The imple-
mentation of DR programs in buildings requires the deployment of
control algorithms capable of optimising building energy load
patterns by controlling heating/cooling energy systems to adapt
their electricity demand [14]. Such advanced smart control systems
can also unlock the exploitation of adaptive thermal comfort [15]
and cost optimisation strategies which can lead to a better uti-
lisation of energy resources, while unlocking the building energy
flexibility to enable specific services to the grid [11]. Therefore,
understanding the energy flexibility potential of building stock has
become essential for the implementation and exploitation of DR
programs in buildings [16].

Notwithstanding, several challenges and barriers still limit a
widespread deployment of DR programs in buildings. One of the
major issues is the lack of harmonised, standardised procedures
and protocols for assessment of energy flexibility at building level.
Specific metrics and quantification tools are required to assess the
energy flexibility potential, as well as the cost of DR program
implementation and the need for aggregation procedures to scale
from individual building to building stock level [17]. Moreover,
capturing the dynamic variation of building energy consumption
profiles and thermal comfort is essential in order to assess the
flexibility potential and to develop efficient control optimisation
algorithms for DR programs. Reliable numerical building models,
capable of forecasting building energy consumption and comfort
status with short time discretisation, must be validated and cali-
brated against metered data in order to detect trade-offs between
accuracy and computational cost [18]. However, most control al-
gorithms are developed and trained using only synthetic data, in
order to reduce the effort required for calibration and validation as
well as negating the need for any associated experimental setup
and testing [19].

Generally, the common element in control algorithms is an
objective function - which can target financial costs, energy con-
sumption, carbon emissions, etc. - and a set of constraints such as
thermal comfort [5]. Typically, rule-based algorithms implement
instructions to modify the control set points (i.e., zone tempera-
tures, thermal storage activation, heat pump operation, etc.) as a
function of pre-determined boundary conditions. For instance,
2

Yoon et al. [20] developed a rule-based control algorithm aimed at
reducing the electricity consumption of a HVAC system as function
of the electricity retail price by changing the building internal set-
point temperature. Alimohammadisagvand et al. [21] compared
four rule-based control algorithms for DR programs in a residential
dwelling equipped with a ground-source heat pump and electric
resistance heaters. The results showed that savings up to 15% for
heating energy consumption can be achieved. Similarly, Salpakari
and Lund [22] investigated the shiftable loads available in buildings
equipped with PV systems, by using a cost-optimal and rule-based
control, which led to a 13e25% cost saving per year. Moreover, the
authors demonstrated that coupling PV panels with heat pumps
and storage can provide more flexibility potential than other
shiftable appliances in residential buildings. On the other hand, the
authors also highlighted that further model and controller de-
velopments are needed to completely assess the capability of these
systems as flexibility sources.

Advanced home energy management systems (EMS), based on
the building automation systems, have been shown to be capable of
achieving high energy savings and flexibility potential [5]. As
illustrated by Paterakis et al. [23], control algorithms embedded in
smart thermostats and energy management systems can play a
fundamental role to achieve high penetration of renewable energy
and to provide a certain level of control of electricity demand.
Furthermore, the integration of EMSwith the Internet of Things can
result in more granular data acquisition and more optimised con-
trol at appliance level, while increasing the overall potential de-
mand flexibility and its accurate estimation.

Home Energy Management Systems (EMS) are typically based
on reading electricity consumption and other sensors connected to
a Home Area Network (HAN) in order to identify consumption
patterns and control of household appliances [24]. However,
despite the wide recognition that the performance of DR programs
highly depends on the type of control algorithms adopted [21],
further research efforts are still needed in order to assess the ca-
pabilities of different algorithms in predicting the energy flexibility
in households [22]. Compounding this research gap is the need for
standardised assessment procedures and protocols which are
capable of creating communication channels between the different
actors, from building end-users to market stakeholders such as
aggregators, the distribution systems operator (DSO) or the trans-
mission system operator (TSO). Ongoing developments in the in-
formation and communication technology (ICT) domain may fill
this gap in the near future by providing smart tools and algorithms
to monitor, assess and aggregate building energy flexibility po-
tential for its exploitation as DR services. However, in the mean-
time, research efforts need to focus on understanding how to best
exploit and control such flexibility sources.

In this context, the present paper investigates the impact of
intelligent control algorithms on building energy flexibility po-
tential in a smart grid ready and full-electric residential building.
The building is equipped with a photovoltaic system, a ground-
source heat pump and a thermal energy storage system. The
selected dwelling, described in section 2, is a detached bungalow-
type house, located in Ireland and built in the 1970’s. Since con-
struction, a progressive retrofitting has been undertaken to meet
the current building energy regulations. Two EMS systems were
developed based on real-rime smart meter and weather data: a
rule-based algorithm and an intelligent control algorithm (section
3). These EMS systems are used to control the building energy
consumption/generation pattern in order to identify the energy
flexibility potential available for DR programs. The novelty of the
algorithm resides not only in the combination of the optimisation
technique and the machine learning model used for finding the
optimal strategy, but also in using an open source co-simulation
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framework, which allows decoupling of the building simulation
model and the controllers. The performance of the EMS system is
compared against specific energy flexibility metrics described in
section 4, which allow the assessment of the potential accrued and
deferred energy consumption of the analysed building.
2. Experimental test bed

An all-electric residential detached bungalow-type house, rep-
resenting about 40% of the Irish building stock [25], was selected as
a test bed for the assessment of the proposed algorithms. The
dwelling consists of a single storey building built in 1973which was
progressively retrofitted in recent years to meet the contemporary
standards. The floor area is 205m2, and the overall window to wall
ratio is 15%, with a 22% and 10% ratio for the south and north fa-
cades, respectively [26]. Although the building was built with the
typical architectural characteristics in use in the 70s for Irish rural
bungalows, its thermal specifications are close to the current Irish
building regulation values [27], as reported in Table 1. Moreover,
the building thermal performance is aligned with the average Irish
residential building, as outlined in the 2020 scenario research
published in the Residential Energy Roadmap for Ireland [28], as
shown in Pallonetto et al. [29].

The space heating system, illustrated in Fig. 1, is a 12 kW
(thermal output) ground-source heat pump system coupled with a
thermal energy storage tank of 0.8 m3. Measurements indicated
that the secondary working fluid temperature from the ground
source field varied typically over a heating season between 8, 6 and
8

�
C for October, February and May, respectively.
A Heat Recovery Ventilation system was installed. The system

extracts heat from the exhaust air to warm incoming fresh air,
which is distributed to the bedrooms and living room. The air ducts,
located in the attic space, were insulated to reduce thermal losses
while the air extraction points were located in the kitchen and
bathroom. The particular HRV system has an average sensible heat
transfer effectiveness of 80% and operates only during the heating
period with a specific fan power of 60W and volume rate of 0.07
m3=s. The air ventilation has been modelled in EnergyPlus exclu-
sively by the operation of the HRV during the heating period,
whereas in summer by natural ventilation. During the heating
period, for ventilation purposes, the building is divided into two
sections with the kitchen/living/bathroom zone considering the
cross air mix between the zones and a sleeping/utility zone. The
householders’ preference was to operate the heat pump during the
night time only, in order to take advantage of lower electricity
tariffs. Therefore, the heat pump charges the thermal storage dur-
ing the night-period which is subsequently used during the day
time to cover the space heating load. In the context of the current
work, this schedule was adopted as the baseline reference.

On the basis of the space heating preferences of the occupants,
the heating period was set from the 1st of October to the 30th of
April. Table 2 shows the thermostatic set points adopted by the
building owner, which are used as hard constraints to develop the
control algorithms. These internal set point temperatures refer to
Table 1
U-Value of different building elements [27].

Building Element U-ValueðW =m2KÞ
Test-bed building Irish Building Regulations

Walls 0.25 0.21
Roof 0.25 0.21
Windows 1.7 1.6
Floor 0.21 0.21
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the thermostatic controller located in the hallway, which is the
colder part of the building, and they were defined in accordance
with the schedule and preference of the occupants. The occupants
(i.e., 2 adults) are absent from the house during weekdays between
09:00e16:00 h. The process described byNeu et al. [30] was used to
replicate the users’ activities patterns, which resulted in the dis-
tribution of internal heat gains due to their use of appliances, lights
and other electric equipment, domestic hot water (DHW), etc.

The building is also equipped with an array of photovoltaic
panels with a nominal power of 6 kWp and these are located to the
west of house, with a southerly aspect and a 30

�
inclination. The

system has 30 PV panels of 200 Wp each, allocated in three arrays.
Moreover, a residential electric vehicle (EV) charging point is
installed to supply energy to a Nissan Leaf, with a 24 kWh battery
pack. The energy consumption due to charging/discharging cycles
of the EV battery is determined considering the EV energy con-
sumption in accordance with Smith [31]. Liaising with the users
and analysing historical data of car energy consumption, it was
determined that a normalised electricity consumption due to the
EV of 150Wh=km during the summer and 250Wh=km during the
winter. Generally, the EV car is plugged in during the evening, but
charging starts during the night only to exploit the lower electricity
price. The charging pattern suggested byMarra et al [32]. is adopted
for the simulations. The selected building was modelled with
EnergyPlus [33] followed by calibration of the model using
measured data. The calibrated model was subsequently used as a
virtual test-bed for development and analysis of flexibility and DR
control algorithms. The test bed system uses an open source soft-
ware called SimApi [34] to send control instructions from the en-
ergy management system to the EnergyPlus model during
simulation. As illustrated in Fig. 2, SimApi and the EMS exchange
information through a web based Application Programming Inter-
face (API), while sensor data and control instructions are stored in a
database.
3. Control algorithms

In the current work two EMSwith a different control algorithms
are compared: a rule-based control algorithm (section 3.1) and an
intelligent control algorithm (section 3.3). Both EMS systems use
the following objective function, with the aim of minimising the
cost associated with household electricity consumption [29]:

min
Ttk;Cset ;PVeÞ

h
CTP

�
Ttk;Cset ; PVe

i
(1)

TsetðtÞ� Tbd � TintðtÞ � TsetðtÞ þ Tbd t ¼ 1::N (2)

Tmin � Ttk � Tmax t ¼ 1::N (3)

where N represents the total timesteps, C is a vector that stores the
dynamic electricity price for each timestep in V per kWh, P is the
electricity consumption and PðTtk;Cset ; PVeÞ is in kWh, and repre-
sents the energy consumption for a timestep t determined by the
building simulation model. For the described optimisation prob-
lem, three main variables were identified: (i) the storage tank in-
ternal temperature (Ttk) which ranges between two established set
points Tmin and Tmax, (ii) the thermal energy supplied to the
building zones by means of the circulation pump which can be
either enabled or disabled (Cset) and, (iii) the energy generated from
the renewable energy system, identified as PVe.

During the simulation, the zone temperature (Tint) is maintained
at the appropriate set-point (Table 2) and an associated 2oC band-
width (i.e., ± 1oC around the set point), as shown in Equation (2)



Fig. 1. Schematic diagram of the test bed heating system including sensor measurement points.

Table 2
Users’ thermostatic set points (oC).

Weekdays Weekend

00:00e06:30 17 �C 20 �C
06:30e09:00 19 �C 20 �C
09:00e16:00 16 �C 20 �C
16:00e00:00 18 �C 20 �C
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and in accordance with Peeters et al. [35] and with the occupants’
preference. Moreover, Equation (3) constrains the storage tank
temperature between its MIN and MAX temperature settings. The
objective function and the constraints reported in Equations
(1)e(3) define the solution space for controlling the temperature
set point of the storage tank, aiming tominimise the electricity cost,
while maintaining indoor thermal comfort.
3.1. Simulation settings and baseline

The assessment of the two EMS systemswas performed during a
winter month (i.e., January), a period during which peaks of HVAC
system usage occur, and this was presented in a previous work [26].
The study was performed by comparing the performance in terms
of energy consumption and carbon emissions of the EMS, with a
baseline case in which the heating system is controlled by the
thermostatic set points only (Table 2), and where no controllers
were used to charge or discharge the storage tank. In this condition,
the heat pump is switched on whenever needed, even during peak
times, to meet the building energy demand. While adopting the
Fig. 2. Diagram of the control simulation environment and
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same baseline, the present work extends the comparison by ana-
lysing the EMS in terms of building thermal comfort and energy
flexibility potential by adopting the simulation settings described
in section 3.4 and section 4. The details of the rule-based algorithm
and the intelligent algorithm are reported in sections 3.1 and 3.3,
respectively.

A simulation period of 1 month with 15 min resolution was
selected to carry out the analysis. The software infrastructure is
synchronised to the Building Energy Simulation (BES) model
simulation through the database. The API was used to retrieve the
data from the co-simulation environment at each time step.
Anytime a change in the variable data set occurs, the control system
modifies both the heating system and TES thermostatic settings, in
accordance with the specific algorithm adopted. If the new updated
settings trigger the API controller, the instance status is updated
and the mediator waits for the building model to complete the
simulation step. This Building Controls Virtual Test Bed (BCVTB),
which controls the EnergyPlus instance, sends all sensor results to
be stored in the SimApi. Finally, a scheduler collects periodic re-
ports from a monitor and a price predictor component in order to
analyse the relevant data and detect an optimal system control
schedule to minimise the energy consumption and costs. The
management of all household appliances is carried out by the
controller, which submits the specific targets and control settings
over either a wired or wireless HAN.
3.2. Rule-based control algorithm
interaction between the EMS and the building model.
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Algorithm 1. Rule-based energy management system [26].
The rule-based EMS is based on an algorithm aimed at mini-
mising the energy expenditure (as per Eq. (1)) while maintaining
building temperature set points as described in Table 2. Four rules
are defined to reduce costs and energy consumption by exploiting
the thermal energy storage (TES) to shift the energy consumption
from high-peak to low-peak tariff periods. The TES charge status is
defined by setting the min and max temperatures - i.e., 40+C and
60+C - according to the system design [29]. The four rules are
described in Algorithm 1.

The control embeds two conditions based on the sensor reading
at each time step. The first condition checks if the latest sensor
readings have been correctly transmitted and there are no dupli-
cated sensor readings (function tc.valid). The second condition
checks if the control needs to disable the heating system (typically
occurring between 09:00 and 15:00 h, when no occupants are in
the building). The time step counting variable is incremented only if
a valid reading has been detected (condition 1), while the second
condition is implemented by switching the circulation pump status
and shifting the storage tank set point at its MIN temperature.
Between 15:00 h and 17:00 h, the controller enables the heating
system, keeping the circulation pump switched off to charge the
TES. The control instructions and sensor readings are stored in a
database during the whole simulation (a more detailed description
can be found in Pallonetto et al. [26]).
Table 3
MP5 decision tree fitting results.

HeatONDB HeatOFFDB

Pearson Correlation 0.9235 0.7067
MAE 0.0382 0.0724
RMSE 0.122 0.144
3.3. Intelligent control algorithm

The intelligent control algorithm is based on a main operation
routing which invokes four main sub-modules. The predictor is
based on black box model which implements a machine learning
algorithm, which captures the building energy consumption
behaviour commencing with historical data, such as internal tem-
peratures, weather data and equipment state [26]. Such a black box
modelling approach requires data sensor readings but allows the
scalability of the model to different buildings and so replicate the
methodology and the algorithms.

The intelligent control algorithm is detailed in Algorithm 2.
Firstly, the controller evaluates a violation of the thermostatic set
point temperature: if the internal temperature is lower than the
thermal comfort set point, the controller will enable the heating
system, while skipping a prediction step. If the set point tempera-
ture is met, the controller builds a tree of possible solutions per-
forming a status evaluation and a prediction bymeans of a machine
learning model based on a MP5 decision tree. Two datasets were
5

used for training the model and for the prediction of the internal
temperature of the building: (i) a dataset with the GSHP enabled,
called HeatONDB and (ii) a dataset with the GSHP turned off, called
HeatOFFDB. The accuracy of the decision tree model is reported in
Table 3.

Each tree level represents a time step prediction which is eval-
uated against the objective function and thermal comfort con-
straints. During the tree traversal, the system performs an analysis
of the search tree leaves corresponding to the time horizon win-
dow. If a tree path state violates the comfort temperature set point,
then the algorithm does not build the associated branches from the
tree optimising the building time. Each leaf of the tree has an
associated energy consumption and cost label and a set of opera-
tional instructions for the system. Therefore, the final evaluation of
the controller extracts the minimum cost from the search tree data
structure.

Additionally, a heuristic function is used for the selection of the
storage tank set point temperature (charging or discharging). Given
t1; ::; tz the time steps in the prediction time horizon, t0 the current
time-step and PðtxÞ the electricity price at time-step x, the following
function sets the temperature set-point of the storage tank Tset:

Pk ¼maxðPðt1Þ; ::; PðtzÞÞ (4)

Tset ¼
�
Tmax if Pk <0
Tmin if Pk � 0

where Tmax is the maximum temperature set-point, which is
equivalent to a charging mode and Tmin is the minimum tempera-
ture set-point, which is equivalent to a discharging mode.

The function has been built on the basis of the electricity price
for the forecast horizon. In an instance where an off-peak price is
detected within the forecast horizon, then the storage tank tem-
perature is set to discharging mode so the system can commence
exploiting the stored thermal energy. At the end, the algorithm
returns the results of the cascade tree of states with updated energy
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consumption details. Thus, a root child state can provide an the
optimal strategy to minimise the energy expenditure and con-
sumption for the next time-step.

Algorithm 2. Intelligent energy management system (Pallonetto
et al. [26])
Table 5
Thermal sensation scale [38].

Sensation Description

4 Very hot
3 Hot
2 Warm
1 Slightly warm
0 Neutral
-1 Slightly cool
-2 Cool
-3 Cold
-4 Very cold
3.4. Time of use tariffs and thermal comfort

The present work extends the comparison by analysing the EMS
in terms of building thermal comfort and energy flexibility poten-
tial. For this purpose, different Time of Use tariffs, identified in
compliance with the Irish Commission for Energy Regulation [36],
are analysed. The price scheme (Table 4) is structured on the basis
of; peak, off-peak and night tariffs, to reflect the average Irish Sys-
tem Marginal Price (SMP) and consequently of the overall elec-
tricity demand.

A thermal comfort evaluation of the baseline, the rule-based and
the intelligent algorithm, was carried out for the selected month by
using the Fanger Comfort Model [37] integrated within EnergyPlus
[38]. This model defines the Predicted Mean Vote (PMV) thermal
sensation scale (Table 5) by evaluating the energy exchange
mechanisms to a person, coupled with experimentally-derived
psychological parameters, to correlate the subjects’ response to
environmental variables influencing the thermal comfort.
Assuming that a person is at steady state with the interior envi-
ronment, EnergyPlus implements the following correlation to
determine the PMV at each time step.

PMV ¼
�
0:303e�0:036M þ0:028

�
ðH� LÞ (5)

Terms L, H, M in Equation (5) represent the energy losses from
the body (W=m2), the internal heat production rate of an occupant
(W=m2) and the metabolic rate (W=m2) respectively, which are
calculated as shown in the following equations:
Table 4
Time of Use electricity tariffs [V/kWh] ( [36].

Hours Weekdays

A B C D Flat S

00:00e08:00 0.120 0.110 0.100 0.090 0.135 0
08:00e17:00 0.140 0.135 0.130 0.125 0.135 0
17:00e19:00 0.200 0.260 0.320 0.380 0.135 0
19:00e23:00 0.140 0.135 0.130 0.125 0.135 0
23:00e00:00 0.120 0.110 0.100 0.090 0.135 0

6

L¼ Leva þ Lresp þ Ldry (6)

H¼M �W (7)

Being the present case study a residential building, a low-
medium metabolic rate (M ¼ 120W=m2) can be assumed in
accordance with ISO 8996 [39] and Br€ode and Kampmann [40]. The
term W (W=m2) represents the rate of heat loss due to work ac-
tivities usually ranges from 0 � W � 0:2M [41] and it is difficult to
estimate due to the variety of activities which may occur in a res-
idential home. Havenith et al. [41] suggests that for sedentary tasks
and tasks with low activity (i.e., standard activities with normal
clothing), the value W ¼ 0 can be assumed.
4. Energy flexibility and flexibility metrics

The flexibility of a building can be defined as the “accrued or
deferred energy dividend (in kWh) facilitated by thermal storage and
residential renewable energy generators” [29], enabled by decou-
pling the building and the energy system. In the case study under
analysis, the installed PV system and the TES represent the main
source of flexibility, enabled by the possibility of converting the
generated electrical energy into thermal energy which, in turn, can
Weekends

MP A B C D Flat SMP

.046 0.120 0.110 0.100 0.090 0.135 0.044

.065 0.140 0.135 0.130 0.125 0.135 0.062

.097 0.140 0.135 0.130 0.125 0.135 0.088

.071 0.140 0.135 0.130 0.125 0.135 0.067

.053 0.120 0.110 0.100 0.090 0.135 0.053
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be stored in the TES. The state of charge of the TES is represented by
its minimum and maximum temperatures, namely 35

�
and 55

�
,

respectively. In fact, as long as the heat pump control maintains the
tank temperature TTES between TTES;max and TTES;min, the TES system
can be used to meet the heat demand of the building.

Since the system flexibility is directly correlated with the upper
and lower temperature bounds of the TES - by means of its thermal
capacitance, the heat pump performance and PV production - it is
possible to define two parameters measuring the potential of the
system to defer energy consumption (i.e., shifting potential S) and/
or accrue energy consumption (i.e., forcing potential F). The shifting
potential SðtÞ at the instant t is the sum of the photovoltaic power
production PV plus any deferrable heat pump power consumption
enabled by the TES system, as shown in Eq. (8). The term SOCTES is
State of Charge of the TES, defined as shown in Eq. (9), while COPhp
and QTES;n are the coefficient of performance of the heat pump and
the nominal thermal power which can be extracted from the TES
when fully charged, respectively.

SðtÞ¼
ðtþdt

t

 
PVðtÞþ SOCTESðtÞ

QTES;n

COPhpðtÞ

!
dt (8)

SOCTESðtÞ¼
TTESðtÞ � TTES;min

TTES;max � TTES;min
(9)

Similarly, the forcing potential FðtÞ is defined as “the accruable
heat pump power consumption when the heat pump thermal output is
not used to meet the dwelling thermal demand but is instead stored by
the TES system” [29]. In other words, the heat pump may be forced
to operate, even if the internal temperature set point is met, to
charge the TES. The maximum amount of electrical energy which
can be used to fully charge the TES represents the flexibility po-
tential in forcing mode of the system.

FðtÞ¼
ðtþdt

t

½1� SOCTESðtÞ�
QTES;n

COPhpðtÞ
dt (10)

Both the shifting and forcing potentials can be evaluated at each
Fig. 3. Comparison of control algorithms (1 month test period: January): (a) electri
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time step and represent a measure of the energy flexibility avail-
able. The next section shows the application of this methodology
for the test case described in section 2.

5. Results

An assessment of the energy consumption, carbon emissions
and energy costs for the rule-based and intelligent algorithm was
undertaken for the 1 month (January) test period.

Fig. 3a illustrates the total electricity consumption and carbon
emissions due to space heating and DHW production over the 1
month test period. Since the baseline system is controlled by the
thermostatic set points only, switching to the more advanced
control algorithms leads to a reduction of the building energy
consumption by 20.9% and 39% for the rule-based and intelligent
algorithms, respectively. This reduction is reflected in the overall
carbon emissions (Fig. 3a), calculated using 30 min-averaged his-
torical carbon emissions (gCO2=kWh), based on technical data from
all generation units, including RES, available from the transmission
system operator database [42]. Specifically, the footprint ranged
from 251 gCO2=kWh to 643 gCO2=kWh over the period considered,
with maximum values occurring during peak time periods (i.e.,
17:00e19:00). Despite the higher percentage of consumption dur-
ing lower emissions times, the rule-based algorithm shows
increased carbon emissions of 20% compared to the intelligent al-
gorithm, due to the less efficient (i.e., non-optimised) control,
which led to higher energy consumption. Therefore, carbon in-
tensity becomes a paramount parameter to be included as objective
function of control algorithms and/or in the price scheme, in order
to lower the building carbon emissions by exploiting the RES
penetration at grid level.

Fig. 3b shows the generation cost using Irish electricity SMP
prices [43] over the period considered. Observing the results from
the rule-based algorithm, where the control strategy aims to shift
electricity consumption from peak periods (17:00e19:00) to off
peak periods (15:00e17:00), a 21% generation cost reduction is
observed, while the intelligent algorithm achieves a cost saving up
to 43%. Since the difference between the SMP peak and off-peak
prices can reach a ratio of up to 6 to 1, which when coupled with
the observation that the peaks in the SMP price are alignedwith the
city consumption and carbon emissions, (b) utility electricity production costs.



Fig. 4. End-use costs for different Time of Use tariffs (Table 4) (1 month test period:
January).
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ToU peak periods, the efficiency of the intelligent algorithm strat-
egy enables the reduction of the total amount of energy consumed
by the system and consequently, is capable of leading to utility cost
savings.

In the present work, Time of Use (ToU) tariffs adopted by the
Irish smart meter trial [36] are used to assess the consumer elec-
tricity cost and to compare the savings obtained by the two
different control algorithms described in section 3 and the baseline.
Fig. 4 shows the electricity cost for the baseline, the rule-based and
the intelligent algorithms under different ToU tariffs outlined in
Table 4 over the period considered. While the baseline shows the
highest cost for all tariffs considered, the rule-based algorithm is
capable of providing savings between 27% and 40% depending on
the tariff considered (note: Tariff D is the ToU tariff closest to the
SMP price). Regarding the intelligent control algorithm, a cost
savings between 42% and 49% was achieved. The differences be-
tween the rule-based and intelligent algorithms are mainly due to
the use of a fixed set of operational rules to control the heating
system, which results in a less efficient and, in turn, more expensive
charging/discharging schedule of the TES. Finally, the baseline
operation of the GSHP during price peaks (17:00 to 19:00) leads to
high cost peaks due to the specific price tariff structure, with the
result of penalising peak consumption. The adoption of control
algorithms (both rule-based and intelligent optimisation algo-
rithms) leads to the absence of those peaks, which demonstrate the
effectiveness of the algorithms in reducing peak expenditure.
5.1. Thermal comfort assessment

As described in section 3.4, the PMV scoring system is used to
assess the thermal comfort of the building based on the equations
developed by Fanger and adapted by the ASHRAE [44]. As illus-
trated in Olesen [45], the ASHRAE standard is compatible to the
EN15251 [46]. Therefore, the evaluation of the thermal comfort in
the current work adopt the psycho-physical scale shown in Table 5
[47]. Considering also the climatic conditions of the location and
the occupants’ preferences, thermal discomfort occurs with values
outside the range of -1 (slightly cool) to þ1 (slightly warm) of the
ASHRAE psycho-physical scale.

In order to assess the performance of the controllers in terms of
thermal comfort, Fig. 5a reports the frequency of the PMV values
obtained by the PMV thermal comfort model with a 15 min reso-
lution over the period considered. It can be observed that the use of
the rule-based and intelligent controller algorithms does not show
any thermal comfort violation compared to the baseline. Generally,
the intelligent controller provides less thermal comfort variability
throughout the day compared to the rule-based controller.
8

However, as evident in the distribution, the intelligent algorithm
keeps the inside temperature slightly colder than the baseline.

Further evidence of the thermal comfort performance of the
controllers is illustrated in Fig. 5b, which reports the average PMV
score using box plots for the three algorithms. Despite the small
differences in the average PMV scores, the rule-based algorithm
exhibits a slightly higher variability and a slightly lower score,
while the intelligent algorithm has a similar score compared to the
baseline. Concerning the PMV score differences between the three
algorithms, the maximum variation is evident between the rule-
based and the baseline schemes, and is equivalent to 0.4. The
minimumvariation between the intelligent algorithm and the rule-
based algorithm is 0.03.

Generally, for all control algorithms, the best PMV scores occur
during the evening (21:00e22:00) when the occupants are at home
and higher internal heat gains increases the overall internal
building temperature. It was noted that both algorithms resulted in
a similar thermal comfort area, with a moderate negative score
evident during the night (01:00e07:00). The rule-based and
intelligent algorithm both result in the minimum PMV score (-0.8),
which occurs during the day when the temperature set points are
lower.

5.2. Flexibility assessment

Considering that the thermal comfort is not affected by the
implemented rule-based and intelligent algorithm controllers, as
discussed in section 5.1, the analyses was extended to the assess-
ment of the energy flexibility potential by using the metrics
described in section 4. In the current work, the main source of
flexibility is represented by the TES, assisted by the generation from
the renewable source (i.e., PV system). As outlined in section 4, a
default lower and upper set point temperatures (i.e, 35oC and 55oC
respectively) were chosen with reference to the heat pump nomi-
nal thermal output and a system sensitivity analysis. If the tank
temperature Ttk is maintained between Tmax and Tmin by the heat
pump, the heat demand of the building can be met by the TES
system.

Fig. 6 shows a typical average profile triggered by using a TOU
price signal with 2 h duration. It is noted that if the TES temperature
is close to Tmax (i.e., the TES is fully charged, for an off-peak period),
the shifting potential is close to its maximum, whereas the forcing
potential reaches its minimum. If heating is required by the
building (e.g., between 10:00e14:00) the TES can be discharged,
until Ttk reaches Tmin, to cover such demand without active use of
the heat pump. This discharging process, reflected by the reduction
of the tank temperature, increases the forcing potential or, in other
words, the amount of energy which may be stored in the TES for
subsequent use. It can be seen from Fig. 6 that, after a discharging
phase, the TES is charged again just before the beginning of the
peak-price period (i.e., between 18:00e20:00 in this example),
during which a new discharging phase occurs.

Fig. 7 and Fig. 8 summarise the cumulative shifting and forcing
flexibility of the intelligent algorithm over the test period (i.e.,
January). Total shifting flexibility potential (Fig. 7) is greatest during
the weekend and the night, due to the flatter price tariff, while no
shifting potential is available during the evening (i.e., negative
values) due to the higher energy demand required by the building,
as well as the higher tariffs. On the other hand, the forcing flexi-
bility potential (Fig. 8) is typically greater for weekdays, due to the
higher building temperature set point and the flat tariff. It can be
seen that higher forcing potentials occur during the late evening
and night (i.e., 10 p.m. - 3 a.m.), since the heat pump can be forced
to charge the TES by exploiting the lower tariffs. As the TES is
charged, the forcing potential reaches its minimum, corresponding



Fig. 5. a) Thermal comfort (PMV) frequency histograms and b) Average and standard deviations, for control algorithms (January).

Fig. 6. Example of a typical flexibility potential profile for ToU price signal during the
winter season.

F. Pallonetto, M. De Rosa and D.P. Finn Smart Energy 2 (2021) 100017
to the energy demand required to keep the TES at its maximum
temperature. Moreover, greater values of the forcing potential can
be observed to occur in the late afternoon and evening (i.e., 2
p.m.e10 p.m.), since the TES is typically discharged to cover the
building demand due to the peak tariff period. This period corre-
sponds to the absence of shifting potential observed in Fig. 7, as
explained earlier.

Fig. 9 reports the hourly average flexibility obtained by the
different controllers for the 24 h period considered, as per Fig. 6. As
illustrated in Fig. 9 (a,b), the rule-based and the baseline results
exhibit a negative bias toward forcing flexibility. The baseline
9

shows the highest imbalance between the two flexibility compo-
nents. While the baseline system under utilises the TES, keeping it
always almost fully charged, the intelligent algorithms has a
negative bias toward the shifting flexibility. Such a bias could affect
the thermal comfort of the building in the scenario of extremely
cold weather.

The baseline forcing flexibility is equivalent to 7.86 kWh
(0.25 kWh per day) while shifting flexibility is equal to 81.49 kWh
(2.62 kWh per day) over the considered period (i.e., January). The
rule-based cumulative hourly flexibility for the shifting potential is
equivalent it 64.13 kWh (2.0 kWh per day), while the forcing po-
tential is 25.22 kWh (0.81 kWh per day). The accumulated total
daily flexibility potential for the intelligent algorithm over the
testing period, shows a total shifting and forcing potential of
34.52 kWh and 54.82 kWh, respectively, which if averaged on a
daily basis is approximately 1.1 kWh and 1.76 kWh per day.
6. Conclusions

The present paper investigated the impact of the use of
advanced control algorithms on building energy flexibility poten-
tial and thermal comfort in a smart grid ready and full-electric
residential building equipped with a geothermal heat pump and
thermal storage. With reference to the specific case study analysed
in the present paper, the adoption of more advanced control al-
gorithms leads to a promising reduction of the building energy
consumption of 20.9% and 39% for the rule-based and intelligent
algorithm, respectively. Moreover, switching the electricity



Fig. 7. Average hourly shifting flexibility (S) obtained with the intelligent algorithm under Tariff D (in kWhe) (1 month test period: January).
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consumption from peak to off-peak periods leads to a 21% cost
reduction if the rule-based control is adopted, while the intelligent
algorithm can achieve cost reductions of up to 43% compared to the
baseline, where no optimisation controls are implemented. Since
the rule-based algorithms adopts a fixed set of operational rules to
control the heating system, a less efficient and, in turn, more
expensive charging/discharging schedule of the TES occurs. This
leads to the differences of the results obtained from the rule-based
and intelligent optimisation algorithms. Both the control algo-
rithms analysed showed similar thermal comfort levels, with no
10
violation of the PMV limit and only moderate negative values
during night periods (minimum PMV value of -0.8 PMV).

From a flexibility perspective, the intelligent algorithm operates
the TES closer to the lower temperature set point to reduce overall
energy consumption and costs. Consequently, the shifting flexi-
bility compared to the forcing flexibility is lower. Total shifting
potential is greatest during weekend and night periods due to
flatter price tariffs, while there is little or no availability during the
evening due to the high building demand. The forcing potential is
typically greater for weekdays due to the higher building



Fig. 8. Average hourly forcing flexibility (F) for the intelligent algorithm under Tariff D (kWhe per day) (1 month test period: January).
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temperature set point and the flat tariff.
Moreover, it is noted that the flexibility metrics adopted in the

present work (section 4) outlining the capability of the system to
defer or accrue the energy consumption depending on specific
external variables (i.e., ToU tariffs), meets the energy needs and
thermal comfort constraints of the residential building. The
extracted information may be useful for aggregators to assess and
aggregate the total potential flexibility of a residential building
stock. Further research is however required to develop a compre-
hensive method for profile and metrics aggregation.
11
Finally, it is important to state that, while the results described
in the present work are case-specific and refer to the particular
application described in section 2, the methodology adopted - i.e.,
the control algorithms (section 3) and the flexibility metrics (sec-
tion 4) ehave the potential to be readily adapted and used in other
building energy applications.
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Fig. 9. Average forcing and shifting potential over the testing period) (1 month test
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