
   

Two Roads Diverge: 

Mapping the Path of Learning 

for Novice Programmers 

Through Large Scale Interaction 

Data and Neural Network 

Classifiers 
 

by 

Natalie Culligan BSc Comp. Sci. (Hons.) 

 

 

 

 

Dissertation submitted in partial fulfilment requirements for candidate 

for the degree of 

Doctor of Philosophy 

Department of Computer Science 

Maynooth University, Maynooth, Ireland 

Supervisor: Dr. Kevin Casey 

Head of Department: Dr. Joseph Timoney 

February 2021 



i 
 

Table of Contents 
 

List of Figures ........................................................................................................... v 

List of Tables ............................................................................................................ v 

Acronyms Used Throughout Thesis ...................................................................... viii 

Acknowledgments .................................................................................................... ix 

Abstract .................................................................................................................. xiii 

1. Introduction ..................................................................................................... 1 

1.1 Problem Statement .......................................................................................... 1 

1.2 Research Questions ......................................................................................... 2 

1.3 Contributions................................................................................................... 2 

1.4 Publications ..................................................................................................... 3 

1.5 Chapter Overview ........................................................................................... 4 

1.6 Chapter Conclusion ......................................................................................... 6 

2. Related Research ............................................................................................. 7 

2.1 MULE as a Pedagogical Tool ......................................................................... 7 

2.1.1 VPL .......................................................................................................... 8 

2.1.2 Examples of Modifications to VPL........................................................ 13 

2.1.3 Alternatives to VPL ............................................................................... 13 

2.1.4 Pedagogical Coding Environments Conclusions ................................... 15 

2.2 MULE as a Research Tool ............................................................................ 16 

3. MULE and the Collection of Data ............................................................... 22 

3.1 Motivation ..................................................................................................... 22 

3.2 Paper: Building an Authentic Novice Programming Lab Environment ....... 22 

3.3 Overview of MULE ...................................................................................... 33 

3.4 Features of MULE ........................................................................................ 34 

3.4.1 Workbook .............................................................................................. 34 

3.4.2 Analytics ................................................................................................ 39 

3.5 Use of MULE in Introduction to Programming Modules ............................. 40 

3.6 GDPR and Ethical Collection of Data .......................................................... 40 

3.7 Chapter Summary ......................................................................................... 41 

4. Overview of Experiments and Data ................................................................ 42 

4.1 Description of Data Sets ............................................................................... 42 

4.1.1 Data Set 1 ............................................................................................... 42 

4.1.2 Data Set 2 ............................................................................................... 43 



ii 
 

4.2 Description of Data Types ............................................................................ 47 

4.2.1 Mouse Movements ................................................................................. 47 

4.2.2 Compile, Run, Evaluate Actions ............................................................ 47 

4.2.3 Complexity of Code Submitted .............................................................. 47 

4.3 Methods of Analysis ..................................................................................... 47 

4.3.1 Wilcox Rank Sum Test .......................................................................... 48 

4.3.2 Linear Regression .................................................................................. 48 

4.3.3 Neural Network Binary Classification ................................................... 48 

4.4 The HOG Classifier ...................................................................................... 49 

4.5 Overview of Experiments ............................................................................. 51 

4.5.1 Experiment 1: Mouse Movements (MM) .............................................. 52 

4.5.2 Experiment 2: Compile, Run, Evaluate Movements (CRE) .................. 52 

4.5.3 Experiment 3: Code Complexity (COMPLEX) ..................................... 52 

4.5.4 Final Experiment: HOG ......................................................................... 52 

4.6 Chapter Summary ......................................................................................... 52 

5. Experiment 1: Mouse Movements ............................................................... 53 

5.1 Introduction to Mouse Movement Experiment ............................................. 53 

5.2 Paper: What the Mouse Said: How Mouse Movements Can Relate to Student 

Stress and Success ............................................................................................... 54 

5.3 Mouse Movement Features ........................................................................... 66 

5.4 Mouse Movements Analysis and Neural Network ....................................... 67 

5.4.1 Wilcox Rank Sum Test .......................................................................... 68 

5.4.2 Linear Regression .................................................................................. 71 

5.4.3 Neural Networks .................................................................................... 71 

5.5 Mouse Movements Week-by-Week .............................................................. 72 

5.6 Mouse Movements Conclusions ................................................................... 75 

6. Experiment 2: Compile, Run, and Evaluate (CRE) Movements .............. 76 

6.1 Introduction to CRE Experiment .................................................................. 76 

6.2 Paper: Exploring the Coding Behaviour of Successful Students in 

Programming by Employing Neo-Piagetian Theory........................................... 76 

6.3 CRE Features ................................................................................................ 88 

6.4 CRE Movements Analysis ............................................................................ 89 

6.4.1 Wilcox Rank Sum Test .......................................................................... 89 

6.4.2 Linear Regression .................................................................................. 91 

6.5 Neural Network Classifiers ........................................................................... 94 

6.5.1 Comparison of CA Classifiers ............................................................... 94 



iii 
 

6.5.2 Comparison of Written Exam Classifiers .............................................. 95 

6.6 CRE Week-by-Week .................................................................................... 95 

6.7 CRE Conclusions .......................................................................................... 99 

7. Experiment 3: Complexity of Student Code ............................................. 100 

7.1 Introduction to Code Complexity ............................................................... 100 

7.2 Features ....................................................................................................... 101 

7.3 Code Complexity Analysis ......................................................................... 102 

7.3.1 Wilcox Rank Sum Test: File Size ........................................................ 103 

7.3.2 Wilcox Rank Test: Nodes .................................................................... 105 

7.3.3 Linear Regression: File Size ................................................................ 107 

7.3.4 Linear Regression Test: Node Data ..................................................... 109 

7.4 Neural Network Classifiers ......................................................................... 111 

7.4.1 Comparison of CA Classifiers ............................................................. 111 

7.4.2 Comparison of Written Exam Classifiers ............................................ 113 

7.5 Code Complexity Week-by-Week .............................................................. 114 

7.6 Discussion of Results .................................................................................. 118 

8. Experiment 4: The HOG Classifier ........................................................... 120 

8.1 Introduction to HOG ................................................................................... 120 

8.2 Features ....................................................................................................... 120 

8.3 Neural Network Classifiers ......................................................................... 120 

8.3.1 Comparison of Continuous Assessment Classifiers ............................. 121 

8.3.2 Comparison of Written Exam Classifiers ............................................ 122 

8.5 Conclusions ................................................................................................. 123 

9. Conclusions .................................................................................................. 125 

9.1 The Research Instruments ........................................................................... 125 

9.1.1 MULE .................................................................................................. 125 

9.1.2 HOG ..................................................................................................... 125 

9.2 Discussion of Student Behaviour ................................................................ 130 

9.2.1 Week 1 ................................................................................................. 131 

9.2.2 Week 2 ................................................................................................. 131 

9.2.3 Week 3 ................................................................................................. 132 

9.2.4 Week 4 ................................................................................................. 132 

9.2.5 Week 5 ................................................................................................. 133 

9.2.6 Week 6 ................................................................................................. 134 

9.2.7 Week 7 ................................................................................................. 135 

9.2.8 Week 8 ................................................................................................. 136 



iv 
 

9.2.9 Week 9 ................................................................................................. 137 

9.2.10 Week 10 ............................................................................................. 137 

9.3 The Research Questions .............................................................................. 138 

9.4 Future Work ................................................................................................ 140 

9.5 Conclusion .................................................................................................. 141 

10. Appendix .................................................................................................. 143 

10.1 Consent Form ............................................................................................ 143 

10.2 Information Sheet ...................................................................................... 144 

10.3 Wilcox Rank Sum Test Results MM ........................................................ 146 

10.3.1 CA ...................................................................................................... 146 

10.3.2 Written Exam ..................................................................................... 149 

10.4 Linear Regression Results MM ................................................................. 152 

10.4.1 CA ...................................................................................................... 152 

10.4.2 Written Exam ..................................................................................... 155 

10.5 Full Classifier Results MM ....................................................................... 158 

10.5.1 CA ...................................................................................................... 158 

10.5.2 Written Exam ..................................................................................... 159 

10.6 Full Classifier Results CRE Movements .................................................. 161 

10.6.1 CA ...................................................................................................... 161 

10.6.2 Written Exam ..................................................................................... 163 

10.7 Full Classifier Results COMPLEX ........................................................... 165 

10.7.1 CA ...................................................................................................... 165 

10.7.2 Written Exam ..................................................................................... 169 

10.8 Full Classifier Results HOG ..................................................................... 172 

10.8.1 CA ...................................................................................................... 172 

10.8.2 Written Exam ..................................................................................... 176 

10.9 Sample VPL and MULE Scripts ............................................................... 179 

10.9.1 vpl_run.sh ........................................................................................... 179 

10.9.2 vpl_evaluate.sh ................................................................................... 179 

10.9.3: vpl_compile.sh .................................................................................. 183 

10.9.4: metadata.json .................................................................................... 183 

10.9.5: description.html ................................................................................ 183 

Bibliography ........................................................................................................ 185 

 

 



v 
 

 

List of Figures 
Figure 2-1: VPL Student View ................................................................................. 8 

Figure 2-2: Example of the Execution Files in VPL ................................................. 9 

Figure 2-3: Diagram of VPL Components .............................................................. 10 

Figure 3-1: MULE Student View Layout ............................................................... 33 

Figure 3-2: MULE Student Lab Selection Menu .................................................... 35 

Figure 3-3: Assignment Metadata File in MULE ................................................... 35 

Figure 3-4: Description Panel in Workbook with CA Grade and Personal Best .... 36 

Figure 3-5: MULE Grade Storage .......................................................................... 37 

Figure 3-6: Workbook Admin View ....................................................................... 38 

Figure 3-7: MULE Data Collection ........................................................................ 39 

Figure 4-1: HOG Classifier Workflow ................................................................... 50 

Figure 6-1: CRE Patterns ........................................................................................ 89 

Figure 7-1: Selection.java Sample Code ............................................................... 101 

Figure 7-2: Selection.java with Comments Removed........................................... 101 

Figure 7-3: Parse Tree Generated from Selection.java ......................................... 102 

Figure 10-1: Sample vpl_run.sh ............................................................................ 179 

Figure 10-2: Sample vpl_evaluate.sh .................................................................... 182 

Figure 10-3: Sample vpl_compile.sh .................................................................... 183 

Figure 10-4: Sample metadata.json ....................................................................... 183 

Figure 10-5: Sample description.html ................................................................... 183 

Figure 10-6: Sample description.html in MULE .................................................. 184 

Figure 10-7: Workbook display of description.html ............................................. 184 

  

List of Tables 
Table 1-1: Contributions to Published Paper 1 ......................................................... 3 

Table 1-2: Contributions to Published Paper 2 ......................................................... 4 

Table 1-3: Contributions to Published Paper 3 ......................................................... 4 

Table 5-1: MM Wilcox Rank Sum Test CA for Week 1 to 4 ................................. 68 

Table 5-2: MM Wilcox Rank Sum Test CA for Week 5 to 7 ................................. 69 

Table 5-3: MM Wilcox Rank Sum Test CA for Week 8 to 10 ............................... 69 

Table 5-4: MM Wilcox Rank Sum Test Written Exam for Week 1 to 3 ................ 70 

Table 5-5: MM Wilcox Rank Sum Test Written Exam for Week 4 to 6 ................ 70 

Table 5-6: MM Wilcox Rank Sum Test Written Exam for Week 7 to 10 .............. 71 

Table 6-1: CRE Features ......................................................................................... 88 

Table 6-2: CRE Wilcox Rank Sum Test CA for Weeks 1 to 5 ............................... 90 

Table 6-3: CRE Wilcox Rank Sum Test CA for Weeks 6 to 10 ............................. 90 

Table 6-4: CRE Wilcox Rank Sum Test Written Exam for Weeks 1 to 5 .............. 91 

Table 6-5: CRE Wilcox Rank Sum Test Written Exam for Weeks 6 to 10 ............ 91 

Table 6-6: CRE Linear Regression CA for Weeks 1 to 5 ....................................... 92 

Table 6-7: CRE Linear Regression CA for Weeks 6 to 10 ..................................... 92 

Table 6-8: CRE Linear Regression Written Exam for Weeks 1 to 5 ...................... 93 

Table 6-9: CRE Linear Regression Written Exam for Weeks 6 to 10 .................... 93 

Table 6-10: CRE CA Classifier Accuracy .............................................................. 94 



vi 
 

Table 6-11: CRE CA Classifier False Passes .......................................................... 94 

Table 6-12: CRE Written Exam Classifier Accuracy ............................................. 95 

Table 6-13: CRE Written Exam Classifier False Passes ......................................... 95 

Table 7-1: COMPLEX File Size Wilcox Rank Sum Test CA for Weeks 1 to 5 .. 103 

Table 7-2: COMPLEX File Size Wilcox Rank Sum Test CA for Weeks 6 to 10 103 

Table 7-3: COMPLEX File Size Wilcox Rank Sum Test Written Exam for Weeks 

1 to 5 ..................................................................................................................... 104 

Table 7-4: COMPLEX File Size Wilcox Rank Sum Test Written Exam for Weeks 

6 to 10 ................................................................................................................... 104 

Table 7-5: COMPLEX Nodes Wilcox Rank Sum Test CA for Weeks 1 to 5 ...... 105 

Table 7-6: COMPLEX Nodes Wilcox Rank Sum Test CA for Weeks 6 to 10 .... 106 

Table 7-7: COMPLEX Nodes Wilcox Rank Sum Test Written Exam for Weeks 1 

to 5 ........................................................................................................................ 106 

Table 7-8: COMPLEX Nodes Wilcox Rank Sum Test Written Exam for Weeks 6 

to 10 ...................................................................................................................... 106 

Table 7-9: COMPLEX File Size Linear Regression CA for Weeks 1 to 5 ........... 108 

Table 7-10: COMPLEX File Size Linear Regression CA for Weeks 6 to 10 ....... 108 

Table 7-11: COMPLEX File Size Linear Regression Written Exam for Weeks 1 to 

5 ............................................................................................................................ 109 

Table 7-12: COMPLEX File Size Linear Regression Written Exam for Weeks 6 to 

10 .......................................................................................................................... 109 

Table 7-13: Nodes Linear Regression CA ............................................................ 110 

Table 7-14: Nodes Linear Regression CA ............................................................ 110 

Table 7-15: Nodes Linear Regression Written Exam ........................................... 111 

Table 7-16: Nodes Linear Regression Written Exam ........................................... 111 

Table 7-17: COMPLEX CA Classifier Accuracy ................................................. 112 

Table 7-18: COMPLEX CA Classifier False Passes ............................................ 112 

Table 7-19: Compare Early Semester CA Classifiers ........................................... 112 

Table 7-20: Compare Late Semester CA Classifiers ............................................ 112 

Table 7-21: COMPLEX Written Exam Classifier Accuracy ................................ 113 

Table 7-22: COMPLEX Written Exam Classifier False Passes ........................... 113 

Table 7-23: Comparing Early Semester Written Exam Classifiers ...................... 113 

Table 7-24: Compare Late Semester Written Exam Classifiers ........................... 114 

Table 8-1: HOG CA Classifier Accuracy ............................................................. 121 

Table 8-2: HOG CA Classifier False Passes ......................................................... 121 

Table 8-3: Averages of Early Semester Classifiers for CA .................................. 121 

Table 8-4: Averages of Late Semester Classifiers for CA .................................... 122 

Table 8-5: HOG Written Exam Classifier Accuracy ............................................ 122 

Table 8-6: HOG Written Exam Classifier False Passes ........................................ 122 

Table 8-7: Averages of Early Semester Classifiers for Written Exams ................ 123 

Table 8-8: Averages of Late Semester Classifiers for Written Exams ................. 123 

Table 9-1: Comparing Early Semester CA Classifier Accuracy ........................... 126 

Table 9-2: Comparing Early Semester CA Classifier False Passes ...................... 126 

Table 9-3: Comparing Early Semester CA Classifier Average Accuracy and False 

Passes .................................................................................................................... 126 

Table 9-4: Comparing Late Semester CA Classifier Accuracy ............................ 127 

Table 9-5: Comparing Late Semester CA Classifier False Passes ........................ 127 



vii 
 

Table 9-6: Comparing Late Semester CA Classifier Average Accuracy and False 

Passes .................................................................................................................... 127 

Table 9-7: Comparing Early Semester Written Exam Classifier Accuracy .......... 128 

Table 9-8: Comparing Early Semester Written Exam Classifier False Passes ..... 128 

Table 9-9: Comparing Early Semester Written Exam Classifier Average Accuracy 

and False Passes .................................................................................................... 128 

Table 9-10: Comparing Late Semester Written Exam Classifier Accuracy ......... 129 

Table 9-11: Comparing Late Semester Written Exam Classifier False Passes ..... 129 

Table 9-12: Comparing Late Semester Written Exam Classifier Average Accuracy 

and False Passes .................................................................................................... 130 

Table 10-1: MM Wilcox Rank Sum Test CA for Weeks 1 to 3 ........................... 146 

Table 10-2: MM Wilcox Rank Sum Test CA for Weeks 4 to 7 ........................... 147 

Table 10-3: MM Wilcox Rank Sum Test CA for Weeks 8 to 10 ......................... 148 

Table 10-4: MM Wilcox Rank Sum Test Written Exam for Weeks 1 to 3........... 149 

Table 10-5: MM Wilcox Rank Sum Test Written Exam for Weeks 1 to 3........... 150 

Table 10-6: MM Wilcox Rank Sum Test Written Exam for Weeks 1 to 3........... 151 

Table 10-7: MM Linear Regression CA for Weeks 1 to 3 .................................... 152 

Table 10-8: MM Linear Regression CA for Weeks 4 to 7 .................................... 153 

Table 10-9: MM Linear Regression CA for Weeks 8 to 10 .................................. 154 

Table 10-10: MM Linear Regression Written Exam for Weeks 1 to 3 ................. 155 

Table 10-11: MM Linear Regression Written Exam for Weeks 4 to 7 ................. 156 

Table 10-12: MM Linear Regression Written Exam for Weeks 8 to 10 ............... 157 

Table 10-13: MM CA Threshold -0.1 Classifier ................................................... 158 

Table 10-14: MM CA Threshold -0.1 Classifier ................................................... 158 

Table 10-15: MM CA Threshold-0.1 Classifier .................................................... 159 

Table 10-16: MM Written Exam Threshold-0.1 Classifier ................................... 159 

Table 10-17: MM Written Exam Threshold-0.1 Classifier ................................... 160 

Table 10-18: MM Written Exam Threshold-0.1 Classifier ................................... 160 

Table 10-19: CRE CA Threshold-0 Classifier ...................................................... 161 

Table 10-20: CRE CA Threshold-0 Classifier ...................................................... 161 

Table 10-21: CRE CA Threshold-0.1 Classifier ................................................... 162 

Table 10-22: CRE CA Threshold-0.1 Classifier ................................................... 162 

Table 10-23: CRE CA Threshold-0.15 Classifier ................................................. 163 

Table 10-24: CRE Written Exam Threshold-0 Classifier ..................................... 163 

Table 10-25: CRE Written Exam Threshold-0 Classifier ..................................... 164 

Table 10-26: CRE Written Exam Threshold-0.1 Classifier .................................. 164 

Table 10-27: CRE Written Exam Threshold-0.15 Classifier ................................ 165 

Table 10-28: COMPLEX CA Threshold-0 Classifier ........................................... 165 

Table 10-29: COMPLEX CA Threshold-0 Classifier ........................................... 166 

Table 10-30: COMPLEX CA Threshold-0 Classifier ........................................... 166 

Table 10-31: COMPLEX CA Threshold-0.1 Classifier ........................................ 167 

Table 10-32: COMPLEX CA Threshold-0.1 Classifier ........................................ 167 

Table 10-33: COMPLEX CA Threshold-0.1 Classifier ........................................ 168 

Table 10-34: COMPLEX CA Threshold-0.15 Classifier ...................................... 168 

Table 10-35: COMPLEX CA Threshold-0.15 Classifier ...................................... 169 

Table 10-36: COMPLEX Written Exam Threshold-0 Classifier .......................... 169 

Table 10-37: COMPLEX Written Exam Threshold-0 Classifier .......................... 170 

Table 10-38: COMPLEX Written Exam Threshold-0.1 Classifier ....................... 170 



viii 
 

Table 10-39: COMPLEX Written Exam Threshold-0.1 Classifier ....................... 171 

Table 10-40: COMPLEX Written Exam Threshold-0.15 Classifier ..................... 171 

Table 10-41: HOG CA Threshold-0 Classifier ..................................................... 172 

Table 10-42: HOG CA Threshold-0 Classifier ..................................................... 172 

Table 10-43: HOG CA Threshold-0.1 Classifier .................................................. 173 

Table 10-44: HOG CA Threshold-0.1 Classifier .................................................. 173 

Table 10-45: HOG CA Threshold-0.1 Classifier .................................................. 174 

Table 10-46: HOG CA Threshold-0.15 Classifier ................................................ 174 

Table 10-47: HOG CA Threshold-0.15 Classifier ................................................ 175 

Table 10-48: HOG CA Threshold-0.15 Classifier ................................................ 175 

Table 10-49: HOG Written Exam Threshold-0 Classifier .................................... 176 

Table 10-50: HOG Written Exam Threshold-0 Classifier .................................... 176 

Table 10-51: HOG Written Exam Threshold-0.1 Classifier ................................. 177 

Table 10-52: HOG Written Exam Threshold-0.1 Classifier ................................. 177 

Table 10-53: HOG Written Exam Threshold-0.1 Classifier ................................. 178 

Table 10-54: HOG Written Exam Threshold-0.15 Classifier ............................... 178 

Table 10-55: HOG Written Exam Threshold-0.15 Classifier ............................... 179 

 

Acronyms Used Throughout Thesis 

CA: Continuous Assessment 

COMPLEX: Code Complexity 

CRE: Compile, Run, Evaluate 

CS1: Computer Science 1 

LMS: Learning Management System 

MM: Mouse Movements 

MULE: Maynooth University Learning Environment 

VIF: Variance Inflation Factor 

VPL: Virtual Programming Lab 

 

 

 

 

 

 



ix 
 

Acknowledgments 

None of this would have been possible without my fiancé Jon. I am so 

lucky to have you in my life, an incredible person with so much kindness, 

intelligence, and humour. Thank you for always having a different perspective and 

opening my eyes to possibilities and ideas I never would have considered before. 

Thank you for believing in me when I did not. Thank you for the endless support, 

encouragement, the proof reading, and the grammar checks. Thank you for 

listening to me ramble about data and experiments and papers and ideas for future 

work and so on. Thank you for reminding me to eat and sleep and rest. I can never 

repay you for all of the love and support throughout this PhD. 

Thank you to my closest friends, Brian, Liz and Gillian, and their support 

throughout the PhD.  

Thank you, Liz for always being a source of honesty, common sense, and 

style in my life. Thank you for the updates on Poppy and Dexter, my wonderful 

godchildren, it always makes my day. Thank you for always reaching out when I 

would forget to do anything other than work. I cannot wait to be able to visit you 

and catch up after the pandemic.  

Thank you, Gillian, for being the embodiment of sunshine and making me 

laugh so much. Thank you for joining in the celebrations of each of the milestones 

along the way throughout this process, even from across oceans.  

Thank you, Brian, for your sense of humour and insight. Thank you for 

being my friend for so many years, even though we are so different from when we 

first met. We’ve been through so many changes as people, and you helped me grow 

as a person and see perspectives I would never have seen otherwise. Thank you for 

driving me to many much-needed coffee breaks and Tesco trips, and of course for 

the wonderful cakes and macaroons. 

Thank you to my family, the Culligans and the McConvilles.  Thank you to 

my grandad who gave me a love of reading and learning that has stayed with me 

my entire life. Thank you to my Great-Aunt Nancy, for my name and for always 

believing in me. Thank you to Uncle Liam – the beautiful Cross pens you gave me 

are now proudly displayed in my office. Thank you, dad, for cycling to Newry 

(from Drogheda!) way back in 1989 to collect a Commadore 64, and bringing it all 

the way back home, and changing my entire life. Thank you for all of the support 

and help. I don’t know what I would have done without you bringing me out for 



x 
 

drives to relax during this process. Thank you, mum, for giving me the gift of 

determination and unreasonable stubbornness – it has been essential in completing 

this thesis. Thank you for inspiring me through your own career, and filling my 

head with notions from an early age, you allowed me to believe that I could 

achieve anything I wanted. Thank you both for being proud of me. Thank you to 

my brother Stephen for all your help and advice throughout the years with all 

things computer related. Thank you to my brother James, for all your wonderful art 

throughout the years.  

Thank you to the McVeighs, for all of your support. Thank you for your 

love and concern. Thank you, Anne, for always being so kind and welcoming, and 

for your prayers - they have never let me down. Thank you, Rory, for being so 

reliable – always ready to help anyone, no matter how much you already have on 

your plate. 

Thank you to my supervisor Kevin for all of your guidance and support, 

and for the many late nights and early mornings working with me on MULE to get 

it running in time for the labs the next morning. At the time it was awful, but now 

it’s one of the best memories of my PhD!  

Thank you to Susan, for seeing potential in me, and starting me on this 

journey. Thank you to Aidan, Emlyn and Misha for all your work, support and 

patience with us on the MULE project. Thank you to Brett Becker for adopting the 

MULE system in Beijing. Thank you to Kylie for your support and help – you’ve 

been an incredible teacher and mentor to both Jon and I, and we will never forget 

that. Thanks of course to my lab partner through the Covid-19 shutdown – Bunny 

the cat.  

Thank you to all my teachers over the years who inspired me, from Mrs 

O’Callaghan in St. Oliver’s, to Larry in BCFE, to Susan in Maynooth.  

Finally, thank you to the wonderful children in my life. Thank you to my 

incredible godchildren, Poppy and Dexter. Poppy, I hope you continue to love 

coding and we can teach Dexter together when this pandemic is over. Thank you to 

Dervla, and Iris, to Ali, Freya and of course to Ollie, my fellow teacher and 

computer enthusiast. I’m so excited to see where life will bring all of you. 

Thank you to everyone who has supported me in this journey. I hope I can 

continue to rely on it.  

Every day I am working to make you all proud of me.  



xi 
 

 

Circa 1993: Already prepared for a life of computers and writing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

For Jon, mum, and dad 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

Abstract  
 

Learning to program is a fundamental part of Computer Science education. To 

become a proficient programmer, one must become competent at both code 

comprehension and code production. Research shows that the most effective way 

to teach programming to students is through practical exercises. However, the 

increasing numbers of students in Computer Science classes means it is difficult to 

correct assignments and provide timely feedback. This can result in fewer practical 

assignments and/or less useful feedback for each student. Automated grading tools, 

and understanding of how novice programmers learn to code, is essential for these 

growing numbers of students. The Maynooth University Learning Environment, or 

MULE, was built to address this challenge. MULE is a cloud-based learning 

environment built from the ground up with the goal of teaching introductory 

programming courses in an authentic manner while facilitating the collection of 

large-scale behavioural data to support Learning Analytics. In this thesis, 

behavioural interaction data and code written by students in MULE is used to 

investigate the differences between successful and unsuccessful programming 

student behaviour, with the use of data analysis and Neural Network classifiers. 

The result is a method of classification that predicts early on if a student is likely to 

be in the top or bottom 50% of grades in the class with up to 87% accuracy, and a 

model of the path of learning for successful students, including key times, 

assignments, and topics during the introduction to programming module when the 

higher and lower achieving students diverge in behaviour.  
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1. Introduction 

In this chapter the problem statement and the research questions for this 

thesis will be outlined. The contributions of this thesis and publications produced 

as part of this thesis will be presented, and finally a chapter overview will describe 

the contents of the thesis. 

1.1 Problem Statement 

It has often been stated that it is difficult to learn to program. It may be 

more useful to say that it is difficult to teach programming. Computer Science has 

one of the highest dropout and failure rates in third level education [1, 2, 3, 4, 5]. 

As third level Computer Science courses become more popular, and class sizes 

become larger, it becomes harder to provide feedback and support to students. It is 

difficult to even identify the students who need support when teaching classes that 

may have hundreds of students. 

To address this, this research investigates the behaviours of students as 

they learn how to code and compares the behaviour of “successful” and 

“unsuccessful” students, where a student is deemed to be successful if they are in 

the top 50% of grades in the class and unsuccessful if in the bottom 50% of grades. 

Data is passively collected from students as they write their first programs, and we 

investigate how the data reflects the students’ eventual outcome in the module, in 

terms of grades. Through this research, we hope to find key labs, topics, and 

assignments that are indicators of a student’s success. From these keys, we can 1) 

identify students at risk, and 2) advise on curriculum changes that may revisit key 

topics and assignments that students may need repetition to fully understand. 

The way that programming is taught in introductory programming modules 

means that all lab exercises are based on the lessons from the previous session. So, 

once a student has a bad day or week, they are at a disadvantage for the next lab, 

which compounds into a larger disadvantage for the next lab. Computer science 

may or may not be unique in this, but it is not difficult to imagine that a heavy 

importance on the first few weeks of a first-year university course could be 

detrimental to the success of the students, when many, if not most 

students are adapting to a new way of life, and their first taste of freedom as adults. 

They may not yet have the maturity to be as diligent in their studies as is necessary, 

and then find only a few short weeks into the semester, that while they are able to 

catch up to their other courses, they are entirely lost and confused in their 

introduction to programming courses.   
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If this is the problem, that missing out on a fundamental of programming, 

such as loops or string manipulation, leaves the student unable to keep up with the 

rest of the material, then the solution is to provide ways that the student can revisit 

or reaffirm the previous lessons. In our university, there are drop-in help clinics 

that provide this help, but it is also necessary to provide advice and guidance to 

these students, when we as educators realise, the students are failing to keep up 

with the course.  

It is the goal of this project to explore the use of easily observed non-

intrusive data to find students in need of extra help and to improve problem areas 

in our curriculum. In the bigger picture, this data can also be used to give us insight 

into what learning to program looks like, and to improve the way it is taught. 

1.2 Research Questions 

These are the research questions to be answered in this thesis: 

1. How can we observe student behaviour as they learn to code in a non-

intrusive way? 

2. Are there divergences in the observed student behaviour between the 

highest and lowest achieving students? 

3. How early in the semester can students be classified as higher or lower 

achieving, to allow for interventions? 

1.3 Contributions 

The first contribution of this work is the creation of MULE – Maynooth 

University Learning Environment - a pedagogical coding environment that collects 

data on student behaviour as they complete coding assignments [6].  

The second contribution is insight into the process of a novice programmer 

learning to code. By investigating points of divergence between the higher and 

lower achieving students, this project will identify the parts of an introductory 

programming course that may be pitfalls or stumbling blocks for novice 

programmers. This research gives us insight into what topics and concepts need to 

be introduced later, and which need to be covered in more depth and with more 

repetition, allowing for increased potential for success of our students. 

This research has been in three different behavioural data types:  

• Mouse movement and its relation to student stress and success.  
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• Coding behaviour, specifically patterns of compilation, running, and 

evaluation and how it correlates to student understanding and success.  

• Code complexity and its relation to student success and understanding.  

The third contribution to the field is the creation of the HOG classifier, a data 

processing and Neural Network binary classifier system that predicts with up to 

87% accuracy the likelihood of a student being in the higher or lower 50% of the 

grades in their introduction to Computer Science module.   

1.4 Publications 

These publications are each printed in edited form as a part of this thesis. 

Building an Authentic Novice Programming Lab Environment is in Section 3.3, 

What the Mouse Said: How Mouse Movements Can Relate to Student Stress and 

Success is in Section 5.2, and Exploring the Coding Behaviour of Successful 

Students in Programming by Employing Neo-Piagetian Theory is in Section 6.2. 

Permission has been granted for the reproduction of these papers. In this section, 

the paper details will be presented, along with tables detailing my contribution to 

each paper. 

1) Building an Authentic Novice Programming Lab Environment 

N. Culligan and K. Casey, “Building an Authentic Novice Programming Lab 

Environment,” in International Conference on Engaging Pedagogy, Dublin, 

Ireland, 2018.  

In this paper, the creation of MULE and the motivation behind the system 

from a pedagogical perspective is described. The author contributions to this paper 

can be seen in Table 1-1. 

 My Contribution Other’s Contribution 

Software 70% 30% 

Writing 90% 10% 

Running Experiment 80% 20% 

Table 1-1: Contributions to Published Paper 1 

2) What the Mouse Said:  How Mouse Movements Can Relate to Student 

Stress and Success 

N. Culligan and K. Casey, “What the Mouse Said: How Mouse Movements Can 

Relate to Student Stress and Success,” in Psychology of Programming Interest 

Group, Toronto, Canada, 2020.  
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In this paper, the first exploration of the Mouse Movement data collected 

by MULE from second semester data is described, along with the construction of a 

stress classifier, and a pass/fail classifier that would become the basis of HOG. The 

author contributions to this paper can be seen in Table 1-2.  

 My Contribution Other’s Contribution 

Software 70% 30% 

Writing 80% 20% 

Running Experiment 70% 30% 

Table 1-2: Contributions to Published Paper 2 

3) Exploring the Coding Behaviour of Successful Students in Programming by 

Employing Neo-Piagetian Theory 

N. Culligan and K. Casey, “Exploring the Coding Behaviour of Successful 

Students in Programming by Employing Neo-Piagetian Theory” in Psychology of 

Programming Interest Group, Toronto, Canada, 2020. 

This paper discusses the exploration of a second data type, Compile-Run-

Evaluate movements, using the first semester data that would become the main 

data set for this thesis. The author contributions to this paper can be seen in Table 

1-3. 

 My Contribution Other’s Contribution 

Software 80% 20% 

Writing 85% 15% 

Running Experiment 80% 20% 

Table 1-3: Contributions to Published Paper 3 

1.5 Chapter Overview 

In this section, an overview of each chapter in this thesis will be presented. 

Chapter 2: Related Research 

In this chapter, the related research and alternative tools for this project are 

examined and discussed. This literature is in two sections: a review of pedagogical 

coding environments, and a review of literature on examining student behavioural 

data. In the review of alternative pedagogical environments, different pedagogical 

coding environments are examined, in terms of usefulness as teaching tools, and as 

data collection tools. In the review of other work that examines novice programmer 

behavioural data, the goals and tools used in this thesis are explained. 
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Chapter 3: MULE and the Collection of Data 

In this section, the published conference paper on the MULE system is 

reprinted. MULE and its features are described, as well as a description of the 

modules and universities the system has been used in. The data collected is also 

outlined, as well as an explanation of how the data was collected ethically. 

Chapter 4: Overview of Experiments and Data 

In this section, the data sets gathered by MULE during this thesis are listed 

and described. The assignments completed by students while this data was 

collected is listed here, along with a summary of the assignments topics. The 

different data types collected by MULE are listed and explained. The methods used 

to examine the collected data are explained here, including the HOG classifier, a 

method for cleaning MULE data, and using it in Neural Network classifiers.  

Finally, the four experiments in this thesis are named and described. 

Chapter 5: Experiment 1: Mouse Movements 

In this chapter, the MM paper is reprinted, which outlines the pilot study 

using the MM data gathered by MULE to build Neural Network classifier to 

classify sequences of MM as being from an exam session or a regular lab session. 

This chapter also explains how the data was used with the HOG classifier, and 

explains why these two experiments had different results, and why the HOG 

classifier may have been less successful. 

Chapter 6: Experiment 2: Compile, Run, and Evaluate 

This chapter outlines the second experiment, using the CRE data gathered 

by MULE. This chapter includes a reprint of a published pilot study, using a 

prototypical version of HOG with the CRE data, and then goes on to run the CRE 

data with the version of HOG used in the four experiments in this thesis, to allow 

for accurate comparisons of the results to the results from Chapter 5 and Chapter 7. 

Chapter 7: Experiment 3: Complexity of Student Code  

This chapter outlines the third experiment, using the COMPLEX data 

gathered by MULE. COMPLEX uses compressed code size and the number of 

nodes in a parse tree to compare complexity of student code. The methods used to 

process the COMPLEX data is outlined, and the results of running this data with 

the HOG classifier are presented and discussed. 
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Chapter 8: Experiment 4: The HOG Classifier 

This chapter describes the final experiment. In this experiment, the HOG 

classifier is used with all three of the data types from the previous three chapters: 

MM, CRE, and COMPLEX. This chapter examines how successful the classifiers 

are when using this data. 

Chapter 9: Conclusions 

In this chapter, the findings and results of the four experiments will be 

compared and discussed. The Research Questions outlined in Section 1.2 are 

examined in regard to how they are answered by the thesis. Finally, there is a 

section outlining the findings of the experiments and the thesis. 

1.6 Chapter Conclusion 

In this chapter, the problem that this thesis aims to investigate is outlined 

and the Research Questions are stated. The contributions and papers published 

from this research are listed, and summaries of the chapters in the thesis are 

presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

2. Related Research 

In this chapter, the potential tools, technology, and methods for this thesis will 

be discussed, by examining similar literature, and discussing the tools and 

techniques used by these studies.  

The goal of this project is to investigate student behaviours that would inform 

us on:  

1. An individual student’s likelihood of performing well in the module 

according to their grades at the end of the semester. 

2. The key points in divergence between the highest and lowest achieving 

students. 

We hope that by learning more about these two things, we can first, identify 

students in danger of failing and intervene in time for the student to catch up with 

their peers. Secondly, we hope that finding early signs of failure may indicate 

certain times or topics in a student’s first year of leaning to code that are key in 

their eventual success. If a student is likely to fail because they don’t understand a 

topic on the first try, this may indicate it is a topic that needs more time and 

attention in the curriculum, or in other support facilities. 

This project aims to investigate the passively observed behaviour of 

programmers, using learning analytics gathering software in conjunction with a 

system for novice programmers to write, compile, and run their code as they learn 

to program. 

In this chapter, we will discuss the related literature in the following areas: 

1. Research for building the pedagogical coding environment MULE. 

2. Research for collecting and processing the data from MULE, and building 

the HOG classifier. 

2.1 MULE as a Pedagogical Tool 

 The first research question asks, “How can we observe student behaviour 

as they learn to code in a non-intrusive way?”. When this research project began, 

VPL [7] , the Virtual Programming Lab plugin for Moodle, was the system used to 

deliver assignments to students in Maynooth University first year Introduction to 

Programming labs, and to provide automated grading and feedback, so an 

investigation of VPL took place for three reasons: 
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1) To investigate if VPL could be modified to collect data for the purposes of 

this project 

2) To investigate alternatives to VPL, and if they could be modified 

3) To investigate what advantages VPL has as a pedagogical tool, so that any 

replacement built would not have a negative impact on the students. 

In this section, VPL and its alternatives are discussed. The Kitchenham method 

[8] was originally used to carry out the literature review, but as the direction of the 

project changed, and various parts were removed and added in, and so the literature 

review is no longer in this format.  

2.1.1 VPL  

2.1.1.1 Overview of VPL 

VPL is an auto-grading plug-in for Moodle, a SCORM [9] 1.2 compliant, 

open-source Learning Management System, or LMS. VPL provides a simple, 

online development environment for programming assignments that can be 

configured to give students instant feedback on their code. It is an open-source tool 

and can be freely used and modified. VPL has a large range of languages it 

supports, automatic and semiautomatic grading, password restrictions, black box 

testing or test cases, plagiarism detection, and offers configurable features for each 

individual assignment [7]. The student view can be seen in Figure 2-1. 

 

 

Figure 2-1: VPL Student View 
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When a student compiles, runs, or evaluates their code in VPL, a shell script 

provided by the course co-ordinator is used to run the students code in a jail server.  

 

Figure 2-2: Example of the Execution Files in VPL 

These scripts are called execution scripts and the execution scripts view can be 

seen in Figure 2-2. The execution files are: 

• vpl_run.sh 

o This script is used to run the user’s code on the Jail Sever. In the 

screenshot in Figure 2-2, the script runs the commands: 

javac Clumps.java 

java Clumps.java  

To compile the user’s code and then run the code and return the 

output to the user. 

• vpl_debug.sh 

o Used in running the debugger. Not used in our course, so left 

blank. 

• vpl_evaluate.sh 
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o In the evaluate scripts, the code submitted by the user is run 

against a test, or multiple tests, each of which awards marks to the 

user if the test is passed. 

• vpl_evaluate.cases 

o Some of the tests in vpl_evaluate.sh may use different input to test 

the user’s code. The test input and the expected output can be 

stored in vlp_evaluate.cases. 

Examples of each of these, other than vpl_debug.sh can be seen in Appendix 

Section 10.8. 

The architecture of VPL consists of 3 components, as can be seen in Figure 2-3:  

1. A plug-in module for Moodle  

2. An in-browser code-editor  

3. A jail server  

 

 

Figure 2-3: Diagram of VPL Components 

The components communicate through Ajax calls, XMLRPC calls, and 

WebSockets [7]. The jail server is used to execute the test scripts on code 

submitted by students. The jail server is separate from Moodle, so if the jail server 

were to crash, or experience some issues, Moodle is unaffected. It is very unlikely 

that a student program could crash the jail server due to the restraints placed on the 

code run in the jail server that ensure that submitted code when run can only use a 
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set number of resources, as defined by the administrator, and is terminated if still 

running after a specified amount of time.  

When an assignment is evaluated by VPL, the student’s code and the 

instructor’s test script is packaged into an XMLRPC message that is sent to the jail 

server. The student’s code is tested with the script, and the output is sent back to 

Moodle. The output may contain feedback along with a grade, depending on how 

the assignment is set up by the course co-ordinator.  

2.1.1.2 Advantages of VPL 

VPL is flexible and robust and allows for diverse and sophisticated ways of 

testing student code [10]. The administrator has the option to:  

• Control how the student code is graded  

• Define the rubric used to grade the code  

• Make the grade visible/invisible to the student  

• Limit the number of submissions for an assignment  

• Control the resources to be used by the jail server  

• Allow programs to be submitted by individual students, or a group of 

students  

• Access can be restricted by IP address  

• Disable copy/paste of code in VPL  

One of the advantages of VPL is the opportunity to provide students with 

instant feedback when they are programming. It has been reported that students do 

not read feedback when the feedback is not provided quickly [11]. When students 

can receive instant feedback on their code as they write, they are given the 

opportunity to assess their progress, and use the feedback given to improve their 

work and their understanding. Feedback is one of the most powerful influences on 

learning and achievement [12] [13]. 
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2.1.1.3 Criticisms of VPL 

VPL can help instructors to save time correcting assignments, but there is still 

a significant time commitment in setting up a VPL assignment, as they need to 

prepare a question, write a test script for evaluating student submissions, test that 

the script works well, and consider the many possible ways of solving a problem 

that a student may come up with, as well as providing useful feedback for issues 

students may encounter.  

VPL is also a scaffolded learning environment, meaning it provides support to 

students as they learn a new skill [15]. Scaffolding is useful, but it is important that 

students can perform learned skills once the scaffolding is removed [15], and so it 

is important that the scaffolded environment is as close to the kind of authentic 

coding environment the students will “graduate” to as possible. 

In VPL, it is difficult for users to browse through their already written code and 

use as a starting point for a new assignment but doing this may be indicative of a 

novice programmer who is doing well [16]. It requires multiple instances of a 

browser or switching between browser tabs, whereas in an authentic coding 

environment there would usually be an option for various editor windows. 

VPL only allows for one version of an assignment to be saved in the system. 

This could discourage students from continuing work on an assignment once they 

have a solution that awards them a grade that they are happy with. There is 

evidence to suggest that “tinkering” with code is a strategy employed by successful 

novice programmers [18], so it is important to facilitate this behaviour. There are 

varying definitions of tinkering, as listed by Berland et al. [18], but for our 

purposes, the act of tinkering is playful experimentation.  

While VPL is a useful solution to the problems associated with growing 

numbers of students enrolling in programming modules, the automation of the 

grading process results in the loss of an important connection between instructors 

and students, which may result in students that are struggling or in need of 

intervention not receiving the assistance that they need, and eventually failing or 

dropping out of the course [10].  
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2.1.2 Examples of Modifications to VPL  

VPL is open source, and many modifications and extensions have been 

created. Existing modifications were examined to see if any fit the needs of this 

project and to investigate if it was possible to modify VPL to satisfy our 

requirements.  

2.1.2.1 Ante  

Ante is a framework that works with Moodle and VPL to encourage 

students to use test-driven software development. Ante requires that students 

submit test cases before they submit their coding assignment. The students are not 

allowed to submit their assignment until they achieve a perfect score in their test 

cases [18]. 

2.1.2.2 Grading Process Management Module  

In the paper “Architecture to Support Automatic Grading Processes in 

Programming Teaching”, the Grading Process Management Module is described. 

At the time that the paper was published, the VPL system had only basic grading 

functionality, such as compilation and functional correctness, and there was no 

easy way to create customisable assessment. The grading submodule framework 

allows for additional assessment relating to structure, indentation, variable names, 

etc. The implementation of this system required changes in data infrastructure, 

directory system, and database. [20] 

2.1.3 Alternatives to VPL 

Other existing pedagogical coding tools were also investigated as potential 

tools for this project and will be examined in this section. 

2.1.3.1 BlueJ  

BlueJ is an IDE (Integrated Development Environment) designed by 

researchers in Kent University [21]. It is a pedagogical tool for teaching object-

oriented programming concepts, designed with 3 specific goals in mind:  

• To make the environment truly object-oriented by including a 

visualisation of the objects and classes.  

• To encourage experimentation with individual objects to allow for better 

understanding of Java.  
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• To provide a simplified IDE to allow for students to focus on learning 

concepts instead of getting to grips with a complicated IDE.  

BlueJ is based on the language Blue [21], which was designed to teach 

object-oriented programming. BlueJ uses a similar environment and visualisation 

to Blue, but uses the Java programming language [22]. While BlueJ is beneficial 

for introducing object-oriented concepts, unlike VPL, it does not include automatic 

assessment, and so was not appropriate for this project.  

2.1.3.2 iVprog  

VPL is compared to iVprog in the paper “Programming Web-Course 

Analysis: How to Introduce Computer Programming” [23]. iVprog is a virtual lab 

for visual programming languages, a way of introducing students to Computer 

Science concepts, such as loops and iteration, before introducing them to a formal 

programming language. Automated assessment in iVprog is based on test cases – 

the system compares expected outputs to the actual outputs produced by the 

student’s code. In a number of papers examining automated assessment of code 

[19, 24, 25], the authors noted the diversity of grading criteria, and roughly divided 

the criteria into two categories: static and dynamic. Static examines the users’ code, 

and dynamic examines the output of the code when it is run. For example, if a 

course co-ordinator wants to award marks based on the use of the 

“System.out.print”, that would be static criteria, however, if the course co-ordinator 

wants to award marks if the program prints the words “Hello World”, that would be 

dynamic criteria. iVprog can only grade based on dynamic criteria, unlike VPL, 

which can examine both.  

In the study, two online courses teaching introduction to Computer Science 

were run simultaneously, with one class using VPL and the other using iVprog. 

Sixteen subjects finished the module, and the NASA TLX protocol [26] was used 

to test the mental demand and frustration of the users. They found that the users 

that used iVprog felt more frustrated than those using VPL, although the VPL 

subjects experienced more mental demand and effort to carry out tasks [23].  

2.1.3.3 Assignment Manager  

Xue Bai et al., 2016 [14] describe an assignment manager and a structure 

for auto-grading programming assignments. This web-based tool includes the 

following features:  
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• Editing tool  

• Malicious code checking  

• Runtime environment  

• Auto-grading and feedback component  

This system has similarities to VPL. It is a web-based tool that uses a 

remote application server to test student’s programming assignments. The remote 

server contains a Java runtime environment, compiler, database, external files, 

services, and external APIs to create the programming environment.  

In this paper, an experiment is described in which two sections of the same 

course, taught by the same professor, were run with and without the system. It was 

found that the number of errors per assignment per student was lower when using 

the system, and the average grade was higher when using the system. It was also 

found that the professor spent around 15 hours less on assignments with the 

system, despite giving 10 extra assignments. However, the scope of this experiment 

was limited, and further study needs to be done on this subject.  

2.1.4 Pedagogical Coding Environments Conclusions 

VPL is a useful Moodle-based plugin for teaching and assessing 

programming concepts. However, it is tied to Moodle, which may not be ideal for 

all institutions, and testing and teaching in this environment is not an authentic 

programming environment. The fact that it is web-based is an advantage – students 

can log in anywhere from any computer and access their work, course materials, 

and write and compile programs. As previously mentioned, although VPL is a 

useful solution to the problems associated with growing numbers of students 

enrolling in programming modules [14], the automation of the grading process 

results in the loss of an important connection with students for the instructor. 

Without this connection, it may be hard to tell if the students have a good grasp of 

the material [10]. VPL can help instructors to save time on correcting assignments, 

but there is still a significant time commitment in setting up a VPL assignment, as 

they need to prepare a question, write a test script for evaluating student 

submissions, test that the script works well, and consider the many possible ways 

of solving a problem a student may come up with, as well as anticipating and 

providing useful feedback for issues students may encounter. VPL is also only 
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equipped to deal with small pieces of code and is not yet capable of handling larger 

programming projects.  

From this study into VPL and its alternatives, it was decided that it was 

necessary to custom build a system for this research, to allow for non-intrusive 

collection of data from an authentic coding environment, or as close to authentic as 

a pedagogical coding environment could be. The system would need to include the 

following: 

• An emphasis on an “authentic” coding environment 

• Passive collection of data 

• Content delivery within the system 

• Support the same large range of programming languages as VPL 

• Automatic and semi-automatic grading 

• Configurable features for every individual assignment, including disabling 

copy/paste, restrictions on IP address, time, and individual usernames 

•  A secure jail server that ensures that submitted code when run can only 

use a set number of resources, as defined by the administrator, and is 

terminated if still running after a specified amount of time 

• The instructors at Maynooth University have already spent a significant 

amount of time setting up VPL assignments by preparing questions, 

writing test scripts for evaluating student submissions, testing the scripts, 

and writing useful automated feedback for issues students may encounter. 

For this reason, it was necessary for the new system to be able to use the 

same scripts as VPL 

2.2 MULE as a Research Tool 

When planning the system as a research tool, research into student 

programming behaviour and the data gathered was examined, to inform on how to 

collect the most potentially successful data. We also wanted to collect data 

passively, and never interrupt the students normal learning-to-program experience. 

In the papers describing experiments involving the BlueJ [24, 28] system by 

Jadud, the papers describe the data collected by the system, which include: 

• Student code 

• Username 

• Number of compilations so far 



17 
 

• Compilation result 

• Filename being compiled 

• When compile was initiated 

• When the server received the information 

• IP-address 

• Hostname 

• OS name 

• Snapshots of code every time the compiler was used 

The data was collected passively and was used to examine correlations 

between “error quotient”, a metric for how well students deal with errors, and 

module outcome, using simple Linear Regression.  In the BlueJ paper “A First 

Look at Novice Compilation Behaviour using BlueJ” the authors discuss “extreme 

movers” (a reference to the paper “Conditions of Learning in Novice 

Programmers” [29]) , which they describe as “tinkerers”, and how these students 

would sometimes allow their experimental code to accumulate, causing their code 

to become increasingly complex and, eventually, incomprehensible. The authors 

found that students tend to program in large blocks, then spend time writing and 

compiling code in small bursts in order to fix syntax errors. Accordingly, multiple 

compilations may indicate a large number of syntactic problems. 

The paper “Using Keystroke Analytics to Improve Pass–Fail Classifiers” 

[30] uses keystroke analytics to predict a student’s success in a programming 

module, and notes that keystrokes are useful for improving accuracy in early 

semester predictions, when interventions are likely to have better impact. The 

authors note that although most of the data gathered over the course of a semester 

is gathered at the end, there is more than enough keystroke data to assist in 

predicting student outcome early on. 

In the paper “Analysis of Source Code Snapshot Granularity Levels” [31],  

the authors examine three different data types from novice programmers of various 

ages from 12 to 76: 

1. Submissions 

2. Snapshots (save, compile, run, and test events) 

3. Keystroke-events  

Submissions are final versions of a program submitted for 

correction/grading, provided by a plugin for NetBeans that provides feedback and 
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grading to the student. Using Wilcox Rank Sum test, as the data was not assumed 

to be normally distributed, the authors found statistically significant differences in 

the amount of work from participants to reach assignment goals between those with 

programming experience and those without. This difference continued to be visible 

throughout the course, although the behaviour of the participants was more alike in 

the final weeks of the course, perhaps implying that these behaviours are indicators 

of programming proficiency.  

In the paper “Evaluating Neural Networks as a Method for Identifying 

Students in Need of Assistance” [32], the authors use a measurement called “steps” 

when building a system for identifying students in need of assistance, where 

“Steps” were calculated as the number of submission events recorded for each 

coding exercise. The paper also examined time spent and error counts. In this 

paper, the authors do not include absence of submissions as a feature, as they are 

focusing on identifying at-risk students who are actively participating in the course, 

and to better match the work by Ahadi et al. [33] that they were reproducing. The 

paper also explores the efficacy of Neural Networks in identifying students who 

need assistance as early as possible in an introduction to programming course. 

When building the Neural Network, the data was vectorised but not normalised. 

The Neural Network had rectified linear units in the internal layers, a cross entropy 

cost function, 200 units per layer, fully connected layers and randomly initialised 

parameters. The Neural Network was tested with 1,2, and 3 hidden layers, and the 

Neural Network with 1 layer was most successful. The conclusions of the paper 

found that Naïve Bayesian, Random Forest, and Neural Networks all performed 

well in classifying students in danger of failing, but found that the Neural Network 

was “pessimistic”, was more accurate in classifying failing students, and was more 

likely to classify passing students as failing than the other way around. 

In “Programming: Factors that Influence Success” [34] Bergin and Reilly 

examined 15 factors in predicting if a student is likely to pass or fail, using Pearson 

correlations. The strongest correlation to success was the student self-perception of 

their understanding of the module, and one of the most statistically significant 

factors in predicting success was comfort level, in relation to how the student felt 

about the course. This was measured through cumulative responses to questions 

about the students’ understanding and difficulty completing lab assignments. A 

regression model was built that was able to account for 79% of the variance in 

programming performance results. 
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“The Normalized Programming State Model: Predicting Student 

Performance in Computing Courses Based on Programming Behavior” 

[35] introduces the Normalized Programming State Model (NPSM). This model is 

comprised of 11 different states that the students move through as they work on 

assignments, such as “Editing without debug”, “Editing Syntactically Correct, Last 

Debug Successful”, “Editing Syntactically Correct, Last Debug Unsuccessful”, 

data points on students as they code. This data is used to predict students’ 

performance in a programming module with 36% – 67% accuracy.  

In the paper “MouStress: Detecting Stress from Mouse Motion” [36] Sun 

et al. constructed a Mass Spring Damper model for the human arm - essentially a 

model for approximating arm motion and stiffness which could be fed with data 

from mouse movements. Using arm stiffness as a proxy for stress in the user, the 

authors report that their method was tested across a variety of prescribed stress 

tasks and the stress detection was still strong when generalised across these 

different tasks. Student t-tests were used to examine the correlation between the 

measures and the subjects state of stress. The classifier worked when generalised 

but was more effective when trained and tested separately for each user. The final 

model has an accuracy of around 70%.  

 In the paper “Mouse Trajectories and State Anxiety: Feature Selection 

with Random Forest” [37] , Yamauchi claims there is both psychological and 

neurological evidence to suggest that mouse trajectories can be used to assess 

affective states, such as anxiety. The results of their study show that temporal 

features, such as speed of mouse movement, and spatial features, such as direction 

change, were both indicative of the user’s state of anxiety, and a classifier was built 

using these metrics and applying Random Forest. 

In the paper “When high-powered people fail: Working memory and 

“choking under pressure” in math” [38],  Beilock and Carr discuss the connection 

between anxiety and a loss in academic performance and suggest that situation-

related worries – such as examination stress or anxiety – can result in a loss of 

focus on task at hand as the working memory is occupied. Alternatively, it has also 

been suggested that over-attending to performance, overthinking tasks usually 

performed automatically, can lead to underperforming in an uncomfortable or 

stressful situation. Similarly, in the paper “On the causal mechanisms of stereotype 

threat: Can skills that don't rely heavily on working memory still be threatened?” 

[39] Beilock et al. discuss how a more stressful or anxious state can also affect 
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tasks that are usually performed in an automated fashion, without the subject 

consciously thinking about it. 

In the paper “Automatic Prediction of Frustration” [40]  Kapoor et al. use 

a specialised pressure mouse with additional sensors to detect frustration in 

subjects as they attempt to complete a Towers of Hanoi puzzle computer game. 

The game includes an “I’m frustrated” button for the users, which is used to 

associate behaviour with frustrated state. The resulting classifier can predict 

frustration at an accuracy of 79%, outperforming the random classifier (58%). 

In “Neo-Piagetian Theory and the Novice Programmer” [41], Teague 

found that the development of programming skills is both “sequential and 

cumulative”, and that behaviours associated with sensorimotor and preoperational 

reasoning are evident from very early in the semester. Teague also reports that 

there is evidence of students beginning to struggle at a very early stage, before non-

trivial concepts are introduced.   

In “Concrete and other Neo-Piagetian forms of Reasoning in the Novice 

Programmer” [42] , Lister discusses the reasoning behind the use of Neo-Piagetian 

and non-classical Piagetian theory. Classical Piagetian theory considers the 

progress through different stages of learning to be a consequence of a biological 

maturing of the brain. Neo-Piagetian theory, on the other hand, considers this 

instead a result of gaining experience, and in particular, the ability to “chunk” 

knowledge within a certain knowledge domain. The paper reports that students in 

their CS1 classroom exhibited three broad forms of Neo-Piagetian reasoning – 

Formal Operational Reasoning, Preoperational Reasoning, and Concrete 

Operational Reasoning. 

The authors of “Mired in the Web: Vignettes from Charlotte and Other 

Novice Programmers” [43] ask if a student can have different levels of ability for 

different tasks which test similar programming concepts – if a student can trace and 

understand code, can they also write that code? They also ask why some students 

do not seem to be able to understand code with abstractions and instead rely on 

tracing code with specific values. The study found that students who were still 

operating at the sensorimotor level in Week 2 were often still operating the same 

way in Week 5 and were lagging behind students who were operating at the 

preoperational level in Week 2. They defined students in the preoperational stages 

by certain behaviours which they observed using think-aloud data from students. 

Preoperational behaviours were guessing, a fragile grasp of semantics, confused 
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use of nomenclature, an inability to trace simple code, as well as general 

misconceptions. Errors due to cognitive overload and reluctance to trace were 

considered behaviours associated with both sensorimotor and preoperational. The 

ability to trace but not explain code, as well as a reliance on specific values, were 

signs of the preoperational stage. 

In the paper “Problem Solving and the Development of Abstract Categories 

in Programming Languages” [44] Adelson found that expert programmers’ 

memory chunks tended to be semantically or functionally related, while novices 

typically chunked by syntax. Semantic knowledge consists of programming 

concepts that are generalised, and independent of programming language, whereas 

syntactic knowledge is more precise and rooted in exact representations of 

concepts in specific programming languages 

The paper “Utilizing Student Activity Patterns to Predict Performance” 

[45] uses “data such as the number of successful and failed compilations, on-

campus vs. off-campus connections, time spent on the platform, material covered” 

to create a pass-fail classifier for programming students, and to gain insights into 

how students are using key concepts. By the end of the semester, the pass-fail 

classifier works with just under an 85% accuracy. The most successful technique 

used by the researchers is compression of student code (with comments removed) 

and measuring the resulting compressed file to measure code complexity, which 

was the most successful feature in the classifier. 

In conclusion, this research led us to focus on three main areas of data: 

1. Low level behavioural data: Mouse movements, as a possible indicator of 

student stress [36, 37, 38, 39, 34] 

2. Medium level behavioural data: Compile, run, and evaluate actions [24, 28, 

35, 32, 45] 

3. High level behavioural data: Code submitted for assignments [45] 

In this chapter, the related research and alternative tools for this project are 

examined and discussed. This literature is in two sections: a review of pedagogical 

coding environments, and a review of literature on examining student behavioural 

data. In the review of alternative pedagogical environments, different pedagogical 

coding environments are examined in terms of usefulness as teaching tools, and as 

data collection tools. In the review of other work that examines novice programmer 

behavioural data, the goals and tools used in this thesis are explained. 
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3. MULE and the Collection of Data 

In this chapter, the motivation for the design choices for MULE and for the 

HOG classifier are explained and related back to some of the literature explored in 

Chapter 2. 

3.1 Motivation  

From the literature review, it became clear there was no existing software 

that would collect the range of data that was required for this study and satisfy the 

pedagogical requirements of the first-year introduction to programming course. 

As there was no existing software to satisfy the requirements, the online 

programming education tool, MULE, was created. It is not an entirely “authentic” 

programming environment, in that this IDE will not be used in software 

development work environments, it is purely pedagogical. However, in “A 

Quantitive Analysis of a Virtual Programming Lab” [46], a study is described in 

which a learning group is divided into students who use web-based tools and a 

control group that used a traditional setup - there was no significant difference 

between the results of the two groups, suggesting that the use of web-based tools 

does not negatively impact on a student’s progress. The paper also states that 

“Students typically spend too much time to install such tools and get acquainted 

with them, just to be able to perform their homework assignments”, suggesting that 

a system that can simply be logged into from any browser can be beneficial – it 

removes a significant amount of the initial learning curve that may be intimidating 

to students, possibly contributing to the high dropout rate of students in 

introductory Computer Science courses [47]. 
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Abstract 

As computer science becomes increasingly popular and classes become 

larger, there is an ever-increasing demand on course coordinators' time. 

As well as teaching classes, running labs, preparing exams, and 

providing feedback to students on their work throughout the year, course 

coordinators are required to keep their courses updated in order to 

prepare their students in a rapidly changing and evolving industry. As 

computer scientists, and as programmers, automation stands out as a 

potential solution. Automating the correction of labs and exams would 

free the course coordinators’ time, allowing them to focus on improving 

the course in other ways. VPL, or Virtual Programming Lab, is a plugin 

for a Learning Management System, such Moodle, that provides 

automation of this nature, by using shell scripts to assess student code 

and provide automated feedback. The VPL system includes a web-based 

editor embedded in Moodle that students use to write their code. Our 

concern is that VPL does not provide a sufficiently authentic 

programming experience. With this in mind, we have created MULE, a 

browser-based desktop environment in which students can view course 

assignments, write, compile and run their code, while maintaining the 

advantages provided by VPL such as instant feedback. 

Keywords  

Computer Science Education, Programming, Virtual Coding 

Environment, Automatic Assessment, Computer Science Pedagogy, 

Online Programming 
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1. Introduction and Motivation 
 

It has been claimed that the most effective way to teach programming to 

students is through practical exercises [1]. However, the increasing 

number of students in software engineering classes makes it harder to 

correct and provide feedback to these students in a timely manner. This 

can result in fewer practical assignments and/or less useful feedback for 

each student. Automated grading tools that can provide useful feedback 

to help the student understand any issues with their code is essential to 

cope with these growing numbers of students [6]. It has been reported 

that students do not read feedback unless the feedback is provided 

quickly [7]. When students can receive instant feedback on their code as 

they write, they are given the opportunity to assess their progress, and 

use the feedback given to improve their work and their understanding 

[10]. Feedback is one of the most powerful influences on learning and 

achievement [8]. VPL, or Virtual Programming Lab is a Learning 

Management System (such as Moodle) based system that provides 

instant feedback to students as they perform programming assignments. 

The feedback can be tailored to the assignment and to the level of the 

class by the course coordinator.  

VPL is a scaffolded coding environment. Scaffolding in education refers 

to support provided to students [9], in this case through an interface. 

Scaffolding is useful in educational settings, but it is important that when 

scaffolding is removed, the student can perform the learned tasks 

competently without the scaffolding [13]. VPL is different from an 

“authentic” coding environment in many ways and our concern is that 

students may encounter problems when “graduating” from VPL to a 

traditional coding environment. This research is focused on creating a 

programming environment that is as authentic as possible, while also 

providing tools for course coordinators to provide instant feedback to 

their students. 

2. VPL 

VPL, or Virtual Programming Lab, is an auto-grading plugin for Moodle,  
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or other SCORM compliant LMS [12]. VPL provides a simple, online 

development environment for writing programming assignments within 

the LMS. VPL has a large range of languages it supports and can 

modified. It has automatic and semiautomatic grading, plagiarism 

detection, and offers configurable features for every assignment and 

allows for diverse and sophisticated ways of testing student code 

[5,12,14]. For example, the course coordinator has the option to define 

the rubric used to grade the code, make the grade visible or invisible to 

the student, restrict access by IP address or disable copy/paste in the VPL 

code editor. One of the key advantages of VPL is the opportunity to 

provide students with instant feedback when they are programming. 

3. MULE 

MULE is an online desktop-like environment that students can log into 

from anywhere and view their previous work and continue work on 

assignments, or practice coding. MULE imports or recreates the 

advantages of VPL and adds new features. It allows students to open 

windowed applications, emulating a traditional desktop. The course 

assignments are delivered through an application in the MULE desktop 

called “Workbook”. From the application the user can browse 

assignments to be completed, assignments already completed and all 

their submitted code. From any assignment page in the workbook, the 

user can open the code editor to write their code.  

From the editor, a student can write, compile, run and evaluate their 

code. When a student runs their code, it does not run on their local 

computer. Instead we use the VPL jail server – an external server that 

runs a student's code and returns the output.  

Every time a student makes an “attempt” on an assignment – when they 

save their work, or when they submit it for evaluation – the attempt is 

recorded by the system. We hope that this will allow cautious students to 

experiment with their code, without fear of doing irreparable damage to 

their final grade, as our system always saves the students highest grade 

and, at any point in time, a student can always return to a previous 

attempt.  

The system uses two rating systems - “Grade” and “Personal Grade”.  
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“Grade” is the grade that contributes to the students’ continuous 

assessment and final grade. “Personal Grade” is to allow the students to 

go back and retry assignments they have completed, to complete them in 

a different way, or to try to achieve a higher score. Again, the idea 

behind this is that we want to encourage students to continue to use the 

system, rewrite code and revisit previous work after the labs have ended.  

4.VPL and MULE 

While VPL is an excellent solution to the problems associated with 

growing numbers of students enrolling in programming modules, the 

environment is not an authentic programming environment. VPL 

provides an in-browser code editor from which students can compile, run 

and evaluate their code but differs from a traditional coding environment 

in the following ways: 

1. Users are not able to easily open multiple windowed instances of 

the code editor and compare their current assignment to previous 

ones.  

2. Users can only save one version of their code for an assignment 

in the system.  

3. The system is not designed for students to create their own code 

independent of assignments 

4. VPL provides a “scaffolding” for students to work within. It is 

not an authentic coding environment, but a pedagogical one. 

These differences are discussed below. 

1) Some of the behaviors that are indicative of a student who is doing 

well in their introduction to programming module, such as reading 

though their old code, using pieces of old code as boiler plate or 

rewriting old code [4] is difficult to do in the VPL interface – it requires 

multiple instances of a browser or switching between browser tabs. In 

MULE, the users can open multiple instances of the code editor within 

the desktop environment, so students can quickly and easily compare 

their successful code with code which may be returning errors, for 

example, or use successful code as a template to write new code. 

2) VPL only allows one version of an assignment to be saved within the 



28 
 

 

system. This could discourage students from continuing work on an  

assignment once they have a “good enough” solution, and also from 

continuing to “play” with the code after an assignment is completed. 

There is evidence to suggest that “tinkering” with code is a strategy 

employed by successful novice programmers [3], so it is important to 

facilitate this behavior.   

3) When using VPL and Moodle, a course coordinator creates an 

assignment that the student is to complete. The assignment opens an 

editor, usually with the files to be submitted already created for the 

student to write their code into. While it is technically possible for an 

instructor to provide a “free” assignment where students can write 

whatever code they want, there is no easily usable filesystem for saving 

their code. In MULE, students can use both “Workbook mode” and 

“Editor mode”. Workbook mode is used for assignments set by the 

instructor – students need to write code in pre-named files, which they 

can then compile, run and evaluate from their editor. In Editor mode, 

students can use the editor as a normal editor - they can create new files 

in a traditional filesystem, save them under any name, compile and run 

them.  

4) We are concerned that students may exclusively use VPL when 

writing code, and never write code outside of their given assignments. 

Novices often find the initial set-up involved with programming to be 

intimidating and frustrating. By removing barriers to entry such as the 

installation of editors, IDEs and compilers, students are free to focus on 

learning to write code [11,17] and may be more successful in their 

studies. However, this also presents a problem – if students are 

intimidated and frustrated by the installation of these programming tools, 

they may avoid them altogether, meaning students may exclusively use 

the learning environment. This may result in students who “graduate” 

from the learning environment to IDEs, like those used in industry, being 

disadvantaged, and unable to make the leap from “scaffolded” coding 

environments to traditional environments. For this reason, MULE 

simulates a regular desktop, but removes the initial barriers to entry by 

being browser-based. 
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5. MULE Feedback 

As of semester one of the 2018/2019 academic year, we have begun 

using 

MULE in our 1st year labs, with around 300 first year students, instead of 

VPL. The demonstrators, many of whom have experience with VPL, 

were asked to fill out a short survey on how VPL and MULE compare. 

While it  

would be ideal to survey students on their experiences with the system, 

unfortunately the students have not used VPL. Of the 10 demonstrators 

who have previous experience with the system, 5 thought MULE was 

more intuitive, 2 thought VPL was more intuitive, 3 that they were 

equivalent. The results of the survey showed that most of the 

demonstrators felt that MULE made it easier to review work from 

previous assignments(Q7) and that MULE was a “natural” or more 

authentic programming environment for students(Q8).  
 

Strongly 

agree  

Agree  Neutral  Disagree  Strongly 

Disagree  

Q1 VPL is intuitive to 

use  

0.00% 72.73% 9.09% 18.18% 0.00% 

Q2 MULE is intuitive 

to use  

16.67% 58.33% 8.33% 16.67% 0.00% 

 

  None  A little  Intermediate A lot  Too 

much  

Q3 Rate the level of 

intervention needed for 

MULE  

0.00% 33.33% 58.33% 8.33% 0.00% 

Q4 Rate the level of 

intervention needed for 

VPL  

0.00% 33.33% 44.44% 22.22% 0.00% 
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Definitely 

MULE   

MULE 

mostly  

About the 

same 

VPL 

mostly  

Definitely 

VPL  

Q5 Which is quicker 

for novice students to 

get started with?  

70.00% 20.00% 0.00% 10.00% 0.00% 

Q6 Which do you feel 

students would more 

likely use outside lab 

time  

30.00% 60.00% 0.00% 10.00% 0.00% 

Q7 Which makes it 

easier to review 

previous work from 

labs  

80.00% 10.00% 0.00% 10.00% 0.00% 

 
 

Definitely 

Browser 

/MULE  

Browser 

/MULE mostly  

About 

the 

same  

Moodle 

/VPL mostly  

Definitely 

Moodle 

/VPL  

Q8 Which UI 

do you feel is 

most natural 

for students?  

36.36% 45.45% 9.09% 9.09% 0.00% 

Table 2.1 – Results of Demonstrator survey 

6. Conclusions  

MULE is an online programming education tool that retains of the 

advantages of VPL and has some significant improvements. Foremost 

among these is that it is a realistic browser-based representation of an 

authentic programming environment that students will encounter later in 

their courses, and ultimately in industry.  The browser-based nature of 

the tool has a compelling advantage in that there is a low barrier of entry 

for students – they do not need to install any special software as they 

would normally be required to do. In “A Quantitive Analysis of a Virtual 

Programming Lab” [15], the authors state that “Students typically spend 

too much time to install such tools and get acquainted with them, just to 

be able to perform their homework assignments”. This suggests that a 

system that can simply be logged into from any browser can be beneficial  
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– it removes a significant amount of the initial learning curve that may be 

intimidating to students, possibly contributing to the high dropout rate of 

students in introductory Computer Science courses.  

7. Future Work 

There is a myriad of feature requests from the first-year students and 

their demonstrators, evidence of the high degree of engagement we have 

had over the first semester where MULE has been used. One of the more 

promising features to be provided for in the near future is enhanced error  

message reporting. There is evidence to suggest that clearer error 

messages for novice programmers may improve student success. In the 

paper “An Exploration Of The Effects Of Enhanced Compiler Error 

Messages For Computer Programming Novices” [2] the use of enhanced 

compiler error messages was tested, and the results were examined. The 

results showed that the use of the Decaf editor resulted in fewer signs of 

struggling students in comparison to a control group, who saw standard 

error messages. Integrating the Enhanced Compiler Error Messages into 

MULE would provide an opportunity to study how differently students 

behave when given clearer error messages. 
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3.3 Overview of MULE 

MULE is a desktop-like, browser-based pedagogical coding environment built 

for use in introductory programming modules, using the OS.js system [48]. An 

example of a layout of the system can be seen in Figure 3-1, showing a student 

view including the Workbook application, the code editor, and the terminal, with 

the output from code that has been run. 

 

Figure 3-1: MULE Student View Layout 

As the students use the system and work on their assignments, the system 

collects behavioural data such as assignments compiled, run, and evaluated, code 

written, errors returned, and mouse and keyboard interaction data. The data is 

stored as the user works, and it is periodically sent to the MULE server and saved 

in the database. The data is also sent whenever a user closes the MULE webpage. 

MULE can be accessed through a browser, using Moodle authentication (or 

any other SCORM compliant authentication) to log in. MULE has advantages as a 

pedagogical tool over traditional environments, such as:  

• Users can log in to the system from any internet browser and continue or 

review their work.   

• Users do not need to spend time setting up their personal computers with 

editors or compilers. Instead, the student can potentially go from no coding 

experience to their first “Hello World” program in a few minutes.  

• Users can access and complete their assignments entirely through the 

“Workbook” application. From this application, students can view the 

assignment instructions, write, run, evaluate, and submit their code. The 

Workbook application is described more in Section 3.4.1. 
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• Students can record notes directly onto their MULE workspace 

and access them from any browser. We did not anticipate this 

but found that many students choose to use MULE this way.  

• Every attempt a student makes on a question is recorded and can be 

accessed from the “History” tab in the workbook, which is described in 

Section 3.4.2.  

• Course co-ordinators can restrict access to certain questions or aspects of 

MULE according to admin-defined rules that check time, user id, user role 

(student or lecturer) and/or IP-address. For example, this feature was used 

to restrict access to students’ previously completed work during in-lab 

exams. By checking the IP-address of the user, students not currently 

taking the exam were able to use the system as normal and could not see 

the exam questions.  

• Course co-ordinators can also choose to not allow copy and pasting within 

the MULE code editor, to discourage plagiarism.   

• When a student evaluates their work, their code is assessed by an 

evaluation script, which can be customised by the course co-ordinator. The 

evaluation function is used to provide instant feedback to the student on 

their work.   

3.4 Features of MULE  

After the publication of the paper in Section 3.2, development continued 

on MULE, using the feedback from students and from course co-ordinators. The 

overall layout and additional features added to MULE are described below. 

3.4.1 Workbook 

Within MULE, we use the application “Workbook” to deliver assignments 

to students. The Workbook is a windowed application with a sidebar and tabs. The 

sidebar, which can be seen in Figure 3-2, is used to navigate through the different 

weekly labs and assignments. Once an assignment is selected, the user can select 

from the “Description”, “Launch”, and “History” tabs. There is also a fourth tab, 

“Admin”, only accessible by administrators.   
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Figure 3-2: MULE Student Lab Selection Menu 

All the content for the Workbook is stored in JSON files, including the 

execution files for the assignments and metadata files, as shown in Figure 3-3. 

Examples of these files can be seen in Appendix Section 10.9. 

 

Figure 3-3: Assignment Metadata File in MULE 

3.4.1.1 Description  

This section in the Workbook displays instructions on how to complete the 

assignment for the student. The description is written by the course co-ordinator in 

the form of a HTML file, as can be seen in Appendix Section 10.9, in Figure 10-5, 

Figure 10-6 and Figure 10-7.   
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3.4.1.2 Launch  

The Launch feature opens the code editor for the student to write their 

code. The course co-ordinator assigns a filename and has the option to provide 

default code, for example, if the purpose of the assignment is to edit or fix provided 

code. If the student has made previous attempts on the question, the most recent 

code will be opened. From here, the student can compile, run, and evaluate their 

code. 

By evaluating their code, the student can receive instant feedback. There is 

evidence that students do not read feedback unless it is provided quickly [11], and 

when they do, they are more able to use it to improve their work and understanding 

[13]. 

 

Figure 3-4: Description Panel in Workbook with CA Grade and Personal Best 

3.4.1.3 History  

It is mentioned in Section 2.1.1.3. that VPL would only allow one version 

of an assignment to be saved within the system. In MULE, the History tab shows 

every attempt made by the student on the question. We define “attempt” to be any 

code that has been saved, run, or evaluated. The attempts are displayed as a list, 

and includes the time, the grade given, and the grade type. The goal of this is to 

allow a student to experiment and change their code without fear of losing the code 
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that earned the highest marks, as there is evidence to suggest that playing/tinkering 

with code is an indication of student success [40]. 

3.4.1.4 CA Grade and Personal Grade   

As shown in Figure 3-4, in MULE’s Workbook, a student can view two 

grades: their CA grade and their Personal Best. When using MULE in the first-year 

labs for the data sets used in this thesis, we chose to only allow for code to be 

evaluated for CA grades within the designated lab times by checking IP-addresses 

and time rules when a student evaluated. Note that the IP-address checking is 

optional, and it was not used during the Covid-19 lockdown when students were 

working on their labs from home. 

As seen in the Figure 3-5, the MULE web application sends a request to 

the MULE server which checks the users’ permissions, and if they are permitted to 

run or evaluate the assignment (according to IP-addresses and current time) and if 

the result is a Personal Best or a CA grade. The evaluation is run on the jail server 

(using the VPL jail server described in Section 2.1.1.1). The result is returned to 

the MULE application via a websocket and the grades are stored in a database.  

 

Figure 3-5: MULE Grade Storage 

Once the weekly labs had been completed, the students were permitted to 

evaluate their code outside of the lab but would only be awarded “Personal Best” 

(Personal Grade) marks that did not count towards their final grade. With this 

system, the staff were able to both encourage students to continue to work on labs 

they did not achieve 100% on after the labs had completed, and ensure they 

attended the labs in person, where they can receive help and guidance from the lab 

demonstrators.  
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Using this system, if a student is struggling with labs, a demonstrator or 

lecturer can easily check if a student has completed the previous labs, and if not, 

can recommend the student familiarise themselves with the previous material. We 

also hope that by being able to record their highest mark, students will be more 

inclined to revisit previous labs and challenge themselves to complete labs in a 

different way.  

3.4.1.5 Admin Mode  

If a user logs in as an administrator (or lecturer), they are given access to 

an extra panel in the Workbook, which can be seen in Figure 3-6. In this panel, 

there are 5 options:  

Compile Workbook: When changes are made to the workbook by an administrator, 

they must rebuild the Workbook with this option for the changes to take effect.  

 

 

Figure 3-6: Workbook Admin View 

Download CA Grades: This downloads a .csv file with the CA grades for the 

selected branch. If the user has selected Lab 4, all grades for all questions in Lab 4 

will be downloaded. If Lab 4 Question 2 is selected, the .csv file will only contain 

the grades for Lab 4 Question 2.  
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Download Personal Grades: This option is the same as “Download CA Grades”, 

but downloads Personal Grades instead of CA. 

Users: Here an administrator can select a student name and view the workbook as 

that student. They can view and edit all of the student’s attempts and grades.  

Re-Evaluate All:  This allows an administrator to re-run the evaluation option on all 

previously evaluated attempts between two user-specified times. This is useful if 

there is a problem with a script for example – the script can be rewritten and re-

run.  

Auto-evaluate: Allows the administrator to evaluate all the last saved attempts 

between two specified times, in the current branch. In our labs, we ran this option 5 

minutes after each lab closed, allowing students who just missed the time limit to 

still get marks for their work.  

3.4.2 Analytics  

If the student gives consent when they first log into the system (or if they 

decide to give consent later), MULE will gather behavioural data as the student 

uses the system. MULE sends the data in a JSON format to the server periodically, 

after a set amount of time, or whenever the student logs out, as illustrated in Figure 

3-7. 

 

Figure 3-7: MULE Data Collection 

 

The data collected is as follows: 
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• Mouse movements 

• Code compiled/saved/run/evaluated 

• Windows opened (such as compile/run/evaluate terminals) 

3.5 Use of MULE in Introduction to Programming Modules 

The MULE system has been used in first year Introduction to 

Programming modules in Maynooth University since September 2018. The system 

has been able to collect data from this module from February 2019. The system has 

also been used in the first-year Computer Systems module to teach the Prolog 

programming language. 

MULE has been used in the Beijing University of Technology to teach the 

C++ programming language in connection with the University College Dublin - 

Beijing University of Technology collaboration. The system has also been used in 

the Fuzhou University in teaching the programming language Prolog. No data was 

gathered from these modules, as ethical clearance for data collection was only 

requested for the Irish Introduction to Programming through Java module. 

Altogether, MULE has been used in teaching Introduction to Programming 

modules to over 1000 students. It has been of particular value during the Covid-19 

shutdown, allowing students to continue to participate in labs and receive 

automated feedback and grades.  

3.6 GDPR and Ethical Collection of Data 

Ethical approval was applied for from the Maynooth University Ethics 

Committee and granted on the 7th of June 2018. When students first sign into the 

MULE system, they are asked to digitally sign a consent form which explains how 

their data is used and gives them the option to opt out of the research entirely. They 

are also asked to read an information sheet that explains clearly what they are 

agreeing to by signing the consent form. The information sheet and consent form 

can be seen in Section 10.1 and 10.2. 

Due to the potentially sensitive nature of the data that we gather from students, 

storing and anonymising the data is of the utmost importance. Once we collect data 

from a user, the data is stored and associated with a hash of their login name or 

email. 
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3.7 Chapter Summary 

In this chapter, the design requirements and the motivation behind MULE and 

the experimental design behind the experiments are discussed. The use of MULE 

in university courses is listed, and the ethical permission acquired for the data 

collection is outlined.  
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4. Overview of Experiments and Data 

In this chapter, the data sets gathered by MULE during this project, and the 

assignments that the participants worked on while the data was collected, are 

explained on a week-to-week basis, in terms of the topics and programming 

concepts required to complete the assignments. The methods of analysis are 

explained, including the HOG classifier, a system built for this thesis that processes 

the MULE data, and runs Neural Network binary classifiers using that data. 

Finally, there is an overview of the four experiments described in this thesis. 

4.1 Description of Data Sets 

The MULE system has been used in the first year Introduction to 

Programming modules in Maynooth University since September 2018 and was able 

to collect data from February 2019. We have two data sets from the MULE system, 

semester 2 from the academic year 2018/2019, and semester 1 from the academic 

year 2019/2020.  

The collection of data was then interrupted by the Covid-19 pandemic that 

required the closure of the lab facilities. While the students continued to use the 

system from home, it was unclear if the results from the data gathered from this 

semester would be valid. There were concerns that the results would not reflect the 

students’ progress, but instead would be indicative of the students’ home learning 

environment. In particular, the experiments that examined stress could potentially 

be influenced by the stress of living through a pandemic, so it was decided that this 

data would not be used. 

4.1.1 Data Set 1 

This data was collected from 196 out of 250 first year students in their 

second semester of Introduction to Programming, the academic year 2018/2019, 

from February to May of 2019. Of the 250 students, 54 were removed from the 

data set for one or more of the following reasons: 

1. Student did not take both in-lab examinations 

2. Student did not complete the course 

3. Student participated in less than two lab sessions 
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This set is used in the MM paper in Section 5.2 only.  

4.1.2 Data Set 2 

In the first semester of the 2019/2020 academic year, data was collected as 

the students completed their first Introduction to Programming module, and as they 

learned to use the MULE system. The resulting data set is over 200GB. 

The goal of this study was to focus on identifying at-risk students who 

were actively participating in the course, so data from students who did not 

complete most of their lab assignments and participate in both lab exams was 

removed. The four experiments in this thesis in Chapters 5, 6, 7, and 8 use 255 of 

the class of 300 from data set 2.  

Participants were removed for the following reasons: 

1. Student did not participate in both lab exams 

2. Student did not participate in the final written exam 

3. Student did not participate in more than 4 of the 10 lab sessions 

4. Student requested to have their data removed. 

4.1.2.1 Description of Weekly Assignments 

The data is a set of behavioural data from the 255 students as they 

complete a total of 54 assignments across ten labs. A brief description of the topics 

for each lab is below, with a description of some of the more significant individual 

assignments. 

Week 1: 

The four assignment questions in this week’s lab cover the concepts of: 

• Print statements 

• Assigning variables 

• Basic mathematical operations 

• Storing the results 

• Printing variables 

Week 2: 
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The six assignment questions in this week’s lab require the use of: 

• Mathematical operators 

• Combinations of mathematical operators 

• If-else statements 

• Switch statements 

• Ternary operators 

In these questions the students are told explicitly which variable types and 

techniques to use (e.g., “Store in an integer variable” or “Use a switch statement”). 

Week 3: 

The seven assignment questions in this week’s lab cover the concepts of: 

• While loops 

• For loops 

• Do-while loops 

• Strings 

• Numeric operations 

In most of these assignments, the students are again told which techniques to use, 

but in Question 6, the students must decide themselves which kind of loop, or what 

kind of variable to use.  

Week 4:  

The six assignment questions in this week’s lab cover the concepts of: 

• String Manipulation 

• Concatenation 

• Generating substrings 

• Finding the length of string 

• Finding a character in string 

• Convert to lower case or upper case 

• Reverse strings 

• Compare strings  

• Selection statements 

Students are given some guidance on how to solve problems, for example they 

might be told “use a loop to do x”, but not be told which kind of loop to use.  
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Week 5: 

The five assignment questions in this week’s lab cover the concepts of: 

• User input 

• String manipulation as described in Week 4 

• Mathematical operators 

• Loops 

• Selection statements 

This is the first week that students are given almost no direct instructions in which 

techniques and variable types to use. This represents an important step in learning 

to program: not just how to use the techniques but knowing when to apply them to 

solve problems. 

Week 6: 

This week includes a lab exam and a normal lab session. The exam 

contains three questions and the normal lab session for this week contains three 

assignment questions requiring:  

• User input 

• Finding characters in strings 

• String indexes 

• Conditional statements 

The exam consists of three exam questions covering the concepts of:  

• Numerical operations 

• Conditional statements 

• For-loops 

• While-loops 

• User input 

For both the normal lab questions and the exam questions in general the students 

are not explicitly told to use certain techniques. 

Week 7: 

The four assignment questions in this week’s lab cover the concepts of: 

• User input 

• Character position in strings 
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• Conditional statements 

• Loops 

The questions do not explicitly ask the students to use certain techniques. 

Week 8: 

The six assignment questions in this week’s lab cover the concepts of: 

• Declaring arrays 

• Manipulating arrays 

• Updating arrays  

• Reading from arrays 

The questions do not explicitly ask the students to use certain techniques. 

Week 9: 

The five assignment questions in this week’s lab cover the concepts of: 

• Nested loops 

• traversing 2D arrays 

The students are told what type of loops to use for some of these assignments. 

Week 10: 

This week includes a lab exam and a normal lab session. The exam 

contains two questions, and the normal lab session for this week consists of three 

assignments requiring:  

• Casting strings into other values 

• User input 

• Use of a try catch statement 

The exam questions covered the concepts of:   

• Numerical operators 

• Conditional statements 

• 2D arrays 

• Nested loops 

• String comparisons 

The questions do not explicitly ask the students to use certain techniques. 
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4.2 Description of Data Types 

Within the collected data sets, we collected three types of data which will be 

examined in this thesis. The data was divided into three tiers:  

• Low level: Mouse movements 

• Medium level: Compile, run, and evaluate patterns 

• High Level: Complexity of submitted code assignments 

These tiers will be discussed in Section 4.2.1, Section 4.2.2, and Section 4.2.3. 

4.2.1 Mouse Movements 

As the students use the MULE system, they use their mouse to navigate the 

environment, to open assignments, and to save, compile, run, and evaluate their 

code from drop down menus. This data is then used to generate metrics on student 

behaviour, which are explained in more detail in Section 5.2 and Section 5.3. 

4.2.2 Compile, Run, Evaluate Actions 

As the students complete their assignments, they use the system to 

compile, run, and evaluate their work. With this data, we examine if there are 

connections between how often a student “moves” from one of these actions to 

another, and if this is related to their CA and Written Exam outcome. This is 

explained in more detail in Section 6.3. 

4.2.3 Complexity of Code Submitted 

When a student evaluates their code, the code is sent to the jail server 

where a shell script runs a series of checks on the code, and on the output of the 

code, and assigns a grade according to how well the code fulfils the assignment 

criteria. The student code is stored using a RethinkDB database. Both the submitted 

code and the grade is stored for use in this study. The code complexity is measured 

using the size of the code when compressed, and the number of nodes in a parse 

tree generated from the code. This is explained in more detail in Section 7.2. 

4.3 Methods of Analysis 

The following methods are used to investigate the differences between the 

higher and lower achieving groups, as identified by their performance in their CA 
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grades and their end of year Written Exam, to select the best input data for 

classifiers and to build classifiers using the three data tiers. 

4.3.1 Wilcox Rank Sum Test 

The Wilcox Rank Sum Test is a non-parametric test used to test if there is a 

difference between two groups [31]. It is used here to examine the differences in 

Mouse Movement, CRE behaviour, and Code Complexity between the highest and 

lowest achieving students on a week-to-week basis, to give insight into when the 

two groups of students diverge in behaviour.  

The features in the data sets for this project range in distribution – some are 

normally distributed, and some are not, and as the Wilcox Rank Sum Test does not 

assume known distributions, we can use it to examine if there are any significant 

differences between the two classifications, and to examine if there are any clear 

stages in the semester when the behaviour of students diverges. In this thesis, any 

answer of <0.05 is considered a significant result and implies that the two groups 

being compared are significantly different. The code written to process the data and 

carry out the Wilcox Rank Sum Test uses the Python library SciPy [49]. 

4.3.2 Linear Regression 

Linear Regression is used to find how useful an individual metric is for 

predicting student outcome. The results of these tests are used to:  

1) Examine which metrics are key in the divergence of behaviour of the 

higher and lower achieving students  

2) Select which of the metrics from each data set are used as input features for 

the classifiers 

The code written to carry out these tests uses the Sklearn [50] Python library to 

create the Linear Regression tests. 

4.3.3 Neural Network Binary Classification 

The input features selected by the Linear Regression tests are used to build 

Neural Network classifiers that predict if a participant is likely to be in the highest 

or lowest 50% of grades in the class in terms of CA or written exam. The code 

written to create and run the Neural Networks use the Tensorflow Python library 

[51]. Neural Networks were chosen as the paper “Evaluating Neural Networks as a 
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Method for Identifying Students in Need of Assistance” [32]  found that Neural 

Networks performed as well as other classification methods but were more likely to 

classify passing students as failing than the other way around. 

4.4 The HOG Classifier 

Throughout the four experiments in this thesis, the HOG classifier, a 

companion for MULE, was written to generate Neural Network classifiers that 

classify students as being in the top 50%, or the bottom 50% of the class grades, 

according to the CA grades and the Written Exam grades. The paper in Section 6.2 

uses a prototypical version of this classifier. The HOG classifier process can be 

seen in Figure 4.1. 

1. Each of the four experiments in Chapters 5, 6, 7, and 8 have data sets that 

are divided into 10 subsections. These subsections are the 10 weeks of in-

person labs during the semester. Although MULE collects data whenever 

the students use the system, the data sets only include data from the in-

person labs, as we don’t know what environment the students are in when 

working outside of these lab times. The data sets are stored in a database 

using SQLite. Python is used to generate metrics of the students’ behaviour 

that will be used in the classifier, referred to as “features”.  

2. For the midpoint of each grade category (CA and written exam), the data is 

divided into the top and bottom 50%. The top participants are marked as 1s 

and the bottom as 0s. These two groups are referred to as “Passes” and 

“Fails”, although it’s important to note that not all the students in the 

“Fails” group failed the module. 

3. The features from the given data types most correlated to the relevant 

grade category are selected using Linear Regression. The three data types 

had different ranges of correlation to outcome, so we used different 

correlation cut-off points (called “thresholds” throughout this thesis) and 

tested them with every datatype and both grade types. Any feature with a 

correlation of more than this threshold according to the Linear Regression 

tests is used in the classifier. The thresholds are: 0, 0.1 and 0.15. For one 

experiment -0.1 was also used, due to the low number of correlated 

features. 
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Figure 4-1: HOG Classifier Workflow 
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4. Multicollinearity can cause issues with Neural Networks, so Variance 

Inflation Factor VIF [52] is used to determine if these features are too 

highly linearly related, and if so, removes the feature most linearly related. 

In the paper “Exploring the Coding Behavior of Successful Students in 

Programming by Employment Neo-Piagetian Theory” in Section 6.2 we 

used a max VIF of 5, but for HOG we set the max VIF to 10, as is 

acceptable according to other research [53]. 

5. The data from the remaining features are then divided into training and 

testing data, where testing data is from 50 participants, and the remaining 

are training data. The testing data is randomly selected, but the training and 

testing only takes place if the test data has an even number of pass and fail 

participants (25 pass and 25 fail), to avoid reporting of a lucky/unlucky 

data set.  

6. The Neural Network is trained on the training data, and then tested on the 

test data at least twenty times, with different divisions of training and 

testing data. Twenty times was chosen due to the work in the paper in 

Section 5.2., which found that there was little difference in the variance of 

the results of the classifiers after running ten times and after running 60 

times. 

7. This process is carried out for each of the ten data sets for each experiment. 

Every one of these data sets also includes the data of the previous lab 

sessions, as an example, the experiment for Week 4 also uses the data from 

Week 1, 2 and 3. 

8. For each experiment, the most successful classifier is selected from the 

different thresholds, for both Continuous Assessment and Written Exam 

groups. The most successful classifiers are selected according to  

i. Highest Accuracy  

ii. Lowest False Passes 

False passes are when the classifier classifies a student as being in the top 

50% but is in the bottom 50%. 

4.5 Overview of Experiments 

 In this section, each of the four experiments in this thesis will be 

summarised.  
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4.5.1 Experiment 1: Mouse Movements (MM) 

The first section of data explored is the Mouse Movements of students as they 

learn to code. The data recorded was used to generate metrics on the students’ 

behaviour in short mouse movement sequences during the students’ scheduled lab 

sessions, including lab exams. These metrics recorded attributes such as speed, 

time to click the mouse button, and distance travelled. This experiment is described 

in Chapter 5. 

4.5.2 Experiment 2: Compile, Run, Evaluate Movements (CRE) 

The second section of data explored is the compile, run, and evaluate patterns 

of students as they learn to code. The metrics used in this section are “movements” 

a student takes from a compile to a run, or a run to an evaluate. These movements 

are recorded as a percentage of the movements a student took per lab and are used 

to explore the different behaviour of the higher and lower achieving students. This 

experiment is described in Chapter 6.  

4.5.3 Experiment 3: Code Complexity (COMPLEX) 

The third section of data explored is the complexity of code submitted by 

students for evaluation. The complexity is measured first by removing the 

comments in the code, compressing the files, and recording the size of the result, 

and secondly by generating parse trees for the code and recording the number of 

nodes in the parse tree. This experiment is described in Chapter 7. 

4.5.4 Final Experiment: HOG 

In the final experiment, classifiers are built using all of the data from the 

previous three chapters to test if a combination of data produces a more successful 

classifier than any of the first three experiments. This experiment is described in 

Chapter 8. 

4.6 Chapter Summary 

In this chapter, the data sets gathered and used in this thesis were described, the 

analysis methods were outlined, and the HOG classifier was described. The four 

experiments that will follow in Chapters 5,6,7, and 8 were summarised.  

 



53 
 

5. Experiment 1: Mouse Movements 

In this section, the MM data gathered by the MULE system will be explored 

using the methods outlined in Section 4.3 and 4.4. The first exploration into the 

MM data is described in the published paper in Section 5.2, and the subsequent 

study using the HOG classifier system is described in Sections 5.3, 5.4, and 5.5. 

5.1 Introduction to Mouse Movement Experiment 

 There is existing work to suggest certain mouse movement behaviour is 

correlated to stress and mood [36, 37, 52], and that students’ experience of stress 

[53] or comfort level [5, 54] can be an indication of performance. Using mouse 

movements to detect students in need of intervention has potential as a non-

invasive method for detecting students in danger of failing their Introduction to 

Programming module.  

The first experiment on the MM data was run using data set 1 (as described in 

Section 4.1.1). This data is from the second semester of the academic year 

2018/2019, and the published paper from this experiment is in Section 5.2. [57]. In 

this paper, a classifier was built to classify sequences of MM as being from 

stressful (in formal lab exam sessions) or less stressful (in regular, less formal 

weekly lab sessions) environments. The resulting classifier was moderately 

successful, with an accuracy of 62.9%. Interestingly, the classifier worked better on 

students who did poorly in their exams, so a second classifier was built to use MM 

to classify students as passing or failing the module. This classifier was more 

successful, with an accuracy of 69% in predicting CA grades. This experiment was 

a success in that it found a connection between MM data and stressful lab 

situations (lab exams), and between MM and student outcome, but the resulting 

classifiers could not be used to find students in danger of failing early in the first 

semester. 

The focus of this thesis is to investigate the behaviour of novice programmers, 

so the experiment in Section 5.3 to Section 5.5 uses the data set 2 from semester 1 

in the year 2019/2020, and the HOG classifier described in Section 4.4. This 

experiment differed from the one described in the paper in Section 5.2, in that it ran 

on weekly data sets, not on the full semester data set, because the goal was to find 

early indicators of student outcome. This experiment was less successful than the 

first experiment in Section 5.2 and did not achieve classifier results of higher than 
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57%, nor did the Wilcox Rank Sum Test find a consistent significant difference in 

any feature throughout the semester. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 Paper: What the Mouse Said: How Mouse Movements Can Relate 

to Student Stress and Success 
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Abstract 
Stress in students may be a useful indication for when a student is 

struggling and in need of academic intervention. Investigating differences in 

student behaviour in stressful and comparatively less stressful environments 

could be helpful in understanding the processes involved in learning to code, 

and combatting the high levels of drop-out and failure in undergraduate 

computer science. In this paper we will discuss the mouse movement data 

gathered from Maynooth University Learning Environment (MULE), our in-

house, browser-based pedagogical environment for novice programmers, during 

the time period February to May of 2019. This included 5 supervised, scheduled 

lab sessions and two in-lab examinations. The data was used to examine 21 

different measurements of student behaviour, for example, by measuring 

efficiency of the mouse path, or the time between mouse click-down and mouse 

click-up. These features were used to build a Deep Neural Net that classifies 

sequences of mouse movements as being either from a more stressful 

environment or a less stressful one by training the classifier on data from 

examination situations and regular weekly lab situations, with the goal of 

comparing how students behave in environments with different levels of student 

comfort. The classifiers had an average accuracy of 61.9% but was more 

successful with students who performed poorly in their lab examinations. To 

further examine this connection between mouse movement, stress and student 

outcome, a second classifier was built to classify students as being in the high or 

low 50% of lab-exam grades in the module, with an accuracy of 69%. 

1. Introduction 
In this study we use data collected by Maynooth University Learning 

Environment, or MULE (Culligan, Casey 2018). MULE is an online, browser-

based pedagogical desktop environment which has been used in multiple first-

year coding modules. We received clearance from the University Ethics 

Committee to collect mouse movements from students as they learn to code 

from the 29th of February until the 3rd of May in the Introduction to 

Programming II module (taught in Java) with 250 students completing the 

module. The students were informed about the use of their data and were asked 

to consent at the beginning of the semester. All students who completed the 

module chose to participate in the study. 

Using the mouse movement data collected by MULE, a Deep Neural 

Net (DNN) binary classifier was built to detect if a sequence of mouse 

movements is from a stressful (in-examination) or less stressful environment 

(in-lab). The classifier is not universal. It needs to be trained on a student’s own 

data and does not work on all students. This was expected, as stress and comfort 

are subjective and not all students will experience stress in the same way during 

an examination. Students may also have different mouse use “styles”, which 

makes it harder to generalise mouse behaviour caused by stress. We must also 

consider that some students are not stressed during an examination and may 

even be less stressed  
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than in a normal lab situation. 

The classifier works very well for some students and poorly for others, 

with an average increase of 11%-12% over the accuracy baseline of 50%, an 

average accuracy of 61.9% for classifying both in-lab and in-examination 

sequences. The classifier was moderately successful but interestingly the 

classifier was more successful for students who did poorly in the module. To 

further explore this, we built a second DNN to investigate if the mouse 

movement data could be used to classify students as being in the top or bottom 

50% of module grades. This classifier was more successful than the stress 

classifier, classifying students as being in the top or bottom 50% of the module 

Continuous Assessment grades with an accuracy of 69%, over an accuracy 

baseline of 50%. 

In this paper, the following questions will be explored in relation to the gathered 

mouse movement data. 

1. Are there differences in mouse movement behaviour of students 

between lab and exam situations, and can this be a first step in a 

classifier for stressed students?  

2. Are there differences in student mouse behaviour and stress in 

students in CS1 between students who perform well in-lab examinations 

and written exams, and those who perform poorly? 

The null hypothesis for these questions are as follows: 

1. The results from the Deep Neural Net for classifying sequences of 

mouse movements sequences as being from stressful or not stressful 

environments performed no better, or not significantly better than 

random chance. 

2. The results from the Deep Neural Net for classifying individuals as 

being in the top or bottom performing 50% of students performed no 

better, or not significantly better than random chance. 

2. Motivation and Related Research 
Stress in students may be a useful indication for when a student is 

struggling and in need of academic intervention. Intervention for students 

experiencing unusual amounts of stress could be helpful in combatting the high 

levels of drop out and failure in undergraduate computer science (Beaubouef et 

al, Biggers et al,  Giannakos et al, Hembree et al, Kinnunen et al). This is the 

first of our studies into student behaviour as they learn to code, and in this study 

we focus on mouse movement. There are studies that suggest that mouse 

movement is linked to stress and mood (Sun et al., Wahlström, et al., 

Yamauchi). In this paper, we are interested in examining student mouse 

movement in stressful and less stressful environments to try and gain insight 

into behaviours that indicate stress, and investigate if this is related to student 

performance.  

2.1. Stress Levels in Students 

Computer science courses have been reported to have low levels of 

retention in comparison to other subjects (Giannakos et al., Kinnunen, et al.). 

Research suggests that student comfort is a useful signifier of student success 

and retention (McCracken et al., Tenenberg, et al., Wilson and Shrock), and 

that stressful situations such as examinations can cause a student to preform 

below their ability (Beilock and Carr). 

Beilock and Carr discuss the connection between anxiety and a loss in 

academic performance, and suggest that situation-related worries – such as 

examination stress or anxiety – can result in a loss of focus on task at hand as 

the  
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working memory is occupied. Alternatively, it has also been suggested that 

over-attending to performance, overthinking tasks usually performed 

automatically, can lead to underperforming in an uncomfortable or stressful 

situation. Beilock et al. discuss how a more stressful or anxious state can also 

affect tasks that are usually performed in an automated fashion, without the 

subject thinking too much about it – their paper mentions soccer players’ 

dribbling. We propose that mouse movement could be considered in a similar 

manner. 

Connolly et al. found that in their study of 86 computing undergraduate 

students, 44.4% reported not feeling relaxed when using computers, suggesting 

that research into this area would be beneficial to a significant portion of the 

student population. 

Bergin and Reilly examined 15 factors in predicting if a student is likely 

to pass or fail. One of the most statistically significant factors in predicting 

success was comfort level, in relation to how the student felt about the course. 

This was measured through cumulative responses to questions about the 

students’ understanding and difficulty completing lab assignments. 

2.2. Mouse Movement and Stress 

There is prior evidence of a link between student stress and comfort 

level and their mouse movements. Sun et al. constructed a Mass Spring Damper 

model for the human arm - essentially a model for approximating arm motion 

and stiffness which could be fed with data from mouse movements. Using arm 

stiffness as a proxy for stress in the user, the authors report that their method 

was tested across a variety of prescribed stress tasks. The classifier worked 

when generalised but was more effective when trained and tested separately for 

each user. 

Yamauchi claims there is both psychological and neurological evidence 

to suggest that mouse trajectories can be used to assess affective states, such as 

anxiety. The results of their study show that temporal features, such as speed of 

mouse movement, and spatial features such as direction change were both 

indicative of the user’s state of anxiety. The researchers in this paper ran a 

separate analysis for male and female users and found different indications of 

state anxiety, with female subjects being more inclined to use a less efficient 

mouse path when anxious, and male subjects being more likely to change their 

mouse velocity. 

Kapoor et al. use a specialised pressure mouse with additional sensors 

to detect frustration in subjects as they attempt to complete a towers of Hanoi 

puzzle computer game. The game includes an “I’m frustrated” button for the 

users, which is used to associate behaviour with frustrated state. The resulting 

classifier can predict frustration at an accuracy of 79%, outperforming the 

random classifier (58%). 

3. Research Design 
The goal of this study was to examine the relationship between student 

mouse behaviour, student outcome, and comfort level in students in CS1, an 

introduction to programming module. Using the data from MULE, we 

constructed a Deep Neural Net binary classifier to classify sequences of mouse 

movements as being from a stressful environment or a less stressful one.   

MULE was used to collect mouse movement data from students as they 

learned to code in an authentic learning environment. To use the system, the 

students sign in through their Moodle accounts from any internet browser on 

any machine, they do not need to be in the university computer labs. The system 

is a  
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desktop-like environment simulated within the browser, where they can view 

assignments from a designated application, use a text editor to write code for 

the assignments, and compile, run and automatically evaluate their code, 

receiving a grade and automated feedback if their code has errors. The students 

use the mouse to navigate the system, to open assignments, open the code 

editor, and to save, compile, run and evaluate from drop down menus. As the 

student works, the system automatically stores their mouse movements, along 

with a timestamp and an anonymised user key to allow for cross session 

comparisons. Stored mouse movements are sent to the database every 30 

seconds, or as soon as the user tries to log out or close the system tab. The 

system collects mouse movement data as shown in Table 1. Anonymised data 

on students’ performance in the module was also collected, specifically how 

they performed in the written examination, in weekly labs and in-lab 

examinations. The total number of students who completed the second semester 

was 250, of which 196 are included in this study. We removed data from 

students who did not participate enough for their data to be used in the study, 

including:  

1. Students who did not take both in-lab examinations  

2. Students who did not complete the course  

3. Students who participated in less than two lab sessions  

 

Data Type Description 

userID The anonymous ID assigned to the student  

dumpID The ID of the dump from student session to the database 

sessionID An ID assigned to the session when a student logs in until they log out 

Time Timestamp of when the event took place, not when it was stored 

Type Mousemove, mouseup or mousedown 

X X co-ordinates of the mouse’s current position 

y Y co-ordinates of the mouse’s current position 

Table 1: Mouse movement data features 

Students have labs for 3 hours once a week for 12 weeks per semester. 

The students began using the system in the first semester of the academic year 

2018/2019 and used the system for the rest of the academic year. The mouse 

movement data set we are examining in this paper is from the second semester, 

from the 29th of February until the 3rd of May. This time period includes 5 

regular weekly labs and 2 in-lab examinations. We compare mouse data from 

students in a regular lab situation versus mouse data from an examination 

situation, to examine the differences between coding when in situations with 

different levels of comfort. Both situations are in the same physical space, but 

with different rules. The students are not allowed to speak to each other, ask for 

help from demonstrators or look back at their previous work during the 

examination situation, but are encouraged to do so during regular labs. One of 

the authors worked as a demonstrator in the labs where this research took place 

to ensure the coding environment was working correctly, and to assist the 

students. 

We recorded mouse data from students as they worked in scheduled 

labs, scheduled examinations, and outside of these times. The data from outside 

of the lab is not discussed in this paper. Data outside scheduled labs and 

examinations may be the result of users other than the signed-in student and/or 

very different mouse set up (touch screen, touch pad, or different desk size, for 

example). Students may also be working in very different situations due to 

environmental  
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noise, distractions, or caretaking responsibilities, for example. 

The mouse data from each student is divided into sequences to be 

assessed by the classifier. Each sequence begins with any mouse movement and 

ends with a mouse click-up, and any sequence that is longer than 1450ms is 

rejected to avoid evaluating sequences from when the student is idle. This time 

limit was chosen though trial and error, and found the classifier worked best 

with sequences under this time limit. Tests are run on each sequence to find 

various metrics for the users’ behaviours. Metrics include SequenceSpeed, 

ClickTime and Efficiency. Each sequence also has an identifier, as in-lab, in-

examination or out-lab. Once we have the metrics for each of the sequences, 

they are used to train and test the Deep Neural Net. 

We used a total of 21 different features in our classifier.  

Features  

1. AngleVariance1:  

Finds all the different angle changes from one movement to the next (with 

precision of 2 digits) within a sequence and returns the total number of unique 

angles.  

2. AngleVariance2  

Same as above, but the total number of angles returned.  

3. AngleVariance3  

The ratio of total angles to unique angles.  

4. VarianceDistance1  

Finds the optimal distance between every set of two mouse movements to 1 

decimal place and returns the number of all unique distances.  

5. VarianceDistance2  

Same as above but returns the number of all distances.  

6. VarianceDistance3 

The ratio of all unique distances and all distances in the sequence.  

7. Overshoot-x  

Measures how far a user “overshoots” with the mouse in the direction they are 

moving the mouse in, along the X axis. If a user moves from point a to point b 

within a small window of time, point b being where they click the mouse, if at 

some point during this journey they move further along the x-axis then where 

they ended, this is recorded as an Overshoot-x.  

8. Overshoot-y  

Same as Overshoot-x, but along the y axis.  

9. Overshoot  

The square root of Overshoot-x and Overshoot-y squared and added.  

10. OvershootDirectionAngle  

Finds the angle of the overshoot.  

11. SequenceSpeed  

The total distance travelled divided by the total time.  

12. SequenceDuration  

The time duration of the sequence.  

13. DistanceTravelled  

The true distance travelled during the sequence.  

14. OptimalDistance  

The distance in a straight line between the start and end points of the sequence.  

15. Efficiency  

Optimal distance divided by total distance travelled.  

16. Direction  

The direction from the first point in the sequence to the last.  
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17. DirectionAngle  

The direction angle between the starting point and the ending point of the 

sequence.  

18. AngleDifference  

The absolute value of DirectionAngle subtracted from 

OvershootDirectionAngle.  

19. ClickTime  

The time between click down and click up.  

20. Hesitate  

The amount of time the mouse stalls before the user clicks.  

21. ClickRatio  

This is Hesitate divided by ClickTime 

Yamauchi’s paper ‘Mouse Trajectories and State Anxiety: Feature Selection 

with Random Forest’ found that speed and direction were indicators of a 

subject’s emotional state. Our features are chosen to examine this connection, 

with features such as DistanceTravelled and ClickTime relating to 

speed, and DirectionAngle and OvershootDirectionAngle relating 

to direction. The paper also discusses tracking direction change, x-overshoot, y-

overshoot, which we replicated in our experiment with features such as 

Overshoot-x, Overshoot, DirectionAngle and DirectionAngle. 

Beilock et al discuss how a more stressful or anxious state can also affect tasks 

that are usually preformed in an automated fashion. We investigated this with 

the features VarianceDistance1, VarianceDistance2, 

VarianceDistance3, to give us insight into how much the subject changed 

their speed, and the features AngleVariance1, AngleVariance2 and 

AngleVariance3 to investigate how often the subject changed direction, 

perhaps due to confusion or indecisiveness as a result of stress or discomfort. 

As per Sun et al., we trained our classifier per user, instead of building a 

generalised stress classifier. Our initial experiments involved a general classifier 

using a large subsection of the data from all students, but this classifier did not 

perform significantly better than random chance. To build a classifier for a user, 

we selected all the sequences from in-examination, and then a random selection 

of sequences of an equal amount from in-lab, or vice-versa, depending on the 

imbalance of data categorised as in-lab or in-examination. The features we get 

from the mouse movements of each student are then used to train and test a 

deep neural net, built in Python using TensorFlow (Abadi, Martín, et al.).  

For most students, we have much more in-lab data than in-examination, 

so we take a random sample of the in-lab data equal to the size of the in-

examination data. We used TensorFlow’s DNNclassifier module, with 3 hidden 

layers of 10 units, a batch size of 5 and 2000 epochs. The classifier outputs a 1 

if the mouse movement sequence is classified as in-lab and 0 if the sequence is 

classified as in-exam. When running the classifier for each student, we wanted 

to ensure that the results were not due to chance, or a “lucky” selection of test 

data from the total data set. To combat this, we selected a subsection of the data 

as test data, and rejected it if it was not 50/50 in-lab and in-exam, again to avoid 

good results that are just the result of a classifier only choosing one 

classification, regardless of feature input. To check that the variance for the 

classifier results was low, and we were not reporting outliers, the classifiers 

were run in sections of ten, and the variance within results was checked. The 

variance for all users was 0.05 or less, with one exception that had a larger 

variance of 0.13. We performed multiple sets of ten, checking the variance on 

the cumulative results. For each student, the classifier was run 60 times, with a 

different random division of  
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training and test data with no increase in variance over 0.016 between the first 

10 and the final 60. 

4. Discussion of Classifier Performance 
The classifier works very well for some students and poorly for others, 

with an average increase of 11% to 12% over the accuracy baseline and an 

average accuracy of 62.9% for classifying both in-lab and in-examination 

sequences. However, for some students that performed poorly in their lab 

examinations, we found the classifier could work 30% over baseline. On 

examination of the results, it became apparent that the classifier was more 

successful with the students who performed poorly in the module than those 

who performed well. One of the possible reasons for student stress during 

exams is that they may be unable to use their usual method of solving coding 

problems. Some students will take previously written code, copy it and rewrite 

it to complete the given task. During exams the students no longer have access 

to their previous code. They may panic when they find they cannot use their 

usual strategy (though they are informed beforehand of the format and rules of 

the exam), or they may be experiencing additional strain on their working 

memory. This strain may come from the extra work now being performed by 

the student. For example, they can’t copy a while loop from previous work, so 

instead they struggle to remember how to write one. The student is not 

comfortable and familiar with the computer science concepts needed to 

construct the code to solve the exam question and has been relying on 

‘tinkering’, a technique used by students as described by Perkins et al. and 

Jadud. 

4.1. Stress Classifier 

When examining the results of the classifiers, differences between the 

high-performing and low-performing students became apparent. Table 2 shows 

the average classifier of two groups, the top 50% of grades and bottom 50% of 

grades. This was done for Continuous Assessment, written exam and total 

module grade, and repeated with the top and bottom 40%, 30%, 20% and 10%.  

 Module 

High 

Module 

Low 

Written 

Exam 

High 

Written 

Exam 

Low 

CA High CA Low 

50% 61.875% 62.7913% 61.3518% 62.627% 60.8315% 63.1473% 

40% 60.8037% 62.6183% 61.1019% 61.949% 60.7157% 63.8293% 

30% 60.1556% 62.6878% 60.9173% 62.6955% 59.7906% 63.9333% 

20% 60.0027% 62.5255% 59.8544% 62.8666% 59.7657% 63.4562% 

10% 58.8089% 62.8847% 58.2153% 62.643% 59.4642% 65.3041% 

Table 2: Comparison of the high and low performing students 

In all groups, and with all three grade types, the lower grades group 

have more successful classifiers, with the difference becoming more 

pronounced as we look at smaller subsections. We suspect that the reason 

students in the lower-grade groups are easier to classify is because these 

students may experience additional strain when writing code, perhaps due to 

exam anxiety, or a lack of comfort with the material. In the paper “On the 

causal mechanisms of stereotype threat: Can skills that don't rely heavily on 

working memory still be threatened?”, Beilock, et al. claim that while 

overloaded working memory does not directly affect procedural skills because it 

is not reliant on working memory, over-attention to procedural skills does 

impact the subject’s performance – a  
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worried student may overthink their behaviour, causing changes in their mouse 

movement. 

4.2. High Low Grade Classifier 

We were interested in the possible connection between mouse movements 

and student grades, from the apparent relation between classifier success and 

the students’ performance in the module shown in Table 2. We suspected that 

the results indicated a relation between mouse movements, specifically 

indications of stress in exams, and student grades. There is previous work 

(Casey) to suggest that low-level keystroke data can be used to improve grade 

classifiers, so we wanted to examine if mouse movement data could also be 

used.  To investigate this, a trio of DNN classifiers were created to predict the 

outcome of students in: 

1. Continuous Assessment (coding exercises, and lab exams),  

2. End of year written exams  

3. The module overall.  

The DNN uses the same configuration as the stress classifier. We tried 

other configurations, including increasing the number of hidden units, but found 

this was the most successful setting. The DNN classifies each student into one 

of two categories – either the higher or lower 50% of the class, divided by the 

results in order. For this dataset we calculated the average of each of the 

features in the table for in-lab and out-lab. We found this gave the best results, 

possibly because the indicator of a student who does well or poorly is the 

difference, or the similarity of the behaviour between regular labs and exams, in 

line with the findings that the students who did poorly were more easily classed 

by the classifier.  

 

Grade Higher 50% Lower 50% Classifier Results 

Written Exam 63% and over 61% and under 0.588333333 

Module Total 59% and over 58% and under 0.656666667 

Continuous 

Assessment 

54% and over 53% and under 0.693333333 

Table 3: Results of classification 

Like the previous classifier, the high/low classifier was run 60 times, 

each time randomly selecting the training set and the testing set. Like the stress 

classifier, the randomisation was written to ensure that the testing data set 

would always be 50% from each classification, to avoid misleadingly high or 

low results from a classifier only choosing one classification. 

5. Discussion of Research Questions 
1. Are there differences in mouse movement behaviour of CS1 students 

between lab and exam situations, and can this provide insight to the 

different comfort levels experienced by students in these environments?  

The DNN classifier was mildly successful, implying that there is at least 

a weak link between mouse movement and comfort level. Students may still be 

stressed in lab situations, but because the classifier was more successful with 

students who did poorly in their lab examinations, we believe this is evidence 

that the classifier works as an indicator of stress – we believe that students who 

are taking examinations that they are not doing well in are more likely to be 

experiencing stress than others. We can reject the null hypothesis, as the 

classifier is more successful than a random chance classifier.  
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2. Are there differences in student mouse behaviour and comfort level 

in students in CS1 between students who perform well in-lab 

examinations and written exams, and those who perform poorly?  

The classifier is more effective with students who perform poorly than 

those who perform well. We would expect students who do poorly in the 

module to be more stressed in examinations than students who are comfortable 

with the material and are performing well. To examine this further we built a 

second DNN classifier and found that we were able to classify students into 

high/low performing groups with 69% accuracy. We reject the null hypothesis 

as the high/low classifier is more successful than random chance. 

6. Conclusions and Future Research 

In this paper, we have reported on the construction of a moderately 

successful Deep Neural Net that classifiers sequences of mouse movements as 

being from a stressful or less stressful environment. While other researchers 

have published work on the connection between mouse movements and stress, 

to our  

knowledge this is the only study of mouse movements and stress that uses 

mouse data gathered outside of closed experimental environments. From the 

analysis of the results, we found a connection between mouse movements and a 

student’s grades, especially grades for practical coding assignments. 

The classifiers in their current state are not a useful mechanism for 

detecting stress in students, or for predicting if students will be in the high or 

low 50% of grades. However, in the construction of these classifiers, we have 

found mechanisms that will contribute to the construction of models of 

successful students, and classifiers for students in need of academic 

intervention. This study is part of a larger project to examine the relationship 

between student behaviour when learning to code and student success and 

retention. Our coding environment gathers data beyond mouse movement, 

including keystrokes, compilation and run results, and returned errors. Other 

research in this area has used data such as keystrokes to predict student outcome 

(Casey), and from our work in this paper, which suggests a connection between 

student success and comfort-level, we believe this data will give further insight 

to student behaviour in stressful situations. Further work can be done in relation 

to the mouse analytics performed so far. We are currently refactoring our 

recording of mouse data so that we can capture additional data in order to attach 

more meaning to mouse sequences. This would, for example, allow us to 

distinguish between a mouse sequence that led to a file being saved, versus a 

mouse sequence that led to a compilation of student code. 

We believe there is huge potential for study of this data, which is 

gathered from an authentic learning environment, as students learn to code. 

With continued research, we plan to build a larger model of the behaviour of 

novice programmers as they learn to code, with the potential for an integrated 

classifier in our coding environment that will alert course coordinators to a 

student in need of intervention. We hope the construction of a model of 

successful students will be a useful way to inform and build curriculums that 

best help students achieve their potential.  
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In this section, the pilot study using the MM data from data set 1 is 

reprinted. The rest of this chapter describes the study with this MM data using the 

data set 2, which is the same data set used in the experiments in Chapter 6,7, and 8. 

5.3 Mouse Movement Features 

The data set used in the following analysis and classifiers are the MM data 

from data set 2, described in Section 4.1.2. The data sets consist of ten sets of data 

for each student, one for each of the weekly labs. For each student, the data set 

contains the average of each of the metrics described below for that week. This 

differs from the original paper in Section 5.2, in that:  

1) The data from the paper is from the second semester of the academic year 

2018/2019, so the students in this data set have some university 

experience. The data from this section is from the first semester of the 

academic year 2019/2020, so the students are novice programmers. 

2) The metrics used in the original paper are: 1) the overall average of non-

exam lab sessions and 2) the overall average of exam sessions. The metrics 

from this section are the averages from each of the ten weekly lab sessions. 

The MM are used to generate various metrics about the user’s behaviour. The 

full list of metrics can be seen in Section 5.2:3 Research Design. Some of the more 

relevant metrics, according to the tests in Section 5.4, are as follows: 

1. Overshoot-x  

This metric measures how far a user “overshoots” with the mouse in the 

direction they are moving the mouse in, along the X axis. If a user moves from 

point A to point B within a small window of time, point B being where they click 

the mouse. If at some point during this journey they move further along the x-axis 

than where they ended, this is recorded as an Overshoot-x.  

2. Overshoot-y  

This metric is the same as Overshoot-x, but along the y-axis.  

3. Overshoot  

This metric is the square root of Overshoot-x and Overshoot-y squared and added.  

4. OvershootDirectionAngle  

This metric is the angle of the overshoot.  

5. SequenceSpeed  

This metric measures the total distance travelled divided by the total time.  
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6. OptimalDistance  

This metric is the total distance in a straight line between the start and end points of 

the sequence.  

7. Efficiency  

This metric measures the optimal distance divided by total distance travelled. 

8. Direction  

This metric is the direction from the first point in the sequence to the last.  

9. ClickTime  

This metric is the time between click down and click up.  

These metrics are calculated from a mouse movement sequence, which is 

any sequence of mouse movements that ends with a mouse click-up (when the 

mouse button is released) and is shorter than 1450ms. The time 1450ms was 

chosen through trial and error in the paper in Section 5.2. Unlike the stress 

classifier from the paper in Section 5.2, the goal of this experiment is not to 

classify individual sequences from throughout the entire semester, but to classify 

students, on a week-to-week basis. So, like in the pass/fail classifier in the paper in 

Section 5.2, the metrics for the classifier are the average of all the sequences from a 

single lab, and a single student. This results in 21 input features for each lab for the 

Neural Network classifier, a total of 210 input features.  

5.4 Mouse Movements Analysis and Neural Network 

Each of the three data types in this project, as presented in Section 4.2, are 

examined using the same HOG classifier methodology. However, when this 

methodology was used on the MM data, there was a problem - the Linear 

Regression tests returned very few positive results, implying the MM and student 

outcome were not correlated. It may be that the success of the classifier in the 

published paper was due to the difference in behaviour in normal labs and in exam 

labs, or that there is a larger difference in the MM data between the two student 

groups in the second semester than in the first semester, perhaps due to increased 

stress.  

The goal of this analysis was to examine when the student’s behaviour 

begins to diverge between the successful and unsuccessful students on a week-to-

week basis, and so the original method of processing data does not work for these 

purposes. To compensate for this, the threshold for correlation was set to -0.1, as 
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this was the highest threshold that would allow for enough data for the weekly 

Neural Networks to run. 

5.4.1 Wilcox Rank Sum Test 

In this section, the most relevant results of the Wilcox Ranks Sum Test are 

presented. The metrics are described in Section 5.3, and the full tables of results 

can be seen in the Appendix Section 10.3. As described in Section 4.3.1, a result of 

less than 0.05 is considered significant and is in bold. The tests comparing the top 

50% and the bottom 50% of the grades for CA are shown in Tables 5-1 and 5-2 for 

the most significant features. 

5.4.1.1 CA 

In this section, the results of the Wilcox Rank Sum Test for the MM data, 

comparing the top and bottom 50% of the class according to the CA grades, are 

presented. In Table 5-1, we see that the relevant features for the first four weeks are 

DIRECTION, OPTIMAL_DISTANCE, CLICKTIME, HESITATE and 

CLICKRATIO. Each of these features is only relevant for one of these four weeks, 

so it may be possible the results are due to chance. The full tables can be seen in 

the Appendix Section 10.3.1. in Table 10-1, Table 10-2, and Table 10-3. 

Lab 1 2 3 4 

DIRECTION 0.029588 0.212553 0.196411 0.017461 

OPTIMAL_DISTANCE 0.784908 0.942278 0.929454 0.012592 

CLICKTIME 0.280768 0.028114 0.560714 0.626366 

HESITATE 0.114143 0.023804 0.073371 0.823879 

CLICKRATIO 0.215464 0.003706 0.078136 0.9681 

Table 5-1: MM Wilcox Rank Sum Test CA for Week 1 to 4 

In Table 5-2, there are 14 relevant features, an increase from the five in the 

four weeks shown in Table 5-1. Some of the features in Table 5-1 are also present 

in Table 5-2: OPTIMAL_DISTANCE, CLICKTIME, and CLICKRATIO. Week 7 

has a total of 10 significant features, implying that by Week 7 there is some 

divergence in student MM behaviour between the two groups. 

The Table 5-3 shows the significant features from Week 8 to Week 10. 

None of the features present in both Tables 5-1 and 5-2 are significant in this table. 

However, we do see a large number of relevant features in Week 8, a total of six. 
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Lab 5 6 7 

EFFICIENCY 0.015108 0.740481 0.009588 

DIRECTIONANGLE 0.687177 0.03941 0.972124 

OVERSHOOTDIRECTIONANGLE 0.961894 0.000429 0.000973 

OVERSHOOTY 0.509035 0.292012 0.018673 

OVERSHOOT 0.51013 0.285189 0.016298 

SEQUENCE_DURATION 0.357729 0.023814 0.769529 

DIRECTION 0.652375 0.265013 0.019592 

OPTIMAL_DISTANCE 0.012978 0.271141 0.192956 

VARIANCE1 0.019584 0.555292 0.033115 

VARIANCE2 0.354173 0.267524 0.06174 

VARIANCEDIST1 0.025512 0.795275 0.019036 

VARIANCEDIST3 0.048165 0.168897 0.972124 

CLICKTIME 0.594471 0.13252 0.01131 

CLICKRATIO 0.164852 0.383295 0.016139 

Table 5-2: MM Wilcox Rank Sum Test CA for Week 5 to 7 

Lab 8 9 10 

EFFICIENCY 0.01516 0.031693 0.141307 

OVERSHOOTX 0.004262 0.113071 0.221358 

SEQUENCE_SPEED 0.013254 0.109021 0.10326 

OVERSHOOTDIRECTIONANGLE 0.003856 0.746383 0.004045 

OVERSHOOTY 0.151661 0.029468 0.821522 

OVERSHOOT 0.146422 0.028147 0.844168 

ANGLEDIFFERENCE 0.020005 0.045101 0.160813 

DIRECTION 0.067285 0.743648 0.043685 

VARIANCE1 0.023864 0.991351 0.234068 

Table 5-3: MM Wilcox Rank Sum Test CA for Week 8 to 10 

The results of the Wilcox Rank Sum Test in this section do not show any 

clear divergence in MM behaviour in any one feature consistently throughout the 

semester. However, there are some interesting results, such as the high number of 

significant features in Week 7.  
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5.4.1.2 Written Exam 

In this section, the results of the Wilcox Rank Sum Test for the MM data, 

comparing the top and bottom 50% of the class according to the Written Exam 

grades. The full tables can be seen in the Appendix Section 10.3.2 in Table 10-4, 

Table 10-5, and Table 10-6. 

Lab 1 2 3 

DIRECTION 0.03914 0.533739 0.310773 

CLICKRATIO 0.475342 0.024542 0.150893 

Table 5-4: MM Wilcox Rank Sum Test Written Exam for Week 1 to 3 

In Table 5-4, we can see that there are only two significant features for 

Week 1 to Week 3: DIRECTION and CLICKRATIO. 

Lab 4 5 6 

OVERSHOOTDIRECTIONANGLE 0.610436 0.937438 0.01481 

SEQUENCE_DURATION 0.628833 0.263724 0.027804 

OPTIMAL_DISTANCE 0.087417 0.006531 0.769646 

VARIANCE2 0.223559 0.033498 0.603226 

VARIANCEDIST1 0.186354 0.013678 0.938154 

VARIANCEDIST2 0.223559 0.033498 0.603226 

HESITATE 0.81172 0.07292 0.007423 

CLICKRATIO 0.54628 0.025851 0.039092 

Table 5-5: MM Wilcox Rank Sum Test Written Exam for Week 4 to 6 

In Table 5-5, the significant results for Week 4 to Week 6 are presented. 

There are no significant results in Week 4, but there are a total of five significant 

results in Week 5, and four in Week 6. CLICKRATIO is significant in both Table 

5-4 and 5-5, in Week 2, Week 5, and Week 6. 

In Table 5-6, there are eight significant features in Week 7, similar to what 

was seen in Table 5-2, again suggesting there may be some divergence in student 

behaviour in Week 7 in the two groups. Six of these features are significant in both 

the CA and Written Exam tests, including OVERSHOOTDIRECTIONANGLE, 

OVERSHOOTY, DIRECTION, CLICKTIME AND CLICKRATIO. Week 8 has 

seven relevant features, some of which are also significant for Week 7, including 

OVERSHOOTDIRECTIONANGLE and DIRECTION, both of which were also 

relevant in Week 7 in the CA results. 
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Lab 7 8 9 10 

EFFICIENCY 0.053057 0.015793 0.243869 0.193793 

OVERSHOOTX 0.031453 0.0259 0.466534 0.337519 

OVERSHOOTDIRECTION 

ANGLE 0.005802 0.009798 0.963972 0.257123 

OVERSHOOTY 0.042232 0.094216 0.020249 0.726642 

OVERSHOOT 0.038224 0.094216 0.01911 0.704971 

ANGLEDIFFERENCE 0.391185 0.029862 0.205317 0.254914 

DIRECTION 0.010417 0.015633 0.554644 0.315411 

VARIANCE1 0.011661 0.008744 0.919408 0.773659 

VARIANCEDIST1 0.019036 0.030427 0.955334 0.206768 

CLICKTIME 0.031453 0.387216 0.574179 0.875254 

HESITATE 0.289976 0.382132 0.022279 0.138475 

CLICKRATIO 0.002758 0.067007 0.189006 0.099411 

Table 5-6: MM Wilcox Rank Sum Test Written Exam for Week 7 to 10 

In the tables in this section, it can be seen that there are some differences 

between the top and bottom student groups in some of the features, implying a 

difference in MM between the students who did well and those who did not, 

although there is not enough consistency to state which features are where the 

divergence happens. 

5.4.2 Linear Regression 

Linear Regression was used to check for correlations between MM features 

and student outcome, both CA results and Written Exam results. Almost no 

individual feature returned a positive regression score, showing a lack of 

correlation between MM and student outcome. The full table of Linear Regression 

scores can be seen in the Appendix Section 10.4. 

5.4.3 Neural Networks 

The HOG classifier does not work well with the MM data. Though there 

was some success with predicting student outcome from MM data in the paper in 

Section 5.2, this does not translate to the HOG classifier. In the experiment 

described in the paper, the best results came from using both in-lab and in-exam 

data, and it may be that the success of the classifier was due to the difference or 

lack of difference between those features, but this classifier does not replicate that.  
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Very little of the MM data has a Linear Regression coefficient of over 0 in 

the Linear Regression tests as explained in Section 5.4.2, so the HOG method of 

selecting features meant that very few of the metrics were used in the classifiers, 

with no metrics selected for larger thresholds. In an attempt to find some data to 

use with the HOG classifier, the Linear Regression threshold was reduced to -0.1, 

but the resulting classifier never achieved more than an average of 57% for any 

week. The results of the -0.1-threshold classifier can be seen in the Appendix 

Section 10.5. In summary, the Neural Networks using data set 2 were unsuccessful, 

due to a lack of high coefficients of over 0, and the attempt to use features with 

coefficients of over -0.1 did not create a useful Neural Network classifier. 

5.5 Mouse Movements Week-by-Week 

Week 1 

There are already signs of differing behaviours in MM from the first week 

of labs, as the Wilcox Rank Sum Test shows significant differences in the 

DIRECTION feature of the higher and lower achieving groups, for both CA and 

Written Exams. As this is the first time the students used the system, this might 

simply reflect that some students are more comfortable adapting to the use of new 

technology than others. 

Week 2 

By Week 2, the number of significant features from the Wilcox Rank Sum 

Test increases to three, and the differences are found in CLICKTIME, HESITATE, 

and CLICKRATIO in CA groups, and only CLICKRATIO in the Written Exams. 

This week is the one of only three that had any Linear Regression coefficients of 

over 0 in the Written Exam results, the three features are CLICKTIME, 

HESITATE and CLICKRATIO, the same three features with significant 

differences in the Wilcox Rank Sum Test this week. The classifier accuracy result 

for CA this week is 50.8%, with 16 False Passes out of 50 students, 25 of which 

were passes and 25 were fails. A classifier with around 50% accuracy works as 

well as a random classifier, and so is unsuccessful. The classifier accuracy for 

Written Exam is 50%, and it has 15 False Passes. 

Week 3 
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There are no significant differences in the Wilcox Rank Sum Test for 

Week 3 for CA or Written Exams. The CA classifier has an accuracy of 56%, and 

12.4 False Passes. The Written Exam classifier has an accuracy of 49%, and 11.6 

False Passes. 

Week 4 

Like in Week 1, there is a significant difference in CA in the average 

direction of the two groups, but also in the OPTIMAL_DISTANCE, but there are 

no differences in the Written Exam results. The CA classifier had an accuracy of 

55% and 15.3 False Passes, and the Written Exam result has an accuracy of 46% 

and 14.5 False Passes. 

Week 5 

In Week 5, there is an increase in the number of features with significant 

differences between the groups. In this week, EFFICIENCY, VARIANCE1, 

VARIANCEDIST3, are significant for CA, while VARIANCE2, 

VARIANCEDIST1 and CLICKRATIO are significant for Written Exam. 

OPTIMAL_DISTANCE, (like in Week 4 for CA) and VARIANCEDIST1 are 

significant for both. The classifier has an accuracy of 54.5% and 13.55 False 

passes, and the Written Exam classifier has an accuracy of 47% and 13.75 False 

Passes. 

Week 6 

In Week 6, only three features are significant in CA groups and four in the 

Written Exam, despite it being an exam week, when we expected to see differences 

in student behaviour and therefore more significant features in the Wilcox Rank 

Sum Test. The differences are in DIRECTIONANGLE in CA, and HESITATE, 

CLICKRATIO (like Week 5) in Written Exam, and 

OVERSHOOTDIRECTIONANGLE and SEQUENCE_DURATION in both. 

OVERSHOOTDIRECTIONANGLE also had a positive coefficient in the Linear 

Regression tests this week. The classifier has an accuracy of 55%, and 11.1 False 

Passes, and the Written Exam classifier has an accuracy of 46% and 14.8 False 

Passes.  

Week 7 

Week 7 has the most significant differences of all the weekly Wilcox Rank 

Sum Tests, a total of 10. The differences are in EFFICIENCY (like in Week 5) 

OVERSHOOTDIRECTIONANGLE, OVERSHOOTY, OVERSHOOT, 
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DIRECTION (like in Week 1 and 4), in VARIANCE1 (like Week 5), 

VARIANCE2, VARIANCEDIST1 (like Week 5), CLICKTIME (like Week 2), and 

CLICKRATIO (like Week 2). The Written Exam results have eight relevant 

features, the most of any week in the Written Exam tests. The features are: 

OVERSHOOTX, OVERSHOOTY, OVERSHOOTDIRECTIONANGLE, 

DIRECTION, VARIANCE1, VARIANCEDIST1, CLICKTIME, and 

CLICKRATIO. CLICKRATIO also had a very slight positive coefficient this week 

of 0.015701 in the Linear Regression tests.  This CA classifier has an accuracy of 

56%, and a False Pass rate of 13.2, and the Written Exam classifier has an accuracy 

of 49% and 13.45 False Passes. 

Week 8 

Week 8 has six significant features, efficiency (like in Week 5 and 7), 

OVERSHOOTX, SEQUENCE_SPEED, OVERSHOOTDIRECTIONANGLE (like 

Week 6 and 7), ANGLEDIFFERENCE, and VARIANCE1 (like Week 5 and 7). 

This week has seven significant features for Written Exam: EFFICIENCY, 

OVERSHOOTX, OVERSHOOTDIRECTIONANGLE, ANGLEDIFFERENCE, 

DIRECTION, VARIANCE1 and VARIANCEDIST1. The CA classifier has an 

accuracy of 51%, and 21.8 False Passes and the Written Exam has an accuracy of 

46.8% and 16.75 False Passes. 

Week 9 

Week 9 has four significant features, EFFICIENCY (like Week 5, 7, and 

8), OVERSHOOTY (like Week 7), OVERSHOOT (like Week 7) and 

ANGLEDIFFERENCE (like Week 8).  The Written Exam groups have only three 

significant features: OVERSHOOTY, OVERSHOOT and HESITATE. This week's 

CA classifier has an accuracy of 49%, and a full 25 False Passes, meaning every 

Fail is classified as a pass. The Written Exam classifier has an accuracy of 48.6% 

and has 20.85 False Passes. 

Week 10 

This week only has two significant features: 

OVERSHOOTDIRECTIONANGLE (like Week 6,7, and 8) and DIRECTION (like 

in Week 1, 4, and 7), and no significant features for the Written Exam groups. This 

week's CA classifier again has an accuracy 49%, and a full 25 False Passes out of 

25 Fails, meaning every Fail is classified as a pass. The Written Exam classifier has 

an accuracy of 48.5% and has 20.3 False Passes. 
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5.6 Mouse Movements Conclusions 

While correlations seem to exist between MM data and student outcome in 

semester two, when looking at the average of student behaviour in ordinary lab 

sessions and exam sessions, these correlations are not apparent when using the 

HOG classifier to examine the data on a week-to-week basis. This means it was not 

possible to draw any conclusions on the divergence of student behaviour from the 

results of the classifiers. It is unclear why the semester 2 classifier in Section 5.2 

was successful and the semester 1 classifier was not. It may be because the students 

do not show signs of stress until the second semester. It seems more likely that the 

reason is that the original semester 2 classifier used the average of the values of 

features from all in-lab and in-exam sequences across the semester, while the 

semester 1 classifier divided the data into weeks. It may be that the resulting 

success was due to the difference in behaviour between the two states: in-exam and 

in-lab. 

Although the Neural Network was unsuccessful, there is evidence of a 

divergence of student behaviour, especially in Week 5 and 7 from the Wilcox Rank 

Sum Test, suggesting that these may be key stages in the Introduction to 

Programming module. However, very few of the features that show significant 

results are consistent throughout the semester, and so the results may be 

coincidence. The only features that have any consistency are DIRECTION, 

EFFICIENCY, OVERSHOOTDIRECTIONANGLE, and CLICKRATIO, which 

all have significance in four labs for CA or Written Exam tests. CLICKRATIO also 

has two of the very few positive Linear Regression results. Despite the 

disappointing results from the data with the HOG classifier, it has been shown that 

the data has value in building a Pass/Fail classifier from the paper in Section 5.2, 

and possible value as a stress detector, as it has some success in classifying 

students as being in a stressful (exam) environment or in a less stressful (normal 

lab) environment, but this requires more research. 
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6. Experiment 2: Compile, Run, and Evaluate 

(CRE) Movements 

6.1 Introduction to CRE Experiment 

In this chapter, the paper describing the first experiment using the CRE data 

and a prototypical HOG classifier system is reproduced, in Section 6.2. The 

remaining sections of the chapter explore the results of using the same 

methodology used in the Chapters 5 and 7 with the CRE data. 

There is previous work that examined and found statistically significant 

differences between students with and without programming experience in their 

behaviour, including the number of runs and tests while working on their code 

[31], tests being similar to MULE’s evaluate. They also found that these 

differences lessened in the final weeks of the semester (of 12 weeks), suggesting 

the behaviours are signs of programming proficiency. 

In the MULE system, the users write code to answer their coding assignments, 

which they can then compile, run, and evaluate. In this section, we examine the 

patterns in which students run, compile, and evaluate and how this relates to 

student exam outcome.  

This experiment is similar to the one described in the paper in Section 6.2 [58], 

but the experiment was rerun to conform to the HOG classifier methodology, and 

to include the Wilcox Rank Sum Test. The classifiers in this thesis predict student 

outcome in the final Written Exam and in CA, whereas the classifier in the paper 

only predicted the outcome of the in-lab formal coding exams. The classifier in the 

paper achieves a highest accuracy of 78% in Week 8, slightly higher than this 

experiment’s highest accuracy of 76.7%. However, the experiment in Section 6.3 

to Section 6.6 has more success in earlier weeks, for example, the classifier 

achieves an accuracy of 73% in Week 5, slightly higher than the papers highest 

early semester accuracy of 70%, and the experiment also classifies students by 

Written Exam outcome and achieved an accuracy of 78% in Week 9.  

6.2 Paper: Exploring the Coding Behaviour of Successful Students in 

Programming by Employing Neo-Piagetian Theory 
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Abstract 
We have collected data from approximately 300 students in their third-level first 

year Introduction to Programming module as they learn to write code using our 

in-house pedagogical coding environment, MULE. This data includes 

performance in lab exams and pseudocode questions, and data on code 

compiled, code run, and code evaluated, which we call CRE data. Evaluations 

are automatically graded and feedback is provided to students on their code. 

The student can only evaluate their code in the scheduled lab place and times 

but can evaluate as many times as they wish without penalty. The pseudocode 

questions are used to examine the students’ understanding of programming 

concepts, by removing the use of the compiler and comparing their performance 

in pseudocode questions to CRE data. Using a Neo-Piagetian framework, we 

examine pseudocode performance, lab exam performance and programmer 

behaviour in terms of CRE data. We investigate CRE data as signs of a 

student’s progression through the three stages of Piagetian understanding and 

build a series of Deep Neural Net binary classifiers to test if this passively 

collected behavioural data can be used to detect students in danger of failing. 

1. Introduction 
Computer Science has one of the highest failure and dropout rates in 

3rd level education (Bennedsen, & Caspersen, Corney et al. 2010, Lang et al., 

Watson & Li). In this paper, we will investigate if students in introductory 

computer science courses are failing to reach the later stages of Neo-Piagetian 

understanding, and if we can investigate and observe signs of these stages 

through passive data collection, and the results of pseudocode tasks in the 

weekly practical coding labs. The research question for this study is: 

▪ Can we observe signs of progression through the Neo-Piagetian stages 

of learning by examining passively collected data on students’ coding 

behaviour?  

The coding behaviour data we discuss in this paper is the order in which 

students compile, run, and evaluate their code. Evaluation provides the student 

with automatic grades and feedback. The students use the pedagogical coding 

system MULE to complete their weekly coding tasks. In this system, students 

are unable to run their code until they have successfully compiled and cannot 

evaluate their code until it has run successfully. 

In the doctoral thesis “Neo-Piagetian Theory and the Novice 

Programmer” (Teague), the author states that “Programming competence 

requires abstract reasoning skills and learning to program is about the 

sequential and cumulative development of those abstract reasoning skills in an 

unfamiliar domain.” We wanted to introduce pseudocode questions into our 

first-year curriculum to encourage students to build mental models of  
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programming concepts by requiring students to predict code output, without 

relying on the compiler. These pseudocode questions are English language 

representations of code that cannot be run with a compiler but represent 

programming concepts such as loops and arrays (Lopez et al.). With 

pseudocode, we can see if the students can abstract the concepts away from 

Java and apply what they have learned in class in a much more generalised way. 

This is useful as if the students are able to do so, they are more likely to be able 

to reuse the skills and apply them in a variety of ways, instead of memorizing 

and replicating techniques they have used in the past.  

In this paper, we will discuss our findings when investigating CRE data 

in weekly labs as students graduate from random/loosely guided “tinkering” to 

more intentional code-writing. While previous work has discussed “tinkering” 

as a viable method of learning programming, we will discuss if this is true 

throughout the first semester, or if CRE data that implies an over-use of 

tinkering is in fact an indication that a student is not developing a good mental 

model of fundamental programming concepts and is therefore in danger of 

falling behind. 

2. Related Research 
2.1. Student Behaviour when Learning to Code 

There have been numerous studies that investigate novice programmer 

behaviour such as patterns of compilation and running of code and how it 

relates to student success.  

Perkins et al., investigate the different strategies that novice 

programmers adopt when learning to code, and describe what they term 

“stoppers”, “movers”, and “extreme movers”. “Stoppers” are novices who, 

when faced with a problem without a clear course of action, stop attempting to 

find a solution to the problem and appear to be unwilling to explore the problem 

any further. “Movers” are novices who will constantly modify and test their 

code when faced with a problem. “Extreme Movers” will also constantly 

modify and test their code but are different from movers in that they do not 

seem to learn from attempts that previously did not work, and they do not 

continue to work on solutions that fail the first time so do not end up “homing 

in” on a working solution. The authors do not specifically speak about how 

these different patterns relate to compilation and run behaviour, but the below 

papers do touch on it in direct reference to this study.  

Two papers on the programming environment BlueJ (Jadud, 2005, 

Jadud 2006) discuss the behaviours of the authors’ students, and how similar 

their students’ behaviours are to those in the above Perkins et. al. paper. They 

discuss their own “extreme movers”, which they describe as “tinkerers”, and 

how these students would sometimes allow their experimental code to 

accumulate, causing their code to become increasingly complex and, eventually, 

incomprehensible. The BlueJ studies found that 24% of all compilation events 

followed less than 10 seconds after a previous compilation, and half of all 

compilation events occurred less than 40 seconds after a previous compilation. 

Students spent more time working on their code after a successful compilation 

than they did trying to fix a syntax error. The authors found that students tend to 

program in large blocks, then spend time writing and compiling code in small  
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bursts in order to fix syntax errors. Accordingly, multiple compilations may 

indicate a large number of syntactic problems. 

In “Studying the Novice Programmer” (Soloway & Spohrer) the authors 

discuss the need for students to build plans. As mentioned above, students who 

tinker aimlessly create bugs, and without clear goals may fail to progress 

towards a working solution. The authors used natural language to investigate if 

students with plans, broken into small tasks, are more successful when 

programming.  

In “Analysis of Code Source Snapshot Granularity Levels” 

(Vihavainen) the author discusses the ratio of “snapshots to submissions”, 

where a snapshot is a copy of the code taken every time the student saves, 

compiles, runs, or tests their code. Submissions are final versions of a program 

submitted for correction/grading, provided by a plugin for NetBeans that 

provides feedback and grading to the student. Using a Wilcoxon rank sum test, 

the authors found a statistically significant difference between the number of 

runs and tests for students with previous programming experience and those 

without. This difference continued to be visible throughout the course, although 

the behaviour of the participants was more alike in the final weeks of the 

course, perhaps implying that these behaviours are indicators of programming 

proficiency.  

One of the research questions in the paper “Evaluating Neural Networks 

as a Method for Identifying Students in Need of Assistance” (Castro-Wunsch) is 

“Are neural network (NN) models appropriate for the task of identifying 

students in need of assistance?” The authors found that, yes, neural networks 

predicted at-risk students at least as well as Bayesian and decision tree models, 

and had the advantage of being “pessimistic”, meaning that the neural networks 

were more likely to incorrectly classify students as at-risk, rather than 

incorrectly classify students as not at-risk. From this research, we decided to use 

neural networks as our classifier. 

2.2. Neo-Piagetian Theory and Abstraction in Programming 

There are also a number of studies that use Neo-Piagetian theory in 

examining student behaviour in computer science and discuss abstraction in 

relation to novice and expert programmers.  

In “Concrete and Other Neo-Piagetian forms of Reasoning in the 

Novice Programmer”, (Lister) the author discusses the reasoning behind the use 

of Neo-Piagetian theory. Classical Piagetian theory considers the progress 

through different stages of learning to be a consequence of a biological 

maturing of the brain. Neo-Piagetian theory, on the other hand, considers this 

instead a result of gaining experience, and in particular, the ability to “chunk” 

knowledge within a certain knowledge domain.  

Corney et. al (2011) describe a study in which almost half of the sample 

students were unable to answer a simple explain-in-plain-English question in 

the third week of their introductory programming course, showing that students 

were encountering problems much sooner than could be detected by traditional 

programming questions/examinations. 

In “Neo-Piagetian Theory and the Novice Programmer” (Teague, 2015), the 

author found that the development of programming skills is both “sequential 

and cumulative”, and that behaviours associated with sensorimotor and 

preoperational reasoning are evident from very early in the semester.  
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The authors of “Mired in the Web: Vignettes from Charlotte and Other 

Novice Programmers” (Teague et al.) ask if a student can have different levels 

of ability for different tasks which test similar programming concepts – if a  

student can trace and understand code, can they also write that code? They also 

ask why some students do not seem to be able to understand code with 

abstractions and instead rely on tracing code with specific values. The study 

found that students who were still operating at the sensorimotor level in week 2 

were often still operating the same way in week 5, and were lagging behind 

students who were operating at the preoperational level in week 2. They defined 

students in the preoperational stages by certain behaviours which they observed 

using think-aloud data from students. Preoperational behaviours were guessing, 

a fragile grasp of semantics, confused use of nomenclature, an inability to trace 

simple code, as well as general misconceptions. Errors due to cognitive 

overload and reluctance to trace were considered behaviours associated with 

both sensorimotor and preoperational. The ability to trace but not explain code, 

as well as a reliance on specific values, were signs of the preoperational stage. 

The authors note that students may achieve marks for guessed answers, but it is 

not until they listen to the students speak aloud their thought process that they 

were able to get a clear picture of the students understanding and ability. 

Shneierman and Mayer found that expert programmers were able to 

recall more of a program than novices when it was presented to them in normal 

order, but not when it was scrambled, implying that the experts were able to 

“chunk” information together when the code made sense. The authors proposed 

that experienced programmers construct functional representations of computer 

programs.  

Adelson found that expert programmers’ memory chunks tended to be 

semantically or functionally related, while novices typically chunked by syntax. 

Semantic knowledge consists of programming concepts that are generalized, 

and independent of programming language, whereas syntactic knowledge is 

more precise and rooted in exact representations of concepts in specific 

programming languages. For example, a novice may think of a loop as a 

specific for loop in Java, but an expert planning a piece of code may simply 

think of a loop abstractly, as something that performs a needed function, 

without thinking about the exact type of loop, the details of the iteration, or the 

syntax associated with it (Bisant & Groninger, Wiedenbeck). 

3. Methodology 

For this study, we collected data from around 300 students as they 

completed their introduction to programming module in Java using MULE, our 

in-house, browser-based pedagogical coding environment (Culligan & Casey). 

This system resembles a desktop with both built-in applications for content and 

assignment delivery, and a code editor for completing, running, and evaluating 

code for assignments. MULE also includes mechanisms for making sections of 

the material invisible to some users until some constraints are satisfied such as 

date/time and IP address – this was used to allow certain assignments to only be 

accessible in the scheduled lab times and locations. Within MULE, each attempt 

the student makes on an assignment is recorded, and the student can easily 

recover any previous attempt, allowing the student to “tinker” and experiment 

with their code without fear of losing any work. There is evidence to suggest 

that a certain amount playing/tinkering with code is an indication of student 

success (Berland et al., Berland & Martin).  

For 5 of the 10 mandatory computer lab sessions during the first 

semester of their computer science course, students were asked to predict the 

outcome of pseudocode snippits, along with their usual lab consisting of two 

programming  
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questions, and some peer-programming tasks. The students were told that they 

are not awarded any marks towards their continuous assessment for answering 

the pseudocode questions. The students have access to most of the 

programming tasks before the lab and can write code, compile, and run it, but 

not evaluate it for continuous assessment grades. Some of the exercises are only 

accessible in the labs at the assigned times, so students must write, run, compile, 

and evaluate the code in the lab. 

Although students were able to work on an assignment before assigned 

lab times, we chose to look exclusively at the data from lab times. Our 

reasoning is that students outside of labs can be in very different environments – 

some may have a quiet place to work undisturbed, others may be working in a 

noisy environment or may be frequently interrupted, so comparisons of their 

behaviour may be less insightful than those from a formal lab. For most of the 

semester, the students can only evaluate from inside the lab during the specified 

lab times, so the data from outside the labs would only have compile and run 

events.  

We did not include data from students who did not participate in the 

weekly labs (missing more than four), as we wanted to investigate changes in 

behaviour from week to week and to look at at-risk students who are actively 

engaging in the course labs on a weekly basis (Castro-Wunsch). After removing 

students who did not complete 4 or more labs, we were left with 266 subjects. 

The gathered data is the patterns of student compile, run and evaluate actions: 

• Compile: Students cannot run their code until it compiles 

successfully 

• Run: Students cannot evaluate their code until it runs 

successfully 

• Evaluate: The student’s code is assigned a grade, and feedback 

is provided.  

This data was used to build Deep Neural Net binary classifiers, that 

would classify students as being in either the top 50% or the bottom 50% of the 

class lab exam grades on a week-to-week basis. Each weekly classifier would 

use the CRE data for each assignment for that week, and from all previous 

weeks. Below we discuss the results of statistical tests exploring correlations 

between student behaviour and outcome, and the classifier built to predict 

student outcome. 

4. Analysis 

When analysing the data, for every time a student performs a CRE 

action, we look at that action and the one before and record it as a “movement” 

- the student moves from a Compile to a Run, is recorded as C2R, or a Run to 

an Evaluate in R2E for example. When processing this data, we looked at each 

movement as a percentage of all actions a student took during that lab. From the 

previous studies on programming and Neo-Piagetian stages, we expected to see 

the following as signs of progression through the stages: 

Sensorimotor Stage: Interacting almost randomly, with little understanding of 

the outcome, resulting in more C2C movements, less C2R movements and less 

participation and success with pseudocode questions. 

Preoperational Reasoning Stage: The student is beginning to master writing 

compilable code, and can predict code outcome, resulting in higher amount of 

C2R movements and R2C movements, fewer C2C movements and more 

participation and success with pseudocode questions. 
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Concrete Operational Stage: At this stage, programmers have a good grasp of 

concepts allowing the programmer to write more complex code, resulting in 

fewer C2C movements, fewer C2R movements, more R2E movements and 

more participation and success with pseudocode questions. 

The students in the study were divided into two groups: those in the top 

50% of the class in lab exam grades, and those in the bottom 50%. The two data 

sets contain the percentages of total movements per week for each student. A 

sample of the student data for a week would look like the following: 

C2C C2R R2C R2R R2E E2C E2R E2E 

0.33997 0.254913 0.127186 0.01639 0.130208 0.111902 0.003655 0.004159 

Table 1: Example of an average sample of student weekly data 

The following tests were then run on the two data sets: 

• To examine if the differences between the two groups were 

significant, t-tests were used.  

• Linear regression was used to find which movements were most 

related to lab exam outcome, on a week-to-week basis, to select 

which movement data would be used in the classifier.  

• Finally, the data from the most significant movements each 

week are used to create a Deep Neural Net binary classifier, to 

classify each student as being in the top or bottom 50% of the 

class. 

5. Results 

To find if there were significant differences between the top and bottom 

50% of the students, t-tests were used, the results of which are considered 

significant differences between the two groups if the result is less than 0.05. 

These results are in bold. The p-value results of the groups according to lab 

exam results are in Table 2, and the results of the groups divided by pseudocode 

performance are in Table 3. Lab 6 and lab 10 included lab exams, during which 

the students could not look at their previously written code from earlier labs. 
 

C2C C2R R2C R2R R2E E2C E2R E2E 

1 0.001214 0.470967 0.539369 0.448587 0.090213 0.070492 0.650004 0.24305 

2 0.004757 0.02424 0.665045 0.674198 0.005787 0.060203 0.388143 0.260525 

3 4.80E-06 5.04E-05 0.112107 0.585846 0.031448 0.498212 0.120838 0.280715 

4 1.50E-06 3.16E-08 4.04E-06 0.032048 0.305453 0.031562 0.951828 0.748698 

5 4.03E-10 1.47E-08 0.008756 0.100132 0.000341 0.004397 0.015933 0.10881 

6 9.00E-14 7.94E-15 5.90E-11 0.019153 0.064127 0.122571 0.026066 0.940655 

7 2.05E-06 6.28E-09 6.96E-07 0.561189 0.111728 0.140013 0.924634 0.579504 

8 5.73E-13 2.60E-09 0.00853 0.00715 3.36E-05 2.50E-05 0.501948 0.04282 

9 0.002878 0.187736 0.187655 0.386204 0.008422 0.0083 0.234538 0.389353 

10 6.05E-06 4.70E-07 0.012479 0.683429 0.034407 0.082467 0.609155 0.758995 

Table 2: Results of t-test on groups divided by lab exam results 

There were significant differences between the two groups found in 

C2C every week, C2R most weeks, and R2E and R2C in 8 of the 10 weeks. In 

Table 3, we see that the results are similar results to the lab exam t-tests, the 

main difference being that the R2E movements are almost never significant. 
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C2C C2R R2C R2R R2E E2C E2R E2E 

1 0.656744 0.010296 0.167739 0.096637 0.368741 0.27848 0.979841 0.062224 

2 0.007839 0.01318 0.698311 0.79891 0.005272 0.518315 0.074192 0.384717 

3 0.001236 0.000551 0.049986 0.141391 0.498473 0.615511 0.872643 0.817136 

4 0.00078 0.000378 0.015029 0.089415 0.768301 0.095344 0.72989 0.085109 

5 0.000306 0.001537 0.268965 0.043827 0.051354 0.050773 0.147545 0.185538 

6 0.000562 0.001477 0.038343 0.018253 0.07908 0.088534 0.328674 0.182885 

7 0.014912 0.00068 0.001243 0.371309 0.114922 0.140932 0.328346 0.52572 

8 0.014178 0.279716 0.265897 0.414656 0.768084 0.718394 0.434119 0.501809 

9 0.043973 0.184825 0.768122 0.165121 0.268245 0.31005 0.380506 0.77323 

10 0.027376 0.009383 0.042855 0.350375 0.601622 0.888391 0.139526 0.910241 

Table 3: Results of t-test on groups divided by pseudocode results 

From our predicted behaviour of the Neo-Piagetian stages outlined at 

the start of the analysis section we expected to see students who did poorly in 

the exams displaying different behaviour in the C2C, C2R and R2C movements 

as more successful students moved onto preoperational reasoning stages. Higher 

achieving students have a consistently lower average percentage of C2C when 

groups are divided by lab exam results. The difference in C2C movements gets 

steadily larger from week 1 until week 7, when it slightly reduces. This is also 

true for the pseudocode results, with smaller margins of difference. The 

difference is smaller in the last weeks of the module, which may indicate that 

our students who do not do well are moving through the Neo-Piagetian stages 

but are not moving quickly enough for the course. 

Higher achieving students have a consistently higher average 

percentage of C2R when divided by lab exam results. This difference peaks in 

week 7, for both lab exam and pseudocode results. Both groups have a similar 

percentage of R2C when divided by lab exam results, but the difference peaks 

in weeks 6 and 7, when the higher achieving students have a higher average 

percentage of R2C movements. This may be the point where successful students 

have reached preoperational reasoning, as an increase in R2C movements 

indicate the student is in the “tinkering” stage as described by Perkins et al. 

Week Average Classifier 

Success Rate 

1 0.62 

2 0.6 

3 0.68 

4 0.7 

5 0.62 

6 0.6 

7 0.72 

8 0.76 

Table 4: Classifier results 

Using the dataset containing the CRE percentages for each student for 

each week, Deep Neural Net binary classifiers were trained to classify students 

as being in the top 50% or the bottom 50% of grades for the lab exams.  Linear 

Regression tests were used to compare the CRE actions and their relation to 

student performance in lab exams. This was used to select movement data to be  
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used in the Deep Neural Nets. Multicollinearity can be an issue for DNN, so a 

check was run on the features (where each movement was a feature) and we 

removed the most highly correlated CRE data and tested again. This was 

repeated until the remaining data was sufficiently nonlinearly related, when all 

features had a variance inflation factor (a test for correlation between 

independent variables) of less than 5. The resulting data set was used to train 

and test our DNN classifier. A classifier was built for each week of the 

semester, using the CRE data from that week, and from all previous weeks. The 

results are shown in Table 4. The results of week 9 and 10 are identical to week 

8, as it uses the same CRE data after the multicollinearity tests. 

6. Discussion 

Other studies have referred to lab 4/week 4 (Teague) as the time around 

which students who are in danger of failing begin to perform badly or separate 

in behaviour from the other students. Of course, what takes place at this point 

varies across different institutions and courses. Nonetheless we see that in line 

with this estimated timescale, the differing behaviour among students becomes 

more pronounced around lab 4, and at this point the classifier has a success of 

70%. At this point, if students are consistently compiling without progressing to 

run, this is a sign the student is in danger. This is not hugely surprising. It 

implies that the student is failing to write compilable code, and we would 

expect that a student who cannot write compilable code would be in danger.  

The percentage of R2C becomes more significant around week 4. A 

student who compiles code, then runs, but then goes back to compile, is most 

likely working on a semantic issue, rather than a syntactic one, as mentioned in 

the BlueJ papers (Jadud 2005, Jadud 2006). We suspect that the reason it 

becomes relevant to the students’ overall performance in lab exam results is 

because week 4 is when most students should be beginning to master syntax and 

to abstract solutions, allowing them to construct more complex programs using 

multiple concepts together. The result is that we see successful students 

compiling successfully and rewriting their code until they reach a solution, 

causing successful students to have more C2R movements and fewer C2C 

movements. Students who are still struggling to write semantically correct code 

will have even more C2C movements as the assignments get more difficult. 

Research Question: Can we observe signs of progression through the Neo-

Piagetian stages of learning by examining passively collected data on 

students coding behaviour? 

Yes, we have described the expected signs in CRE movements of 

progression through the stages of Neo-Piagetian learning, observed these signs 

in novice programmers and found these signs relate to student success. From 

our analysis section, we see that the CRE movements that are associated with 

success change as the semester progresses. Using a Neo-Piagetian framework, 

we examine these differences.  

The three Neo-Piagetian stages in learning to program (Lister, du Boulay, 

Teague, Teague et al.):  

(1) Sensorimotor Stage - interacting almost randomly, with little understanding 

of the outcome  

A high percentage of C2C movements may indicate that a student is 

tinkering almost randomly with their code and is unable to write 

compilable code. From our analysis, we see that a lower amount of C2C  
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movements, and a higher amount of C2R movements is associated with 

better performance in lab exams. This is similar to the findings in the 

paper (Vihavainen) which found a statistically significant difference 

between the number of runs and tests for students with previous 

programming experience and those without. 

(2) Preoperational Stage – beginning to master syntax, deeper understanding 

and being able to predict behaviour from interactions 

Students with a higher amount of C2R movements may be in this stage, 

as they become able to write compilable code, but are still be unable to 

predict the outcome of their code. As a result of this, the student will 

repeatedly “tinker” with their code, resulting in increased R2C 

movements. We found R2C movements became significant from week 

4, indicating that students should reach this stage by week 4 if they are 

to be successful in the module lab exams. 

(3) Concrete Operational Stage – can “chunk” (Shneiderman & Mayer) 

programming concepts and abstractions of the code’s behaviour, allowing the 

programmer to write more complex code.  

At this point, students should be able to write compilable code and 

successfully predict their code’s outcome. Students at this stage should 

have fewer C2C movements, fewer C2R movements, and a higher 

percentage of R2E movements. This indicates that they have a good 

grasp of semantics and are able to predict code behaviour with less 

tinkering and playing with code. We would expect to see a higher 

correlation between outcome and R2E movements as students reach this 

stage, and while R2E is related to success at some points in the 

semester, the average difference between the two groups is consistently 

low. We strongly suspect that most students do not reach concrete 

operational stage until after their first semester (Teague). 

7. Conclusions 

We have found that C2C and C2R movements are important indicators 

of student performance in their first semester of programming. While the 

highest classifier success of 76% used data from throughout the 8 weeks, we 

had success with the week 4 classifier which had a success percentage of 70%, 

showing there is evidence of a student success or failure as early as week 4. 

This version of the classifier used all 4 weeks C2C percentages as the input data 

in predicting the student outcome. In future work, it would be worth looking at 

which specific assignments and topics are key clues in a student’s eventual 

outcome. 

We would expect that student coding behaviour would correlate to lab 

exam performance and pseudocode performance, if the coding behaviour in 

question indicates progress through the Neo-Piagetian stages of learning. We 

have seen that patterns of student behaviour contain indications from an early 

stage if they are likely to perform well in lab exams. We have discussed how 

this relates to previous work done in the area of Neo-Piagetian theory in the 

context of students learning to program. We have established a strong case for 

the connection between students’ programming behaviour and their stage of 

Neo-Piagetian learning by showing the correlation between student CRE 

movements, and their lab exam outcomes, and we discussed the reasons behind 

those behaviours and how they relate to Neo-Piagetian theory.  

Introduction to programming modules that emphasize only how to write 

code, and grade based primarily on written code may be problematic. Results of  
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pseudocode assignments in a programming module can help us as researchers 

and educators to identify students who have not developed mental models of 

programming concepts, and are instead relying on “hacking”, where students 

attempt to complete a coding assignment by writing code and testing 

input/output without planning and predicting their code’s behaviour. Students 

who are “hacking” may still perform reasonably well in their weekly labs, and 

so may believe that they are keeping up and do not need to continue to work on 
their grasp of fundamental coding concepts. These students will then progress to 

more difficult modules without the programming basics required to engage with 

the material. This may be a scenario unique to computer science and a 

significant contributary factor as to why computer science failure rates are so 

high. In future work, we will examine how a novice programmer’s pseudocode 

results and patterns of behaviour may relate to code complexity, as a reflection 

of their ability to “chunk” programming concepts, in order to combine them to 

create solutions for programming problems.  

In conclusion, the most significant findings from this study are, firstly, 

that the divergence in behaviour between high and low achieving students takes 

place in week 4. Students who are not displaying signs of progression to the 

preoperational stage of Neo-Piagetian learning do not do well in their lab exams 

at the end of the semester. Secondly, we found that these differences in 

behaviour are less pronounced later in the semester – implying that the students 

who were behind in week 4 are capable of progression to preoperational stage, 

but crucially, not at the pace dictated by the module. 
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The paper reproduced here describes a successful attempt to build a 

classifier that predicts student outcome from student CRE data. The following 

sections will use this same data using the methods outlined in Section 4.3 and 4.4. 

6.3 CRE Features  

The data set used in the following experiment is data set 2, as described in 

Section 4.1.2. In the following tests, the analysis and classifier use eight different 

features for each of the 10 weeks from this data set, resulting in a total of 80 

features. These features are measurements of how often a student Compiled, Ran, 

or Evaluated, and followed with another Compile, Run, or Evaluate, as mentioned 

in Section 6.2. If a student Compiles their code, then Compiles again, that is 

recorded as a C2C. If the student Runs and then Evaluates, that is recorded as a 

R2E, etc. The eight features are explained in Table 6-1. There is no Compile to 

Evaluate feature as the MULE system does not allow the user to Evaluate after 

Compiling without a Run action. 

From To Recorded as 

Compile Compile C2C 

Compile Run C2R 

Run Compile R2C 

Run Run R2R 

Run Evaluate R2E 

Evaluate Compile E2C 

Evaluate Run E2R 

Evaluate Evaluate E2E 

Table 6-1: CRE Features 

Each of these features is recorded for each of the student’s weekly labs and 

is a percentage of the total CRE actions that the student takes in that lab. C2E 

movements are not shown in this experiment as the system did not allow students 

to Evaluate their work until it had been Run. 

In the Figure 6-1, a possible reason for each feature is explained. For 

example, a C2C movement may indicate that a student has not successfully written 

compilable code, and so must rewrite and then Compile again. A C2R feature 

means the student has successfully written compilable code. A R2R feature may 

mean that the student is testing their code, but it could mean that the student’s code 

is not running as expected, or that it is not running as expected. A R2E movement 
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means that the student has finished testing their code and is checking their grade. 

E2R may mean that the student is unsatisfied with the evaluation grade and is 

testing their code to find the problem. E2C can also mean the student is unsatisfied 

with their grade, and has rewritten their code, though it may also mean the student 

has moved on to the next question. For many of these features, what is important is 

how often a student performs an action. A small number of C2C actions is to be 

expected, even an expert programmer will not write compilable code without 

making errors every time. However, a larger percentage of C2C actions may imply 

that the student is unable to write compilable code and is in danger of failing the 

module.  

 

Figure 6-1: CRE Patterns 

6.4 CRE Movements Analysis 

In this section, the CRE movements are examined. The CRE movements 

are the patterns of Compile, Run, and Evaluate behaviour as the students complete 

their coding assignments in the MULE system. The behaviours are examined using 

the Wilcox Ranks Sum Test, and Linear Regression. 

6.4.1 Wilcox Rank Sum Test 

This section contains the results of the Wilcox Ranks Sum Test, comparing 

the top 50% and the bottom 50% of the grades for CA and the Written Exam for 

each of the eight CRE features. Any result of less than 0.05 is considered 

significant and is in bold. 

6.4.1.1 CA 

 The results of the Wilcox Rank Sum Tests comparing the groups divided 

according to the CA results are presented in Table 6-2 and Table 6-3. While there 

are significant differences between the two groups throughout the semester, when 
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looking at the CA results, it can be seen in Table 6-2 that there is a spike in Week 

5, when every one of the features shows significant difference in the two groups.  

Lab 1 2 3 4 5 

C2C 0.003304046 0.000696743 8.34E-11 1.60E-09 1.39E-10 

C2R 0.029707699 0.000338183 5.23E-12 4.68E-14 4.76E-09 

R2C 0.405981696 0.629870344 0.000500886 1.51E-08 0.000377349 

R2R 0.346761087 0.05292788 0.146292951 0.036721567 0.003007271 

R2E 0.012478407 0.000756833 0.083116735 0.234028299 0.014072256 

E2C 0.074870296 0.177169647 0.864372077 0.000757408 0.016553229 

E2R 0.989306277 0.740945091 0.397346141 0.826922363 0.039563534 

E2E 0.481646241 0.59367972 0.328548797 0.690327639 0.003405348 

Table 6-2: CRE Wilcox Rank Sum Test CA for Weeks 1 to 5 

This continues to a lesser degree in Week 6 and Week 7, as shown in Table 

6-3. Week 8 has only significant results, C2C and C2R, and Week 9 and Week 10 

each have four significant results. C2C and C2R are significant throughout the 

semester. 

Lab 6 7 8 9 10 

C2C 3.17E-20 1.17E-06 2.77E-07 1.64E-07 3.19E-05 

C2R 9.81E-21 3.90E-11 0.012137 0.000283 1.05E-07 

R2C 4.12E-14 5.93E-10 0.177591 0.53325 1.80E-07 

R2R 0.00162738 0.004453 0.064039 0.713808 0.030687 

R2E 0.003336881 0.001807 0.228163 0.000993 0.51366 

E2C 0.002678636 0.007413 0.201059 0.002447 0.5613 

E2R 0.396740295 0.092942 0.205742 0.965096 0.907747 

E2E 0.386475328 0.45643 0.053136 0.511572 0.985591 

Table 6-3: CRE Wilcox Rank Sum Test CA for Weeks 6 to 10 

6.4.1.2 Written Exam 

The results of the Wilcox Rank Sum Tests comparing the groups divided 

according to the Written Exam results are presented in Table 6-4 and Table 6-5. 

The results are similar to the results of the CA groups Wilcox Rank Sum Tests.  

Similar to what was found in the results of the paper in Section 6.2, the 

most consistently significant features throughout the semester are C2C and C2R, 

which have significant results for every week in the semester, as shown in Table 6-
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4 and Table 6-5. R2C is the next most consistent, with significant results for six of 

the semester’s 10 lab sessions. 

Lab 1 2 3 4 5 

C2C 0.001391 0.000537 6.53E-12 7.51E-09 7.75E-08 

C2R 0.04382 0.00166 1.16E-11 2.14E-11 2.36E-07 

R2C 0.80832 0.861828 0.005912 2.25E-06 0.001155 

R2R 0.809358 0.591865 0.673095 0.014489 0.005465 

R2E 0.011304 0.010363 0.004539 0.370142 0.187853 

E2C 0.042985 0.142691 0.08873 0.003129 0.040557 

E2R 0.931642 0.831694 0.794488 0.409669 0.271693 

E2E 0.256277 0.584633 0.905502 0.392704 0.038913 

Table 6-4: CRE Wilcox Rank Sum Test Written Exam for Weeks 1 to 5 

Lab 6 7 8 9 10 

CC 2.42E-15 1.71E-05 0.000301 1.58E-05 0.002588 

CR 5.30E-15 1.83E-08 0.067072 0.000468 1.72E-05 

RC 3.17E-10 6.07E-07 0.200396 0.971741 2.32E-05 

RR 0.000547 0.016242 0.082213 0.86105 0.165729 

RE 0.007743 0.014142 0.850643 0.013938 0.514631 

EC 0.012237 0.082588 0.796432 0.033548 0.387675 

ER 0.210653 0.023292 0.818307 0.851237 0.861414 

EE 0.291765 0.719679 0.100404 0.272137 0.678976 

Table 6-5: CRE Wilcox Rank Sum Test Written Exam for Weeks 6 to 10 

Similar to the results of the Wilcox Rank Sum Test for the Mouse 

Movements experiment in Section 5.4.1, it can be seen that Weeks 5 and 7 are key 

weeks. In Tables 6-2 and 6-4, Week 5 is shown to have a large amount of 

significant results for both the CA and the Written Exam tests. In this experiment, 

we also see significant differences in Week 4 and 6, Week 6 being data from the 

first in-lab programming exam. 

6.4.2 Linear Regression 

In this section the results of comparing each individual feature to the 

outcome in CA grades, and in Written Exam grades, on a week-to-week basis using 

Linear Regression are presented in Table 6-6, Table 6-7, Table 6-8, and Table 6-9. 

Any coefficient of more than 0 suggests a correlation between the feature and the 

grade and is in bold. 
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6.4.2.1 CA 

This section presents the results of the Linear Regression tests for the CRE 

data divided by CA results. 

Lab 1 2 3 4 5 

C2C -0.09416 0.019169 0.123269 -0.03011 0.137087 

C2R -0.12198 0.02078 0.104036 0.030479 0.078994 

R2C -0.17784 -0.06182 -0.06688 -0.03215 -0.03886 

R2R -0.16761 -0.0544 -0.12613 -0.13983 -0.08048 

R2E -0.12605 0.028008 -0.0628 -0.12183 0.005408 

E2C -0.28039 -0.04157 -0.07542 -0.08401 0.005655 

E2R -0.1995 -0.05404 -0.06029 -0.10943 -0.04504 

E2E -0.16783 -0.05461 -0.05506 -0.10792 -0.04073 

Table 6-6: CRE Linear Regression CA for Weeks 1 to 5 

In Table 6-6, it is shown that C2C and C2R are consistently significantly 

correlated to CA results from Week 2 onwards (with the exception of C2C in Week 

4). There is a spike in results in Week 5, with 4 significant features and the highest 

coefficient so far, >0.13 for C2C. 

Lab 6 7 8 9 10 

C2C 0.323132 0.069366 -0.09044 0.240351 -0.01086 

C2R 0.325892 0.140258 -0.2907 0.095463 0.069104 

R2C 0.16556 0.082785 -0.14443 -0.01828 0.104909 

R2R -0.01554 -0.04266 -0.08905 -0.01912 -0.1271 

R2E -0.01054 -0.01276 -0.14072 0.074252 -0.14515 

E2C -0.01401 -0.03234 -0.13799 0.061116 -0.14482 

E2R -0.03995 -0.00024 -0.09778 0.00053 -0.16711 

E2E -0.04922 -0.047 -0.10543 0.012922 -0.1654 

Table 6-7: CRE Linear Regression CA for Weeks 6 to 10 

In Table 6-7, C2C and C2R are significantly correlated to CA results for 

most weeks The two highest coefficients are in Week 6, with coefficients of >0.32 

for C2C and C2R. There is a spike in results in Week 9, with six significant 

features and a coefficient of >0.24 for C2C. 

6.4.2.2 Written Exam 

This section presents the results of the Linear Regression tests for the CRE 

data divided by Written Exam results. 
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Lab 1 2 3 4 5 

C2C -0.04923 0.022117 0.168315 -0.05427 0.079982 

C2R -0.09021 0.02293 0.128905 -0.02908 0.032211 

R2C -0.13122 -0.03645 -0.06711 -0.07859 -0.06211 

R2R -0.13391 -0.03141 -0.11069 -0.13128 -0.06415 

R2E -0.08125 0.011948 -0.01036 -0.15574 -0.05909 

E2C -0.25009 -0.02221 -0.04012 -0.07877 -0.04361 

E2R -0.1076 -0.07904 -0.04046 -0.07044 -0.04374 

Table 6-8: CRE Linear Regression Written Exam for Weeks 1 to 5 

In Table 6-8, it is shown that C2C and C2R are significantly correlated to 

Written Exam results in Week 2, Week 3, and Week 5, similar to the results for CA 

shown in Table 6-2. Unlike Table 6-2, there is no clear spike in significant features 

in Week 5. 

Lab 6 7 8 9 10 

C2C 0.229808 0.072222 -0.02825 0.103773 -0.03633 

C2R 0.212262 0.10061 -0.10334 0.0585 0.023019 

R2C 0.091506 -0.03114 -0.14139 -0.07464 -0.00572 

R2R 0.002575 -0.06386 -0.0602 -0.09711 -0.11559 

R2E 0.004218 -0.08525 -0.08295 -0.03595 -0.12196 

E2C -0.0023 -0.09864 -0.0823 -0.03735 -0.11979 

E2R -0.01481 0.016484 -0.08543 -0.06302 -0.14547 

Table 6-9: CRE Linear Regression Written Exam for Weeks 6 to 10 

C2C and C2R are again mostly significant in Table 6-9. The highest Linear 

Regression coefficients for the Written Exam tests are in Week 6, which is also 

what was seen in the CA tests in Table 6-7.  

The highest Linear Regression coefficient in relation to CA and Written 

Exam outcome are from Week 6, when the students have their first in-lab 

examination. Like in the Wilcox Rank Sum Test, the C2C movements and the C2R 

are the most significant indicators of student outcome according to these tests, the 

highest being in Week 6 and Week 9. The CRE movements are less related to the 

students’ Written Exam than their CA outcome, but there are similar signs of 

higher and lower achieving students diverging in Week 6. 
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6.5 Neural Network Classifiers 

 In this section, the results of the Neural Net classifiers for the CA results 

and the Written Exam results will be presented and discussed. 

6.5.1 Comparison of CA Classifiers 

The CA classifier results are shown according to the week in the semester and 

the threshold used to select the features to be used as input for the Neural Networks 

in Table 6-10 and Table 6-11. The tables contain the classifier accuracy and the 

number of False Passes out of 25 students in the lower 50% of the grades, which 

would be labelled as Fails in a successful classification. 

In the CRE classifiers comparison Tables 6-10 and 6-11, the results for the 

three thresholds are similar, with the threshold-0 being the most successful in that: 

i. It works from Week 3, while other thresholds do not work until Week 5 or 

6, due to not having enough features. 

ii. In Table 6-10, the accuracy is the highest for almost every week, other than 

being slightly lower than threshold-0.1 in Week 6. 

iii. In Table 6-11, the number of False Passes is lowest in every week other 

than Week 5, when threshold-0.1 has a lower average False Pass number, 

but also a lower accuracy rate, and Week 7, when the number of average 

False Passes is slightly higher than threshold-0.1. 

 
3 4 5 6 7 8 9 10 

0 0.677 0.706 0.73 0.758 0.763 0.766 0.767 0.767 

0.1 
  

0.684 0.764 0.763 0.762 0.761 0.756 

0.15 
   

0.737 0.728 0.737 0.719 0.728 

Table 6-10: CRE CA Classifier Accuracy 

The threshold-0 classifier is the most successful for predicting student CA 

outcome with CRE data. Looking at the averages of both the classifier accuracy 

and the False Passes in the first half and then the second half the semester, 

threshold-0 has the highest accuracy and the lowest False Pass rate. 

 
3 4 5 6 7 8 9 10 

0 8.7 8.55 7.7 6.9 6.7 6.8 6.75 6.7 

0.1 
  

6.15 7.05 6.55 7.1 6.95 7.1 

0.15 
   

7.75 7.3 7.95 7.85 7.8 

Table 6-11: CRE CA Classifier False Passes 
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6.5.2 Comparison of Written Exam Classifiers 

The Written Exam classifier results are shown according to the week in the 

semester and the threshold used to select the features to be used as input for the 

Neural Networks in Table 6-12 and Table 6-13. In these comparison tables, the 

results show that, like the CA classifier, the threshold-0 classifier is the most 

successful for predicting student Written Exam outcome with CRE data: 

i. It works from Week 3, while other thresholds do not work until Week 6. 

ii. The accuracy is the highest for every week. 

iii. The number of False Passes is lowest in every week. 

 
3 4 5 6 7 8 9 10 

0 0.731 0.733 0.762 0.781 0.770 0.777 0.780 0.776 

0.1 
   

0.718 0.707 0.706 0.709 0.704 

0.15 
   

0.71 0.71 0.713 0.713 0.712 

Table 6-12: CRE Written Exam Classifier Accuracy 

 
3 4 5 6 7 8 9 10 

0 11 10.2 11.25 7.5 7.25 7.5 6.8 7.15 

0.1 
   

7.9 8.35 8.75 8.35 8.15 

0.15 
   

8.15 8.35 8.1 8.05 8.05 

Table 6-13: CRE Written Exam Classifier False Passes 

The most successful classifiers for both CA and Written Exam results are 

those that use the Linear Regression threshold of 0. Any feature that has any 

correlation to outcome according to the Linear Regression tests is used in the 

Neural Network Classifier. The Appendix Section 10.6 presents more information 

about the successful classifiers, such as the Area Under Curve (AUC), the loss, and 

the recall as well as the numbers for True Fails, True Passes, False Fails, and False 

Passes. These attributes can also be seen for the less successful classifiers.  

6.6 CRE Week-by-Week 

In this section, the results of the Wilcox Rank Sum Test, the Linear 

Regression tests and the results of the classifiers will be examined on a week-to-

week basis. The C2C and C2R movements return significant results from the 

Wilcox Rank Sum Test for every week throughout the semester, so this will not be 

mentioned explicitly in every weekly section.  
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Week 1 

The Wilcox Rank Sum Test found significant differences in the C2C, C2R, 

and R2E movements in the CA tests, shown in Table 6-2, and significant 

differences in the C2C, C2R, R2E, and E2C movements in the Written Exam tests, 

shown in Table 6-4. The Linear Regression tests found no positive coefficients in 

Week 1 in relation to CA or Written Exams. There are not enough features with 

significant Linear Regression results to run classifiers at this point for any 

threshold. 

Week 2 

Both CA and Written Exam have significant differences between the two 

groups in R2E and well as C2C and C2R, shown in Tables 6-2 and 6-4. The Linear 

Regressions tests return very low but positive coefficients for C2C, C2R, and R2E 

in the CA test, shown in Table 6-6, and the Written Exam test, shown in Table 6-8. 

Although there are three usable features at this point, they are too highly correlated 

according to the VIF test (as mentioned in Section 4.4) and so there is no classifier 

for this set of data. 

Week 3 

The CA Wilcox Ranks Sum Test this week returns a significant result for 

the C2C, C2R, and R2C movements for CA, shown in Table 6-2, and the C2C, 

C2R, R2C, and R2E for the Written Exam, shown in Table 6-4. The Linear 

Regression tests only have positive values for the C2C and C2R movements for 

both CA and Written Exam, shown in Table 6-6 and Table 6-8. This week has the 

first classifiers, but only for threshold-0. The classifiers do relatively well for so 

early in the semester, 67% accuracy for CA as seen in Table 6-10, with 8.7 False 

Passes out of 25 Fails as shown in Table 6-11.  The Written Exam classifier has a 

higher accuracy of 73% as shown in Table 6-12, but also a higher number of False 

Passes of 11 out of 25, shown is Table 6-13. 

Week 4 

This week’s data has five significant features in CA and the Written Exam: 

C2C, C2R, R2C, R2R, and E2C, as shown in Tables 6-2 and 6-4. However, this is 

not reflected by the Linear Regression tests. Only C2R returns a positive 

coefficient for CA, shown in Table 6-6, and there are no positive coefficients for 
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the Written Exam, shown in Table 6-8. There are only threshold-0 classifiers this 

week, and the classifier for CA is slightly more accurate than the previous week 

with an accuracy of 70.6%, shown in Table 6-10, but the False Pass Rate is still 

high at 8.55 out of 25 Fails, shown in Table 6-11. The Written Exam classifier 

accuracy does not improve significantly in comparison to the previous week, as 

shown in Table 6-12, but the number of False Passes did improve slightly, reducing 

from 11 to 10.2, as shown in Table 6-13.  

Week 5 

There is a large jump in the Wilcox Rank Sum Test this week, with all of 

the features in the CA test returning a significant result, and six of the features in 

the Written Exam returning a significant result as shown in Tables 6-2 and 6-4. 

There is also a leap in Linear Regression results, with four features having a 

positive coefficient in the CA tests, shown in Table 6-6, and two in the Written 

Exam tests, shown in Table 6-8.  The CA classifier for threshold-0 rises to 73% 

accuracy, shown in Table 6-10, and the number of False Passes drops to 7.7 out of 

25, shown in Table 6-11. The first threshold-0.1 classifier has a lower accuracy of 

68%, but also a lower False Pass number of 6.15 out of 25. The Written Exam 

classifier rises to 76%, shown in Table 6-12, but the False Pass is still high, at 

11.25 out of 25, shown in Table 6-13. 

Week 6 

This week is an exam week, and so it is not surprising that it has a large 

number of significant results from the Wilcox Rank Sum Test. In both the CA and 

the Written Exam tests, shown in Table 6-3 and Table 6-5, all features other than 

ER and EE have significant results.  The Linear Regression tests show the highest 

coefficient values for the semester for the CA and the Written Exam data, both in 

C2C and C2R of this week, shown in Table 6-7 and Table 6-9. These high values 

mean the first threshold-0.15 classifier can be run, and it has an accuracy of 73%, 

with a False Pass rate of 7.75 out of 25 for CA, shown in Table 6-10 and Table 6-

11, and 71% accuracy and 8.15 False Passes out of 25 for Written Exams, shown in 

Table 6-12 and Table 6-13. These are not the most successful classifiers of the 

week, as the threshold-0 classifier for CA has a higher accuracy of 75.7%, and its 

number of False Passes drops to 6.9. The threshold-0.1 classifier accuracy rises to 

76% but its False Pass number rises to 7.05. The threshold-0 is the most successful 

of the week, with an accuracy of slightly over 76%, and its False Pass number 
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dropping from 7.7 to 6.9. For the Written Exam classifiers, the threshold-0.1 is 

very similar to the threshold-0.15, with an accuracy of 71.8% and a False Pass 

number of 7.9. The threshold-0 classifier is the most successful, with its accuracy 

rising to 78%, and its False Pass number dropping from 11.25 to 7.5. The Written 

Exam classifiers do not improve significantly for the rest of the semester. 

Week 7 

Similar to week six, this week also has six significant features in the 

Wilcox Rank Sum Test for both CA and Written Exams, as shown in Table 6-3 and 

Table 6-5. The Linear Regression results show three significant features the CA 

tests in Table 6-7, and two in the Written Exam results in Table 6-9. The CA 

threshold-0.1 classifier again has an accuracy of 76%, but the False Pass number 

drops to 6.55. The CA classifier does not improve significantly after this point in 

the semester. The Written Exam threshold-0.1 classifier is slightly less successful 

this week than the previous week, with an accuracy of 70%, and a False Pass 

number of 8.35. The threshold-0 classifier for CA has a slight increase in accuracy 

to 76%, and a very slight drop in False Pass number to 6.7. 

Week 8 

This week the Wilcox Rank Sum Test only returns significant results for 

C2C and C2R movements in both CA and Written Exam results, as seen in Table 

6-3 and Table 6-5. There are no positive Linear Regression results, which can be 

seen in Tables 6-7 and 6-9. As a result, there are no new features for the classifiers, 

and so the results are similar to the previous week. 

Week 9 

This week the Wilcox Rank Sum Test shows four significant features for 

the CA and the Written Exam groups, C2C, C2R, R2E, and E2C, shown in Tables 

6-3 and 6-5. There are six positive coefficients in the CA Linear Regressions tests, 

and two in the Written Exam tests, shown in Table 6-7 and Table 6-9. The C2C in 

these results are both one of the highest coefficients in the data set for each grade 

type. Despite this, the CA classifiers this week show very little change from the 

previous week, with the biggest change being a drop in accuracy for the 0.15 CA 

classifier, which can be seen in Table 6-10.  The Written Exam classifiers are also 

very similar to the previous week, with the biggest change being the drop in False 

Passes for the threshold-0 classifier from 7.5 to 6.8, shown in Table 6-13. 
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Week 10 

Week 10 has four significant features for CA and three for the Written 

Exam according to the Wilcox Rank Sum Test results shown in Tables 6-3 and 6-5. 

The Linear Regression tests show two positive coefficients in the CA tests and one 

in the Written Exam tests, as shown in Table 6-7 and Table 6-9. Again, there are no 

large changes in the classifiers this week. 

6.7 CRE Conclusions 

The features C2C and C2R consistently have significant Wilcox Rank Sum 

Test results throughout the semester, implying that these are the key behaviours in 

student divergences. C2C and C2R movements may indicate if the student is able 

to write compilable code, and if they are moving on from compile attempts to 

writing code without syntax errors that can run. It is not surprising that at this 

stage, this is the key difference between the higher and lower achieving students. 

The CA classifier becomes useful around Week 6, when the classifier 

results reach 76% and the number of False Passes drops to less than 7 out of 25 

failing students. In the Wilcox Rank Sum Tests, we see that the most significant 

differences occur in Week 5, Week 6, and Week 7, pointing to this time as a key 

divergence point for the students. 

The Written Exam classifier also becomes useful around Week 6 when the 

classifier results reach over 78% and the number of False Passes is drops to 7.5 out 

of 25 failing students. This is reflected in the Wilcox Rank Sum Test results, where 

the weeks with the most significant results are Week 4 to Week 7.  

Weeks 5,6, and 7 are key weeks in the divergence of student behaviour, 

and the classifiers peak in success around this time, and do not significantly 

improve throughout the rest of the semester. This may be due to the increase in 

complexity of the assignments in Week 5, and the exam in Week 6. 

These results largely replicate what was found in the paper in the Section 

6.2, with some minor differences due to CA in this case including regular lab 

assignments, and not just lab exams. It has also been shown that CRE movements 

are successful in predicting Written Exam results, and not just coding assignment 

results. Like in the published paper, we have again found that the C2C and C2R 

movements are the most significant differences between the two groups.  
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7. Experiment 3: Complexity of Student Code 

In this chapter, the COMPLEX data will be explored using the methods 

outlined in Section 4.3 and 4.4. The COMPLEX data comprises of two 

measurements of the complexity of student code, using compressed code size and 

nodes in parse trees generated from the student code. The results of the tests and 

HOG classifier are discussed. 

7.1 Introduction to Code Complexity 

In Neo Piagetian theory, as an individual learns a skill, they begin to learn to 

“clump” concepts relating to the skill together. In terms of programming, this 

allows for more complex code to be written, as the programmer becomes able to 

use different concepts together. In this experiment, we examine if the ability to 

write more complex code means that the student will ultimately be successful in 

their CA and Written Exams. 

There is existing work that explores the connection between a student’s ability 

to write complex code and their exam outcome. The paper “Utilizing student 

activity patterns to predict performance” [45] uses the size of students’ code after 

removing comments and being compressed to predict student performance. In this 

chapter, we will examine if there is a connection between a student’s ability to 

write complex code and their exam outcome, and if so, how early this connection 

becomes apparent.  

The MULE system records a student’s code every time they submit their code 

for automatic grading, resulting in a huge database of student code. For this 

experiment, only the highest graded submission for each assignment is used. Two 

techniques were used to generate metrics for the complexity of submitted code: 

1) Comments were removed from the file, and the files were then 

compressed using Python’s gzip library. The size of the compressed 

file is used as an indication of the code complexity. 

2) The Python javalang and NetworkX [57] libraries are used to create 

parse trees of the code. The more nodes in the generated parse tree, the 

more complex the code. 
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The Cyclomatic Complexity [58] model of examining the complexity of 

files was considered but it was found that the code written by first year 

programming students was too simple for this method. 

7.2 Features 

The data set for this experiment includes the file size from each assignment 

after comments are removed and the code is compressed, and the number of nodes 

in a parse tree created from each assignment.  

In Figure 7.1 is an example of code a user might write and submit in 

MULE, and the parse tree generated from this code. The assignment asks the 

student to write code to check if a given age is old enough to vote or not, and to 

print an appropriate response to the terminal.  

public class Selection  

{   

    public static void main (String args []) 

    { 

        int age = 10; 

        //Check if age is 18 or over 

        if (age >= 18) 

        { 

            System.out.println("Person can vote"); 

        } 

        else 

        { 

            System.out.println("Person cannot vote"); 

        } 

    } 

} 
Figure 7-1: Selection.java Sample Code 

To generate the parse tree and file size data, the comments are removed, as 

shown in Figure 7-2. 

public class Selection  

{ 

    public static void main (String args []) 

    { 

        int age = 10; 

        if (age >= 18) 

        { 

            System.out.println("Person can vote"); 

        } 

        else 

        { 

            System.out.println("Person cannot vote"); 

        } 

    } 

} 
Figure 7-2: Selection.java with Comments Removed 
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The generated parse tree is shown below in Figure 7-3. In this parse tree 

there are 12 nodes, so the node data for this user, for this assignment is recorded as 

12. 

 

Figure 7-3: Parse Tree Generated from Selection.java 

For the file size data, the code without the comment is compressed, and the 

resulting file size is 207 bytes, so the data for this user, for this assignment is 

recorded as 207. 

For each assignment, the highest graded submission for each student is 

used. There is a total of 54 assignments consisting of 49 regular lab questions and 5 

lab exam questions. The data set also includes the student’s outcome in their final 

CA grade and their end of year Written Exam. A description of the weekly 

assignments can be found in Section 4.1.2.1. 

7.3 Code Complexity Analysis 

In this section, the measurements of code complexity are examined. The 

measurements are:  

1)The compressed file sizes. 

2) The number of nodes in generated parse trees of the submitted code.  

The measurements are examined using the Wilcox Ranks Sum Test, and Linear 

Regression. 
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7.3.1 Wilcox Rank Sum Test: File Size 

This section contains the results of the Wilcox Rank Sum Test on the 

results of the compressed file size with comments removed on each individual 

assignment during the semester. The two groups being compared are the top 50% 

and bottom 50% of students in the CA grades, and the Written Exam. 

7.3.1.1 Continuous Assessment  

In the Table 7-1, it can be seen that there are significant results from the 

Wilcox Ranks Sum test, implying differences in file size between the two student 

groups in Week 1 in the last question of the week, Question 4. All but one of the 

questions in Week 2, Question 2, have significant results. Again, only one of the 

Questions in Week 3 does not have significant results, Question 1. In Week 4, half 

of the questions, Question 3, 5, and 6 have significant results. Every question in 

Week 5 has significant results. These results suggest that there are differences in 

student file size, even in the first week of labs. 

Lab 1 2 3 4 5 

Q1 0.604862 0.049804 0.449978 0.319243 5.41E-07 

Q2 0.185383 0.954229 0.026081 0.500581 2.03E-09 

Q3 0.152753 0.000102 0.001604 0.030253 5.91E-13 

Q4 2.24E-06 0.002272 0.000137 0.945491 9.77E-16 

Q5 N/A 4.55E-07 5.16E-10 0.016984 1.13E-10 

Q6 N/A 4.37E-10 1.98E-08 3.14E-07 N/A 

Q7 N/A N/A 2.16E-08 N/A N/A 

Table 7-1: COMPLEX File Size Wilcox Rank Sum Test CA for Weeks 1 to 5 

Lab 6 7 8 9 10 

Q1 0.142143 0.232002 0.302718 0.572859 1.52E-05 

Q2 0.00241 3.06E-08 7.10E-08 0.075603 1.32E-10 

Q3 0.002336 8.94E-10 4.18E-05 0.003301 3.29E-07 

Q4 0.978451 1.22E-16 6.82E-16 1.56E-09 2.28E-12 

Q5 7.87E-10 N/A 4.95E-07 1.58E-07 2.34E-23 

Q6 3.90E-21 N/A 4.56E-16 N/A N/A 

Table 7-2: COMPLEX File Size Wilcox Rank Sum Test CA for Weeks 6 to 10 

In Table 7-2, it can be seen that most questions from Week 6 to Week 9 

have significant results in the Wilcox Rank Sum test. In Week 10, every question 
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has significant results, implying significant differences in file size between two 

groups throughout the semester. 

7.3.1.2 Written Exam 

In the Table 7-3, it can be seen that, similar to the CA results, there are 

significant results from the Wilcox Ranks Sum test, implying differences in file 

size between the two student groups in Week 1 in the last question of the week, 

Question 4. Four of the questions in Week 2 have significant results and five of the 

questions in Week 3 have significant results, Question 1. In Week 4, only two of 

the questions have significant results. Every question in Week 5 has significant 

results. These results suggest that there are differences in student file size, though 

there are less significant results than those shown in the CA results in Table 7-1. 

 Lab 1 2 3 4 5 

Q1 0.665005 0.281836 0.05991 0.5943 0.00028 

Q2 0.236985 0.323775 0.794231 0.057319 1.44E-08 

Q3 0.39627 0.00072 0.00297 0.101875 2.50E-11 

Q4 6.99E-05 0.03272 0.00639 0.819723 7.90E-12 

Q5 N/A 0.00013 8.64E-08 0.00684 1.38E-09 

Q6 N/A 1.55E-05 7.07E-05 9.27E-05 N/A 

Q7 N/A N/A 5.78E-06 N/A N/A 

Table 7-3: COMPLEX File Size Wilcox Rank Sum Test Written Exam for Weeks 1 to 5 

In Table 7-4, it can be seen that, similar to the results for CA in Table 7-2, 

most questions from Week 6 to Week 9 have significant results in the Wilcox Rank 

Sum test. In Week 10, every question has significant results, implying significant 

differences in file size between the two groups throughout the semester. 

Lab  6 7 8 9 10 

Q1 0.674845 0.283349 0.610174 0.962299 0.00354 

Q2 0.00748 1.57E-07 2.80E-05 0.03341 1.19E-06 

Q3 0.00039 2.40E-06 0.00015 0.13539 0.0023 

Q4 0.723586 1.99E-10 8.97E-11 2.72E-06 9.51E-06 

Q5 2.42E-06 N/A 0.00036 6.75E-05 8.93E-12 

Q6 6.41E-16 N/A 2.25E-10 N/A N/A 

Table 7-4: COMPLEX File Size Wilcox Rank Sum Test Written Exam for Weeks 6 to 10 

In the file size results, there is a clear difference in the groups for most of 

the assignments, for both CA and the Written Exam. Lab 5 is notable in that the 

results for all of the assignments in this lab are significant. This is also true for 
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Week 10, but earlier occurrences of this are interesting, as they may indicate a 

divergence point and a key point for possible interventions. 

Many of the weeks have significant p-values for the last assignment of the 

week. These assignments are often not visible until the students are in their 

assigned lab time, and so only the students with a good grasp of the material, who 

are able to formulate solutions based on their programming “tool-kit” and are able 

to work quickly, do well on these assignments. These assignments also tend to be 

the most challenging, as the questions for each lab increase in difficulty. 

7.3.2 Wilcox Rank Test: Nodes 

In the results of the Wilcox Rank Test using the nodes generated from the 

student code, and the students grades in CA, and the final Written Exam, there are 

fewer differences in the groups compared to the file size results in both CA and the 

Written Exam. However, the differences we do see follow the same overall pattern 

as seen in the file size test: the later assignments in each lab tend to have a 

significant difference between the two groups, and most of the assignments in 

Week 5 have significant features.  

7.3.2.1 Continuous Assessment  

Unlike the results from the file size tests in Table 7-1, there were no 

significant results in the first week of the labs. Instead, the first significant results 

were in Week 2, as can be seen in the Table 7-5. In Week 3, five of the questions 

have significant results, in Week 4, two of the questions have significant results. In 

Week 5, four of the five questions have significant results. 

 Lab 1 2 3 4 5 

Q1 0.998653 0.900584 0.086005 0.02603 3.13E-06 

Q2 1 0.19393 0.324603 0.204264 2.48E-09 

Q3 0.457608 0.00011 0.04159 0.275098 1.52E-09 

Q4 0.70783 0.198016 0.00015 0.341463 1.12E-13 

Q5 N/A 0.997306 9.10E-08 0.059452 0.826948 

Q6 N/A 2.44E-07 3.51E-07 5.27E-06 N/A 

Q7 N/A N/A 9.29E-09 N/A N/A 

Table 7-5: COMPLEX Nodes Wilcox Rank Sum Test CA for Weeks 1 to 5 

The results of the Wilcox Rank Sum test for the node data for the second 

half of the semester for CA, shown in Table 7-6, are similar to the results of the file 
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size data results shown in Table 7-2, with the exception of Question 3 in Lab 10, 

which is not significant in the nodes tests but is significant in the file size tests. 

Lab 6 7 8 9 10 

Q1 0.337621 0.288302 0.454547 0.052725 4.09E-05 

Q2 0.00012 0.0017 6.58E-09 0.074773 6.25E-13 

Q3 0.0049 3.48E-08 0.00014 0.00814 0.452005 

Q4 0.903257 7.31E-15 4.04E-12 5.92E-09 2.43E-09 

Q5 1.63E-18 N/A 2.04E-05 0.03391 1.34E-18 

Q6 2.78E-15 N/A 7.41E-16 N/A N/A 

Table 7-6: COMPLEX Nodes Wilcox Rank Sum Test CA for Weeks 6 to 10 

7.3.2.2 Written Exam 

Like in the CA results in Table 7-5, there were no significant results in the 

first week of the labs. The first significant results are in Week 2, as can be seen in 

Table 7-7. In Week 3, five of the questions have significant results, and only one of 

the questions in Week 4 has a significant result. In Week 5, four of the five 

questions have significant results. 

Lab  1 2 3 4 5 

Q1 0.830238 0.322535 0.00169 0.056988 0.00557 

Q2 1 0.665618 0.561424 0.770247 4.42E-08 

Q3 0.911954 0.02369 0.079865 0.427524 1.10E-06 

Q4 0.852682 0.657663 0.00013 0.525592 1.41E-10 

Q5 N/A 0.99731 8.65E-06 0.11216 0.622649 

Q6 N/A 0.00222 2.64E-05 0.00077 N/A 

Q7 N/A N/A 3.35E-06 N/A N/A 

Table 7-7: COMPLEX Nodes Wilcox Rank Sum Test Written Exam for Weeks 1 to 5 

Lab 6 7 8 9 10 

Q1 0.582665 0.270668 0.997306 0.387402 0.0247 

Q2 0.00141 0.08103 1.36E-05 0.096176 2.61E-06 

Q3 0.00131 7.25E-05 0.0011 0.308295 0.8014 

Q4 0.914632 1.62E-08 6.27E-07 0.00015 0.00341 

Q5 1.99E-13 N/A 0.00416 0.230357 5.75E-10 

Q6 1.39E-09 N/A 7.79E-10 N/A N/A 

Q7 N/A N/A N/A N/A N/A 

Table 7-8: COMPLEX Nodes Wilcox Rank Sum Test Written Exam for Weeks 6 to 10 
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The results of the Wilcox Rank Sum test for the node data for the second 

half of the semester for the Written Exam, shown in Table 7-8, are similar to the 

results of the file size data results shown in Table 7-2, with the exception of Lab 9, 

which has only one significant result in the nodes tests but has three significant 

results in the file size tests. 

What is interesting is that Q5 in Week 5, does not return a significant result 

in CA or in the Written Exam, as shown in Table 7-6 and Table 7-8, despite it 

being significant according to the file size tests. It may be because the nodes 

method of measuring complexity considers repetition, for example copy-and-

pasted print statements, as increased complexity, whereas the compression method 

reduces complexity in the event of copy-and-pasted code. If the code written for 

Week 5 Q5 by the lower achieving students involves a lot of repetitive code from 

students attempting to solve the problem, this could result in a similar number of 

nodes, but would have a lower compressed file size. Overall, there are less 

significant differences between the two groups in the node data tests than in the file 

size tests, perhaps suggesting that the file size tests are more successful and more 

useful when examining the differences between the two groups. 

7.3.3 Linear Regression: File Size 

In this section, the Tables 7-9, 7-10, 7-11, and 7-12 present the results of 

the Linear Regression tests finding the correlation between the file size data and 

the CA results, and file size and Written Exam results. 

7.3.3.1 Continuous Assessment  

In the Linear Regression coefficients for the first half of the semester, 

presented in Table 7-9, it can be seen that the first significant coefficients are in 

Week 2. There are also positive coefficients in Week 3 and Week 4, with the 

higher number questions (Q5 and Q6 rather than Q1 and Q2 for example) tending 

to be positive. This may be because the questions tend to get more difficult, and 

also the students often would not see the last question in a lab until the day of the 

lab. All of the questions in Week 5 have positive coefficients, with Q4 and Q3 

being the two highest coefficients so far. 
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  1 2 3 4 5 

Q1 -0.08431 -0.04257 -0.04562 -0.12931 0.06685 

Q2 -0.11132 -0.05622 -0.03485 -0.063 0.1101 

Q3 -0.06388 0.00326 -0.00282 -0.06638 0.18698 

Q4 -0.02778 -0.01139 0.05398 -0.05592 0.24215 

Q5 N/A 0.01306 0.09361 -0.0061 0.16888 

Q6 N/A 0.17289 0.10388 0.09624 N/A 

Q7 N/A N/A 0.14446 N/A N/A 

Table 7-9: COMPLEX File Size Linear Regression CA for Weeks 1 to 5 

In the Linear Regression coefficient values shown in Table 7-10, we can 

see another high coefficient value in Week 6, Q6 of >0.27. Week 7 has three 

positive coefficient values out of four questions, and Week 8 has five positive 

coefficients out of six. Week 9 has only two positive coefficients out of five 

questions. Week 10 has four positive coefficients out of five questions, and the 

highest coefficient of the semester for CA file size in Q5. 

  6 7 8 9 10 

Q1 -0.04343 -0.05054 -0.07581 -0.05649 0.064731 

Q2 -0.00693 0.01858 0.03763 -0.05 0.07166 

Q3 0.01038 0.06305 0.0652 -0.00358 0.09888 

Q4 -0.06164 0.24354 0.19592 0.06171 0.16748 

Q5 -0.03446 N/A 0.03446 0.08994 0.33618 

Q6 0.27555 N/A 0.18403 N/A N/A 

Table 7-10: COMPLEX File Size Linear Regression CA for Weeks 6 to 10 

7.3.3.2 Written Exam  

Similar to the results shown in Table 7-9 for the Linear Regression results 

for CA, the first positive coefficient for the Written Exam is in Week 2, but only in 

one question, Q6. Week 3 has four positive coefficients and Week 4 has one. Week 

5 has four positive coefficients out of the five questions, including the two highest 

coefficients so far, Q5 and Q4.  

In the Table 7-12, we see that the Written Exam Week 6 has the highest 

coefficient of the semester in Q6, and has four positive coefficients, compared to 

the CA results that has only two, as shown in Table 7-10. Week 7 has three positive 
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coefficients, Week 8 has only three positive coefficients, compared to the CA 

results of five of the six questions. Week 9 has two positive coefficients. Week 10 

has five positive results out of five questions. 

Lab 1 2 3 4 5 

Q1 -0.04822 -0.04372 -0.02446 -0.07147 -0.01261 

Q2 -0.04642 -0.03803 -0.03242 -0.02198 0.09531 

Q3 -0.04477 -0.00919 -0.0107 -0.03101 0.07761 

Q4 -0.01851 -0.00996 0.05129 -0.03717 0.18156 

Q5 N/A -0.01606 0.04458 -0.00136 0.13225 

Q6 N/A 0.06744 0.05156 0.03379 N/A 

Q7 N/A N/A 0.10393 N/A N/A 

Table 7-11: COMPLEX File Size Linear Regression Written Exam for Weeks 1 to 5 

Lab 6 7 8 9 10 

Q1 -0.03499 -0.02747 -0.03438 -0.05838 0.00045 

Q2 0.0131 0.09852 -0.04604 -0.04103 0.00783 

Q3 0.07007 0.06452 -0.00717 -0.02483 0.02207 

Q4 -0.06461 0.12539 0.10896 0.00793 0.06998 

Q5 0.06142 N/A 0.00283 0.02659 0.16175 

Q6 0.19218 N/A 0.09417 N/A N/A 

Table 7-12: COMPLEX File Size Linear Regression Written Exam for Weeks 6 to 10 

In the Linear Regression tests, we see that Week 5 has the highest and the 

most positive coefficients in the first half of the semester for both CA and the 

Written Exam, although there are also some high coefficient values in Week 2 and 

Week 3. The highest coefficients are Week 6 Q6 and Week 10 Q5, which are the 

two final questions in the formal in-lab examinations, suggesting that these are key 

assignments.   

7.3.4 Linear Regression Test: Node Data 

In this section, the Tables 7-13, 7-14, 7-15, and 7-16 present the results of 

the Linear Regression tests finding the correlation between the node data and the 

CA results, and the node data and Written Exam results. 

7.3.4.1 Continuous Assessment  

 In the results of the Linear Regression tests for CA using the nodes data, 

shown in Table 7-13, we see that the first positive coefficient is in Week 2, with 

Q6. Week 3 has three positive coefficients, including a value of >0.17 for Q7, 



110 
 

higher than any result in Week 3 for the file size CA results shown in Table 7-9. 

Week 4 has one positive coefficient, and Week 5 has four positive coefficients out 

of five questions, including Q4, which has a value of >0.22, the highest coefficient 

from the first half of the semester. 

Lab 1 2 3 4 5 

Q1 -0.0558 -0.06862 -0.04202 -0.1649 0.06231 

Q2 -0.0558 -0.04733 -0.06923 -0.07483 0.08168 

Q3 -0.02669 -0.012 -0.01884 -0.092 0.17136 

Q4 -0.06333 -0.05059 0.048169 -0.04654 0.22143 

Q5 N/A  -0.06125 0.0657 -0.02449 -0.05299 

Q6 N/A  0.0685 0.07059 0.04011 N/A  

Q7 N/A  N/A  0.17182 N/A  N/A  

Table 7-13: Nodes Linear Regression CA 

In the Table 7-14, we can see the Week 6 results have two positive 

coefficients, including the highest result of the semester of >0.3 for Q5. Week 7 

has one positive coefficient out of four questions, and Week 8 has four out of six 

questions, including one of the largest values, of >0.24 for Q6. Week 9 has one 

positive value, and Week 10 has three, similar to the file size results in Table 7-10. 

Lab 6 7 8 9 10 

Q1 -0.09061 -0.05482 -0.10363 -0.04057 -0.00531 

Q2 -0.19423 -0.07044 0.11736 -0.04198 0.06782 

Q3 -0.04442 -0.02721 0.0771 -0.00062 -0.02662 

Q4 -0.12373 0.10363 0.15545 0.10106 0.03611 

Q5 0.30048 N/A  -0.04618 -0.04136 0.18728 

Q6 0.16537 N/A  0.2408 N/A  N/A  

Table 7-14: Nodes Linear Regression CA 

7.3.4.2 Written Exam 

In the results of the Linear Regression tests for Written Exam using the 

nodes data, shown in Table 7-15, we see that the first positive coefficients are in 

Week 3, with Q4, Q5, Q6, and Q7. Week 4 has no positive coefficients, and Week 

5 has three positive coefficients out of five questions, including Q4 which has a 

value of >0.17, the highest coefficient from the first half of the semester. 

In the Table 7-16, we can see the Week 6 results have three positive 

coefficients, including the highest result of the semester of >0.23 for Q5. Week 7 
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has two positive coefficients out of four questions, and Week 8 has four out of six 

questions, including one of the largest values, of >0.24 for Q6. Week 9 has one 

positive value, and Week 10 has three, similar to the file size results in Table 7-14. 

Lab 1 2 3 4 5 

Q1 -0.03571 -0.04345 -0.00677 -0.10648 -0.01643 

Q2 -0.03571 -0.03223 -0.03321 -0.06021 0.1092 

Q3 -0.05851 -0.02703 -0.00905 -0.04325 0.0655 

Q4 -0.04116 -0.0308 0.06666 -0.04836 0.1728 

Q5 N/A  -0.04443 0.0505 -0.02672 -0.01136 

Q6 N/A  -0.00093 0.05415 -0.00202 N/A  

Q7 N/A  N/A  0.11135 N/A  N/A  

Table 7-15: Nodes Linear Regression Written Exam 

Lab 6  7 8 9 10 

Q1 -0.03455 -0.03887 -0.03531 -0.05092 -0.04349 

Q2 -0.13809 0.0115 0.03681 -0.02069 0.01016 

Q3 0.00795 -0.0221 0.02175 -0.02328 -0.04914 

Q4 -0.04601 0.00614 0.06634 0.02795 0.00452 

Q5 0.23399 N/A  -0.04025 -0.02984 0.11079 

Q6 0.04608 N/A  0.14652 N/A  N/A  

Table 7-16: Nodes Linear Regression Written Exam 

The results of the Linear Regression tests for the nodes data are similar to 

the file size data, in that again, Week 5 has the highest and the most positive 

coefficients in the first half of the semester for both CA and Written Exam, but 

unlike the file size results, and similar to the results of the node Wilcox Rank Sum 

test in Section 7.3.2.1, Q5 in Week 5 is not a positive coefficient. Overall, the 

Linear Regression tests with node data show less correlations than the file size 

tests. 

7.4 Neural Network Classifiers 

In this section, the weekly classifiers run using the node and the file size 

data will be discussed. 

7.4.1 Comparison of CA Classifiers 

In the Table 7-17, we can see that from Week 2 to Week 4, the threshold-0 

classifiers have the highest accuracy when predicting student success according to 
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CA, and from Table 7-18, threshold-0 classifiers have the lowest number of False 

Passes, and so are the most successful. Although the threshold-0 classifiers are the 

most successful for these two weeks, it is important to note that the number of 

False Passes is very high (just under 13 False Passes out of 25 fails in Week 2), and 

the classifiers cannot be used reliably at this point.  

Lab 2 3 4 5 6 7 8 9 10 

0 0.669 0.709 0.722 0.788 0.809 0.828 0.83 0.828 0.847 

0.1 N/A 0.688 0.708 0.795 0.813 0.823 0.844 0.843 0.859 

0.15 N/A 0.684 0.684 0.81 0.821 0.841 0.853 0.858 0.876 

Table 7-17: COMPLEX CA Classifier Accuracy 

From Week 5 onwards, it can be seen in Tables 7-17 and 7-18 that the 

threshold-0.15 classifiers have the highest accuracy, and the lowest number of 

False Passes (other than in Week 6 when the threshold-0.1 classifiers have a 

slightly lower number of False Passes), showing that the threshold-0.15 classifiers 

are the most successful CA classifiers from Week 5 onward.   

Lab 2 3 4 5 6 7 8 9 10 

0 12.75 9.15 8.6 6.75 6.15 5.15 5.5 5.05 4.1 

0.1 N/A 9.5 9.05 6.65 5.85 6 4.4 4.5 3.4 

0.15 N/A 11.3 11.35 6.05 5.95 4.8 4.2 4.3 3.1 

Table 7-18: COMPLEX CA Classifier False Passes 

In Week 10, the threshold-0.15 classifier has an accuracy of 87.6%, with a 

False Pass rate of just 3.1 of 25 students. This is the most successful classifier of 

the three experiments so far, comparing MM, CRE, and COMPLEX. 

 Average Accuracy Average False Pass 

0 0.7396667 8.1666667 

0.1 0.7303333 8.4 

0.15 0.726 9.5666667 

Table 7-19: Compare Early Semester CA Classifiers 

 Average Accuracy Average False Pass 

0 0.8284 5.19 

0.1 0.8364 4.83 

0.15 0.8498 4.47 

Table 7-20: Compare Late Semester CA Classifiers 
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Comparing the first and the second half of the semester separately and 

looking at the averages of the accuracy and the False Passes, the best classifiers for 

the first half of the semester is the threshold-0.1, and the best classifiers for the 

second half are the threshold-0.15 classifiers. 

7.4.2 Comparison of Written Exam Classifiers 

In this section, the results of the Written Exam classifiers will be compared 

and discussed.  

Similar to the CA classifiers shown in Tables 7-17 and 7-18, the Tables 7-

19 and 7-20, showing the accuracy and the False Pass numbers for the Written 

Exam classifiers, show that from Week 2 to 5, the threshold-0 classifiers have the 

highest accuracy (except for Week 5 when 0.1-threshold has a very slightly higher 

accuracy) and the lowest False Pass number for the three weeks. The threshold-0 

classifiers are therefore the most successful from Week 2 to Week 5.  

Lab 3 4 5 6 7 8 9 10 

0 0.706 0.7 0.704 0.756 0.749 0.752 0.738 0.751 

0.1 N/A N/A 0.708 0.776 0.776 0.774 0.782 0.767 

0.15 N/A N/A N/A 0.782 0.778 0.779 0.779 0.783 

Table 7-21: COMPLEX Written Exam Classifier Accuracy 

In Table 7-19, we can see that the classifiers for threshold-0.1 and 

threshold-0.15 are similar, and higher, than threshold-0. The accuracy is slightly 

higher for threshold-0.15 overall, but the data in Table 7-20 shows that the 

threshold-0.1 classifiers are more reliable as they have lower False Pass numbers 

than the threshold-0.15 classifiers. Therefore, the most successful classifiers from 

Week 6 to Week 10 are the threshold-0.1 classifiers. 

Lab 3 4 5 6 7 8 9 10 

0 9.35 9.5 9.15 7.1 7.2 7.45 7.65 6.35 

0.1 N/A N/A 9.45 6.8 6.65 6.55 6.45 6.4 

0.15 N/A N/A N/A 7.2 7.85 7.4 7.45 7.15 

Table 7-22: COMPLEX Written Exam Classifier False Passes 

 Average Accuracy Average False Pass 

0 0.7033333 9.3333333 

0.1 0.708 9.45 

0.15 N/A N/A 

Table 7-23: Comparing Early Semester Written Exam Classifiers 
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Comparing the first and second half of the semester separately and looking 

at the averages of the accuracy and the False Passes, the best classifier for the first 

half of the semester is the threshold-0, and the best classifier for the second half is 

the threshold-0.15. 

 Average Accuracy Average False Pass 

0 0.7492 7.15 

0.1 0.775 6.57 

0.15 0.7802 7.41 

Table 7-24: Compare Late Semester Written Exam Classifiers 

7.5 Code Complexity Week-by-Week 

Week 1 

This week, the Wilcox Rank Sum test found significant differences in the 

file size and nodes data of higher achieving and lower achieving groups in CA for 

Q4. There are already positive Linear Regression results from the file size data in 

both CA and Written Exam tests from Q4, but not in the nodes data. The Q4 

assignment asks students to declare variables, perform, and store the results of 

mathematical operations and print the stored results. 

Week 2 

The Wilcox Rank Sum test shows significant results for file size data CA 

tests for questions Q1, Q3, Q4, Q5, and Q6, and for Q3, Q4, Q5, and Q6 of the 

Written Exam file size tests. The nodes tests show significant differences in Q3 and 

Q6 in the CA tests and the Written Exam tests. Questions Q3, Q5, and Q6 all have 

positive coefficients from the file size Linear Regression tests in CA, but only Q6 

is positive for the Written Exam. In the node data Linear Regression tests, only Q6 

is positive in the CA tests, and no questions have positive coefficients in relation to 

the Written Exams. Only the CA classifier has enough features to run this week. 

The threshold-0 classifier already has an accuracy of 66.9% but has a high False 

Pass number of 12.75. 

Week 3 

Every question this week from the CA file size Wilcox Rank Sum Tests 

has significant results, except Q1. In the Written Exam test, every question has 

significant results except the first two. In the nodes Wilcox Rank Sum tests, again 
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in the CA results, every question has significant results, except Q1. In the Written 

Exam results, Q1, Q4, Q5, Q6, and Q7 all have significant results. In the Linear 

Regression tests for file size, the last four questions have positive coefficients in 

relation to CA and to the Written Exams. In the Linear Regression tests for the 

node data, the last three questions have a positive coefficient for CA, and the last 

four questions have a positive coefficient in relation to Written Exam data. All 

three classifier thresholds are able to run this week with CA data, the most 

successful being threshold-0, which already has an accuracy of 70.9%, and the 

False Pass number has dropped from 12.75 to 9.15. This week has the first Written 

Exam classifier, which has an accuracy of 70%, and a False Pass number of 9.35. 

Week 4 

The Wilcox Rank Sum test for file size shows significant differences in the 

CA groups for Q3, Q5, and Q6 and in the Written Exam groups for Q5 and Q6. In 

the nodes Wilcox Rank Sum test, Q1 and Q6 have significant results in CA, and 

Q6 only in the Written Exam. In the Linear Regression results for file size, Q6 has 

a positive coefficient in relation to CA and Written Exams. In the results for the 

nodes data Linear Regression tests, the only positive coefficient is for Q6 in 

relation to CA. The threshold-0 and threshold-0.1 increase in success this week for 

CA, with threshold-0 going from 70.9% accuracy to 72.2%, and the False Pass 

dropping from 9.15 to 8.6. The threshold-0.1 classifier goes from 68.8% accuracy 

to 70.8%, and the False Pass drops slightly from 9.5 to 9.05. The threshold-0.15 

classifier remains the same, as it does not gain any additional features this week. 

The Written Exam threshold-0 classifier drops slightly in success this week. 

Week 5 

The Wilcox Rank Sum test for file size data returns a significant result for 

every question for both CA and the Written Exam. In the nodes Wilcox Rank Sum 

test, four of the five questions have significant results in relation to both CA and 

Written Exam classifications. In the Linear Regression tests for file size data, all 

five of the questions this week have positive coefficients for CA, with Q4 being the 

highest coefficient so far in this semester. The results for the Written Exam have 

four positive coefficients, with Q4 again being the highest of the semester for 

Written Exam. For the nodes Linear Regression tests, four of the five questions 

have positive coefficients in relation to CA, and three of the five have positive 

coefficients in relation to the Written Exam. There is a large leap in effectiveness 

of the CA classifiers at this point. For the CA classifiers, the threshold-0 classifier 
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increases in accuracy from 72% to almost 79%, and the False Pass drops from 8.6 

to 6.75. The threshold-0.1 classifier increases from 70.8% to 79.5%, and the False 

Pass numbers drop from 9.05 to 6.65. The biggest change is in the threshold-0.15 

classifier. Its accuracy increases from 68.4% to 81%, and the False Passes drop 

from 11.35 to 6.05, making it the most successful classifier this week. However, 

the threshold-0 classifier for the Written Exam is mostly the same as the previous 

week. The threshold-0.1 classifier is run for the first time and has similar results to 

the threshold-0 classifier, with an accuracy of 70.8% and 9.45 False Passes. 

Week 6 

In the Wilcox Rank Sum test for file size and for nodes, the questions Q2, 

Q3, Q5, and Q6 return significant results in relation to both CA and the Written 

Exam.  In the Linear Regression tests for file size, Q3 and Q6 both have positive 

coefficients in relation to CA. In the nodes test, Q2, Q3, Q5, and Q6 have positive 

coefficients. In the Linear Regression nodes test, Q5 and Q6 have positive 

coefficients for CA, and Q3, Q5, and Q6 have positive coefficients for Written 

Exams. Again, each of the classifiers for CA improves this week. The threshold-0 

classifier accuracy increases from 78.8% to 80.9%, and the False Passes drop from 

6.75 to 6.15. The threshold-0.1 classifier increases from 79.5% to 81.3%, and the 

False Pass rate drops from 6.65 to 5.85. The threshold-0.15 classifier increases 

from 81% to 82.1%, and False Pass rate drops very slightly from 6.05 to 5.95, 

making it the most successful classifier again this week. In the Written Exam 

classifiers, there is a leap in success this week. The threshold-0 classifier goes from 

70% to 75.6%, and the False Passes drop from 9.15 to 7.1. In the threshold-0.1 

classifier, the accuracy goes from 70.8% to 77.6%, and the False Pass drops from 

9.45 to 6.8. The threshold-0.15 classifier runs with Written Exam data for the first 

time and the accuracy is 78%, while the False Pass number is 7.2. It is arguable 

that threshold-0.1 or threshold-0.15 are the most successful this week. 

Week 7 

In the Wilcox Rank Sum tests for file size and for nodes, the Q2, Q3, Q4, 

are all significant for both CA and Written Exam groups. In the Linear Regression 

tests for file size, Q2, Q3, and Q4 has positive coefficients for CA and for the 

Written Exam. In the node Linear Regression tests, Q4 is positive for CA, and Q2 

and Q4 are positive for the Exam. The threshold-0 CA classifier increases in 

accuracy from 80.9% to 83%, and the False Pass drops from 6.15 to 5.15. The 

threshold-0.1 CA classifier stays roughly the same. The threshold-0.15 CA 
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classifier accuracy goes from 82.1% to 84.1%, and the False Pass drops from 5.95 

to 4.8. Threshold-0.15 is again the most successful CA classifier. For the Written 

Exam, the classifiers stay around the same as the previous week, with some slight 

drops in accuracy and increases in False Pass numbers. 

Week 8 

The Wilcox Rank Sum Test for both file size and nodes data found 

significant differences between the groups in Q2, Q3, Q4, Q5, and Q6 in CA and 

Written Exam. The Linear Regression tests for file size have positive coefficients 

for Q2, Q3, Q4, Q5, and Q6 in relation to CA, and in Q4, Q5, and Q6 for Written 

Exam. In the Linear Regression tests for nodes, the coefficients for Q2, Q3, Q4, 

and Q6 are all positive for CA and for Written Exams. The threshold-0 classifier 

for CA does not improve, the accuracy is slightly higher, and the False Pass rate 

increases slightly. The threshold-0.1 classifier increases in accuracy from 82.3% to 

84.4%, and the number of False Passes drops from 6 to 4.4. The threshold-0.15 

classifier accuracy rises from 84.1% to 85.3%, and the number of False Passes 

drops from 4.8 to 4.2. The Written Exam classifiers are again mostly the same as 

the previous week.  

Week 9 

The Wilcox Rank Sum test for file size finds significant differences 

between the CA groups for questions Q3, Q4, and Q5, and for the Written Exam 

groups, questions Q2, Q4, and Q5. For nodes it finds differences for questions Q3, 

Q4, and Q5 for CA, and for Q4 only for the Written Exam. For the Linear 

Regression tests for file size, the questions Q4 and Q5 have positive coefficients in 

relation to both CA and Written Exams. For nodes, the question Q4 only has 

positive coefficients for both CA and Written Exams. The classifiers for this week 

do not greatly change from the week before for CA. For the Written Exam, there is 

an increase in accuracy for threshold-0.1, from 77.4% to 78.2%, with a slight 

decrease in False Passes from 6.55 to 6.45. 

Week 10 

In this week, the students have their second lab exam. The Wilcox Rank 

Sum test for file size finds significant differences in the higher and lower achieving 

groups for every question for both CA and Written Exam. The nodes test found 

differences in four of the five questions, for CA and for Written Exam. The Linear 

Regression tests for file size show the last four of the five questions have positive 
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coefficients relating to CA, and all of the questions have positive coefficients 

relating to Written Exams. The Linear Regression tests for node data show positive 

coefficients for Q2, Q4, and Q5 in relation to CA and Written Exams. The CA 

classifiers have another leap in success at this point, with the threshold-0 classifier 

increasing in accuracy from 82.8% to 84.7%, and the False Passes dropping from 

5.05 to 4.1. The threshold-0.1 classifier accuracy increases from 84.3% to 85.9%, 

and the False Passes drop from 4.5 to 3.4. Finally, the 0.15-threshold CA classifier 

increases to 87.6% accuracy, and the False Passes drop to just 3.1 out of 25 Fails 

(12.4%), making it the most successful classifier in the COMPLEX experiment. 

The threshold-0 classifier for Written Exams accuracy increases to 75.1%, and the 

number of False Passes drops to 6.35. The threshold-0.1 classifier drops to just 

under 77% and the False Passes stay the same. The threshold-0.15 classifier 

increases in accuracy slightly to 78.3%, and the number of False Passes drops 

slightly to 7.15. 

7.6 Discussion of Results 

In COMPLEX, many of the weeks have significant results from the Wilcox 

Rank Sum test, particularly for file size, for the last assignment of the week. These 

assignments are often not visible until the students are in their assigned lab time, 

and so only the students with a good grasp of the material, who are both able to 

formulate solutions based on their programming “tool-kit” and are able to work 

quickly, do well on these assignments. These assignments also tend to be the most 

challenging, as the questions for each lab increase in difficulty. 

The threshold-0.15 classifiers are the most successful in classifying success 

in CA and the Written Exam, as they use the most relevant data. However, for early 

classification, the threshold-0 classifier that uses whatever data is available can also 

be useful. Week 5 data is the most important for CA according to the Linear 

Regression results, but Week 6 is more important for the Written Exam. 

The code complexity classifiers were successful, with the highest accuracy 

of 87% in Week 10 for the CA classifier. The Wilcox Rank Sum tests were also 

successful, in that they showed a significant difference between the highest and 

lowest performing students throughout the semester, even in Week 1 in the case of 

the file size tests, as shown in Table 7-1 and Table 7-3. These tests worked so well 

that it was difficult to pinpoint key dates in the semester when the divergence in the 

two groups appears. From the file size tests, it seems that, as in the previous 

experiments, Week 5 is the key point of divergence, as all the assignments in this 
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week have significant differences between the two groups. It could also be argued 

that Week 2 and Week 3 are key points, as most of the assignments in these labs 

show significant differences. 

The classifiers with threshold-0.15, using features with a Linear Regression 

relationship of more than 0.15, has the lowest percentage of False Passes for the 

last six weeks, (except Week 6, when the threshold-0.1 classifier is slightly lower). 

However, for Week 3 and Week 4, the classifier has a much higher rate of False 

Passes, possibly due to the fact that there are not many input features at this point. 

There is a spike in CA classifier success in Week 5, with the threshold-0 

classifiers jumping from 72% accuracy in Week 4 to 79% in Week 5, the 

threshold-0.1 classifiers jumping from 71% to 80% and the threshold-0.15 

classifiers jumping from 68% to 81%. These additional assignments are Q2, Q3, 

Q4, and Q5 in the above Wilcox Rank Sum test results in Tables 7-1 and 7-5, and 

Linear Regression Tables 7-9 and 7-13. In both the Wilcox and Linear Regression 

tests, these assignments are among the most significant both in terms of difference 

between the two groups, and in association with outcome. Q4 is the most important 

of these, as it has one of the highest correlations with CA outcome according to the 

Linear Regression tests, but comes earlier in the semester than other assignments 

with similar correlations. Q4 asks the students to write code that takes a string as 

user input and to print out that string with the first and last characters swapped. On 

average, students who did well in their CA wrote more complex code for the Week 

5 Q4 assignment, implying that this particular assignment is a key indicator as to 

whether or not a student is likely to do well in the module or not. 
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8. Experiment 4: The HOG Classifier 

8.1 Introduction to HOG 

This section discusses the final classifier that uses all three of the 

previously explored data types: MM, CRE, and COMPLEX. From the experiments 

on these three data types, a final classifier was built using the same method as in 

Chapters 5, 6, and 7 to use all three data types in order to classify students as being 

in the top or bottom 50% of the class grades under two categories:  

1) Continuous Assessment. 

2) Written Exam. 

8.2 Features 

The features for the HOG Neural Network Classifier are those described in 

the previous experiments features sections: 

• MM  

o This is the Mouse Movement (MM) data type as described 

in Section 5.3. 

• CRE  

o This is the Compile, Run, and Evaluate (CRE) data type as 

described in Section 6.4. 

• COMPLEX 

o This is the Code Complexity (COMPLEX) data type, as 

described in Section 7.2. 

Note that although all three data sets are used for this classifier, the Linear 

Regression results are never higher than 0.1 for MM data, and so the threshold-0.1 

and threshold-0.15 classifiers only use CRE and COMPLEX inputs.  

8.3 Neural Network Classifiers 

In this section, the results of the HOG classifiers, run with the three data 

types that were explored in Chapters 5, 6 and 7, will be examined.  
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8.3.1 Comparison of Continuous Assessment Classifiers 

The accuracy of the threshold-0, threshold-0.1, and threshold-0.15 HOG 

classifiers for CA can be seen in Table 8-1, and the number of False Passes (out of 

a possible total of 25) can be seen in Table 8-2. 

Lab 2 3 4 5 6 7 8 9 10 

0 0.654 0.723 0.74 0.789 0.816 0.838 0.836 0.793 0.823 

0.1 N/A 0.719 0.711 0.79 0.813 0.842 0.853 0.846 0.858 

0.15 N/A 0.694 0.642 0.812 0.791 0.846 0.851 0.856 0.876 

Table 8-1: HOG CA Classifier Accuracy 

In Weeks 2 to 4, the 0-threshold classifiers have the highest accuracy, as 

seen in Table 8-1, and the lowest number of False Passes as seen in Table 8-2 

(although threshold-0.1 has the same False Pass number for Week 3). The most 

successful classifier threshold in Week 5 is threshold-0.15, as it has the highest 

accuracy and lowest False Pass number.  

Lab 2 3 4 5 6 7 8 9 10 

0 13 8.45 8.05 6.9 5.8 4.6 4.7 5.45 4.5 

0.1 N/A 8.45 8.45 6.55 5.65 5.3 4.35 3.1 3.3 

0.15 N/A 9.45 13 6.2 5.9 4.75 4.45 4.35 3.3 

 Table 8-2: HOG CA Classifier False Passes  

However, because the threshold-0.15 False Pass numbers are so high in 

Week 3 and Week 4 and the accuracy is so low compared to threshold-0, the 

threshold-0 classifiers are the most successful overall in the first half of the 

semester, from looking at the averages of the Weeks 3,4, and 5, as can be seen in 

Table 8-3. Week 2 was not included in this, as only the threshold-0 classifier had 

any results for this week.  

 Average Accuracy Average False Pass 

0 0.750667 7.8 

0.1 0.74 7.816667 

0.15 0.716 9.55 

Table 8-3: Averages of Early Semester Classifiers for CA 

Looking at the second half of the semester, from Week 6 to Week 10, the 

most successful classifiers, according to the averages of the accuracy and the False 

Passes, is the threshold-0.1 classifiers, as can be seen in Table 8-4. Although the 
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threshold-0.15 accuracy is higher than the threshold-0.1 accuracy, it also has a 

slightly higher average False Pass rate, and the threshold-0.1 has a lower average 

False Pass rate. 

 Average Accuracy Average False Pass 

0 0.8212 5.01 

0.1 0.8424 4.34 

0.15 0.844 4.55 

Table 8-4: Averages of Late Semester Classifiers for CA 

The most successful classifiers for early semester classifications are the 

threshold-0 classifiers, and the most useful classifiers for later semester 

classifications are the threshold-0.1 classifiers. The most successful individual 

classifier overall is the threshold-0.15 classifier in Week 10, with an accuracy of 

over 87%, and only 3.3 False Passes of 25 Fails. It is interesting to note that for all 

thresholds, there is a large leap in classifier accuracy in Week 5, ranging from an 

increase of 0.04 to 0.17. There is also a reduction in False Pass numbers, ranging 

from 1 to almost 7. This suggests that Week 5 may be a key week in predicting 

student outcome in CA.  

8.3.2 Comparison of Written Exam Classifiers 

The accuracy of the threshold-0, threshold-0.1 and threshold-0.15 HOG 

classifiers for Written Exams can be seen in the Table 8-5, and the number of False 

Passes (out of a possible total of 25) can be seen in Table 8-6. 

Labs 2 3 4 5 6 7 8 9 10 

0 0.552 0.656 0.632 0.697 0.702 0.704 0.711 0.713 0.72 

0.1 N/A 0.67 0.687 0.736 0.783 0.789 0.791 0.793 0.775 

0.15 N/A N/A N/A 0.719 0.784 0.775 0.786 0.78 0.781 

Table 8-5: HOG Written Exam Classifier Accuracy 

Between Weeks 2 to 5, the most successful classifier is the threshold-0.1 

classifier, according to the average accuracy and False Pass number as shown in 

Table 8-7.  

Labs 2 3 4 5 6 7 8 9 10 

0 15.1 11.75 12.95 9.2 8.95 9.4 9.15 9.05 8.95 

0.1 N/A 9.05 8.2 7.95 6.45 6.35 6.15 6.1 6.05 

0.15 N/A N/A N/A 10.45 6.5 6.9 6.45 6.5 6.5 

Table 8-6: HOG Written Exam Classifier False Passes 
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The averages do not include Week 2, as only threshold-0 has a Week 2 

result, and although threshold-0.15 has the highest accuracy, it also has a high 

False Pass number. Therefore, the most successful early classifier threshold is 0.1. 

 Average Accuracy Average False Pass 

0 0.661667 11.3 

0.1 0.697667 8.4 

0.15 0.719 10.45 

Table 8-7: Averages of Early Semester Classifiers for Written Exams 

The most successful classifier threshold for late semester is the threshold-

0.1, which can be seen in the averages in Table 8-8. The threshold-0.1 classifiers 

have the highest average accuracy and the lowest average False Pass number.  

 Average Accuracy Average False Pass 

0 0.71 11.375 

0.1 0.7862 7.775 

0.15 0.7812 8.2125 

Table 8-8: Averages of Late Semester Classifiers for Written Exams 

The most successful classifier throughout the semester is the threshold-0.1 

classifier, when considering both the accuracy and the False Passes, even when 

looking at the first and second half of the semester separately. The most successful 

individual classifier is the threshold-0.1 classifier for Week 9, with an accuracy of 

79.3% and a False Pass number of 6.1. It is interesting to note that, like in the CA 

results, there is a leap in classifier accuracy for threshold-0 and threshold-0.1 in 

Week 5, compared to Week 4. There is also a reduction in False Pass numbers in 

threshold-0 of >3, going from 12.95 to 9.2. Although not as dramatic as the results 

in the CA section, this still suggests that Week 5 may be a key week in predicting 

student outcome in Written Exams. 

8.5 Conclusions 

Throughout this thesis, the data from Week 5 has been key to the 

differences in the higher and lower achieving groups. In this chapter, it is shown 

that Week 5 is when the successful and unsuccessful students begin to significantly 

diverge in observed behaviour. This is shown through the classifier results, the 

most successful classifier in CA making a leap from 71% to 79% in Week 4 to 

Week 5, and the False Passes dropping from 8.45 to 6.55. Similar to what was 

shown in the classifiers and Wilcox Rank Sum tests from Chapters 5, 6, and 7, 
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Week 5 and Week 6 is when the classifiers make a significant leap in accuracy, and 

False Passes make a drop. 

In conclusion, Week 5 again seems to be a key week in determining 

student outcome. The most successful classifier threshold for CA is threshold-0 for 

early semester, and threshold-0.1 for late semester. The most successful classifier 

threshold for the Written Exam is threshold-0.1 for early and late semester. 
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9. Conclusions 

In this chapter, the research instruments created for this study, MULE and 

HOG, and their success will be discussed. The success of the HOG classifiers using 

the three different data types, and the classifier using all of the data types will be 

compared. The student behaviour and its relation to student outcome is discussed 

on a week-to-week basis using results from all four experiments. The research 

questions are examined in the context of the results of the four experiments, and 

future research is discussed. Finally, the conclusions of the thesis will be outlined. 

9.1 The Research Instruments 

9.1.1 MULE 

The MULE system has become an integral part of the Computer Science 

course in Maynooth University, and has also been used in both Beijing University 

of Technology and Fuzhou University. It has now been used in teaching 

Introduction to Programming to over 1000 students. The system is extremely 

modular and has huge potential for further expansion for pedagogical and research 

purposes. It has been used to teach novice programmers Java, C++, and Prolog, and 

can be used for many other programming languages. As a research tool, it has been 

used to non-intrusively collect large-scale behavioural data from novice 

programmers and subsequently provide valuable insight into the behaviours of 

novice programmers.  

9.1.2 HOG 

The HOG classifier is a classifier specifically built to work with the 

behavioural data from MULE to identify students who may need intervention. In 

this thesis, variants of this classifier are tested, with different subsections of the 

data, to varying degrees of success. In the following section, the results of the four 

different classifiers are compared and discussed for CA and the Written Exam in 

terms of which had the most success, in early semester and in late semester. 

9.1.2.1 Early Semester CA classifiers 

In Table 9-1 and Table 9-2, the most successful classifiers from each 

experiment, MM from Chapter 5, CRE from Chapter 6, COMPLEX from Chapter 

7, and HOG from Chapter 8, are compared in terms of accuracy and number of 
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False Passes out of total Fails (always 25, as explained in Section 4.4) for early 

semester, Week 2 to Week 5. 

 
Threshold Lab 2 Lab 3 Lab 4 Lab 5 

MM -0.1 0.508 0.561 0.556 0.545 

CRE 0 N/A 0.677 0.706 0.73 

COMPLEX  0 0.669 0.709 0.722 0.788 

HOG 0 0.654 0.723 0.74 0.789 

Table 9-1: Comparing Early Semester CA Classifier Accuracy 

 
Threshold Lab 2 Lab 3 Lab 4 Lab 5 

MM -0.1 16 12.4 15.3 13.55 

CRE 0 N/A 8.7 8.55 7.7 

COMPLEX 0 12.75 9.15 8.6 6.75 

HOG 0 13 8.45 8.05 6.9 

Table 9-2: Comparing Early Semester CA Classifier False Passes 

In Table 9-3, the averages of the accuracy and the False Passes for the four 

classifier types are compared. Note that Week 2 is not included in this average, as 

not all classifier types had enough data for a classifier at this point.   

 
Threshold Accuracy False Passes 

MM -0.1 0.554 13.75 

CRE 0 0.704333 8.316667 

COMPLEX  0 0.739667 8.166667 

HOG 0 0.750667 7.8 

Table 9-3: Comparing Early Semester CA Classifier Average Accuracy and False Passes 

In Table 9-1, we can see that COMPLEX has the highest accuracy for 

Week 2, but the False Passes are high (>50% of the Fails classified as Passes), so 

the classifier is not reliable.  

For Weeks 3, 4, and 5 the HOG classifier has the highest accuracy for 

every week, and the lowest False Pass number for Weeks 3 and 4. COMPLEX has 

a slightly lower False Pass number for Week 5 than HOG, and a slightly lower 

accuracy rate. Looking at the averages, as shown in Table 9-3, HOG threshold-0 is 

the most successful early semester classifier, but it is important to note the success 

of the COMPLEX classifier, especially in Week 5. The MM classifiers are 

unsuccessful and seem to perform as well as random classifiers (in that the 
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accuracy is around 50%) and CRE classifiers are successful as early semester 

classifiers, but not as successful as HOG or COMPLEX. 

9.1.2.2 Late Semester CA classifiers 

In Tables 9-4 and 9-5, the most successful classifiers from each experiment 

are compared in terms of accuracy and number of False Passes out of total Fails 

(always 25) for late semester, from Weeks 6 to 10. In Table 9-6, the averages of the 

accuracy and the False Passes for the four classifier types is compared.  

 
Threshold 6 7 8 9 10 

MM -0.1 0.556 0.568 0.512 0.495 0.493 

CRE 0 0.758 0.763 0.766 0.767 0.767 

COMPLEX 0.15 0.821 0.841 0.853 0.858 0.876 

HOG 0.1 0.813 0.842 0.853 0.846 0.858 

Table 9-4: Comparing Late Semester CA Classifier Accuracy 

CRE results are mostly the same throughout late semester, with its 

accuracy staying around 76%, and the number of False Passes staying around 6.8, 

implying that CRE movements are more useful in classifying students in early 

semester, but later CRE data does not add anything useful to the classifier outcome. 

The HOG and COMPLEX classifiers are similar in accuracy and False Pass 

number to each other throughout Weeks 6 to 10, with COMPLEX having the 

highest accuracy of any classifier in this thesis at 87.6%, as seen in Table 9-4, and 

the lowest False Pass number of 3.1 as seen in Table 9-5. 

 
Threshold 6 7 8 9 10 

MM -0.1 11.1 13.2 21.8 25 25 

CRE 0 6.9 6.7 6.8 6.75 6.7 

COMPLEX 0.15 5.95 4.8 4.2 4.3 3.1 

HOG 0.1 5.9 4.75 4.45 4.35 3.3 

Table 9-5: Comparing Late Semester CA Classifier False Passes 

 
Threshold Accuracy False Passes 

MM -0.1 0.5248 19.22 

CRE 0 0.7642 6.77 

COMPLEX  0.15 0.8498 4.47 

HOG 0.1 0.8424 4.55 

Table 9-6: Comparing Late Semester CA Classifier Average Accuracy and False Passes 
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CRE results are successful, but do not improve with the addition of late 

semester data, and the MM classifiers are not successful, and continue to perform 

as well as random classifiers. 

While the results for HOG and COMPLEX are similar, COMPLEX 

threshold-0.15 is the most successful late semester classifier, in average accuracy 

and False Passes, as can be seen in Table 9-6, and also in highest achieved 

accuracy rate and lowest achieved False Pass number.  

9.1.2.3 Early Semester Written Exam HOG classifiers 

In this section, the results of the four different Written Exam classifiers are 

compared, and the early semester success is discussed. 

 
Threshold 2 3 4 5 

MM -0.1 0.506 0.499 0.464 0.479 

CRE 0 N/A 0.731 0.733 0.762 

COMPLEX  0 N/A  0.706 0.7 0.704 

HOG 0.1 N/A 0.67 0.687 0.736 

Table 9-7: Comparing Early Semester Written Exam Classifier Accuracy 

In Tables 9-7 and 9-8, the most successful classifiers from each experiment 

are compared in terms of accuracy and number of False Passes out of total Fails 

(always 25) for early semester, from Week 2 to Week 5. In Table 9-9, the averages 

of the accuracy and the False Passes for the four classifier types is compared, but 

Week 2 is not included in this average, as not all classifier types had enough data 

for a classifier at this point.   

 
Threshold 2 3 4 5 

MM -0.1 15.15 11.6 14.5 13.75 

CRE 0 N/A  11 10.2 11.25 

COMPLEX  0 N/A  9.35 9.5 9.15 

HOG 0.1 N/A  9.05 8.2 7.95 

Table 9-8: Comparing Early Semester Written Exam Classifier False Passes 

 
Threshold Accuracy False Passes 

MM -0.1 0.480667 13.28333 

CRE 0 0.742 10.81667 

COMPLEX  0 0.703333 9.333333 

HOG 0.1 0.697666 8.4 

Table 9-9: Comparing Early Semester Written Exam Classifier Average Accuracy and False Passes 
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For Weeks 3 and 4, the CRE classifier has the most accurate classifiers, but 

has very high False Pass numbers. HOG does not perform as well as CRE on 

average in terms of accuracy and has much lower False Pass numbers. 

From the averages presented in Table 9-9, it could be argued that either of 

the two classifiers CRE and HOG are the most successful, CRE in terms of 

accuracy and HOG in terms of False Passes. If we consider the low number of 

False Passes as more important than accuracy, HOG is the most successful early 

semester classifier for Written Exams. The MM classifiers are not successful, and 

the COMPLEX classifiers are successful, but not as accurate as CRE, and have 

higher False Passes than HOG, as seen in Table 9-9.  

9.1.2.4 Late Semester Written Exam HOG classifiers 

 In Tables 9-10 and 9-11, the Classifier Accuracy and the False Pass 

numbers are compared for late semester Written Exam classifiers. The classifiers 

for the CRE data peak in Week 6 and do not improve over the course of the last 

four weeks of the semester, implying that, like in the CA results, the CRE data is 

useful for early semester classification of Written Exam results only. There is little 

change in the other classifiers throughout this time, although the COMPLEX and 

HOG classifiers peak in Week 9. 

 
Threshold 6 7 8 9 10 

MM -0.1 0.464 0.499 0.468 0.486 0.485 

CRE 0 0.781 0.77 0.777 0.78 0.776 

COMPLEX 0.1 0.776 0.776 0.774 0.782 0.767 

HOG 0.1 0.783 0.789 0.791 0.793 0.775 

Table 9-10: Comparing Late Semester Written Exam Classifier Accuracy 

 
Threshold 6 7 8 9 10 

MM -0.1 14.8 13.45 16.75 20.85 20.3 

CRE 0 7.5 7.25 7.5 6.8 7.15 

COMPLEX 0.1 6.8 6.65 6.55 6.45 6.4 

HOG 0.1 6.5 6.9 6.45 6.5 6.5 

Table 9-11: Comparing Late Semester Written Exam Classifier False Passes 

The averages of the classifier accuracies and False Passes from Week 6 to 

10, is show in Table 9-12. The most successful classifier in late semester is the 

HOG classifier. Both CRE and COMPLEX also have high average accuracy 

(>77%), but COMPLEX has a lower False Pass number. The MM classifiers are 

again unsuccessful. 
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Threshold Accuracy False Passes 

MM -0.1 0.4804 17.23 

CRE 0 0.7768 7.24 

COMPLEX  0.1 0.775 6.57 

HOG 0.1 0.7862 6.57 

Table 9-12: Comparing Late Semester Written Exam Classifier Average Accuracy and False Passes 

While the classifiers, other than MM, have similar average success, the 

HOG threshold-0.1 is the most successful late semester classifier for Written 

Exam. 

9.2 Discussion of Student Behaviour 

In this thesis, key times and assignments in the Introduction to 

Programming course have been identified. Each of the three experiments found that 

Week 5 was a key week in the semester, and that the assignments could easily be a 

stumbling block for students. While the MM experiments were less successful 

when applied to the week-by-week analysis, we still found that there were 

connections between the student’s MM data and their eventual outcome, though 

this may only be true for the second semester. This requires more research.  

More successfully, we found that the CRE data and the COMPLEX data 

from Week 5 of the labs were significantly different in the higher and lower 

performing groups, and that this trend continued into Week 6 and Week 7.  

The most successful features were those from the COMPLEX experiment. 

This fits in to the Neo-Piagetian framework, as students who are able to write more 

complex code and are able to write code that contains various concepts from an 

early stage, are more likely to do well in the module. This may suggest that as 

Computer Science educators, we should spend more time on teaching students how 

to combine different concepts, instead of teaching the concepts individually, and 

hoping the students will work the rest out for themselves. In the COMPLEX 

experiment, the analysis and classifiers showed a clear shift in Week 5, when the 

two groups seem to most clearly diverge from each other. In terms of assignments, 

the earliest indicator that a student will do well in a module is the Q4 assignment in 

Week 5. 
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The description of the weekly assignments in Section 4.1.2.1 suggests that 

Week 5 has a leap in complexity of assignment requirements, and that may be the 

first time in the semester that students have a large enough range of problem-

solving techniques to allow for this kind of complexity. The result may be a sink-

or-swim week, where students who are not able to quickly adapt to combining 

techniques will not be able to catch up for the rest of the semester.   

In the following sections, there will be a week-by-week discussion of 

classifier success and when the higher and lower achieving students diverge in 

behaviour according to the different data types. 

9.2.1 Week 1 

In Week 1, we already see divergences in the behaviour of the higher and 

lower achieving students in CA and Written Exam in the Wilcox Rank Sum test for 

MMs, for CRE, and for COMPLEX. Specifically, there are differences in the file 

size tests for Q4, which asks the students to combine the first programming 

concepts they have learned, namely: mathematical operations; storing values in 

variables; and printing variables. This may be an early warning sign of students 

who are in need of assistance and would benefit from extra help. There are no 

positive Linear Regression results at this stage, and so there is no data for the 

classifiers. 

9.2.2 Week 2 

Week 2 has similar Wilcox Rank Sum test results for CA and the Written 

Exam for MM and CRE, but there is already a leap in the number of features with 

significant results for the COMPLEX tests, implying that differences in code 

complexity between the two groups are apparent very early on.  

This week we see the first positive Linear Regression results, though the 

values are still very small (<0.03) for CRE tests. The results for COMPLEX data 

are also mostly very small, but the coefficient for Q6 in relation to CA is already 

0.17, much higher than anything in CRE at this point.  

These Linear Regression results mean the first classifier can be run for 

COMPLEX and HOG. The COMPLEX CA classifier is already at 66.9% accuracy, 

although it has a high False Pass number of 12.75 (>50%). The HOG classifier is 

similarly successful, with an accuracy of 65% and a False Pass number of 13. The 

HOG Written Exam classifier is much less successful at 55% accuracy and a False 
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Pass number of 15.1. At this stage, the classifiers are not useful, as the False Pass 

number is over 50%, but the results do show that student behaviour is already 

diverging. 

The assignments this week ask students to combine techniques, and the 

divisions in code complexity may show that successful students are able to write 

more complex code at this point. 

9.2.3 Week 3 

Week 3 has no significant Wilcox Rank Sum Test results for MM, but has 

slightly more for CRE tests. COMPLEX continues to have a majority of the 

features return significant results.  

CRE Linear Regression results show two features with positive results for 

CA and for the Written Exam, all >0.1. COMPLEX has an increase in the number 

of positive coefficients in relation to CA and the Written Exam, some of which are 

>0.1.  

These Linear Regression results mean the CRE classifiers run for the first 

time, and are successful for early in the semester, with the CA classifier having an 

accuracy of 67% and a False Pass number of 8.7 (<35%). The Written Exam 

classifier is less successful, with a high False Pass number of 11, although it has an 

accuracy of 73%. The COMPLEX classifiers can now run with thresholds-0, 

thresholds-0.1 and thresholds-0.15 for CA, with the most successful being 

threshold-0 with an accuracy of 70.9% and a False Pass of 9.15, a significant 

improvement from the previous week. The first COMPLEX Written Exam 

classifier runs this week, with an accuracy of 70.6% and a False Pass rate of 9.35 

(<38%). The most successful classifier this week is the threshold-0 HOG classifier, 

with an accuracy of 72% and a False Pass number of 8.45.  

Week 3 has clearer signs of divergence and is the first week with useful 

classifiers. This may be because, as well as the assignments becoming more 

difficult, this is the first week when the students are expected to apply the 

techniques they have learned to solve problems themselves, as mentioned in 

Section 4.1.2.1. 

9.2.4 Week 4 

For this week, there are just two features with significant results from the 

Wilcox Rank Sum test for CA and MM, and none for the Written Exam. The CRE 
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results are more successful with an increase in the number of significant features, 

but the COMPLEX results have a reduction in the number of significant features in 

proportion to total features. There is only one positive CRE feature in relation to 

CA, and none in relation to Written Exam results. There is again a reduction in the 

proportional number of positive results in the Linear Regressions tests for 

COMPLEX.  

There are some slight changes in the classifier results, the CRE threshold-0 

classifier for CA increases in accuracy, increasing from 67.7% to 70.6% and the 

False Pass number drops very slightly. The Written Exam threshold-0 classifier 

increases from 73.1% to 73.3% and the False Pass number drops from 11 to 10.2. 

The COMPLEX classifiers improve very slightly, the threshold-0 CA classifier 

accuracy increasing from 70.9% to 72.2% and False Pass dropping from 9.15 to 

8.6. Written Exam classifiers do not change significantly.  

There is also a slight increase in HOG classifier success, the threshold-0 

CA accuracy increasing from 72.3% to 74%, and the False Pass number dropping 

from 8.45 to 8.05.  The Written Exam threshold-0.1 classifier increases in accuracy 

from 67% to 68.7% and the False Pass number drops from 9.05 to 8.2. Similar to 

Week 3, the classifiers are useful at this stage, but do not improve enough to imply 

that Week 4 is a key week. 

9.2.5 Week 5 

Week 5 has a huge leap in significant results from the Wilcox Rank Sum 

test, with five significant results from the MM tests, and all eight features returning 

significant results for CRE tests. In COMPLEX, all five assignments return 

significant results with file size data for CA and the Written Exam, and four of the 

five for node data for both CA and the Written Exam. 

The Linear Regression results for CRE have four positive coefficients in 

relation to CA, one of which is >0.1, meaning it can be used in the threshold-0.1 

classifier. There are two positive Written Exam results, both <0.1. All of the 

assignments have positive coefficients in relation to CA for the COMPLEX Linear 

Regression file size results, with one result being >0.2. Four of the five 

assignments have positive results for the CA results in relation to nodes, with one 

result being >0.15. For the coefficients in relation to the Written Exam, four of the 

five are positive in relation to file size, with one result being >0.15 and four of the 

five are positive in relation to nodes, with two features being >0.15. 
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The CRE classifiers in Week 5 continue to improve, with an increase in 

threshold-0 for CA increasing in accuracy from 70.6% to 73% and the False Pass 

dropping from 8.55 to 7.7. The Written Exam classifiers increase in accuracy from 

73.3% to 76.2%, but False Passes also increase from 10.2 to 11.25, higher than it 

was in Week 2.  

The COMPLEX classifiers have a significant leap in success. The 

threshold-0 classifier for CA increases from 72.2% to 78.8% and the False Pass 

drops from 8.6 to 6.75. The threshold-0.1 CA classifier also improves, with 

accuracy increasing from 70.8% to 79.5% and False Passes dropping from 9.05 to 

6.65. Finally, the 0.15 CA classifier makes the biggest improvement, increasing in 

accuracy from 68.4% to 81% and the False Pass number dropping from 11.35 to 

6.05. Written Exam results do not have a similar increase in success at this point. 

The HOG classifiers also have a significant increase in success at this point, the 

most pronounced being the CA threshold-0.15 classifier increasing in accuracy 

from 64.2% to 81.2%, and the False Pass number dropping from 13 to 6.2. The 

threshold-0.1 Written Exam classifier increases in accuracy from 68.7% to 73.6% 

and the False Pass number drops slightly from 8.2 to 7.95. 

These changes in success in COMPLEX and HOG CA classifiers point to 

Week 5 being a key week in the semester, particularly in relation to students’ 

ability to write complex code. As noted in Section 4.1.2.1, this week’s assignments 

are an important step in learning to program: they test the students’ ability to not 

just use the techniques, but their ability to understand when to apply the 

techniques. 

9.2.6 Week 6 

Week 6 is an exam week, so we would expect to see differences in 

behaviour between the two groups. In Week 6, the MM Wilcox Rank Sum test 

returns four significant results for CA and three for the Written Exam. The CRE 

results show six significant features for both CA and Written Exams. Four of the 

six questions in COMPLEX are significant across file size, nodes, the Written 

Exam and CA tests.  

In the Linear Regression tests, three of the CRE coefficients relating to CA 

are positive, with two being >0.3, the highest results from the CRE experiment. 

Five of the Written Exam CRE tests return positive results, with two being >0.2. In 
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the COMPLEX Linear Regression file size CA tests, two assignments return 

positive results, Q6 being >0.25. Four of the coefficients in relation to the Written 

Exam are positive, with one being >0.15. In the tests for nodes, two coefficients in 

relation to CA are positive, with Q6 being >0.3, the highest Linear Regression 

coefficient from the COMPLEX experiment. Three of the features for the Written 

Exam have positive results, with Q5 being >0.2. 

The most successful CRE classifier threshold for CA is threshold-0, which 

has a slight increase in accuracy from 73% to 75.8%, and a drop in False Passes 

from 7.7 to 6.9. The Written Exam classifier is more successful, with an increase 

from 76.2% to 78.1% for threshold-0 and the False Pass dropping from 11.25 to 

7.5. The COMPLEX classifiers for CA all increase in accuracy and decrease in 

False Passes slightly. The HOG classifiers for CA also increase in accuracy by 

around and decrease in False Passes by up to 1. The HOG Written Exam classifiers 

improve, with the threshold-0.15 classifier increasing in accuracy from 71.9% to 

78.4% and the False Pass number decreasing by almost four, from 10.45 to 6.5. 

The Linear Regression results this week, which are some of the highest, 

and the leaps in classifier accuracy, suggest that Week 6 is a key week in predicting 

student outcome. 

9.2.7 Week 7 

In Week 7, the MM Wilcox Rank Sum tests have a total of 10 significant 

results for CA and eight for the Written Exam the highest amount for any week. 

The CRE tests have six significant features for both CA and the Written Exam, the 

same as Week 6. For COMPLEX, three of the four assignments, Q2, Q3, and Q4 

all have significant results for both file size and nodes, and for CA and the Written 

Exam. 

For Linear Regression, CRE has three positive coefficients for CA and two 

for Written Exam. For COMPLEX, file size has three positive results for CA, Q4 

being >0.24, and three for the Written Exam, Q4 being >0.1. The nodes Linear 

Regression tests show one positive coefficient for CA, Q4 which is >0.1 and two 

for the Written Exam, Q2 and Q4.  

The CRE classifiers for CA increase in accuracy slightly, and the False 

Passes decrease by around 0.5 for each threshold. The Written Exam classifiers do 

not change much and are slightly less successful in some respects.  The 
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COMPLEX classifiers for CA all increase in accuracy and decrease in False Passes 

slightly. The HOG classifiers for CA each decrease in False Pass number by 

around 1, and increase in accuracy, the largest increase being threshold-0.15, which 

increases from 79.1% to 84.6%. The Written Exam classifiers for COMPLEX are 

almost identical to the previous week and perform less successfully than the week 

before in some cases. The HOG classifiers for CA continue to improve, with the 

threshold-0.15 increasing in accuracy from 79.1% to 84.6% and the False Pass rate 

dropping to 4.75 (<20%). However, the Written Exam classifiers do not improve in 

the same way and perform at around the same level as the previous week. 

Week 7 is a key week according to the COMPLEX and HOG results, but 

the CRE classifiers have already peaked in usefulness, implying that CRE 

behaviours are less important indicators of student outcome at this point. 

9.2.8 Week 8 

The Wilcox Rank Sum test for MM has eight features with significant 

results for CA, and seven for the Written Exam. The CRE tests only have two for 

CA and the Written Exam, C2C, and C2R. However, in the COMPLEX tests, five 

of the six assignments for this week show significant differences in the file size and 

nodes data for CA and the Written Exam. 

There are no positive Linear Regression results for CRE. For COMPLEX, 

there are five positive coefficients from the file size data in relation to CA, with Q4 

being >0.15, and three in relation to the Written Exams. In the tests with nodes 

data, four have positive coefficients in relation to CA, with Q4 being >0.15, and 

four in relation to the Written Exams, with Q6 being >0.1. 

There is no new data for CRE classifiers, and so the results are similar to 

the previous week. The COMPLEX classifiers for CA continue to increase in 

accuracy slightly and the False Passes continue to decrease. However, the Written 

Exam classifiers do not increase in success. The HOG classifiers for CA have a 

slight drop in False Passes but are mostly the same as last week. The Written Exam 

classifiers are also mostly the same as Week 7.  

Despite a number of high coefficients from the Linear Regression results, 

the classifiers show Week 8 is not a key week. 
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9.2.9 Week 9 

The MM Wilcox Rank Sum test for CA shows just four significant results, 

and the Written Exam has just three. The CRE tests have four for CA and for the 

Written Exam. In the COMPLEX tests, file size has three assignments with 

significant results for CA, and just two for Written Exam. In the nodes data test, the 

CA has three significant assignments, and the Written Exam has one.  

In the Linear Regression results, six of CREs features for CA are positive, 

with C2C being >0.2. The Written Exam results only have two positive 

correlations, with C2C being >0.1. For COMPLEX file size, Q4 and Q5 both have 

positive coefficients in relation to CA and to the Written Exam, though all are <0.1. 

For the nodes data, Q4 has a positive coefficient for both CA and the Written 

Exam. 

The CRE, COMPLEX, and HOG classifiers do not significantly change 

this week, other than a drop in the accuracy of the HOG CA threshold-0 classifier. 

Again, although there are some high values for the Linear Regression tests, 

due to a lack of improvement in the classifiers, Week 9 is not a key week. 

9.2.10 Week 10 

The Wilcox Rank Sum test for MM has just two significant results for CA 

and none for the Written Exam. The CRE tests have four significant results for CA 

and three for the Written Exam. These tests have shown a difference in C2C and 

C2R behaviour for the higher and lower achieving groups throughout the semester. 

The COMPLEX tests show a significant difference in all five assignments in terms 

of file size, and in four of the five assignments for nodes. 

In the Linear Regression tests, C2R and R2C both have positive 

coefficients with CA, and C2R has a positive coefficient with the Written Exam 

results. In COMPLEX file size, four of the five assignments have positive 

coefficients with CA, with Q5 being >0.3. All five of the assignments have positive 

coefficients in relation to the Written Exam, although Q1 is very close to zero. In 

the Linear Regressions tests using the nodes data, three of the five assignments 

have positive results in relation to CA, with Q5 having a coefficient of >0.15. 

Three of the five have positive results in relation to the Written Exam, with Q5 

being >0.1. 
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In the classifiers for this week, the CRE again do not improve. The 

COMPLEX CA classifiers improve slightly this week for each threshold, and the 

False Passes each dropping by over 1. The COMPLEX Written Exam classifiers 

mostly do not improve, but the threshold-0 classifier increases in accuracy from 

73.8% to 75.1% and the False Pass number drops by <1. 

The HOG CA classifiers improve slightly again this week, and False 

Passes dropping by around 1, the most successful being threshold-0.15, which 

increases from 85.6% to 87%, and the False Pass dropping to just 3.3 (13.2%). The 

Written Exam classifiers, however, do not improve. 

Although the data from this week results in the most successful classifier 

for CA, this is not a key week as the differences in the classifiers compared to the 

previous week are so low.  

9.3 The Research Questions 

In this section, the research questions originally presented in Section 1.2 

will be discussed.  

9.3.1 RQ1 

How can we observe student behaviour as they learn to code in a non-intrusive 

way? 

The MULE system was built to observe student behaviour as they learn to 

code in a close-to-authentic, online, desktop-like environment. Within this 

environment, the students can view their assignments, as well as write, compile, 

run and evaluate their code in a windowed coding system. Here they can view their 

assignments, multiple coding editor instances, and terminal instances. The system 

collects various behavioural data, including Mouse Movements (MM data), 

patterns of compilation, run and evaluation events (CRE data), and logs code 

written by the participants (COMPLEX data). The students are informed of the 

data collection at the beginning of the semester, and can choose to opt in or out, but 

after this they do not need to do anything to participate in the study other than 

complete the module tasks they would normally. This results in more “authentic” 

data on how the students learn to program than studies that may have used, for 

example, talk-aloud methods [43] or the collection of biometric data, such as pulse, 

sweat detection, Facial Action Coding System (FACS), or eye tracking to detect 

student behaviour. While these methods yield very interesting and important 
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results, the equipment used to gather this data is expensive, not widely available, 

and can be distracting for the student. By distracting the student, the data may be 

less valid, as it may make the student more stressed, for example. 

The data collected by MULE is collected without interrupting the students’ 

learning and takes place in their regular weekly labs. This data has been shown to 

be valuable both in highlighting key points and topics in the semester, and in 

building classifiers to detect students in danger of failing.  

9.3.2 RQ2 

Are there divergences in the observed student behaviour between the highest and 

lowest achieving students? 

Throughout the experiments in the thesis, and the analysis into the three 

different types of data, divergences in behaviour have been observed in the higher 

and lower achieving groups of students. 

As explained in Section 9.2, the key week in these divergences is Week 5 

with significant results in Wilcox Rank Sum test observed in CRE data, in 

COMPLEX data, and even in the MM data, although this was the least successful 

of the experiments. Week 5 is also when the classifiers consistently make a jump in 

accuracy, and the False Pass rate drops. Weeks 6 and 7 are also key, with more 

leaps in classifier success. Despite large coefficient results from Linear Regression 

after this, the classifiers mostly stay at the same success, implying that students at 

this point have already diverged into the behaviour of higher or lower achieving 

students. There are many possible reasons that Week 5 is the key time, but the most 

likely is that the divergence in student behaviour is due to: 

1) Increased complexity of assignments, as students are asked to use 

multiple programming concepts in conjunction. 

2) Students are struggling to apply the concepts they have learned to 

solve problems, as the assignments no longer specifically tell the 

students which techniques to use. 

These are key points in learning to program and aren’t tied to Week 5 – 

this is just when it happens in our course, in the semester examined in this thesis. 

The changes in classifiers when this is happening implies that students would 

benefit from guidance and on how to apply the programming concepts they learn as 

problem solving tools. 
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9.3.3 RQ3 

How early can students be classified as higher or lower achieving early on in the 

semester, to allow for interventions? 

There are signs of divergence between the two groups as early as Week 1, 

and the first classifiers showing results are from around Week 3 onwards. 

Divergences in student behaviour between the higher and lower achieving groups 

can be seen as early as Week 1, when there are already significant differences in 

the C2C and C2R movements, as seen in Section 6.4.1. There are also already 

significant differences in COMPLEX data in Q4 of Week 1. 

The most successful early semester classifier for CA and the Written Exam 

is the HOG classifier. The threshold-0 HOG classifier for CA has success as early 

as Week 3, with 72% accuracy, and 8.45 False Passes of 25 fails, meaning it can 

provide meaningful early warnings to students in danger. By Week 5, the accuracy 

rises to just under 79%, with 6.9 False Passes out of 25. 

The most successful early semester classifier for the Written Exam is the 

HOG classifier with threshold-0.1. This classifier has success as early as Week 3, 

with just under 72% accuracy and 8.45 False Passes for 25 Fails. By Week 5 this 

rises to almost 80%, with 6.55 False Passes out of 25. 

9.4 Future Work 

The work in this thesis shows the potential for learning environments with 

passive, large-scale behavioural data collection, both as pedagogical tools and as 

research tools. The classifier system would have the most impact for students on an 

individual level if it were embedded in the learning environment, so that course co-

ordinators could use it to predict which students need intervention. 

Another promising avenue for research is peer learning. Peer learning [61] 

has been shown to be an effective pedagogical strategy, as students are required to 

articulate their thought processes, which could be of particular benefit to students 

who struggle to apply the concepts they have learned as problem solving strategies. 

Observation and analysis behaviour of students as they engage in remote pair 

programming in an authentic pedagogical environment could offer valuable insight 

into how to best teach novice programmers how to work collaboratively. The study 

described in the paper “Gaps Between Industry Expectations and the Abilities of 

Graduates” [60] found that students are lacking in personal skills, such as written 

communication and teamwork, and the study “Struggles of New College Graduates 
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in their First Software Development Job” [61] found that new programmers could 

not appropriately describe issues in written communication. I believe this suggests 

that students would benefit from collaborative work from the very beginning of 

Computer Science degree programs. Building collaborative tools within MULE, 

such as shared code files and chat functions, would allow for this to be 

implemented in the first-year labs. 

This thesis focused on data from students who completed the course, and 

not on students who dropped out, but there may be value in investigating students 

who do not complete the course and the points at which these students diverge 

from the students who stay in the course. It may be that these students struggle to 

write compilable code more than the students investigated in this work.  There is 

evidence to suggest that clearer error messages for novice programmers may 

improve student success. In the paper “An Exploration Of The Effects Of Enhanced 

Compiler Error Messages For Computer Programming Novices” [62] the use of 

enhanced compiler error messages was tested, and the results showed that the use 

of the Decaf editor resulted in fewer signs of struggling students in comparison to a 

control group, who saw standard error messages. Examining behavioural data from 

students using Enhanced Compiler Error Messages would provide an opportunity 

to further study how differently students behave when given clearer error 

messages. 

The CRE and COMPLEX behavioural data has been shown to be valuable 

in studying the way that novice programmers learn how to code (as has MM data, 

although it was less successful with the HOG classifiers), but Computer Science 

education research tends to focus on the first year or semester of study. Using the 

existing data types, student behaviour can continue to be studied throughout their 

Computer Science course, with the aim of assisting students in need of intervention 

and improving the curriculum to address common problems in learning to write 

code. While the MM experiment was not successful in the weekly student outcome 

classifiers, there was some success in using MM as a stress classifier. It has been 

shown that Computer Science students experience stress and anxiety related to 

their programming ability [63], so this is an area that deserves further research.  

9.5 Conclusion 

In conclusion, it has been shown that authentic pedagogical coding 

environments with non-intrusive data collection features can be used to assist 

students both on an individual level, by alerting educators to struggling students, 
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and in the bigger picture, by highlighting stumbling blocks in the curriculum that 

cause the students to diverge into higher and lower achieving groups. It is difficult 

to teach programming, but by continuing to forensically investigate and identify the 

problems our students face, we can better guide our students on the road to 

mastering Computer Science. 
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10. Appendix 

10.1 Consent Form 

 

Consent Form 
 

Research 

Project: 

MULE – Maynooth University Learning Environment 

Researcher: Dr Kevin Casey, Department of Computer Science, Maynooth 

University, Maynooth, Co. Kildare 

Natalie Culligan Department of Computer Science, Maynooth 

University, Maynooth, Co. Kildare 

 

Contact 

details: 

Email: natalie.culligan@mu.ie 

 

The data gathered will be used by the researcher to improve the MULE 

system and the findings may be published in suitable conferences and 

journals. Some data will be accessible by the course co-ordinator to evaluate 

progress. I can access my data at my discretion. 

I have received assurance from the researcher that the information that I will 

share will remain strictly confidential and that no information that discloses 

my identity will be released or published. However, I recognize that, in some 

circumstances, confidentiality of research data and records may be overridden 

by courts in the event of litigation or during investigation by lawful authority. 

In such circumstances the University will take all reasonable steps within law 

to ensure that confidentiality is maintained to the greatest possible extent 

I am free to withdraw from the study up until the end of the academic year.  

I can refuse to answer any of the questions asked or to participate in any of the 

exercises.  

All research-related data gathered will be stored in a secure manner and only 

the above-named researchers will have access to it.  

If I have any questions about the research project, I may contact Natalie 

Culligan at the contact details provided.  

I also understand that if I choose not to participate in the study, data will still 

be gathered by the system to provide reports for the course co-ordinator, but 

the data will not be used for research. 

 

I, the participant, agree to participate in the research project being carried out 

by Dr Kevin Casey and Natalie Culligan to gather data on how students use the 

MULE system. 

 

I consent to the automatic gathering, by the MULE system of the following: 
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✓ user interaction data  

✓ performance data 

✓ feedback  

✓ code saved, compiled, run, evaluated, and 

submitted.  

If during your participation in this study you feel the information and 

guidelines that you were given have been neglected or disregarded in any 

way, or if you are unhappy about the process, please contact the 

Secretary of the Maynooth University Ethics Committee at 

research.ethics@nuim.ie or +353 (0)1 708 6019. 

Please be assured that your concerns will be dealt with in a sensitive 

manner.        

 

10.2 Information Sheet 

Information Sheet  
 

Research 

Project:  

MULE – Maynooth University Learning Environment, 

funded by the Irish Research Council. 

 

Researchers:  Dr Kevin Casey, Department of Computer Science, 

Maynooth University, Maynooth,  

Co. Kildare 

Natalie Culligan Department of Computer Science, 

Maynooth University, Maynooth,  

Co. Kildare 

 

Contact 

details:  

Natalie.culligan@mu.ie   

 

 
The Purpose:  

The purpose of this study is to gather data on how students are using the 

MULE system. MULE (Maynooth University Learning Environment) is a 

web-browser based system where students can edit, compile, and run their 

program. They can also use the chat function to get help from 

demonstrators and discuss problems with other students. There are two 

categories of data gathered by the system: research data and academic 

data. Research data will be used in improving future versions of the tool 

and in research (and subsequent publication) as to how useful the tool is 

and the usage patterns that students with different abilities have, and if it 
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is possible to detect stress from behavioural data. Academic data is used 

to provide reports on student performance and is necessary for the system 

to function in its role as a module content delivery platform. 

 

The Participant:  

The participant mentioned throughout this information sheet, refers to a 

student who is participating in a programming module.  

The Data Gathering:  

Participants will complete their module as normal using the MULE 

software system. The system will gather research data and academic data. 

The system gathers the users' interaction data, chat function data, user 

profile data, feedback and all code written by the user that is saved, 

compiled, executed, or evaluated. Periodically, a fully anonymised copy 

of the existing dataset is made to allow early-stage research. 

  

Non-participation and exit from the study:  

In accordance with the new GDPR guidelines, there is no requirement to 

participate in this study and the participant may still use the system. If a user 

chooses to opt out, academic data will still be gathered on the student, to provide 

reports to the course co-ordinator, but their data will not be used in the study. A 

participant may choose to exit the study at any time up until the end of the 

academic year. The participant must send their request in writing to the 

researcher, and all research-related data collected that has not yet been fully 

anonymised will be destroyed. 

Anonymity and security of data:  

As soon as the data is collected, it will be encoded with a unique identity 

key, to allow for separate sessions of use to be associated with a user. At 

the end of the academic year, the data will be fully anonymised. No 

records of the participant’s identity will be stored for the purpose of our 

study, but the course co-ordinator will be able to review some aspects of 

the data. It must be recognized that, in some circumstances, 

confidentiality of research data and records may be overridden by courts 

in the event of litigation or in the course of investigation by lawful 

authority. In such circumstances the University will take all reasonable 

steps within law to ensure that confidentiality is maintained to the greatest 

possible extent. 

 

The data will be stored only on a secure server located in Ireland. Only 

the above-named researchers will have access to it. The data will be kept 

for 10 years and will be destroyed thereafter.   
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Access to your data: 

The subject is able to request a copy of their data that is stored for 

research by contacting the researcher, up until the data is fully 

anonymised.   

  

Questions: 

If you have any further questions, please contact the researcher using the 

above contact details. 
 

 

 

10.3 Wilcox Rank Sum Test Results MM 

10.3.1 CA 

Week 1 2 3 

EFFICIENCY 0.987437 0.323026 0.258799 

OVERSHOOTX 0.703555 0.590466 0.484413 

DIRECTIONANGLE 0.215464 0.948509 0.716484 

SEQUENCE_SPEED 0.289042 0.702755 0.159286 

OVERSHOOTDIRECTIONANGLE 0.111759 0.755683 0.713787 

OVERSHOOTY 0.77283 0.500827 0.118085 

OVERSHOOT 0.841912 0.532453 0.109021 

SEQUENCE_DURATION 0.290238 0.878681 0.57172 

ANGLEDIFFERENCE 0.289042 0.837198 0.740917 

DIRECTION 0.029588 0.212553 0.196411 

HOVER_TIME 0.157984 0.291519 0.085752 

OPTIMAL_DISTANCE 0.784908 0.942278 0.929454 

DISTANCE_TRAVELLED 0.147443 0.507071 0.09977 

VARIANCE1 0.756812 0.347559 0.328339 

VARIANCE2 0.914315 0.268867 0.294671 

VARIANCE3 0.732982 0.904979 0.589041 

VARIANCEDIST1 0.731007 0.268021 0.19392 

VARIANCEDIST2 0.914315 0.268867 0.294671 

VARIANCEDIST3 0.84602 0.939164 0.672452 

CLICKTIME 0.280768 0.028114 0.560714 

HESITATE 0.114143 0.023804 0.073371 

CLICKRATIO 0.215464 0.003706 0.078136 

Table 10-1: MM Wilcox Rank Sum Test CA for Weeks 1 to 3 
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Week 4 5 6 7 

EFFICIENCY 0.420798 0.015108 0.740481 0.009588 

OVERSHOOTX 0.34956 0.877951 0.274791 0.002774 

DIRECTIONANGLE 0.093369 0.687177 0.03941 0.972124 

SEQUENCE_SPEED 0.588681 0.918456 0.214753 0.195418 

OVERSHOOT 

DIRECTIONANGLE 0.165815 0.961894 0.000429 0.000973 

OVERSHOOTY 0.81847 0.509035 0.292012 0.018673 

OVERSHOOT 0.817119 0.51013 0.285189 0.016298 

SEQUENCE_DURATION 0.919672 0.357729 0.023814 0.769529 

ANGLEDIFFERENCE 0.660008 0.971416 0.067558 0.356538 

DIRECTION 0.017461 0.652375 0.265013 0.019592 

HOVER_TIME 0.973646 0.234995 0.292012 0.656095 

OPTIMAL_DISTANCE 0.012592 0.012978 0.271141 0.192956 

DISTANCE_TRAVELLED 0.809024 0.970055 0.652937 0.206139 

VARIANCE1 0.3451 0.019584 0.555292 0.033115 

VARIANCE2 0.539364 0.354173 0.267524 0.06174 

VARIANCE3 0.449438 0.362206 0.94745 0.939292 

VARIANCEDIST1 0.137574 0.025512 0.795275 0.019036 

VARIANCEDIST2 0.539364 0.354173 0.267524 0.06174 

VARIANCEDIST3 0.053391 0.048165 0.168897 0.972124 

CLICKTIME 0.626366 0.594471 0.13252 0.01131 

HESITATE 0.823879 0.087633 0.052614 0.365013 

CLICKRATIO 0.9681 0.164852 0.383295 0.016139 

Table 10-2: MM Wilcox Rank Sum Test CA for Weeks 4 to 7 
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Week 8 9 10 

EFFICIENCY 0.01516 0.031693 0.141307 

OVERSHOOTX 0.004262 0.113071 0.221358 

DIRECTIONANGLE 0.485603 0.869403 0.551862 

SEQUENCE_SPEED 0.013254 0.109021 0.10326 

OVERSHOOTDIRECTIONANGLE 0.003856 0.746383 0.004045 

OVERSHOOTY 0.151661 0.029468 0.821522 

OVERSHOOT 0.146422 0.028147 0.844168 

SEQUENCE_DURATION 0.07856 0.124155 0.078657 

ANGLEDIFFERENCE 0.020005 0.045101 0.160813 

DIRECTION 0.067285 0.743648 0.043685 

HOVER_TIME 0.82632 0.137978 0.202063 

OPTIMAL_DISTANCE 0.903795 0.735463 0.241938 

DISTANCE_TRAVELLED 0.062953 0.255764 0.197437 

VARIANCE1 0.023864 0.991351 0.234068 

VARIANCE2 0.718289 0.885072 0.703012 

VARIANCE3 0.350573 0.624391 0.780738 

VARIANCEDIST1 0.239165 0.926582 0.113104 

VARIANCEDIST2 0.718289 0.885072 0.703012 

VARIANCEDIST3 0.615618 0.344688 0.615227 

CLICKTIME 0.870016 0.863718 0.326994 

HESITATE 0.158683 0.031124 0.111909 

CLICKRATIO 0.151661 0.402853 0.30784 

Table 10-3: MM Wilcox Rank Sum Test CA for Weeks 8 to 10 
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10.3.2 Written Exam 

Week 1 2 3 

EFFICIENCY 0.456086 0.133361 0.824132 

OVERSHOOTX 0.721161 0.338594 0.978379 

DIRECTIONANGLE 0.06169 0.737898 0.549812 

SEQUENCE_SPEED 0.970692 0.75866 0.735463 

OVERSHOOTDIRECTIONANGLE 0.067771 0.631617 0.310773 

OVERSHOOTY 0.478594 0.287066 0.465429 

OVERSHOOT 0.516851 0.313537 0.516576 

SEQUENCE_DURATION 0.723127 0.391366 0.762857 

ANGLEDIFFERENCE 0.331549 0.244269 0.749121 

DIRECTION 0.03914 0.533739 0.310773 

HOVER_TIME 0.235546 0.932938 0.380875 

OPTIMAL_DISTANCE 0.321201 0.818898 0.992792 

DISTANCE_TRAVELLED 0.768816 0.529886 0.375011 

VARIANCE1 0.295052 0.814338 0.926582 

VARIANCE2 0.449767 0.422351 0.528325 

VARIANCE3 0.729034 0.396796 0.204027 

VARIANCEDIST1 0.472102 0.711485 0.961092 

VARIANCEDIST2 0.449767 0.422351 0.528325 

VARIANCEDIST3 0.803121 0.34256 0.517745 

CLICKTIME 0.143811 0.074304 0.992792 

HESITATE 0.508402 0.194474 0.169706 

CLICKRATIO 0.475342 0.024542 0.150893 

Table 10-4: MM Wilcox Rank Sum Test Written Exam for Weeks 1 to 3 

 

 

 

 

 

 

 

 



150 
 

Week 4 5 6 7 

EFFICIENCY 0.457819 0.594471 0.79914 0.053057 

OVERSHOOTX 0.112013 0.645011 0.362707 0.031453 

DIRECTIONANGLE 0.054693 0.89682 0.433389 0.444697 

SEQUENCE_SPEED 0.439085 0.116461 0.187719 0.252545 

OVERSHOOTDIRECTION 

ANGLE 

0.610436 0.937438 0.01481 0.005802 

OVERSHOOTY 0.432939 0.581539 0.183286 0.042232 

OVERSHOOT 0.42887 0.618313 0.184939 0.038224 

SEQUENCE_DURATION 0.628833 0.263724 0.027804 0.983558 

ANGLEDIFFERENCE 0.538215 0.621925 0.515745 0.391185 

DIRECTION 0.219615 0.186607 0.524406 0.010417 

HOVER_TIME 0.857867 0.319844 0.239785 0.603912 

OPTIMAL_DISTANCE 0.087417 0.006531 0.769646 0.317776 

DISTANCE_TRAVELLED 0.639984 0.064366 0.317962 0.329192 

VARIANCE1 0.40886 0.060761 0.267524 0.011661 

VARIANCE2 0.223559 0.033498 0.603226 0.096857 

VARIANCE3 0.315738 0.454844 0.509299 0.822061 

VARIANCEDIST1 0.186354 0.013678 0.938154 0.019036 

VARIANCEDIST2 0.223559 0.033498 0.603226 0.096857 

VARIANCEDIST3 0.449438 0.488459 0.421727 0.885299 

CLICKTIME 0.515505 0.172238 0.374257 0.031453 

HESITATE 0.81172 0.07292 0.007423 0.289976 

CLICKRATIO 0.54628 0.025851 0.039092 0.002758 

Table 10-5: MM Wilcox Rank Sum Test Written Exam for Weeks 1 to 3 
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Week 8 9 10 

EFFICIENCY 0.015793 0.243869 0.193793 

OVERSHOOTX 0.0259 0.466534 0.337519 

DIRECTIONANGLE 0.45027 0.671134 0.650912 

SEQUENCE_SPEED 0.049355 0.319477 0.256017 

OVERSHOOTDIRECTIONANGLE 0.009798 0.963972 0.257123 

OVERSHOOTY 0.094216 0.020249 0.726642 

OVERSHOOT 0.094216 0.01911 0.704971 

SEQUENCE_DURATION 0.392341 0.09977 0.215436 

ANGLEDIFFERENCE 0.029862 0.205317 0.254914 

DIRECTION 0.015633 0.554644 0.315411 

HOVER_TIME 0.709964 0.0557 0.505276 

OPTIMAL_DISTANCE 0.127307 0.897927 0.213487 

DISTANCE_TRAVELLED 0.127772 0.586552 0.219371 

VARIANCE1 0.008744 0.919408 0.773659 

VARIANCE2 0.698919 0.885072 0.994737 

VARIANCE3 0.174638 0.695006 0.772649 

VARIANCEDIST1 0.030427 0.955334 0.206768 

VARIANCEDIST2 0.698919 0.885072 0.994737 

VARIANCEDIST3 0.333569 0.33013 0.470529 

CLICKTIME 0.387216 0.574179 0.875254 

HESITATE 0.382132 0.022279 0.138475 

CLICKRATIO 0.067007 0.189006 0.099411 

Table 10-6: MM Wilcox Rank Sum Test Written Exam for Weeks 1 to 3 
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10.4 Linear Regression Results MM 

10.4.1 CA 

Week 1 2 3 

EFFICIENCY -0.25709 -0.16574 -0.1278 

OVERSHOOTX -0.22264 -0.0867 -0.13951 

DIRECTIONANGLE -0.21731 -0.07566 -0.20588 

SEQUENCE_SPEED -0.26109 -0.08319 -0.15239 

OVERSHOOTDIRECTIONANGLE -0.23525 -0.08521 -0.13277 

OVERSHOOTY -0.2782 -0.10763 -0.1497 

OVERSHOOT -0.27826 -0.11099 -0.15171 

SEQUENCE_DURATION -0.40063 -0.07926 -0.11477 

ANGLEDIFFERENCE -0.26223 -0.17666 -0.1338 

DIRECTION -0.16599 -0.08044 -0.12805 

HOVER_TIME -0.43495 -0.07837 -0.08085 

OPTIMAL_DISTANCE -0.4696 -0.09271 -0.12142 

DISTANCE_TRAVELLED -0.25482 -0.07852 -0.14955 

VARIANCE1 -0.30922 -0.16111 -0.08793 

VARIANCE2 -0.24089 -0.08409 -0.13081 

VARIANCE3 -0.2464 -0.26185 -0.10398 

VARIANCEDIST1 -0.39094 -0.10177 -0.0859 

VARIANCEDIST2 -0.24089 -0.08409 -0.13081 

VARIANCEDIST3 -0.46522 -0.1849 -0.11233 

CLICKTIME -0.55715 -0.05803 -0.11254 

HESITATE -0.46923 -0.05589 -0.08896 

CLICKRATIO -0.2428 -0.18474 -0.11609 

Table 10-7: MM Linear Regression CA for Weeks 1 to 3 
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Week 4 5 6 7 

EFFICIENCY -0.08626 -0.13532 -0.10022 -0.01352 

OVERSHOOTX -0.09082 -0.17932 -0.1529 -0.01719 

DIRECTIONANGLE -0.08934 -0.17469 -0.04705 -0.04552 

SEQUENCE_SPEED -0.09684 -0.17078 -0.16147 -0.04381 

OVERSHOOTDIRECTION 

ANGLE -0.09524 -0.18974 -0.03437 -0.00592 

OVERSHOOTY -0.07615 -0.2784 -0.04989 -0.03165 

OVERSHOOT -0.0762 -0.27943 -0.05037 -0.03108 

SEQUENCE_DURATION -0.15067 -0.1913 -0.13683 -0.11098 

ANGLEDIFFERENCE -0.14738 -0.17039 -0.05635 -0.04607 

DIRECTION -0.06674 -0.21568 -0.04394 -0.02926 

HOVER_TIME -0.11401 -0.15126 -0.11244 -0.04777 

OPTIMAL_DISTANCE -0.06364 -0.17189 -0.05935 -0.03213 

DISTANCE_TRAVELLED -0.09835 -0.17546 -0.09339 -0.03734 

VARIANCE1 -0.09299 -0.17579 -0.05859 -0.03064 

VARIANCE2 -0.09259 -0.18671 -0.07503 -0.03806 

VARIANCE3 -0.17842 -0.1724 -0.06207 -0.04752 

VARIANCEDIST1 -0.06645 -0.16763 -0.05243 -0.01726 

VARIANCEDIST2 -0.09259 -0.18671 -0.07503 -0.03806 

VARIANCEDIST3 -0.115 -0.15419 -0.08369 -0.05413 

CLICKTIME -0.07995 -0.18896 -0.11671 -0.05564 

HESITATE -0.1041 -0.14492 -0.10831 -0.05215 

CLICKRATIO -0.07903 -0.19393 -0.05405 -0.02726 

Table 10-8: MM Linear Regression CA for Weeks 4 to 7 
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Week 8 9 10 

EFFICIENCY -0.0172 -0.54612 -0.17016 

OVERSHOOTX -0.02787 -0.17626 -0.16987 

DIRECTIONANGLE -0.06808 -0.03311 -0.19379 

SEQUENCE_SPEED -0.01472 -0.08308 -0.1532 

OVERSHOOTDIRECTIONANGLE -0.01594 -0.07473 -0.13424 

OVERSHOOTY -0.06226 -0.22505 -0.22404 

OVERSHOOT -0.06204 -0.22506 -0.22456 

SEQUENCE_DURATION -0.16748 -0.28076 -0.22677 

ANGLEDIFFERENCE -0.01924 -0.78433 -0.26156 

DIRECTION -0.04324 -0.06391 -0.17159 

HOVER_TIME -0.07058 -0.00058 -0.23295 

OPTIMAL_DISTANCE -0.06317 -0.03734 -0.18766 

DISTANCE_TRAVELLED -0.03657 -0.0633 -0.16672 

VARIANCE1 -0.06751 -0.03065 -0.19214 

VARIANCE2 -0.08563 -0.45219 -0.20431 

VARIANCE3 -0.08167 -0.18943 -0.24616 

VARIANCEDIST1 -0.0767 -0.03213 -0.18361 

VARIANCEDIST2 -0.08563 -0.45219 -0.20431 

VARIANCEDIST3 -0.09158 -0.43434 -0.21892 

CLICKTIME -0.23481 -0.28366 -0.21095 

HESITATE -0.08476 -0.01626 -0.25116 

CLICKRATIO -0.08948 -0.15675 -0.20161 

Table 10-9: MM Linear Regression CA for Weeks 8 to 10 
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10.4.2 Written Exam 

Week 1 2 3 

EFFICIENCY -0.1159 -0.17695 -0.03788 

OVERSHOOTX -0.16755 -0.02632 -0.02655 

DIRECTIONANGLE -0.07893 -0.00732 -0.06128 

SEQUENCE_SPEED -0.09399 -0.01722 -0.02733 

OVERSHOOTDIRECTIONANGLE -0.09097 -0.04294 -0.02636 

OVERSHOOTY -0.14654 -0.01241 -0.02321 

OVERSHOOT -0.14727 -0.01681 -0.02291 

SEQUENCE_DURATION -0.15821 -0.03073 -0.0249 

ANGLEDIFFERENCE -0.13819 -0.25058 -0.03576 

DIRECTION -0.06745 -0.01047 -0.05384 

HOVER_TIME -0.22261 -0.00152 -0.02759 

OPTIMAL_DISTANCE -0.17661 -0.0213 -0.0253 

DISTANCE_TRAVELLED -0.13645 -0.01073 -0.02478 

VARIANCE1 -0.11943 -0.0053 -0.03719 

VARIANCE2 -0.10449 -0.03462 -0.0262 

VARIANCE3 -0.11589 -0.12696 -0.00751 

VARIANCEDIST1 -0.12791 -0.00511 -0.06313 

VARIANCEDIST2 -0.10449 -0.03462 -0.0262 

VARIANCEDIST3 -0.12369 -0.16402 -0.02117 

CLICKTIME -0.3232 0.016025 -0.04628 

HESITATE -0.23711 0.02448 -0.0235 

CLICKRATIO -0.14094 0.052769 -0.01537 

Table 10-10: MM Linear Regression Written Exam for Weeks 1 to 3 
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Week 4 5 6 7 

EFFICIENCY -0.01821 -0.05306 -0.13438 -0.03094 

OVERSHOOTX -0.00409 -0.05306 -0.20009 -0.02727 

DIRECTIONANGLE -0.14475 -0.05322 -0.03433 -0.03569 

SEQUENCE_SPEED -0.02244 -0.04987 -0.20262 -0.04817 

OVERSHOOTDIRECTION ANGLE -0.02216 -0.06516 0.005485 -0.00386 

OVERSHOOTY -0.03371 -0.13441 -0.05361 -0.03621 

OVERSHOOT -0.03334 -0.13639 -0.05536 -0.03587 

SEQUENCE_DURATION -0.08359 -0.05903 -0.10235 -0.10306 

ANGLEDIFFERENCE -0.0343 -0.05551 -0.04992 -0.03926 

DIRECTION -0.02098 -0.10575 -0.0407 -0.00886 

HOVER_TIME -0.02189 -0.01328 -0.08054 -0.03965 

OPTIMAL_DISTANCE -0.00813 -0.00219 -0.04597 -0.03865 

DISTANCE_TRAVELLED -0.02516 -0.04776 -0.11629 -0.03376 

VARIANCE1 -0.02744 -0.03839 -0.06439 -0.09213 

VARIANCE2 -0.00287 -0.07371 -0.03888 -0.04432 

VARIANCE3 -0.03952 -0.05817 -0.03294 -0.04844 

VARIANCEDIST1 -0.02236 -0.02156 -0.0325 -0.05884 

VARIANCEDIST2 -0.00287 -0.07371 -0.03888 -0.04432 

VARIANCEDIST3 -0.02755 -0.04954 -0.05406 -0.03896 

CLICKTIME -0.02312 -0.06235 -0.08616 -0.0189 

HESITATE -0.02633 -0.00033 -0.05929 -0.03441 

CLICKRATIO -0.09417 -0.07879 -0.02939 0.015701 

Table 10-11: MM Linear Regression Written Exam for Weeks 4 to 7 
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Week 8 9 10 

EFFICIENCY -0.03839 -0.21587 -0.16056 

OVERSHOOTX -0.05121 -0.13292 -0.14631 

DIRECTIONANGLE -0.04849 -0.105 -0.15128 

SEQUENCE_SPEED -0.08235 -0.09776 -0.1404 

OVERSHOOTDIRECTIONANGLE -0.00176 -0.11307 -0.1331 

OVERSHOOTY -0.10391 -0.31639 -0.17737 

OVERSHOOT -0.10444 -0.31525 -0.17732 

SEQUENCE_DURATION -0.10635 -0.50468 -0.15981 

ANGLEDIFFERENCE -0.04301 -0.55688 -0.31605 

DIRECTION -0.01602 -0.11967 -0.14748 

HOVER_TIME -0.04638 -0.03787 -0.15084 

OPTIMAL_DISTANCE -0.04994 -0.14479 -0.1579 

DISTANCE_TRAVELLED -0.05696 -0.0832 -0.1498 

VARIANCE1 -0.07963 -0.11496 -0.15224 

VARIANCE2 -0.05714 -0.08182 -0.15137 

VARIANCE3 -0.05607 -0.10103 -0.16047 

VARIANCEDIST1 -0.071 -0.07974 -0.1503 

VARIANCEDIST2 -0.05714 -0.08182 -0.15137 

VARIANCEDIST3 -0.0518 -0.33642 -0.16674 

CLICKTIME -0.07656 -0.38137 -0.1634 

HESITATE -0.04232 -0.04071 -0.14071 

CLICKRATIO -0.04026 -0.08513 -0.18265 

Table 10-12: MM Linear Regression Written Exam for Weeks 8 to 10 
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10.5 Full Classifier Results MM 

10.5.1 CA 

10.5.1.1 Threshold-0.1 

Week 2 3 4 

Accuracy 0.508 0.561 0.556 

AUC 0.52808 0.5928 0.58296 

Precision_Recall 0.543369 0.607421 0.690716 

Average_Loss 1.35628 1.150318 5.951665 

Loss 1.356276 1.150311 5.951643 

Precision 0.50445 0.579935 0.566871 

Prediction Mean 0.593196 0.545311 0.663546 

Recall 0.656 0.618 0.724 

TrueFails 9 12.6 9.7 

TruePasses 16.4 15.45 18.1 

FalseFails 8.6 9.55 6.9 

FalsePasses 16 12.4 15.3 

Table 10-13: MM CA Threshold -0.1 Classifier 

Week 5 6 7 

Accuracy 0.545 0.556 0.568 

AUC 0.56224 0.59024 0.5888 

Precision_Recall 0.656482 0.660806 0.653572 

Average_Loss 7.050821 6.232789 6.061473 

loss 7.050879 6.232834 6.061579 

precision 0.547011 0.591255 0.550789 

predictionMean 0.563162 0.49397 0.589728 

recall 0.632 0.556 0.664 

TrueFails 11.45 13.9 11.8 

TruePasses 15.8 13.9 16.6 

FalseFails 9.2 11.1 8.4 

FalsePasses 13.55 11.1 13.2 

Table 10-14: MM CA Threshold -0.1 Classifier 
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Week 8 9 10 

Accuracy 0.512 0.495 0.493 

AUC 0.58432 0.495 0.493 

Precision_Recall 0.636419 0.746214 0.744682 

Average_Loss 1.102824 1436.686 1673.947 

loss 1.102815 1436.671 1673.947 

precision 0.510205 0.497428 0.496365 

predictionMean 0.722598 0.99526 0.993 

recall 0.896 0.99 0.986 

TrueFails 3.2 0 0 

TruePasses 22.4 24.75 24.65 

FalseFails 2.6 0.25 0.35 

FalsePasses 21.8 25 25 

Table 10-15: MM CA Threshold-0.1 Classifier 

10.5.2 Written Exam 

10.5.2.1 Threshold-0.1 

Week 2 3 4 

Accuracy 0.506 0.499 0.464 

AUC 0.52456 0.473 0.46188 

Precision_Recall 0.528641 0.548533 0.595284 

Average_Loss 1.360249 6.425502 29.91753 

loss 1.360246 6.42542 29.91732 

precision 0.497013 0.463606 0.484249 

predictionMean 0.558393 0.459704 0.542114 

recall 0.618 0.462 0.508 

TrueFails 9.85 13.4 10.5 

TruePasses 15.45 11.55 12.7 

FalseFails 9.55 13.45 12.3 

FalsePasses 15.15 11.6 14.5 

Table 10-16: MM Written Exam Threshold-0.1 Classifier 
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Week 5 6 7 

Accuracy 0.479 0.464 0.499 

AUC 0.47836 0.46856 0.49568 

Precision_Recall 0.607675 0.613071 0.619542 

Average_Loss 187.8078 66.00167 49.48129 

loss 187.8066 66.00092 49.48214 

precision 0.479081 0.480473 0.491156 

predictionMean 0.531345 0.556057 0.536616 

recall 0.508 0.52 0.536 

TrueFails 11.25 10.2 11.55 

TruePasses 12.7 13 13.4 

FalseFails 12.3 12 11.6 

FalsePasses 13.75 14.8 13.45 

Table 10-17: MM Written Exam Threshold-0.1 Classifier 

Week 8 9 10 

Accuracy 0.468 0.486 0.485 

Accuracy_baseline 0.5 0.5 0.5 

AUC 0.4586 0.52284 0.51708 

Precision_Recall 0.62386 0.636335 0.628207 

Average_Loss 82.42663 3.868954 3.311844 

loss 82.42532 3.868945 3.311835 

precision 0.473558 0.490822 0.489373 

predictionMean 0.642354 0.794328 0.784295 

recall 0.606 0.806 0.782 

TrueFails 8.25 4.15 4.7 

TruePasses 15.15 20.15 19.55 

FalseFails 9.85 4.85 5.45 

FalsePasses 16.75 20.85 20.3 

Table 10-18: MM Written Exam Threshold-0.1 Classifier 
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10.6 Full Classifier Results CRE Movements 

10.6.1 CA 

10.6.1.1 Threshold-0 

Week 3 4 5 6 

Accuracy 0.677 0.706 0.73 0.758 

AUC 0.75868 0.79852 0.78832 0.8546 

Precision_Recall 0.735137 0.789635 0.782734 0.851557 

Average_Loss 0.626307 0.60079 0.570623 0.485475 

loss 0.626308 0.600791 0.570624 0.485475 

precision 0.672876 0.696093 0.718547 0.744403 

predictionMean 0.502935 0.505485 0.51097 0.504778 

recall 0.702 0.754 0.768 0.792 

TrueFails 16.3 16.45 17.3 18.1 

TruePasses 17.55 18.85 19.2 19.8 

FalseFails 7.45 6.15 5.8 5.2 

FalsePasses 8.7 8.55 7.7 6.9 

Table 10-19: CRE CA Threshold-0 Classifier 

Week 7 8 9 10 

Accuracy 0.763 0.766 0.767 0.767 

AUC 0.86896 0.86732 0.86736 0.8778 

Precision_Recall 0.875489 0.873641 0.872452 0.887014 

Average_Loss 0.466736 0.46481 0.464857 0.448307 

loss 0.466734 0.46481 0.46486 0.448309 

precision 0.751874 0.751359 0.752479 0.753399 

predictionMean 0.506499 0.515255 0.51384 0.515364 

recall 0.794 0.804 0.804 0.802 

TrueFails 18.3 18.2 18.25 18.3 

TruePasses 19.85 20.1 20.1 20.05 

FalseFails 5.15 4.9 4.9 4.95 

FalsePasses 6.7 6.8 6.75 6.7 

Table 10-20: CRE CA Threshold-0 Classifier 
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10.6.1.2 Threshold 0.1 

Week 5 6 7 

Accuracy 0.684 0.764 0.763 

AUC 0.73712 0.852 0.85656 

Precision_Recall 0.74689 0.849903 0.85382 

Average_Loss 0.622947 0.495642 0.490722 

loss 0.622946 0.49564 0.490723 

precision 0.704249 0.746291 0.75313 

predictionMean 0.483918 0.502364 0.489841 

recall 0.614 0.81 0.788 

TrueFails 18.85 17.95 18.45 

TruePasses 15.35 20.25 19.7 

FalseFails 9.65 4.75 5.3 

FalsePasses 6.15 7.05 6.55 

Table 10-21: CRE CA Threshold-0.1 Classifier 

Week 8 9 10 

Accuracy 0.762 0.761 0.756 

AUC 0.8514 0.85176 0.84924 

Precision_Recall 0.846903 0.848156 0.844744 

Average_Loss 0.498402 0.503549 0.50171 

loss 0.498401 0.503549 0.501712 

precision 0.744467 0.746418 0.741885 

predictionMean 0.496969 0.493509 0.491968 

recall 0.808 0.8 0.796 

TrueFails 17.9 18.05 17.9 

TruePasses 20.2 20 19.9 

FalseFails 4.8 5 5.1 

FalsePasses 7.1 6.95 7.1 

Table 10-22: CRE CA Threshold-0.1 Classifier 
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10.6.1.2 Threshold-0.15 

Week 6 7 8 9 10 

Accuracy 0.737 0.728 0.737 0.719 0.728 

AUC 0.82892 0.80856 0.82852 0.80816 0.8284 

Precision_Recall 0.817895 0.805647 0.814444 0.779761 0.820573 

Average_Loss 0.530116 0.538838 0.526798 0.542029 0.527341 

loss 0.530115 0.53885 0.526797 0.542036 0.527343 

precision 0.720563 0.687334 0.718053 0.673736 0.714956 

predictionMean 0.50768 0.502483 0.500114 0.510934 0.505458 

recall 0.784 0.748 0.792 0.752 0.768 

TrueFails 17.25 17.7 17.05 17.15 17.2 

TruePasses 19.6 18.7 19.8 18.8 19.2 

FalseFails 5.4 6.3 5.2 6.2 5.8 

FalsePasses 7.75 7.3 7.95 7.85 7.8 

Table 10-23: CRE CA Threshold-0.15 Classifier 

10.6.2 Written Exam 

10.6.2.1 Threshold-0 

Week 3 4 5 6 

Accuracy 0.651 0.664 0.636 0.725 

AUC 0.71712 0.72772 0.7108 0.77776 

Precision_Recall 0.731359 0.73331 0.76162 0.780754 

Average_Loss 0.637468 0.630169 0.628805 0.571812 

loss 0.637468 0.630179 0.628806 0.571813 

precision 0.647881 0.655688 0.632102 0.717437 

predictionMean 0.505255 0.50053 0.503575 0.495088 

recall 0.742 0.736 0.722 0.75 

TrueFails 14 14.8 13.75 17.5 

TruePasses 18.55 18.4 18.05 18.75 

FalseFails 6.45 6.6 6.95 6.25 

FalsePasses 11 10.2 11.25 7.5 

Table 10-24: CRE Written Exam Threshold-0 Classifier 
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Week 7 8 9 10 

Accuracy 0.729 0.728 0.737 0.729 

AUC 0.78152 0.78192 0.78496 0.78236 

Precision_Recall 0.769857 0.776696 0.779933 0.775815 

Average_Loss 0.567948 0.565877 0.56389 0.567747 

loss 0.56795 0.565875 0.563888 0.567748 

precision 0.724866 0.719843 0.737146 0.725651 

predictionMean 0.496224 0.50459 0.493639 0.500003 

recall 0.748 0.756 0.746 0.744 

TrueFails 17.75 17.5 18.2 17.85 

TruePasses 18.7 18.9 18.65 18.6 

FalseFails 6.3 6.1 6.35 6.4 

FalsePasses 7.25 7.5 6.8 7.15 

Table 10-25: CRE Written Exam Threshold-0 Classifier 

10.6.2.2 Threshold-0.1 

Week 6 7 8 9 10 

Accuracy 0.718 0.707 0.706 0.709 0.704 

AUC 0.76972 0.772 0.75604 0.76768 0.77012 

Precision_Recall 0.746164 0.740542 0.752207 0.731756 0.748504 

Average_Loss 0.589908 0.589417 0.595132 0.591657 0.581265 

loss 0.589907 0.589418 0.595131 0.591659 0.581265 

precision 0.70974 0.696996 0.695669 0.696748 0.695487 

predictionMean 0.491233 0.494364 0.490278 0.500048 0.49126 

recall 0.752 0.748 0.762 0.752 0.734 

TrueFails 17.1 16.65 16.25 16.65 16.85 

TruePasses 18.8 18.7 19.05 18.8 18.35 

FalseFails 6.2 6.3 5.95 6.2 6.65 

FalsePasses 7.9 8.35 8.75 8.35 8.15 

Table 10-26: CRE Written Exam Threshold-0.1 Classifier 
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10.6.2.3 Threshold-0.15 

Week 6 7 8 9 10 

Accuracy 0.71 0.71 0.713 0.713 0.712 

AUC 0.7704 0.77016 0.77204 0.77148 0.77432 

Precision_Recall 0.742669 0.747982 0.743751 0.745633 0.750403 

Average_Loss 0.581102 0.589004 0.584548 0.583122 0.580263 

loss 0.581106 0.589003 0.584547 0.583123 0.58026 

precision 0.700753 0.696496 0.702882 0.702519 0.700598 

predictionMean 0.493171 0.494459 0.490625 0.50209 0.487521 

recall 0.746 0.754 0.75 0.748 0.746 

TrueFails 16.85 16.65 16.9 16.95 16.95 

TruePasses 18.65 18.85 18.75 18.7 18.65 

FalseFails 6.35 6.15 6.25 6.3 6.35 

FalsePasses 8.15 8.35 8.1 8.05 8.05 

Table 10-27: CRE Written Exam Threshold-0.15 Classifier 

10.7 Full Classifier Results COMPLEX 

10.7.1 CA 

10.7.1.1 Threshold-0 

Week 2 3 4 

Accuracy 0.669 0.709 0.722 

AUC 0.72376 0.78424 0.79848 

Precision_Recall 0.681588 0.768883 0.779994 

Average_Loss 0.623944 0.566244 0.551358 

loss 0.623944 0.566243 0.551354 

precision 0.625121 0.686323 0.700056 

predictionMean 0.520025 0.515713 0.516456 

recall 0.848 0.784 0.788 

TrueFails 12.25 15.85 16.4 

TruePasses 21.2 19.6 19.7 

FalseFails 3.8 5.4 5.3 

FalsePasses 12.75 9.15 8.6 

Table 10-28: COMPLEX CA Threshold-0 Classifier 
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Week 5 6 7 

Accuracy 0.788 0.809 0.828 

AUC 0.86264 0.89556 0.91384 

Precision_Recall 0.835724 0.897094 0.912952 

Average_Loss 0.467685 0.4274 0.39184 

loss 0.467685 0.427404 0.391835 

precision 0.76096 0.781625 0.810237 

predictionMean 0.515317 0.520971 0.521544 

recall 0.846 0.864 0.862 

TrueFails 18.25 18.85 19.85 

TruePasses 21.15 21.6 21.55 

FalseFails 3.85 3.4 3.45 

FalsePasses 6.75 6.15 5.15 

Table 10-29: COMPLEX CA Threshold-0 Classifier 

Week 8 9 10 

Accuracy 0.83 0.828 0.847 

AUC 0.91304 0.91208 0.933 

Precision_Recall 0.915042 0.914544 0.939861 

Average_Loss 0.399514 0.403811 0.359684 

loss 0.399511 0.403809 0.35969 

precision 0.804179 0.81446 0.845736 

predictionMean 0.531913 0.519535 0.515071 

recall 0.88 0.858 0.858 

TrueFails 19.5 19.95 20.9 

TruePasses 22 21.45 21.45 

FalseFails 3 3.55 3.55 

FalsePasses 5.5 5.05 4.1 

Table 10-30: COMPLEX CA Threshold-0 Classifier 
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10.7.1.2 Threshold 0.1 

labno 3 4 5 

Accuracy 0.688 0.708 0.795 

AUC 0.77572 0.78116 0.85984 

Precision_Recall 0.76585 0.767767 0.820888 

Average_Loss 0.576037 0.572627 0.460667 

loss 0.576035 0.572627 0.460669 

precision 0.668416 0.6842 0.764495 

predictionMean 0.515744 0.512716 0.51763 

recall 0.756 0.778 0.856 

TrueFails 15.5 15.95 18.35 

TruePasses 18.9 19.45 21.4 

FalseFails 6.1 5.55 3.6 

FalsePasses 9.5 9.05 6.65 

Table 10-31: COMPLEX CA Threshold-0.1 Classifier 

Week  6 7 8 

Accuracy 0.813 0.823 0.844 

AUC 0.89796 0.91536 0.91816 

Precision_Recall 0.897729 0.911041 0.918603 

Average_Loss 0.413128 0.391146 0.383919 

loss 0.413128 0.391145 0.383922 

precision 0.790228 0.792762 0.835013 

predictionMean 0.516462 0.531437 0.51088 

recall 0.86 0.886 0.864 

TrueFails 19.15 19 20.6 

TruePasses 21.5 22.15 21.6 

FalseFails 3.5 2.85 3.4 

FalsePasses 5.85 6 4.4 

Table 10-32: COMPLEX CA Threshold-0.1 Classifier 
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Week 9 10 

Accuracy 0.843 0.859 

AUC 0.91736 0.93724 

Precision_Recall 0.914396 0.944415 

Average_Loss 0.382117 0.334469 

loss 0.382114 0.334465 

precision 0.832818 0.868474 

predictionMean 0.518233 0.516113 

recall 0.866 0.854 

TrueFails 20.5 21.6 

TruePasses 21.65 21.35 

FalseFails 3.35 3.65 

FalsePasses 4.5 3.4 

Table 10-33: COMPLEX CA Threshold-0.1 Classifier 

10.7.1.3 Threshold 0.15 

Week 3 4 5 6 

Accuracy 0.684 0.684 0.81 0.821 

AUC 0.7478 0.7426 0.85368 0.89976 

Precision_Recall 0.729168 0.749041 0.800013 0.894099 

Average_Loss 0.590881 0.599657 0.470172 0.413643 

loss 0.590887 0.599659 0.470174 0.413645 

precision 0.655327 0.655919 0.783417 0.792379 

predictionMean 0.523466 0.513708 0.517948 0.517893 

recall 0.82 0.822 0.862 0.88 

TrueFails 13.7 13.65 18.95 19.05 

TruePasses 20.5 20.55 21.55 22 

FalseFails 4.5 4.45 3.45 3 

FalsePasses 11.3 11.35 6.05 5.95 

Table 10-34: COMPLEX CA Threshold-0.15 Classifier 
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Week 7 8 9 10 

Accuracy 0.841 0.853 0.858 0.876 

AUC 0.91952 0.92292 0.92384 0.94096 

Precision_Recall 0.91156 0.920781 0.92482 0.948239 

Average_Loss 0.380421 0.374718 0.375989 0.3275 

loss 0.380423 0.374716 0.375988 0.327499 

precision 0.825157 0.84398 0.842022 0.881976 

predictionMean 0.517085 0.514287 0.52357 0.518879 

recall 0.874 0.874 0.888 0.876 

TrueFails 20.2 20.8 20.7 21.9 

TruePasses 21.85 21.85 22.2 21.9 

FalseFails 3.15 3.15 2.8 3.1 

FalsePasses 4.8 4.2 4.3 3.1 

Table 10-35: COMPLEX CA Threshold-0.15 Classifier 

10.7.2 Written Exam 

10.7.2.1 Threshold 0 

Week 3 4 5 6 

Accuracy 0.706 0.7 0.704 0.756 

AUC 0.74748 0.75508 0.78124 0.82808 

Precision_Recall 0.729717 0.734802 0.773271 0.815417 

Average_Loss 0.599087 0.597826 0.585641 0.530091 

loss 0.599087 0.597824 0.585643 0.53009 

precision 0.681052 0.676059 0.682344 0.7473 

predictionMean 0.518862 0.517005 0.514705 0.520404 

recall 0.786 0.78 0.774 0.796 

TrueFails 15.65 15.5 15.85 17.9 

TruePasses 19.65 19.5 19.35 19.9 

FalseFails 5.35 5.5 5.65 5.1 

FalsePasses 9.35 9.5 9.15 7.1 

Table 10-36: COMPLEX Written Exam Threshold-0 Classifier 
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Week 7 8 9 10 

Accuracy 0.749 0.752 0.738 0.751 

AUC 0.8354 0.8256 0.82396 0.81632 

Precision_Recall 0.823775 0.816269 0.80966 0.815072 

Average_Loss 0.517992 0.535543 0.539123 0.552851 

loss 0.517988 0.535544 0.539119 0.55285 

precision 0.742617 0.735021 0.730168 0.759215 

predictionMean 0.51575 0.527733 0.516182 0.496454 

recall 0.786 0.802 0.782 0.756 

TrueFails 17.8 17.55 17.35 18.65 

TruePasses 19.65 20.05 19.55 18.9 

FalseFails 5.35 4.95 5.45 6.1 

FalsePasses 7.2 7.45 7.65 6.35 

Table 10-37: COMPLEX Written Exam Threshold-0 Classifier 

10.7.2.2 Threshold-0.1 

Week 5 6 7 

Accuracy 0.708 0.776 0.776 

AUC 0.7708 0.84496 0.85552 

Precision_Recall 0.770311 0.823149 0.846512 

Average_Loss 0.587342 0.482156 0.475681 

loss 0.587342 0.482154 0.47568 

precision 0.679497 0.757443 0.763803 

predictionMean 0.522417 0.508226 0.510422 

recall 0.794 0.824 0.818 

TrueFails 15.55 18.2 18.35 

TruePasses 19.85 20.6 20.45 

FalseFails 5.15 4.4 4.55 

FalsePasses 9.45 6.8 6.65 

Table 10-38: COMPLEX Written Exam Threshold-0.1 Classifier 
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Week 8 9 10 

Accuracy 0.774 0.782 0.767 

AUC 0.85272 0.85244 0.85076 

Precision_Recall 0.847837 0.84706 0.846402 

Average_Loss 0.484081 0.479841 0.488752 

loss 0.484077 0.479841 0.48875 

precision 0.763949 0.76815 0.763241 

predictionMean 0.509686 0.512389 0.50823 

recall 0.81 0.822 0.79 

TrueFails 18.45 18.55 18.6 

TruePasses 20.25 20.55 19.75 

FalseFails 4.75 4.45 5.25 

FalsePasses 6.55 6.45 6.4 

Table 10-39: COMPLEX Written Exam Threshold-0.1 Classifier 

10.7.2.3 Threshold 0.15 

Week 6 7 8 9 10 

Accuracy 0.782 0.778 0.779 0.779 0.783 

AUC 0.84644 0.84084 0.839 0.84304 0.85692 

Precision_Recall 0.825687 0.805755 0.81865 0.819155 0.851114 

Average_Loss 0.494019 0.49595 0.503474 0.501981 0.481465 

loss 0.494021 0.49595 0.50347 0.501979 0.481469 

precision 0.751705 0.738913 0.748277 0.746889 0.752848 

predictionMean 0.514158 0.533649 0.516537 0.516678 0.516898 

recall 0.852 0.87 0.854 0.856 0.852 

TrueFails 17.8 17.15 17.6 17.55 17.85 

TruePasses 21.3 21.75 21.35 21.4 21.3 

FalseFails 3.7 3.25 3.65 3.6 3.7 

FalsePasses 7.2 7.85 7.4 7.45 7.15 

Table 10-40: COMPLEX Written Exam Threshold-0.15 Classifier 
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10.8 Full Classifier Results HOG 

10.8.1 CA 

10.8.1.1 Threshold-0 

Week 2 3 4 5 

Accuracy 0.654 0.723 0.74 0.789 

AUC 0.70724 0.80272 0.81164 0.86024 

Precision_Recall 0.672865 0.77958 0.784943 0.824922 

Average_Loss 0.624949 0.550188 0.535896 0.473129 

loss 0.624949 0.550183 0.535899 0.47313 

precision 0.61582 0.703158 0.716657 0.758027 

predictionMean 0.516041 0.509815 0.503578 0.510214 

recall 0.828 0.784 0.802 0.854 

TrueFails 12 16.55 16.95 18.1 

TruePasses 20.7 19.6 20.05 21.35 

FalseFails 4.3 5.4 4.95 3.65 

FalsePasses 13 8.45 8.05 6.9 

Table 10-41: HOG CA Threshold-0 Classifier 

Week 6 7 8 9 10 

Accuracy 0.816 0.838 0.836 0.793 0.823 

AUC 0.91196 0.91456 0.92204 0.89608 0.93324 

Precision_Recall 0.917827 0.916947 0.926377 0.905773 0.94217 

Average_Loss 0.401126 0.385291 0.375386 0.470676 0.394716 

loss 0.401124 0.385295 0.375387 0.470674 0.394719 

precision 0.790631 0.828401 0.823564 0.790046 0.826379 

predictionMean 0.52014 0.520376 0.523299 0.519715 0.510721 

recall 0.864 0.86 0.86 0.804 0.826 

TrueFails 19.2 20.4 20.3 19.55 20.5 

TruePasses 21.6 21.5 21.5 20.1 20.65 

FalseFails 3.4 3.5 3.5 4.9 4.35 

FalsePasses 5.8 4.6 4.7 5.45 4.5 

Table 10-42: HOG CA Threshold-0 Classifier 
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10.8.1.2 Threshold 0.1 

Week 3 4 5 

Accuracy 0.719 0.711 0.79 

AUC 0.79404 0.79348 0.85812 

Precision_Recall 0.778512 0.776772 0.819388 

Average_Loss 0.552793 0.554057 0.468464 

loss 0.55279 0.55406 0.468463 

precision 0.699248 0.694329 0.765839 

predictionMean 0.505998 0.499822 0.516983 

recall 0.776 0.76 0.842 

TrueFails 16.55 16.55 18.45 

TruePasses 19.4 19 21.05 

FalseFails 5.6 6 3.95 

FalsePasses 8.45 8.45 6.55 

Table 10-43: HOG CA Threshold-0.1 Classifier 

Week 6 7 8 

Accuracy 0.815 0.827 0.847 

AUC 0.9084 0.9178 0.92192 

Precision_Recall 0.914411 0.921446 0.926431 

Average_Loss 0.403165 0.390456 0.382811 

loss 0.40316 0.390456 0.382812 

precision 0.793439 0.807317 0.83733 

predictionMean 0.517343 0.512925 0.509701 

recall 0.856 0.866 0.868 

TrueFails 19.35 19.7 20.65 

TruePasses 21.4 21.65 21.7 

FalseFails 3.6 3.35 3.3 

FalsePasses 5.65 5.3 4.35 

Table 10-44: HOG CA Threshold-0.1 Classifier 
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Week 9 10 

Accuracy 0.846 0.858 

AUC 0.9242 0.94196 

Precision_Recall 0.929208 0.951258 

Average_Loss 0.376153 0.326052 

loss 0.376161 0.326052 

precision 0.829256 0.85377 

predictionMean 0.513526 0.507484 

recall 0.876 0.868 

TrueFails 20.4 21.2 

TruePasses 21.9 21.7 

FalseFails 3.1 3.3 

FalsePasses 4.6 3.8 

Table 10-45: HOG CA Threshold-0.1 Classifier 

10.8.1.3 Threshold 0.15 

Week 3 4 5 

Accuracy 0.694 0.642 0.812 

AUC 0.76112 0.70112 0.852 

Precision_Recall 0.735319 0.672912 0.79263 

Average_Loss 0.583244 0.610482 0.466722 

loss 0.583243 0.610474 0.466724 

precision 0.675557 0.62487 0.782215 

predictionMean 0.515215 0.517748 0.51278 

recall 0.766 0.804 0.872 

TrueFails 15.55 12 18.8 

TruePasses 19.15 20.1 21.8 

FalseFails 5.85 4.9 3.2 

FalsePasses 9.45 13 6.2 

Table 10-46: HOG CA Threshold-0.15 Classifier 

 

 

 

 

 

 

 

 

 



175 
 

Week 6 7 8 

Accuracy 0.813 0.842 0.853 

AUC 0.91044 0.92216 0.9278 

Precision_Recall 0.915991 0.923661 0.930221 

Average_Loss 0.395246 0.377103 0.361779 

loss 0.395244 0.377103 0.361775 

precision 0.788346 0.825216 0.835917 

predictionMean 0.516776 0.514567 0.517859 

recall 0.862 0.874 0.884 

TrueFails 19.1 20.25 20.55 

TruePasses 21.55 21.85 22.1 

FalseFails 3.45 3.15 2.9 

FalsePasses 5.9 4.75 4.45 

Table 10-47: HOG CA Threshold-0.15 Classifier 

Week 9 10 

Accuracy 0.856 0.876 

AUC 0.92704 0.94424 

Precision_Recall 0.930653 0.953114 

Average_Loss 0.364385 0.311724 

loss 0.364393 0.311722 

precision 0.838975 0.874932 

predictionMean 0.519358 0.517988 

recall 0.886 0.884 

TrueFails 20.65 21.7 

TruePasses 22.15 22.1 

FalseFails 2.85 2.9 

FalsePasses 4.35 3.3 

Table 10-48: HOG CA Threshold-0.15 Classifier 
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10.8.2 Written Exam 

10.8.2.1 Threshold-0 

Week 2 3 4 5 

Accuracy 0.552 0.656 0.632 0.697 

AUC 0.63144 0.71588 0.70228 0.77724 

Precision_Recall 0.618634 0.692666 0.687021 0.761632 

Average_Loss 0.772289 0.637888 0.654496 0.589386 

loss 0.772288 0.637887 0.654496 0.589386 

precision 0.564355 0.638821 0.636448 0.678242 

predictionMean 0.577493 0.540688 0.542723 0.51104 

recall 0.708 0.782 0.782 0.762 

TrueFails 9.9 13.25 12.05 15.8 

TruePasses 17.7 19.55 19.55 19.05 

FalseFails 7.3 5.45 5.45 5.95 

FalsePasses 15.1 11.75 12.95 9.2 

Table 10-49: HOG Written Exam Threshold-0 Classifier 

Week 6 7 8 9 10 

Accuracy 0.702 0.704 0.711 0.713 0.72 

AUC 0.77532 0.79056 0.79012 0.79292 0.80484 

Precision_Recall 0.76625 0.782982 0.78133 0.784411 0.799473 

Average_Loss 0.61816 0.602191 0.609482 0.604987 0.621336 

loss 0.618163 0.602186 0.609482 0.604986 0.62134 

precision 0.684606 0.682321 0.689194 0.692157 0.694934 

predictionMean 0.532196 0.554068 0.549235 0.555158 0.556399 

recall 0.762 0.784 0.788 0.788 0.798 

TrueFails 16.05 15.6 15.85 15.95 16.05 

TruePasses 19.05 19.6 19.7 19.7 19.95 

FalseFails 5.95 5.4 5.3 5.3 5.05 

FalsePasses 8.95 9.4 9.15 9.05 8.95 

Table 10-50: HOG Written Exam Threshold-0 Classifier 
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10.8.2.2 Threshold-0.1 

Week 3 4 5 

Accuracy 0.67 0.687 0.736 

AUC 0.75556 0.75896 0.81068 

Precision_Recall 0.742749 0.735701 0.806698 

Average_Loss 0.607336 0.616132 0.545871 

loss 0.607333 0.616132 0.545874 

precision 0.670086 0.684081 0.717977 

predictionMean 0.514041 0.520497 0.515712 

recall 0.702 0.702 0.79 

TrueFails 15.95 16.8 17.05 

TruePasses 17.55 17.55 19.75 

FalseFails 7.45 7.45 5.25 

FalsePasses 9.05 8.2 7.95 

Table 10-51: HOG Written Exam Threshold-0.1 Classifier 

Week 6 7 8 

Accuracy 0.783 0.789 0.791 

AUC 0.87676 0.87196 0.87552 

Precision_Recall 0.880063 0.876539 0.88251 

Average_Loss 0.460019 0.466028 0.460885 

loss 0.460016 0.466029 0.460885 

precision 0.769455 0.772684 0.778258 

predictionMean 0.510909 0.517068 0.514362 

recall 0.824 0.832 0.828 

TrueFails 18.55 18.65 18.85 

TruePasses 20.6 20.8 20.7 

FalseFails 4.4 4.2 4.3 

FalsePasses 6.45 6.35 6.15 

Table 10-52: HOG Written Exam Threshold-0.1 Classifier 
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Week 9 10 

Accuracy 0.793 0.775 

AUC 0.87496 0.87008 

Precision_Recall 0.881794 0.870965 

Average_Loss 0.459104 0.459218 

loss 0.459099 0.459217 

precision 0.779337 0.772077 

predictionMean 0.515584 0.501164 

recall 0.83 0.792 

TrueFails 18.9 18.95 

TruePasses 20.75 19.8 

FalseFails 4.25 5.2 

FalsePasses 6.1 6.05 

Table 10-53: HOG Written Exam Threshold-0.1 Classifier 

10.8.2.3 Threshold-0.15 

Week 5 6 7 

Accuracy 0.719 0.784 0.775 

AUC 0.78284 0.87764 0.8756 

Precision_Recall 0.761441 0.88246 0.878185 

Average_Loss 0.582213 0.454391 0.459704 

loss 0.58222 0.454391 0.459702 

precision 0.681394 0.767087 0.754203 

predictionMean 0.514179 0.510067 0.516727 

recall 0.856 0.828 0.826 

TrueFails 14.55 18.5 18.1 

TruePasses 21.4 20.7 20.65 

FalseFails 3.6 4.3 4.35 

FalsePasses 10.45 6.5 6.9 

Table 10-54: HOG Written Exam Threshold-0.15 Classifier 
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Week 8 9 10 

Accuracy 0.786 0.78 0.781 

AUC 0.87844 0.87688 0.8704 

Precision_Recall 0.881142 0.880199 0.879025 

Average_Loss 0.455415 0.461232 0.461408 

loss 0.455418 0.461231 0.461411 

precision 0.768744 0.764232 0.766455 

predictionMean 0.517419 0.509222 0.516676 

recall 0.83 0.82 0.822 

TrueFails 18.55 18.5 18.5 

TruePasses 20.75 20.5 20.55 

FalseFails 4.25 4.5 4.45 

FalsePasses 6.45 6.5 6.5 

Table 10-55: HOG Written Exam Threshold-0.15 Classifier 

10.9 Sample VPL and MULE Scripts 

10.9.1 vpl_run.sh 

#! /bin/bash 

cat > vpl_execution <<EEOOFF 

#! /bin/bash 

prog1=HelloWorld 

javac \${prog1}.java &> grepLines.out 

if ((\$? > 0)); then 

echo "Error compiling your program" 

cat grepLines.out 

exit 

fi 

java \${prog1} 

EEOOFF 

chmod +x vpl_execution 

 
Figure 10-1: Sample vpl_run.sh 

10.9.2 vpl_evaluate.sh 

#! /bin/bash 

 

cat > vpl_execution <<EEOOFF 

#! /bin/bash 

 

# ---------- PROGRAMS TESTED (WITHOUT EXTENSION) ----

----- 

prog1=Printing 

compiled=true 

 

# --------------------- STARTING GRADE --------------

----- 

grade=0 
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# ----------------- COMPILE STUDENT PROG  -----------

----- 

javac \${prog1}.java  &> grepLines.out  

 

#--- if error, assign a mi&imal grade --- 

if ((\$? > 0)); then 

     echo "Comment :=>> Your program has compiler 

Errors. Use the Run command to help solve the 

errors." 

     cat grepLines.out 

     echo "Comment :=>> ------------" 

     compiled=false 

fi 

 

if [ \${compiled} = true ] ; then 

    grade=\$((grade+10)) 

fi 

 

# ----------- Remove comments from the code ---------

------------ 

 

cat \$prog1.java | sed 's://.*$::g' | sed 

'/\/\*\*/,/\*\// {s/.*\*\/.*//p; d}' > _\$prog1.java 

 

 

# ----------- TEST THE CODE FOR PARTICULAR PATTERNS -

------------ 

# ----------- TEST Code ------------- 

 

if grep 'public *static *void *main' \${prog1}.java  

then 

     grade=\$((grade+20)) 

else 

    echo "Comment :=>> you have no main method 

created in Printing.java" 

    echo "Comment :=>> ------------" 

fi 

 

grep 'class *Printing' _\${prog1}.java | grep -v main  

&> grepLines.out 

 

if [ ! -s grepLines.out ] ;  

then 

    echo "Comment :=>> you have not created your 

class called Printing in Printing.java" 

    echo "Comment :=>> ------------" 

else 

    grade=\$((grade+20)) 

fi 

 

 

grep 'System.out.print' _\${prog1}.java | grep -v 

main  &> grepLines.out 

 

if [ ! -s grepLines.out ] ;  

then 

    echo "Comment :=>> you have not created your 

print statement in Printing.java" 

    echo "Comment :=>> ------------" 

else 
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    grade=\$((grade+20)) 

fi 

 

 

 

#--- create expected outputs, one for each input file 

above --- 

cat > data1.out <<EOF 

Welcome to VPL 

EOF 

 

 

if \${compiled} ; then 

    for i in 1  ; do 

        

       if (( i > 1 )); then 

        echo "Comment :=>> --------------------------

------" 

       fi 

        

       echo "Comment :=>> (TEST \$i)" 

       # 

============================================== 

       # TEST i 

       # 

============================================== 

       #--- run program, capture output, display to 

student --- 

       java \${prog1}  &> user.out 

       cp user.out user.out.org 

        

     

       #--- remove non numbers and non minus 

       #cat user.out | sed 's/[^0-9\ -]*//g' > 

dummy.out 

       #mv dummy.out user.out 

        

       # ----------- Remove comments from the code --

------------------- 

       cat \$prog1.java | sed 's://.*$::g' | sed 

'/\/\*\*/,/\*\// {s/.*\*\/.*//p; d}' > _\$prog1.java 

        

       #--- remove multiple spaces ---  

       cat user.out | sed 's/  */ /g' > dummy.out 

       mv dummy.out user.out 

        

       #--- remove blank lines --- 

       cat user.out | sed '/^\s*$/d' > dummy.out 

       mv dummy.out user.out 

        

       #--- compute difference ---  

       diff -y -w --ignore-all-space user.out 

data\${i}.out > diff.out 

       #echo "----- diff.out ------" 

       #cat diff.out 

       #echo "---------------------" 

       diff -y -w --ignore-all-space user.out 

data\${i}.out > diff.out 

        

     

       #--- reject if different --- 
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       if ((\$? > 0)); then 

          echo "Comment :=>> Your output is 

incorrect." 

     

          #--- display test file --- 

          #echo "Comment :=>> Your program tested 

with:" 

          #echo "<|--"  

          #cat data\${i}.txt 

          #echo "--|>" 

     

          echo "Comment :=>> ---------------" 

          echo "Comment :=>> Your output:" 

          echo "Comment :=>> ---------------" 

          echo "<|--" 

          cat user.out.org 

          echo "--|>" 

          echo "" 

          echo "Comment :=>> ---------------" 

          echo "Comment :=>> Expected output: " 

          echo "Comment :=>> ---------------" 

          echo "<|--" 

          cat data\${i}.out 

          echo "--|>" 

           

          # --------------------- REWARD IF CORRECT 

OUTPUT ----------------- 

       else 

          #--- good output --- 

          echo "Comment :=>> Congrats, your output is 

correct." 

          echo "Comment :=>> ---------------" 

          echo "Comment :=>> Your output:" 

          echo "Comment :=>> ---------------" 

          echo "<|--" 

          cat user.out.org 

          echo "--|>" 

          grade=\$((grade+30)) 

       fi 

    done 

fi 

 

if (( grade > 100 )); then 

    grade=100 

fi 

 

echo "Grade :=>> \$grade" 

 

EEOOFF 

 

chmod +x vpl_execution 

 
Figure 10-2: Sample vpl_evaluate.sh 
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10.9.3: vpl_compile.sh 

#! /bin/bash 

 

cat > vpl_execution <<EEOOFF 

#! /bin/bash 

 

prog1=Printing 

 

javac \${prog1}.java  &> grepLines.out 

 

if ((\$? > 0)); then 

     echo "Error compiling your program" 

     cat grepLines.out 

     exit 

else 

     echo "Compilation succeeded" 

     echo "compiled: ==> true" 

fi 

 

EEOOFF 
Figure 10-3: Sample vpl_compile.sh 

10.9.4: metadata.json 

{ 

 "title":"Hello World", 

 "Requested files": ["HelloWorld.java"], 

 "qid":"CS1_Lab1_helloWorld" 

} 
Figure 10-4: Sample metadata.json 

10.9.5: description.html 

<H5><strong>Description</strong></H5> 

<p> 

    Write a java program which prints the message 

"Hello" on one line and  

    "world!" on the next. 

</p> 

<H5><strong>Sample Output</strong></H5> 

<pre>Hello<br>World!</pre> 
Figure 10-5: Sample description.html 
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Figure 10-6: Sample description.html in MULE 

 

Figure 10-7: Workbook display of description.html 
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