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Abstract—In recent years model and Digital Pre-Distortion
dimension reduction has been widely researched. The oper-
ations involved when running DPD are often far less than
those needed during the training of the DPD coefficients. The
proposed partitioned Least Squares (LS) adaptation allows a
selected subset of DPD coefficients to be updated while the
remaining coefficients are held constant. This technique allows
a more adaptive training procedure, improved interpretability
of the important DPD coefficient’s during training and the
ability to partition the DPD function into specific groups. The
Frisch-Waugh-Lovell (FWL) theorem is exploited to partition the
coefficients of a DPD basis function trained using LS regression.
The proposed methodology was experimentally validated with a
Generalized Memory Polynomial (GMP) DPD function, used to
linearize a 5W power amplifier (PA) driven by a 40MHz 5G-NR
signal.

I. INTRODUCTION

The complexity of DPD solutions has grown considerably in
recent years as the performance demands of cellular network
communications become ever more challenging. Millimetre-
Wave (mmWave) communications over 28GHz have become
standardized with 5G. Additionally, more complex configura-
tions of PA architectures such as MIMO and beamforming to
improve the overall system performance at these frequencies.
Substrates such as GaN also contribute to distortion and
memory effects in PAs that have to be mitigated [1]. PA
characteristics may also change depending on input stimulus.
Therefore with arrays of PAs experiencing continuous changes
in operating conditions, ideally DPD parameters must also be
continuously adapted.

Several nonlinear dynamic structures have been derived
which can accomplish DPD for PAs. The objective of DPD
is to derive a concise model, inverse to a PA’s characteristic
nonlinearity. The DPD solution should ideally produce a
highly linear PA output signal using the minimum number
of coefficients. Overfitting and ill-conditioning is an area of
concern when training DPD coefficients [2]. Feature selection
and/or extraction has been a popular research topic concerning
the reduction of DPD function dimension to avoid overfitting.

DPD coefficient estimation is typically performed using an
iterative optimisation algorithm such as the LS. Typically DPD
is over determined. Polynomial-based DPD exhibits structural
multicollinearity between predictors, enabling researchers to
intelligently prune DPD coefficients that do not contribute
to the efficacy of the DPD linearisation [3][4]. Authors of
[5] allow for function reduction and a change of basis by
employing Principal Component Analysis (PCA).

Authors of [6] use a partial least squares (PLS) algorithm,
which allows for the basis matrix used in the DPD estimation
to be transformed at every iteration. The orthogonal matching
pursuit algorithm was used to determine which basis functions
contributed most to the DPD adaption. The drawback of these
aforementioned methods is the complex sorting algorithms
necessary in order to rank effectiveness of each coefficient
on their respective models.

In this paper, we introduce a method for selectively parti-
tioning the DPD coefficient updates. Basis functions within
a DPD model can be selectively partitioned, and updated
separately. The rationale of updating only a portion of the
DPD coefficients is that all coefficients when calculated
do not converge uniformly over training iterations [7]. The
Frisch–Waugh–Lovell (FWL) theorem [8] can be applied to
allow a local update of a single partition while the remaining
coefficients were held constant. The rest of the paper is
as follows: Section II describes the concept of DPD and
the LS training process for a typical DPD function. Theory
explaining the method for basis function partitioning and local
updates is then introduced. Section III details the results of
the aforementioned technique. Section IV concludes on the
experimental results presented in Section III.

II. DIGITAL PRE-DISTORTION

DPD is performed such that, the pre-distorted signal, u, is
calculated by weighting a set of signal permutations, X , of the
PA input signal, x, with a set of calculated DPD coefficients,
h. The permutations are commonly derived from the Volterra
series as shown in (1) [9], [10].

yGMP (n) =
∑M

m=0

∑K
k=0 hmkx(n−m) | x(n−m) |k−1

+
∑M

m=0

∑K
k=0

∑P
p=0 hmkpx(n−m) | x(n−m− p) |k−1

+
∑M

m=0

∑K
k=0

∑Q
q=0 hmkqx(n−m) | x(n−m+ q) |k−1 .

(1)

Where P is the lagging envelope parameter, Q is the leading
envelope parameter, K the nonlinearity order and M memory
depth . The LS algorithm aims to find a best fit set of
coefficients, ĥ. An Indirect Learning Architecture (ILA) DPD
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system is utilised for the experimental validation of this paper.
ILA this is defined as the minimisation problem (2).

ĥ = ||u− Y h||2. (2)

The matrix Y is an m by n matrix of signal permutations
of the PA output signal, y, equivalent in selection to those in
X . The DPD coefficients are extracted by solving (3).

ĥ = (Y HY )−1Y He. (3)

The error signal, e, for an ILA is calculated as (4) [11].

e = u− û. (4)

Where the post-distorted signal, û, can be expressed as (5).

û = Y ĥ. (5)

The FWL manipulates the basis function Y as seen in (6),
to be segmented in to two or more sections such that

Y = Y1h1 + Y2h2. (6)

Where Y1 and Y2 are the partitioned basis functions of size
n × k1 and n × k2. The partitioned sets of coefficients h1

and h2 are regression coefficients respectively. FWL asserts
that it is possible to re-specify a linear regression model by
manipulating the residual of only one partition of the basis
function. The equation (6) can be re-specified according to
the FWL theorem as

ûM1 = M1Y1ĥ1 +M1Y2ĥ2 +M1e. (7)

Where M1 is the residual maker of Y1, which encapsulates
the variation of Y1 that cannot be resolved by Y2 and given
by (8). M1Y1ĥ1 = 0, as the regression of Y1 on itself yields
no variance unexplained by Y1

M2 = I − Y2(Y
H
2 Y2)

−1Y H
2 . (8)

A partitioned LS regression can now be performed. To do
this, (2) can now be solved using FWL such that

ĥ = (Y H
1 M2Y1)

−1Y H
1 M2e. (9)

In this way only the coefficients from the first or targeted
partition are updated. The second partition remain static. LS
is a global estimator, employing all coefficients regardless of
convergence rate in its estimation as seen in (2). Allowing
for reduced computational complexity, i.e LS must perform
a matrix inversion costing (O(C2N)), versus FWL (O(C3)).
DPD coefficents do not converge globally. Partitioning Y
supports select coefficients to be updated locally, supporting
convergence of the partitioned basis functions, in turn directly
influencing the trajectory of the global error.

III. EXPERIMENTAL RESULTS

To validate the proposed technique an experimental test-
bench was developed, as shown in Fig. 1. The testbench
consisted of a Skyworks SKY66297-11 PA, an Analog Devices
AD9375 transceiver board, MATLAB on a local PC and a
Rohde & Schwarz FSL spectrum analyser. A 40 MHz 5G-NR
signal was passed into the PA and the output signal captured
using the observation receiver of the AD9375. The PA output
was also attenuated and monitored on the spectrum analyser
to confirm correct operation of the PA.

Fig. 1. Experimental testbench

As a reference, a 103 coefficient GMP based DPD function
was used to linearise the PA. The LS and LS with FWL
methods were both used to train the DPD coefficients and
subsequently compared. The LS and FWL method achieved a
superior normalised mean square error (NMSE) performance.
The number of coefficients updated using the proposed LS
with FWL DPD methodology was minimal. The relative
performance of the two approaches over two iterations can be
seen in Table I. The NMSE, error vector magnitude (EVM)
and number of coefficients updated for both the LS and LS
with FWL methods are displayed in Table I.

TABLE I
PERFORMANCE COMPARISON

Method LS FWL
Coefficients Updated 206 107

NMSE (dB) -40.4597 -44.8611
EVM (%) .9484 .5714

The experimental results in Table I prove that updating only
a select partition of the basis functions can more effectively
linearise the dynamic nonlinear PA distortions. By applying LS
with FWL to train the DPD coefficients allows for convergence
of the partitioned basis functions to achieve a lower error. This
is evidenced in the results by the decreased error value of the
LS with FWL in Fig. 2. Thus the removal of DPD function
coefficients is not needed in order to accelerate the speed of
training iterations. Additional computational complexity due
to pruning algorithms on the model are avoided. A frequency
domain plot of the linearised PA outputs, and the original PA
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Fig. 2. Error signal for LS and FWL with LS

Fig. 3. Frequency domain representation

input and output is shown in Fig. 3. AMAM characteristics
for the successful pre-distortion are also presented in Fig. 4.

Figs. 4 and 3 demonstrate the linearisation and experimental
validation constructed utilising the LS with FWL and LS
linearisation techniques on a 40MHz 5G-NR signal.

Fig. 4. AM/AM plot

IV. CONCLUSION

This paper demonstrates a method for selective partitioned
adaptation for a LS trained DPD system. The novel methodol-
ogy presented exploited the Frisch-Waugh-Lovell technique to
enable a more accurate adaptation. The partitioned regression
was accomplished by applying the FWL theorem to a DPD
function trained using LS regression. The proposed methodol-
ogy was experimentally validated by adapting a particular sub-
set of a GMP DPD function which linearised a PA amplifying
a 40MHz 5G-NR signal. The partitioning of model parameters
is a research question unto itself. Partitioning specific effects
introduced by complex PA architecture may be adapted in
further work to allow for partitioning and updating segments
of specific basis functions.
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