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a b s t r a c t 

Developing BEPS models which predict energy usage to a high degree of accuracy can be extremely time 

consuming. As a result, assumptions are often made regarding the input data required. Making these as- 

sumptions without introducing a significant amount of uncertainty to the model can be difficult, and re- 

quires experience. Even so, rules of thumb from one geographic region are not automatically transferrable 

to other regions. This paper develops a methodology which can be used to determine useful guidelines 

for defining the most influential input data for an accurate BEPS model. Differential sensitivity analysis 

is carried out on parametric data gathered from five archetype dwelling models. The sensitivity analysis 

results are used in order to form a guideline minimum set of accurately defined input data. Although the 

guidelines formed apply specifically to Irish residential dwellings, the methodology and processes used 

in defining the guidelines is highly repeatable. The guideline minimum data set was applied to practical 

examples in order to be validated. Existing buildings were modelled, and only the parameters within the 

minimum data set are accurately defined. All building models predict annual energy usage to within 10% 

of actual measured data, with seasonal energy profiles well-matching. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

In the EU, buildings account for 40% of primary energy con-

sumption and 33% of CO 2 emissions [1] . Thus, reducing energy

consumption of the building sector is crucial to reducing overall

primary energy consumption. Many look towards effective Build-

ing Energy Performance Simulation (BEPS) to help decrease build-

ing energy usage. However, studies have found that a significant

“performance gap” often exists between building energy usage pre-

dicted by BEPS, and actual measured building energy usage [2–6] . 

Buildings are highly complex and stochastic systems by nature,

and thus, the data which theoretically could be gathered and pro-

vided to a BEPS tool is almost inexhaustible [5] . Gathering this data

is both costly and time consuming [7] . Providing this detailed data
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o a BEPS tool and creating a detailed energy model of a build-

ng can also be extremely time consuming. Simplifications and as-

umptions regarding input data are often made. The assumptions

nd simplifications which must be made can lead to buildings

eing insufficiently represented by models [8] . Furthermore, each

implification and assumption introduces a degree of uncertainty

nto the energy model [9,10] . Uncertainty analysis has been identi-

ed as one method of addressing the ”performance gap” [9,11–15] .

owever, uncertainty analysis can only be employed in order to

uantify the expected accuracy levels of simulations, and is not in-

ended to physically reduce the disparity between simulation and

eality [15] . Understanding the implications and impacts of these

ntroduced uncertainties on simulation accuracy is difficult and re-

uires experience [16] . De Wit and Augenbroe [9] suggest that in-

omplete or inaccurate specification of the building and associated

ystems is one of the main sources of uncertainty which is intro-

uced to building energy models. 

Calibration is a popular method used in an attempt to re-

uce the performance gap between simulated and actual energy

onsumption. Typically, as part of this calibration process, inputs
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Nomenclature 

ACH Overall dwelling air change rate ( ach ) 

BEPS Building Energy Performance Simulation 

COP Coefficient of performance 

COP_sys Heating system COP 

DHW Domestic hot water 

DHW_use Domestic hot water requirements 

( L −2 day 
−1 

) 

DSA Differential sensitivity analysis 

E_aux Heating system aux. energy 

( kWh m 

−2 year −1 ) 

Equip_density Equipment density ( W m 

−2 ) 

GSA Global sensitivity analysis 

HSBT Heating set-back temperature ( ◦C ) 

HSPT Heating set-point temperature ( ◦C ) 

IC Influence coefficient 

IP Input parameter 

IPbc Base-case input parameter 

L_dens Lighting density ( W m 

−2 ) 

MCA Monte-Carlo analysis 

Occ_gains Occupancy density (heat gains only) 

( m 

2 person 

−1 ) 

OP Output parameter 

OPbc Base-case output parameter 

Orientation Building orientation ( °) 
p Interval value between simulated points 

r Number of simulation points 

Roof_abs Roof surface solar absoptivity 

Roof_emiss Roof surface emissivity 

SA Sensitivity analysis 

SHGC Window solar heat gain coefficient 

Thm_mass_floor Ground floor thermal mass ( kJ m 

−2 K 

−1 ) 

Thm_mass_roof Roof thermal mass ( kJ m 

−2 K 

−1 ) 

Thm_mass_wall External wall thermal mass ( kJ m 

−2 K 

−1 ) 

U_door External door U-value ( W m 

−2 K 

−1 ) 

U_floor Ground floor U-value ( W m 

−2 K 

−1 ) 

U_frame Window frame U-value ( W m 

−2 K 

−1 ) 

U_g Glazing U-value ( W m 

−2 K 

−1 ) 

U_part Internal partition U-value ( W m 

−2 K 

−1 ) 

U_roof Roof U-value ( W m 

−2 K 

−1 ) 

U_wall External wall U-value ( W m 

−2 K 

−1 ) 

Vt Window visible light transmittance value 

Wall_abs External wall surface solar absorptivity 

Wall_emiss External wall surface emissivity 

WWR Window-to-Wall Ratio (%) 

�X Input parameter range 

re “adjusted” on a trial-and-error basis until the simulated re-

ults are within 5% of measured utility data [17,18] . Although the

odel may now closely represent measured utility data, on a sub-

tility level the model may be an extremely poor representation

f the building [8] . For this reason, Raftery et al. [8] have devel-

ped a method aimed at adding some objectivity to the calibra-

ion process. However, as Coakley et al. [19] state, due to the sheer

umber of inputs required for detailed building energy simulation

nd the limited number of measured outputs, calibration will al-

ays remain an indeterminate problem which yields a non-unique

olution. 

Sensitivity Analysis (SA) can be used in order to determine

ow influential a given input parameter of a system or process is

n the resultant output of that system or process. For BEPS pur-

oses, SA is generally employed in order to determine how influ-

ntial various model and simulation input parameters are on build-
ng energy usage [20–26] . According to Hamby [27] , Differential

ensitivity Analysis (DSA) is the backbone of all other sensitivity

nalysis techniques. To employ DSA to examine the relative influ-

nce of different input parameters, a base case simulation must

rst be executed. The values of all base case inputs ( IP bc ) should be

ecorded, and also the resultant output energy consumption ( OP bc ).

ach input parameter should then be varied one at a time ( �IP ).

he relative influence that each input parameter has on the output

 �OP ) is quantified by the non-dimensional Influence Coefficient

 IC ): 

 C = 

�OP/OP bc 

�I P/I P bc 

(1) 

It can be seen from examining previous studies that this

ethod of SA is commonly used for BEPS applications [20,23,25] .

his derivative based form of SA is known as local SA. MacDon-

ld et al. [28] note that one underlying assumption of DSA is that

arying the input affects the output linearly, over the range of in-

ut values. Global Sensitivity Analysis (GSA) techniques are viewed

s providing more dependable results in cases where nonlinear-

ty may be present. Parameters are generally varied simultane-

usly and randomly. Thus, GSAs (e.g. Monte Carlo Analysis (MCA))

re considered to be unaffected by nonlinearity, and interactions

etween input parameters are accounted for. However, GSA tech-

iques can be quite computationally expensive [29,30] . Wainwright

t al. [29] state that there is an argument that GSA methods (such

s MCA) do not provide enough additional information over local

A methods (such as DSA) to justify the increased computational

xpense. 

In one of the earliest case studies of SA in BEPS, Lomas and

ppel [20] employed the simple DSA method and the more ad-

anced MCA to three detailed energy models. Interestingly, the

esults produced by both methods were in good agreement, in

erms of the weighted ranking of parameters , despite DSA be-

ng quite a simplistic approach to SA. Rees and Dadioti [25] also

onducted a study where two different methods of SA are com-

ared; the DSA method and the Morris method. Again, the re-

ults were quite similar, with the exception of two parameters

hose rank of importance was reversed. An analysis of the re-

ults obtained by Jin and Overend [26] using two different meth-

ds of SA also revealed that results for both methods were in good

greement. 

This paper aims at using the computationally frugal yet effec-

ive DSA method in order to identify the most influential input pa-

ameters for a given set of building archetypes. The DSA method

ill be employed on data describing how the output (building en-

rgy consumption) changes as the inputs are varied, thus providing

 weighted representation of the influence of each input parame-

er. The most influential input parameters will be used in order

o form a guideline minimum set of accurately defined input data.

he minimum data set can be used in order to add some objec-

ivity to the decisions made regarding input data assumptions and

implifications, ultimately leading to increased modelling accuracy

nd/or decreased modelling time. Waltz [31] states that for a build-

ng simulation to be classified as accurate, predicted annual energy

sage ought to be within 5% of the actual recorded consumption,

ith seasonal energy usage profiles matching reasonably well. For

ime-restricted models , Waltz [31] suggests that 10% is an accept-

ble goal. 

DesignBuilder, a user interface for the EnergyPlus simulation

ngine has been chosen to be used for all modelling and simu-

ation purposes. In Section 2 , the methodology which has been de-

eloped in order to form the minimum data sets will be outlined

n detail. Section 3 examines the results of the applied methodol-

gy to a given set of building archetypes. A minimum data set will
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Fig. 1. Process diagram illustrating how to ascertain and apply a minimum measurement set for a defined subset of the building stock. 
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be applied to a practical example in Section 4 . Section 5 finally

summarises the main outcomes. 

2. Methodology 

This paper focuses on producing guidelines for typical Irish

dwelling types. However, the processes and methodology used are

highly repeatable, and applicable to almost any category of build-

ing situated in any given location. 

As guidelines for typical Irish dwellings must be produced,

archetype models which are representative of a significant por-

tion of the Irish dwelling stock are required to be modelled. These

models will be referred to as the base-case archetype models. It is

imperative that the values used for all input parameters for each

of the base-case models are representative of the “most probable”

values for Irish dwellings. 

A process diagram outlining the overall methodology used in

this study is shown in Fig. 1 . The first step is defining the base

case input parameter values, and generating the base case energy

models, representative of Irish archetype dwellings. The base case

energy model simulations can then be executed, and the resultant

base case output (annual energy usage) values recorded. Subse-

quently, the parametric modelling phase can be initiated. In this

stage of the process, a range of values and intervals are defined for

each input parameter. The process of defining these ranges and in-

tervals will be outlined in Section 2.3 . Parametric simulations can

then be executed in order to obtain the parametric data required

for SA. By performing SA (the SA process will be described in detail

in Sections 2.4 and 2.5 on the parametric data recorded for each

archetype and input parameter, a useful minimal-set of accurately-
pecified input data can be defined, based on the results of the

A. The minimum data set can then be applied to a practical ex-

mple in order to be confirmed. Note the feedback process link,

etween the application of the minimum data set and the defini-

ion of the minimum data set, shown in Fig. 1 . If the applied min-

mum data set produces unsatisfactory results, the minimum data

et can be re-defined (this feedback process will be described in

etail in Section 2.5 ). 

This process diagram can be referred to, when repeating the

rocesses outlined in this paper, in order to form guideline min-

mum data sets for other building archetypes. All processes il-

ustrated in the process diagram are described in detail in this

ection. 

.1. Archetype dwelling models 

.1.1. Base-case archetype model inputs 

Comprehensive Irish dwelling archetypes have been developed

y Nue and Sherlock [32,33] . The five archetype dwellings are

ased on a DECLG report [34] , and are deemed to be represen-

ative of over 80% of the Irish building stock. However, for each

rchetype, three separate constructions are considered (new in-

ulated cavity wall, existing uninsulated cavity wall, and existing

ninsulated hollow block wall [35] ), resulting in a total of 15 mod-

ls (the dimensional characteristics for each archetype remained

he same, but the physical characteristics of the constructions were

hanged). Given the number of input parameters which must be

xamined as part of this project, a thorough parametric analysis

sing 15 models is considered an unfeasible and time-consuming

pproach. 
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Table 1 

Summary of archetype geometries. 

Dwelling Area of external N/W/S/E façade (m 

2 ) Window-to-Wall ratio for N/W/S/E façade Volume (m 

3 ) Total floor area (m 

2 ) 

Detached 41/51/41/51 0.5/0/0.5/0 408 160 

Bungalow 31/19/31/19 0.4/0/0.4/0 250 104 

Semi-detached 36/46/36/0 0.4/0/0.4/1 321 126 

Mid-floor apartment 0/0/22/14 0/0/0.5/0 130 54 

Top-floor apartment 0/0/22/15 0/0/0.5/0 130 54 

Fig. 2. 3-D visualisations of the model archetype dwellings illustrating a represen- 

tative variation in archetype geometries. 
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Famuyibo et al. [36] previously conducted a statistical anal-

sis of two housing databases (Energy Performance Survey of

rish Housing (EPSIH) and the Irish National Survey of Housing

uality (INSHQ)), and used the results of this statistical analysis

rder to develop the average, or “most probable” characteristics of

ifferent Irish dwelling archetypes. The combined use of the phys-

cal characteristics of typical Irish dwellings defined by Famuyibo

t al. [36] , and the dimensional archetype models developed by

eu and Sherlock [32,33] , allowed five archetype models (as op-

osed to 15) to be developed which represent a significant portion

f the Irish residential stock. The five archetypes which are devel-

ped and used as the basis of this study are as follows: 

1. A two-storey detached dwelling (hereafter referred to as “de-

tached”). 

2. A two-storey semi-detached dwelling (hereafter referred to as

“semi-detached”). 

3. A single-storey detached dwelling (hereafter referred to as

“bungalow”). 

4. A mid-floor apartment. 

5. A top-floor apartment. 

As Ireland is located within one single climatic zone [37] , it is

ecided that the models should be simulated in an area where

he majority of Irish dwellings are located (although Ireland lies

ithin one climatic zone, differing EnergyPlus weather data files

re available, depending on location). According to data from [38] ,

ver 28% of Irish dwellings were located in county Dublin in 2011,

 far greater proportion than any other region. Dublin is therefore

elected as a suitable location for the model simulations. 

3-D archetype model visualisations are shown in Fig. 2 , and the

rchetype geometries are summarised in Table 1 . Note that a value

f zero for the external wall area means that a particular wall has

een modelled adiabatically. It also is worth noting at this point

hat, as suggested by Sherlock [33] , the heating system for the base
ase archetype models follows a common hot water radiator tem-

late (powered by a standard boiler). However, the overall seasonal

OP/efficiency of the heating system is taken from the archetypes

efined by Famuyibo et al. [36] . The modelling process of the base-

ase archetype dwellings is described in detail in [39] . 

.1.2. Base-case archetype model outputs 

Once the modelling process was complete for all archetypes,

he next step was to execute the base-case simulations and record

he annual energy consumption values for each (the base-case out-

uts). These outputs, broken down by energy usage subcategory

heating, DHW requirements, electrical equipment, lighting and

ystem pumps) are shown in Fig. 3 (a). The annual energy densi-

ies for each archetype ( kWh per m 

2 of floor area) are shown in

ig. 3 (b). 

It can be seen that as a consequence of relatively greater ex-

ernal surface areas the energy consumption of the more volu-

inous dwellings is heavily dominated by space heating require-

ents. Almost 70% of the detached archetype energy require-

ents are consumed by space heating. This is not the case for the

ess voluminous archetypes. For example, only 38.6% of the mid-

oor apartment energy requirements are devoted to space heat-

ng. Other factors such as DHW requirements, electrical equipment

nd lighting make up a greater proportion of total annual energy

equirements for the less voluminous dwellings (the apartment

rchetypes). 

.2. Parametric analysis 

In order to obtain a sufficient resolution of how the output Y

aries as a function of each input parameter X i , each input param-

ter should be simulated at r i points within the specified param-

ter range. Taking n to be the number of input parameters, the

otal required number of simulations ( Z ) can be described by the

quation: 

n 
 

i =1 

r i (2) 

Controlling the number of intervals and points ( r i ) in each in-

ut parameter range ( �X i ) is the only feasible way of controlling

he total required number of simulations ( Z ), whilst ensuring that

 sufficient resolution of data describing how the output varies in

esponse to varying the input. Therefore, r = 4 or r = 5 are selected

s a suitable number of simulated points in each input parameter

ange. It is assumed that this will provide a sufficient resolution of

ow annual building energy consumption varies as a function of

ach input parameter examined. Let p be the value of the interval

etween simulation points ( r ) in each defined parameter range. p

or the i th input parameter can be described by: 

p i = 

�X i 

r i 
(3) 

.3. Input parameter range of values 

In order to examine the relative influence of each input param-

ter on annual building energy consumption, data describing how
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Fig. 3. Annual (a) and normalised (b) energy consumption illustrating large differences in energy use but minor differences in energy density. 

Table 2 

Input parameter range of values and associated increment. 

Parameter Unit Acronym Minimum Maximum Increment 

External wall U-value W m 

−2 K −1 U_wall 0.1 [40] 1.1 0.25 

Roof U-value W m 

−2 K −1 U_roof 0.1 [40] 0.9 0.2 

Ground floor U-value W m 

−2 K −1 U_floor 0.1 [40] 1.1 0.25 

Internal partition U-value W m 

−2 K −1 U_part 1 3 0.5 

External door U-value W m 

−2 K −1 U_door 0.5 3 0.5 

External wall internal thermal mass kJ m 

−2 K −1 Thm_mass_wall 75 175 25 

Roof internal thermal mass kJ m 

−2 K −1 Thm_mass_roof 125 225 25 

Ground floor internal thermal mass kJ m 

−2 K −1 Thm_mass_floor 100 200 25 

External wall emissivity Wall_emiss 0.15 0.95 0.2 

External wall solar absorptance Wall_abs 0.15 0.95 0.2 

Roof emissivity Roof_emiss 0.15 0.95 0.2 

Roof solar absorptance Roof_abs 0.15 0.95 0.2 

Window-to-Wall Ratio % WWR 10 [41] 70 [41] 20 

Glazed portion U-value W m 

−2 K −1 U_g 0.6 [40] 4.6 1 

Frame U-value W m 

−2 K −1 U_frame 0.5 4.5 1 

Solar heat gain coefficient SHGC 0.1 [42] 0.9 [42] 0.2 

Light transmittance value V_t 0.19 [42] 0.99 [42] 0.2 

Heating system seasonal COP/efficiency COP_sys 0.5 2.5 [43] 0.5 

Auxiliary energy consumption kWh m 

−2 year −1 E_aux 1 5 1 

Heating set-point temperature ◦C HSPT 18 [44] 23 [44] 1 

Heating set-back temperature ◦C HSBT 10 [44] 14 [44] 1 

DHW usage L m 

−2 day 
−1 

DHW_use 0.5 3.5 1 

Occupancy density m 

2 person −1 Occ_gains 0 0.1 0.025 

Lighting density W m 

−2 L_dens 1 9 2 

Equipment density W m 

−2 Equip_dens 1 21 5 

Air changes per hour ach ACH 0.5 [40] 1.5 [33] 0.2 

Orientation ° Orientation 0 180 45 
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the output (annual energy usage) varies as a function of the in-

put must be acquired. As aforementioned, in order to obtain this

data, each input parameter which is to be examined should be var-

ied over a range of values at specified intervals (see Eq. (3) ). The

chosen range of values should reflect the range of possible values

of each input parameter for Irish dwellings. The threshold mini-

mum and maximum values for the input parameters to be exam-

ined are listed in Table 2 . Many of the sources of these threshold

values are also listed in Table 2 . However, in some cases, engineer-

ing judgement was required in the selection of the minimum or

maximum values. For example, many of the predefined construc-

tions within the predefined DesignBuilder libraries were examined

in order to define the range of thermal masses to be examined for

the walls, floor and roof. The reasoning behind the selection of the

threshold values is described in detail in [39] . The logic behind the

selected simulated intervals within the range has been described

in Section 2.2 ). Once the range and incremental values were de-

fined, the parametric simulations were executed. This provided the
arametric data required in order to perform DSA on each input

arameter. 

Once the range and incremental values were defined, the

arametric simulations were executed. This provided the para-

etric data required in order to perform DSA on each input

arameter. 

.4. Sensitivity analysis 

As per Section 1 , Eq. (1) , Differential Sensitivity Analysis (DSA)

as been selected as a suitable method of SA to be used in this

tudy. As noted by Macdonald et al. [28] , an underlying assumption

f DSA is that varying the input affects the output linearly. In order

o reduce the effects of non-linearity, an IC value between each

imulated point, spaced at intervals of p is calculated. An average

C value over the input parameter range can then be determined.

onsider an input parameter range of �IP , with r simulated points

t intervals of p over the range of input parameter values. Taking
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Fig. 4. Variation in annual energy usage for the bungalow archetype as heating system COP/efficiency is varied. 
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he first simulated point as IP 0 , the average IC value over the range

f input parameter values can be described by Eq. (4) : 

C = 

1 

r − 1 

⎛ 

⎜ ⎝ 

∣∣∣∣∣∣∣

OP IP 0 + p − OP IP 0 
OP bc 

p 

IP bc 

∣∣∣∣∣∣∣
+ 

∣∣∣∣∣∣∣

OP IP 0 +2 p − OP IP 0 + p 
OP bc 

p 

IP bc 

∣∣∣∣∣∣∣

+ . . . + 

∣∣∣∣∣∣∣

OP IP 0 +(r−1) p − OP IP 0 +(r−2) p 

OP bc 

p 

IP bc 

∣∣∣∣∣∣∣

⎞ 

⎟ ⎠ 

(4) 

Using this method for calculating the IC value for each input

arameter is considered to significantly reduce the influence of the

SA linearity assumption on the results of the sensitivity analysis.

his method can be seen to be somewhat similar to applying a

egmented or “piecewise linear” regression fit to the data for each

nput parameter. 

.5. Applying the DSA method to the parametric data 

The DSA method now must be applied to the parametric data

athered from the process described in Section 2.2 . In order to

ully describe the application of the DSA method to the parametric

ata, an example is used. The variation in total annual energy us-

ge as the seasonal COP/efficiency of the heating system is varied

ncrementally is shown in Fig. 4 . This specific case is chosen as it

xemplifies a situation where varying the input does not affect the

utput linearly. Note that the COP/efficiency is varied between a

ange of 0.5 and 2.5, at intervals of 0.5 ( COP 0 = 0 . 5 , p = 0 . 5 ). Tak-

ng E COP as the energy usage at each of the five simulated points

 r = 5 ), the IC of heating system COP for the bungalow archetype

an be described by the following Eq. (5) : 

C = 

1 

4 

⎛ 

⎜ ⎝ 

∣∣∣∣∣∣∣

E COP 0 + p − E COP 0 

E bc 

p 

COP bc 

∣∣∣∣∣∣∣
+ 

∣∣∣∣∣∣∣

E COP 0 +2 p − E COP 0 + p 
E bc 

p 

COP bc 

∣∣∣∣∣∣∣

+ 

∣∣∣∣∣∣∣

E COP 0 +3 p − E COP 0 +2 p 

E bc 

p 

COP bc 

∣∣∣∣∣∣∣
+ 

∣∣∣∣∣∣∣

E COP 0 +4 p − E COP 0 +3 p 

E bc 

p 

COP bc 

∣∣∣∣∣∣∣

⎞ 

⎟ ⎠ 

(5) 

For this study, the IC value for each input parameter is deter-

ined in order to quantify how sensitive annual building energy
sage is to each parameter. Whether varying the input parame-

er affects the output (annual energy consumption) positively or

egatively is not of interest. For this reason, the absolute values

f the ICs over input parameter range are calculated, and an av-

rage of these values taken (see Eq. (5) ). Thus, the IC value for

ach input parameter will be consistently positive and easily com-

ared against others in order to view the most influential param-

ters. The process described in this section for the calculation of

he IC for the bungalow heating system COP/efficiency, from the

arametric data recorded, is repeated for each input parameter

o be examined. The IC values for the examined input parame-

ers can then be plotted, compared and ranked for each archetype

welling. 

A threshold IC value can then be determined from examining

he ranked data globally, above which parameters will be consid-

red influential, and thus be included in the minimum dataset. The

inimum dataset will then be applied to a practical example. If

he applied minimum dataset does not provide sufficiently accu-

ate results, the threshold IC value can be increased, and a new

inimum dataset formed. The new minimum dataset can then be

eapplied to a practical example and the accuracy of the results

hecked again (this feedback loop is shown in Fig. 1 ). The results

f the SA will be discussed in detail in Section 3 . 

. Results of the sensitivity analysis 

In this section, the parameter sensitivities computed using DSA

ill be examined in detail. Note that from henceforth, all input

arameters shown in figures and tables will be abbreviated using

epresentative parameter symbols as defined in Table 2 . It should

lso be noted that all discussions of the results in Section 3 will be

ased on the results displayed in Fig. 5 . 

.1. Overview of parameter sensitivities 

As expected, the U-value of the archetype external walls proves

o have a significant influence on building energy use. In most

ases, the U-value of the roof proves to be slightly less influential

with the exception of the top-floor apartment). Interestingly, the

esults show that the floor U-value has a lower impact on the en-

rgy usage of the archetype models. According to data taken from

45] , mean annual ground temperatures (at 10 cm depth) are 1 °C
igher than average ambient air temperatures for the Dublin re-

ion in 2014. Furthermore, the external surface of the floor is not
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Fig. 5. Sensitivity values for all input parameters examined with ten parameters above IC cut-off of 0.04. 
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t  
subject to convective cooling, unlike the external surfaces of the

walls and roof. The higher average ground temperatures and lack

of convective cooling may be the cause of the floor U-value being

less influential than that of the walls and roof. The influence of

the internal partition and external door U-values are significantly

lower than wall and roof U-values. Overall, the thermal masses of

the constructions have a negligible effect on the output. Wall and

roof surface properties (emissivity and absorptivity) have a some-

what considerable impact on building energy consumption for all

archetypes, in most cases having a greater IC value than that of the

floor U-value. 

In all cases, the glazing U-value proved to be more influen-

tial than any of the U-values of the opaque building elements.

Window SHGC value is also a hugely influential parameter. As ex-

pected, WWR also has a significant impact on energy consumption.

The visible transmittance ( V t ) value of the windows had no impact

on energy use. This can be attributed to the fact that the artifi-

cial lighting template used in the models is operated on an on/off

schedule and is not governed by outdoor luminance levels. Al-

though this is not ideal, and V t values of the windows should have

an effect on lighting energy, it is uncommon in Irish dwellings to

control indoor lighting levels based on available daylight. 

Devising a method to test the effect of window V t values on

zones in which lighting levels are not controlled by the level of

daylight being received is outside the scope of this paper. Regard-

ing window frame U-values, the impact on annual building energy

requirements is small-scale when compared to glazing U-values

and SHGC values. 

It can be seen that HSPT has an extremely forceful influence

on dwelling energy consumption, particularly for the more volumi-

nous archetypes, with greater external surface areas. Heating set-

back temperatures (HSBT) appear to have a much more small-scale

impact. As expected, daily DHW consumption levels also strongly

influence energy requirements. The heating system COP/efficiency

also has a weighty impact on the output. Heating system auxil-

iary energy requirements effects cannot be described as negligible,
owever they appear to be much less influential than the overall

eating system COP/efficiency. 

Overall, gains due to the density of occupants in each dwelling

as a relatively small impact on energy requirements. Equipment

nd lighting densities have a greater influence on dwelling energy

onsumption for the less voluminous archetypes, with smaller ex-

ernal surface areas (apartments). This is attributed to the fact that

he relative densities of equipment and lighting is greater for the

maller archetypes. Zones with high lighting and equipment den-

ities (e.g. kitchens) account for a greater proportion of the total

oor area. Also, as discussed in Section 2.1.2 , the energy require-

ents of the archetypes with greater levels of exposed surface

rea, is much more heavily dominated by heating requirements.

hus, the equipment and lighting energy requirements will natu-

ally have less of an impact on these larger dwellings. On aver-

ge, ACH proved to be the most influential parameter of all those

onsidered. Building orientation proved to be quite influential also

the detached archetype being an exception). 

.2. Formation of the minimum data sets 

A thorough analysis of the ranked IC values (which are

hown graphically in [39] ) considered each input parameter and

rchetype. This paper then postulates that an IC value of = 0.04

hould serve as the cutoff point for parameters which should be

ncluded in the guideline minimum set of accurately-defined in-

ut data. This postulation will be tested in Section 4 . The guide-

ine minimum sets of accurately-defined input data are shown in

able 3 . 

. Application of the minimum data set 

.1. Overview & background 

The minimum data sets, listed in Table 3 , are now applied

o and validated against a practical example of each archetype.
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Table 3 

Minimum set of well-defined input data shown for each archetype ( IC = 0 . 04 used as cut-off value). 

Rank Detached Semi-detached Bungalow Mid-floor apartment Top-floor apartment 

1 HSPT HSPT HSPT ACH ACH 
2 ACH ACH ACH U_g DHW_use 
3 U_g U_g DHW_use DHW_use U_g 
4 U_wall DHW_use U_wall SHGC SHGC 
5 SHGC U_wall WWR Orientation U_roof 
6 DHW_use SHGC U_g COP_sys HSPT 
7 COP_sys Orientation COP_sys HSPT Orientation 
8 WWR COP_sys Orientation WWR COP_sys 
9 – WWR SHGC Equip_density U_wall 
10 – – U_roof U_wall WWR 
11 – – – – Equip_density 
12 – – – – Roof_abs 
13 – – – – Roof_emiss 

Fig. 6. Annual simulated and measured results of each exiting archetype used to validate the results of this study. 

Fig. 7. 3-D model and photograph of test house [46] . 
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Fig. 8. Annual energy use for the simplified model is within 6% of the calibrated 

energy model. 

 

p  

p  

f  
hysical archetype buildings themselves do not exist as all previ-

us dwellings used in order to form the minimum data sets are

epresentative archetype models only. Thus, pragmatic verification

ses a simplified energy model of an existing building for each

rchetype. 

This section applies, in detail, the minimum data set to the

ungalow archetype and uses both measured energy data and a

alibrated energy model outputs. For the other archetypes (de-

ached, semi-detached, mid-floor apartment and top-floor apart-

ent), a similar approach was used in validating their respec-

ive minimum datasets. The simulated annual energy use for all

wellings is shown alongside measured data in Fig. 6 . For pho-

ographs and more detailed information on the monthly energy

rofiles of the detached, semi-detached, mid-floor apartment and

op-floor apartment archetypes, refer to Appendix B . 
This study uses a calibrated building energy model which was

reviously developed by Pallonetto et al. [46] to examine the im-

act of retrofitting an existing dwelling from conventional mixed

uel based heating to a smart-grid enabled all-electric heating. It
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Fig. 9. Monthly energy profile shown for the simplified and calibrated energy models illustrates a close fit during winter spring and summer but a significant discrepancy 

during summer months. 
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should be noted that the version of the model used in this project

is the version prior to the all-electric retrofit. The dwelling is a

single-storey detached (bungalow) construction, located in county

Wicklow, Ireland ( Fig. 7 ). As this model has been extensively cal-

ibrated against measured data, it is considered to sufficiently rep-

resent actual performance of the bungalow. 

This bungalow was constructed in 1973, with a high level of

insulation in its opaque elements for that time (almost satisfy-

ing 2011 Irish Building Regulations [35] . Since then, the origi-

nal single-glazed windows have been removed and upgraded to

double-glazed. A solar thermal collector has also been installed to

contribute towards the dwelling’s DHW requirements. Space heat-

ing requirements are provided by a conventional kerosene-fired

boiler. 

4.2. Modelling approach 

For the simplified model, the influential parameters that com-

prise the minimum data set are defined accurately and use the

values present in the original calibrated model. Parameters which

are not listed in the guideline minimum data set for the bunga-

low archetype dwelling in Table 3 are given ”typical”, standard or

non-accurately defined values. 

Typical constructions for the external walls, roof and ground

floor listed in Appendix A of the Technical Guidance Document

Part L [35] are used for the simplified model as the constructions

of this bungalow are relatively close to current building regula-

tion standards. Internal partitions are modelled as a single leaf

masonry wall finished with lightweight plaster (for simplicity the

same block and plaster type used for the external walls is used).

Where required, the U-value of the constructions is adjusted by

altering the thermal conductivity of the insulation (or air gap in

some cases). 

Based on the minimum data set for the bungalow, typical val-

ues for each given zone type were employed in order to model

the occupancy, equipment and lighting densities for the simplified

model. As used previously during archetype model development,

typical operating schedules for occupancy, equipment and lighting

levels in each zone type were also used in this simplified model.

A similar approach was used for parameters of the heating sys-

tem, zone temperatures, infiltration rates and all others. Param-

eters which are listed in the minimum data set are defined us-

ing the values present in the original calibrated model, others are

given ”typical” values which were used for the base-case models. 
.3. Comparison of the simplified and advanced model outputs 

The study compared outputs from annual simulations of both

he advanced-calibrated model and the simplified model. The to-

al annual energy consumption differs by just over 6% ( Fig. 8 ).

onthly energy usage profiles also match quite well, with the ex-

eption of the summer period ( Fig. 9 ). 

When examining energy consumption by subcategory (heating,

ighting, equipment and pumps), slightly greater deviations can

e seen between the simplified and calibrated models, particu-

arly for the energy consumption due to electrical equipment. As

uch, the Electrical equipment energy requirements are over 2.5

imes greater for the simplified model than measured data rep-

esented by the calibrated model. This suggests that the ”typi-

al” values and schedules used for equipments densities in each

one type are too high for this particular dwelling. The over-

stimated equipment energy requirements are the cause of the dis-

repancies in the energy usage for the summer months ( Fig. 9 ).

one heating requirements are slightly under-estimated in the sim-

lified model (by just over 9%). The additional heat gains due

o the surplus levels of electrical equipment offer an explana-

ion for the under-estimation of zone heating requirements. Thus,

he under-estimation of heating requirements and overestimation

f equipment energy requirements cancel each other out some-

hat during the period between October and April. However,

n the summer months when there are no space heating re-

uirements, the over-estimation of equipment energy requirements

eads to a visible divergence from the actual monthly energy usage

rofile. 

Although some discrepancies exist between the outputs of the

implified model and reality, the results are quite promising, con-

idering the level of simplification applied to the model. As afore-

entioned, Waltz [31] states that for a building simulation to be

lassified as accurate, predicted annual energy usage ought to be

ithin 5% of the actual recorded consumption, with seasonal en-

rgy usage profiles matching reasonably well. However, it is also

uggested that for simulations where modelling time is restricted,

0% is an acceptable goal. The simplified model used in this study

alls into the time-restricted category, and thus annual energy us-

ge ought to be within 10% of actual measured data in order for

his model to be classified as accurate. The output of the simpli-

ed model considered in this project differed from actual annual

onsumption by only 6%, with seasonal energy profiles matching

easonably well. 
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Fig. 10. Existing detached, semi-detached, mid-floor and top-floor apartment 

archetypes. A rendered version of the model is shown above an aerial photograph 

of each dwelling. 

Fig. 11. Monthly energy profile shown for the simplified model and the measured 

data for the detached archetype. 

Fig. 12. Monthly energy profile shown for the simplified model and the measured 

data for the semi-detached archetype. 
. Conclusion 

A guideline minimum data set outlining the input data which is

equired to be accurately-defined, for the performance simulation

f Irish dwellings, has been developed. Five base-case archetype

odels, which are considered to be representative of a significant

ortion of Irish dwellings were defined and modelled. Perform-

ng sensitivity analysis on parametric data which was gathered for

ach dwelling successfully outlined the most influential input pa-

ameters. The influential input parameters outlined were then used

o for the guideline minimum set of accurately-defined input data

or Irish dwellings. 

The minimum data set formed has been tested and validated.

implified models of existing dwellings were constructed based on

he guideline minimum data set. Only the parameters listed in the

inimum data set were accurately defined. All other parameters

ere given “typical” or standard values. The simplified models pre-

icted annual energy consumption to within 10% of actual mea-

ured consumption, with seasonal energy profiles matching quite

ell. 

The guideline minimum data sets which can be defined, if the

rocesses outlined in this project are repeated, are considered to

e valuable during numerous stages of BEPS over a building’s life-

ycle. The time spent gathering and defining input parameter data,

s well as the time spent modelling this data, can be significantly

educed by defining and modelling only the influential parameters

ith a high degree of accuracy. By carefully defining the parame-

ers defined within the minimum data set, accurate models of ex-

sting buildings to be used in the testing of different retrofit solu-

ions can be developed quite quickly. Furthermore, in the late de-

ign and/or commissioning stages of a building’s life-cycle, when a

igh degree of modelling accuracy is required, the minimum data

et can be referenced in order to ensure that the most influen-

ial input parameters are very accurately defined indeed. Finally,

he minimum data sets may also be referred to for various policy-

aking procedures. 

One key issue that is worthy of future work is the selection

f the correct influence coefficient for a given modelling scenario.

n the case presented in this paper, the authors chose an influ-

nce coefficient that clearly separated highly influential and less

nfluential parameters based on a relative weighing of parame-

ers against each other. Applications of the methodology in dif-

erent regions may not have the luxury of such a clear discrep-

ncy and should leverage a more rigorous process for the selec-

ion of such coefficients. The key issue with which is the definition

f what is ”good enough” for an influence coefficient in a given

ontext. For example, standard engineering tolerances are 3% [47] .

tandard engineering safety factors can vary significantly from 1.2

pwards, while 20% oversizing is a common structural and me-

hanical design safety factor. This challenge is worthy of further

esearch. 

Although the minimum data set produced in this study is appli-

able to Irish dwellings only, the methodology and processes used

n order to define this data set are highly repeatable, and can be

ecast to almost any building archetype in any given geographi-

al location. Future studies should aim to define guideline mini-

um datasets for a variety of building archetypes in a range of

ifferent climatic zones. Incorporating the effects of shading into

he parametric analysis and sensitivity analysis should be inves-

igated (the base case archetypes used in this study contain no

mpacting shading parameters, making testing the effects of shad-

ng difficult in this case). Future studies should also aim to

ake the methodology outlined in this paper as streamlined

nd automated as possible, particularly the parametric simula-

ions which required a significant amount of user-input in this

tudy. 
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Appendix B. Results of simplified models shown against 

measured data 

Fig. 13. Monthly energy profile shown for the simplified model and the measured

data for the mid-floor apartment archetype. 

Fig. 14. Monthly energy profile shown for the simplified model and the measured

data for the top-floor apartment archetype. 
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