

Two Roads Diverge:

Mapping the Path of Learning

for Novice Programmers

Through Large Scale Interaction

Data and Neural Network

Classifiers

by

Natalie Culligan BSc Comp. Sci. (Hons.)

Dissertation submitted in partial fulfilment requirements for candidate

for the degree of

Doctor of Philosophy

Department of Computer Science

Maynooth University, Maynooth, Ireland

Supervisor: Dr. Kevin Casey

Head of Department: Dr. Joseph Timoney

February 2021

i

Table of Contents

List of Figures ... v

List of Tables .. v

Acronyms Used Throughout Thesis .. viii

Acknowledgments .. ix

Abstract .. xiii

1. Introduction ... 1

1.1 Problem Statement .. 1

1.2 Research Questions ... 2

1.3 Contributions... 2

1.4 Publications ... 3

1.5 Chapter Overview ... 4

1.6 Chapter Conclusion ... 6

2. Related Research ... 7

2.1 MULE as a Pedagogical Tool ... 7

2.1.1 VPL .. 8

2.1.2 Examples of Modifications to VPL.. 13

2.1.3 Alternatives to VPL ... 13

2.1.4 Pedagogical Coding Environments Conclusions 15

2.2 MULE as a Research Tool .. 16

3. MULE and the Collection of Data ... 22

3.1 Motivation ... 22

3.2 Paper: Building an Authentic Novice Programming Lab Environment 22

3.3 Overview of MULE .. 33

3.4 Features of MULE .. 34

3.4.1 Workbook .. 34

3.4.2 Analytics .. 39

3.5 Use of MULE in Introduction to Programming Modules 40

3.6 GDPR and Ethical Collection of Data .. 40

3.7 Chapter Summary ... 41

4. Overview of Experiments and Data .. 42

4.1 Description of Data Sets ... 42

4.1.1 Data Set 1 ... 42

4.1.2 Data Set 2 ... 43

ii

4.2 Description of Data Types .. 47

4.2.1 Mouse Movements ... 47

4.2.2 Compile, Run, Evaluate Actions .. 47

4.2.3 Complexity of Code Submitted .. 47

4.3 Methods of Analysis ... 47

4.3.1 Wilcox Rank Sum Test .. 48

4.3.2 Linear Regression .. 48

4.3.3 Neural Network Binary Classification ... 48

4.4 The HOG Classifier .. 49

4.5 Overview of Experiments ... 51

4.5.1 Experiment 1: Mouse Movements (MM) .. 52

4.5.2 Experiment 2: Compile, Run, Evaluate Movements (CRE) 52

4.5.3 Experiment 3: Code Complexity (COMPLEX) 52

4.5.4 Final Experiment: HOG ... 52

4.6 Chapter Summary ... 52

5. Experiment 1: Mouse Movements ... 53

5.1 Introduction to Mouse Movement Experiment ... 53

5.2 Paper: What the Mouse Said: How Mouse Movements Can Relate to Student

Stress and Success ... 54

5.3 Mouse Movement Features ... 66

5.4 Mouse Movements Analysis and Neural Network 67

5.4.1 Wilcox Rank Sum Test .. 68

5.4.2 Linear Regression .. 71

5.4.3 Neural Networks .. 71

5.5 Mouse Movements Week-by-Week .. 72

5.6 Mouse Movements Conclusions ... 75

6. Experiment 2: Compile, Run, and Evaluate (CRE) Movements 76

6.1 Introduction to CRE Experiment .. 76

6.2 Paper: Exploring the Coding Behaviour of Successful Students in

Programming by Employing Neo-Piagetian Theory... 76

6.3 CRE Features .. 88

6.4 CRE Movements Analysis .. 89

6.4.1 Wilcox Rank Sum Test .. 89

6.4.2 Linear Regression .. 91

6.5 Neural Network Classifiers ... 94

6.5.1 Comparison of CA Classifiers ... 94

iii

6.5.2 Comparison of Written Exam Classifiers .. 95

6.6 CRE Week-by-Week .. 95

6.7 CRE Conclusions .. 99

7. Experiment 3: Complexity of Student Code ... 100

7.1 Introduction to Code Complexity ... 100

7.2 Features ... 101

7.3 Code Complexity Analysis ... 102

7.3.1 Wilcox Rank Sum Test: File Size .. 103

7.3.2 Wilcox Rank Test: Nodes .. 105

7.3.3 Linear Regression: File Size .. 107

7.3.4 Linear Regression Test: Node Data ... 109

7.4 Neural Network Classifiers ... 111

7.4.1 Comparison of CA Classifiers ... 111

7.4.2 Comparison of Written Exam Classifiers .. 113

7.5 Code Complexity Week-by-Week .. 114

7.6 Discussion of Results .. 118

8. Experiment 4: The HOG Classifier ... 120

8.1 Introduction to HOG ... 120

8.2 Features ... 120

8.3 Neural Network Classifiers ... 120

8.3.1 Comparison of Continuous Assessment Classifiers 121

8.3.2 Comparison of Written Exam Classifiers .. 122

8.5 Conclusions ... 123

9. Conclusions .. 125

9.1 The Research Instruments ... 125

9.1.1 MULE .. 125

9.1.2 HOG ... 125

9.2 Discussion of Student Behaviour .. 130

9.2.1 Week 1 ... 131

9.2.2 Week 2 ... 131

9.2.3 Week 3 ... 132

9.2.4 Week 4 ... 132

9.2.5 Week 5 ... 133

9.2.6 Week 6 ... 134

9.2.7 Week 7 ... 135

9.2.8 Week 8 ... 136

iv

9.2.9 Week 9 ... 137

9.2.10 Week 10 ... 137

9.3 The Research Questions .. 138

9.4 Future Work .. 140

9.5 Conclusion .. 141

10. Appendix .. 143

10.1 Consent Form .. 143

10.2 Information Sheet .. 144

10.3 Wilcox Rank Sum Test Results MM .. 146

10.3.1 CA .. 146

10.3.2 Written Exam ... 149

10.4 Linear Regression Results MM ... 152

10.4.1 CA .. 152

10.4.2 Written Exam ... 155

10.5 Full Classifier Results MM ... 158

10.5.1 CA .. 158

10.5.2 Written Exam ... 159

10.6 Full Classifier Results CRE Movements .. 161

10.6.1 CA .. 161

10.6.2 Written Exam ... 163

10.7 Full Classifier Results COMPLEX ... 165

10.7.1 CA .. 165

10.7.2 Written Exam ... 169

10.8 Full Classifier Results HOG ... 172

10.8.1 CA .. 172

10.8.2 Written Exam ... 176

10.9 Sample VPL and MULE Scripts ... 179

10.9.1 vpl_run.sh ... 179

10.9.2 vpl_evaluate.sh ... 179

10.9.3: vpl_compile.sh .. 183

10.9.4: metadata.json .. 183

10.9.5: description.html .. 183

Bibliography .. 185

v

List of Figures
Figure 2-1: VPL Student View ... 8

Figure 2-2: Example of the Execution Files in VPL ... 9

Figure 2-3: Diagram of VPL Components .. 10

Figure 3-1: MULE Student View Layout ... 33

Figure 3-2: MULE Student Lab Selection Menu .. 35

Figure 3-3: Assignment Metadata File in MULE ... 35

Figure 3-4: Description Panel in Workbook with CA Grade and Personal Best 36

Figure 3-5: MULE Grade Storage .. 37

Figure 3-6: Workbook Admin View ... 38

Figure 3-7: MULE Data Collection .. 39

Figure 4-1: HOG Classifier Workflow ... 50

Figure 6-1: CRE Patterns .. 89

Figure 7-1: Selection.java Sample Code ... 101

Figure 7-2: Selection.java with Comments Removed... 101

Figure 7-3: Parse Tree Generated from Selection.java ... 102

Figure 10-1: Sample vpl_run.sh .. 179

Figure 10-2: Sample vpl_evaluate.sh .. 182

Figure 10-3: Sample vpl_compile.sh .. 183

Figure 10-4: Sample metadata.json ... 183

Figure 10-5: Sample description.html ... 183

Figure 10-6: Sample description.html in MULE .. 184

Figure 10-7: Workbook display of description.html ... 184

List of Tables
Table 1-1: Contributions to Published Paper 1 ... 3

Table 1-2: Contributions to Published Paper 2 ... 4

Table 1-3: Contributions to Published Paper 3 ... 4

Table 5-1: MM Wilcox Rank Sum Test CA for Week 1 to 4 68

Table 5-2: MM Wilcox Rank Sum Test CA for Week 5 to 7 69

Table 5-3: MM Wilcox Rank Sum Test CA for Week 8 to 10 69

Table 5-4: MM Wilcox Rank Sum Test Written Exam for Week 1 to 3 70

Table 5-5: MM Wilcox Rank Sum Test Written Exam for Week 4 to 6 70

Table 5-6: MM Wilcox Rank Sum Test Written Exam for Week 7 to 10 71

Table 6-1: CRE Features ... 88

Table 6-2: CRE Wilcox Rank Sum Test CA for Weeks 1 to 5 90

Table 6-3: CRE Wilcox Rank Sum Test CA for Weeks 6 to 10 90

Table 6-4: CRE Wilcox Rank Sum Test Written Exam for Weeks 1 to 5 91

Table 6-5: CRE Wilcox Rank Sum Test Written Exam for Weeks 6 to 10 91

Table 6-6: CRE Linear Regression CA for Weeks 1 to 5 92

Table 6-7: CRE Linear Regression CA for Weeks 6 to 10 92

Table 6-8: CRE Linear Regression Written Exam for Weeks 1 to 5 93

Table 6-9: CRE Linear Regression Written Exam for Weeks 6 to 10 93

Table 6-10: CRE CA Classifier Accuracy .. 94

vi

Table 6-11: CRE CA Classifier False Passes .. 94

Table 6-12: CRE Written Exam Classifier Accuracy ... 95

Table 6-13: CRE Written Exam Classifier False Passes ... 95

Table 7-1: COMPLEX File Size Wilcox Rank Sum Test CA for Weeks 1 to 5 .. 103

Table 7-2: COMPLEX File Size Wilcox Rank Sum Test CA for Weeks 6 to 10 103

Table 7-3: COMPLEX File Size Wilcox Rank Sum Test Written Exam for Weeks

1 to 5 ... 104

Table 7-4: COMPLEX File Size Wilcox Rank Sum Test Written Exam for Weeks

6 to 10 ... 104

Table 7-5: COMPLEX Nodes Wilcox Rank Sum Test CA for Weeks 1 to 5 105

Table 7-6: COMPLEX Nodes Wilcox Rank Sum Test CA for Weeks 6 to 10 106

Table 7-7: COMPLEX Nodes Wilcox Rank Sum Test Written Exam for Weeks 1

to 5 .. 106

Table 7-8: COMPLEX Nodes Wilcox Rank Sum Test Written Exam for Weeks 6

to 10 .. 106

Table 7-9: COMPLEX File Size Linear Regression CA for Weeks 1 to 5 108

Table 7-10: COMPLEX File Size Linear Regression CA for Weeks 6 to 10 108

Table 7-11: COMPLEX File Size Linear Regression Written Exam for Weeks 1 to

5 .. 109

Table 7-12: COMPLEX File Size Linear Regression Written Exam for Weeks 6 to

10 .. 109

Table 7-13: Nodes Linear Regression CA .. 110

Table 7-14: Nodes Linear Regression CA .. 110

Table 7-15: Nodes Linear Regression Written Exam ... 111

Table 7-16: Nodes Linear Regression Written Exam ... 111

Table 7-17: COMPLEX CA Classifier Accuracy ... 112

Table 7-18: COMPLEX CA Classifier False Passes .. 112

Table 7-19: Compare Early Semester CA Classifiers ... 112

Table 7-20: Compare Late Semester CA Classifiers .. 112

Table 7-21: COMPLEX Written Exam Classifier Accuracy 113

Table 7-22: COMPLEX Written Exam Classifier False Passes 113

Table 7-23: Comparing Early Semester Written Exam Classifiers 113

Table 7-24: Compare Late Semester Written Exam Classifiers 114

Table 8-1: HOG CA Classifier Accuracy ... 121

Table 8-2: HOG CA Classifier False Passes ... 121

Table 8-3: Averages of Early Semester Classifiers for CA 121

Table 8-4: Averages of Late Semester Classifiers for CA 122

Table 8-5: HOG Written Exam Classifier Accuracy .. 122

Table 8-6: HOG Written Exam Classifier False Passes .. 122

Table 8-7: Averages of Early Semester Classifiers for Written Exams 123

Table 8-8: Averages of Late Semester Classifiers for Written Exams 123

Table 9-1: Comparing Early Semester CA Classifier Accuracy 126

Table 9-2: Comparing Early Semester CA Classifier False Passes 126

Table 9-3: Comparing Early Semester CA Classifier Average Accuracy and False

Passes .. 126

Table 9-4: Comparing Late Semester CA Classifier Accuracy 127

Table 9-5: Comparing Late Semester CA Classifier False Passes 127

vii

Table 9-6: Comparing Late Semester CA Classifier Average Accuracy and False

Passes .. 127

Table 9-7: Comparing Early Semester Written Exam Classifier Accuracy 128

Table 9-8: Comparing Early Semester Written Exam Classifier False Passes 128

Table 9-9: Comparing Early Semester Written Exam Classifier Average Accuracy

and False Passes .. 128

Table 9-10: Comparing Late Semester Written Exam Classifier Accuracy 129

Table 9-11: Comparing Late Semester Written Exam Classifier False Passes 129

Table 9-12: Comparing Late Semester Written Exam Classifier Average Accuracy

and False Passes .. 130

Table 10-1: MM Wilcox Rank Sum Test CA for Weeks 1 to 3 146

Table 10-2: MM Wilcox Rank Sum Test CA for Weeks 4 to 7 147

Table 10-3: MM Wilcox Rank Sum Test CA for Weeks 8 to 10 148

Table 10-4: MM Wilcox Rank Sum Test Written Exam for Weeks 1 to 3........... 149

Table 10-5: MM Wilcox Rank Sum Test Written Exam for Weeks 1 to 3........... 150

Table 10-6: MM Wilcox Rank Sum Test Written Exam for Weeks 1 to 3........... 151

Table 10-7: MM Linear Regression CA for Weeks 1 to 3 152

Table 10-8: MM Linear Regression CA for Weeks 4 to 7 153

Table 10-9: MM Linear Regression CA for Weeks 8 to 10 154

Table 10-10: MM Linear Regression Written Exam for Weeks 1 to 3 155

Table 10-11: MM Linear Regression Written Exam for Weeks 4 to 7 156

Table 10-12: MM Linear Regression Written Exam for Weeks 8 to 10 157

Table 10-13: MM CA Threshold -0.1 Classifier ... 158

Table 10-14: MM CA Threshold -0.1 Classifier ... 158

Table 10-15: MM CA Threshold-0.1 Classifier .. 159

Table 10-16: MM Written Exam Threshold-0.1 Classifier 159

Table 10-17: MM Written Exam Threshold-0.1 Classifier 160

Table 10-18: MM Written Exam Threshold-0.1 Classifier 160

Table 10-19: CRE CA Threshold-0 Classifier .. 161

Table 10-20: CRE CA Threshold-0 Classifier .. 161

Table 10-21: CRE CA Threshold-0.1 Classifier ... 162

Table 10-22: CRE CA Threshold-0.1 Classifier ... 162

Table 10-23: CRE CA Threshold-0.15 Classifier ... 163

Table 10-24: CRE Written Exam Threshold-0 Classifier 163

Table 10-25: CRE Written Exam Threshold-0 Classifier 164

Table 10-26: CRE Written Exam Threshold-0.1 Classifier 164

Table 10-27: CRE Written Exam Threshold-0.15 Classifier 165

Table 10-28: COMPLEX CA Threshold-0 Classifier ... 165

Table 10-29: COMPLEX CA Threshold-0 Classifier ... 166

Table 10-30: COMPLEX CA Threshold-0 Classifier ... 166

Table 10-31: COMPLEX CA Threshold-0.1 Classifier .. 167

Table 10-32: COMPLEX CA Threshold-0.1 Classifier .. 167

Table 10-33: COMPLEX CA Threshold-0.1 Classifier .. 168

Table 10-34: COMPLEX CA Threshold-0.15 Classifier 168

Table 10-35: COMPLEX CA Threshold-0.15 Classifier 169

Table 10-36: COMPLEX Written Exam Threshold-0 Classifier 169

Table 10-37: COMPLEX Written Exam Threshold-0 Classifier 170

Table 10-38: COMPLEX Written Exam Threshold-0.1 Classifier 170

viii

Table 10-39: COMPLEX Written Exam Threshold-0.1 Classifier 171

Table 10-40: COMPLEX Written Exam Threshold-0.15 Classifier 171

Table 10-41: HOG CA Threshold-0 Classifier ... 172

Table 10-42: HOG CA Threshold-0 Classifier ... 172

Table 10-43: HOG CA Threshold-0.1 Classifier .. 173

Table 10-44: HOG CA Threshold-0.1 Classifier .. 173

Table 10-45: HOG CA Threshold-0.1 Classifier .. 174

Table 10-46: HOG CA Threshold-0.15 Classifier .. 174

Table 10-47: HOG CA Threshold-0.15 Classifier .. 175

Table 10-48: HOG CA Threshold-0.15 Classifier .. 175

Table 10-49: HOG Written Exam Threshold-0 Classifier 176

Table 10-50: HOG Written Exam Threshold-0 Classifier 176

Table 10-51: HOG Written Exam Threshold-0.1 Classifier 177

Table 10-52: HOG Written Exam Threshold-0.1 Classifier 177

Table 10-53: HOG Written Exam Threshold-0.1 Classifier 178

Table 10-54: HOG Written Exam Threshold-0.15 Classifier 178

Table 10-55: HOG Written Exam Threshold-0.15 Classifier 179

Acronyms Used Throughout Thesis

CA: Continuous Assessment

COMPLEX: Code Complexity

CRE: Compile, Run, Evaluate

CS1: Computer Science 1

LMS: Learning Management System

MM: Mouse Movements

MULE: Maynooth University Learning Environment

VIF: Variance Inflation Factor

VPL: Virtual Programming Lab

ix

Acknowledgments

None of this would have been possible without my fiancé Jon. I am so

lucky to have you in my life, an incredible person with so much kindness,

intelligence, and humour. Thank you for always having a different perspective and

opening my eyes to possibilities and ideas I never would have considered before.

Thank you for believing in me when I did not. Thank you for the endless support,

encouragement, the proof reading, and the grammar checks. Thank you for

listening to me ramble about data and experiments and papers and ideas for future

work and so on. Thank you for reminding me to eat and sleep and rest. I can never

repay you for all of the love and support throughout this PhD.

Thank you to my closest friends, Brian, Liz and Gillian, and their support

throughout the PhD.

Thank you, Liz for always being a source of honesty, common sense, and

style in my life. Thank you for the updates on Poppy and Dexter, my wonderful

godchildren, it always makes my day. Thank you for always reaching out when I

would forget to do anything other than work. I cannot wait to be able to visit you

and catch up after the pandemic.

Thank you, Gillian, for being the embodiment of sunshine and making me

laugh so much. Thank you for joining in the celebrations of each of the milestones

along the way throughout this process, even from across oceans.

Thank you, Brian, for your sense of humour and insight. Thank you for

being my friend for so many years, even though we are so different from when we

first met. We’ve been through so many changes as people, and you helped me grow

as a person and see perspectives I would never have seen otherwise. Thank you for

driving me to many much-needed coffee breaks and Tesco trips, and of course for

the wonderful cakes and macaroons.

Thank you to my family, the Culligans and the McConvilles. Thank you to

my grandad who gave me a love of reading and learning that has stayed with me

my entire life. Thank you to my Great-Aunt Nancy, for my name and for always

believing in me. Thank you to Uncle Liam – the beautiful Cross pens you gave me

are now proudly displayed in my office. Thank you, dad, for cycling to Newry

(from Drogheda!) way back in 1989 to collect a Commadore 64, and bringing it all

the way back home, and changing my entire life. Thank you for all of the support

and help. I don’t know what I would have done without you bringing me out for

x

drives to relax during this process. Thank you, mum, for giving me the gift of

determination and unreasonable stubbornness – it has been essential in completing

this thesis. Thank you for inspiring me through your own career, and filling my

head with notions from an early age, you allowed me to believe that I could

achieve anything I wanted. Thank you both for being proud of me. Thank you to

my brother Stephen for all your help and advice throughout the years with all

things computer related. Thank you to my brother James, for all your wonderful art

throughout the years.

Thank you to the McVeighs, for all of your support. Thank you for your

love and concern. Thank you, Anne, for always being so kind and welcoming, and

for your prayers - they have never let me down. Thank you, Rory, for being so

reliable – always ready to help anyone, no matter how much you already have on

your plate.

Thank you to my supervisor Kevin for all of your guidance and support,

and for the many late nights and early mornings working with me on MULE to get

it running in time for the labs the next morning. At the time it was awful, but now

it’s one of the best memories of my PhD!

Thank you to Susan, for seeing potential in me, and starting me on this

journey. Thank you to Aidan, Emlyn and Misha for all your work, support and

patience with us on the MULE project. Thank you to Brett Becker for adopting the

MULE system in Beijing. Thank you to Kylie for your support and help – you’ve

been an incredible teacher and mentor to both Jon and I, and we will never forget

that. Thanks of course to my lab partner through the Covid-19 shutdown – Bunny

the cat.

Thank you to all my teachers over the years who inspired me, from Mrs

O’Callaghan in St. Oliver’s, to Larry in BCFE, to Susan in Maynooth.

Finally, thank you to the wonderful children in my life. Thank you to my

incredible godchildren, Poppy and Dexter. Poppy, I hope you continue to love

coding and we can teach Dexter together when this pandemic is over. Thank you to

Dervla, and Iris, to Ali, Freya and of course to Ollie, my fellow teacher and

computer enthusiast. I’m so excited to see where life will bring all of you.

Thank you to everyone who has supported me in this journey. I hope I can

continue to rely on it.

Every day I am working to make you all proud of me.

xi

Circa 1993: Already prepared for a life of computers and writing

xii

For Jon, mum, and dad

xiii

Abstract

Learning to program is a fundamental part of Computer Science education. To

become a proficient programmer, one must become competent at both code

comprehension and code production. Research shows that the most effective way

to teach programming to students is through practical exercises. However, the

increasing numbers of students in Computer Science classes means it is difficult to

correct assignments and provide timely feedback. This can result in fewer practical

assignments and/or less useful feedback for each student. Automated grading tools,

and understanding of how novice programmers learn to code, is essential for these

growing numbers of students. The Maynooth University Learning Environment, or

MULE, was built to address this challenge. MULE is a cloud-based learning

environment built from the ground up with the goal of teaching introductory

programming courses in an authentic manner while facilitating the collection of

large-scale behavioural data to support Learning Analytics. In this thesis,

behavioural interaction data and code written by students in MULE is used to

investigate the differences between successful and unsuccessful programming

student behaviour, with the use of data analysis and Neural Network classifiers.

The result is a method of classification that predicts early on if a student is likely to

be in the top or bottom 50% of grades in the class with up to 87% accuracy, and a

model of the path of learning for successful students, including key times,

assignments, and topics during the introduction to programming module when the

higher and lower achieving students diverge in behaviour.

1

1. Introduction

In this chapter the problem statement and the research questions for this

thesis will be outlined. The contributions of this thesis and publications produced

as part of this thesis will be presented, and finally a chapter overview will describe

the contents of the thesis.

1.1 Problem Statement

It has often been stated that it is difficult to learn to program. It may be

more useful to say that it is difficult to teach programming. Computer Science has

one of the highest dropout and failure rates in third level education [1, 2, 3, 4, 5].

As third level Computer Science courses become more popular, and class sizes

become larger, it becomes harder to provide feedback and support to students. It is

difficult to even identify the students who need support when teaching classes that

may have hundreds of students.

To address this, this research investigates the behaviours of students as

they learn how to code and compares the behaviour of “successful” and

“unsuccessful” students, where a student is deemed to be successful if they are in

the top 50% of grades in the class and unsuccessful if in the bottom 50% of grades.

Data is passively collected from students as they write their first programs, and we

investigate how the data reflects the students’ eventual outcome in the module, in

terms of grades. Through this research, we hope to find key labs, topics, and

assignments that are indicators of a student’s success. From these keys, we can 1)

identify students at risk, and 2) advise on curriculum changes that may revisit key

topics and assignments that students may need repetition to fully understand.

The way that programming is taught in introductory programming modules

means that all lab exercises are based on the lessons from the previous session. So,

once a student has a bad day or week, they are at a disadvantage for the next lab,

which compounds into a larger disadvantage for the next lab. Computer science

may or may not be unique in this, but it is not difficult to imagine that a heavy

importance on the first few weeks of a first-year university course could be

detrimental to the success of the students, when many, if not most

students are adapting to a new way of life, and their first taste of freedom as adults.

They may not yet have the maturity to be as diligent in their studies as is necessary,

and then find only a few short weeks into the semester, that while they are able to

catch up to their other courses, they are entirely lost and confused in their

introduction to programming courses.

2

If this is the problem, that missing out on a fundamental of programming,

such as loops or string manipulation, leaves the student unable to keep up with the

rest of the material, then the solution is to provide ways that the student can revisit

or reaffirm the previous lessons. In our university, there are drop-in help clinics

that provide this help, but it is also necessary to provide advice and guidance to

these students, when we as educators realise, the students are failing to keep up

with the course.

It is the goal of this project to explore the use of easily observed non-

intrusive data to find students in need of extra help and to improve problem areas

in our curriculum. In the bigger picture, this data can also be used to give us insight

into what learning to program looks like, and to improve the way it is taught.

1.2 Research Questions

These are the research questions to be answered in this thesis:

1. How can we observe student behaviour as they learn to code in a non-

intrusive way?

2. Are there divergences in the observed student behaviour between the

highest and lowest achieving students?

3. How early in the semester can students be classified as higher or lower

achieving, to allow for interventions?

1.3 Contributions

The first contribution of this work is the creation of MULE – Maynooth

University Learning Environment - a pedagogical coding environment that collects

data on student behaviour as they complete coding assignments [6].

The second contribution is insight into the process of a novice programmer

learning to code. By investigating points of divergence between the higher and

lower achieving students, this project will identify the parts of an introductory

programming course that may be pitfalls or stumbling blocks for novice

programmers. This research gives us insight into what topics and concepts need to

be introduced later, and which need to be covered in more depth and with more

repetition, allowing for increased potential for success of our students.

This research has been in three different behavioural data types:

• Mouse movement and its relation to student stress and success.

3

• Coding behaviour, specifically patterns of compilation, running, and

evaluation and how it correlates to student understanding and success.

• Code complexity and its relation to student success and understanding.

The third contribution to the field is the creation of the HOG classifier, a data

processing and Neural Network binary classifier system that predicts with up to

87% accuracy the likelihood of a student being in the higher or lower 50% of the

grades in their introduction to Computer Science module.

1.4 Publications

These publications are each printed in edited form as a part of this thesis.

Building an Authentic Novice Programming Lab Environment is in Section 3.3,

What the Mouse Said: How Mouse Movements Can Relate to Student Stress and

Success is in Section 5.2, and Exploring the Coding Behaviour of Successful

Students in Programming by Employing Neo-Piagetian Theory is in Section 6.2.

Permission has been granted for the reproduction of these papers. In this section,

the paper details will be presented, along with tables detailing my contribution to

each paper.

1) Building an Authentic Novice Programming Lab Environment

N. Culligan and K. Casey, “Building an Authentic Novice Programming Lab

Environment,” in International Conference on Engaging Pedagogy, Dublin,

Ireland, 2018.

In this paper, the creation of MULE and the motivation behind the system

from a pedagogical perspective is described. The author contributions to this paper

can be seen in Table 1-1.

 My Contribution Other’s Contribution

Software 70% 30%

Writing 90% 10%

Running Experiment 80% 20%

Table 1-1: Contributions to Published Paper 1

2) What the Mouse Said: How Mouse Movements Can Relate to Student

Stress and Success

N. Culligan and K. Casey, “What the Mouse Said: How Mouse Movements Can

Relate to Student Stress and Success,” in Psychology of Programming Interest

Group, Toronto, Canada, 2020.

4

In this paper, the first exploration of the Mouse Movement data collected

by MULE from second semester data is described, along with the construction of a

stress classifier, and a pass/fail classifier that would become the basis of HOG. The

author contributions to this paper can be seen in Table 1-2.

 My Contribution Other’s Contribution

Software 70% 30%

Writing 80% 20%

Running Experiment 70% 30%

Table 1-2: Contributions to Published Paper 2

3) Exploring the Coding Behaviour of Successful Students in Programming by

Employing Neo-Piagetian Theory

N. Culligan and K. Casey, “Exploring the Coding Behaviour of Successful

Students in Programming by Employing Neo-Piagetian Theory” in Psychology of

Programming Interest Group, Toronto, Canada, 2020.

This paper discusses the exploration of a second data type, Compile-Run-

Evaluate movements, using the first semester data that would become the main

data set for this thesis. The author contributions to this paper can be seen in Table

1-3.

 My Contribution Other’s Contribution

Software 80% 20%

Writing 85% 15%

Running Experiment 80% 20%

Table 1-3: Contributions to Published Paper 3

1.5 Chapter Overview

In this section, an overview of each chapter in this thesis will be presented.

Chapter 2: Related Research

In this chapter, the related research and alternative tools for this project are

examined and discussed. This literature is in two sections: a review of pedagogical

coding environments, and a review of literature on examining student behavioural

data. In the review of alternative pedagogical environments, different pedagogical

coding environments are examined, in terms of usefulness as teaching tools, and as

data collection tools. In the review of other work that examines novice programmer

behavioural data, the goals and tools used in this thesis are explained.

5

Chapter 3: MULE and the Collection of Data

In this section, the published conference paper on the MULE system is

reprinted. MULE and its features are described, as well as a description of the

modules and universities the system has been used in. The data collected is also

outlined, as well as an explanation of how the data was collected ethically.

Chapter 4: Overview of Experiments and Data

In this section, the data sets gathered by MULE during this thesis are listed

and described. The assignments completed by students while this data was

collected is listed here, along with a summary of the assignments topics. The

different data types collected by MULE are listed and explained. The methods used

to examine the collected data are explained here, including the HOG classifier, a

method for cleaning MULE data, and using it in Neural Network classifiers.

Finally, the four experiments in this thesis are named and described.

Chapter 5: Experiment 1: Mouse Movements

In this chapter, the MM paper is reprinted, which outlines the pilot study

using the MM data gathered by MULE to build Neural Network classifier to

classify sequences of MM as being from an exam session or a regular lab session.

This chapter also explains how the data was used with the HOG classifier, and

explains why these two experiments had different results, and why the HOG

classifier may have been less successful.

Chapter 6: Experiment 2: Compile, Run, and Evaluate

This chapter outlines the second experiment, using the CRE data gathered

by MULE. This chapter includes a reprint of a published pilot study, using a

prototypical version of HOG with the CRE data, and then goes on to run the CRE

data with the version of HOG used in the four experiments in this thesis, to allow

for accurate comparisons of the results to the results from Chapter 5 and Chapter 7.

Chapter 7: Experiment 3: Complexity of Student Code

This chapter outlines the third experiment, using the COMPLEX data

gathered by MULE. COMPLEX uses compressed code size and the number of

nodes in a parse tree to compare complexity of student code. The methods used to

process the COMPLEX data is outlined, and the results of running this data with

the HOG classifier are presented and discussed.

6

Chapter 8: Experiment 4: The HOG Classifier

This chapter describes the final experiment. In this experiment, the HOG

classifier is used with all three of the data types from the previous three chapters:

MM, CRE, and COMPLEX. This chapter examines how successful the classifiers

are when using this data.

Chapter 9: Conclusions

In this chapter, the findings and results of the four experiments will be

compared and discussed. The Research Questions outlined in Section 1.2 are

examined in regard to how they are answered by the thesis. Finally, there is a

section outlining the findings of the experiments and the thesis.

1.6 Chapter Conclusion

In this chapter, the problem that this thesis aims to investigate is outlined

and the Research Questions are stated. The contributions and papers published

from this research are listed, and summaries of the chapters in the thesis are

presented.

7

2. Related Research

In this chapter, the potential tools, technology, and methods for this thesis will

be discussed, by examining similar literature, and discussing the tools and

techniques used by these studies.

The goal of this project is to investigate student behaviours that would inform

us on:

1. An individual student’s likelihood of performing well in the module

according to their grades at the end of the semester.

2. The key points in divergence between the highest and lowest achieving

students.

We hope that by learning more about these two things, we can first, identify

students in danger of failing and intervene in time for the student to catch up with

their peers. Secondly, we hope that finding early signs of failure may indicate

certain times or topics in a student’s first year of leaning to code that are key in

their eventual success. If a student is likely to fail because they don’t understand a

topic on the first try, this may indicate it is a topic that needs more time and

attention in the curriculum, or in other support facilities.

This project aims to investigate the passively observed behaviour of

programmers, using learning analytics gathering software in conjunction with a

system for novice programmers to write, compile, and run their code as they learn

to program.

In this chapter, we will discuss the related literature in the following areas:

1. Research for building the pedagogical coding environment MULE.

2. Research for collecting and processing the data from MULE, and building

the HOG classifier.

2.1 MULE as a Pedagogical Tool

 The first research question asks, “How can we observe student behaviour

as they learn to code in a non-intrusive way?”. When this research project began,

VPL [7] , the Virtual Programming Lab plugin for Moodle, was the system used to

deliver assignments to students in Maynooth University first year Introduction to

Programming labs, and to provide automated grading and feedback, so an

investigation of VPL took place for three reasons:

8

1) To investigate if VPL could be modified to collect data for the purposes of

this project

2) To investigate alternatives to VPL, and if they could be modified

3) To investigate what advantages VPL has as a pedagogical tool, so that any

replacement built would not have a negative impact on the students.

In this section, VPL and its alternatives are discussed. The Kitchenham method

[8] was originally used to carry out the literature review, but as the direction of the

project changed, and various parts were removed and added in, and so the literature

review is no longer in this format.

2.1.1 VPL

2.1.1.1 Overview of VPL

VPL is an auto-grading plug-in for Moodle, a SCORM [9] 1.2 compliant,

open-source Learning Management System, or LMS. VPL provides a simple,

online development environment for programming assignments that can be

configured to give students instant feedback on their code. It is an open-source tool

and can be freely used and modified. VPL has a large range of languages it

supports, automatic and semiautomatic grading, password restrictions, black box

testing or test cases, plagiarism detection, and offers configurable features for each

individual assignment [7]. The student view can be seen in Figure 2-1.

Figure 2-1: VPL Student View

9

When a student compiles, runs, or evaluates their code in VPL, a shell script

provided by the course co-ordinator is used to run the students code in a jail server.

Figure 2-2: Example of the Execution Files in VPL

These scripts are called execution scripts and the execution scripts view can be

seen in Figure 2-2. The execution files are:

• vpl_run.sh

o This script is used to run the user’s code on the Jail Sever. In the

screenshot in Figure 2-2, the script runs the commands:

javac Clumps.java

java Clumps.java

To compile the user’s code and then run the code and return the

output to the user.

• vpl_debug.sh

o Used in running the debugger. Not used in our course, so left

blank.

• vpl_evaluate.sh

10

o In the evaluate scripts, the code submitted by the user is run

against a test, or multiple tests, each of which awards marks to the

user if the test is passed.

• vpl_evaluate.cases

o Some of the tests in vpl_evaluate.sh may use different input to test

the user’s code. The test input and the expected output can be

stored in vlp_evaluate.cases.

Examples of each of these, other than vpl_debug.sh can be seen in Appendix

Section 10.8.

The architecture of VPL consists of 3 components, as can be seen in Figure 2-3:

1. A plug-in module for Moodle

2. An in-browser code-editor

3. A jail server

Figure 2-3: Diagram of VPL Components

The components communicate through Ajax calls, XMLRPC calls, and

WebSockets [7]. The jail server is used to execute the test scripts on code

submitted by students. The jail server is separate from Moodle, so if the jail server

were to crash, or experience some issues, Moodle is unaffected. It is very unlikely

that a student program could crash the jail server due to the restraints placed on the

code run in the jail server that ensure that submitted code when run can only use a

11

set number of resources, as defined by the administrator, and is terminated if still

running after a specified amount of time.

When an assignment is evaluated by VPL, the student’s code and the

instructor’s test script is packaged into an XMLRPC message that is sent to the jail

server. The student’s code is tested with the script, and the output is sent back to

Moodle. The output may contain feedback along with a grade, depending on how

the assignment is set up by the course co-ordinator.

2.1.1.2 Advantages of VPL

VPL is flexible and robust and allows for diverse and sophisticated ways of

testing student code [10]. The administrator has the option to:

• Control how the student code is graded

• Define the rubric used to grade the code

• Make the grade visible/invisible to the student

• Limit the number of submissions for an assignment

• Control the resources to be used by the jail server

• Allow programs to be submitted by individual students, or a group of

students

• Access can be restricted by IP address

• Disable copy/paste of code in VPL

One of the advantages of VPL is the opportunity to provide students with

instant feedback when they are programming. It has been reported that students do

not read feedback when the feedback is not provided quickly [11]. When students

can receive instant feedback on their code as they write, they are given the

opportunity to assess their progress, and use the feedback given to improve their

work and their understanding. Feedback is one of the most powerful influences on

learning and achievement [12] [13].

12

2.1.1.3 Criticisms of VPL

VPL can help instructors to save time correcting assignments, but there is still

a significant time commitment in setting up a VPL assignment, as they need to

prepare a question, write a test script for evaluating student submissions, test that

the script works well, and consider the many possible ways of solving a problem

that a student may come up with, as well as providing useful feedback for issues

students may encounter.

VPL is also a scaffolded learning environment, meaning it provides support to

students as they learn a new skill [15]. Scaffolding is useful, but it is important that

students can perform learned skills once the scaffolding is removed [15], and so it

is important that the scaffolded environment is as close to the kind of authentic

coding environment the students will “graduate” to as possible.

In VPL, it is difficult for users to browse through their already written code and

use as a starting point for a new assignment but doing this may be indicative of a

novice programmer who is doing well [16]. It requires multiple instances of a

browser or switching between browser tabs, whereas in an authentic coding

environment there would usually be an option for various editor windows.

VPL only allows for one version of an assignment to be saved in the system.

This could discourage students from continuing work on an assignment once they

have a solution that awards them a grade that they are happy with. There is

evidence to suggest that “tinkering” with code is a strategy employed by successful

novice programmers [18], so it is important to facilitate this behaviour. There are

varying definitions of tinkering, as listed by Berland et al. [18], but for our

purposes, the act of tinkering is playful experimentation.

While VPL is a useful solution to the problems associated with growing

numbers of students enrolling in programming modules, the automation of the

grading process results in the loss of an important connection between instructors

and students, which may result in students that are struggling or in need of

intervention not receiving the assistance that they need, and eventually failing or

dropping out of the course [10].

13

2.1.2 Examples of Modifications to VPL

VPL is open source, and many modifications and extensions have been

created. Existing modifications were examined to see if any fit the needs of this

project and to investigate if it was possible to modify VPL to satisfy our

requirements.

2.1.2.1 Ante

Ante is a framework that works with Moodle and VPL to encourage

students to use test-driven software development. Ante requires that students

submit test cases before they submit their coding assignment. The students are not

allowed to submit their assignment until they achieve a perfect score in their test

cases [18].

2.1.2.2 Grading Process Management Module

In the paper “Architecture to Support Automatic Grading Processes in

Programming Teaching”, the Grading Process Management Module is described.

At the time that the paper was published, the VPL system had only basic grading

functionality, such as compilation and functional correctness, and there was no

easy way to create customisable assessment. The grading submodule framework

allows for additional assessment relating to structure, indentation, variable names,

etc. The implementation of this system required changes in data infrastructure,

directory system, and database. [20]

2.1.3 Alternatives to VPL

Other existing pedagogical coding tools were also investigated as potential

tools for this project and will be examined in this section.

2.1.3.1 BlueJ

BlueJ is an IDE (Integrated Development Environment) designed by

researchers in Kent University [21]. It is a pedagogical tool for teaching object-

oriented programming concepts, designed with 3 specific goals in mind:

• To make the environment truly object-oriented by including a

visualisation of the objects and classes.

• To encourage experimentation with individual objects to allow for better

understanding of Java.

14

• To provide a simplified IDE to allow for students to focus on learning

concepts instead of getting to grips with a complicated IDE.

BlueJ is based on the language Blue [21], which was designed to teach

object-oriented programming. BlueJ uses a similar environment and visualisation

to Blue, but uses the Java programming language [22]. While BlueJ is beneficial

for introducing object-oriented concepts, unlike VPL, it does not include automatic

assessment, and so was not appropriate for this project.

2.1.3.2 iVprog

VPL is compared to iVprog in the paper “Programming Web-Course

Analysis: How to Introduce Computer Programming” [23]. iVprog is a virtual lab

for visual programming languages, a way of introducing students to Computer

Science concepts, such as loops and iteration, before introducing them to a formal

programming language. Automated assessment in iVprog is based on test cases –

the system compares expected outputs to the actual outputs produced by the

student’s code. In a number of papers examining automated assessment of code

[19, 24, 25], the authors noted the diversity of grading criteria, and roughly divided

the criteria into two categories: static and dynamic. Static examines the users’ code,

and dynamic examines the output of the code when it is run. For example, if a

course co-ordinator wants to award marks based on the use of the

“System.out.print”, that would be static criteria, however, if the course co-ordinator

wants to award marks if the program prints the words “Hello World”, that would be

dynamic criteria. iVprog can only grade based on dynamic criteria, unlike VPL,

which can examine both.

In the study, two online courses teaching introduction to Computer Science

were run simultaneously, with one class using VPL and the other using iVprog.

Sixteen subjects finished the module, and the NASA TLX protocol [26] was used

to test the mental demand and frustration of the users. They found that the users

that used iVprog felt more frustrated than those using VPL, although the VPL

subjects experienced more mental demand and effort to carry out tasks [23].

2.1.3.3 Assignment Manager

Xue Bai et al., 2016 [14] describe an assignment manager and a structure

for auto-grading programming assignments. This web-based tool includes the

following features:

15

• Editing tool

• Malicious code checking

• Runtime environment

• Auto-grading and feedback component

This system has similarities to VPL. It is a web-based tool that uses a

remote application server to test student’s programming assignments. The remote

server contains a Java runtime environment, compiler, database, external files,

services, and external APIs to create the programming environment.

In this paper, an experiment is described in which two sections of the same

course, taught by the same professor, were run with and without the system. It was

found that the number of errors per assignment per student was lower when using

the system, and the average grade was higher when using the system. It was also

found that the professor spent around 15 hours less on assignments with the

system, despite giving 10 extra assignments. However, the scope of this experiment

was limited, and further study needs to be done on this subject.

2.1.4 Pedagogical Coding Environments Conclusions

VPL is a useful Moodle-based plugin for teaching and assessing

programming concepts. However, it is tied to Moodle, which may not be ideal for

all institutions, and testing and teaching in this environment is not an authentic

programming environment. The fact that it is web-based is an advantage – students

can log in anywhere from any computer and access their work, course materials,

and write and compile programs. As previously mentioned, although VPL is a

useful solution to the problems associated with growing numbers of students

enrolling in programming modules [14], the automation of the grading process

results in the loss of an important connection with students for the instructor.

Without this connection, it may be hard to tell if the students have a good grasp of

the material [10]. VPL can help instructors to save time on correcting assignments,

but there is still a significant time commitment in setting up a VPL assignment, as

they need to prepare a question, write a test script for evaluating student

submissions, test that the script works well, and consider the many possible ways

of solving a problem a student may come up with, as well as anticipating and

providing useful feedback for issues students may encounter. VPL is also only

16

equipped to deal with small pieces of code and is not yet capable of handling larger

programming projects.

From this study into VPL and its alternatives, it was decided that it was

necessary to custom build a system for this research, to allow for non-intrusive

collection of data from an authentic coding environment, or as close to authentic as

a pedagogical coding environment could be. The system would need to include the

following:

• An emphasis on an “authentic” coding environment

• Passive collection of data

• Content delivery within the system

• Support the same large range of programming languages as VPL

• Automatic and semi-automatic grading

• Configurable features for every individual assignment, including disabling

copy/paste, restrictions on IP address, time, and individual usernames

• A secure jail server that ensures that submitted code when run can only

use a set number of resources, as defined by the administrator, and is

terminated if still running after a specified amount of time

• The instructors at Maynooth University have already spent a significant

amount of time setting up VPL assignments by preparing questions,

writing test scripts for evaluating student submissions, testing the scripts,

and writing useful automated feedback for issues students may encounter.

For this reason, it was necessary for the new system to be able to use the

same scripts as VPL

2.2 MULE as a Research Tool

When planning the system as a research tool, research into student

programming behaviour and the data gathered was examined, to inform on how to

collect the most potentially successful data. We also wanted to collect data

passively, and never interrupt the students normal learning-to-program experience.

In the papers describing experiments involving the BlueJ [24, 28] system by

Jadud, the papers describe the data collected by the system, which include:

• Student code

• Username

• Number of compilations so far

17

• Compilation result

• Filename being compiled

• When compile was initiated

• When the server received the information

• IP-address

• Hostname

• OS name

• Snapshots of code every time the compiler was used

The data was collected passively and was used to examine correlations

between “error quotient”, a metric for how well students deal with errors, and

module outcome, using simple Linear Regression. In the BlueJ paper “A First

Look at Novice Compilation Behaviour using BlueJ” the authors discuss “extreme

movers” (a reference to the paper “Conditions of Learning in Novice

Programmers” [29]) , which they describe as “tinkerers”, and how these students

would sometimes allow their experimental code to accumulate, causing their code

to become increasingly complex and, eventually, incomprehensible. The authors

found that students tend to program in large blocks, then spend time writing and

compiling code in small bursts in order to fix syntax errors. Accordingly, multiple

compilations may indicate a large number of syntactic problems.

The paper “Using Keystroke Analytics to Improve Pass–Fail Classifiers”

[30] uses keystroke analytics to predict a student’s success in a programming

module, and notes that keystrokes are useful for improving accuracy in early

semester predictions, when interventions are likely to have better impact. The

authors note that although most of the data gathered over the course of a semester

is gathered at the end, there is more than enough keystroke data to assist in

predicting student outcome early on.

In the paper “Analysis of Source Code Snapshot Granularity Levels” [31],

the authors examine three different data types from novice programmers of various

ages from 12 to 76:

1. Submissions

2. Snapshots (save, compile, run, and test events)

3. Keystroke-events

Submissions are final versions of a program submitted for

correction/grading, provided by a plugin for NetBeans that provides feedback and

18

grading to the student. Using Wilcox Rank Sum test, as the data was not assumed

to be normally distributed, the authors found statistically significant differences in

the amount of work from participants to reach assignment goals between those with

programming experience and those without. This difference continued to be visible

throughout the course, although the behaviour of the participants was more alike in

the final weeks of the course, perhaps implying that these behaviours are indicators

of programming proficiency.

In the paper “Evaluating Neural Networks as a Method for Identifying

Students in Need of Assistance” [32], the authors use a measurement called “steps”

when building a system for identifying students in need of assistance, where

“Steps” were calculated as the number of submission events recorded for each

coding exercise. The paper also examined time spent and error counts. In this

paper, the authors do not include absence of submissions as a feature, as they are

focusing on identifying at-risk students who are actively participating in the course,

and to better match the work by Ahadi et al. [33] that they were reproducing. The

paper also explores the efficacy of Neural Networks in identifying students who

need assistance as early as possible in an introduction to programming course.

When building the Neural Network, the data was vectorised but not normalised.

The Neural Network had rectified linear units in the internal layers, a cross entropy

cost function, 200 units per layer, fully connected layers and randomly initialised

parameters. The Neural Network was tested with 1,2, and 3 hidden layers, and the

Neural Network with 1 layer was most successful. The conclusions of the paper

found that Naïve Bayesian, Random Forest, and Neural Networks all performed

well in classifying students in danger of failing, but found that the Neural Network

was “pessimistic”, was more accurate in classifying failing students, and was more

likely to classify passing students as failing than the other way around.

In “Programming: Factors that Influence Success” [34] Bergin and Reilly

examined 15 factors in predicting if a student is likely to pass or fail, using Pearson

correlations. The strongest correlation to success was the student self-perception of

their understanding of the module, and one of the most statistically significant

factors in predicting success was comfort level, in relation to how the student felt

about the course. This was measured through cumulative responses to questions

about the students’ understanding and difficulty completing lab assignments. A

regression model was built that was able to account for 79% of the variance in

programming performance results.

19

“The Normalized Programming State Model: Predicting Student

Performance in Computing Courses Based on Programming Behavior”

[35] introduces the Normalized Programming State Model (NPSM). This model is

comprised of 11 different states that the students move through as they work on

assignments, such as “Editing without debug”, “Editing Syntactically Correct, Last

Debug Successful”, “Editing Syntactically Correct, Last Debug Unsuccessful”,

data points on students as they code. This data is used to predict students’

performance in a programming module with 36% – 67% accuracy.

In the paper “MouStress: Detecting Stress from Mouse Motion” [36] Sun

et al. constructed a Mass Spring Damper model for the human arm - essentially a

model for approximating arm motion and stiffness which could be fed with data

from mouse movements. Using arm stiffness as a proxy for stress in the user, the

authors report that their method was tested across a variety of prescribed stress

tasks and the stress detection was still strong when generalised across these

different tasks. Student t-tests were used to examine the correlation between the

measures and the subjects state of stress. The classifier worked when generalised

but was more effective when trained and tested separately for each user. The final

model has an accuracy of around 70%.

 In the paper “Mouse Trajectories and State Anxiety: Feature Selection

with Random Forest” [37] , Yamauchi claims there is both psychological and

neurological evidence to suggest that mouse trajectories can be used to assess

affective states, such as anxiety. The results of their study show that temporal

features, such as speed of mouse movement, and spatial features, such as direction

change, were both indicative of the user’s state of anxiety, and a classifier was built

using these metrics and applying Random Forest.

In the paper “When high-powered people fail: Working memory and

“choking under pressure” in math” [38], Beilock and Carr discuss the connection

between anxiety and a loss in academic performance and suggest that situation-

related worries – such as examination stress or anxiety – can result in a loss of

focus on task at hand as the working memory is occupied. Alternatively, it has also

been suggested that over-attending to performance, overthinking tasks usually

performed automatically, can lead to underperforming in an uncomfortable or

stressful situation. Similarly, in the paper “On the causal mechanisms of stereotype

threat: Can skills that don't rely heavily on working memory still be threatened?”

[39] Beilock et al. discuss how a more stressful or anxious state can also affect

20

tasks that are usually performed in an automated fashion, without the subject

consciously thinking about it.

In the paper “Automatic Prediction of Frustration” [40] Kapoor et al. use

a specialised pressure mouse with additional sensors to detect frustration in

subjects as they attempt to complete a Towers of Hanoi puzzle computer game.

The game includes an “I’m frustrated” button for the users, which is used to

associate behaviour with frustrated state. The resulting classifier can predict

frustration at an accuracy of 79%, outperforming the random classifier (58%).

In “Neo-Piagetian Theory and the Novice Programmer” [41], Teague

found that the development of programming skills is both “sequential and

cumulative”, and that behaviours associated with sensorimotor and preoperational

reasoning are evident from very early in the semester. Teague also reports that

there is evidence of students beginning to struggle at a very early stage, before non-

trivial concepts are introduced.

In “Concrete and other Neo-Piagetian forms of Reasoning in the Novice

Programmer” [42] , Lister discusses the reasoning behind the use of Neo-Piagetian

and non-classical Piagetian theory. Classical Piagetian theory considers the

progress through different stages of learning to be a consequence of a biological

maturing of the brain. Neo-Piagetian theory, on the other hand, considers this

instead a result of gaining experience, and in particular, the ability to “chunk”

knowledge within a certain knowledge domain. The paper reports that students in

their CS1 classroom exhibited three broad forms of Neo-Piagetian reasoning –

Formal Operational Reasoning, Preoperational Reasoning, and Concrete

Operational Reasoning.

The authors of “Mired in the Web: Vignettes from Charlotte and Other

Novice Programmers” [43] ask if a student can have different levels of ability for

different tasks which test similar programming concepts – if a student can trace and

understand code, can they also write that code? They also ask why some students

do not seem to be able to understand code with abstractions and instead rely on

tracing code with specific values. The study found that students who were still

operating at the sensorimotor level in Week 2 were often still operating the same

way in Week 5 and were lagging behind students who were operating at the

preoperational level in Week 2. They defined students in the preoperational stages

by certain behaviours which they observed using think-aloud data from students.

Preoperational behaviours were guessing, a fragile grasp of semantics, confused

21

use of nomenclature, an inability to trace simple code, as well as general

misconceptions. Errors due to cognitive overload and reluctance to trace were

considered behaviours associated with both sensorimotor and preoperational. The

ability to trace but not explain code, as well as a reliance on specific values, were

signs of the preoperational stage.

In the paper “Problem Solving and the Development of Abstract Categories

in Programming Languages” [44] Adelson found that expert programmers’

memory chunks tended to be semantically or functionally related, while novices

typically chunked by syntax. Semantic knowledge consists of programming

concepts that are generalised, and independent of programming language, whereas

syntactic knowledge is more precise and rooted in exact representations of

concepts in specific programming languages

The paper “Utilizing Student Activity Patterns to Predict Performance”

[45] uses “data such as the number of successful and failed compilations, on-

campus vs. off-campus connections, time spent on the platform, material covered”

to create a pass-fail classifier for programming students, and to gain insights into

how students are using key concepts. By the end of the semester, the pass-fail

classifier works with just under an 85% accuracy. The most successful technique

used by the researchers is compression of student code (with comments removed)

and measuring the resulting compressed file to measure code complexity, which

was the most successful feature in the classifier.

In conclusion, this research led us to focus on three main areas of data:

1. Low level behavioural data: Mouse movements, as a possible indicator of

student stress [36, 37, 38, 39, 34]

2. Medium level behavioural data: Compile, run, and evaluate actions [24, 28,

35, 32, 45]

3. High level behavioural data: Code submitted for assignments [45]

In this chapter, the related research and alternative tools for this project are

examined and discussed. This literature is in two sections: a review of pedagogical

coding environments, and a review of literature on examining student behavioural

data. In the review of alternative pedagogical environments, different pedagogical

coding environments are examined in terms of usefulness as teaching tools, and as

data collection tools. In the review of other work that examines novice programmer

behavioural data, the goals and tools used in this thesis are explained.

22

3. MULE and the Collection of Data

In this chapter, the motivation for the design choices for MULE and for the

HOG classifier are explained and related back to some of the literature explored in

Chapter 2.

3.1 Motivation

From the literature review, it became clear there was no existing software

that would collect the range of data that was required for this study and satisfy the

pedagogical requirements of the first-year introduction to programming course.

As there was no existing software to satisfy the requirements, the online

programming education tool, MULE, was created. It is not an entirely “authentic”

programming environment, in that this IDE will not be used in software

development work environments, it is purely pedagogical. However, in “A

Quantitive Analysis of a Virtual Programming Lab” [46], a study is described in

which a learning group is divided into students who use web-based tools and a

control group that used a traditional setup - there was no significant difference

between the results of the two groups, suggesting that the use of web-based tools

does not negatively impact on a student’s progress. The paper also states that

“Students typically spend too much time to install such tools and get acquainted

with them, just to be able to perform their homework assignments”, suggesting that

a system that can simply be logged into from any browser can be beneficial – it

removes a significant amount of the initial learning curve that may be intimidating

to students, possibly contributing to the high dropout rate of students in

introductory Computer Science courses [47].

3.2 Paper: Building an Authentic Novice Programming Lab

Environment

23

Building an Authentic Novice Programming

Lab Environment

Natalie Culligan and Kevin Casey

natalie.culligan, kcasey {@mu.ie}

Faculty of Computer Science

Maynooth University

Maynooth, Co Kildare, Ireland

24

Abstract

As computer science becomes increasingly popular and classes become

larger, there is an ever-increasing demand on course coordinators' time.

As well as teaching classes, running labs, preparing exams, and

providing feedback to students on their work throughout the year, course

coordinators are required to keep their courses updated in order to

prepare their students in a rapidly changing and evolving industry. As

computer scientists, and as programmers, automation stands out as a

potential solution. Automating the correction of labs and exams would

free the course coordinators’ time, allowing them to focus on improving

the course in other ways. VPL, or Virtual Programming Lab, is a plugin

for a Learning Management System, such Moodle, that provides

automation of this nature, by using shell scripts to assess student code

and provide automated feedback. The VPL system includes a web-based

editor embedded in Moodle that students use to write their code. Our

concern is that VPL does not provide a sufficiently authentic

programming experience. With this in mind, we have created MULE, a

browser-based desktop environment in which students can view course

assignments, write, compile and run their code, while maintaining the

advantages provided by VPL such as instant feedback.

Keywords

Computer Science Education, Programming, Virtual Coding

Environment, Automatic Assessment, Computer Science Pedagogy,

Online Programming

25

1. Introduction and Motivation

It has been claimed that the most effective way to teach programming to

students is through practical exercises [1]. However, the increasing

number of students in software engineering classes makes it harder to

correct and provide feedback to these students in a timely manner. This

can result in fewer practical assignments and/or less useful feedback for

each student. Automated grading tools that can provide useful feedback

to help the student understand any issues with their code is essential to

cope with these growing numbers of students [6]. It has been reported

that students do not read feedback unless the feedback is provided

quickly [7]. When students can receive instant feedback on their code as

they write, they are given the opportunity to assess their progress, and

use the feedback given to improve their work and their understanding

[10]. Feedback is one of the most powerful influences on learning and

achievement [8]. VPL, or Virtual Programming Lab is a Learning

Management System (such as Moodle) based system that provides

instant feedback to students as they perform programming assignments.

The feedback can be tailored to the assignment and to the level of the

class by the course coordinator.

VPL is a scaffolded coding environment. Scaffolding in education refers

to support provided to students [9], in this case through an interface.

Scaffolding is useful in educational settings, but it is important that when

scaffolding is removed, the student can perform the learned tasks

competently without the scaffolding [13]. VPL is different from an

“authentic” coding environment in many ways and our concern is that

students may encounter problems when “graduating” from VPL to a

traditional coding environment. This research is focused on creating a

programming environment that is as authentic as possible, while also

providing tools for course coordinators to provide instant feedback to

their students.

2. VPL

VPL, or Virtual Programming Lab, is an auto-grading plugin for Moodle,

26

or other SCORM compliant LMS [12]. VPL provides a simple, online

development environment for writing programming assignments within

the LMS. VPL has a large range of languages it supports and can

modified. It has automatic and semiautomatic grading, plagiarism

detection, and offers configurable features for every assignment and

allows for diverse and sophisticated ways of testing student code

[5,12,14]. For example, the course coordinator has the option to define

the rubric used to grade the code, make the grade visible or invisible to

the student, restrict access by IP address or disable copy/paste in the VPL

code editor. One of the key advantages of VPL is the opportunity to

provide students with instant feedback when they are programming.

3. MULE

MULE is an online desktop-like environment that students can log into

from anywhere and view their previous work and continue work on

assignments, or practice coding. MULE imports or recreates the

advantages of VPL and adds new features. It allows students to open

windowed applications, emulating a traditional desktop. The course

assignments are delivered through an application in the MULE desktop

called “Workbook”. From the application the user can browse

assignments to be completed, assignments already completed and all

their submitted code. From any assignment page in the workbook, the

user can open the code editor to write their code.

From the editor, a student can write, compile, run and evaluate their

code. When a student runs their code, it does not run on their local

computer. Instead we use the VPL jail server – an external server that

runs a student's code and returns the output.

Every time a student makes an “attempt” on an assignment – when they

save their work, or when they submit it for evaluation – the attempt is

recorded by the system. We hope that this will allow cautious students to

experiment with their code, without fear of doing irreparable damage to

their final grade, as our system always saves the students highest grade

and, at any point in time, a student can always return to a previous

attempt.

The system uses two rating systems - “Grade” and “Personal Grade”.

27

“Grade” is the grade that contributes to the students’ continuous

assessment and final grade. “Personal Grade” is to allow the students to

go back and retry assignments they have completed, to complete them in

a different way, or to try to achieve a higher score. Again, the idea

behind this is that we want to encourage students to continue to use the

system, rewrite code and revisit previous work after the labs have ended.

4.VPL and MULE

While VPL is an excellent solution to the problems associated with

growing numbers of students enrolling in programming modules, the

environment is not an authentic programming environment. VPL

provides an in-browser code editor from which students can compile, run

and evaluate their code but differs from a traditional coding environment

in the following ways:

1. Users are not able to easily open multiple windowed instances of

the code editor and compare their current assignment to previous

ones.

2. Users can only save one version of their code for an assignment

in the system.

3. The system is not designed for students to create their own code

independent of assignments

4. VPL provides a “scaffolding” for students to work within. It is

not an authentic coding environment, but a pedagogical one.

These differences are discussed below.

1) Some of the behaviors that are indicative of a student who is doing

well in their introduction to programming module, such as reading

though their old code, using pieces of old code as boiler plate or

rewriting old code [4] is difficult to do in the VPL interface – it requires

multiple instances of a browser or switching between browser tabs. In

MULE, the users can open multiple instances of the code editor within

the desktop environment, so students can quickly and easily compare

their successful code with code which may be returning errors, for

example, or use successful code as a template to write new code.

2) VPL only allows one version of an assignment to be saved within the

28

system. This could discourage students from continuing work on an

assignment once they have a “good enough” solution, and also from

continuing to “play” with the code after an assignment is completed.

There is evidence to suggest that “tinkering” with code is a strategy

employed by successful novice programmers [3], so it is important to

facilitate this behavior.

3) When using VPL and Moodle, a course coordinator creates an

assignment that the student is to complete. The assignment opens an

editor, usually with the files to be submitted already created for the

student to write their code into. While it is technically possible for an

instructor to provide a “free” assignment where students can write

whatever code they want, there is no easily usable filesystem for saving

their code. In MULE, students can use both “Workbook mode” and

“Editor mode”. Workbook mode is used for assignments set by the

instructor – students need to write code in pre-named files, which they

can then compile, run and evaluate from their editor. In Editor mode,

students can use the editor as a normal editor - they can create new files

in a traditional filesystem, save them under any name, compile and run

them.

4) We are concerned that students may exclusively use VPL when

writing code, and never write code outside of their given assignments.

Novices often find the initial set-up involved with programming to be

intimidating and frustrating. By removing barriers to entry such as the

installation of editors, IDEs and compilers, students are free to focus on

learning to write code [11,17] and may be more successful in their

studies. However, this also presents a problem – if students are

intimidated and frustrated by the installation of these programming tools,

they may avoid them altogether, meaning students may exclusively use

the learning environment. This may result in students who “graduate”

from the learning environment to IDEs, like those used in industry, being

disadvantaged, and unable to make the leap from “scaffolded” coding

environments to traditional environments. For this reason, MULE

simulates a regular desktop, but removes the initial barriers to entry by

being browser-based.

29

5. MULE Feedback

As of semester one of the 2018/2019 academic year, we have begun

using

MULE in our 1st year labs, with around 300 first year students, instead of

VPL. The demonstrators, many of whom have experience with VPL,

were asked to fill out a short survey on how VPL and MULE compare.

While it

would be ideal to survey students on their experiences with the system,

unfortunately the students have not used VPL. Of the 10 demonstrators

who have previous experience with the system, 5 thought MULE was

more intuitive, 2 thought VPL was more intuitive, 3 that they were

equivalent. The results of the survey showed that most of the

demonstrators felt that MULE made it easier to review work from

previous assignments(Q7) and that MULE was a “natural” or more

authentic programming environment for students(Q8).

Strongly

agree

Agree Neutral Disagree Strongly

Disagree

Q1 VPL is intuitive to

use

0.00% 72.73% 9.09% 18.18% 0.00%

Q2 MULE is intuitive

to use

16.67% 58.33% 8.33% 16.67% 0.00%

 None A little Intermediate A lot Too

much

Q3 Rate the level of

intervention needed for

MULE

0.00% 33.33% 58.33% 8.33% 0.00%

Q4 Rate the level of

intervention needed for

VPL

0.00% 33.33% 44.44% 22.22% 0.00%

30

Definitely

MULE

MULE

mostly

About the

same

VPL

mostly

Definitely

VPL

Q5 Which is quicker

for novice students to

get started with?

70.00% 20.00% 0.00% 10.00% 0.00%

Q6 Which do you feel

students would more

likely use outside lab

time

30.00% 60.00% 0.00% 10.00% 0.00%

Q7 Which makes it

easier to review

previous work from

labs

80.00% 10.00% 0.00% 10.00% 0.00%

Definitely

Browser

/MULE

Browser

/MULE mostly

About

the

same

Moodle

/VPL mostly

Definitely

Moodle

/VPL

Q8 Which UI

do you feel is

most natural

for students?

36.36% 45.45% 9.09% 9.09% 0.00%

Table 2.1 – Results of Demonstrator survey

6. Conclusions

MULE is an online programming education tool that retains of the

advantages of VPL and has some significant improvements. Foremost

among these is that it is a realistic browser-based representation of an

authentic programming environment that students will encounter later in

their courses, and ultimately in industry. The browser-based nature of

the tool has a compelling advantage in that there is a low barrier of entry

for students – they do not need to install any special software as they

would normally be required to do. In “A Quantitive Analysis of a Virtual

Programming Lab” [15], the authors state that “Students typically spend

too much time to install such tools and get acquainted with them, just to

be able to perform their homework assignments”. This suggests that a

system that can simply be logged into from any browser can be beneficial

31

– it removes a significant amount of the initial learning curve that may be

intimidating to students, possibly contributing to the high dropout rate of

students in introductory Computer Science courses.

7. Future Work

There is a myriad of feature requests from the first-year students and

their demonstrators, evidence of the high degree of engagement we have

had over the first semester where MULE has been used. One of the more

promising features to be provided for in the near future is enhanced error

message reporting. There is evidence to suggest that clearer error

messages for novice programmers may improve student success. In the

paper “An Exploration Of The Effects Of Enhanced Compiler Error

Messages For Computer Programming Novices” [2] the use of enhanced

compiler error messages was tested, and the results were examined. The

results showed that the use of the Decaf editor resulted in fewer signs of

struggling students in comparison to a control group, who saw standard

error messages. Integrating the Enhanced Compiler Error Messages into

MULE would provide an opportunity to study how differently students

behave when given clearer error messages.

References

[1] Bai, Xue, Ade Ola, and Somasheker Akkaladevi. "ENHANCING THE

LEARNING PROCESS IN PROGRAMMING COURSES THROUGH AN

AUTOMATED FEEDBACK AND ASSIGNMENT MANAGEMENT

SYSTEM."

[2] Becker, Brett A. "An exploration of the effects of enhanced compiler error

messages for computer programming novices." (2015).

[3] Berland, M., Martin, T., Benton, T., Petrick Smith, C., & Davis, D. (2013).

Using learning analytics to understand the learning pathways of novice

programmers. Journal of the Learning Sciences, 22(4), 564-599.

[4] Blikstein, Paulo. "Using learning analytics to assess students' behavior in

open-ended programming tasks." Proceedings of the 1st international

conference on learning analytics and knowledge. ACM, 2011.

[5] Caiza, Julio C., and José María del Álamo Ramiro. "Programming

assignments automatic grading: review of tools and implementations."

(2013): 5691-5700.

32

[6] Cheang, Brenda, et al. "On automated grading of programming assignments

in an academic institution." Computers & Education 41.2 (2003): 121-131.

[7] Duncan, Neil. "‘Feed‐forward’: improving students' use of tutors'

comments." Assessment & Evaluation in Higher Education 32.3 (2007): 271-

283.

[8] Getzlaf, Beverley, et al. "Effective instructor feedback: Perceptions of

online Graduate students." Journal of Educators Online 6.2 (2009): n2.

[9] Jackson, S. L., Stratford, S. J., Krajcik, J. S., & Soloway, E. (1995). Model-

It: A case study of learner-centered design software for supporting

model building. In Proc. from the Working Conference on Applications of

Technology in the Science Classroom.

[10] Kitaya, Hiroki, and Ushio Inoue. "An online automated scoring system for

Java programming assignments." International Journal of Information and

Education Technology 6.4 (2016): 275.

[11] Richter, Thomas, et al. "ViPLab: a virtual programming laboratory for

mathematics and engineering." Interactive Technology and Smart Education 9.4

(2012): 246-262

[12] Rodríguez-del-Pino, Juan C., Enrique Rubio-Royo, and Zenón J.

Hernández-Figueroa. "A Virtual Programming Lab for Moodle with automatic

assessment and anti-plagiarism features." Proceedings of the International

Conference on e-Learning, e-Business, Enterprise Information Systems, and e-

Government (EEE). The Steering Committee of The World Congress in

Computer Science, Computer Engineering and Applied Computing

(WorldComp), 2012.

[13] Sharma, P., & Hannafin, M. J. (2007). Scaffolding in technology-enhanced

learning environments. Interactive learning environments, 15(1), 27-46.

[14] Thiébaut, Dominique. "Automatic evaluation of computer programs using

Moodle's virtual programming lab (VPL) plug-in." Journal of Computing

Sciences in Colleges 30.6 (2015): 145-151.

[15] Vanvinkenroye, Jan, et al. "A quantitative analysis of a virtual

programming lab." Multimedia (ISM), 2013 IEEE International Symposium on.

IEEE, 2013.

33

3.3 Overview of MULE

MULE is a desktop-like, browser-based pedagogical coding environment built

for use in introductory programming modules, using the OS.js system [48]. An

example of a layout of the system can be seen in Figure 3-1, showing a student

view including the Workbook application, the code editor, and the terminal, with

the output from code that has been run.

Figure 3-1: MULE Student View Layout

As the students use the system and work on their assignments, the system

collects behavioural data such as assignments compiled, run, and evaluated, code

written, errors returned, and mouse and keyboard interaction data. The data is

stored as the user works, and it is periodically sent to the MULE server and saved

in the database. The data is also sent whenever a user closes the MULE webpage.

MULE can be accessed through a browser, using Moodle authentication (or

any other SCORM compliant authentication) to log in. MULE has advantages as a

pedagogical tool over traditional environments, such as:

• Users can log in to the system from any internet browser and continue or

review their work.

• Users do not need to spend time setting up their personal computers with

editors or compilers. Instead, the student can potentially go from no coding

experience to their first “Hello World” program in a few minutes.

• Users can access and complete their assignments entirely through the

“Workbook” application. From this application, students can view the

assignment instructions, write, run, evaluate, and submit their code. The

Workbook application is described more in Section 3.4.1.

34

• Students can record notes directly onto their MULE workspace

and access them from any browser. We did not anticipate this

but found that many students choose to use MULE this way.

• Every attempt a student makes on a question is recorded and can be

accessed from the “History” tab in the workbook, which is described in

Section 3.4.2.

• Course co-ordinators can restrict access to certain questions or aspects of

MULE according to admin-defined rules that check time, user id, user role

(student or lecturer) and/or IP-address. For example, this feature was used

to restrict access to students’ previously completed work during in-lab

exams. By checking the IP-address of the user, students not currently

taking the exam were able to use the system as normal and could not see

the exam questions.

• Course co-ordinators can also choose to not allow copy and pasting within

the MULE code editor, to discourage plagiarism.

• When a student evaluates their work, their code is assessed by an

evaluation script, which can be customised by the course co-ordinator. The

evaluation function is used to provide instant feedback to the student on

their work.

3.4 Features of MULE

After the publication of the paper in Section 3.2, development continued

on MULE, using the feedback from students and from course co-ordinators. The

overall layout and additional features added to MULE are described below.

3.4.1 Workbook

Within MULE, we use the application “Workbook” to deliver assignments

to students. The Workbook is a windowed application with a sidebar and tabs. The

sidebar, which can be seen in Figure 3-2, is used to navigate through the different

weekly labs and assignments. Once an assignment is selected, the user can select

from the “Description”, “Launch”, and “History” tabs. There is also a fourth tab,

“Admin”, only accessible by administrators.

35

Figure 3-2: MULE Student Lab Selection Menu

All the content for the Workbook is stored in JSON files, including the

execution files for the assignments and metadata files, as shown in Figure 3-3.

Examples of these files can be seen in Appendix Section 10.9.

Figure 3-3: Assignment Metadata File in MULE

3.4.1.1 Description

This section in the Workbook displays instructions on how to complete the

assignment for the student. The description is written by the course co-ordinator in

the form of a HTML file, as can be seen in Appendix Section 10.9, in Figure 10-5,

Figure 10-6 and Figure 10-7.

36

3.4.1.2 Launch

The Launch feature opens the code editor for the student to write their

code. The course co-ordinator assigns a filename and has the option to provide

default code, for example, if the purpose of the assignment is to edit or fix provided

code. If the student has made previous attempts on the question, the most recent

code will be opened. From here, the student can compile, run, and evaluate their

code.

By evaluating their code, the student can receive instant feedback. There is

evidence that students do not read feedback unless it is provided quickly [11], and

when they do, they are more able to use it to improve their work and understanding

[13].

Figure 3-4: Description Panel in Workbook with CA Grade and Personal Best

3.4.1.3 History

It is mentioned in Section 2.1.1.3. that VPL would only allow one version

of an assignment to be saved within the system. In MULE, the History tab shows

every attempt made by the student on the question. We define “attempt” to be any

code that has been saved, run, or evaluated. The attempts are displayed as a list,

and includes the time, the grade given, and the grade type. The goal of this is to

allow a student to experiment and change their code without fear of losing the code

37

that earned the highest marks, as there is evidence to suggest that playing/tinkering

with code is an indication of student success [40].

3.4.1.4 CA Grade and Personal Grade

As shown in Figure 3-4, in MULE’s Workbook, a student can view two

grades: their CA grade and their Personal Best. When using MULE in the first-year

labs for the data sets used in this thesis, we chose to only allow for code to be

evaluated for CA grades within the designated lab times by checking IP-addresses

and time rules when a student evaluated. Note that the IP-address checking is

optional, and it was not used during the Covid-19 lockdown when students were

working on their labs from home.

As seen in the Figure 3-5, the MULE web application sends a request to

the MULE server which checks the users’ permissions, and if they are permitted to

run or evaluate the assignment (according to IP-addresses and current time) and if

the result is a Personal Best or a CA grade. The evaluation is run on the jail server

(using the VPL jail server described in Section 2.1.1.1). The result is returned to

the MULE application via a websocket and the grades are stored in a database.

Figure 3-5: MULE Grade Storage

Once the weekly labs had been completed, the students were permitted to

evaluate their code outside of the lab but would only be awarded “Personal Best”

(Personal Grade) marks that did not count towards their final grade. With this

system, the staff were able to both encourage students to continue to work on labs

they did not achieve 100% on after the labs had completed, and ensure they

attended the labs in person, where they can receive help and guidance from the lab

demonstrators.

38

Using this system, if a student is struggling with labs, a demonstrator or

lecturer can easily check if a student has completed the previous labs, and if not,

can recommend the student familiarise themselves with the previous material. We

also hope that by being able to record their highest mark, students will be more

inclined to revisit previous labs and challenge themselves to complete labs in a

different way.

3.4.1.5 Admin Mode

If a user logs in as an administrator (or lecturer), they are given access to

an extra panel in the Workbook, which can be seen in Figure 3-6. In this panel,

there are 5 options:

Compile Workbook: When changes are made to the workbook by an administrator,

they must rebuild the Workbook with this option for the changes to take effect.

Figure 3-6: Workbook Admin View

Download CA Grades: This downloads a .csv file with the CA grades for the

selected branch. If the user has selected Lab 4, all grades for all questions in Lab 4

will be downloaded. If Lab 4 Question 2 is selected, the .csv file will only contain

the grades for Lab 4 Question 2.

39

Download Personal Grades: This option is the same as “Download CA Grades”,

but downloads Personal Grades instead of CA.

Users: Here an administrator can select a student name and view the workbook as

that student. They can view and edit all of the student’s attempts and grades.

Re-Evaluate All: This allows an administrator to re-run the evaluation option on all

previously evaluated attempts between two user-specified times. This is useful if

there is a problem with a script for example – the script can be rewritten and re-

run.

Auto-evaluate: Allows the administrator to evaluate all the last saved attempts

between two specified times, in the current branch. In our labs, we ran this option 5

minutes after each lab closed, allowing students who just missed the time limit to

still get marks for their work.

3.4.2 Analytics

If the student gives consent when they first log into the system (or if they

decide to give consent later), MULE will gather behavioural data as the student

uses the system. MULE sends the data in a JSON format to the server periodically,

after a set amount of time, or whenever the student logs out, as illustrated in Figure

3-7.

Figure 3-7: MULE Data Collection

The data collected is as follows:

40

• Mouse movements

• Code compiled/saved/run/evaluated

• Windows opened (such as compile/run/evaluate terminals)

3.5 Use of MULE in Introduction to Programming Modules

The MULE system has been used in first year Introduction to

Programming modules in Maynooth University since September 2018. The system

has been able to collect data from this module from February 2019. The system has

also been used in the first-year Computer Systems module to teach the Prolog

programming language.

MULE has been used in the Beijing University of Technology to teach the

C++ programming language in connection with the University College Dublin -

Beijing University of Technology collaboration. The system has also been used in

the Fuzhou University in teaching the programming language Prolog. No data was

gathered from these modules, as ethical clearance for data collection was only

requested for the Irish Introduction to Programming through Java module.

Altogether, MULE has been used in teaching Introduction to Programming

modules to over 1000 students. It has been of particular value during the Covid-19

shutdown, allowing students to continue to participate in labs and receive

automated feedback and grades.

3.6 GDPR and Ethical Collection of Data

Ethical approval was applied for from the Maynooth University Ethics

Committee and granted on the 7th of June 2018. When students first sign into the

MULE system, they are asked to digitally sign a consent form which explains how

their data is used and gives them the option to opt out of the research entirely. They

are also asked to read an information sheet that explains clearly what they are

agreeing to by signing the consent form. The information sheet and consent form

can be seen in Section 10.1 and 10.2.

Due to the potentially sensitive nature of the data that we gather from students,

storing and anonymising the data is of the utmost importance. Once we collect data

from a user, the data is stored and associated with a hash of their login name or

email.

41

3.7 Chapter Summary

In this chapter, the design requirements and the motivation behind MULE and

the experimental design behind the experiments are discussed. The use of MULE

in university courses is listed, and the ethical permission acquired for the data

collection is outlined.

42

4. Overview of Experiments and Data

In this chapter, the data sets gathered by MULE during this project, and the

assignments that the participants worked on while the data was collected, are

explained on a week-to-week basis, in terms of the topics and programming

concepts required to complete the assignments. The methods of analysis are

explained, including the HOG classifier, a system built for this thesis that processes

the MULE data, and runs Neural Network binary classifiers using that data.

Finally, there is an overview of the four experiments described in this thesis.

4.1 Description of Data Sets

The MULE system has been used in the first year Introduction to

Programming modules in Maynooth University since September 2018 and was able

to collect data from February 2019. We have two data sets from the MULE system,

semester 2 from the academic year 2018/2019, and semester 1 from the academic

year 2019/2020.

The collection of data was then interrupted by the Covid-19 pandemic that

required the closure of the lab facilities. While the students continued to use the

system from home, it was unclear if the results from the data gathered from this

semester would be valid. There were concerns that the results would not reflect the

students’ progress, but instead would be indicative of the students’ home learning

environment. In particular, the experiments that examined stress could potentially

be influenced by the stress of living through a pandemic, so it was decided that this

data would not be used.

4.1.1 Data Set 1

This data was collected from 196 out of 250 first year students in their

second semester of Introduction to Programming, the academic year 2018/2019,

from February to May of 2019. Of the 250 students, 54 were removed from the

data set for one or more of the following reasons:

1. Student did not take both in-lab examinations

2. Student did not complete the course

3. Student participated in less than two lab sessions

43

This set is used in the MM paper in Section 5.2 only.

4.1.2 Data Set 2

In the first semester of the 2019/2020 academic year, data was collected as

the students completed their first Introduction to Programming module, and as they

learned to use the MULE system. The resulting data set is over 200GB.

The goal of this study was to focus on identifying at-risk students who

were actively participating in the course, so data from students who did not

complete most of their lab assignments and participate in both lab exams was

removed. The four experiments in this thesis in Chapters 5, 6, 7, and 8 use 255 of

the class of 300 from data set 2.

Participants were removed for the following reasons:

1. Student did not participate in both lab exams

2. Student did not participate in the final written exam

3. Student did not participate in more than 4 of the 10 lab sessions

4. Student requested to have their data removed.

4.1.2.1 Description of Weekly Assignments

The data is a set of behavioural data from the 255 students as they

complete a total of 54 assignments across ten labs. A brief description of the topics

for each lab is below, with a description of some of the more significant individual

assignments.

Week 1:

The four assignment questions in this week’s lab cover the concepts of:

• Print statements

• Assigning variables

• Basic mathematical operations

• Storing the results

• Printing variables

Week 2:

44

The six assignment questions in this week’s lab require the use of:

• Mathematical operators

• Combinations of mathematical operators

• If-else statements

• Switch statements

• Ternary operators

In these questions the students are told explicitly which variable types and

techniques to use (e.g., “Store in an integer variable” or “Use a switch statement”).

Week 3:

The seven assignment questions in this week’s lab cover the concepts of:

• While loops

• For loops

• Do-while loops

• Strings

• Numeric operations

In most of these assignments, the students are again told which techniques to use,

but in Question 6, the students must decide themselves which kind of loop, or what

kind of variable to use.

Week 4:

The six assignment questions in this week’s lab cover the concepts of:

• String Manipulation

• Concatenation

• Generating substrings

• Finding the length of string

• Finding a character in string

• Convert to lower case or upper case

• Reverse strings

• Compare strings

• Selection statements

Students are given some guidance on how to solve problems, for example they

might be told “use a loop to do x”, but not be told which kind of loop to use.

45

Week 5:

The five assignment questions in this week’s lab cover the concepts of:

• User input

• String manipulation as described in Week 4

• Mathematical operators

• Loops

• Selection statements

This is the first week that students are given almost no direct instructions in which

techniques and variable types to use. This represents an important step in learning

to program: not just how to use the techniques but knowing when to apply them to

solve problems.

Week 6:

This week includes a lab exam and a normal lab session. The exam

contains three questions and the normal lab session for this week contains three

assignment questions requiring:

• User input

• Finding characters in strings

• String indexes

• Conditional statements

The exam consists of three exam questions covering the concepts of:

• Numerical operations

• Conditional statements

• For-loops

• While-loops

• User input

For both the normal lab questions and the exam questions in general the students

are not explicitly told to use certain techniques.

Week 7:

The four assignment questions in this week’s lab cover the concepts of:

• User input

• Character position in strings

46

• Conditional statements

• Loops

The questions do not explicitly ask the students to use certain techniques.

Week 8:

The six assignment questions in this week’s lab cover the concepts of:

• Declaring arrays

• Manipulating arrays

• Updating arrays

• Reading from arrays

The questions do not explicitly ask the students to use certain techniques.

Week 9:

The five assignment questions in this week’s lab cover the concepts of:

• Nested loops

• traversing 2D arrays

The students are told what type of loops to use for some of these assignments.

Week 10:

This week includes a lab exam and a normal lab session. The exam

contains two questions, and the normal lab session for this week consists of three

assignments requiring:

• Casting strings into other values

• User input

• Use of a try catch statement

The exam questions covered the concepts of:

• Numerical operators

• Conditional statements

• 2D arrays

• Nested loops

• String comparisons

The questions do not explicitly ask the students to use certain techniques.

47

4.2 Description of Data Types

Within the collected data sets, we collected three types of data which will be

examined in this thesis. The data was divided into three tiers:

• Low level: Mouse movements

• Medium level: Compile, run, and evaluate patterns

• High Level: Complexity of submitted code assignments

These tiers will be discussed in Section 4.2.1, Section 4.2.2, and Section 4.2.3.

4.2.1 Mouse Movements

As the students use the MULE system, they use their mouse to navigate the

environment, to open assignments, and to save, compile, run, and evaluate their

code from drop down menus. This data is then used to generate metrics on student

behaviour, which are explained in more detail in Section 5.2 and Section 5.3.

4.2.2 Compile, Run, Evaluate Actions

As the students complete their assignments, they use the system to

compile, run, and evaluate their work. With this data, we examine if there are

connections between how often a student “moves” from one of these actions to

another, and if this is related to their CA and Written Exam outcome. This is

explained in more detail in Section 6.3.

4.2.3 Complexity of Code Submitted

When a student evaluates their code, the code is sent to the jail server

where a shell script runs a series of checks on the code, and on the output of the

code, and assigns a grade according to how well the code fulfils the assignment

criteria. The student code is stored using a RethinkDB database. Both the submitted

code and the grade is stored for use in this study. The code complexity is measured

using the size of the code when compressed, and the number of nodes in a parse

tree generated from the code. This is explained in more detail in Section 7.2.

4.3 Methods of Analysis

The following methods are used to investigate the differences between the

higher and lower achieving groups, as identified by their performance in their CA

48

grades and their end of year Written Exam, to select the best input data for

classifiers and to build classifiers using the three data tiers.

4.3.1 Wilcox Rank Sum Test

The Wilcox Rank Sum Test is a non-parametric test used to test if there is a

difference between two groups [31]. It is used here to examine the differences in

Mouse Movement, CRE behaviour, and Code Complexity between the highest and

lowest achieving students on a week-to-week basis, to give insight into when the

two groups of students diverge in behaviour.

The features in the data sets for this project range in distribution – some are

normally distributed, and some are not, and as the Wilcox Rank Sum Test does not

assume known distributions, we can use it to examine if there are any significant

differences between the two classifications, and to examine if there are any clear

stages in the semester when the behaviour of students diverges. In this thesis, any

answer of <0.05 is considered a significant result and implies that the two groups

being compared are significantly different. The code written to process the data and

carry out the Wilcox Rank Sum Test uses the Python library SciPy [49].

4.3.2 Linear Regression

Linear Regression is used to find how useful an individual metric is for

predicting student outcome. The results of these tests are used to:

1) Examine which metrics are key in the divergence of behaviour of the

higher and lower achieving students

2) Select which of the metrics from each data set are used as input features for

the classifiers

The code written to carry out these tests uses the Sklearn [50] Python library to

create the Linear Regression tests.

4.3.3 Neural Network Binary Classification

The input features selected by the Linear Regression tests are used to build

Neural Network classifiers that predict if a participant is likely to be in the highest

or lowest 50% of grades in the class in terms of CA or written exam. The code

written to create and run the Neural Networks use the Tensorflow Python library

[51]. Neural Networks were chosen as the paper “Evaluating Neural Networks as a

49

Method for Identifying Students in Need of Assistance” [32] found that Neural

Networks performed as well as other classification methods but were more likely to

classify passing students as failing than the other way around.

4.4 The HOG Classifier

Throughout the four experiments in this thesis, the HOG classifier, a

companion for MULE, was written to generate Neural Network classifiers that

classify students as being in the top 50%, or the bottom 50% of the class grades,

according to the CA grades and the Written Exam grades. The paper in Section 6.2

uses a prototypical version of this classifier. The HOG classifier process can be

seen in Figure 4.1.

1. Each of the four experiments in Chapters 5, 6, 7, and 8 have data sets that

are divided into 10 subsections. These subsections are the 10 weeks of in-

person labs during the semester. Although MULE collects data whenever

the students use the system, the data sets only include data from the in-

person labs, as we don’t know what environment the students are in when

working outside of these lab times. The data sets are stored in a database

using SQLite. Python is used to generate metrics of the students’ behaviour

that will be used in the classifier, referred to as “features”.

2. For the midpoint of each grade category (CA and written exam), the data is

divided into the top and bottom 50%. The top participants are marked as 1s

and the bottom as 0s. These two groups are referred to as “Passes” and

“Fails”, although it’s important to note that not all the students in the

“Fails” group failed the module.

3. The features from the given data types most correlated to the relevant

grade category are selected using Linear Regression. The three data types

had different ranges of correlation to outcome, so we used different

correlation cut-off points (called “thresholds” throughout this thesis) and

tested them with every datatype and both grade types. Any feature with a

correlation of more than this threshold according to the Linear Regression

tests is used in the classifier. The thresholds are: 0, 0.1 and 0.15. For one

experiment -0.1 was also used, due to the low number of correlated

features.

50

Figure 4-1: HOG Classifier Workflow

51

4. Multicollinearity can cause issues with Neural Networks, so Variance

Inflation Factor VIF [52] is used to determine if these features are too

highly linearly related, and if so, removes the feature most linearly related.

In the paper “Exploring the Coding Behavior of Successful Students in

Programming by Employment Neo-Piagetian Theory” in Section 6.2 we

used a max VIF of 5, but for HOG we set the max VIF to 10, as is

acceptable according to other research [53].

5. The data from the remaining features are then divided into training and

testing data, where testing data is from 50 participants, and the remaining

are training data. The testing data is randomly selected, but the training and

testing only takes place if the test data has an even number of pass and fail

participants (25 pass and 25 fail), to avoid reporting of a lucky/unlucky

data set.

6. The Neural Network is trained on the training data, and then tested on the

test data at least twenty times, with different divisions of training and

testing data. Twenty times was chosen due to the work in the paper in

Section 5.2., which found that there was little difference in the variance of

the results of the classifiers after running ten times and after running 60

times.

7. This process is carried out for each of the ten data sets for each experiment.

Every one of these data sets also includes the data of the previous lab

sessions, as an example, the experiment for Week 4 also uses the data from

Week 1, 2 and 3.

8. For each experiment, the most successful classifier is selected from the

different thresholds, for both Continuous Assessment and Written Exam

groups. The most successful classifiers are selected according to

i. Highest Accuracy

ii. Lowest False Passes

False passes are when the classifier classifies a student as being in the top

50% but is in the bottom 50%.

4.5 Overview of Experiments

 In this section, each of the four experiments in this thesis will be

summarised.

52

4.5.1 Experiment 1: Mouse Movements (MM)

The first section of data explored is the Mouse Movements of students as they

learn to code. The data recorded was used to generate metrics on the students’

behaviour in short mouse movement sequences during the students’ scheduled lab

sessions, including lab exams. These metrics recorded attributes such as speed,

time to click the mouse button, and distance travelled. This experiment is described

in Chapter 5.

4.5.2 Experiment 2: Compile, Run, Evaluate Movements (CRE)

The second section of data explored is the compile, run, and evaluate patterns

of students as they learn to code. The metrics used in this section are “movements”

a student takes from a compile to a run, or a run to an evaluate. These movements

are recorded as a percentage of the movements a student took per lab and are used

to explore the different behaviour of the higher and lower achieving students. This

experiment is described in Chapter 6.

4.5.3 Experiment 3: Code Complexity (COMPLEX)

The third section of data explored is the complexity of code submitted by

students for evaluation. The complexity is measured first by removing the

comments in the code, compressing the files, and recording the size of the result,

and secondly by generating parse trees for the code and recording the number of

nodes in the parse tree. This experiment is described in Chapter 7.

4.5.4 Final Experiment: HOG

In the final experiment, classifiers are built using all of the data from the

previous three chapters to test if a combination of data produces a more successful

classifier than any of the first three experiments. This experiment is described in

Chapter 8.

4.6 Chapter Summary

In this chapter, the data sets gathered and used in this thesis were described, the

analysis methods were outlined, and the HOG classifier was described. The four

experiments that will follow in Chapters 5,6,7, and 8 were summarised.

53

5. Experiment 1: Mouse Movements

In this section, the MM data gathered by the MULE system will be explored

using the methods outlined in Section 4.3 and 4.4. The first exploration into the

MM data is described in the published paper in Section 5.2, and the subsequent

study using the HOG classifier system is described in Sections 5.3, 5.4, and 5.5.

5.1 Introduction to Mouse Movement Experiment

 There is existing work to suggest certain mouse movement behaviour is

correlated to stress and mood [36, 37, 52], and that students’ experience of stress

[53] or comfort level [5, 54] can be an indication of performance. Using mouse

movements to detect students in need of intervention has potential as a non-

invasive method for detecting students in danger of failing their Introduction to

Programming module.

The first experiment on the MM data was run using data set 1 (as described in

Section 4.1.1). This data is from the second semester of the academic year

2018/2019, and the published paper from this experiment is in Section 5.2. [57]. In

this paper, a classifier was built to classify sequences of MM as being from

stressful (in formal lab exam sessions) or less stressful (in regular, less formal

weekly lab sessions) environments. The resulting classifier was moderately

successful, with an accuracy of 62.9%. Interestingly, the classifier worked better on

students who did poorly in their exams, so a second classifier was built to use MM

to classify students as passing or failing the module. This classifier was more

successful, with an accuracy of 69% in predicting CA grades. This experiment was

a success in that it found a connection between MM data and stressful lab

situations (lab exams), and between MM and student outcome, but the resulting

classifiers could not be used to find students in danger of failing early in the first

semester.

The focus of this thesis is to investigate the behaviour of novice programmers,

so the experiment in Section 5.3 to Section 5.5 uses the data set 2 from semester 1

in the year 2019/2020, and the HOG classifier described in Section 4.4. This

experiment differed from the one described in the paper in Section 5.2, in that it ran

on weekly data sets, not on the full semester data set, because the goal was to find

early indicators of student outcome. This experiment was less successful than the

first experiment in Section 5.2 and did not achieve classifier results of higher than

54

57%, nor did the Wilcox Rank Sum Test find a consistent significant difference in

any feature throughout the semester.

5.2 Paper: What the Mouse Said: How Mouse Movements Can Relate

to Student Stress and Success

55

What the Mouse Said:

How Mouse Movements Can Relate to Student Stress and
Success

Natalie Culligan

Department of Computer Science

Maynooth University

natalie.culligan@mu.ie

Kevin Casey

Department of Computer Science

Maynooth University

kevin.casey@mu.ie

Abstract
Stress in students may be a useful indication for when a student is

struggling and in need of academic intervention. Investigating differences in

student behaviour in stressful and comparatively less stressful environments

could be helpful in understanding the processes involved in learning to code,

and combatting the high levels of drop-out and failure in undergraduate

computer science. In this paper we will discuss the mouse movement data

gathered from Maynooth University Learning Environment (MULE), our in-

house, browser-based pedagogical environment for novice programmers, during

the time period February to May of 2019. This included 5 supervised, scheduled

lab sessions and two in-lab examinations. The data was used to examine 21

different measurements of student behaviour, for example, by measuring

efficiency of the mouse path, or the time between mouse click-down and mouse

click-up. These features were used to build a Deep Neural Net that classifies

sequences of mouse movements as being either from a more stressful

environment or a less stressful one by training the classifier on data from

examination situations and regular weekly lab situations, with the goal of

comparing how students behave in environments with different levels of student

comfort. The classifiers had an average accuracy of 61.9% but was more

successful with students who performed poorly in their lab examinations. To

further examine this connection between mouse movement, stress and student

outcome, a second classifier was built to classify students as being in the high or

low 50% of lab-exam grades in the module, with an accuracy of 69%.

1. Introduction
In this study we use data collected by Maynooth University Learning

Environment, or MULE (Culligan, Casey 2018). MULE is an online, browser-

based pedagogical desktop environment which has been used in multiple first-

year coding modules. We received clearance from the University Ethics

Committee to collect mouse movements from students as they learn to code

from the 29th of February until the 3rd of May in the Introduction to

Programming II module (taught in Java) with 250 students completing the

module. The students were informed about the use of their data and were asked

to consent at the beginning of the semester. All students who completed the

module chose to participate in the study.

Using the mouse movement data collected by MULE, a Deep Neural

Net (DNN) binary classifier was built to detect if a sequence of mouse

movements is from a stressful (in-examination) or less stressful environment

(in-lab). The classifier is not universal. It needs to be trained on a student’s own

data and does not work on all students. This was expected, as stress and comfort

are subjective and not all students will experience stress in the same way during

an examination. Students may also have different mouse use “styles”, which

makes it harder to generalise mouse behaviour caused by stress. We must also

consider that some students are not stressed during an examination and may

even be less stressed

56

than in a normal lab situation.

The classifier works very well for some students and poorly for others,

with an average increase of 11%-12% over the accuracy baseline of 50%, an

average accuracy of 61.9% for classifying both in-lab and in-examination

sequences. The classifier was moderately successful but interestingly the

classifier was more successful for students who did poorly in the module. To

further explore this, we built a second DNN to investigate if the mouse

movement data could be used to classify students as being in the top or bottom

50% of module grades. This classifier was more successful than the stress

classifier, classifying students as being in the top or bottom 50% of the module

Continuous Assessment grades with an accuracy of 69%, over an accuracy

baseline of 50%.

In this paper, the following questions will be explored in relation to the gathered

mouse movement data.

1. Are there differences in mouse movement behaviour of students

between lab and exam situations, and can this be a first step in a

classifier for stressed students?

2. Are there differences in student mouse behaviour and stress in

students in CS1 between students who perform well in-lab examinations

and written exams, and those who perform poorly?

The null hypothesis for these questions are as follows:

1. The results from the Deep Neural Net for classifying sequences of

mouse movements sequences as being from stressful or not stressful

environments performed no better, or not significantly better than

random chance.

2. The results from the Deep Neural Net for classifying individuals as

being in the top or bottom performing 50% of students performed no

better, or not significantly better than random chance.

2. Motivation and Related Research
Stress in students may be a useful indication for when a student is

struggling and in need of academic intervention. Intervention for students

experiencing unusual amounts of stress could be helpful in combatting the high

levels of drop out and failure in undergraduate computer science (Beaubouef et

al, Biggers et al, Giannakos et al, Hembree et al, Kinnunen et al). This is the

first of our studies into student behaviour as they learn to code, and in this study

we focus on mouse movement. There are studies that suggest that mouse

movement is linked to stress and mood (Sun et al., Wahlström, et al.,

Yamauchi). In this paper, we are interested in examining student mouse

movement in stressful and less stressful environments to try and gain insight

into behaviours that indicate stress, and investigate if this is related to student

performance.

2.1. Stress Levels in Students

Computer science courses have been reported to have low levels of

retention in comparison to other subjects (Giannakos et al., Kinnunen, et al.).

Research suggests that student comfort is a useful signifier of student success

and retention (McCracken et al., Tenenberg, et al., Wilson and Shrock), and

that stressful situations such as examinations can cause a student to preform

below their ability (Beilock and Carr).

Beilock and Carr discuss the connection between anxiety and a loss in

academic performance, and suggest that situation-related worries – such as

examination stress or anxiety – can result in a loss of focus on task at hand as

the

57

working memory is occupied. Alternatively, it has also been suggested that

over-attending to performance, overthinking tasks usually performed

automatically, can lead to underperforming in an uncomfortable or stressful

situation. Beilock et al. discuss how a more stressful or anxious state can also

affect tasks that are usually performed in an automated fashion, without the

subject thinking too much about it – their paper mentions soccer players’

dribbling. We propose that mouse movement could be considered in a similar

manner.

Connolly et al. found that in their study of 86 computing undergraduate

students, 44.4% reported not feeling relaxed when using computers, suggesting

that research into this area would be beneficial to a significant portion of the

student population.

Bergin and Reilly examined 15 factors in predicting if a student is likely

to pass or fail. One of the most statistically significant factors in predicting

success was comfort level, in relation to how the student felt about the course.

This was measured through cumulative responses to questions about the

students’ understanding and difficulty completing lab assignments.

2.2. Mouse Movement and Stress

There is prior evidence of a link between student stress and comfort

level and their mouse movements. Sun et al. constructed a Mass Spring Damper

model for the human arm - essentially a model for approximating arm motion

and stiffness which could be fed with data from mouse movements. Using arm

stiffness as a proxy for stress in the user, the authors report that their method

was tested across a variety of prescribed stress tasks. The classifier worked

when generalised but was more effective when trained and tested separately for

each user.

Yamauchi claims there is both psychological and neurological evidence

to suggest that mouse trajectories can be used to assess affective states, such as

anxiety. The results of their study show that temporal features, such as speed of

mouse movement, and spatial features such as direction change were both

indicative of the user’s state of anxiety. The researchers in this paper ran a

separate analysis for male and female users and found different indications of

state anxiety, with female subjects being more inclined to use a less efficient

mouse path when anxious, and male subjects being more likely to change their

mouse velocity.

Kapoor et al. use a specialised pressure mouse with additional sensors

to detect frustration in subjects as they attempt to complete a towers of Hanoi

puzzle computer game. The game includes an “I’m frustrated” button for the

users, which is used to associate behaviour with frustrated state. The resulting

classifier can predict frustration at an accuracy of 79%, outperforming the

random classifier (58%).

3. Research Design
The goal of this study was to examine the relationship between student

mouse behaviour, student outcome, and comfort level in students in CS1, an

introduction to programming module. Using the data from MULE, we

constructed a Deep Neural Net binary classifier to classify sequences of mouse

movements as being from a stressful environment or a less stressful one.

MULE was used to collect mouse movement data from students as they

learned to code in an authentic learning environment. To use the system, the

students sign in through their Moodle accounts from any internet browser on

any machine, they do not need to be in the university computer labs. The system

is a

58

desktop-like environment simulated within the browser, where they can view

assignments from a designated application, use a text editor to write code for

the assignments, and compile, run and automatically evaluate their code,

receiving a grade and automated feedback if their code has errors. The students

use the mouse to navigate the system, to open assignments, open the code

editor, and to save, compile, run and evaluate from drop down menus. As the

student works, the system automatically stores their mouse movements, along

with a timestamp and an anonymised user key to allow for cross session

comparisons. Stored mouse movements are sent to the database every 30

seconds, or as soon as the user tries to log out or close the system tab. The

system collects mouse movement data as shown in Table 1. Anonymised data

on students’ performance in the module was also collected, specifically how

they performed in the written examination, in weekly labs and in-lab

examinations. The total number of students who completed the second semester

was 250, of which 196 are included in this study. We removed data from

students who did not participate enough for their data to be used in the study,

including:

1. Students who did not take both in-lab examinations

2. Students who did not complete the course

3. Students who participated in less than two lab sessions

Data Type Description

userID The anonymous ID assigned to the student

dumpID The ID of the dump from student session to the database

sessionID An ID assigned to the session when a student logs in until they log out

Time Timestamp of when the event took place, not when it was stored

Type Mousemove, mouseup or mousedown

X X co-ordinates of the mouse’s current position

y Y co-ordinates of the mouse’s current position

Table 1: Mouse movement data features

Students have labs for 3 hours once a week for 12 weeks per semester.

The students began using the system in the first semester of the academic year

2018/2019 and used the system for the rest of the academic year. The mouse

movement data set we are examining in this paper is from the second semester,

from the 29th of February until the 3rd of May. This time period includes 5

regular weekly labs and 2 in-lab examinations. We compare mouse data from

students in a regular lab situation versus mouse data from an examination

situation, to examine the differences between coding when in situations with

different levels of comfort. Both situations are in the same physical space, but

with different rules. The students are not allowed to speak to each other, ask for

help from demonstrators or look back at their previous work during the

examination situation, but are encouraged to do so during regular labs. One of

the authors worked as a demonstrator in the labs where this research took place

to ensure the coding environment was working correctly, and to assist the

students.

We recorded mouse data from students as they worked in scheduled

labs, scheduled examinations, and outside of these times. The data from outside

of the lab is not discussed in this paper. Data outside scheduled labs and

examinations may be the result of users other than the signed-in student and/or

very different mouse set up (touch screen, touch pad, or different desk size, for

example). Students may also be working in very different situations due to

environmental

59

noise, distractions, or caretaking responsibilities, for example.

The mouse data from each student is divided into sequences to be

assessed by the classifier. Each sequence begins with any mouse movement and

ends with a mouse click-up, and any sequence that is longer than 1450ms is

rejected to avoid evaluating sequences from when the student is idle. This time

limit was chosen though trial and error, and found the classifier worked best

with sequences under this time limit. Tests are run on each sequence to find

various metrics for the users’ behaviours. Metrics include SequenceSpeed,

ClickTime and Efficiency. Each sequence also has an identifier, as in-lab, in-

examination or out-lab. Once we have the metrics for each of the sequences,

they are used to train and test the Deep Neural Net.

We used a total of 21 different features in our classifier.

Features

1. AngleVariance1:

Finds all the different angle changes from one movement to the next (with

precision of 2 digits) within a sequence and returns the total number of unique

angles.

2. AngleVariance2

Same as above, but the total number of angles returned.

3. AngleVariance3

The ratio of total angles to unique angles.

4. VarianceDistance1

Finds the optimal distance between every set of two mouse movements to 1

decimal place and returns the number of all unique distances.

5. VarianceDistance2

Same as above but returns the number of all distances.

6. VarianceDistance3

The ratio of all unique distances and all distances in the sequence.

7. Overshoot-x

Measures how far a user “overshoots” with the mouse in the direction they are

moving the mouse in, along the X axis. If a user moves from point a to point b

within a small window of time, point b being where they click the mouse, if at

some point during this journey they move further along the x-axis then where

they ended, this is recorded as an Overshoot-x.

8. Overshoot-y

Same as Overshoot-x, but along the y axis.

9. Overshoot

The square root of Overshoot-x and Overshoot-y squared and added.

10. OvershootDirectionAngle

Finds the angle of the overshoot.

11. SequenceSpeed

The total distance travelled divided by the total time.

12. SequenceDuration

The time duration of the sequence.

13. DistanceTravelled

The true distance travelled during the sequence.

14. OptimalDistance

The distance in a straight line between the start and end points of the sequence.

15. Efficiency

Optimal distance divided by total distance travelled.

16. Direction

The direction from the first point in the sequence to the last.

60

17. DirectionAngle

The direction angle between the starting point and the ending point of the

sequence.

18. AngleDifference

The absolute value of DirectionAngle subtracted from

OvershootDirectionAngle.

19. ClickTime

The time between click down and click up.

20. Hesitate

The amount of time the mouse stalls before the user clicks.

21. ClickRatio

This is Hesitate divided by ClickTime

Yamauchi’s paper ‘Mouse Trajectories and State Anxiety: Feature Selection

with Random Forest’ found that speed and direction were indicators of a

subject’s emotional state. Our features are chosen to examine this connection,

with features such as DistanceTravelled and ClickTime relating to

speed, and DirectionAngle and OvershootDirectionAngle relating

to direction. The paper also discusses tracking direction change, x-overshoot, y-

overshoot, which we replicated in our experiment with features such as

Overshoot-x, Overshoot, DirectionAngle and DirectionAngle.

Beilock et al discuss how a more stressful or anxious state can also affect tasks

that are usually preformed in an automated fashion. We investigated this with

the features VarianceDistance1, VarianceDistance2,

VarianceDistance3, to give us insight into how much the subject changed

their speed, and the features AngleVariance1, AngleVariance2 and

AngleVariance3 to investigate how often the subject changed direction,

perhaps due to confusion or indecisiveness as a result of stress or discomfort.

As per Sun et al., we trained our classifier per user, instead of building a

generalised stress classifier. Our initial experiments involved a general classifier

using a large subsection of the data from all students, but this classifier did not

perform significantly better than random chance. To build a classifier for a user,

we selected all the sequences from in-examination, and then a random selection

of sequences of an equal amount from in-lab, or vice-versa, depending on the

imbalance of data categorised as in-lab or in-examination. The features we get

from the mouse movements of each student are then used to train and test a

deep neural net, built in Python using TensorFlow (Abadi, Martín, et al.).

For most students, we have much more in-lab data than in-examination,

so we take a random sample of the in-lab data equal to the size of the in-

examination data. We used TensorFlow’s DNNclassifier module, with 3 hidden

layers of 10 units, a batch size of 5 and 2000 epochs. The classifier outputs a 1

if the mouse movement sequence is classified as in-lab and 0 if the sequence is

classified as in-exam. When running the classifier for each student, we wanted

to ensure that the results were not due to chance, or a “lucky” selection of test

data from the total data set. To combat this, we selected a subsection of the data

as test data, and rejected it if it was not 50/50 in-lab and in-exam, again to avoid

good results that are just the result of a classifier only choosing one

classification, regardless of feature input. To check that the variance for the

classifier results was low, and we were not reporting outliers, the classifiers

were run in sections of ten, and the variance within results was checked. The

variance for all users was 0.05 or less, with one exception that had a larger

variance of 0.13. We performed multiple sets of ten, checking the variance on

the cumulative results. For each student, the classifier was run 60 times, with a

different random division of

61

training and test data with no increase in variance over 0.016 between the first

10 and the final 60.

4. Discussion of Classifier Performance
The classifier works very well for some students and poorly for others,

with an average increase of 11% to 12% over the accuracy baseline and an

average accuracy of 62.9% for classifying both in-lab and in-examination

sequences. However, for some students that performed poorly in their lab

examinations, we found the classifier could work 30% over baseline. On

examination of the results, it became apparent that the classifier was more

successful with the students who performed poorly in the module than those

who performed well. One of the possible reasons for student stress during

exams is that they may be unable to use their usual method of solving coding

problems. Some students will take previously written code, copy it and rewrite

it to complete the given task. During exams the students no longer have access

to their previous code. They may panic when they find they cannot use their

usual strategy (though they are informed beforehand of the format and rules of

the exam), or they may be experiencing additional strain on their working

memory. This strain may come from the extra work now being performed by

the student. For example, they can’t copy a while loop from previous work, so

instead they struggle to remember how to write one. The student is not

comfortable and familiar with the computer science concepts needed to

construct the code to solve the exam question and has been relying on

‘tinkering’, a technique used by students as described by Perkins et al. and

Jadud.

4.1. Stress Classifier

When examining the results of the classifiers, differences between the

high-performing and low-performing students became apparent. Table 2 shows

the average classifier of two groups, the top 50% of grades and bottom 50% of

grades. This was done for Continuous Assessment, written exam and total

module grade, and repeated with the top and bottom 40%, 30%, 20% and 10%.

 Module

High

Module

Low

Written

Exam

High

Written

Exam

Low

CA High CA Low

50% 61.875% 62.7913% 61.3518% 62.627% 60.8315% 63.1473%

40% 60.8037% 62.6183% 61.1019% 61.949% 60.7157% 63.8293%

30% 60.1556% 62.6878% 60.9173% 62.6955% 59.7906% 63.9333%

20% 60.0027% 62.5255% 59.8544% 62.8666% 59.7657% 63.4562%

10% 58.8089% 62.8847% 58.2153% 62.643% 59.4642% 65.3041%

Table 2: Comparison of the high and low performing students

In all groups, and with all three grade types, the lower grades group

have more successful classifiers, with the difference becoming more

pronounced as we look at smaller subsections. We suspect that the reason

students in the lower-grade groups are easier to classify is because these

students may experience additional strain when writing code, perhaps due to

exam anxiety, or a lack of comfort with the material. In the paper “On the

causal mechanisms of stereotype threat: Can skills that don't rely heavily on

working memory still be threatened?”, Beilock, et al. claim that while

overloaded working memory does not directly affect procedural skills because it

is not reliant on working memory, over-attention to procedural skills does

impact the subject’s performance – a

62

worried student may overthink their behaviour, causing changes in their mouse

movement.

4.2. High Low Grade Classifier

We were interested in the possible connection between mouse movements

and student grades, from the apparent relation between classifier success and

the students’ performance in the module shown in Table 2. We suspected that

the results indicated a relation between mouse movements, specifically

indications of stress in exams, and student grades. There is previous work

(Casey) to suggest that low-level keystroke data can be used to improve grade

classifiers, so we wanted to examine if mouse movement data could also be

used. To investigate this, a trio of DNN classifiers were created to predict the

outcome of students in:

1. Continuous Assessment (coding exercises, and lab exams),

2. End of year written exams

3. The module overall.

The DNN uses the same configuration as the stress classifier. We tried

other configurations, including increasing the number of hidden units, but found

this was the most successful setting. The DNN classifies each student into one

of two categories – either the higher or lower 50% of the class, divided by the

results in order. For this dataset we calculated the average of each of the

features in the table for in-lab and out-lab. We found this gave the best results,

possibly because the indicator of a student who does well or poorly is the

difference, or the similarity of the behaviour between regular labs and exams, in

line with the findings that the students who did poorly were more easily classed

by the classifier.

Grade Higher 50% Lower 50% Classifier Results

Written Exam 63% and over 61% and under 0.588333333

Module Total 59% and over 58% and under 0.656666667

Continuous

Assessment

54% and over 53% and under 0.693333333

Table 3: Results of classification

Like the previous classifier, the high/low classifier was run 60 times,

each time randomly selecting the training set and the testing set. Like the stress

classifier, the randomisation was written to ensure that the testing data set

would always be 50% from each classification, to avoid misleadingly high or

low results from a classifier only choosing one classification.

5. Discussion of Research Questions
1. Are there differences in mouse movement behaviour of CS1 students

between lab and exam situations, and can this provide insight to the

different comfort levels experienced by students in these environments?

The DNN classifier was mildly successful, implying that there is at least

a weak link between mouse movement and comfort level. Students may still be

stressed in lab situations, but because the classifier was more successful with

students who did poorly in their lab examinations, we believe this is evidence

that the classifier works as an indicator of stress – we believe that students who

are taking examinations that they are not doing well in are more likely to be

experiencing stress than others. We can reject the null hypothesis, as the

classifier is more successful than a random chance classifier.

63

2. Are there differences in student mouse behaviour and comfort level

in students in CS1 between students who perform well in-lab

examinations and written exams, and those who perform poorly?

The classifier is more effective with students who perform poorly than

those who perform well. We would expect students who do poorly in the

module to be more stressed in examinations than students who are comfortable

with the material and are performing well. To examine this further we built a

second DNN classifier and found that we were able to classify students into

high/low performing groups with 69% accuracy. We reject the null hypothesis

as the high/low classifier is more successful than random chance.

6. Conclusions and Future Research

In this paper, we have reported on the construction of a moderately

successful Deep Neural Net that classifiers sequences of mouse movements as

being from a stressful or less stressful environment. While other researchers

have published work on the connection between mouse movements and stress,

to our

knowledge this is the only study of mouse movements and stress that uses

mouse data gathered outside of closed experimental environments. From the

analysis of the results, we found a connection between mouse movements and a

student’s grades, especially grades for practical coding assignments.

The classifiers in their current state are not a useful mechanism for

detecting stress in students, or for predicting if students will be in the high or

low 50% of grades. However, in the construction of these classifiers, we have

found mechanisms that will contribute to the construction of models of

successful students, and classifiers for students in need of academic

intervention. This study is part of a larger project to examine the relationship

between student behaviour when learning to code and student success and

retention. Our coding environment gathers data beyond mouse movement,

including keystrokes, compilation and run results, and returned errors. Other

research in this area has used data such as keystrokes to predict student outcome

(Casey), and from our work in this paper, which suggests a connection between

student success and comfort-level, we believe this data will give further insight

to student behaviour in stressful situations. Further work can be done in relation

to the mouse analytics performed so far. We are currently refactoring our

recording of mouse data so that we can capture additional data in order to attach

more meaning to mouse sequences. This would, for example, allow us to

distinguish between a mouse sequence that led to a file being saved, versus a

mouse sequence that led to a compilation of student code.

We believe there is huge potential for study of this data, which is

gathered from an authentic learning environment, as students learn to code.

With continued research, we plan to build a larger model of the behaviour of

novice programmers as they learn to code, with the potential for an integrated

classifier in our coding environment that will alert course coordinators to a

student in need of intervention. We hope the construction of a model of

successful students will be a useful way to inform and build curriculums that

best help students achieve their potential.

7. References
Abadi, Martín, et al. (2016) Tensorflow: A system for large-scale machine
learning. 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16).

64

Beaubouef, Theresa, and John Mason. (2005) Why the high attrition rate for
computer science students: some thoughts and observations. ACM SIGCSE
Bulletin 37.2 103-106. DOI: https://doi.org/10.1145/1083431.1083474

Beilock, Sian L., and Thomas H. Carr. (2005) When high-powered people fail:
Working memory and “choking under pressure” in math. Psychological science
16.2 01-105. DOI: https://doi.org/10.1037/e537052012-380

Beilock, Sian L., et al. (2006) On the causal mechanisms of stereotype threat:
Can skills that don't rely heavily on working memory still be threatened?.
Personality and Social Psychology Bulletin 32.8 1059-1071. DOI:
https://doi.org/10.1177/0146167206288489

Bergin, Susan, and Ronan Reilly. (2005) Programming: factors that influence
success. ACM Sigcse Bulletin 37.1 411-415. DOI:
https://doi.org/10.1145/1047344.1047480

Biggers, Maureen, Anne Brauer, and Tuba Yilmaz. (2008) Student perceptions
of computer science: a retention study comparing graduating seniors with cs
leavers.
ACM SIGCSE Bulletin. Vol. 40. No. 1. ACM. DOI:

https://doi.org/10.1145/1352135.1352274

Casey, Kevin. (2017) Using keystroke analytics to improve pass-fail classifiers.

Journal of Learning Analytics 4.2 189-211. DOI:

https://doi.org/10.18608/jla.2017.42.14

Connolly, Cornelia, Eamonn Murphy, and Sarah Moore. (2008) Programming

Anxiety Amongst Computing Students—A Key in the Retention Debate?. IEEE

Transactions on Education 52.1 52-56. DOI:

https://doi.org/10.1109/te.2008.917193

Culligan, N., & Casey, K. (2018). Building an Authentic Novice Programming

Lab Environment. Irish Conference On Engaging Pedagogy

Giannakos, Michail N., et al. (2017) Understanding student retention in

computer science education: The role of environment, gains, barriers and

usefulness. Education and Information Technologies 22.5 2365-2382. DOI:

https://doi.org/10.1007/s10639-016-9538-1

Hembree, Ray. The nature, effects, and relief of mathematics anxiety. Journal

for research in mathematics education (1990): 33-46. DOI:

https://doi.org/10.2307/749455

Kapoor, Ashish, Winslow Burleson, and Rosalind W. Picard. (2007) Automatic

prediction of frustration. International journal of human-computer studies 65.8

724-736. DOI: https://doi.org/10.1016/j.ijhcs.2007.02.003

Jadud, M. C. (2006). An exploration of novice compilation behaviour in BlueJ

(Doctoral dissertation, University of Kent). DOI:

https://doi.org/10.1080/08993400500056530

https://doi.org/10.1109/te.2008.917193

65

Kinnunen, Päivi, and Lauri Malmi. (2006) Why students drop out CS1 course?.

Proceedings of the second international workshop on Computing education

research. ACM. DOI: https://doi.org/10.1145/1151588.1151604

Lister, Raymond. Concrete and other neo-Piagetian forms of reasoning in the

novice programmer. Proceedings of the Thirteenth Australasian Computing

Education Conference-Volume 114. Australian Computer Society, Inc., 2011.

DOI: https://doi.org/10.1215/9780822381525-005

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.

B. D., ... & Wilusz, T. (2001). A multi-national, multi-institutional study of

assessment of programming skills of first-year CS students. In Working group

reports from ITiCSE on Innovation and technology in computer science

education (pp. 125-180). ACM. DOI: https://doi.org/10.1145/572139.572181

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1986).

Conditions of learning in novice programmers. Journal of Educational

Computing Research, 2(1), 37-55. DOI: https://doi.org/10.2190/gujt-jcbj-q6qu-

q9pl

Sun, D., Paredes, P., & Canny, J. (2014, April). MouStress: detecting stress

from mouse motion. In Proceedings of the SIGCHI conference on Human

factors in computing systems (pp. 61-70). ACM. DOI:

https://doi.org/10.1145/2556288.2557243

Tenenberg, Josh D., et al. (2005) Students Designing Software: a Multi-

National, Multi-Institutional Study. Informatics in Education 4.1 143-162.

Wahlström, J., et al. (2002) Influence of time pressure and verbal provocation

on physiological and psychological reactions during work with a computer

mouse. European journal of applied physiology 87.3 257-263. DOI:

https://doi.org/10.1007/s00421-002-0611-7

Wilson, B. C., & Shrock, S. (2001). Contributing to success in an introductory

computer science course: a study of twelve factors. Acm sigcse bulletin, 33(1),

184-188. DOI: https://doi.org/10.1145/364447.364581

Yamauchi, Takashi. (2013) Mouse trajectories and state anxiety: feature

selection with random forest. 2013 Humaine Association Conference on

Affective Computing and Intelligent Interaction. IEEE, 2013. DOI:

https://doi.org/10.1109/acii.2013.72

https://doi.org/10.1007/s00421-002-0611-7

66

In this section, the pilot study using the MM data from data set 1 is

reprinted. The rest of this chapter describes the study with this MM data using the

data set 2, which is the same data set used in the experiments in Chapter 6,7, and 8.

5.3 Mouse Movement Features

The data set used in the following analysis and classifiers are the MM data

from data set 2, described in Section 4.1.2. The data sets consist of ten sets of data

for each student, one for each of the weekly labs. For each student, the data set

contains the average of each of the metrics described below for that week. This

differs from the original paper in Section 5.2, in that:

1) The data from the paper is from the second semester of the academic year

2018/2019, so the students in this data set have some university

experience. The data from this section is from the first semester of the

academic year 2019/2020, so the students are novice programmers.

2) The metrics used in the original paper are: 1) the overall average of non-

exam lab sessions and 2) the overall average of exam sessions. The metrics

from this section are the averages from each of the ten weekly lab sessions.

The MM are used to generate various metrics about the user’s behaviour. The

full list of metrics can be seen in Section 5.2:3 Research Design. Some of the more

relevant metrics, according to the tests in Section 5.4, are as follows:

1. Overshoot-x

This metric measures how far a user “overshoots” with the mouse in the

direction they are moving the mouse in, along the X axis. If a user moves from

point A to point B within a small window of time, point B being where they click

the mouse. If at some point during this journey they move further along the x-axis

than where they ended, this is recorded as an Overshoot-x.

2. Overshoot-y

This metric is the same as Overshoot-x, but along the y-axis.

3. Overshoot

This metric is the square root of Overshoot-x and Overshoot-y squared and added.

4. OvershootDirectionAngle

This metric is the angle of the overshoot.

5. SequenceSpeed

This metric measures the total distance travelled divided by the total time.

67

6. OptimalDistance

This metric is the total distance in a straight line between the start and end points of

the sequence.

7. Efficiency

This metric measures the optimal distance divided by total distance travelled.

8. Direction

This metric is the direction from the first point in the sequence to the last.

9. ClickTime

This metric is the time between click down and click up.

These metrics are calculated from a mouse movement sequence, which is

any sequence of mouse movements that ends with a mouse click-up (when the

mouse button is released) and is shorter than 1450ms. The time 1450ms was

chosen through trial and error in the paper in Section 5.2. Unlike the stress

classifier from the paper in Section 5.2, the goal of this experiment is not to

classify individual sequences from throughout the entire semester, but to classify

students, on a week-to-week basis. So, like in the pass/fail classifier in the paper in

Section 5.2, the metrics for the classifier are the average of all the sequences from a

single lab, and a single student. This results in 21 input features for each lab for the

Neural Network classifier, a total of 210 input features.

5.4 Mouse Movements Analysis and Neural Network

Each of the three data types in this project, as presented in Section 4.2, are

examined using the same HOG classifier methodology. However, when this

methodology was used on the MM data, there was a problem - the Linear

Regression tests returned very few positive results, implying the MM and student

outcome were not correlated. It may be that the success of the classifier in the

published paper was due to the difference in behaviour in normal labs and in exam

labs, or that there is a larger difference in the MM data between the two student

groups in the second semester than in the first semester, perhaps due to increased

stress.

The goal of this analysis was to examine when the student’s behaviour

begins to diverge between the successful and unsuccessful students on a week-to-

week basis, and so the original method of processing data does not work for these

purposes. To compensate for this, the threshold for correlation was set to -0.1, as

68

this was the highest threshold that would allow for enough data for the weekly

Neural Networks to run.

5.4.1 Wilcox Rank Sum Test

In this section, the most relevant results of the Wilcox Ranks Sum Test are

presented. The metrics are described in Section 5.3, and the full tables of results

can be seen in the Appendix Section 10.3. As described in Section 4.3.1, a result of

less than 0.05 is considered significant and is in bold. The tests comparing the top

50% and the bottom 50% of the grades for CA are shown in Tables 5-1 and 5-2 for

the most significant features.

5.4.1.1 CA

In this section, the results of the Wilcox Rank Sum Test for the MM data,

comparing the top and bottom 50% of the class according to the CA grades, are

presented. In Table 5-1, we see that the relevant features for the first four weeks are

DIRECTION, OPTIMAL_DISTANCE, CLICKTIME, HESITATE and

CLICKRATIO. Each of these features is only relevant for one of these four weeks,

so it may be possible the results are due to chance. The full tables can be seen in

the Appendix Section 10.3.1. in Table 10-1, Table 10-2, and Table 10-3.

Lab 1 2 3 4

DIRECTION 0.029588 0.212553 0.196411 0.017461

OPTIMAL_DISTANCE 0.784908 0.942278 0.929454 0.012592

CLICKTIME 0.280768 0.028114 0.560714 0.626366

HESITATE 0.114143 0.023804 0.073371 0.823879

CLICKRATIO 0.215464 0.003706 0.078136 0.9681

Table 5-1: MM Wilcox Rank Sum Test CA for Week 1 to 4

In Table 5-2, there are 14 relevant features, an increase from the five in the

four weeks shown in Table 5-1. Some of the features in Table 5-1 are also present

in Table 5-2: OPTIMAL_DISTANCE, CLICKTIME, and CLICKRATIO. Week 7

has a total of 10 significant features, implying that by Week 7 there is some

divergence in student MM behaviour between the two groups.

The Table 5-3 shows the significant features from Week 8 to Week 10.

None of the features present in both Tables 5-1 and 5-2 are significant in this table.

However, we do see a large number of relevant features in Week 8, a total of six.

69

Lab 5 6 7

EFFICIENCY 0.015108 0.740481 0.009588

DIRECTIONANGLE 0.687177 0.03941 0.972124

OVERSHOOTDIRECTIONANGLE 0.961894 0.000429 0.000973

OVERSHOOTY 0.509035 0.292012 0.018673

OVERSHOOT 0.51013 0.285189 0.016298

SEQUENCE_DURATION 0.357729 0.023814 0.769529

DIRECTION 0.652375 0.265013 0.019592

OPTIMAL_DISTANCE 0.012978 0.271141 0.192956

VARIANCE1 0.019584 0.555292 0.033115

VARIANCE2 0.354173 0.267524 0.06174

VARIANCEDIST1 0.025512 0.795275 0.019036

VARIANCEDIST3 0.048165 0.168897 0.972124

CLICKTIME 0.594471 0.13252 0.01131

CLICKRATIO 0.164852 0.383295 0.016139

Table 5-2: MM Wilcox Rank Sum Test CA for Week 5 to 7

Lab 8 9 10

EFFICIENCY 0.01516 0.031693 0.141307

OVERSHOOTX 0.004262 0.113071 0.221358

SEQUENCE_SPEED 0.013254 0.109021 0.10326

OVERSHOOTDIRECTIONANGLE 0.003856 0.746383 0.004045

OVERSHOOTY 0.151661 0.029468 0.821522

OVERSHOOT 0.146422 0.028147 0.844168

ANGLEDIFFERENCE 0.020005 0.045101 0.160813

DIRECTION 0.067285 0.743648 0.043685

VARIANCE1 0.023864 0.991351 0.234068

Table 5-3: MM Wilcox Rank Sum Test CA for Week 8 to 10

The results of the Wilcox Rank Sum Test in this section do not show any

clear divergence in MM behaviour in any one feature consistently throughout the

semester. However, there are some interesting results, such as the high number of

significant features in Week 7.

70

5.4.1.2 Written Exam

In this section, the results of the Wilcox Rank Sum Test for the MM data,

comparing the top and bottom 50% of the class according to the Written Exam

grades. The full tables can be seen in the Appendix Section 10.3.2 in Table 10-4,

Table 10-5, and Table 10-6.

Lab 1 2 3

DIRECTION 0.03914 0.533739 0.310773

CLICKRATIO 0.475342 0.024542 0.150893

Table 5-4: MM Wilcox Rank Sum Test Written Exam for Week 1 to 3

In Table 5-4, we can see that there are only two significant features for

Week 1 to Week 3: DIRECTION and CLICKRATIO.

Lab 4 5 6

OVERSHOOTDIRECTIONANGLE 0.610436 0.937438 0.01481

SEQUENCE_DURATION 0.628833 0.263724 0.027804

OPTIMAL_DISTANCE 0.087417 0.006531 0.769646

VARIANCE2 0.223559 0.033498 0.603226

VARIANCEDIST1 0.186354 0.013678 0.938154

VARIANCEDIST2 0.223559 0.033498 0.603226

HESITATE 0.81172 0.07292 0.007423

CLICKRATIO 0.54628 0.025851 0.039092

Table 5-5: MM Wilcox Rank Sum Test Written Exam for Week 4 to 6

In Table 5-5, the significant results for Week 4 to Week 6 are presented.

There are no significant results in Week 4, but there are a total of five significant

results in Week 5, and four in Week 6. CLICKRATIO is significant in both Table

5-4 and 5-5, in Week 2, Week 5, and Week 6.

In Table 5-6, there are eight significant features in Week 7, similar to what

was seen in Table 5-2, again suggesting there may be some divergence in student

behaviour in Week 7 in the two groups. Six of these features are significant in both

the CA and Written Exam tests, including OVERSHOOTDIRECTIONANGLE,

OVERSHOOTY, DIRECTION, CLICKTIME AND CLICKRATIO. Week 8 has

seven relevant features, some of which are also significant for Week 7, including

OVERSHOOTDIRECTIONANGLE and DIRECTION, both of which were also

relevant in Week 7 in the CA results.

71

Lab 7 8 9 10

EFFICIENCY 0.053057 0.015793 0.243869 0.193793

OVERSHOOTX 0.031453 0.0259 0.466534 0.337519

OVERSHOOTDIRECTION

ANGLE 0.005802 0.009798 0.963972 0.257123

OVERSHOOTY 0.042232 0.094216 0.020249 0.726642

OVERSHOOT 0.038224 0.094216 0.01911 0.704971

ANGLEDIFFERENCE 0.391185 0.029862 0.205317 0.254914

DIRECTION 0.010417 0.015633 0.554644 0.315411

VARIANCE1 0.011661 0.008744 0.919408 0.773659

VARIANCEDIST1 0.019036 0.030427 0.955334 0.206768

CLICKTIME 0.031453 0.387216 0.574179 0.875254

HESITATE 0.289976 0.382132 0.022279 0.138475

CLICKRATIO 0.002758 0.067007 0.189006 0.099411

Table 5-6: MM Wilcox Rank Sum Test Written Exam for Week 7 to 10

In the tables in this section, it can be seen that there are some differences

between the top and bottom student groups in some of the features, implying a

difference in MM between the students who did well and those who did not,

although there is not enough consistency to state which features are where the

divergence happens.

5.4.2 Linear Regression

Linear Regression was used to check for correlations between MM features

and student outcome, both CA results and Written Exam results. Almost no

individual feature returned a positive regression score, showing a lack of

correlation between MM and student outcome. The full table of Linear Regression

scores can be seen in the Appendix Section 10.4.

5.4.3 Neural Networks

The HOG classifier does not work well with the MM data. Though there

was some success with predicting student outcome from MM data in the paper in

Section 5.2, this does not translate to the HOG classifier. In the experiment

described in the paper, the best results came from using both in-lab and in-exam

data, and it may be that the success of the classifier was due to the difference or

lack of difference between those features, but this classifier does not replicate that.

72

Very little of the MM data has a Linear Regression coefficient of over 0 in

the Linear Regression tests as explained in Section 5.4.2, so the HOG method of

selecting features meant that very few of the metrics were used in the classifiers,

with no metrics selected for larger thresholds. In an attempt to find some data to

use with the HOG classifier, the Linear Regression threshold was reduced to -0.1,

but the resulting classifier never achieved more than an average of 57% for any

week. The results of the -0.1-threshold classifier can be seen in the Appendix

Section 10.5. In summary, the Neural Networks using data set 2 were unsuccessful,

due to a lack of high coefficients of over 0, and the attempt to use features with

coefficients of over -0.1 did not create a useful Neural Network classifier.

5.5 Mouse Movements Week-by-Week

Week 1

There are already signs of differing behaviours in MM from the first week

of labs, as the Wilcox Rank Sum Test shows significant differences in the

DIRECTION feature of the higher and lower achieving groups, for both CA and

Written Exams. As this is the first time the students used the system, this might

simply reflect that some students are more comfortable adapting to the use of new

technology than others.

Week 2

By Week 2, the number of significant features from the Wilcox Rank Sum

Test increases to three, and the differences are found in CLICKTIME, HESITATE,

and CLICKRATIO in CA groups, and only CLICKRATIO in the Written Exams.

This week is the one of only three that had any Linear Regression coefficients of

over 0 in the Written Exam results, the three features are CLICKTIME,

HESITATE and CLICKRATIO, the same three features with significant

differences in the Wilcox Rank Sum Test this week. The classifier accuracy result

for CA this week is 50.8%, with 16 False Passes out of 50 students, 25 of which

were passes and 25 were fails. A classifier with around 50% accuracy works as

well as a random classifier, and so is unsuccessful. The classifier accuracy for

Written Exam is 50%, and it has 15 False Passes.

Week 3

73

There are no significant differences in the Wilcox Rank Sum Test for

Week 3 for CA or Written Exams. The CA classifier has an accuracy of 56%, and

12.4 False Passes. The Written Exam classifier has an accuracy of 49%, and 11.6

False Passes.

Week 4

Like in Week 1, there is a significant difference in CA in the average

direction of the two groups, but also in the OPTIMAL_DISTANCE, but there are

no differences in the Written Exam results. The CA classifier had an accuracy of

55% and 15.3 False Passes, and the Written Exam result has an accuracy of 46%

and 14.5 False Passes.

Week 5

In Week 5, there is an increase in the number of features with significant

differences between the groups. In this week, EFFICIENCY, VARIANCE1,

VARIANCEDIST3, are significant for CA, while VARIANCE2,

VARIANCEDIST1 and CLICKRATIO are significant for Written Exam.

OPTIMAL_DISTANCE, (like in Week 4 for CA) and VARIANCEDIST1 are

significant for both. The classifier has an accuracy of 54.5% and 13.55 False

passes, and the Written Exam classifier has an accuracy of 47% and 13.75 False

Passes.

Week 6

In Week 6, only three features are significant in CA groups and four in the

Written Exam, despite it being an exam week, when we expected to see differences

in student behaviour and therefore more significant features in the Wilcox Rank

Sum Test. The differences are in DIRECTIONANGLE in CA, and HESITATE,

CLICKRATIO (like Week 5) in Written Exam, and

OVERSHOOTDIRECTIONANGLE and SEQUENCE_DURATION in both.

OVERSHOOTDIRECTIONANGLE also had a positive coefficient in the Linear

Regression tests this week. The classifier has an accuracy of 55%, and 11.1 False

Passes, and the Written Exam classifier has an accuracy of 46% and 14.8 False

Passes.

Week 7

Week 7 has the most significant differences of all the weekly Wilcox Rank

Sum Tests, a total of 10. The differences are in EFFICIENCY (like in Week 5)

OVERSHOOTDIRECTIONANGLE, OVERSHOOTY, OVERSHOOT,

74

DIRECTION (like in Week 1 and 4), in VARIANCE1 (like Week 5),

VARIANCE2, VARIANCEDIST1 (like Week 5), CLICKTIME (like Week 2), and

CLICKRATIO (like Week 2). The Written Exam results have eight relevant

features, the most of any week in the Written Exam tests. The features are:

OVERSHOOTX, OVERSHOOTY, OVERSHOOTDIRECTIONANGLE,

DIRECTION, VARIANCE1, VARIANCEDIST1, CLICKTIME, and

CLICKRATIO. CLICKRATIO also had a very slight positive coefficient this week

of 0.015701 in the Linear Regression tests. This CA classifier has an accuracy of

56%, and a False Pass rate of 13.2, and the Written Exam classifier has an accuracy

of 49% and 13.45 False Passes.

Week 8

Week 8 has six significant features, efficiency (like in Week 5 and 7),

OVERSHOOTX, SEQUENCE_SPEED, OVERSHOOTDIRECTIONANGLE (like

Week 6 and 7), ANGLEDIFFERENCE, and VARIANCE1 (like Week 5 and 7).

This week has seven significant features for Written Exam: EFFICIENCY,

OVERSHOOTX, OVERSHOOTDIRECTIONANGLE, ANGLEDIFFERENCE,

DIRECTION, VARIANCE1 and VARIANCEDIST1. The CA classifier has an

accuracy of 51%, and 21.8 False Passes and the Written Exam has an accuracy of

46.8% and 16.75 False Passes.

Week 9

Week 9 has four significant features, EFFICIENCY (like Week 5, 7, and

8), OVERSHOOTY (like Week 7), OVERSHOOT (like Week 7) and

ANGLEDIFFERENCE (like Week 8). The Written Exam groups have only three

significant features: OVERSHOOTY, OVERSHOOT and HESITATE. This week's

CA classifier has an accuracy of 49%, and a full 25 False Passes, meaning every

Fail is classified as a pass. The Written Exam classifier has an accuracy of 48.6%

and has 20.85 False Passes.

Week 10

This week only has two significant features:

OVERSHOOTDIRECTIONANGLE (like Week 6,7, and 8) and DIRECTION (like

in Week 1, 4, and 7), and no significant features for the Written Exam groups. This

week's CA classifier again has an accuracy 49%, and a full 25 False Passes out of

25 Fails, meaning every Fail is classified as a pass. The Written Exam classifier has

an accuracy of 48.5% and has 20.3 False Passes.

75

5.6 Mouse Movements Conclusions

While correlations seem to exist between MM data and student outcome in

semester two, when looking at the average of student behaviour in ordinary lab

sessions and exam sessions, these correlations are not apparent when using the

HOG classifier to examine the data on a week-to-week basis. This means it was not

possible to draw any conclusions on the divergence of student behaviour from the

results of the classifiers. It is unclear why the semester 2 classifier in Section 5.2

was successful and the semester 1 classifier was not. It may be because the students

do not show signs of stress until the second semester. It seems more likely that the

reason is that the original semester 2 classifier used the average of the values of

features from all in-lab and in-exam sequences across the semester, while the

semester 1 classifier divided the data into weeks. It may be that the resulting

success was due to the difference in behaviour between the two states: in-exam and

in-lab.

Although the Neural Network was unsuccessful, there is evidence of a

divergence of student behaviour, especially in Week 5 and 7 from the Wilcox Rank

Sum Test, suggesting that these may be key stages in the Introduction to

Programming module. However, very few of the features that show significant

results are consistent throughout the semester, and so the results may be

coincidence. The only features that have any consistency are DIRECTION,

EFFICIENCY, OVERSHOOTDIRECTIONANGLE, and CLICKRATIO, which

all have significance in four labs for CA or Written Exam tests. CLICKRATIO also

has two of the very few positive Linear Regression results. Despite the

disappointing results from the data with the HOG classifier, it has been shown that

the data has value in building a Pass/Fail classifier from the paper in Section 5.2,

and possible value as a stress detector, as it has some success in classifying

students as being in a stressful (exam) environment or in a less stressful (normal

lab) environment, but this requires more research.

76

6. Experiment 2: Compile, Run, and Evaluate

(CRE) Movements

6.1 Introduction to CRE Experiment

In this chapter, the paper describing the first experiment using the CRE data

and a prototypical HOG classifier system is reproduced, in Section 6.2. The

remaining sections of the chapter explore the results of using the same

methodology used in the Chapters 5 and 7 with the CRE data.

There is previous work that examined and found statistically significant

differences between students with and without programming experience in their

behaviour, including the number of runs and tests while working on their code

[31], tests being similar to MULE’s evaluate. They also found that these

differences lessened in the final weeks of the semester (of 12 weeks), suggesting

the behaviours are signs of programming proficiency.

In the MULE system, the users write code to answer their coding assignments,

which they can then compile, run, and evaluate. In this section, we examine the

patterns in which students run, compile, and evaluate and how this relates to

student exam outcome.

This experiment is similar to the one described in the paper in Section 6.2 [58],

but the experiment was rerun to conform to the HOG classifier methodology, and

to include the Wilcox Rank Sum Test. The classifiers in this thesis predict student

outcome in the final Written Exam and in CA, whereas the classifier in the paper

only predicted the outcome of the in-lab formal coding exams. The classifier in the

paper achieves a highest accuracy of 78% in Week 8, slightly higher than this

experiment’s highest accuracy of 76.7%. However, the experiment in Section 6.3

to Section 6.6 has more success in earlier weeks, for example, the classifier

achieves an accuracy of 73% in Week 5, slightly higher than the papers highest

early semester accuracy of 70%, and the experiment also classifies students by

Written Exam outcome and achieved an accuracy of 78% in Week 9.

6.2 Paper: Exploring the Coding Behaviour of Successful Students in

Programming by Employing Neo-Piagetian Theory

77

Exploring the Coding Behaviour of Successful Students in
Programming by Employing Neo-Piagetian Theory

Natalie Culligan

Department of Computer Science

Maynooth University

natalie.culligan@mu.ie

Kevin Casey

Department of Computer Science

Maynooth University

kevin.casey@mu.ie

Abstract
We have collected data from approximately 300 students in their third-level first

year Introduction to Programming module as they learn to write code using our

in-house pedagogical coding environment, MULE. This data includes

performance in lab exams and pseudocode questions, and data on code

compiled, code run, and code evaluated, which we call CRE data. Evaluations

are automatically graded and feedback is provided to students on their code.

The student can only evaluate their code in the scheduled lab place and times

but can evaluate as many times as they wish without penalty. The pseudocode

questions are used to examine the students’ understanding of programming

concepts, by removing the use of the compiler and comparing their performance

in pseudocode questions to CRE data. Using a Neo-Piagetian framework, we

examine pseudocode performance, lab exam performance and programmer

behaviour in terms of CRE data. We investigate CRE data as signs of a

student’s progression through the three stages of Piagetian understanding and

build a series of Deep Neural Net binary classifiers to test if this passively

collected behavioural data can be used to detect students in danger of failing.

1. Introduction
Computer Science has one of the highest failure and dropout rates in

3rd level education (Bennedsen, & Caspersen, Corney et al. 2010, Lang et al.,

Watson & Li). In this paper, we will investigate if students in introductory

computer science courses are failing to reach the later stages of Neo-Piagetian

understanding, and if we can investigate and observe signs of these stages

through passive data collection, and the results of pseudocode tasks in the

weekly practical coding labs. The research question for this study is:

▪ Can we observe signs of progression through the Neo-Piagetian stages

of learning by examining passively collected data on students’ coding

behaviour?

The coding behaviour data we discuss in this paper is the order in which

students compile, run, and evaluate their code. Evaluation provides the student

with automatic grades and feedback. The students use the pedagogical coding

system MULE to complete their weekly coding tasks. In this system, students

are unable to run their code until they have successfully compiled and cannot

evaluate their code until it has run successfully.

In the doctoral thesis “Neo-Piagetian Theory and the Novice

Programmer” (Teague), the author states that “Programming competence

requires abstract reasoning skills and learning to program is about the

sequential and cumulative development of those abstract reasoning skills in an

unfamiliar domain.” We wanted to introduce pseudocode questions into our

first-year curriculum to encourage students to build mental models of

78

programming concepts by requiring students to predict code output, without

relying on the compiler. These pseudocode questions are English language

representations of code that cannot be run with a compiler but represent

programming concepts such as loops and arrays (Lopez et al.). With

pseudocode, we can see if the students can abstract the concepts away from

Java and apply what they have learned in class in a much more generalised way.

This is useful as if the students are able to do so, they are more likely to be able

to reuse the skills and apply them in a variety of ways, instead of memorizing

and replicating techniques they have used in the past.

In this paper, we will discuss our findings when investigating CRE data

in weekly labs as students graduate from random/loosely guided “tinkering” to

more intentional code-writing. While previous work has discussed “tinkering”

as a viable method of learning programming, we will discuss if this is true

throughout the first semester, or if CRE data that implies an over-use of

tinkering is in fact an indication that a student is not developing a good mental

model of fundamental programming concepts and is therefore in danger of

falling behind.

2. Related Research
2.1. Student Behaviour when Learning to Code

There have been numerous studies that investigate novice programmer

behaviour such as patterns of compilation and running of code and how it

relates to student success.

Perkins et al., investigate the different strategies that novice

programmers adopt when learning to code, and describe what they term

“stoppers”, “movers”, and “extreme movers”. “Stoppers” are novices who,

when faced with a problem without a clear course of action, stop attempting to

find a solution to the problem and appear to be unwilling to explore the problem

any further. “Movers” are novices who will constantly modify and test their

code when faced with a problem. “Extreme Movers” will also constantly

modify and test their code but are different from movers in that they do not

seem to learn from attempts that previously did not work, and they do not

continue to work on solutions that fail the first time so do not end up “homing

in” on a working solution. The authors do not specifically speak about how

these different patterns relate to compilation and run behaviour, but the below

papers do touch on it in direct reference to this study.

Two papers on the programming environment BlueJ (Jadud, 2005,

Jadud 2006) discuss the behaviours of the authors’ students, and how similar

their students’ behaviours are to those in the above Perkins et. al. paper. They

discuss their own “extreme movers”, which they describe as “tinkerers”, and

how these students would sometimes allow their experimental code to

accumulate, causing their code to become increasingly complex and, eventually,

incomprehensible. The BlueJ studies found that 24% of all compilation events

followed less than 10 seconds after a previous compilation, and half of all

compilation events occurred less than 40 seconds after a previous compilation.

Students spent more time working on their code after a successful compilation

than they did trying to fix a syntax error. The authors found that students tend to

program in large blocks, then spend time writing and compiling code in small

79

bursts in order to fix syntax errors. Accordingly, multiple compilations may

indicate a large number of syntactic problems.

In “Studying the Novice Programmer” (Soloway & Spohrer) the authors

discuss the need for students to build plans. As mentioned above, students who

tinker aimlessly create bugs, and without clear goals may fail to progress

towards a working solution. The authors used natural language to investigate if

students with plans, broken into small tasks, are more successful when

programming.

In “Analysis of Code Source Snapshot Granularity Levels”

(Vihavainen) the author discusses the ratio of “snapshots to submissions”,

where a snapshot is a copy of the code taken every time the student saves,

compiles, runs, or tests their code. Submissions are final versions of a program

submitted for correction/grading, provided by a plugin for NetBeans that

provides feedback and grading to the student. Using a Wilcoxon rank sum test,

the authors found a statistically significant difference between the number of

runs and tests for students with previous programming experience and those

without. This difference continued to be visible throughout the course, although

the behaviour of the participants was more alike in the final weeks of the

course, perhaps implying that these behaviours are indicators of programming

proficiency.

One of the research questions in the paper “Evaluating Neural Networks

as a Method for Identifying Students in Need of Assistance” (Castro-Wunsch) is

“Are neural network (NN) models appropriate for the task of identifying

students in need of assistance?” The authors found that, yes, neural networks

predicted at-risk students at least as well as Bayesian and decision tree models,

and had the advantage of being “pessimistic”, meaning that the neural networks

were more likely to incorrectly classify students as at-risk, rather than

incorrectly classify students as not at-risk. From this research, we decided to use

neural networks as our classifier.

2.2. Neo-Piagetian Theory and Abstraction in Programming

There are also a number of studies that use Neo-Piagetian theory in

examining student behaviour in computer science and discuss abstraction in

relation to novice and expert programmers.

In “Concrete and Other Neo-Piagetian forms of Reasoning in the

Novice Programmer”, (Lister) the author discusses the reasoning behind the use

of Neo-Piagetian theory. Classical Piagetian theory considers the progress

through different stages of learning to be a consequence of a biological

maturing of the brain. Neo-Piagetian theory, on the other hand, considers this

instead a result of gaining experience, and in particular, the ability to “chunk”

knowledge within a certain knowledge domain.

Corney et. al (2011) describe a study in which almost half of the sample

students were unable to answer a simple explain-in-plain-English question in

the third week of their introductory programming course, showing that students

were encountering problems much sooner than could be detected by traditional

programming questions/examinations.

In “Neo-Piagetian Theory and the Novice Programmer” (Teague, 2015), the

author found that the development of programming skills is both “sequential

and cumulative”, and that behaviours associated with sensorimotor and

preoperational reasoning are evident from very early in the semester.

80

The authors of “Mired in the Web: Vignettes from Charlotte and Other

Novice Programmers” (Teague et al.) ask if a student can have different levels

of ability for different tasks which test similar programming concepts – if a

student can trace and understand code, can they also write that code? They also

ask why some students do not seem to be able to understand code with

abstractions and instead rely on tracing code with specific values. The study

found that students who were still operating at the sensorimotor level in week 2

were often still operating the same way in week 5, and were lagging behind

students who were operating at the preoperational level in week 2. They defined

students in the preoperational stages by certain behaviours which they observed

using think-aloud data from students. Preoperational behaviours were guessing,

a fragile grasp of semantics, confused use of nomenclature, an inability to trace

simple code, as well as general misconceptions. Errors due to cognitive

overload and reluctance to trace were considered behaviours associated with

both sensorimotor and preoperational. The ability to trace but not explain code,

as well as a reliance on specific values, were signs of the preoperational stage.

The authors note that students may achieve marks for guessed answers, but it is

not until they listen to the students speak aloud their thought process that they

were able to get a clear picture of the students understanding and ability.

Shneierman and Mayer found that expert programmers were able to

recall more of a program than novices when it was presented to them in normal

order, but not when it was scrambled, implying that the experts were able to

“chunk” information together when the code made sense. The authors proposed

that experienced programmers construct functional representations of computer

programs.

Adelson found that expert programmers’ memory chunks tended to be

semantically or functionally related, while novices typically chunked by syntax.

Semantic knowledge consists of programming concepts that are generalized,

and independent of programming language, whereas syntactic knowledge is

more precise and rooted in exact representations of concepts in specific

programming languages. For example, a novice may think of a loop as a

specific for loop in Java, but an expert planning a piece of code may simply

think of a loop abstractly, as something that performs a needed function,

without thinking about the exact type of loop, the details of the iteration, or the

syntax associated with it (Bisant & Groninger, Wiedenbeck).

3. Methodology

For this study, we collected data from around 300 students as they

completed their introduction to programming module in Java using MULE, our

in-house, browser-based pedagogical coding environment (Culligan & Casey).

This system resembles a desktop with both built-in applications for content and

assignment delivery, and a code editor for completing, running, and evaluating

code for assignments. MULE also includes mechanisms for making sections of

the material invisible to some users until some constraints are satisfied such as

date/time and IP address – this was used to allow certain assignments to only be

accessible in the scheduled lab times and locations. Within MULE, each attempt

the student makes on an assignment is recorded, and the student can easily

recover any previous attempt, allowing the student to “tinker” and experiment

with their code without fear of losing any work. There is evidence to suggest

that a certain amount playing/tinkering with code is an indication of student

success (Berland et al., Berland & Martin).

For 5 of the 10 mandatory computer lab sessions during the first

semester of their computer science course, students were asked to predict the

outcome of pseudocode snippits, along with their usual lab consisting of two

programming

81

questions, and some peer-programming tasks. The students were told that they

are not awarded any marks towards their continuous assessment for answering

the pseudocode questions. The students have access to most of the

programming tasks before the lab and can write code, compile, and run it, but

not evaluate it for continuous assessment grades. Some of the exercises are only

accessible in the labs at the assigned times, so students must write, run, compile,

and evaluate the code in the lab.

Although students were able to work on an assignment before assigned

lab times, we chose to look exclusively at the data from lab times. Our

reasoning is that students outside of labs can be in very different environments –

some may have a quiet place to work undisturbed, others may be working in a

noisy environment or may be frequently interrupted, so comparisons of their

behaviour may be less insightful than those from a formal lab. For most of the

semester, the students can only evaluate from inside the lab during the specified

lab times, so the data from outside the labs would only have compile and run

events.

We did not include data from students who did not participate in the

weekly labs (missing more than four), as we wanted to investigate changes in

behaviour from week to week and to look at at-risk students who are actively

engaging in the course labs on a weekly basis (Castro-Wunsch). After removing

students who did not complete 4 or more labs, we were left with 266 subjects.

The gathered data is the patterns of student compile, run and evaluate actions:

• Compile: Students cannot run their code until it compiles

successfully

• Run: Students cannot evaluate their code until it runs

successfully

• Evaluate: The student’s code is assigned a grade, and feedback

is provided.

This data was used to build Deep Neural Net binary classifiers, that

would classify students as being in either the top 50% or the bottom 50% of the

class lab exam grades on a week-to-week basis. Each weekly classifier would

use the CRE data for each assignment for that week, and from all previous

weeks. Below we discuss the results of statistical tests exploring correlations

between student behaviour and outcome, and the classifier built to predict

student outcome.

4. Analysis

When analysing the data, for every time a student performs a CRE

action, we look at that action and the one before and record it as a “movement”

- the student moves from a Compile to a Run, is recorded as C2R, or a Run to

an Evaluate in R2E for example. When processing this data, we looked at each

movement as a percentage of all actions a student took during that lab. From the

previous studies on programming and Neo-Piagetian stages, we expected to see

the following as signs of progression through the stages:

Sensorimotor Stage: Interacting almost randomly, with little understanding of

the outcome, resulting in more C2C movements, less C2R movements and less

participation and success with pseudocode questions.

Preoperational Reasoning Stage: The student is beginning to master writing

compilable code, and can predict code outcome, resulting in higher amount of

C2R movements and R2C movements, fewer C2C movements and more

participation and success with pseudocode questions.

82

Concrete Operational Stage: At this stage, programmers have a good grasp of

concepts allowing the programmer to write more complex code, resulting in

fewer C2C movements, fewer C2R movements, more R2E movements and

more participation and success with pseudocode questions.

The students in the study were divided into two groups: those in the top

50% of the class in lab exam grades, and those in the bottom 50%. The two data

sets contain the percentages of total movements per week for each student. A

sample of the student data for a week would look like the following:

C2C C2R R2C R2R R2E E2C E2R E2E

0.33997 0.254913 0.127186 0.01639 0.130208 0.111902 0.003655 0.004159

Table 1: Example of an average sample of student weekly data

The following tests were then run on the two data sets:

• To examine if the differences between the two groups were

significant, t-tests were used.

• Linear regression was used to find which movements were most

related to lab exam outcome, on a week-to-week basis, to select

which movement data would be used in the classifier.

• Finally, the data from the most significant movements each

week are used to create a Deep Neural Net binary classifier, to

classify each student as being in the top or bottom 50% of the

class.

5. Results

To find if there were significant differences between the top and bottom

50% of the students, t-tests were used, the results of which are considered

significant differences between the two groups if the result is less than 0.05.

These results are in bold. The p-value results of the groups according to lab

exam results are in Table 2, and the results of the groups divided by pseudocode

performance are in Table 3. Lab 6 and lab 10 included lab exams, during which

the students could not look at their previously written code from earlier labs.

C2C C2R R2C R2R R2E E2C E2R E2E

1 0.001214 0.470967 0.539369 0.448587 0.090213 0.070492 0.650004 0.24305

2 0.004757 0.02424 0.665045 0.674198 0.005787 0.060203 0.388143 0.260525

3 4.80E-06 5.04E-05 0.112107 0.585846 0.031448 0.498212 0.120838 0.280715

4 1.50E-06 3.16E-08 4.04E-06 0.032048 0.305453 0.031562 0.951828 0.748698

5 4.03E-10 1.47E-08 0.008756 0.100132 0.000341 0.004397 0.015933 0.10881

6 9.00E-14 7.94E-15 5.90E-11 0.019153 0.064127 0.122571 0.026066 0.940655

7 2.05E-06 6.28E-09 6.96E-07 0.561189 0.111728 0.140013 0.924634 0.579504

8 5.73E-13 2.60E-09 0.00853 0.00715 3.36E-05 2.50E-05 0.501948 0.04282

9 0.002878 0.187736 0.187655 0.386204 0.008422 0.0083 0.234538 0.389353

10 6.05E-06 4.70E-07 0.012479 0.683429 0.034407 0.082467 0.609155 0.758995

Table 2: Results of t-test on groups divided by lab exam results

There were significant differences between the two groups found in

C2C every week, C2R most weeks, and R2E and R2C in 8 of the 10 weeks. In

Table 3, we see that the results are similar results to the lab exam t-tests, the

main difference being that the R2E movements are almost never significant.

83

C2C C2R R2C R2R R2E E2C E2R E2E

1 0.656744 0.010296 0.167739 0.096637 0.368741 0.27848 0.979841 0.062224

2 0.007839 0.01318 0.698311 0.79891 0.005272 0.518315 0.074192 0.384717

3 0.001236 0.000551 0.049986 0.141391 0.498473 0.615511 0.872643 0.817136

4 0.00078 0.000378 0.015029 0.089415 0.768301 0.095344 0.72989 0.085109

5 0.000306 0.001537 0.268965 0.043827 0.051354 0.050773 0.147545 0.185538

6 0.000562 0.001477 0.038343 0.018253 0.07908 0.088534 0.328674 0.182885

7 0.014912 0.00068 0.001243 0.371309 0.114922 0.140932 0.328346 0.52572

8 0.014178 0.279716 0.265897 0.414656 0.768084 0.718394 0.434119 0.501809

9 0.043973 0.184825 0.768122 0.165121 0.268245 0.31005 0.380506 0.77323

10 0.027376 0.009383 0.042855 0.350375 0.601622 0.888391 0.139526 0.910241

Table 3: Results of t-test on groups divided by pseudocode results

From our predicted behaviour of the Neo-Piagetian stages outlined at

the start of the analysis section we expected to see students who did poorly in

the exams displaying different behaviour in the C2C, C2R and R2C movements

as more successful students moved onto preoperational reasoning stages. Higher

achieving students have a consistently lower average percentage of C2C when

groups are divided by lab exam results. The difference in C2C movements gets

steadily larger from week 1 until week 7, when it slightly reduces. This is also

true for the pseudocode results, with smaller margins of difference. The

difference is smaller in the last weeks of the module, which may indicate that

our students who do not do well are moving through the Neo-Piagetian stages

but are not moving quickly enough for the course.

Higher achieving students have a consistently higher average

percentage of C2R when divided by lab exam results. This difference peaks in

week 7, for both lab exam and pseudocode results. Both groups have a similar

percentage of R2C when divided by lab exam results, but the difference peaks

in weeks 6 and 7, when the higher achieving students have a higher average

percentage of R2C movements. This may be the point where successful students

have reached preoperational reasoning, as an increase in R2C movements

indicate the student is in the “tinkering” stage as described by Perkins et al.

Week Average Classifier

Success Rate

1 0.62

2 0.6

3 0.68

4 0.7

5 0.62

6 0.6

7 0.72

8 0.76

Table 4: Classifier results

Using the dataset containing the CRE percentages for each student for

each week, Deep Neural Net binary classifiers were trained to classify students

as being in the top 50% or the bottom 50% of grades for the lab exams. Linear

Regression tests were used to compare the CRE actions and their relation to

student performance in lab exams. This was used to select movement data to be

84

used in the Deep Neural Nets. Multicollinearity can be an issue for DNN, so a

check was run on the features (where each movement was a feature) and we

removed the most highly correlated CRE data and tested again. This was

repeated until the remaining data was sufficiently nonlinearly related, when all

features had a variance inflation factor (a test for correlation between

independent variables) of less than 5. The resulting data set was used to train

and test our DNN classifier. A classifier was built for each week of the

semester, using the CRE data from that week, and from all previous weeks. The

results are shown in Table 4. The results of week 9 and 10 are identical to week

8, as it uses the same CRE data after the multicollinearity tests.

6. Discussion

Other studies have referred to lab 4/week 4 (Teague) as the time around

which students who are in danger of failing begin to perform badly or separate

in behaviour from the other students. Of course, what takes place at this point

varies across different institutions and courses. Nonetheless we see that in line

with this estimated timescale, the differing behaviour among students becomes

more pronounced around lab 4, and at this point the classifier has a success of

70%. At this point, if students are consistently compiling without progressing to

run, this is a sign the student is in danger. This is not hugely surprising. It

implies that the student is failing to write compilable code, and we would

expect that a student who cannot write compilable code would be in danger.

The percentage of R2C becomes more significant around week 4. A

student who compiles code, then runs, but then goes back to compile, is most

likely working on a semantic issue, rather than a syntactic one, as mentioned in

the BlueJ papers (Jadud 2005, Jadud 2006). We suspect that the reason it

becomes relevant to the students’ overall performance in lab exam results is

because week 4 is when most students should be beginning to master syntax and

to abstract solutions, allowing them to construct more complex programs using

multiple concepts together. The result is that we see successful students

compiling successfully and rewriting their code until they reach a solution,

causing successful students to have more C2R movements and fewer C2C

movements. Students who are still struggling to write semantically correct code

will have even more C2C movements as the assignments get more difficult.

Research Question: Can we observe signs of progression through the Neo-

Piagetian stages of learning by examining passively collected data on

students coding behaviour?

Yes, we have described the expected signs in CRE movements of

progression through the stages of Neo-Piagetian learning, observed these signs

in novice programmers and found these signs relate to student success. From

our analysis section, we see that the CRE movements that are associated with

success change as the semester progresses. Using a Neo-Piagetian framework,

we examine these differences.

The three Neo-Piagetian stages in learning to program (Lister, du Boulay,

Teague, Teague et al.):

(1) Sensorimotor Stage - interacting almost randomly, with little understanding

of the outcome

A high percentage of C2C movements may indicate that a student is

tinkering almost randomly with their code and is unable to write

compilable code. From our analysis, we see that a lower amount of C2C

85

movements, and a higher amount of C2R movements is associated with

better performance in lab exams. This is similar to the findings in the

paper (Vihavainen) which found a statistically significant difference

between the number of runs and tests for students with previous

programming experience and those without.

(2) Preoperational Stage – beginning to master syntax, deeper understanding

and being able to predict behaviour from interactions

Students with a higher amount of C2R movements may be in this stage,

as they become able to write compilable code, but are still be unable to

predict the outcome of their code. As a result of this, the student will

repeatedly “tinker” with their code, resulting in increased R2C

movements. We found R2C movements became significant from week

4, indicating that students should reach this stage by week 4 if they are

to be successful in the module lab exams.

(3) Concrete Operational Stage – can “chunk” (Shneiderman & Mayer)

programming concepts and abstractions of the code’s behaviour, allowing the

programmer to write more complex code.

At this point, students should be able to write compilable code and

successfully predict their code’s outcome. Students at this stage should

have fewer C2C movements, fewer C2R movements, and a higher

percentage of R2E movements. This indicates that they have a good

grasp of semantics and are able to predict code behaviour with less

tinkering and playing with code. We would expect to see a higher

correlation between outcome and R2E movements as students reach this

stage, and while R2E is related to success at some points in the

semester, the average difference between the two groups is consistently

low. We strongly suspect that most students do not reach concrete

operational stage until after their first semester (Teague).

7. Conclusions

We have found that C2C and C2R movements are important indicators

of student performance in their first semester of programming. While the

highest classifier success of 76% used data from throughout the 8 weeks, we

had success with the week 4 classifier which had a success percentage of 70%,

showing there is evidence of a student success or failure as early as week 4.

This version of the classifier used all 4 weeks C2C percentages as the input data

in predicting the student outcome. In future work, it would be worth looking at

which specific assignments and topics are key clues in a student’s eventual

outcome.

We would expect that student coding behaviour would correlate to lab

exam performance and pseudocode performance, if the coding behaviour in

question indicates progress through the Neo-Piagetian stages of learning. We

have seen that patterns of student behaviour contain indications from an early

stage if they are likely to perform well in lab exams. We have discussed how

this relates to previous work done in the area of Neo-Piagetian theory in the

context of students learning to program. We have established a strong case for

the connection between students’ programming behaviour and their stage of

Neo-Piagetian learning by showing the correlation between student CRE

movements, and their lab exam outcomes, and we discussed the reasons behind

those behaviours and how they relate to Neo-Piagetian theory.

Introduction to programming modules that emphasize only how to write

code, and grade based primarily on written code may be problematic. Results of

86

pseudocode assignments in a programming module can help us as researchers

and educators to identify students who have not developed mental models of

programming concepts, and are instead relying on “hacking”, where students

attempt to complete a coding assignment by writing code and testing

input/output without planning and predicting their code’s behaviour. Students

who are “hacking” may still perform reasonably well in their weekly labs, and

so may believe that they are keeping up and do not need to continue to work on
their grasp of fundamental coding concepts. These students will then progress to

more difficult modules without the programming basics required to engage with

the material. This may be a scenario unique to computer science and a

significant contributary factor as to why computer science failure rates are so

high. In future work, we will examine how a novice programmer’s pseudocode

results and patterns of behaviour may relate to code complexity, as a reflection

of their ability to “chunk” programming concepts, in order to combine them to

create solutions for programming problems.

In conclusion, the most significant findings from this study are, firstly,

that the divergence in behaviour between high and low achieving students takes

place in week 4. Students who are not displaying signs of progression to the

preoperational stage of Neo-Piagetian learning do not do well in their lab exams

at the end of the semester. Secondly, we found that these differences in

behaviour are less pronounced later in the semester – implying that the students

who were behind in week 4 are capable of progression to preoperational stage,

but crucially, not at the pace dictated by the module.

8. References

Adelson, B. (1981). Problem solving and the development of abstract categories

in programming languages. Memory & cognition, 9(4), 422-433.

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory

programming. AcM SIGcSE Bulletin, 39(2), 32-36.J. Bennedsen and

M. E. Caspersen. Failure rates in introductory programming.ACM

SIGCSE Bulletin,39(2):32–36, 2007.

Berland, M., Martin, T., Benton, T., Petrick Smith, C., & Davis, D. (2013).

Using learning analytics to understand the learning pathways of novice

programmers. Journal of the Learning Sciences, 22(4), 564-599.

Berland, M., & Martin, T. (2011). Clusters and patterns of novice programmers.

In The meeting of the American Educational Research Association.

New Orleans, LA.

Bisant, D. B., & Groninger, L. (1993). Cognitive processes in software fault

detection: a review and synthesis. International Journal of

Human‐Computer Interaction, 5(2), 189-206.

du Boulay, B., O'Shea, T., & Monk, J. (1981). The black box inside the glass

box: presenting computing concepts to novices. International Journal of

man-machine studies, 14(3), 237-249.

Castro-Wunsch, K., Ahadi, A., & Petersen, A. (2017, March). Evaluating neural

networks as a method for identifying students in need of assistance. In

Proceedings of the 2017 ACM SIGCSE Technical Symposium on

Computer Science Education (pp. 111-116).

87

Corney, M. W., Lister, R., & Teague, D. M. (2011, January). Early relational

reasoning and the novice programmer: Swapping as the “Hello World”

of relational reasoning. In Conferences in Research and Practice in

Information Technology (CRPIT) (Vol. 114, pp. 95-104). Australian

Computer Society, Inc..

Corney, M. W., Teague, D. M., & Thomas, R. N. (2010, January). Engaging

students in programming. In Conferences in Research and Practice in

Information Technology, Vol. 103. Tony Clear and John Hamer, Eds.

(Vol. 103, pp. 63-72). Australian Computer Society, Inc..

Culligan, N., & Casey, K. (2018). Building an Authentic Novice Programming

Lab Environment. Irish Conference On Engaging Pedagogy

Jadud, M. C. (2005). A first look at novice compilation behaviour using BlueJ.

Computer Science Education, 15(1), 25-40.

Jadud, M. C. (2006). An exploration of novice compilation behaviour in BlueJ

(Doctoral dissertation, University of Kent).

Lang, C., McKay, J., & Lewis, S. (2007). Seven factors that influence ICT

student achievement. ACM SIGCSE Bulletin, 39(3), 221-225.

Lister, R. (2011, December). Concrete and other neo-Piagetian forms of

reasoning in the novice programmer. In Conferences in Research and

Practice in Information Technology Series.

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008, September).

Relationships between reading, tracing and writing skills in introductory

programming. In Proceedings of the fourth international workshop on

computing education research (pp. 101-112).

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1986).

Conditions of learning in novice programmers. Journal of Educational

Computing Research, 2(1), 37-55.

Shneiderman, B., & Mayer, R. (1979). Syntactic/semantic interactions in

programmer behavior: A model and experimental results. International

Journal of Computer & Information Sciences, 8(3), 219-238.

Soloway, E., & Spohrer, J. C. (2013). Studying the novice programmer.

Psychology Press.

Teague, D. (2015). Neo-Piagetian theory and the novice programmer (Doctoral

dissertation, Queensland University of Technology).

Teague, D., Lister, R., & Ahadi, A. (2015, January). Mired in the Web:

Vignettes from Charlotte and Other Novice Programmers. In ACE (pp.

165-174).

Vihavainen, A., Luukkainen, M., & Ihantola, P. (2014, October). Analysis of

source code snapshot granularity levels. In Proceedings of the 15th

Annual Conference on Information technology education (pp. 21-26).

Watson, C., & Li, F. W. (2014, June). Failure rates in introductory

programming revisited. In Proceedings of the 2014 conference on

Innovation & technology in computer science education (pp. 39-44).

Wiedenbeck, S. (1985). Novice/expert differences in programming skills.

International Journal of Man-Machine Studies, 23(4), 383-390.

88

The paper reproduced here describes a successful attempt to build a

classifier that predicts student outcome from student CRE data. The following

sections will use this same data using the methods outlined in Section 4.3 and 4.4.

6.3 CRE Features

The data set used in the following experiment is data set 2, as described in

Section 4.1.2. In the following tests, the analysis and classifier use eight different

features for each of the 10 weeks from this data set, resulting in a total of 80

features. These features are measurements of how often a student Compiled, Ran,

or Evaluated, and followed with another Compile, Run, or Evaluate, as mentioned

in Section 6.2. If a student Compiles their code, then Compiles again, that is

recorded as a C2C. If the student Runs and then Evaluates, that is recorded as a

R2E, etc. The eight features are explained in Table 6-1. There is no Compile to

Evaluate feature as the MULE system does not allow the user to Evaluate after

Compiling without a Run action.

From To Recorded as

Compile Compile C2C

Compile Run C2R

Run Compile R2C

Run Run R2R

Run Evaluate R2E

Evaluate Compile E2C

Evaluate Run E2R

Evaluate Evaluate E2E

Table 6-1: CRE Features

Each of these features is recorded for each of the student’s weekly labs and

is a percentage of the total CRE actions that the student takes in that lab. C2E

movements are not shown in this experiment as the system did not allow students

to Evaluate their work until it had been Run.

In the Figure 6-1, a possible reason for each feature is explained. For

example, a C2C movement may indicate that a student has not successfully written

compilable code, and so must rewrite and then Compile again. A C2R feature

means the student has successfully written compilable code. A R2R feature may

mean that the student is testing their code, but it could mean that the student’s code

is not running as expected, or that it is not running as expected. A R2E movement

89

means that the student has finished testing their code and is checking their grade.

E2R may mean that the student is unsatisfied with the evaluation grade and is

testing their code to find the problem. E2C can also mean the student is unsatisfied

with their grade, and has rewritten their code, though it may also mean the student

has moved on to the next question. For many of these features, what is important is

how often a student performs an action. A small number of C2C actions is to be

expected, even an expert programmer will not write compilable code without

making errors every time. However, a larger percentage of C2C actions may imply

that the student is unable to write compilable code and is in danger of failing the

module.

Figure 6-1: CRE Patterns

6.4 CRE Movements Analysis

In this section, the CRE movements are examined. The CRE movements

are the patterns of Compile, Run, and Evaluate behaviour as the students complete

their coding assignments in the MULE system. The behaviours are examined using

the Wilcox Ranks Sum Test, and Linear Regression.

6.4.1 Wilcox Rank Sum Test

This section contains the results of the Wilcox Ranks Sum Test, comparing

the top 50% and the bottom 50% of the grades for CA and the Written Exam for

each of the eight CRE features. Any result of less than 0.05 is considered

significant and is in bold.

6.4.1.1 CA

 The results of the Wilcox Rank Sum Tests comparing the groups divided

according to the CA results are presented in Table 6-2 and Table 6-3. While there

are significant differences between the two groups throughout the semester, when

90

looking at the CA results, it can be seen in Table 6-2 that there is a spike in Week

5, when every one of the features shows significant difference in the two groups.

Lab 1 2 3 4 5

C2C 0.003304046 0.000696743 8.34E-11 1.60E-09 1.39E-10

C2R 0.029707699 0.000338183 5.23E-12 4.68E-14 4.76E-09

R2C 0.405981696 0.629870344 0.000500886 1.51E-08 0.000377349

R2R 0.346761087 0.05292788 0.146292951 0.036721567 0.003007271

R2E 0.012478407 0.000756833 0.083116735 0.234028299 0.014072256

E2C 0.074870296 0.177169647 0.864372077 0.000757408 0.016553229

E2R 0.989306277 0.740945091 0.397346141 0.826922363 0.039563534

E2E 0.481646241 0.59367972 0.328548797 0.690327639 0.003405348

Table 6-2: CRE Wilcox Rank Sum Test CA for Weeks 1 to 5

This continues to a lesser degree in Week 6 and Week 7, as shown in Table

6-3. Week 8 has only significant results, C2C and C2R, and Week 9 and Week 10

each have four significant results. C2C and C2R are significant throughout the

semester.

Lab 6 7 8 9 10

C2C 3.17E-20 1.17E-06 2.77E-07 1.64E-07 3.19E-05

C2R 9.81E-21 3.90E-11 0.012137 0.000283 1.05E-07

R2C 4.12E-14 5.93E-10 0.177591 0.53325 1.80E-07

R2R 0.00162738 0.004453 0.064039 0.713808 0.030687

R2E 0.003336881 0.001807 0.228163 0.000993 0.51366

E2C 0.002678636 0.007413 0.201059 0.002447 0.5613

E2R 0.396740295 0.092942 0.205742 0.965096 0.907747

E2E 0.386475328 0.45643 0.053136 0.511572 0.985591

Table 6-3: CRE Wilcox Rank Sum Test CA for Weeks 6 to 10

6.4.1.2 Written Exam

The results of the Wilcox Rank Sum Tests comparing the groups divided

according to the Written Exam results are presented in Table 6-4 and Table 6-5.

The results are similar to the results of the CA groups Wilcox Rank Sum Tests.

Similar to what was found in the results of the paper in Section 6.2, the

most consistently significant features throughout the semester are C2C and C2R,

which have significant results for every week in the semester, as shown in Table 6-

91

4 and Table 6-5. R2C is the next most consistent, with significant results for six of

the semester’s 10 lab sessions.

Lab 1 2 3 4 5

C2C 0.001391 0.000537 6.53E-12 7.51E-09 7.75E-08

C2R 0.04382 0.00166 1.16E-11 2.14E-11 2.36E-07

R2C 0.80832 0.861828 0.005912 2.25E-06 0.001155

R2R 0.809358 0.591865 0.673095 0.014489 0.005465

R2E 0.011304 0.010363 0.004539 0.370142 0.187853

E2C 0.042985 0.142691 0.08873 0.003129 0.040557

E2R 0.931642 0.831694 0.794488 0.409669 0.271693

E2E 0.256277 0.584633 0.905502 0.392704 0.038913

Table 6-4: CRE Wilcox Rank Sum Test Written Exam for Weeks 1 to 5

Lab 6 7 8 9 10

CC 2.42E-15 1.71E-05 0.000301 1.58E-05 0.002588

CR 5.30E-15 1.83E-08 0.067072 0.000468 1.72E-05

RC 3.17E-10 6.07E-07 0.200396 0.971741 2.32E-05

RR 0.000547 0.016242 0.082213 0.86105 0.165729

RE 0.007743 0.014142 0.850643 0.013938 0.514631

EC 0.012237 0.082588 0.796432 0.033548 0.387675

ER 0.210653 0.023292 0.818307 0.851237 0.861414

EE 0.291765 0.719679 0.100404 0.272137 0.678976

Table 6-5: CRE Wilcox Rank Sum Test Written Exam for Weeks 6 to 10

Similar to the results of the Wilcox Rank Sum Test for the Mouse

Movements experiment in Section 5.4.1, it can be seen that Weeks 5 and 7 are key

weeks. In Tables 6-2 and 6-4, Week 5 is shown to have a large amount of

significant results for both the CA and the Written Exam tests. In this experiment,

we also see significant differences in Week 4 and 6, Week 6 being data from the

first in-lab programming exam.

6.4.2 Linear Regression

In this section the results of comparing each individual feature to the

outcome in CA grades, and in Written Exam grades, on a week-to-week basis using

Linear Regression are presented in Table 6-6, Table 6-7, Table 6-8, and Table 6-9.

Any coefficient of more than 0 suggests a correlation between the feature and the

grade and is in bold.

92

6.4.2.1 CA

This section presents the results of the Linear Regression tests for the CRE

data divided by CA results.

Lab 1 2 3 4 5

C2C -0.09416 0.019169 0.123269 -0.03011 0.137087

C2R -0.12198 0.02078 0.104036 0.030479 0.078994

R2C -0.17784 -0.06182 -0.06688 -0.03215 -0.03886

R2R -0.16761 -0.0544 -0.12613 -0.13983 -0.08048

R2E -0.12605 0.028008 -0.0628 -0.12183 0.005408

E2C -0.28039 -0.04157 -0.07542 -0.08401 0.005655

E2R -0.1995 -0.05404 -0.06029 -0.10943 -0.04504

E2E -0.16783 -0.05461 -0.05506 -0.10792 -0.04073

Table 6-6: CRE Linear Regression CA for Weeks 1 to 5

In Table 6-6, it is shown that C2C and C2R are consistently significantly

correlated to CA results from Week 2 onwards (with the exception of C2C in Week

4). There is a spike in results in Week 5, with 4 significant features and the highest

coefficient so far, >0.13 for C2C.

Lab 6 7 8 9 10

C2C 0.323132 0.069366 -0.09044 0.240351 -0.01086

C2R 0.325892 0.140258 -0.2907 0.095463 0.069104

R2C 0.16556 0.082785 -0.14443 -0.01828 0.104909

R2R -0.01554 -0.04266 -0.08905 -0.01912 -0.1271

R2E -0.01054 -0.01276 -0.14072 0.074252 -0.14515

E2C -0.01401 -0.03234 -0.13799 0.061116 -0.14482

E2R -0.03995 -0.00024 -0.09778 0.00053 -0.16711

E2E -0.04922 -0.047 -0.10543 0.012922 -0.1654

Table 6-7: CRE Linear Regression CA for Weeks 6 to 10

In Table 6-7, C2C and C2R are significantly correlated to CA results for

most weeks The two highest coefficients are in Week 6, with coefficients of >0.32

for C2C and C2R. There is a spike in results in Week 9, with six significant

features and a coefficient of >0.24 for C2C.

6.4.2.2 Written Exam

This section presents the results of the Linear Regression tests for the CRE

data divided by Written Exam results.

93

Lab 1 2 3 4 5

C2C -0.04923 0.022117 0.168315 -0.05427 0.079982

C2R -0.09021 0.02293 0.128905 -0.02908 0.032211

R2C -0.13122 -0.03645 -0.06711 -0.07859 -0.06211

R2R -0.13391 -0.03141 -0.11069 -0.13128 -0.06415

R2E -0.08125 0.011948 -0.01036 -0.15574 -0.05909

E2C -0.25009 -0.02221 -0.04012 -0.07877 -0.04361

E2R -0.1076 -0.07904 -0.04046 -0.07044 -0.04374

Table 6-8: CRE Linear Regression Written Exam for Weeks 1 to 5

In Table 6-8, it is shown that C2C and C2R are significantly correlated to

Written Exam results in Week 2, Week 3, and Week 5, similar to the results for CA

shown in Table 6-2. Unlike Table 6-2, there is no clear spike in significant features

in Week 5.

Lab 6 7 8 9 10

C2C 0.229808 0.072222 -0.02825 0.103773 -0.03633

C2R 0.212262 0.10061 -0.10334 0.0585 0.023019

R2C 0.091506 -0.03114 -0.14139 -0.07464 -0.00572

R2R 0.002575 -0.06386 -0.0602 -0.09711 -0.11559

R2E 0.004218 -0.08525 -0.08295 -0.03595 -0.12196

E2C -0.0023 -0.09864 -0.0823 -0.03735 -0.11979

E2R -0.01481 0.016484 -0.08543 -0.06302 -0.14547

Table 6-9: CRE Linear Regression Written Exam for Weeks 6 to 10

C2C and C2R are again mostly significant in Table 6-9. The highest Linear

Regression coefficients for the Written Exam tests are in Week 6, which is also

what was seen in the CA tests in Table 6-7.

The highest Linear Regression coefficient in relation to CA and Written

Exam outcome are from Week 6, when the students have their first in-lab

examination. Like in the Wilcox Rank Sum Test, the C2C movements and the C2R

are the most significant indicators of student outcome according to these tests, the

highest being in Week 6 and Week 9. The CRE movements are less related to the

students’ Written Exam than their CA outcome, but there are similar signs of

higher and lower achieving students diverging in Week 6.

94

6.5 Neural Network Classifiers

 In this section, the results of the Neural Net classifiers for the CA results

and the Written Exam results will be presented and discussed.

6.5.1 Comparison of CA Classifiers

The CA classifier results are shown according to the week in the semester and

the threshold used to select the features to be used as input for the Neural Networks

in Table 6-10 and Table 6-11. The tables contain the classifier accuracy and the

number of False Passes out of 25 students in the lower 50% of the grades, which

would be labelled as Fails in a successful classification.

In the CRE classifiers comparison Tables 6-10 and 6-11, the results for the

three thresholds are similar, with the threshold-0 being the most successful in that:

i. It works from Week 3, while other thresholds do not work until Week 5 or

6, due to not having enough features.

ii. In Table 6-10, the accuracy is the highest for almost every week, other than

being slightly lower than threshold-0.1 in Week 6.

iii. In Table 6-11, the number of False Passes is lowest in every week other

than Week 5, when threshold-0.1 has a lower average False Pass number,

but also a lower accuracy rate, and Week 7, when the number of average

False Passes is slightly higher than threshold-0.1.

3 4 5 6 7 8 9 10

0 0.677 0.706 0.73 0.758 0.763 0.766 0.767 0.767

0.1

0.684 0.764 0.763 0.762 0.761 0.756

0.15

0.737 0.728 0.737 0.719 0.728

Table 6-10: CRE CA Classifier Accuracy

The threshold-0 classifier is the most successful for predicting student CA

outcome with CRE data. Looking at the averages of both the classifier accuracy

and the False Passes in the first half and then the second half the semester,

threshold-0 has the highest accuracy and the lowest False Pass rate.

3 4 5 6 7 8 9 10

0 8.7 8.55 7.7 6.9 6.7 6.8 6.75 6.7

0.1

6.15 7.05 6.55 7.1 6.95 7.1

0.15

7.75 7.3 7.95 7.85 7.8

Table 6-11: CRE CA Classifier False Passes

95

6.5.2 Comparison of Written Exam Classifiers

The Written Exam classifier results are shown according to the week in the

semester and the threshold used to select the features to be used as input for the

Neural Networks in Table 6-12 and Table 6-13. In these comparison tables, the

results show that, like the CA classifier, the threshold-0 classifier is the most

successful for predicting student Written Exam outcome with CRE data:

i. It works from Week 3, while other thresholds do not work until Week 6.

ii. The accuracy is the highest for every week.

iii. The number of False Passes is lowest in every week.

3 4 5 6 7 8 9 10

0 0.731 0.733 0.762 0.781 0.770 0.777 0.780 0.776

0.1

0.718 0.707 0.706 0.709 0.704

0.15

0.71 0.71 0.713 0.713 0.712

Table 6-12: CRE Written Exam Classifier Accuracy

3 4 5 6 7 8 9 10

0 11 10.2 11.25 7.5 7.25 7.5 6.8 7.15

0.1

7.9 8.35 8.75 8.35 8.15

0.15

8.15 8.35 8.1 8.05 8.05

Table 6-13: CRE Written Exam Classifier False Passes

The most successful classifiers for both CA and Written Exam results are

those that use the Linear Regression threshold of 0. Any feature that has any

correlation to outcome according to the Linear Regression tests is used in the

Neural Network Classifier. The Appendix Section 10.6 presents more information

about the successful classifiers, such as the Area Under Curve (AUC), the loss, and

the recall as well as the numbers for True Fails, True Passes, False Fails, and False

Passes. These attributes can also be seen for the less successful classifiers.

6.6 CRE Week-by-Week

In this section, the results of the Wilcox Rank Sum Test, the Linear

Regression tests and the results of the classifiers will be examined on a week-to-

week basis. The C2C and C2R movements return significant results from the

Wilcox Rank Sum Test for every week throughout the semester, so this will not be

mentioned explicitly in every weekly section.

96

Week 1

The Wilcox Rank Sum Test found significant differences in the C2C, C2R,

and R2E movements in the CA tests, shown in Table 6-2, and significant

differences in the C2C, C2R, R2E, and E2C movements in the Written Exam tests,

shown in Table 6-4. The Linear Regression tests found no positive coefficients in

Week 1 in relation to CA or Written Exams. There are not enough features with

significant Linear Regression results to run classifiers at this point for any

threshold.

Week 2

Both CA and Written Exam have significant differences between the two

groups in R2E and well as C2C and C2R, shown in Tables 6-2 and 6-4. The Linear

Regressions tests return very low but positive coefficients for C2C, C2R, and R2E

in the CA test, shown in Table 6-6, and the Written Exam test, shown in Table 6-8.

Although there are three usable features at this point, they are too highly correlated

according to the VIF test (as mentioned in Section 4.4) and so there is no classifier

for this set of data.

Week 3

The CA Wilcox Ranks Sum Test this week returns a significant result for

the C2C, C2R, and R2C movements for CA, shown in Table 6-2, and the C2C,

C2R, R2C, and R2E for the Written Exam, shown in Table 6-4. The Linear

Regression tests only have positive values for the C2C and C2R movements for

both CA and Written Exam, shown in Table 6-6 and Table 6-8. This week has the

first classifiers, but only for threshold-0. The classifiers do relatively well for so

early in the semester, 67% accuracy for CA as seen in Table 6-10, with 8.7 False

Passes out of 25 Fails as shown in Table 6-11. The Written Exam classifier has a

higher accuracy of 73% as shown in Table 6-12, but also a higher number of False

Passes of 11 out of 25, shown is Table 6-13.

Week 4

This week’s data has five significant features in CA and the Written Exam:

C2C, C2R, R2C, R2R, and E2C, as shown in Tables 6-2 and 6-4. However, this is

not reflected by the Linear Regression tests. Only C2R returns a positive

coefficient for CA, shown in Table 6-6, and there are no positive coefficients for

97

the Written Exam, shown in Table 6-8. There are only threshold-0 classifiers this

week, and the classifier for CA is slightly more accurate than the previous week

with an accuracy of 70.6%, shown in Table 6-10, but the False Pass Rate is still

high at 8.55 out of 25 Fails, shown in Table 6-11. The Written Exam classifier

accuracy does not improve significantly in comparison to the previous week, as

shown in Table 6-12, but the number of False Passes did improve slightly, reducing

from 11 to 10.2, as shown in Table 6-13.

Week 5

There is a large jump in the Wilcox Rank Sum Test this week, with all of

the features in the CA test returning a significant result, and six of the features in

the Written Exam returning a significant result as shown in Tables 6-2 and 6-4.

There is also a leap in Linear Regression results, with four features having a

positive coefficient in the CA tests, shown in Table 6-6, and two in the Written

Exam tests, shown in Table 6-8. The CA classifier for threshold-0 rises to 73%

accuracy, shown in Table 6-10, and the number of False Passes drops to 7.7 out of

25, shown in Table 6-11. The first threshold-0.1 classifier has a lower accuracy of

68%, but also a lower False Pass number of 6.15 out of 25. The Written Exam

classifier rises to 76%, shown in Table 6-12, but the False Pass is still high, at

11.25 out of 25, shown in Table 6-13.

Week 6

This week is an exam week, and so it is not surprising that it has a large

number of significant results from the Wilcox Rank Sum Test. In both the CA and

the Written Exam tests, shown in Table 6-3 and Table 6-5, all features other than

ER and EE have significant results. The Linear Regression tests show the highest

coefficient values for the semester for the CA and the Written Exam data, both in

C2C and C2R of this week, shown in Table 6-7 and Table 6-9. These high values

mean the first threshold-0.15 classifier can be run, and it has an accuracy of 73%,

with a False Pass rate of 7.75 out of 25 for CA, shown in Table 6-10 and Table 6-

11, and 71% accuracy and 8.15 False Passes out of 25 for Written Exams, shown in

Table 6-12 and Table 6-13. These are not the most successful classifiers of the

week, as the threshold-0 classifier for CA has a higher accuracy of 75.7%, and its

number of False Passes drops to 6.9. The threshold-0.1 classifier accuracy rises to

76% but its False Pass number rises to 7.05. The threshold-0 is the most successful

of the week, with an accuracy of slightly over 76%, and its False Pass number

98

dropping from 7.7 to 6.9. For the Written Exam classifiers, the threshold-0.1 is

very similar to the threshold-0.15, with an accuracy of 71.8% and a False Pass

number of 7.9. The threshold-0 classifier is the most successful, with its accuracy

rising to 78%, and its False Pass number dropping from 11.25 to 7.5. The Written

Exam classifiers do not improve significantly for the rest of the semester.

Week 7

Similar to week six, this week also has six significant features in the

Wilcox Rank Sum Test for both CA and Written Exams, as shown in Table 6-3 and

Table 6-5. The Linear Regression results show three significant features the CA

tests in Table 6-7, and two in the Written Exam results in Table 6-9. The CA

threshold-0.1 classifier again has an accuracy of 76%, but the False Pass number

drops to 6.55. The CA classifier does not improve significantly after this point in

the semester. The Written Exam threshold-0.1 classifier is slightly less successful

this week than the previous week, with an accuracy of 70%, and a False Pass

number of 8.35. The threshold-0 classifier for CA has a slight increase in accuracy

to 76%, and a very slight drop in False Pass number to 6.7.

Week 8

This week the Wilcox Rank Sum Test only returns significant results for

C2C and C2R movements in both CA and Written Exam results, as seen in Table

6-3 and Table 6-5. There are no positive Linear Regression results, which can be

seen in Tables 6-7 and 6-9. As a result, there are no new features for the classifiers,

and so the results are similar to the previous week.

Week 9

This week the Wilcox Rank Sum Test shows four significant features for

the CA and the Written Exam groups, C2C, C2R, R2E, and E2C, shown in Tables

6-3 and 6-5. There are six positive coefficients in the CA Linear Regressions tests,

and two in the Written Exam tests, shown in Table 6-7 and Table 6-9. The C2C in

these results are both one of the highest coefficients in the data set for each grade

type. Despite this, the CA classifiers this week show very little change from the

previous week, with the biggest change being a drop in accuracy for the 0.15 CA

classifier, which can be seen in Table 6-10. The Written Exam classifiers are also

very similar to the previous week, with the biggest change being the drop in False

Passes for the threshold-0 classifier from 7.5 to 6.8, shown in Table 6-13.

99

Week 10

Week 10 has four significant features for CA and three for the Written

Exam according to the Wilcox Rank Sum Test results shown in Tables 6-3 and 6-5.

The Linear Regression tests show two positive coefficients in the CA tests and one

in the Written Exam tests, as shown in Table 6-7 and Table 6-9. Again, there are no

large changes in the classifiers this week.

6.7 CRE Conclusions

The features C2C and C2R consistently have significant Wilcox Rank Sum

Test results throughout the semester, implying that these are the key behaviours in

student divergences. C2C and C2R movements may indicate if the student is able

to write compilable code, and if they are moving on from compile attempts to

writing code without syntax errors that can run. It is not surprising that at this

stage, this is the key difference between the higher and lower achieving students.

The CA classifier becomes useful around Week 6, when the classifier

results reach 76% and the number of False Passes drops to less than 7 out of 25

failing students. In the Wilcox Rank Sum Tests, we see that the most significant

differences occur in Week 5, Week 6, and Week 7, pointing to this time as a key

divergence point for the students.

The Written Exam classifier also becomes useful around Week 6 when the

classifier results reach over 78% and the number of False Passes is drops to 7.5 out

of 25 failing students. This is reflected in the Wilcox Rank Sum Test results, where

the weeks with the most significant results are Week 4 to Week 7.

Weeks 5,6, and 7 are key weeks in the divergence of student behaviour,

and the classifiers peak in success around this time, and do not significantly

improve throughout the rest of the semester. This may be due to the increase in

complexity of the assignments in Week 5, and the exam in Week 6.

These results largely replicate what was found in the paper in the Section

6.2, with some minor differences due to CA in this case including regular lab

assignments, and not just lab exams. It has also been shown that CRE movements

are successful in predicting Written Exam results, and not just coding assignment

results. Like in the published paper, we have again found that the C2C and C2R

movements are the most significant differences between the two groups.

100

7. Experiment 3: Complexity of Student Code

In this chapter, the COMPLEX data will be explored using the methods

outlined in Section 4.3 and 4.4. The COMPLEX data comprises of two

measurements of the complexity of student code, using compressed code size and

nodes in parse trees generated from the student code. The results of the tests and

HOG classifier are discussed.

7.1 Introduction to Code Complexity

In Neo Piagetian theory, as an individual learns a skill, they begin to learn to

“clump” concepts relating to the skill together. In terms of programming, this

allows for more complex code to be written, as the programmer becomes able to

use different concepts together. In this experiment, we examine if the ability to

write more complex code means that the student will ultimately be successful in

their CA and Written Exams.

There is existing work that explores the connection between a student’s ability

to write complex code and their exam outcome. The paper “Utilizing student

activity patterns to predict performance” [45] uses the size of students’ code after

removing comments and being compressed to predict student performance. In this

chapter, we will examine if there is a connection between a student’s ability to

write complex code and their exam outcome, and if so, how early this connection

becomes apparent.

The MULE system records a student’s code every time they submit their code

for automatic grading, resulting in a huge database of student code. For this

experiment, only the highest graded submission for each assignment is used. Two

techniques were used to generate metrics for the complexity of submitted code:

1) Comments were removed from the file, and the files were then

compressed using Python’s gzip library. The size of the compressed

file is used as an indication of the code complexity.

2) The Python javalang and NetworkX [57] libraries are used to create

parse trees of the code. The more nodes in the generated parse tree, the

more complex the code.

101

The Cyclomatic Complexity [58] model of examining the complexity of

files was considered but it was found that the code written by first year

programming students was too simple for this method.

7.2 Features

The data set for this experiment includes the file size from each assignment

after comments are removed and the code is compressed, and the number of nodes

in a parse tree created from each assignment.

In Figure 7.1 is an example of code a user might write and submit in

MULE, and the parse tree generated from this code. The assignment asks the

student to write code to check if a given age is old enough to vote or not, and to

print an appropriate response to the terminal.

public class Selection

{

 public static void main (String args [])

 {

 int age = 10;

 //Check if age is 18 or over

 if (age >= 18)

 {

 System.out.println("Person can vote");

 }

 else

 {

 System.out.println("Person cannot vote");

 }

 }

}
Figure 7-1: Selection.java Sample Code

To generate the parse tree and file size data, the comments are removed, as

shown in Figure 7-2.

public class Selection

{

 public static void main (String args [])

 {

 int age = 10;

 if (age >= 18)

 {

 System.out.println("Person can vote");

 }

 else

 {

 System.out.println("Person cannot vote");

 }

 }

}
Figure 7-2: Selection.java with Comments Removed

102

The generated parse tree is shown below in Figure 7-3. In this parse tree

there are 12 nodes, so the node data for this user, for this assignment is recorded as

12.

Figure 7-3: Parse Tree Generated from Selection.java

For the file size data, the code without the comment is compressed, and the

resulting file size is 207 bytes, so the data for this user, for this assignment is

recorded as 207.

For each assignment, the highest graded submission for each student is

used. There is a total of 54 assignments consisting of 49 regular lab questions and 5

lab exam questions. The data set also includes the student’s outcome in their final

CA grade and their end of year Written Exam. A description of the weekly

assignments can be found in Section 4.1.2.1.

7.3 Code Complexity Analysis

In this section, the measurements of code complexity are examined. The

measurements are:

1)The compressed file sizes.

2) The number of nodes in generated parse trees of the submitted code.

The measurements are examined using the Wilcox Ranks Sum Test, and Linear

Regression.

103

7.3.1 Wilcox Rank Sum Test: File Size

This section contains the results of the Wilcox Rank Sum Test on the

results of the compressed file size with comments removed on each individual

assignment during the semester. The two groups being compared are the top 50%

and bottom 50% of students in the CA grades, and the Written Exam.

7.3.1.1 Continuous Assessment

In the Table 7-1, it can be seen that there are significant results from the

Wilcox Ranks Sum test, implying differences in file size between the two student

groups in Week 1 in the last question of the week, Question 4. All but one of the

questions in Week 2, Question 2, have significant results. Again, only one of the

Questions in Week 3 does not have significant results, Question 1. In Week 4, half

of the questions, Question 3, 5, and 6 have significant results. Every question in

Week 5 has significant results. These results suggest that there are differences in

student file size, even in the first week of labs.

Lab 1 2 3 4 5

Q1 0.604862 0.049804 0.449978 0.319243 5.41E-07

Q2 0.185383 0.954229 0.026081 0.500581 2.03E-09

Q3 0.152753 0.000102 0.001604 0.030253 5.91E-13

Q4 2.24E-06 0.002272 0.000137 0.945491 9.77E-16

Q5 N/A 4.55E-07 5.16E-10 0.016984 1.13E-10

Q6 N/A 4.37E-10 1.98E-08 3.14E-07 N/A

Q7 N/A N/A 2.16E-08 N/A N/A

Table 7-1: COMPLEX File Size Wilcox Rank Sum Test CA for Weeks 1 to 5

Lab 6 7 8 9 10

Q1 0.142143 0.232002 0.302718 0.572859 1.52E-05

Q2 0.00241 3.06E-08 7.10E-08 0.075603 1.32E-10

Q3 0.002336 8.94E-10 4.18E-05 0.003301 3.29E-07

Q4 0.978451 1.22E-16 6.82E-16 1.56E-09 2.28E-12

Q5 7.87E-10 N/A 4.95E-07 1.58E-07 2.34E-23

Q6 3.90E-21 N/A 4.56E-16 N/A N/A

Table 7-2: COMPLEX File Size Wilcox Rank Sum Test CA for Weeks 6 to 10

In Table 7-2, it can be seen that most questions from Week 6 to Week 9

have significant results in the Wilcox Rank Sum test. In Week 10, every question

104

has significant results, implying significant differences in file size between two

groups throughout the semester.

7.3.1.2 Written Exam

In the Table 7-3, it can be seen that, similar to the CA results, there are

significant results from the Wilcox Ranks Sum test, implying differences in file

size between the two student groups in Week 1 in the last question of the week,

Question 4. Four of the questions in Week 2 have significant results and five of the

questions in Week 3 have significant results, Question 1. In Week 4, only two of

the questions have significant results. Every question in Week 5 has significant

results. These results suggest that there are differences in student file size, though

there are less significant results than those shown in the CA results in Table 7-1.

 Lab 1 2 3 4 5

Q1 0.665005 0.281836 0.05991 0.5943 0.00028

Q2 0.236985 0.323775 0.794231 0.057319 1.44E-08

Q3 0.39627 0.00072 0.00297 0.101875 2.50E-11

Q4 6.99E-05 0.03272 0.00639 0.819723 7.90E-12

Q5 N/A 0.00013 8.64E-08 0.00684 1.38E-09

Q6 N/A 1.55E-05 7.07E-05 9.27E-05 N/A

Q7 N/A N/A 5.78E-06 N/A N/A

Table 7-3: COMPLEX File Size Wilcox Rank Sum Test Written Exam for Weeks 1 to 5

In Table 7-4, it can be seen that, similar to the results for CA in Table 7-2,

most questions from Week 6 to Week 9 have significant results in the Wilcox Rank

Sum test. In Week 10, every question has significant results, implying significant

differences in file size between the two groups throughout the semester.

Lab 6 7 8 9 10

Q1 0.674845 0.283349 0.610174 0.962299 0.00354

Q2 0.00748 1.57E-07 2.80E-05 0.03341 1.19E-06

Q3 0.00039 2.40E-06 0.00015 0.13539 0.0023

Q4 0.723586 1.99E-10 8.97E-11 2.72E-06 9.51E-06

Q5 2.42E-06 N/A 0.00036 6.75E-05 8.93E-12

Q6 6.41E-16 N/A 2.25E-10 N/A N/A

Table 7-4: COMPLEX File Size Wilcox Rank Sum Test Written Exam for Weeks 6 to 10

In the file size results, there is a clear difference in the groups for most of

the assignments, for both CA and the Written Exam. Lab 5 is notable in that the

results for all of the assignments in this lab are significant. This is also true for

105

Week 10, but earlier occurrences of this are interesting, as they may indicate a

divergence point and a key point for possible interventions.

Many of the weeks have significant p-values for the last assignment of the

week. These assignments are often not visible until the students are in their

assigned lab time, and so only the students with a good grasp of the material, who

are able to formulate solutions based on their programming “tool-kit” and are able

to work quickly, do well on these assignments. These assignments also tend to be

the most challenging, as the questions for each lab increase in difficulty.

7.3.2 Wilcox Rank Test: Nodes

In the results of the Wilcox Rank Test using the nodes generated from the

student code, and the students grades in CA, and the final Written Exam, there are

fewer differences in the groups compared to the file size results in both CA and the

Written Exam. However, the differences we do see follow the same overall pattern

as seen in the file size test: the later assignments in each lab tend to have a

significant difference between the two groups, and most of the assignments in

Week 5 have significant features.

7.3.2.1 Continuous Assessment

Unlike the results from the file size tests in Table 7-1, there were no

significant results in the first week of the labs. Instead, the first significant results

were in Week 2, as can be seen in the Table 7-5. In Week 3, five of the questions

have significant results, in Week 4, two of the questions have significant results. In

Week 5, four of the five questions have significant results.

 Lab 1 2 3 4 5

Q1 0.998653 0.900584 0.086005 0.02603 3.13E-06

Q2 1 0.19393 0.324603 0.204264 2.48E-09

Q3 0.457608 0.00011 0.04159 0.275098 1.52E-09

Q4 0.70783 0.198016 0.00015 0.341463 1.12E-13

Q5 N/A 0.997306 9.10E-08 0.059452 0.826948

Q6 N/A 2.44E-07 3.51E-07 5.27E-06 N/A

Q7 N/A N/A 9.29E-09 N/A N/A

Table 7-5: COMPLEX Nodes Wilcox Rank Sum Test CA for Weeks 1 to 5

The results of the Wilcox Rank Sum test for the node data for the second

half of the semester for CA, shown in Table 7-6, are similar to the results of the file

106

size data results shown in Table 7-2, with the exception of Question 3 in Lab 10,

which is not significant in the nodes tests but is significant in the file size tests.

Lab 6 7 8 9 10

Q1 0.337621 0.288302 0.454547 0.052725 4.09E-05

Q2 0.00012 0.0017 6.58E-09 0.074773 6.25E-13

Q3 0.0049 3.48E-08 0.00014 0.00814 0.452005

Q4 0.903257 7.31E-15 4.04E-12 5.92E-09 2.43E-09

Q5 1.63E-18 N/A 2.04E-05 0.03391 1.34E-18

Q6 2.78E-15 N/A 7.41E-16 N/A N/A

Table 7-6: COMPLEX Nodes Wilcox Rank Sum Test CA for Weeks 6 to 10

7.3.2.2 Written Exam

Like in the CA results in Table 7-5, there were no significant results in the

first week of the labs. The first significant results are in Week 2, as can be seen in

Table 7-7. In Week 3, five of the questions have significant results, and only one of

the questions in Week 4 has a significant result. In Week 5, four of the five

questions have significant results.

Lab 1 2 3 4 5

Q1 0.830238 0.322535 0.00169 0.056988 0.00557

Q2 1 0.665618 0.561424 0.770247 4.42E-08

Q3 0.911954 0.02369 0.079865 0.427524 1.10E-06

Q4 0.852682 0.657663 0.00013 0.525592 1.41E-10

Q5 N/A 0.99731 8.65E-06 0.11216 0.622649

Q6 N/A 0.00222 2.64E-05 0.00077 N/A

Q7 N/A N/A 3.35E-06 N/A N/A

Table 7-7: COMPLEX Nodes Wilcox Rank Sum Test Written Exam for Weeks 1 to 5

Lab 6 7 8 9 10

Q1 0.582665 0.270668 0.997306 0.387402 0.0247

Q2 0.00141 0.08103 1.36E-05 0.096176 2.61E-06

Q3 0.00131 7.25E-05 0.0011 0.308295 0.8014

Q4 0.914632 1.62E-08 6.27E-07 0.00015 0.00341

Q5 1.99E-13 N/A 0.00416 0.230357 5.75E-10

Q6 1.39E-09 N/A 7.79E-10 N/A N/A

Q7 N/A N/A N/A N/A N/A

Table 7-8: COMPLEX Nodes Wilcox Rank Sum Test Written Exam for Weeks 6 to 10

107

The results of the Wilcox Rank Sum test for the node data for the second

half of the semester for the Written Exam, shown in Table 7-8, are similar to the

results of the file size data results shown in Table 7-2, with the exception of Lab 9,

which has only one significant result in the nodes tests but has three significant

results in the file size tests.

What is interesting is that Q5 in Week 5, does not return a significant result

in CA or in the Written Exam, as shown in Table 7-6 and Table 7-8, despite it

being significant according to the file size tests. It may be because the nodes

method of measuring complexity considers repetition, for example copy-and-

pasted print statements, as increased complexity, whereas the compression method

reduces complexity in the event of copy-and-pasted code. If the code written for

Week 5 Q5 by the lower achieving students involves a lot of repetitive code from

students attempting to solve the problem, this could result in a similar number of

nodes, but would have a lower compressed file size. Overall, there are less

significant differences between the two groups in the node data tests than in the file

size tests, perhaps suggesting that the file size tests are more successful and more

useful when examining the differences between the two groups.

7.3.3 Linear Regression: File Size

In this section, the Tables 7-9, 7-10, 7-11, and 7-12 present the results of

the Linear Regression tests finding the correlation between the file size data and

the CA results, and file size and Written Exam results.

7.3.3.1 Continuous Assessment

In the Linear Regression coefficients for the first half of the semester,

presented in Table 7-9, it can be seen that the first significant coefficients are in

Week 2. There are also positive coefficients in Week 3 and Week 4, with the

higher number questions (Q5 and Q6 rather than Q1 and Q2 for example) tending

to be positive. This may be because the questions tend to get more difficult, and

also the students often would not see the last question in a lab until the day of the

lab. All of the questions in Week 5 have positive coefficients, with Q4 and Q3

being the two highest coefficients so far.

108

 1 2 3 4 5

Q1 -0.08431 -0.04257 -0.04562 -0.12931 0.06685

Q2 -0.11132 -0.05622 -0.03485 -0.063 0.1101

Q3 -0.06388 0.00326 -0.00282 -0.06638 0.18698

Q4 -0.02778 -0.01139 0.05398 -0.05592 0.24215

Q5 N/A 0.01306 0.09361 -0.0061 0.16888

Q6 N/A 0.17289 0.10388 0.09624 N/A

Q7 N/A N/A 0.14446 N/A N/A

Table 7-9: COMPLEX File Size Linear Regression CA for Weeks 1 to 5

In the Linear Regression coefficient values shown in Table 7-10, we can

see another high coefficient value in Week 6, Q6 of >0.27. Week 7 has three

positive coefficient values out of four questions, and Week 8 has five positive

coefficients out of six. Week 9 has only two positive coefficients out of five

questions. Week 10 has four positive coefficients out of five questions, and the

highest coefficient of the semester for CA file size in Q5.

 6 7 8 9 10

Q1 -0.04343 -0.05054 -0.07581 -0.05649 0.064731

Q2 -0.00693 0.01858 0.03763 -0.05 0.07166

Q3 0.01038 0.06305 0.0652 -0.00358 0.09888

Q4 -0.06164 0.24354 0.19592 0.06171 0.16748

Q5 -0.03446 N/A 0.03446 0.08994 0.33618

Q6 0.27555 N/A 0.18403 N/A N/A

Table 7-10: COMPLEX File Size Linear Regression CA for Weeks 6 to 10

7.3.3.2 Written Exam

Similar to the results shown in Table 7-9 for the Linear Regression results

for CA, the first positive coefficient for the Written Exam is in Week 2, but only in

one question, Q6. Week 3 has four positive coefficients and Week 4 has one. Week

5 has four positive coefficients out of the five questions, including the two highest

coefficients so far, Q5 and Q4.

In the Table 7-12, we see that the Written Exam Week 6 has the highest

coefficient of the semester in Q6, and has four positive coefficients, compared to

the CA results that has only two, as shown in Table 7-10. Week 7 has three positive

109

coefficients, Week 8 has only three positive coefficients, compared to the CA

results of five of the six questions. Week 9 has two positive coefficients. Week 10

has five positive results out of five questions.

Lab 1 2 3 4 5

Q1 -0.04822 -0.04372 -0.02446 -0.07147 -0.01261

Q2 -0.04642 -0.03803 -0.03242 -0.02198 0.09531

Q3 -0.04477 -0.00919 -0.0107 -0.03101 0.07761

Q4 -0.01851 -0.00996 0.05129 -0.03717 0.18156

Q5 N/A -0.01606 0.04458 -0.00136 0.13225

Q6 N/A 0.06744 0.05156 0.03379 N/A

Q7 N/A N/A 0.10393 N/A N/A

Table 7-11: COMPLEX File Size Linear Regression Written Exam for Weeks 1 to 5

Lab 6 7 8 9 10

Q1 -0.03499 -0.02747 -0.03438 -0.05838 0.00045

Q2 0.0131 0.09852 -0.04604 -0.04103 0.00783

Q3 0.07007 0.06452 -0.00717 -0.02483 0.02207

Q4 -0.06461 0.12539 0.10896 0.00793 0.06998

Q5 0.06142 N/A 0.00283 0.02659 0.16175

Q6 0.19218 N/A 0.09417 N/A N/A

Table 7-12: COMPLEX File Size Linear Regression Written Exam for Weeks 6 to 10

In the Linear Regression tests, we see that Week 5 has the highest and the

most positive coefficients in the first half of the semester for both CA and the

Written Exam, although there are also some high coefficient values in Week 2 and

Week 3. The highest coefficients are Week 6 Q6 and Week 10 Q5, which are the

two final questions in the formal in-lab examinations, suggesting that these are key

assignments.

7.3.4 Linear Regression Test: Node Data

In this section, the Tables 7-13, 7-14, 7-15, and 7-16 present the results of

the Linear Regression tests finding the correlation between the node data and the

CA results, and the node data and Written Exam results.

7.3.4.1 Continuous Assessment

 In the results of the Linear Regression tests for CA using the nodes data,

shown in Table 7-13, we see that the first positive coefficient is in Week 2, with

Q6. Week 3 has three positive coefficients, including a value of >0.17 for Q7,

110

higher than any result in Week 3 for the file size CA results shown in Table 7-9.

Week 4 has one positive coefficient, and Week 5 has four positive coefficients out

of five questions, including Q4, which has a value of >0.22, the highest coefficient

from the first half of the semester.

Lab 1 2 3 4 5

Q1 -0.0558 -0.06862 -0.04202 -0.1649 0.06231

Q2 -0.0558 -0.04733 -0.06923 -0.07483 0.08168

Q3 -0.02669 -0.012 -0.01884 -0.092 0.17136

Q4 -0.06333 -0.05059 0.048169 -0.04654 0.22143

Q5 N/A -0.06125 0.0657 -0.02449 -0.05299

Q6 N/A 0.0685 0.07059 0.04011 N/A

Q7 N/A N/A 0.17182 N/A N/A

Table 7-13: Nodes Linear Regression CA

In the Table 7-14, we can see the Week 6 results have two positive

coefficients, including the highest result of the semester of >0.3 for Q5. Week 7

has one positive coefficient out of four questions, and Week 8 has four out of six

questions, including one of the largest values, of >0.24 for Q6. Week 9 has one

positive value, and Week 10 has three, similar to the file size results in Table 7-10.

Lab 6 7 8 9 10

Q1 -0.09061 -0.05482 -0.10363 -0.04057 -0.00531

Q2 -0.19423 -0.07044 0.11736 -0.04198 0.06782

Q3 -0.04442 -0.02721 0.0771 -0.00062 -0.02662

Q4 -0.12373 0.10363 0.15545 0.10106 0.03611

Q5 0.30048 N/A -0.04618 -0.04136 0.18728

Q6 0.16537 N/A 0.2408 N/A N/A

Table 7-14: Nodes Linear Regression CA

7.3.4.2 Written Exam

In the results of the Linear Regression tests for Written Exam using the

nodes data, shown in Table 7-15, we see that the first positive coefficients are in

Week 3, with Q4, Q5, Q6, and Q7. Week 4 has no positive coefficients, and Week

5 has three positive coefficients out of five questions, including Q4 which has a

value of >0.17, the highest coefficient from the first half of the semester.

In the Table 7-16, we can see the Week 6 results have three positive

coefficients, including the highest result of the semester of >0.23 for Q5. Week 7

111

has two positive coefficients out of four questions, and Week 8 has four out of six

questions, including one of the largest values, of >0.24 for Q6. Week 9 has one

positive value, and Week 10 has three, similar to the file size results in Table 7-14.

Lab 1 2 3 4 5

Q1 -0.03571 -0.04345 -0.00677 -0.10648 -0.01643

Q2 -0.03571 -0.03223 -0.03321 -0.06021 0.1092

Q3 -0.05851 -0.02703 -0.00905 -0.04325 0.0655

Q4 -0.04116 -0.0308 0.06666 -0.04836 0.1728

Q5 N/A -0.04443 0.0505 -0.02672 -0.01136

Q6 N/A -0.00093 0.05415 -0.00202 N/A

Q7 N/A N/A 0.11135 N/A N/A

Table 7-15: Nodes Linear Regression Written Exam

Lab 6 7 8 9 10

Q1 -0.03455 -0.03887 -0.03531 -0.05092 -0.04349

Q2 -0.13809 0.0115 0.03681 -0.02069 0.01016

Q3 0.00795 -0.0221 0.02175 -0.02328 -0.04914

Q4 -0.04601 0.00614 0.06634 0.02795 0.00452

Q5 0.23399 N/A -0.04025 -0.02984 0.11079

Q6 0.04608 N/A 0.14652 N/A N/A

Table 7-16: Nodes Linear Regression Written Exam

The results of the Linear Regression tests for the nodes data are similar to

the file size data, in that again, Week 5 has the highest and the most positive

coefficients in the first half of the semester for both CA and Written Exam, but

unlike the file size results, and similar to the results of the node Wilcox Rank Sum

test in Section 7.3.2.1, Q5 in Week 5 is not a positive coefficient. Overall, the

Linear Regression tests with node data show less correlations than the file size

tests.

7.4 Neural Network Classifiers

In this section, the weekly classifiers run using the node and the file size

data will be discussed.

7.4.1 Comparison of CA Classifiers

In the Table 7-17, we can see that from Week 2 to Week 4, the threshold-0

classifiers have the highest accuracy when predicting student success according to

112

CA, and from Table 7-18, threshold-0 classifiers have the lowest number of False

Passes, and so are the most successful. Although the threshold-0 classifiers are the

most successful for these two weeks, it is important to note that the number of

False Passes is very high (just under 13 False Passes out of 25 fails in Week 2), and

the classifiers cannot be used reliably at this point.

Lab 2 3 4 5 6 7 8 9 10

0 0.669 0.709 0.722 0.788 0.809 0.828 0.83 0.828 0.847

0.1 N/A 0.688 0.708 0.795 0.813 0.823 0.844 0.843 0.859

0.15 N/A 0.684 0.684 0.81 0.821 0.841 0.853 0.858 0.876

Table 7-17: COMPLEX CA Classifier Accuracy

From Week 5 onwards, it can be seen in Tables 7-17 and 7-18 that the

threshold-0.15 classifiers have the highest accuracy, and the lowest number of

False Passes (other than in Week 6 when the threshold-0.1 classifiers have a

slightly lower number of False Passes), showing that the threshold-0.15 classifiers

are the most successful CA classifiers from Week 5 onward.

Lab 2 3 4 5 6 7 8 9 10

0 12.75 9.15 8.6 6.75 6.15 5.15 5.5 5.05 4.1

0.1 N/A 9.5 9.05 6.65 5.85 6 4.4 4.5 3.4

0.15 N/A 11.3 11.35 6.05 5.95 4.8 4.2 4.3 3.1

Table 7-18: COMPLEX CA Classifier False Passes

In Week 10, the threshold-0.15 classifier has an accuracy of 87.6%, with a

False Pass rate of just 3.1 of 25 students. This is the most successful classifier of

the three experiments so far, comparing MM, CRE, and COMPLEX.

 Average Accuracy Average False Pass

0 0.7396667 8.1666667

0.1 0.7303333 8.4

0.15 0.726 9.5666667

Table 7-19: Compare Early Semester CA Classifiers

 Average Accuracy Average False Pass

0 0.8284 5.19

0.1 0.8364 4.83

0.15 0.8498 4.47

Table 7-20: Compare Late Semester CA Classifiers

113

Comparing the first and the second half of the semester separately and

looking at the averages of the accuracy and the False Passes, the best classifiers for

the first half of the semester is the threshold-0.1, and the best classifiers for the

second half are the threshold-0.15 classifiers.

7.4.2 Comparison of Written Exam Classifiers

In this section, the results of the Written Exam classifiers will be compared

and discussed.

Similar to the CA classifiers shown in Tables 7-17 and 7-18, the Tables 7-

19 and 7-20, showing the accuracy and the False Pass numbers for the Written

Exam classifiers, show that from Week 2 to 5, the threshold-0 classifiers have the

highest accuracy (except for Week 5 when 0.1-threshold has a very slightly higher

accuracy) and the lowest False Pass number for the three weeks. The threshold-0

classifiers are therefore the most successful from Week 2 to Week 5.

Lab 3 4 5 6 7 8 9 10

0 0.706 0.7 0.704 0.756 0.749 0.752 0.738 0.751

0.1 N/A N/A 0.708 0.776 0.776 0.774 0.782 0.767

0.15 N/A N/A N/A 0.782 0.778 0.779 0.779 0.783

Table 7-21: COMPLEX Written Exam Classifier Accuracy

In Table 7-19, we can see that the classifiers for threshold-0.1 and

threshold-0.15 are similar, and higher, than threshold-0. The accuracy is slightly

higher for threshold-0.15 overall, but the data in Table 7-20 shows that the

threshold-0.1 classifiers are more reliable as they have lower False Pass numbers

than the threshold-0.15 classifiers. Therefore, the most successful classifiers from

Week 6 to Week 10 are the threshold-0.1 classifiers.

Lab 3 4 5 6 7 8 9 10

0 9.35 9.5 9.15 7.1 7.2 7.45 7.65 6.35

0.1 N/A N/A 9.45 6.8 6.65 6.55 6.45 6.4

0.15 N/A N/A N/A 7.2 7.85 7.4 7.45 7.15

Table 7-22: COMPLEX Written Exam Classifier False Passes

 Average Accuracy Average False Pass

0 0.7033333 9.3333333

0.1 0.708 9.45

0.15 N/A N/A

Table 7-23: Comparing Early Semester Written Exam Classifiers

114

Comparing the first and second half of the semester separately and looking

at the averages of the accuracy and the False Passes, the best classifier for the first

half of the semester is the threshold-0, and the best classifier for the second half is

the threshold-0.15.

 Average Accuracy Average False Pass

0 0.7492 7.15

0.1 0.775 6.57

0.15 0.7802 7.41

Table 7-24: Compare Late Semester Written Exam Classifiers

7.5 Code Complexity Week-by-Week

Week 1

This week, the Wilcox Rank Sum test found significant differences in the

file size and nodes data of higher achieving and lower achieving groups in CA for

Q4. There are already positive Linear Regression results from the file size data in

both CA and Written Exam tests from Q4, but not in the nodes data. The Q4

assignment asks students to declare variables, perform, and store the results of

mathematical operations and print the stored results.

Week 2

The Wilcox Rank Sum test shows significant results for file size data CA

tests for questions Q1, Q3, Q4, Q5, and Q6, and for Q3, Q4, Q5, and Q6 of the

Written Exam file size tests. The nodes tests show significant differences in Q3 and

Q6 in the CA tests and the Written Exam tests. Questions Q3, Q5, and Q6 all have

positive coefficients from the file size Linear Regression tests in CA, but only Q6

is positive for the Written Exam. In the node data Linear Regression tests, only Q6

is positive in the CA tests, and no questions have positive coefficients in relation to

the Written Exams. Only the CA classifier has enough features to run this week.

The threshold-0 classifier already has an accuracy of 66.9% but has a high False

Pass number of 12.75.

Week 3

Every question this week from the CA file size Wilcox Rank Sum Tests

has significant results, except Q1. In the Written Exam test, every question has

significant results except the first two. In the nodes Wilcox Rank Sum tests, again

115

in the CA results, every question has significant results, except Q1. In the Written

Exam results, Q1, Q4, Q5, Q6, and Q7 all have significant results. In the Linear

Regression tests for file size, the last four questions have positive coefficients in

relation to CA and to the Written Exams. In the Linear Regression tests for the

node data, the last three questions have a positive coefficient for CA, and the last

four questions have a positive coefficient in relation to Written Exam data. All

three classifier thresholds are able to run this week with CA data, the most

successful being threshold-0, which already has an accuracy of 70.9%, and the

False Pass number has dropped from 12.75 to 9.15. This week has the first Written

Exam classifier, which has an accuracy of 70%, and a False Pass number of 9.35.

Week 4

The Wilcox Rank Sum test for file size shows significant differences in the

CA groups for Q3, Q5, and Q6 and in the Written Exam groups for Q5 and Q6. In

the nodes Wilcox Rank Sum test, Q1 and Q6 have significant results in CA, and

Q6 only in the Written Exam. In the Linear Regression results for file size, Q6 has

a positive coefficient in relation to CA and Written Exams. In the results for the

nodes data Linear Regression tests, the only positive coefficient is for Q6 in

relation to CA. The threshold-0 and threshold-0.1 increase in success this week for

CA, with threshold-0 going from 70.9% accuracy to 72.2%, and the False Pass

dropping from 9.15 to 8.6. The threshold-0.1 classifier goes from 68.8% accuracy

to 70.8%, and the False Pass drops slightly from 9.5 to 9.05. The threshold-0.15

classifier remains the same, as it does not gain any additional features this week.

The Written Exam threshold-0 classifier drops slightly in success this week.

Week 5

The Wilcox Rank Sum test for file size data returns a significant result for

every question for both CA and the Written Exam. In the nodes Wilcox Rank Sum

test, four of the five questions have significant results in relation to both CA and

Written Exam classifications. In the Linear Regression tests for file size data, all

five of the questions this week have positive coefficients for CA, with Q4 being the

highest coefficient so far in this semester. The results for the Written Exam have

four positive coefficients, with Q4 again being the highest of the semester for

Written Exam. For the nodes Linear Regression tests, four of the five questions

have positive coefficients in relation to CA, and three of the five have positive

coefficients in relation to the Written Exam. There is a large leap in effectiveness

of the CA classifiers at this point. For the CA classifiers, the threshold-0 classifier

116

increases in accuracy from 72% to almost 79%, and the False Pass drops from 8.6

to 6.75. The threshold-0.1 classifier increases from 70.8% to 79.5%, and the False

Pass numbers drop from 9.05 to 6.65. The biggest change is in the threshold-0.15

classifier. Its accuracy increases from 68.4% to 81%, and the False Passes drop

from 11.35 to 6.05, making it the most successful classifier this week. However,

the threshold-0 classifier for the Written Exam is mostly the same as the previous

week. The threshold-0.1 classifier is run for the first time and has similar results to

the threshold-0 classifier, with an accuracy of 70.8% and 9.45 False Passes.

Week 6

In the Wilcox Rank Sum test for file size and for nodes, the questions Q2,

Q3, Q5, and Q6 return significant results in relation to both CA and the Written

Exam. In the Linear Regression tests for file size, Q3 and Q6 both have positive

coefficients in relation to CA. In the nodes test, Q2, Q3, Q5, and Q6 have positive

coefficients. In the Linear Regression nodes test, Q5 and Q6 have positive

coefficients for CA, and Q3, Q5, and Q6 have positive coefficients for Written

Exams. Again, each of the classifiers for CA improves this week. The threshold-0

classifier accuracy increases from 78.8% to 80.9%, and the False Passes drop from

6.75 to 6.15. The threshold-0.1 classifier increases from 79.5% to 81.3%, and the

False Pass rate drops from 6.65 to 5.85. The threshold-0.15 classifier increases

from 81% to 82.1%, and False Pass rate drops very slightly from 6.05 to 5.95,

making it the most successful classifier again this week. In the Written Exam

classifiers, there is a leap in success this week. The threshold-0 classifier goes from

70% to 75.6%, and the False Passes drop from 9.15 to 7.1. In the threshold-0.1

classifier, the accuracy goes from 70.8% to 77.6%, and the False Pass drops from

9.45 to 6.8. The threshold-0.15 classifier runs with Written Exam data for the first

time and the accuracy is 78%, while the False Pass number is 7.2. It is arguable

that threshold-0.1 or threshold-0.15 are the most successful this week.

Week 7

In the Wilcox Rank Sum tests for file size and for nodes, the Q2, Q3, Q4,

are all significant for both CA and Written Exam groups. In the Linear Regression

tests for file size, Q2, Q3, and Q4 has positive coefficients for CA and for the

Written Exam. In the node Linear Regression tests, Q4 is positive for CA, and Q2

and Q4 are positive for the Exam. The threshold-0 CA classifier increases in

accuracy from 80.9% to 83%, and the False Pass drops from 6.15 to 5.15. The

threshold-0.1 CA classifier stays roughly the same. The threshold-0.15 CA

117

classifier accuracy goes from 82.1% to 84.1%, and the False Pass drops from 5.95

to 4.8. Threshold-0.15 is again the most successful CA classifier. For the Written

Exam, the classifiers stay around the same as the previous week, with some slight

drops in accuracy and increases in False Pass numbers.

Week 8

The Wilcox Rank Sum Test for both file size and nodes data found

significant differences between the groups in Q2, Q3, Q4, Q5, and Q6 in CA and

Written Exam. The Linear Regression tests for file size have positive coefficients

for Q2, Q3, Q4, Q5, and Q6 in relation to CA, and in Q4, Q5, and Q6 for Written

Exam. In the Linear Regression tests for nodes, the coefficients for Q2, Q3, Q4,

and Q6 are all positive for CA and for Written Exams. The threshold-0 classifier

for CA does not improve, the accuracy is slightly higher, and the False Pass rate

increases slightly. The threshold-0.1 classifier increases in accuracy from 82.3% to

84.4%, and the number of False Passes drops from 6 to 4.4. The threshold-0.15

classifier accuracy rises from 84.1% to 85.3%, and the number of False Passes

drops from 4.8 to 4.2. The Written Exam classifiers are again mostly the same as

the previous week.

Week 9

The Wilcox Rank Sum test for file size finds significant differences

between the CA groups for questions Q3, Q4, and Q5, and for the Written Exam

groups, questions Q2, Q4, and Q5. For nodes it finds differences for questions Q3,

Q4, and Q5 for CA, and for Q4 only for the Written Exam. For the Linear

Regression tests for file size, the questions Q4 and Q5 have positive coefficients in

relation to both CA and Written Exams. For nodes, the question Q4 only has

positive coefficients for both CA and Written Exams. The classifiers for this week

do not greatly change from the week before for CA. For the Written Exam, there is

an increase in accuracy for threshold-0.1, from 77.4% to 78.2%, with a slight

decrease in False Passes from 6.55 to 6.45.

Week 10

In this week, the students have their second lab exam. The Wilcox Rank

Sum test for file size finds significant differences in the higher and lower achieving

groups for every question for both CA and Written Exam. The nodes test found

differences in four of the five questions, for CA and for Written Exam. The Linear

Regression tests for file size show the last four of the five questions have positive

118

coefficients relating to CA, and all of the questions have positive coefficients

relating to Written Exams. The Linear Regression tests for node data show positive

coefficients for Q2, Q4, and Q5 in relation to CA and Written Exams. The CA

classifiers have another leap in success at this point, with the threshold-0 classifier

increasing in accuracy from 82.8% to 84.7%, and the False Passes dropping from

5.05 to 4.1. The threshold-0.1 classifier accuracy increases from 84.3% to 85.9%,

and the False Passes drop from 4.5 to 3.4. Finally, the 0.15-threshold CA classifier

increases to 87.6% accuracy, and the False Passes drop to just 3.1 out of 25 Fails

(12.4%), making it the most successful classifier in the COMPLEX experiment.

The threshold-0 classifier for Written Exams accuracy increases to 75.1%, and the

number of False Passes drops to 6.35. The threshold-0.1 classifier drops to just

under 77% and the False Passes stay the same. The threshold-0.15 classifier

increases in accuracy slightly to 78.3%, and the number of False Passes drops

slightly to 7.15.

7.6 Discussion of Results

In COMPLEX, many of the weeks have significant results from the Wilcox

Rank Sum test, particularly for file size, for the last assignment of the week. These

assignments are often not visible until the students are in their assigned lab time,

and so only the students with a good grasp of the material, who are both able to

formulate solutions based on their programming “tool-kit” and are able to work

quickly, do well on these assignments. These assignments also tend to be the most

challenging, as the questions for each lab increase in difficulty.

The threshold-0.15 classifiers are the most successful in classifying success

in CA and the Written Exam, as they use the most relevant data. However, for early

classification, the threshold-0 classifier that uses whatever data is available can also

be useful. Week 5 data is the most important for CA according to the Linear

Regression results, but Week 6 is more important for the Written Exam.

The code complexity classifiers were successful, with the highest accuracy

of 87% in Week 10 for the CA classifier. The Wilcox Rank Sum tests were also

successful, in that they showed a significant difference between the highest and

lowest performing students throughout the semester, even in Week 1 in the case of

the file size tests, as shown in Table 7-1 and Table 7-3. These tests worked so well

that it was difficult to pinpoint key dates in the semester when the divergence in the

two groups appears. From the file size tests, it seems that, as in the previous

experiments, Week 5 is the key point of divergence, as all the assignments in this

119

week have significant differences between the two groups. It could also be argued

that Week 2 and Week 3 are key points, as most of the assignments in these labs

show significant differences.

The classifiers with threshold-0.15, using features with a Linear Regression

relationship of more than 0.15, has the lowest percentage of False Passes for the

last six weeks, (except Week 6, when the threshold-0.1 classifier is slightly lower).

However, for Week 3 and Week 4, the classifier has a much higher rate of False

Passes, possibly due to the fact that there are not many input features at this point.

There is a spike in CA classifier success in Week 5, with the threshold-0

classifiers jumping from 72% accuracy in Week 4 to 79% in Week 5, the

threshold-0.1 classifiers jumping from 71% to 80% and the threshold-0.15

classifiers jumping from 68% to 81%. These additional assignments are Q2, Q3,

Q4, and Q5 in the above Wilcox Rank Sum test results in Tables 7-1 and 7-5, and

Linear Regression Tables 7-9 and 7-13. In both the Wilcox and Linear Regression

tests, these assignments are among the most significant both in terms of difference

between the two groups, and in association with outcome. Q4 is the most important

of these, as it has one of the highest correlations with CA outcome according to the

Linear Regression tests, but comes earlier in the semester than other assignments

with similar correlations. Q4 asks the students to write code that takes a string as

user input and to print out that string with the first and last characters swapped. On

average, students who did well in their CA wrote more complex code for the Week

5 Q4 assignment, implying that this particular assignment is a key indicator as to

whether or not a student is likely to do well in the module or not.

120

8. Experiment 4: The HOG Classifier

8.1 Introduction to HOG

This section discusses the final classifier that uses all three of the

previously explored data types: MM, CRE, and COMPLEX. From the experiments

on these three data types, a final classifier was built using the same method as in

Chapters 5, 6, and 7 to use all three data types in order to classify students as being

in the top or bottom 50% of the class grades under two categories:

1) Continuous Assessment.

2) Written Exam.

8.2 Features

The features for the HOG Neural Network Classifier are those described in

the previous experiments features sections:

• MM

o This is the Mouse Movement (MM) data type as described

in Section 5.3.

• CRE

o This is the Compile, Run, and Evaluate (CRE) data type as

described in Section 6.4.

• COMPLEX

o This is the Code Complexity (COMPLEX) data type, as

described in Section 7.2.

Note that although all three data sets are used for this classifier, the Linear

Regression results are never higher than 0.1 for MM data, and so the threshold-0.1

and threshold-0.15 classifiers only use CRE and COMPLEX inputs.

8.3 Neural Network Classifiers

In this section, the results of the HOG classifiers, run with the three data

types that were explored in Chapters 5, 6 and 7, will be examined.

121

8.3.1 Comparison of Continuous Assessment Classifiers

The accuracy of the threshold-0, threshold-0.1, and threshold-0.15 HOG

classifiers for CA can be seen in Table 8-1, and the number of False Passes (out of

a possible total of 25) can be seen in Table 8-2.

Lab 2 3 4 5 6 7 8 9 10

0 0.654 0.723 0.74 0.789 0.816 0.838 0.836 0.793 0.823

0.1 N/A 0.719 0.711 0.79 0.813 0.842 0.853 0.846 0.858

0.15 N/A 0.694 0.642 0.812 0.791 0.846 0.851 0.856 0.876

Table 8-1: HOG CA Classifier Accuracy

In Weeks 2 to 4, the 0-threshold classifiers have the highest accuracy, as

seen in Table 8-1, and the lowest number of False Passes as seen in Table 8-2

(although threshold-0.1 has the same False Pass number for Week 3). The most

successful classifier threshold in Week 5 is threshold-0.15, as it has the highest

accuracy and lowest False Pass number.

Lab 2 3 4 5 6 7 8 9 10

0 13 8.45 8.05 6.9 5.8 4.6 4.7 5.45 4.5

0.1 N/A 8.45 8.45 6.55 5.65 5.3 4.35 3.1 3.3

0.15 N/A 9.45 13 6.2 5.9 4.75 4.45 4.35 3.3

 Table 8-2: HOG CA Classifier False Passes

However, because the threshold-0.15 False Pass numbers are so high in

Week 3 and Week 4 and the accuracy is so low compared to threshold-0, the

threshold-0 classifiers are the most successful overall in the first half of the

semester, from looking at the averages of the Weeks 3,4, and 5, as can be seen in

Table 8-3. Week 2 was not included in this, as only the threshold-0 classifier had

any results for this week.

 Average Accuracy Average False Pass

0 0.750667 7.8

0.1 0.74 7.816667

0.15 0.716 9.55

Table 8-3: Averages of Early Semester Classifiers for CA

Looking at the second half of the semester, from Week 6 to Week 10, the

most successful classifiers, according to the averages of the accuracy and the False

Passes, is the threshold-0.1 classifiers, as can be seen in Table 8-4. Although the

122

threshold-0.15 accuracy is higher than the threshold-0.1 accuracy, it also has a

slightly higher average False Pass rate, and the threshold-0.1 has a lower average

False Pass rate.

 Average Accuracy Average False Pass

0 0.8212 5.01

0.1 0.8424 4.34

0.15 0.844 4.55

Table 8-4: Averages of Late Semester Classifiers for CA

The most successful classifiers for early semester classifications are the

threshold-0 classifiers, and the most useful classifiers for later semester

classifications are the threshold-0.1 classifiers. The most successful individual

classifier overall is the threshold-0.15 classifier in Week 10, with an accuracy of

over 87%, and only 3.3 False Passes of 25 Fails. It is interesting to note that for all

thresholds, there is a large leap in classifier accuracy in Week 5, ranging from an

increase of 0.04 to 0.17. There is also a reduction in False Pass numbers, ranging

from 1 to almost 7. This suggests that Week 5 may be a key week in predicting

student outcome in CA.

8.3.2 Comparison of Written Exam Classifiers

The accuracy of the threshold-0, threshold-0.1 and threshold-0.15 HOG

classifiers for Written Exams can be seen in the Table 8-5, and the number of False

Passes (out of a possible total of 25) can be seen in Table 8-6.

Labs 2 3 4 5 6 7 8 9 10

0 0.552 0.656 0.632 0.697 0.702 0.704 0.711 0.713 0.72

0.1 N/A 0.67 0.687 0.736 0.783 0.789 0.791 0.793 0.775

0.15 N/A N/A N/A 0.719 0.784 0.775 0.786 0.78 0.781

Table 8-5: HOG Written Exam Classifier Accuracy

Between Weeks 2 to 5, the most successful classifier is the threshold-0.1

classifier, according to the average accuracy and False Pass number as shown in

Table 8-7.

Labs 2 3 4 5 6 7 8 9 10

0 15.1 11.75 12.95 9.2 8.95 9.4 9.15 9.05 8.95

0.1 N/A 9.05 8.2 7.95 6.45 6.35 6.15 6.1 6.05

0.15 N/A N/A N/A 10.45 6.5 6.9 6.45 6.5 6.5

Table 8-6: HOG Written Exam Classifier False Passes

123

The averages do not include Week 2, as only threshold-0 has a Week 2

result, and although threshold-0.15 has the highest accuracy, it also has a high

False Pass number. Therefore, the most successful early classifier threshold is 0.1.

 Average Accuracy Average False Pass

0 0.661667 11.3

0.1 0.697667 8.4

0.15 0.719 10.45

Table 8-7: Averages of Early Semester Classifiers for Written Exams

The most successful classifier threshold for late semester is the threshold-

0.1, which can be seen in the averages in Table 8-8. The threshold-0.1 classifiers

have the highest average accuracy and the lowest average False Pass number.

 Average Accuracy Average False Pass

0 0.71 11.375

0.1 0.7862 7.775

0.15 0.7812 8.2125

Table 8-8: Averages of Late Semester Classifiers for Written Exams

The most successful classifier throughout the semester is the threshold-0.1

classifier, when considering both the accuracy and the False Passes, even when

looking at the first and second half of the semester separately. The most successful

individual classifier is the threshold-0.1 classifier for Week 9, with an accuracy of

79.3% and a False Pass number of 6.1. It is interesting to note that, like in the CA

results, there is a leap in classifier accuracy for threshold-0 and threshold-0.1 in

Week 5, compared to Week 4. There is also a reduction in False Pass numbers in

threshold-0 of >3, going from 12.95 to 9.2. Although not as dramatic as the results

in the CA section, this still suggests that Week 5 may be a key week in predicting

student outcome in Written Exams.

8.5 Conclusions

Throughout this thesis, the data from Week 5 has been key to the

differences in the higher and lower achieving groups. In this chapter, it is shown

that Week 5 is when the successful and unsuccessful students begin to significantly

diverge in observed behaviour. This is shown through the classifier results, the

most successful classifier in CA making a leap from 71% to 79% in Week 4 to

Week 5, and the False Passes dropping from 8.45 to 6.55. Similar to what was

shown in the classifiers and Wilcox Rank Sum tests from Chapters 5, 6, and 7,

124

Week 5 and Week 6 is when the classifiers make a significant leap in accuracy, and

False Passes make a drop.

In conclusion, Week 5 again seems to be a key week in determining

student outcome. The most successful classifier threshold for CA is threshold-0 for

early semester, and threshold-0.1 for late semester. The most successful classifier

threshold for the Written Exam is threshold-0.1 for early and late semester.

125

9. Conclusions

In this chapter, the research instruments created for this study, MULE and

HOG, and their success will be discussed. The success of the HOG classifiers using

the three different data types, and the classifier using all of the data types will be

compared. The student behaviour and its relation to student outcome is discussed

on a week-to-week basis using results from all four experiments. The research

questions are examined in the context of the results of the four experiments, and

future research is discussed. Finally, the conclusions of the thesis will be outlined.

9.1 The Research Instruments

9.1.1 MULE

The MULE system has become an integral part of the Computer Science

course in Maynooth University, and has also been used in both Beijing University

of Technology and Fuzhou University. It has now been used in teaching

Introduction to Programming to over 1000 students. The system is extremely

modular and has huge potential for further expansion for pedagogical and research

purposes. It has been used to teach novice programmers Java, C++, and Prolog, and

can be used for many other programming languages. As a research tool, it has been

used to non-intrusively collect large-scale behavioural data from novice

programmers and subsequently provide valuable insight into the behaviours of

novice programmers.

9.1.2 HOG

The HOG classifier is a classifier specifically built to work with the

behavioural data from MULE to identify students who may need intervention. In

this thesis, variants of this classifier are tested, with different subsections of the

data, to varying degrees of success. In the following section, the results of the four

different classifiers are compared and discussed for CA and the Written Exam in

terms of which had the most success, in early semester and in late semester.

9.1.2.1 Early Semester CA classifiers

In Table 9-1 and Table 9-2, the most successful classifiers from each

experiment, MM from Chapter 5, CRE from Chapter 6, COMPLEX from Chapter

7, and HOG from Chapter 8, are compared in terms of accuracy and number of

126

False Passes out of total Fails (always 25, as explained in Section 4.4) for early

semester, Week 2 to Week 5.

Threshold Lab 2 Lab 3 Lab 4 Lab 5

MM -0.1 0.508 0.561 0.556 0.545

CRE 0 N/A 0.677 0.706 0.73

COMPLEX 0 0.669 0.709 0.722 0.788

HOG 0 0.654 0.723 0.74 0.789

Table 9-1: Comparing Early Semester CA Classifier Accuracy

Threshold Lab 2 Lab 3 Lab 4 Lab 5

MM -0.1 16 12.4 15.3 13.55

CRE 0 N/A 8.7 8.55 7.7

COMPLEX 0 12.75 9.15 8.6 6.75

HOG 0 13 8.45 8.05 6.9

Table 9-2: Comparing Early Semester CA Classifier False Passes

In Table 9-3, the averages of the accuracy and the False Passes for the four

classifier types are compared. Note that Week 2 is not included in this average, as

not all classifier types had enough data for a classifier at this point.

Threshold Accuracy False Passes

MM -0.1 0.554 13.75

CRE 0 0.704333 8.316667

COMPLEX 0 0.739667 8.166667

HOG 0 0.750667 7.8

Table 9-3: Comparing Early Semester CA Classifier Average Accuracy and False Passes

In Table 9-1, we can see that COMPLEX has the highest accuracy for

Week 2, but the False Passes are high (>50% of the Fails classified as Passes), so

the classifier is not reliable.

For Weeks 3, 4, and 5 the HOG classifier has the highest accuracy for

every week, and the lowest False Pass number for Weeks 3 and 4. COMPLEX has

a slightly lower False Pass number for Week 5 than HOG, and a slightly lower

accuracy rate. Looking at the averages, as shown in Table 9-3, HOG threshold-0 is

the most successful early semester classifier, but it is important to note the success

of the COMPLEX classifier, especially in Week 5. The MM classifiers are

unsuccessful and seem to perform as well as random classifiers (in that the

127

accuracy is around 50%) and CRE classifiers are successful as early semester

classifiers, but not as successful as HOG or COMPLEX.

9.1.2.2 Late Semester CA classifiers

In Tables 9-4 and 9-5, the most successful classifiers from each experiment

are compared in terms of accuracy and number of False Passes out of total Fails

(always 25) for late semester, from Weeks 6 to 10. In Table 9-6, the averages of the

accuracy and the False Passes for the four classifier types is compared.

Threshold 6 7 8 9 10

MM -0.1 0.556 0.568 0.512 0.495 0.493

CRE 0 0.758 0.763 0.766 0.767 0.767

COMPLEX 0.15 0.821 0.841 0.853 0.858 0.876

HOG 0.1 0.813 0.842 0.853 0.846 0.858

Table 9-4: Comparing Late Semester CA Classifier Accuracy

CRE results are mostly the same throughout late semester, with its

accuracy staying around 76%, and the number of False Passes staying around 6.8,

implying that CRE movements are more useful in classifying students in early

semester, but later CRE data does not add anything useful to the classifier outcome.

The HOG and COMPLEX classifiers are similar in accuracy and False Pass

number to each other throughout Weeks 6 to 10, with COMPLEX having the

highest accuracy of any classifier in this thesis at 87.6%, as seen in Table 9-4, and

the lowest False Pass number of 3.1 as seen in Table 9-5.

Threshold 6 7 8 9 10

MM -0.1 11.1 13.2 21.8 25 25

CRE 0 6.9 6.7 6.8 6.75 6.7

COMPLEX 0.15 5.95 4.8 4.2 4.3 3.1

HOG 0.1 5.9 4.75 4.45 4.35 3.3

Table 9-5: Comparing Late Semester CA Classifier False Passes

Threshold Accuracy False Passes

MM -0.1 0.5248 19.22

CRE 0 0.7642 6.77

COMPLEX 0.15 0.8498 4.47

HOG 0.1 0.8424 4.55

Table 9-6: Comparing Late Semester CA Classifier Average Accuracy and False Passes

128

CRE results are successful, but do not improve with the addition of late

semester data, and the MM classifiers are not successful, and continue to perform

as well as random classifiers.

While the results for HOG and COMPLEX are similar, COMPLEX

threshold-0.15 is the most successful late semester classifier, in average accuracy

and False Passes, as can be seen in Table 9-6, and also in highest achieved

accuracy rate and lowest achieved False Pass number.

9.1.2.3 Early Semester Written Exam HOG classifiers

In this section, the results of the four different Written Exam classifiers are

compared, and the early semester success is discussed.

Threshold 2 3 4 5

MM -0.1 0.506 0.499 0.464 0.479

CRE 0 N/A 0.731 0.733 0.762

COMPLEX 0 N/A 0.706 0.7 0.704

HOG 0.1 N/A 0.67 0.687 0.736

Table 9-7: Comparing Early Semester Written Exam Classifier Accuracy

In Tables 9-7 and 9-8, the most successful classifiers from each experiment

are compared in terms of accuracy and number of False Passes out of total Fails

(always 25) for early semester, from Week 2 to Week 5. In Table 9-9, the averages

of the accuracy and the False Passes for the four classifier types is compared, but

Week 2 is not included in this average, as not all classifier types had enough data

for a classifier at this point.

Threshold 2 3 4 5

MM -0.1 15.15 11.6 14.5 13.75

CRE 0 N/A 11 10.2 11.25

COMPLEX 0 N/A 9.35 9.5 9.15

HOG 0.1 N/A 9.05 8.2 7.95

Table 9-8: Comparing Early Semester Written Exam Classifier False Passes

Threshold Accuracy False Passes

MM -0.1 0.480667 13.28333

CRE 0 0.742 10.81667

COMPLEX 0 0.703333 9.333333

HOG 0.1 0.697666 8.4

Table 9-9: Comparing Early Semester Written Exam Classifier Average Accuracy and False Passes

129

For Weeks 3 and 4, the CRE classifier has the most accurate classifiers, but

has very high False Pass numbers. HOG does not perform as well as CRE on

average in terms of accuracy and has much lower False Pass numbers.

From the averages presented in Table 9-9, it could be argued that either of

the two classifiers CRE and HOG are the most successful, CRE in terms of

accuracy and HOG in terms of False Passes. If we consider the low number of

False Passes as more important than accuracy, HOG is the most successful early

semester classifier for Written Exams. The MM classifiers are not successful, and

the COMPLEX classifiers are successful, but not as accurate as CRE, and have

higher False Passes than HOG, as seen in Table 9-9.

9.1.2.4 Late Semester Written Exam HOG classifiers

 In Tables 9-10 and 9-11, the Classifier Accuracy and the False Pass

numbers are compared for late semester Written Exam classifiers. The classifiers

for the CRE data peak in Week 6 and do not improve over the course of the last

four weeks of the semester, implying that, like in the CA results, the CRE data is

useful for early semester classification of Written Exam results only. There is little

change in the other classifiers throughout this time, although the COMPLEX and

HOG classifiers peak in Week 9.

Threshold 6 7 8 9 10

MM -0.1 0.464 0.499 0.468 0.486 0.485

CRE 0 0.781 0.77 0.777 0.78 0.776

COMPLEX 0.1 0.776 0.776 0.774 0.782 0.767

HOG 0.1 0.783 0.789 0.791 0.793 0.775

Table 9-10: Comparing Late Semester Written Exam Classifier Accuracy

Threshold 6 7 8 9 10

MM -0.1 14.8 13.45 16.75 20.85 20.3

CRE 0 7.5 7.25 7.5 6.8 7.15

COMPLEX 0.1 6.8 6.65 6.55 6.45 6.4

HOG 0.1 6.5 6.9 6.45 6.5 6.5

Table 9-11: Comparing Late Semester Written Exam Classifier False Passes

The averages of the classifier accuracies and False Passes from Week 6 to

10, is show in Table 9-12. The most successful classifier in late semester is the

HOG classifier. Both CRE and COMPLEX also have high average accuracy

(>77%), but COMPLEX has a lower False Pass number. The MM classifiers are

again unsuccessful.

130

Threshold Accuracy False Passes

MM -0.1 0.4804 17.23

CRE 0 0.7768 7.24

COMPLEX 0.1 0.775 6.57

HOG 0.1 0.7862 6.57

Table 9-12: Comparing Late Semester Written Exam Classifier Average Accuracy and False Passes

While the classifiers, other than MM, have similar average success, the

HOG threshold-0.1 is the most successful late semester classifier for Written

Exam.

9.2 Discussion of Student Behaviour

In this thesis, key times and assignments in the Introduction to

Programming course have been identified. Each of the three experiments found that

Week 5 was a key week in the semester, and that the assignments could easily be a

stumbling block for students. While the MM experiments were less successful

when applied to the week-by-week analysis, we still found that there were

connections between the student’s MM data and their eventual outcome, though

this may only be true for the second semester. This requires more research.

More successfully, we found that the CRE data and the COMPLEX data

from Week 5 of the labs were significantly different in the higher and lower

performing groups, and that this trend continued into Week 6 and Week 7.

The most successful features were those from the COMPLEX experiment.

This fits in to the Neo-Piagetian framework, as students who are able to write more

complex code and are able to write code that contains various concepts from an

early stage, are more likely to do well in the module. This may suggest that as

Computer Science educators, we should spend more time on teaching students how

to combine different concepts, instead of teaching the concepts individually, and

hoping the students will work the rest out for themselves. In the COMPLEX

experiment, the analysis and classifiers showed a clear shift in Week 5, when the

two groups seem to most clearly diverge from each other. In terms of assignments,

the earliest indicator that a student will do well in a module is the Q4 assignment in

Week 5.

131

The description of the weekly assignments in Section 4.1.2.1 suggests that

Week 5 has a leap in complexity of assignment requirements, and that may be the

first time in the semester that students have a large enough range of problem-

solving techniques to allow for this kind of complexity. The result may be a sink-

or-swim week, where students who are not able to quickly adapt to combining

techniques will not be able to catch up for the rest of the semester.

In the following sections, there will be a week-by-week discussion of

classifier success and when the higher and lower achieving students diverge in

behaviour according to the different data types.

9.2.1 Week 1

In Week 1, we already see divergences in the behaviour of the higher and

lower achieving students in CA and Written Exam in the Wilcox Rank Sum test for

MMs, for CRE, and for COMPLEX. Specifically, there are differences in the file

size tests for Q4, which asks the students to combine the first programming

concepts they have learned, namely: mathematical operations; storing values in

variables; and printing variables. This may be an early warning sign of students

who are in need of assistance and would benefit from extra help. There are no

positive Linear Regression results at this stage, and so there is no data for the

classifiers.

9.2.2 Week 2

Week 2 has similar Wilcox Rank Sum test results for CA and the Written

Exam for MM and CRE, but there is already a leap in the number of features with

significant results for the COMPLEX tests, implying that differences in code

complexity between the two groups are apparent very early on.

This week we see the first positive Linear Regression results, though the

values are still very small (<0.03) for CRE tests. The results for COMPLEX data

are also mostly very small, but the coefficient for Q6 in relation to CA is already

0.17, much higher than anything in CRE at this point.

These Linear Regression results mean the first classifier can be run for

COMPLEX and HOG. The COMPLEX CA classifier is already at 66.9% accuracy,

although it has a high False Pass number of 12.75 (>50%). The HOG classifier is

similarly successful, with an accuracy of 65% and a False Pass number of 13. The

HOG Written Exam classifier is much less successful at 55% accuracy and a False

132

Pass number of 15.1. At this stage, the classifiers are not useful, as the False Pass

number is over 50%, but the results do show that student behaviour is already

diverging.

The assignments this week ask students to combine techniques, and the

divisions in code complexity may show that successful students are able to write

more complex code at this point.

9.2.3 Week 3

Week 3 has no significant Wilcox Rank Sum Test results for MM, but has

slightly more for CRE tests. COMPLEX continues to have a majority of the

features return significant results.

CRE Linear Regression results show two features with positive results for

CA and for the Written Exam, all >0.1. COMPLEX has an increase in the number

of positive coefficients in relation to CA and the Written Exam, some of which are

>0.1.

These Linear Regression results mean the CRE classifiers run for the first

time, and are successful for early in the semester, with the CA classifier having an

accuracy of 67% and a False Pass number of 8.7 (<35%). The Written Exam

classifier is less successful, with a high False Pass number of 11, although it has an

accuracy of 73%. The COMPLEX classifiers can now run with thresholds-0,

thresholds-0.1 and thresholds-0.15 for CA, with the most successful being

threshold-0 with an accuracy of 70.9% and a False Pass of 9.15, a significant

improvement from the previous week. The first COMPLEX Written Exam

classifier runs this week, with an accuracy of 70.6% and a False Pass rate of 9.35

(<38%). The most successful classifier this week is the threshold-0 HOG classifier,

with an accuracy of 72% and a False Pass number of 8.45.

Week 3 has clearer signs of divergence and is the first week with useful

classifiers. This may be because, as well as the assignments becoming more

difficult, this is the first week when the students are expected to apply the

techniques they have learned to solve problems themselves, as mentioned in

Section 4.1.2.1.

9.2.4 Week 4

For this week, there are just two features with significant results from the

Wilcox Rank Sum test for CA and MM, and none for the Written Exam. The CRE

133

results are more successful with an increase in the number of significant features,

but the COMPLEX results have a reduction in the number of significant features in

proportion to total features. There is only one positive CRE feature in relation to

CA, and none in relation to Written Exam results. There is again a reduction in the

proportional number of positive results in the Linear Regressions tests for

COMPLEX.

There are some slight changes in the classifier results, the CRE threshold-0

classifier for CA increases in accuracy, increasing from 67.7% to 70.6% and the

False Pass number drops very slightly. The Written Exam threshold-0 classifier

increases from 73.1% to 73.3% and the False Pass number drops from 11 to 10.2.

The COMPLEX classifiers improve very slightly, the threshold-0 CA classifier

accuracy increasing from 70.9% to 72.2% and False Pass dropping from 9.15 to

8.6. Written Exam classifiers do not change significantly.

There is also a slight increase in HOG classifier success, the threshold-0

CA accuracy increasing from 72.3% to 74%, and the False Pass number dropping

from 8.45 to 8.05. The Written Exam threshold-0.1 classifier increases in accuracy

from 67% to 68.7% and the False Pass number drops from 9.05 to 8.2. Similar to

Week 3, the classifiers are useful at this stage, but do not improve enough to imply

that Week 4 is a key week.

9.2.5 Week 5

Week 5 has a huge leap in significant results from the Wilcox Rank Sum

test, with five significant results from the MM tests, and all eight features returning

significant results for CRE tests. In COMPLEX, all five assignments return

significant results with file size data for CA and the Written Exam, and four of the

five for node data for both CA and the Written Exam.

The Linear Regression results for CRE have four positive coefficients in

relation to CA, one of which is >0.1, meaning it can be used in the threshold-0.1

classifier. There are two positive Written Exam results, both <0.1. All of the

assignments have positive coefficients in relation to CA for the COMPLEX Linear

Regression file size results, with one result being >0.2. Four of the five

assignments have positive results for the CA results in relation to nodes, with one

result being >0.15. For the coefficients in relation to the Written Exam, four of the

five are positive in relation to file size, with one result being >0.15 and four of the

five are positive in relation to nodes, with two features being >0.15.

134

The CRE classifiers in Week 5 continue to improve, with an increase in

threshold-0 for CA increasing in accuracy from 70.6% to 73% and the False Pass

dropping from 8.55 to 7.7. The Written Exam classifiers increase in accuracy from

73.3% to 76.2%, but False Passes also increase from 10.2 to 11.25, higher than it

was in Week 2.

The COMPLEX classifiers have a significant leap in success. The

threshold-0 classifier for CA increases from 72.2% to 78.8% and the False Pass

drops from 8.6 to 6.75. The threshold-0.1 CA classifier also improves, with

accuracy increasing from 70.8% to 79.5% and False Passes dropping from 9.05 to

6.65. Finally, the 0.15 CA classifier makes the biggest improvement, increasing in

accuracy from 68.4% to 81% and the False Pass number dropping from 11.35 to

6.05. Written Exam results do not have a similar increase in success at this point.

The HOG classifiers also have a significant increase in success at this point, the

most pronounced being the CA threshold-0.15 classifier increasing in accuracy

from 64.2% to 81.2%, and the False Pass number dropping from 13 to 6.2. The

threshold-0.1 Written Exam classifier increases in accuracy from 68.7% to 73.6%

and the False Pass number drops slightly from 8.2 to 7.95.

These changes in success in COMPLEX and HOG CA classifiers point to

Week 5 being a key week in the semester, particularly in relation to students’

ability to write complex code. As noted in Section 4.1.2.1, this week’s assignments

are an important step in learning to program: they test the students’ ability to not

just use the techniques, but their ability to understand when to apply the

techniques.

9.2.6 Week 6

Week 6 is an exam week, so we would expect to see differences in

behaviour between the two groups. In Week 6, the MM Wilcox Rank Sum test

returns four significant results for CA and three for the Written Exam. The CRE

results show six significant features for both CA and Written Exams. Four of the

six questions in COMPLEX are significant across file size, nodes, the Written

Exam and CA tests.

In the Linear Regression tests, three of the CRE coefficients relating to CA

are positive, with two being >0.3, the highest results from the CRE experiment.

Five of the Written Exam CRE tests return positive results, with two being >0.2. In

135

the COMPLEX Linear Regression file size CA tests, two assignments return

positive results, Q6 being >0.25. Four of the coefficients in relation to the Written

Exam are positive, with one being >0.15. In the tests for nodes, two coefficients in

relation to CA are positive, with Q6 being >0.3, the highest Linear Regression

coefficient from the COMPLEX experiment. Three of the features for the Written

Exam have positive results, with Q5 being >0.2.

The most successful CRE classifier threshold for CA is threshold-0, which

has a slight increase in accuracy from 73% to 75.8%, and a drop in False Passes

from 7.7 to 6.9. The Written Exam classifier is more successful, with an increase

from 76.2% to 78.1% for threshold-0 and the False Pass dropping from 11.25 to

7.5. The COMPLEX classifiers for CA all increase in accuracy and decrease in

False Passes slightly. The HOG classifiers for CA also increase in accuracy by

around and decrease in False Passes by up to 1. The HOG Written Exam classifiers

improve, with the threshold-0.15 classifier increasing in accuracy from 71.9% to

78.4% and the False Pass number decreasing by almost four, from 10.45 to 6.5.

The Linear Regression results this week, which are some of the highest,

and the leaps in classifier accuracy, suggest that Week 6 is a key week in predicting

student outcome.

9.2.7 Week 7

In Week 7, the MM Wilcox Rank Sum tests have a total of 10 significant

results for CA and eight for the Written Exam the highest amount for any week.

The CRE tests have six significant features for both CA and the Written Exam, the

same as Week 6. For COMPLEX, three of the four assignments, Q2, Q3, and Q4

all have significant results for both file size and nodes, and for CA and the Written

Exam.

For Linear Regression, CRE has three positive coefficients for CA and two

for Written Exam. For COMPLEX, file size has three positive results for CA, Q4

being >0.24, and three for the Written Exam, Q4 being >0.1. The nodes Linear

Regression tests show one positive coefficient for CA, Q4 which is >0.1 and two

for the Written Exam, Q2 and Q4.

The CRE classifiers for CA increase in accuracy slightly, and the False

Passes decrease by around 0.5 for each threshold. The Written Exam classifiers do

not change much and are slightly less successful in some respects. The

136

COMPLEX classifiers for CA all increase in accuracy and decrease in False Passes

slightly. The HOG classifiers for CA each decrease in False Pass number by

around 1, and increase in accuracy, the largest increase being threshold-0.15, which

increases from 79.1% to 84.6%. The Written Exam classifiers for COMPLEX are

almost identical to the previous week and perform less successfully than the week

before in some cases. The HOG classifiers for CA continue to improve, with the

threshold-0.15 increasing in accuracy from 79.1% to 84.6% and the False Pass rate

dropping to 4.75 (<20%). However, the Written Exam classifiers do not improve in

the same way and perform at around the same level as the previous week.

Week 7 is a key week according to the COMPLEX and HOG results, but

the CRE classifiers have already peaked in usefulness, implying that CRE

behaviours are less important indicators of student outcome at this point.

9.2.8 Week 8

The Wilcox Rank Sum test for MM has eight features with significant

results for CA, and seven for the Written Exam. The CRE tests only have two for

CA and the Written Exam, C2C, and C2R. However, in the COMPLEX tests, five

of the six assignments for this week show significant differences in the file size and

nodes data for CA and the Written Exam.

There are no positive Linear Regression results for CRE. For COMPLEX,

there are five positive coefficients from the file size data in relation to CA, with Q4

being >0.15, and three in relation to the Written Exams. In the tests with nodes

data, four have positive coefficients in relation to CA, with Q4 being >0.15, and

four in relation to the Written Exams, with Q6 being >0.1.

There is no new data for CRE classifiers, and so the results are similar to

the previous week. The COMPLEX classifiers for CA continue to increase in

accuracy slightly and the False Passes continue to decrease. However, the Written

Exam classifiers do not increase in success. The HOG classifiers for CA have a

slight drop in False Passes but are mostly the same as last week. The Written Exam

classifiers are also mostly the same as Week 7.

Despite a number of high coefficients from the Linear Regression results,

the classifiers show Week 8 is not a key week.

137

9.2.9 Week 9

The MM Wilcox Rank Sum test for CA shows just four significant results,

and the Written Exam has just three. The CRE tests have four for CA and for the

Written Exam. In the COMPLEX tests, file size has three assignments with

significant results for CA, and just two for Written Exam. In the nodes data test, the

CA has three significant assignments, and the Written Exam has one.

In the Linear Regression results, six of CREs features for CA are positive,

with C2C being >0.2. The Written Exam results only have two positive

correlations, with C2C being >0.1. For COMPLEX file size, Q4 and Q5 both have

positive coefficients in relation to CA and to the Written Exam, though all are <0.1.

For the nodes data, Q4 has a positive coefficient for both CA and the Written

Exam.

The CRE, COMPLEX, and HOG classifiers do not significantly change

this week, other than a drop in the accuracy of the HOG CA threshold-0 classifier.

Again, although there are some high values for the Linear Regression tests,

due to a lack of improvement in the classifiers, Week 9 is not a key week.

9.2.10 Week 10

The Wilcox Rank Sum test for MM has just two significant results for CA

and none for the Written Exam. The CRE tests have four significant results for CA

and three for the Written Exam. These tests have shown a difference in C2C and

C2R behaviour for the higher and lower achieving groups throughout the semester.

The COMPLEX tests show a significant difference in all five assignments in terms

of file size, and in four of the five assignments for nodes.

In the Linear Regression tests, C2R and R2C both have positive

coefficients with CA, and C2R has a positive coefficient with the Written Exam

results. In COMPLEX file size, four of the five assignments have positive

coefficients with CA, with Q5 being >0.3. All five of the assignments have positive

coefficients in relation to the Written Exam, although Q1 is very close to zero. In

the Linear Regressions tests using the nodes data, three of the five assignments

have positive results in relation to CA, with Q5 having a coefficient of >0.15.

Three of the five have positive results in relation to the Written Exam, with Q5

being >0.1.

138

In the classifiers for this week, the CRE again do not improve. The

COMPLEX CA classifiers improve slightly this week for each threshold, and the

False Passes each dropping by over 1. The COMPLEX Written Exam classifiers

mostly do not improve, but the threshold-0 classifier increases in accuracy from

73.8% to 75.1% and the False Pass number drops by <1.

The HOG CA classifiers improve slightly again this week, and False

Passes dropping by around 1, the most successful being threshold-0.15, which

increases from 85.6% to 87%, and the False Pass dropping to just 3.3 (13.2%). The

Written Exam classifiers, however, do not improve.

Although the data from this week results in the most successful classifier

for CA, this is not a key week as the differences in the classifiers compared to the

previous week are so low.

9.3 The Research Questions

In this section, the research questions originally presented in Section 1.2

will be discussed.

9.3.1 RQ1

How can we observe student behaviour as they learn to code in a non-intrusive

way?

The MULE system was built to observe student behaviour as they learn to

code in a close-to-authentic, online, desktop-like environment. Within this

environment, the students can view their assignments, as well as write, compile,

run and evaluate their code in a windowed coding system. Here they can view their

assignments, multiple coding editor instances, and terminal instances. The system

collects various behavioural data, including Mouse Movements (MM data),

patterns of compilation, run and evaluation events (CRE data), and logs code

written by the participants (COMPLEX data). The students are informed of the

data collection at the beginning of the semester, and can choose to opt in or out, but

after this they do not need to do anything to participate in the study other than

complete the module tasks they would normally. This results in more “authentic”

data on how the students learn to program than studies that may have used, for

example, talk-aloud methods [43] or the collection of biometric data, such as pulse,

sweat detection, Facial Action Coding System (FACS), or eye tracking to detect

student behaviour. While these methods yield very interesting and important

139

results, the equipment used to gather this data is expensive, not widely available,

and can be distracting for the student. By distracting the student, the data may be

less valid, as it may make the student more stressed, for example.

The data collected by MULE is collected without interrupting the students’

learning and takes place in their regular weekly labs. This data has been shown to

be valuable both in highlighting key points and topics in the semester, and in

building classifiers to detect students in danger of failing.

9.3.2 RQ2

Are there divergences in the observed student behaviour between the highest and

lowest achieving students?

Throughout the experiments in the thesis, and the analysis into the three

different types of data, divergences in behaviour have been observed in the higher

and lower achieving groups of students.

As explained in Section 9.2, the key week in these divergences is Week 5

with significant results in Wilcox Rank Sum test observed in CRE data, in

COMPLEX data, and even in the MM data, although this was the least successful

of the experiments. Week 5 is also when the classifiers consistently make a jump in

accuracy, and the False Pass rate drops. Weeks 6 and 7 are also key, with more

leaps in classifier success. Despite large coefficient results from Linear Regression

after this, the classifiers mostly stay at the same success, implying that students at

this point have already diverged into the behaviour of higher or lower achieving

students. There are many possible reasons that Week 5 is the key time, but the most

likely is that the divergence in student behaviour is due to:

1) Increased complexity of assignments, as students are asked to use

multiple programming concepts in conjunction.

2) Students are struggling to apply the concepts they have learned to

solve problems, as the assignments no longer specifically tell the

students which techniques to use.

These are key points in learning to program and aren’t tied to Week 5 –

this is just when it happens in our course, in the semester examined in this thesis.

The changes in classifiers when this is happening implies that students would

benefit from guidance and on how to apply the programming concepts they learn as

problem solving tools.

140

9.3.3 RQ3

How early can students be classified as higher or lower achieving early on in the

semester, to allow for interventions?

There are signs of divergence between the two groups as early as Week 1,

and the first classifiers showing results are from around Week 3 onwards.

Divergences in student behaviour between the higher and lower achieving groups

can be seen as early as Week 1, when there are already significant differences in

the C2C and C2R movements, as seen in Section 6.4.1. There are also already

significant differences in COMPLEX data in Q4 of Week 1.

The most successful early semester classifier for CA and the Written Exam

is the HOG classifier. The threshold-0 HOG classifier for CA has success as early

as Week 3, with 72% accuracy, and 8.45 False Passes of 25 fails, meaning it can

provide meaningful early warnings to students in danger. By Week 5, the accuracy

rises to just under 79%, with 6.9 False Passes out of 25.

The most successful early semester classifier for the Written Exam is the

HOG classifier with threshold-0.1. This classifier has success as early as Week 3,

with just under 72% accuracy and 8.45 False Passes for 25 Fails. By Week 5 this

rises to almost 80%, with 6.55 False Passes out of 25.

9.4 Future Work

The work in this thesis shows the potential for learning environments with

passive, large-scale behavioural data collection, both as pedagogical tools and as

research tools. The classifier system would have the most impact for students on an

individual level if it were embedded in the learning environment, so that course co-

ordinators could use it to predict which students need intervention.

Another promising avenue for research is peer learning. Peer learning [61]

has been shown to be an effective pedagogical strategy, as students are required to

articulate their thought processes, which could be of particular benefit to students

who struggle to apply the concepts they have learned as problem solving strategies.

Observation and analysis behaviour of students as they engage in remote pair

programming in an authentic pedagogical environment could offer valuable insight

into how to best teach novice programmers how to work collaboratively. The study

described in the paper “Gaps Between Industry Expectations and the Abilities of

Graduates” [60] found that students are lacking in personal skills, such as written

communication and teamwork, and the study “Struggles of New College Graduates

141

in their First Software Development Job” [61] found that new programmers could

not appropriately describe issues in written communication. I believe this suggests

that students would benefit from collaborative work from the very beginning of

Computer Science degree programs. Building collaborative tools within MULE,

such as shared code files and chat functions, would allow for this to be

implemented in the first-year labs.

This thesis focused on data from students who completed the course, and

not on students who dropped out, but there may be value in investigating students

who do not complete the course and the points at which these students diverge

from the students who stay in the course. It may be that these students struggle to

write compilable code more than the students investigated in this work. There is

evidence to suggest that clearer error messages for novice programmers may

improve student success. In the paper “An Exploration Of The Effects Of Enhanced

Compiler Error Messages For Computer Programming Novices” [62] the use of

enhanced compiler error messages was tested, and the results showed that the use

of the Decaf editor resulted in fewer signs of struggling students in comparison to a

control group, who saw standard error messages. Examining behavioural data from

students using Enhanced Compiler Error Messages would provide an opportunity

to further study how differently students behave when given clearer error

messages.

The CRE and COMPLEX behavioural data has been shown to be valuable

in studying the way that novice programmers learn how to code (as has MM data,

although it was less successful with the HOG classifiers), but Computer Science

education research tends to focus on the first year or semester of study. Using the

existing data types, student behaviour can continue to be studied throughout their

Computer Science course, with the aim of assisting students in need of intervention

and improving the curriculum to address common problems in learning to write

code. While the MM experiment was not successful in the weekly student outcome

classifiers, there was some success in using MM as a stress classifier. It has been

shown that Computer Science students experience stress and anxiety related to

their programming ability [63], so this is an area that deserves further research.

9.5 Conclusion

In conclusion, it has been shown that authentic pedagogical coding

environments with non-intrusive data collection features can be used to assist

students both on an individual level, by alerting educators to struggling students,

142

and in the bigger picture, by highlighting stumbling blocks in the curriculum that

cause the students to diverge into higher and lower achieving groups. It is difficult

to teach programming, but by continuing to forensically investigate and identify the

problems our students face, we can better guide our students on the road to

mastering Computer Science.

143

10. Appendix

10.1 Consent Form

Consent Form

Research

Project:

MULE – Maynooth University Learning Environment

Researcher: Dr Kevin Casey, Department of Computer Science, Maynooth

University, Maynooth, Co. Kildare

Natalie Culligan Department of Computer Science, Maynooth

University, Maynooth, Co. Kildare

Contact

details:

Email: natalie.culligan@mu.ie

The data gathered will be used by the researcher to improve the MULE

system and the findings may be published in suitable conferences and

journals. Some data will be accessible by the course co-ordinator to evaluate

progress. I can access my data at my discretion.

I have received assurance from the researcher that the information that I will

share will remain strictly confidential and that no information that discloses

my identity will be released or published. However, I recognize that, in some

circumstances, confidentiality of research data and records may be overridden

by courts in the event of litigation or during investigation by lawful authority.

In such circumstances the University will take all reasonable steps within law

to ensure that confidentiality is maintained to the greatest possible extent

I am free to withdraw from the study up until the end of the academic year.

I can refuse to answer any of the questions asked or to participate in any of the

exercises.

All research-related data gathered will be stored in a secure manner and only

the above-named researchers will have access to it.

If I have any questions about the research project, I may contact Natalie

Culligan at the contact details provided.

I also understand that if I choose not to participate in the study, data will still

be gathered by the system to provide reports for the course co-ordinator, but

the data will not be used for research.

I, the participant, agree to participate in the research project being carried out

by Dr Kevin Casey and Natalie Culligan to gather data on how students use the

MULE system.

I consent to the automatic gathering, by the MULE system of the following:

144

✓ user interaction data

✓ performance data

✓ feedback

✓ code saved, compiled, run, evaluated, and

submitted.

If during your participation in this study you feel the information and

guidelines that you were given have been neglected or disregarded in any

way, or if you are unhappy about the process, please contact the

Secretary of the Maynooth University Ethics Committee at

research.ethics@nuim.ie or +353 (0)1 708 6019.

Please be assured that your concerns will be dealt with in a sensitive

manner.

10.2 Information Sheet

Information Sheet

Research

Project:

MULE – Maynooth University Learning Environment,

funded by the Irish Research Council.

Researchers: Dr Kevin Casey, Department of Computer Science,

Maynooth University, Maynooth,

Co. Kildare

Natalie Culligan Department of Computer Science,

Maynooth University, Maynooth,

Co. Kildare

Contact

details:

Natalie.culligan@mu.ie

The Purpose:

The purpose of this study is to gather data on how students are using the

MULE system. MULE (Maynooth University Learning Environment) is a

web-browser based system where students can edit, compile, and run their

program. They can also use the chat function to get help from

demonstrators and discuss problems with other students. There are two

categories of data gathered by the system: research data and academic

data. Research data will be used in improving future versions of the tool

and in research (and subsequent publication) as to how useful the tool is

and the usage patterns that students with different abilities have, and if it

145

is possible to detect stress from behavioural data. Academic data is used

to provide reports on student performance and is necessary for the system

to function in its role as a module content delivery platform.

The Participant:

The participant mentioned throughout this information sheet, refers to a

student who is participating in a programming module.

The Data Gathering:

Participants will complete their module as normal using the MULE

software system. The system will gather research data and academic data.

The system gathers the users' interaction data, chat function data, user

profile data, feedback and all code written by the user that is saved,

compiled, executed, or evaluated. Periodically, a fully anonymised copy

of the existing dataset is made to allow early-stage research.

Non-participation and exit from the study:

In accordance with the new GDPR guidelines, there is no requirement to

participate in this study and the participant may still use the system. If a user

chooses to opt out, academic data will still be gathered on the student, to provide

reports to the course co-ordinator, but their data will not be used in the study. A

participant may choose to exit the study at any time up until the end of the

academic year. The participant must send their request in writing to the

researcher, and all research-related data collected that has not yet been fully

anonymised will be destroyed.

Anonymity and security of data:

As soon as the data is collected, it will be encoded with a unique identity

key, to allow for separate sessions of use to be associated with a user. At

the end of the academic year, the data will be fully anonymised. No

records of the participant’s identity will be stored for the purpose of our

study, but the course co-ordinator will be able to review some aspects of

the data. It must be recognized that, in some circumstances,

confidentiality of research data and records may be overridden by courts

in the event of litigation or in the course of investigation by lawful

authority. In such circumstances the University will take all reasonable

steps within law to ensure that confidentiality is maintained to the greatest

possible extent.

The data will be stored only on a secure server located in Ireland. Only

the above-named researchers will have access to it. The data will be kept

for 10 years and will be destroyed thereafter.

146

Access to your data:

The subject is able to request a copy of their data that is stored for

research by contacting the researcher, up until the data is fully

anonymised.

Questions:

If you have any further questions, please contact the researcher using the

above contact details.

10.3 Wilcox Rank Sum Test Results MM

10.3.1 CA

Week 1 2 3

EFFICIENCY 0.987437 0.323026 0.258799

OVERSHOOTX 0.703555 0.590466 0.484413

DIRECTIONANGLE 0.215464 0.948509 0.716484

SEQUENCE_SPEED 0.289042 0.702755 0.159286

OVERSHOOTDIRECTIONANGLE 0.111759 0.755683 0.713787

OVERSHOOTY 0.77283 0.500827 0.118085

OVERSHOOT 0.841912 0.532453 0.109021

SEQUENCE_DURATION 0.290238 0.878681 0.57172

ANGLEDIFFERENCE 0.289042 0.837198 0.740917

DIRECTION 0.029588 0.212553 0.196411

HOVER_TIME 0.157984 0.291519 0.085752

OPTIMAL_DISTANCE 0.784908 0.942278 0.929454

DISTANCE_TRAVELLED 0.147443 0.507071 0.09977

VARIANCE1 0.756812 0.347559 0.328339

VARIANCE2 0.914315 0.268867 0.294671

VARIANCE3 0.732982 0.904979 0.589041

VARIANCEDIST1 0.731007 0.268021 0.19392

VARIANCEDIST2 0.914315 0.268867 0.294671

VARIANCEDIST3 0.84602 0.939164 0.672452

CLICKTIME 0.280768 0.028114 0.560714

HESITATE 0.114143 0.023804 0.073371

CLICKRATIO 0.215464 0.003706 0.078136

Table 10-1: MM Wilcox Rank Sum Test CA for Weeks 1 to 3

147

Week 4 5 6 7

EFFICIENCY 0.420798 0.015108 0.740481 0.009588

OVERSHOOTX 0.34956 0.877951 0.274791 0.002774

DIRECTIONANGLE 0.093369 0.687177 0.03941 0.972124

SEQUENCE_SPEED 0.588681 0.918456 0.214753 0.195418

OVERSHOOT

DIRECTIONANGLE 0.165815 0.961894 0.000429 0.000973

OVERSHOOTY 0.81847 0.509035 0.292012 0.018673

OVERSHOOT 0.817119 0.51013 0.285189 0.016298

SEQUENCE_DURATION 0.919672 0.357729 0.023814 0.769529

ANGLEDIFFERENCE 0.660008 0.971416 0.067558 0.356538

DIRECTION 0.017461 0.652375 0.265013 0.019592

HOVER_TIME 0.973646 0.234995 0.292012 0.656095

OPTIMAL_DISTANCE 0.012592 0.012978 0.271141 0.192956

DISTANCE_TRAVELLED 0.809024 0.970055 0.652937 0.206139

VARIANCE1 0.3451 0.019584 0.555292 0.033115

VARIANCE2 0.539364 0.354173 0.267524 0.06174

VARIANCE3 0.449438 0.362206 0.94745 0.939292

VARIANCEDIST1 0.137574 0.025512 0.795275 0.019036

VARIANCEDIST2 0.539364 0.354173 0.267524 0.06174

VARIANCEDIST3 0.053391 0.048165 0.168897 0.972124

CLICKTIME 0.626366 0.594471 0.13252 0.01131

HESITATE 0.823879 0.087633 0.052614 0.365013

CLICKRATIO 0.9681 0.164852 0.383295 0.016139

Table 10-2: MM Wilcox Rank Sum Test CA for Weeks 4 to 7

148

Week 8 9 10

EFFICIENCY 0.01516 0.031693 0.141307

OVERSHOOTX 0.004262 0.113071 0.221358

DIRECTIONANGLE 0.485603 0.869403 0.551862

SEQUENCE_SPEED 0.013254 0.109021 0.10326

OVERSHOOTDIRECTIONANGLE 0.003856 0.746383 0.004045

OVERSHOOTY 0.151661 0.029468 0.821522

OVERSHOOT 0.146422 0.028147 0.844168

SEQUENCE_DURATION 0.07856 0.124155 0.078657

ANGLEDIFFERENCE 0.020005 0.045101 0.160813

DIRECTION 0.067285 0.743648 0.043685

HOVER_TIME 0.82632 0.137978 0.202063

OPTIMAL_DISTANCE 0.903795 0.735463 0.241938

DISTANCE_TRAVELLED 0.062953 0.255764 0.197437

VARIANCE1 0.023864 0.991351 0.234068

VARIANCE2 0.718289 0.885072 0.703012

VARIANCE3 0.350573 0.624391 0.780738

VARIANCEDIST1 0.239165 0.926582 0.113104

VARIANCEDIST2 0.718289 0.885072 0.703012

VARIANCEDIST3 0.615618 0.344688 0.615227

CLICKTIME 0.870016 0.863718 0.326994

HESITATE 0.158683 0.031124 0.111909

CLICKRATIO 0.151661 0.402853 0.30784

Table 10-3: MM Wilcox Rank Sum Test CA for Weeks 8 to 10

149

10.3.2 Written Exam

Week 1 2 3

EFFICIENCY 0.456086 0.133361 0.824132

OVERSHOOTX 0.721161 0.338594 0.978379

DIRECTIONANGLE 0.06169 0.737898 0.549812

SEQUENCE_SPEED 0.970692 0.75866 0.735463

OVERSHOOTDIRECTIONANGLE 0.067771 0.631617 0.310773

OVERSHOOTY 0.478594 0.287066 0.465429

OVERSHOOT 0.516851 0.313537 0.516576

SEQUENCE_DURATION 0.723127 0.391366 0.762857

ANGLEDIFFERENCE 0.331549 0.244269 0.749121

DIRECTION 0.03914 0.533739 0.310773

HOVER_TIME 0.235546 0.932938 0.380875

OPTIMAL_DISTANCE 0.321201 0.818898 0.992792

DISTANCE_TRAVELLED 0.768816 0.529886 0.375011

VARIANCE1 0.295052 0.814338 0.926582

VARIANCE2 0.449767 0.422351 0.528325

VARIANCE3 0.729034 0.396796 0.204027

VARIANCEDIST1 0.472102 0.711485 0.961092

VARIANCEDIST2 0.449767 0.422351 0.528325

VARIANCEDIST3 0.803121 0.34256 0.517745

CLICKTIME 0.143811 0.074304 0.992792

HESITATE 0.508402 0.194474 0.169706

CLICKRATIO 0.475342 0.024542 0.150893

Table 10-4: MM Wilcox Rank Sum Test Written Exam for Weeks 1 to 3

150

Week 4 5 6 7

EFFICIENCY 0.457819 0.594471 0.79914 0.053057

OVERSHOOTX 0.112013 0.645011 0.362707 0.031453

DIRECTIONANGLE 0.054693 0.89682 0.433389 0.444697

SEQUENCE_SPEED 0.439085 0.116461 0.187719 0.252545

OVERSHOOTDIRECTION

ANGLE

0.610436 0.937438 0.01481 0.005802

OVERSHOOTY 0.432939 0.581539 0.183286 0.042232

OVERSHOOT 0.42887 0.618313 0.184939 0.038224

SEQUENCE_DURATION 0.628833 0.263724 0.027804 0.983558

ANGLEDIFFERENCE 0.538215 0.621925 0.515745 0.391185

DIRECTION 0.219615 0.186607 0.524406 0.010417

HOVER_TIME 0.857867 0.319844 0.239785 0.603912

OPTIMAL_DISTANCE 0.087417 0.006531 0.769646 0.317776

DISTANCE_TRAVELLED 0.639984 0.064366 0.317962 0.329192

VARIANCE1 0.40886 0.060761 0.267524 0.011661

VARIANCE2 0.223559 0.033498 0.603226 0.096857

VARIANCE3 0.315738 0.454844 0.509299 0.822061

VARIANCEDIST1 0.186354 0.013678 0.938154 0.019036

VARIANCEDIST2 0.223559 0.033498 0.603226 0.096857

VARIANCEDIST3 0.449438 0.488459 0.421727 0.885299

CLICKTIME 0.515505 0.172238 0.374257 0.031453

HESITATE 0.81172 0.07292 0.007423 0.289976

CLICKRATIO 0.54628 0.025851 0.039092 0.002758

Table 10-5: MM Wilcox Rank Sum Test Written Exam for Weeks 1 to 3

151

Week 8 9 10

EFFICIENCY 0.015793 0.243869 0.193793

OVERSHOOTX 0.0259 0.466534 0.337519

DIRECTIONANGLE 0.45027 0.671134 0.650912

SEQUENCE_SPEED 0.049355 0.319477 0.256017

OVERSHOOTDIRECTIONANGLE 0.009798 0.963972 0.257123

OVERSHOOTY 0.094216 0.020249 0.726642

OVERSHOOT 0.094216 0.01911 0.704971

SEQUENCE_DURATION 0.392341 0.09977 0.215436

ANGLEDIFFERENCE 0.029862 0.205317 0.254914

DIRECTION 0.015633 0.554644 0.315411

HOVER_TIME 0.709964 0.0557 0.505276

OPTIMAL_DISTANCE 0.127307 0.897927 0.213487

DISTANCE_TRAVELLED 0.127772 0.586552 0.219371

VARIANCE1 0.008744 0.919408 0.773659

VARIANCE2 0.698919 0.885072 0.994737

VARIANCE3 0.174638 0.695006 0.772649

VARIANCEDIST1 0.030427 0.955334 0.206768

VARIANCEDIST2 0.698919 0.885072 0.994737

VARIANCEDIST3 0.333569 0.33013 0.470529

CLICKTIME 0.387216 0.574179 0.875254

HESITATE 0.382132 0.022279 0.138475

CLICKRATIO 0.067007 0.189006 0.099411

Table 10-6: MM Wilcox Rank Sum Test Written Exam for Weeks 1 to 3

152

10.4 Linear Regression Results MM

10.4.1 CA

Week 1 2 3

EFFICIENCY -0.25709 -0.16574 -0.1278

OVERSHOOTX -0.22264 -0.0867 -0.13951

DIRECTIONANGLE -0.21731 -0.07566 -0.20588

SEQUENCE_SPEED -0.26109 -0.08319 -0.15239

OVERSHOOTDIRECTIONANGLE -0.23525 -0.08521 -0.13277

OVERSHOOTY -0.2782 -0.10763 -0.1497

OVERSHOOT -0.27826 -0.11099 -0.15171

SEQUENCE_DURATION -0.40063 -0.07926 -0.11477

ANGLEDIFFERENCE -0.26223 -0.17666 -0.1338

DIRECTION -0.16599 -0.08044 -0.12805

HOVER_TIME -0.43495 -0.07837 -0.08085

OPTIMAL_DISTANCE -0.4696 -0.09271 -0.12142

DISTANCE_TRAVELLED -0.25482 -0.07852 -0.14955

VARIANCE1 -0.30922 -0.16111 -0.08793

VARIANCE2 -0.24089 -0.08409 -0.13081

VARIANCE3 -0.2464 -0.26185 -0.10398

VARIANCEDIST1 -0.39094 -0.10177 -0.0859

VARIANCEDIST2 -0.24089 -0.08409 -0.13081

VARIANCEDIST3 -0.46522 -0.1849 -0.11233

CLICKTIME -0.55715 -0.05803 -0.11254

HESITATE -0.46923 -0.05589 -0.08896

CLICKRATIO -0.2428 -0.18474 -0.11609

Table 10-7: MM Linear Regression CA for Weeks 1 to 3

153

Week 4 5 6 7

EFFICIENCY -0.08626 -0.13532 -0.10022 -0.01352

OVERSHOOTX -0.09082 -0.17932 -0.1529 -0.01719

DIRECTIONANGLE -0.08934 -0.17469 -0.04705 -0.04552

SEQUENCE_SPEED -0.09684 -0.17078 -0.16147 -0.04381

OVERSHOOTDIRECTION

ANGLE -0.09524 -0.18974 -0.03437 -0.00592

OVERSHOOTY -0.07615 -0.2784 -0.04989 -0.03165

OVERSHOOT -0.0762 -0.27943 -0.05037 -0.03108

SEQUENCE_DURATION -0.15067 -0.1913 -0.13683 -0.11098

ANGLEDIFFERENCE -0.14738 -0.17039 -0.05635 -0.04607

DIRECTION -0.06674 -0.21568 -0.04394 -0.02926

HOVER_TIME -0.11401 -0.15126 -0.11244 -0.04777

OPTIMAL_DISTANCE -0.06364 -0.17189 -0.05935 -0.03213

DISTANCE_TRAVELLED -0.09835 -0.17546 -0.09339 -0.03734

VARIANCE1 -0.09299 -0.17579 -0.05859 -0.03064

VARIANCE2 -0.09259 -0.18671 -0.07503 -0.03806

VARIANCE3 -0.17842 -0.1724 -0.06207 -0.04752

VARIANCEDIST1 -0.06645 -0.16763 -0.05243 -0.01726

VARIANCEDIST2 -0.09259 -0.18671 -0.07503 -0.03806

VARIANCEDIST3 -0.115 -0.15419 -0.08369 -0.05413

CLICKTIME -0.07995 -0.18896 -0.11671 -0.05564

HESITATE -0.1041 -0.14492 -0.10831 -0.05215

CLICKRATIO -0.07903 -0.19393 -0.05405 -0.02726

Table 10-8: MM Linear Regression CA for Weeks 4 to 7

154

Week 8 9 10

EFFICIENCY -0.0172 -0.54612 -0.17016

OVERSHOOTX -0.02787 -0.17626 -0.16987

DIRECTIONANGLE -0.06808 -0.03311 -0.19379

SEQUENCE_SPEED -0.01472 -0.08308 -0.1532

OVERSHOOTDIRECTIONANGLE -0.01594 -0.07473 -0.13424

OVERSHOOTY -0.06226 -0.22505 -0.22404

OVERSHOOT -0.06204 -0.22506 -0.22456

SEQUENCE_DURATION -0.16748 -0.28076 -0.22677

ANGLEDIFFERENCE -0.01924 -0.78433 -0.26156

DIRECTION -0.04324 -0.06391 -0.17159

HOVER_TIME -0.07058 -0.00058 -0.23295

OPTIMAL_DISTANCE -0.06317 -0.03734 -0.18766

DISTANCE_TRAVELLED -0.03657 -0.0633 -0.16672

VARIANCE1 -0.06751 -0.03065 -0.19214

VARIANCE2 -0.08563 -0.45219 -0.20431

VARIANCE3 -0.08167 -0.18943 -0.24616

VARIANCEDIST1 -0.0767 -0.03213 -0.18361

VARIANCEDIST2 -0.08563 -0.45219 -0.20431

VARIANCEDIST3 -0.09158 -0.43434 -0.21892

CLICKTIME -0.23481 -0.28366 -0.21095

HESITATE -0.08476 -0.01626 -0.25116

CLICKRATIO -0.08948 -0.15675 -0.20161

Table 10-9: MM Linear Regression CA for Weeks 8 to 10

155

10.4.2 Written Exam

Week 1 2 3

EFFICIENCY -0.1159 -0.17695 -0.03788

OVERSHOOTX -0.16755 -0.02632 -0.02655

DIRECTIONANGLE -0.07893 -0.00732 -0.06128

SEQUENCE_SPEED -0.09399 -0.01722 -0.02733

OVERSHOOTDIRECTIONANGLE -0.09097 -0.04294 -0.02636

OVERSHOOTY -0.14654 -0.01241 -0.02321

OVERSHOOT -0.14727 -0.01681 -0.02291

SEQUENCE_DURATION -0.15821 -0.03073 -0.0249

ANGLEDIFFERENCE -0.13819 -0.25058 -0.03576

DIRECTION -0.06745 -0.01047 -0.05384

HOVER_TIME -0.22261 -0.00152 -0.02759

OPTIMAL_DISTANCE -0.17661 -0.0213 -0.0253

DISTANCE_TRAVELLED -0.13645 -0.01073 -0.02478

VARIANCE1 -0.11943 -0.0053 -0.03719

VARIANCE2 -0.10449 -0.03462 -0.0262

VARIANCE3 -0.11589 -0.12696 -0.00751

VARIANCEDIST1 -0.12791 -0.00511 -0.06313

VARIANCEDIST2 -0.10449 -0.03462 -0.0262

VARIANCEDIST3 -0.12369 -0.16402 -0.02117

CLICKTIME -0.3232 0.016025 -0.04628

HESITATE -0.23711 0.02448 -0.0235

CLICKRATIO -0.14094 0.052769 -0.01537

Table 10-10: MM Linear Regression Written Exam for Weeks 1 to 3

156

Week 4 5 6 7

EFFICIENCY -0.01821 -0.05306 -0.13438 -0.03094

OVERSHOOTX -0.00409 -0.05306 -0.20009 -0.02727

DIRECTIONANGLE -0.14475 -0.05322 -0.03433 -0.03569

SEQUENCE_SPEED -0.02244 -0.04987 -0.20262 -0.04817

OVERSHOOTDIRECTION ANGLE -0.02216 -0.06516 0.005485 -0.00386

OVERSHOOTY -0.03371 -0.13441 -0.05361 -0.03621

OVERSHOOT -0.03334 -0.13639 -0.05536 -0.03587

SEQUENCE_DURATION -0.08359 -0.05903 -0.10235 -0.10306

ANGLEDIFFERENCE -0.0343 -0.05551 -0.04992 -0.03926

DIRECTION -0.02098 -0.10575 -0.0407 -0.00886

HOVER_TIME -0.02189 -0.01328 -0.08054 -0.03965

OPTIMAL_DISTANCE -0.00813 -0.00219 -0.04597 -0.03865

DISTANCE_TRAVELLED -0.02516 -0.04776 -0.11629 -0.03376

VARIANCE1 -0.02744 -0.03839 -0.06439 -0.09213

VARIANCE2 -0.00287 -0.07371 -0.03888 -0.04432

VARIANCE3 -0.03952 -0.05817 -0.03294 -0.04844

VARIANCEDIST1 -0.02236 -0.02156 -0.0325 -0.05884

VARIANCEDIST2 -0.00287 -0.07371 -0.03888 -0.04432

VARIANCEDIST3 -0.02755 -0.04954 -0.05406 -0.03896

CLICKTIME -0.02312 -0.06235 -0.08616 -0.0189

HESITATE -0.02633 -0.00033 -0.05929 -0.03441

CLICKRATIO -0.09417 -0.07879 -0.02939 0.015701

Table 10-11: MM Linear Regression Written Exam for Weeks 4 to 7

157

Week 8 9 10

EFFICIENCY -0.03839 -0.21587 -0.16056

OVERSHOOTX -0.05121 -0.13292 -0.14631

DIRECTIONANGLE -0.04849 -0.105 -0.15128

SEQUENCE_SPEED -0.08235 -0.09776 -0.1404

OVERSHOOTDIRECTIONANGLE -0.00176 -0.11307 -0.1331

OVERSHOOTY -0.10391 -0.31639 -0.17737

OVERSHOOT -0.10444 -0.31525 -0.17732

SEQUENCE_DURATION -0.10635 -0.50468 -0.15981

ANGLEDIFFERENCE -0.04301 -0.55688 -0.31605

DIRECTION -0.01602 -0.11967 -0.14748

HOVER_TIME -0.04638 -0.03787 -0.15084

OPTIMAL_DISTANCE -0.04994 -0.14479 -0.1579

DISTANCE_TRAVELLED -0.05696 -0.0832 -0.1498

VARIANCE1 -0.07963 -0.11496 -0.15224

VARIANCE2 -0.05714 -0.08182 -0.15137

VARIANCE3 -0.05607 -0.10103 -0.16047

VARIANCEDIST1 -0.071 -0.07974 -0.1503

VARIANCEDIST2 -0.05714 -0.08182 -0.15137

VARIANCEDIST3 -0.0518 -0.33642 -0.16674

CLICKTIME -0.07656 -0.38137 -0.1634

HESITATE -0.04232 -0.04071 -0.14071

CLICKRATIO -0.04026 -0.08513 -0.18265

Table 10-12: MM Linear Regression Written Exam for Weeks 8 to 10

158

10.5 Full Classifier Results MM

10.5.1 CA

10.5.1.1 Threshold-0.1

Week 2 3 4

Accuracy 0.508 0.561 0.556

AUC 0.52808 0.5928 0.58296

Precision_Recall 0.543369 0.607421 0.690716

Average_Loss 1.35628 1.150318 5.951665

Loss 1.356276 1.150311 5.951643

Precision 0.50445 0.579935 0.566871

Prediction Mean 0.593196 0.545311 0.663546

Recall 0.656 0.618 0.724

TrueFails 9 12.6 9.7

TruePasses 16.4 15.45 18.1

FalseFails 8.6 9.55 6.9

FalsePasses 16 12.4 15.3

Table 10-13: MM CA Threshold -0.1 Classifier

Week 5 6 7

Accuracy 0.545 0.556 0.568

AUC 0.56224 0.59024 0.5888

Precision_Recall 0.656482 0.660806 0.653572

Average_Loss 7.050821 6.232789 6.061473

loss 7.050879 6.232834 6.061579

precision 0.547011 0.591255 0.550789

predictionMean 0.563162 0.49397 0.589728

recall 0.632 0.556 0.664

TrueFails 11.45 13.9 11.8

TruePasses 15.8 13.9 16.6

FalseFails 9.2 11.1 8.4

FalsePasses 13.55 11.1 13.2

Table 10-14: MM CA Threshold -0.1 Classifier

159

Week 8 9 10

Accuracy 0.512 0.495 0.493

AUC 0.58432 0.495 0.493

Precision_Recall 0.636419 0.746214 0.744682

Average_Loss 1.102824 1436.686 1673.947

loss 1.102815 1436.671 1673.947

precision 0.510205 0.497428 0.496365

predictionMean 0.722598 0.99526 0.993

recall 0.896 0.99 0.986

TrueFails 3.2 0 0

TruePasses 22.4 24.75 24.65

FalseFails 2.6 0.25 0.35

FalsePasses 21.8 25 25

Table 10-15: MM CA Threshold-0.1 Classifier

10.5.2 Written Exam

10.5.2.1 Threshold-0.1

Week 2 3 4

Accuracy 0.506 0.499 0.464

AUC 0.52456 0.473 0.46188

Precision_Recall 0.528641 0.548533 0.595284

Average_Loss 1.360249 6.425502 29.91753

loss 1.360246 6.42542 29.91732

precision 0.497013 0.463606 0.484249

predictionMean 0.558393 0.459704 0.542114

recall 0.618 0.462 0.508

TrueFails 9.85 13.4 10.5

TruePasses 15.45 11.55 12.7

FalseFails 9.55 13.45 12.3

FalsePasses 15.15 11.6 14.5

Table 10-16: MM Written Exam Threshold-0.1 Classifier

160

Week 5 6 7

Accuracy 0.479 0.464 0.499

AUC 0.47836 0.46856 0.49568

Precision_Recall 0.607675 0.613071 0.619542

Average_Loss 187.8078 66.00167 49.48129

loss 187.8066 66.00092 49.48214

precision 0.479081 0.480473 0.491156

predictionMean 0.531345 0.556057 0.536616

recall 0.508 0.52 0.536

TrueFails 11.25 10.2 11.55

TruePasses 12.7 13 13.4

FalseFails 12.3 12 11.6

FalsePasses 13.75 14.8 13.45

Table 10-17: MM Written Exam Threshold-0.1 Classifier

Week 8 9 10

Accuracy 0.468 0.486 0.485

Accuracy_baseline 0.5 0.5 0.5

AUC 0.4586 0.52284 0.51708

Precision_Recall 0.62386 0.636335 0.628207

Average_Loss 82.42663 3.868954 3.311844

loss 82.42532 3.868945 3.311835

precision 0.473558 0.490822 0.489373

predictionMean 0.642354 0.794328 0.784295

recall 0.606 0.806 0.782

TrueFails 8.25 4.15 4.7

TruePasses 15.15 20.15 19.55

FalseFails 9.85 4.85 5.45

FalsePasses 16.75 20.85 20.3

Table 10-18: MM Written Exam Threshold-0.1 Classifier

161

10.6 Full Classifier Results CRE Movements

10.6.1 CA

10.6.1.1 Threshold-0

Week 3 4 5 6

Accuracy 0.677 0.706 0.73 0.758

AUC 0.75868 0.79852 0.78832 0.8546

Precision_Recall 0.735137 0.789635 0.782734 0.851557

Average_Loss 0.626307 0.60079 0.570623 0.485475

loss 0.626308 0.600791 0.570624 0.485475

precision 0.672876 0.696093 0.718547 0.744403

predictionMean 0.502935 0.505485 0.51097 0.504778

recall 0.702 0.754 0.768 0.792

TrueFails 16.3 16.45 17.3 18.1

TruePasses 17.55 18.85 19.2 19.8

FalseFails 7.45 6.15 5.8 5.2

FalsePasses 8.7 8.55 7.7 6.9

Table 10-19: CRE CA Threshold-0 Classifier

Week 7 8 9 10

Accuracy 0.763 0.766 0.767 0.767

AUC 0.86896 0.86732 0.86736 0.8778

Precision_Recall 0.875489 0.873641 0.872452 0.887014

Average_Loss 0.466736 0.46481 0.464857 0.448307

loss 0.466734 0.46481 0.46486 0.448309

precision 0.751874 0.751359 0.752479 0.753399

predictionMean 0.506499 0.515255 0.51384 0.515364

recall 0.794 0.804 0.804 0.802

TrueFails 18.3 18.2 18.25 18.3

TruePasses 19.85 20.1 20.1 20.05

FalseFails 5.15 4.9 4.9 4.95

FalsePasses 6.7 6.8 6.75 6.7

Table 10-20: CRE CA Threshold-0 Classifier

162

10.6.1.2 Threshold 0.1

Week 5 6 7

Accuracy 0.684 0.764 0.763

AUC 0.73712 0.852 0.85656

Precision_Recall 0.74689 0.849903 0.85382

Average_Loss 0.622947 0.495642 0.490722

loss 0.622946 0.49564 0.490723

precision 0.704249 0.746291 0.75313

predictionMean 0.483918 0.502364 0.489841

recall 0.614 0.81 0.788

TrueFails 18.85 17.95 18.45

TruePasses 15.35 20.25 19.7

FalseFails 9.65 4.75 5.3

FalsePasses 6.15 7.05 6.55

Table 10-21: CRE CA Threshold-0.1 Classifier

Week 8 9 10

Accuracy 0.762 0.761 0.756

AUC 0.8514 0.85176 0.84924

Precision_Recall 0.846903 0.848156 0.844744

Average_Loss 0.498402 0.503549 0.50171

loss 0.498401 0.503549 0.501712

precision 0.744467 0.746418 0.741885

predictionMean 0.496969 0.493509 0.491968

recall 0.808 0.8 0.796

TrueFails 17.9 18.05 17.9

TruePasses 20.2 20 19.9

FalseFails 4.8 5 5.1

FalsePasses 7.1 6.95 7.1

Table 10-22: CRE CA Threshold-0.1 Classifier

163

10.6.1.2 Threshold-0.15

Week 6 7 8 9 10

Accuracy 0.737 0.728 0.737 0.719 0.728

AUC 0.82892 0.80856 0.82852 0.80816 0.8284

Precision_Recall 0.817895 0.805647 0.814444 0.779761 0.820573

Average_Loss 0.530116 0.538838 0.526798 0.542029 0.527341

loss 0.530115 0.53885 0.526797 0.542036 0.527343

precision 0.720563 0.687334 0.718053 0.673736 0.714956

predictionMean 0.50768 0.502483 0.500114 0.510934 0.505458

recall 0.784 0.748 0.792 0.752 0.768

TrueFails 17.25 17.7 17.05 17.15 17.2

TruePasses 19.6 18.7 19.8 18.8 19.2

FalseFails 5.4 6.3 5.2 6.2 5.8

FalsePasses 7.75 7.3 7.95 7.85 7.8

Table 10-23: CRE CA Threshold-0.15 Classifier

10.6.2 Written Exam

10.6.2.1 Threshold-0

Week 3 4 5 6

Accuracy 0.651 0.664 0.636 0.725

AUC 0.71712 0.72772 0.7108 0.77776

Precision_Recall 0.731359 0.73331 0.76162 0.780754

Average_Loss 0.637468 0.630169 0.628805 0.571812

loss 0.637468 0.630179 0.628806 0.571813

precision 0.647881 0.655688 0.632102 0.717437

predictionMean 0.505255 0.50053 0.503575 0.495088

recall 0.742 0.736 0.722 0.75

TrueFails 14 14.8 13.75 17.5

TruePasses 18.55 18.4 18.05 18.75

FalseFails 6.45 6.6 6.95 6.25

FalsePasses 11 10.2 11.25 7.5

Table 10-24: CRE Written Exam Threshold-0 Classifier

164

Week 7 8 9 10

Accuracy 0.729 0.728 0.737 0.729

AUC 0.78152 0.78192 0.78496 0.78236

Precision_Recall 0.769857 0.776696 0.779933 0.775815

Average_Loss 0.567948 0.565877 0.56389 0.567747

loss 0.56795 0.565875 0.563888 0.567748

precision 0.724866 0.719843 0.737146 0.725651

predictionMean 0.496224 0.50459 0.493639 0.500003

recall 0.748 0.756 0.746 0.744

TrueFails 17.75 17.5 18.2 17.85

TruePasses 18.7 18.9 18.65 18.6

FalseFails 6.3 6.1 6.35 6.4

FalsePasses 7.25 7.5 6.8 7.15

Table 10-25: CRE Written Exam Threshold-0 Classifier

10.6.2.2 Threshold-0.1

Week 6 7 8 9 10

Accuracy 0.718 0.707 0.706 0.709 0.704

AUC 0.76972 0.772 0.75604 0.76768 0.77012

Precision_Recall 0.746164 0.740542 0.752207 0.731756 0.748504

Average_Loss 0.589908 0.589417 0.595132 0.591657 0.581265

loss 0.589907 0.589418 0.595131 0.591659 0.581265

precision 0.70974 0.696996 0.695669 0.696748 0.695487

predictionMean 0.491233 0.494364 0.490278 0.500048 0.49126

recall 0.752 0.748 0.762 0.752 0.734

TrueFails 17.1 16.65 16.25 16.65 16.85

TruePasses 18.8 18.7 19.05 18.8 18.35

FalseFails 6.2 6.3 5.95 6.2 6.65

FalsePasses 7.9 8.35 8.75 8.35 8.15

Table 10-26: CRE Written Exam Threshold-0.1 Classifier

165

10.6.2.3 Threshold-0.15

Week 6 7 8 9 10

Accuracy 0.71 0.71 0.713 0.713 0.712

AUC 0.7704 0.77016 0.77204 0.77148 0.77432

Precision_Recall 0.742669 0.747982 0.743751 0.745633 0.750403

Average_Loss 0.581102 0.589004 0.584548 0.583122 0.580263

loss 0.581106 0.589003 0.584547 0.583123 0.58026

precision 0.700753 0.696496 0.702882 0.702519 0.700598

predictionMean 0.493171 0.494459 0.490625 0.50209 0.487521

recall 0.746 0.754 0.75 0.748 0.746

TrueFails 16.85 16.65 16.9 16.95 16.95

TruePasses 18.65 18.85 18.75 18.7 18.65

FalseFails 6.35 6.15 6.25 6.3 6.35

FalsePasses 8.15 8.35 8.1 8.05 8.05

Table 10-27: CRE Written Exam Threshold-0.15 Classifier

10.7 Full Classifier Results COMPLEX

10.7.1 CA

10.7.1.1 Threshold-0

Week 2 3 4

Accuracy 0.669 0.709 0.722

AUC 0.72376 0.78424 0.79848

Precision_Recall 0.681588 0.768883 0.779994

Average_Loss 0.623944 0.566244 0.551358

loss 0.623944 0.566243 0.551354

precision 0.625121 0.686323 0.700056

predictionMean 0.520025 0.515713 0.516456

recall 0.848 0.784 0.788

TrueFails 12.25 15.85 16.4

TruePasses 21.2 19.6 19.7

FalseFails 3.8 5.4 5.3

FalsePasses 12.75 9.15 8.6

Table 10-28: COMPLEX CA Threshold-0 Classifier

166

Week 5 6 7

Accuracy 0.788 0.809 0.828

AUC 0.86264 0.89556 0.91384

Precision_Recall 0.835724 0.897094 0.912952

Average_Loss 0.467685 0.4274 0.39184

loss 0.467685 0.427404 0.391835

precision 0.76096 0.781625 0.810237

predictionMean 0.515317 0.520971 0.521544

recall 0.846 0.864 0.862

TrueFails 18.25 18.85 19.85

TruePasses 21.15 21.6 21.55

FalseFails 3.85 3.4 3.45

FalsePasses 6.75 6.15 5.15

Table 10-29: COMPLEX CA Threshold-0 Classifier

Week 8 9 10

Accuracy 0.83 0.828 0.847

AUC 0.91304 0.91208 0.933

Precision_Recall 0.915042 0.914544 0.939861

Average_Loss 0.399514 0.403811 0.359684

loss 0.399511 0.403809 0.35969

precision 0.804179 0.81446 0.845736

predictionMean 0.531913 0.519535 0.515071

recall 0.88 0.858 0.858

TrueFails 19.5 19.95 20.9

TruePasses 22 21.45 21.45

FalseFails 3 3.55 3.55

FalsePasses 5.5 5.05 4.1

Table 10-30: COMPLEX CA Threshold-0 Classifier

167

10.7.1.2 Threshold 0.1

labno 3 4 5

Accuracy 0.688 0.708 0.795

AUC 0.77572 0.78116 0.85984

Precision_Recall 0.76585 0.767767 0.820888

Average_Loss 0.576037 0.572627 0.460667

loss 0.576035 0.572627 0.460669

precision 0.668416 0.6842 0.764495

predictionMean 0.515744 0.512716 0.51763

recall 0.756 0.778 0.856

TrueFails 15.5 15.95 18.35

TruePasses 18.9 19.45 21.4

FalseFails 6.1 5.55 3.6

FalsePasses 9.5 9.05 6.65

Table 10-31: COMPLEX CA Threshold-0.1 Classifier

Week 6 7 8

Accuracy 0.813 0.823 0.844

AUC 0.89796 0.91536 0.91816

Precision_Recall 0.897729 0.911041 0.918603

Average_Loss 0.413128 0.391146 0.383919

loss 0.413128 0.391145 0.383922

precision 0.790228 0.792762 0.835013

predictionMean 0.516462 0.531437 0.51088

recall 0.86 0.886 0.864

TrueFails 19.15 19 20.6

TruePasses 21.5 22.15 21.6

FalseFails 3.5 2.85 3.4

FalsePasses 5.85 6 4.4

Table 10-32: COMPLEX CA Threshold-0.1 Classifier

168

Week 9 10

Accuracy 0.843 0.859

AUC 0.91736 0.93724

Precision_Recall 0.914396 0.944415

Average_Loss 0.382117 0.334469

loss 0.382114 0.334465

precision 0.832818 0.868474

predictionMean 0.518233 0.516113

recall 0.866 0.854

TrueFails 20.5 21.6

TruePasses 21.65 21.35

FalseFails 3.35 3.65

FalsePasses 4.5 3.4

Table 10-33: COMPLEX CA Threshold-0.1 Classifier

10.7.1.3 Threshold 0.15

Week 3 4 5 6

Accuracy 0.684 0.684 0.81 0.821

AUC 0.7478 0.7426 0.85368 0.89976

Precision_Recall 0.729168 0.749041 0.800013 0.894099

Average_Loss 0.590881 0.599657 0.470172 0.413643

loss 0.590887 0.599659 0.470174 0.413645

precision 0.655327 0.655919 0.783417 0.792379

predictionMean 0.523466 0.513708 0.517948 0.517893

recall 0.82 0.822 0.862 0.88

TrueFails 13.7 13.65 18.95 19.05

TruePasses 20.5 20.55 21.55 22

FalseFails 4.5 4.45 3.45 3

FalsePasses 11.3 11.35 6.05 5.95

Table 10-34: COMPLEX CA Threshold-0.15 Classifier

169

Week 7 8 9 10

Accuracy 0.841 0.853 0.858 0.876

AUC 0.91952 0.92292 0.92384 0.94096

Precision_Recall 0.91156 0.920781 0.92482 0.948239

Average_Loss 0.380421 0.374718 0.375989 0.3275

loss 0.380423 0.374716 0.375988 0.327499

precision 0.825157 0.84398 0.842022 0.881976

predictionMean 0.517085 0.514287 0.52357 0.518879

recall 0.874 0.874 0.888 0.876

TrueFails 20.2 20.8 20.7 21.9

TruePasses 21.85 21.85 22.2 21.9

FalseFails 3.15 3.15 2.8 3.1

FalsePasses 4.8 4.2 4.3 3.1

Table 10-35: COMPLEX CA Threshold-0.15 Classifier

10.7.2 Written Exam

10.7.2.1 Threshold 0

Week 3 4 5 6

Accuracy 0.706 0.7 0.704 0.756

AUC 0.74748 0.75508 0.78124 0.82808

Precision_Recall 0.729717 0.734802 0.773271 0.815417

Average_Loss 0.599087 0.597826 0.585641 0.530091

loss 0.599087 0.597824 0.585643 0.53009

precision 0.681052 0.676059 0.682344 0.7473

predictionMean 0.518862 0.517005 0.514705 0.520404

recall 0.786 0.78 0.774 0.796

TrueFails 15.65 15.5 15.85 17.9

TruePasses 19.65 19.5 19.35 19.9

FalseFails 5.35 5.5 5.65 5.1

FalsePasses 9.35 9.5 9.15 7.1

Table 10-36: COMPLEX Written Exam Threshold-0 Classifier

170

Week 7 8 9 10

Accuracy 0.749 0.752 0.738 0.751

AUC 0.8354 0.8256 0.82396 0.81632

Precision_Recall 0.823775 0.816269 0.80966 0.815072

Average_Loss 0.517992 0.535543 0.539123 0.552851

loss 0.517988 0.535544 0.539119 0.55285

precision 0.742617 0.735021 0.730168 0.759215

predictionMean 0.51575 0.527733 0.516182 0.496454

recall 0.786 0.802 0.782 0.756

TrueFails 17.8 17.55 17.35 18.65

TruePasses 19.65 20.05 19.55 18.9

FalseFails 5.35 4.95 5.45 6.1

FalsePasses 7.2 7.45 7.65 6.35

Table 10-37: COMPLEX Written Exam Threshold-0 Classifier

10.7.2.2 Threshold-0.1

Week 5 6 7

Accuracy 0.708 0.776 0.776

AUC 0.7708 0.84496 0.85552

Precision_Recall 0.770311 0.823149 0.846512

Average_Loss 0.587342 0.482156 0.475681

loss 0.587342 0.482154 0.47568

precision 0.679497 0.757443 0.763803

predictionMean 0.522417 0.508226 0.510422

recall 0.794 0.824 0.818

TrueFails 15.55 18.2 18.35

TruePasses 19.85 20.6 20.45

FalseFails 5.15 4.4 4.55

FalsePasses 9.45 6.8 6.65

Table 10-38: COMPLEX Written Exam Threshold-0.1 Classifier

171

Week 8 9 10

Accuracy 0.774 0.782 0.767

AUC 0.85272 0.85244 0.85076

Precision_Recall 0.847837 0.84706 0.846402

Average_Loss 0.484081 0.479841 0.488752

loss 0.484077 0.479841 0.48875

precision 0.763949 0.76815 0.763241

predictionMean 0.509686 0.512389 0.50823

recall 0.81 0.822 0.79

TrueFails 18.45 18.55 18.6

TruePasses 20.25 20.55 19.75

FalseFails 4.75 4.45 5.25

FalsePasses 6.55 6.45 6.4

Table 10-39: COMPLEX Written Exam Threshold-0.1 Classifier

10.7.2.3 Threshold 0.15

Week 6 7 8 9 10

Accuracy 0.782 0.778 0.779 0.779 0.783

AUC 0.84644 0.84084 0.839 0.84304 0.85692

Precision_Recall 0.825687 0.805755 0.81865 0.819155 0.851114

Average_Loss 0.494019 0.49595 0.503474 0.501981 0.481465

loss 0.494021 0.49595 0.50347 0.501979 0.481469

precision 0.751705 0.738913 0.748277 0.746889 0.752848

predictionMean 0.514158 0.533649 0.516537 0.516678 0.516898

recall 0.852 0.87 0.854 0.856 0.852

TrueFails 17.8 17.15 17.6 17.55 17.85

TruePasses 21.3 21.75 21.35 21.4 21.3

FalseFails 3.7 3.25 3.65 3.6 3.7

FalsePasses 7.2 7.85 7.4 7.45 7.15

Table 10-40: COMPLEX Written Exam Threshold-0.15 Classifier

172

10.8 Full Classifier Results HOG

10.8.1 CA

10.8.1.1 Threshold-0

Week 2 3 4 5

Accuracy 0.654 0.723 0.74 0.789

AUC 0.70724 0.80272 0.81164 0.86024

Precision_Recall 0.672865 0.77958 0.784943 0.824922

Average_Loss 0.624949 0.550188 0.535896 0.473129

loss 0.624949 0.550183 0.535899 0.47313

precision 0.61582 0.703158 0.716657 0.758027

predictionMean 0.516041 0.509815 0.503578 0.510214

recall 0.828 0.784 0.802 0.854

TrueFails 12 16.55 16.95 18.1

TruePasses 20.7 19.6 20.05 21.35

FalseFails 4.3 5.4 4.95 3.65

FalsePasses 13 8.45 8.05 6.9

Table 10-41: HOG CA Threshold-0 Classifier

Week 6 7 8 9 10

Accuracy 0.816 0.838 0.836 0.793 0.823

AUC 0.91196 0.91456 0.92204 0.89608 0.93324

Precision_Recall 0.917827 0.916947 0.926377 0.905773 0.94217

Average_Loss 0.401126 0.385291 0.375386 0.470676 0.394716

loss 0.401124 0.385295 0.375387 0.470674 0.394719

precision 0.790631 0.828401 0.823564 0.790046 0.826379

predictionMean 0.52014 0.520376 0.523299 0.519715 0.510721

recall 0.864 0.86 0.86 0.804 0.826

TrueFails 19.2 20.4 20.3 19.55 20.5

TruePasses 21.6 21.5 21.5 20.1 20.65

FalseFails 3.4 3.5 3.5 4.9 4.35

FalsePasses 5.8 4.6 4.7 5.45 4.5

Table 10-42: HOG CA Threshold-0 Classifier

173

10.8.1.2 Threshold 0.1

Week 3 4 5

Accuracy 0.719 0.711 0.79

AUC 0.79404 0.79348 0.85812

Precision_Recall 0.778512 0.776772 0.819388

Average_Loss 0.552793 0.554057 0.468464

loss 0.55279 0.55406 0.468463

precision 0.699248 0.694329 0.765839

predictionMean 0.505998 0.499822 0.516983

recall 0.776 0.76 0.842

TrueFails 16.55 16.55 18.45

TruePasses 19.4 19 21.05

FalseFails 5.6 6 3.95

FalsePasses 8.45 8.45 6.55

Table 10-43: HOG CA Threshold-0.1 Classifier

Week 6 7 8

Accuracy 0.815 0.827 0.847

AUC 0.9084 0.9178 0.92192

Precision_Recall 0.914411 0.921446 0.926431

Average_Loss 0.403165 0.390456 0.382811

loss 0.40316 0.390456 0.382812

precision 0.793439 0.807317 0.83733

predictionMean 0.517343 0.512925 0.509701

recall 0.856 0.866 0.868

TrueFails 19.35 19.7 20.65

TruePasses 21.4 21.65 21.7

FalseFails 3.6 3.35 3.3

FalsePasses 5.65 5.3 4.35

Table 10-44: HOG CA Threshold-0.1 Classifier

174

Week 9 10

Accuracy 0.846 0.858

AUC 0.9242 0.94196

Precision_Recall 0.929208 0.951258

Average_Loss 0.376153 0.326052

loss 0.376161 0.326052

precision 0.829256 0.85377

predictionMean 0.513526 0.507484

recall 0.876 0.868

TrueFails 20.4 21.2

TruePasses 21.9 21.7

FalseFails 3.1 3.3

FalsePasses 4.6 3.8

Table 10-45: HOG CA Threshold-0.1 Classifier

10.8.1.3 Threshold 0.15

Week 3 4 5

Accuracy 0.694 0.642 0.812

AUC 0.76112 0.70112 0.852

Precision_Recall 0.735319 0.672912 0.79263

Average_Loss 0.583244 0.610482 0.466722

loss 0.583243 0.610474 0.466724

precision 0.675557 0.62487 0.782215

predictionMean 0.515215 0.517748 0.51278

recall 0.766 0.804 0.872

TrueFails 15.55 12 18.8

TruePasses 19.15 20.1 21.8

FalseFails 5.85 4.9 3.2

FalsePasses 9.45 13 6.2

Table 10-46: HOG CA Threshold-0.15 Classifier

175

Week 6 7 8

Accuracy 0.813 0.842 0.853

AUC 0.91044 0.92216 0.9278

Precision_Recall 0.915991 0.923661 0.930221

Average_Loss 0.395246 0.377103 0.361779

loss 0.395244 0.377103 0.361775

precision 0.788346 0.825216 0.835917

predictionMean 0.516776 0.514567 0.517859

recall 0.862 0.874 0.884

TrueFails 19.1 20.25 20.55

TruePasses 21.55 21.85 22.1

FalseFails 3.45 3.15 2.9

FalsePasses 5.9 4.75 4.45

Table 10-47: HOG CA Threshold-0.15 Classifier

Week 9 10

Accuracy 0.856 0.876

AUC 0.92704 0.94424

Precision_Recall 0.930653 0.953114

Average_Loss 0.364385 0.311724

loss 0.364393 0.311722

precision 0.838975 0.874932

predictionMean 0.519358 0.517988

recall 0.886 0.884

TrueFails 20.65 21.7

TruePasses 22.15 22.1

FalseFails 2.85 2.9

FalsePasses 4.35 3.3

Table 10-48: HOG CA Threshold-0.15 Classifier

176

10.8.2 Written Exam

10.8.2.1 Threshold-0

Week 2 3 4 5

Accuracy 0.552 0.656 0.632 0.697

AUC 0.63144 0.71588 0.70228 0.77724

Precision_Recall 0.618634 0.692666 0.687021 0.761632

Average_Loss 0.772289 0.637888 0.654496 0.589386

loss 0.772288 0.637887 0.654496 0.589386

precision 0.564355 0.638821 0.636448 0.678242

predictionMean 0.577493 0.540688 0.542723 0.51104

recall 0.708 0.782 0.782 0.762

TrueFails 9.9 13.25 12.05 15.8

TruePasses 17.7 19.55 19.55 19.05

FalseFails 7.3 5.45 5.45 5.95

FalsePasses 15.1 11.75 12.95 9.2

Table 10-49: HOG Written Exam Threshold-0 Classifier

Week 6 7 8 9 10

Accuracy 0.702 0.704 0.711 0.713 0.72

AUC 0.77532 0.79056 0.79012 0.79292 0.80484

Precision_Recall 0.76625 0.782982 0.78133 0.784411 0.799473

Average_Loss 0.61816 0.602191 0.609482 0.604987 0.621336

loss 0.618163 0.602186 0.609482 0.604986 0.62134

precision 0.684606 0.682321 0.689194 0.692157 0.694934

predictionMean 0.532196 0.554068 0.549235 0.555158 0.556399

recall 0.762 0.784 0.788 0.788 0.798

TrueFails 16.05 15.6 15.85 15.95 16.05

TruePasses 19.05 19.6 19.7 19.7 19.95

FalseFails 5.95 5.4 5.3 5.3 5.05

FalsePasses 8.95 9.4 9.15 9.05 8.95

Table 10-50: HOG Written Exam Threshold-0 Classifier

177

10.8.2.2 Threshold-0.1

Week 3 4 5

Accuracy 0.67 0.687 0.736

AUC 0.75556 0.75896 0.81068

Precision_Recall 0.742749 0.735701 0.806698

Average_Loss 0.607336 0.616132 0.545871

loss 0.607333 0.616132 0.545874

precision 0.670086 0.684081 0.717977

predictionMean 0.514041 0.520497 0.515712

recall 0.702 0.702 0.79

TrueFails 15.95 16.8 17.05

TruePasses 17.55 17.55 19.75

FalseFails 7.45 7.45 5.25

FalsePasses 9.05 8.2 7.95

Table 10-51: HOG Written Exam Threshold-0.1 Classifier

Week 6 7 8

Accuracy 0.783 0.789 0.791

AUC 0.87676 0.87196 0.87552

Precision_Recall 0.880063 0.876539 0.88251

Average_Loss 0.460019 0.466028 0.460885

loss 0.460016 0.466029 0.460885

precision 0.769455 0.772684 0.778258

predictionMean 0.510909 0.517068 0.514362

recall 0.824 0.832 0.828

TrueFails 18.55 18.65 18.85

TruePasses 20.6 20.8 20.7

FalseFails 4.4 4.2 4.3

FalsePasses 6.45 6.35 6.15

Table 10-52: HOG Written Exam Threshold-0.1 Classifier

178

Week 9 10

Accuracy 0.793 0.775

AUC 0.87496 0.87008

Precision_Recall 0.881794 0.870965

Average_Loss 0.459104 0.459218

loss 0.459099 0.459217

precision 0.779337 0.772077

predictionMean 0.515584 0.501164

recall 0.83 0.792

TrueFails 18.9 18.95

TruePasses 20.75 19.8

FalseFails 4.25 5.2

FalsePasses 6.1 6.05

Table 10-53: HOG Written Exam Threshold-0.1 Classifier

10.8.2.3 Threshold-0.15

Week 5 6 7

Accuracy 0.719 0.784 0.775

AUC 0.78284 0.87764 0.8756

Precision_Recall 0.761441 0.88246 0.878185

Average_Loss 0.582213 0.454391 0.459704

loss 0.58222 0.454391 0.459702

precision 0.681394 0.767087 0.754203

predictionMean 0.514179 0.510067 0.516727

recall 0.856 0.828 0.826

TrueFails 14.55 18.5 18.1

TruePasses 21.4 20.7 20.65

FalseFails 3.6 4.3 4.35

FalsePasses 10.45 6.5 6.9

Table 10-54: HOG Written Exam Threshold-0.15 Classifier

179

Week 8 9 10

Accuracy 0.786 0.78 0.781

AUC 0.87844 0.87688 0.8704

Precision_Recall 0.881142 0.880199 0.879025

Average_Loss 0.455415 0.461232 0.461408

loss 0.455418 0.461231 0.461411

precision 0.768744 0.764232 0.766455

predictionMean 0.517419 0.509222 0.516676

recall 0.83 0.82 0.822

TrueFails 18.55 18.5 18.5

TruePasses 20.75 20.5 20.55

FalseFails 4.25 4.5 4.45

FalsePasses 6.45 6.5 6.5

Table 10-55: HOG Written Exam Threshold-0.15 Classifier

10.9 Sample VPL and MULE Scripts

10.9.1 vpl_run.sh

#! /bin/bash

cat > vpl_execution <<EEOOFF

#! /bin/bash

prog1=HelloWorld

javac \${prog1}.java &> grepLines.out

if ((\$? > 0)); then

echo "Error compiling your program"

cat grepLines.out

exit

fi

java \${prog1}

EEOOFF

chmod +x vpl_execution

Figure 10-1: Sample vpl_run.sh

10.9.2 vpl_evaluate.sh

#! /bin/bash

cat > vpl_execution <<EEOOFF

#! /bin/bash

---------- PROGRAMS TESTED (WITHOUT EXTENSION) ----

prog1=Printing

compiled=true

--------------------- STARTING GRADE --------------

grade=0

180

----------------- COMPILE STUDENT PROG -----------

javac \${prog1}.java &> grepLines.out

#--- if error, assign a mi&imal grade ---

if ((\$? > 0)); then

 echo "Comment :=>> Your program has compiler

Errors. Use the Run command to help solve the

errors."

 cat grepLines.out

 echo "Comment :=>> ------------"

 compiled=false

fi

if [\${compiled} = true] ; then

 grade=\$((grade+10))

fi

----------- Remove comments from the code ---------

cat \$prog1.java | sed 's://.*$::g' | sed

'/\/**/,/*\// {s/.**\/.*//p; d}' > _\$prog1.java

----------- TEST THE CODE FOR PARTICULAR PATTERNS -

----------- TEST Code -------------

if grep 'public *static *void *main' \${prog1}.java

then

 grade=\$((grade+20))

else

 echo "Comment :=>> you have no main method

created in Printing.java"

 echo "Comment :=>> ------------"

fi

grep 'class *Printing' _\${prog1}.java | grep -v main

&> grepLines.out

if [! -s grepLines.out] ;

then

 echo "Comment :=>> you have not created your

class called Printing in Printing.java"

 echo "Comment :=>> ------------"

else

 grade=\$((grade+20))

fi

grep 'System.out.print' _\${prog1}.java | grep -v

main &> grepLines.out

if [! -s grepLines.out] ;

then

 echo "Comment :=>> you have not created your

print statement in Printing.java"

 echo "Comment :=>> ------------"

else

181

 grade=\$((grade+20))

fi

#--- create expected outputs, one for each input file

above ---

cat > data1.out <<EOF

Welcome to VPL

EOF

if \${compiled} ; then

 for i in 1 ; do

 if ((i > 1)); then

 echo "Comment :=>> --------------------------

------"

 fi

 echo "Comment :=>> (TEST \$i)"

 #

==

 # TEST i

 #

==

 #--- run program, capture output, display to

student ---

 java \${prog1} &> user.out

 cp user.out user.out.org

 #--- remove non numbers and non minus

 #cat user.out | sed 's/[^0-9\ -]*//g' >

dummy.out

 #mv dummy.out user.out

 # ----------- Remove comments from the code --

 cat \$prog1.java | sed 's://.*$::g' | sed

'/\/**/,/*\// {s/.**\/.*//p; d}' > _\$prog1.java

 #--- remove multiple spaces ---

 cat user.out | sed 's/ */ /g' > dummy.out

 mv dummy.out user.out

 #--- remove blank lines ---

 cat user.out | sed '/^\s*$/d' > dummy.out

 mv dummy.out user.out

 #--- compute difference ---

 diff -y -w --ignore-all-space user.out

data\${i}.out > diff.out

 #echo "----- diff.out ------"

 #cat diff.out

 #echo "---------------------"

 diff -y -w --ignore-all-space user.out

data\${i}.out > diff.out

 #--- reject if different ---

182

 if ((\$? > 0)); then

 echo "Comment :=>> Your output is

incorrect."

 #--- display test file ---

 #echo "Comment :=>> Your program tested

with:"

 #echo "<|--"

 #cat data\${i}.txt

 #echo "--|>"

 echo "Comment :=>> ---------------"

 echo "Comment :=>> Your output:"

 echo "Comment :=>> ---------------"

 echo "<|--"

 cat user.out.org

 echo "--|>"

 echo ""

 echo "Comment :=>> ---------------"

 echo "Comment :=>> Expected output: "

 echo "Comment :=>> ---------------"

 echo "<|--"

 cat data\${i}.out

 echo "--|>"

 # --------------------- REWARD IF CORRECT

OUTPUT -----------------

 else

 #--- good output ---

 echo "Comment :=>> Congrats, your output is

correct."

 echo "Comment :=>> ---------------"

 echo "Comment :=>> Your output:"

 echo "Comment :=>> ---------------"

 echo "<|--"

 cat user.out.org

 echo "--|>"

 grade=\$((grade+30))

 fi

 done

fi

if ((grade > 100)); then

 grade=100

fi

echo "Grade :=>> \$grade"

EEOOFF

chmod +x vpl_execution

Figure 10-2: Sample vpl_evaluate.sh

183

10.9.3: vpl_compile.sh

#! /bin/bash

cat > vpl_execution <<EEOOFF

#! /bin/bash

prog1=Printing

javac \${prog1}.java &> grepLines.out

if ((\$? > 0)); then

 echo "Error compiling your program"

 cat grepLines.out

 exit

else

 echo "Compilation succeeded"

 echo "compiled: ==> true"

fi

EEOOFF
Figure 10-3: Sample vpl_compile.sh

10.9.4: metadata.json

{

 "title":"Hello World",

 "Requested files": ["HelloWorld.java"],

 "qid":"CS1_Lab1_helloWorld"

}
Figure 10-4: Sample metadata.json

10.9.5: description.html

<H5>Description</H5>

<p>

 Write a java program which prints the message

"Hello" on one line and

 "world!" on the next.

</p>

<H5>Sample Output</H5>

<pre>Hello
World!</pre>
Figure 10-5: Sample description.html

184

Figure 10-6: Sample description.html in MULE

Figure 10-7: Workbook display of description.html

185

Bibliography

[1] T. Beaubouef and J. Mason, “Why the High Attrition Rate for Computer

Science Students: Some Thoughts and Observations,” ACM SIGCSE Bulletin,

vol. 37, no. 2, pp. 103-106, 2005.

[2] M. Biggers, A. Brauer and T. Yilmaz, “Student Perceptions of Computer

Science: A Retention Study Comparing Graduating Seniors with CS Leavers,”

ACM SIGSCE Bulletin, vol. 40, no. 1, pp. 402-406, 2008.

[3] M. N. Giannakos, I. O. Pappas, L. Jaccheri and D. G. Sampson, “Understanding

Student Retention in Computer Science Education: The Role of Environment,

Gains, Barriers and Usefulness,” Education and Information Technologies, vol.

22, no. 5, pp. 2365-2382, 2017.

[4] P. Kinnunen and L. Malmi, “Why Students Drop Out CS1 Course,” in

Proceedings of the second international workshop on Computing education

research, Canterbury, United Kingdom, 2006.

[5] J. Bennedsen and M. E. Caspersen, “Failure Rates in Introductory

Programming,” ACM SIGcSE Bulletin, vol. 39, no. 2, pp. 32-36, 2007.

[6] N. Culligan and K. Casey, “Building an Authentic Novice Programming Lab

Environment,” in International Conference on Engaging Pedagogy, Dublin,

Ireland, 2018.

[7] J. C. Rodríguez-del-Pino, E. Rubio-Royo and Z. J. Hernández-Figueroa, “A

Virtual Programming Lab for Moodle with Automatic Assessment and Anti-

Plagiarism Features.,” in Proceedings of The 2012 Internacional Conference on

e-Learning, e-Business, Entreprise Information Systems, & e-Government., Las

Vegas, Nevada, USA, 2012.

[8] B. Kitchenham, “Procedures for Performing Systematic Reviews,” Keele, UK,

Keele University, vol. 33, pp. 1-26, 2004.

[9] O. Bohl, J. Schellhase, R. Sengler and U. Winand, “The Sharable Content

Object Reference Model (SCORM) - A Critical Review,” in International

Conference on Computers in Education, 2002. Proceedings, Auckland, New

Zealand, 2002.

[10] D. Thiébaut, “Automatic Evaluation of Computer Programs Using Moodle's

Virtual Programming Lab (VPL) Plug-In,” Journal of Computing Sciences in

Colleges, vol. 30, no. 6, pp. 145-151, 2015.

[11] N. Duncan, “Feed‐Forward: Improving Students' Use of Tutors' Comments,”

in 7th international technology, education and development conference

(INTED2013), Valencia, Spain, 2013.

[12] B. Getzlaf, B. Perry, G. Toffner, K. Lamarche and M. Edwards, “Effective

186

Instructor Feedback: Perceptions of Online Graduate students,” Journal of

Educators Online, vol. 6, no. 2, pp. 1-22, 2009.

[13] H. Kitaya and I. Ushio , “An Online Automated Scoring System for Java

Programming Assignment,” International Journal of Information and

Education Technology, vol. 6, no. 4, pp. 275-279, 2016.

[14] S. L. Jackson, S. J. Stratford, J. S. Krajcik and E. Soloway, “Model-It: A Case

Study of Learner-Centered Design Software for Supporting Model Building,”

in Working Conference on Applications of Technology in the Science

Classroom, 1995.

[15] P. Sharmaa and M. J. Hannafinb, “Scaffolding in Technology-Enhanced

Learning Environments,” Interactive learning environments, vol. 15, no. 1, pp.

27-46, 2007.

[16] P. Blikstein, “Using Learning Analytics to Assess Students' Behavior in Open-

Ended Programming Tasks,” in Proceedings of the 1st international

conference on learning analytics and knowledge, Alberta, Canada, 2011.

[17] M. Berland, T. Martin, T. Benton, C. Petrick Smith and D. Davis, “Using

Learning Analytics to Understand the Learning Pathways of Novice

Programmers,” Journal of the Learning Sciences, vol. 22, no. 4, pp. 564-599,

2013.

[18] M. K. Bradshaw, “Ante Up: A Framework to Strengthen Student-Based

Testing of Assignments,” in Proceedings of the 46th ACM Technical

Symposium on Computer Science Education, Kansas City, Missouri, 2015.

[19] J. C. Caiza and J. M. Del Alamo, “Architecture to Support Automatic Grading

Processes in Programming Teaching,” Revista Politécnica, vol. 36, no. 1, pp.

63-63, 2015.

[20] M. Kölling, “Using BlueJ to introduce programming,” in Reflections on the

Teaching of Programming, Berlin, Heidelberg, Springer, 2008, pp. 98-115.

[21] M. Kölling and J. Rosenberg, “An Object-Oriented Program Development

Environment for the First Programming Course,” in SIGCSE '96: Proceedings of

the twenty-seventh SIGCSE technical symposium on Computer science

education, Philadelphia, Pennsylvania, USA, 1996.

[22] D. Hagan and S. Markham, “Teaching Java with the BlueJ Environment,” in

Proceedings of Australasian Society for Computers in Learning in Tertiary

Education Conference ASCILITE, Coffs Harbour, Australia, 2000.

[23] R. da Silva Ribeiro, L. de Oliveira Brandão, T. V. Machado Faria and A. A.

Franco Brandao, “Programming Web-Course Analysis: How to Introduce

Computer Programming?,” in IEEE Frontiers in Education Conference (FIE)

Proceedings., Madrid, Spain, 2014.

187

[24] M. C. Jadud, “A First Look at Novice Compilation,” Computer Science

Education, vol. 15, no. 1, pp. 25-40., 2005.

[25] R. Romli, S. Shahida and Z. Z. Kamal , “Automatic Programming Assessment

and Test Data Generation a Review on its Approaches,” in International

Symposium on Information Technology, Kuala Lumpur, Malaysia, 2010.

[26] S. G. Hart and L. E. Staveland, “Development of NASA-TLX (Task Load Index):

Results of Empirical and Theoretical Research.,” Advances in psychology., vol.

52, pp. 139-183, 1988.

[27] X. Bai, A. Ola, S. Akkaladevi and Y. Cui, “Enhancing the Learning Process in

Programming Courses Through an Automated Feedback and Assignment

Managment System,” Issues in Information Systems, vol. 17, no. 3, pp. 165-

175, 2016.

[28] M. C. Jadud, “An Exploration of Novice Compilation Behaviour in BlueJ.,” PhD

diss., University of Kent,, 2006.

[29] P. N. D., C. Hancock, R. Hobbs, F. Martin and R. Simmons, “Conditions of

Learning in Novice Programmers,” Journal of Educational Computing

Research, vol. 2, no. 1, pp. 37-55, 1986.

[30] K. Casey, “Using Keystroke Analytics to Improve Pass-Fail Classifiers,” Journal

of Learning Analytics, vol. 4, no. 2, pp. 189-211, 2017.

[31] A. Vihavainen, M. Luukkainen and P. Ihantola, “Analysis of Source Code

Snapshot Granularity Levels,” Proceedings of the 15th Annual Conference on

Information Technology, pp. 21-26, 2014.

[32] K. Castro-Wunsch, A. Ahadi and A. Petersen, “Evaluating Neural Networks as

a Method for Identifying Students in Need of Assistance,” in Proceedings of

the 2017 ACM SIGCSE technical symposium on computer science education,

Seattle, Washington, USA, 2017.

[33] A. L. R. Ahadi, H. Haapala and A. Vihavainen, “Exploring Machine Learning

Methods to Automatically Identify Students in Need of Assistance,” in

Proceedings of the eleventh annual international conference on international

computing education research, Omaha, Nebraska, USA, 2015.

[34] S. Bergin and R. Reilly, “Programming: Factors that Influence Success,” in

Proceedings of the 36th SIGCSE technical symposium on Computer science

education, Louis, Missouri, USA, 2005.

[35] C. D. Hundhausen and O. Adesope, “The Normalized Programming State

Model: Predicting Student Performance in Computing Courses Based on

Programming Behavior,” in Proceedings of the eleventh annual International

Conference on International Computing Education Research, Omaha,

Nebraska, USA, 2015.

188

[36] D. Sun, P. Paredes and J. Canny, “MouStress: Detecting Stress from Mouse

Motion,” in Proceedings of the SIGCHI conference on Human factors in

computing systems., Toronto, Ontario, Canada, 2014.

[37] Y. Takashi, “Mouse Trajectories and State Anxiety: Feature Selection with

Random Forest,” in Humaine Association Conference on Affective Computing

and Intelligent Interaction, Geneva, Switzerland, 2013.

[38] S. L. Beilock and T. H. Carr, “When High-Powered People Fail: Working

Memory and “Choking Under Pressure” in Math,” Psychological science, vol.

16, no. 2, pp. 101-105, 2005.

[39] S. L. Beilock, W. A. Jellison, R. J. Rydell, A. R. McConnell and T. H. Carr, “On

the Causal Mechanisms of Stereotype Threat: Can Skills that Don't Rely

Heavily on Working Memory Still be Threatened,” Personality and Social

Psychology Bulletin, vol. 32, no. 8, pp. 1059-1071, 2006.

[40] A. Kapoor, W. Burleson and R. W. Picard, “Automatic Prediction of

Frustration,” International journal of human-computer studies, vol. 65, no. 8,

pp. 724-736, 2007.

[41] D. Teague, “Neo-Piagetian Theory and the Novice Programmer,” PhD diss.,

Queensland University of Technology,, 2015.

[42] R. Lister, “Concrete and Other Neo-Piagetian Forms of Reasoning in the

Novice Programmer,” in Thirteenth Australasian Computing Education

Conference, Perth, Australia, 2011.

[43] D. Teague, R. Lister and A. Ahadi, “Mired in the Web: Vignettes from

Charlotte and Other Novice Programmers,” in 17th Australasian Computing

Education Conference, Sydney, Australia, 2015.

[44] B. Adelson, “Problem Solving and the Development of Abstract Categories in

Programming Languages,” Memory & cognition, vol. 9, no. 4, pp. 422-433,

1981.

[45] K. Casey and D. Azcona, “Utilizing Student Activity Patterns to Predict

Performance,” International Journal of Educational Technology in Higher

Education, vol. 14, no. 1, pp. 1-15, 2017.

[46] J. Vanvinkenroye, C. Grüninger, C.-J. Heine and T. Richter, “A Quantitive

Analysis of a Virtual Programming Lab,” in IEEE International Symposium on

Multimedia, Anaheim, CA, USA, 2013.

[47] A. Begel and B. Simon, “Novice Software Developers, All Over Again,” in

Proceedings of the fourth international workshop on computing education

research, Sydney, Australia, 2008.

[48] . A. Evenrud, “OS.js,” [Online]. Available: https://www.os-js.org/. [Accessed

27th February 2021].

189

[49] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D.

Cournapeau, E. Burovski, P. Peterson, W. Weckesser and J. Bright, “SciPy 1.0:

Fundamental Algorithms for Scientific Computing in Python,” Nature

Methods, vol. 17, no. 3, pp. 261-272, 2020.

[50] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer and R. Weiss, “Scikit-Learn: Machine Learning in

Python.,” Journal of Machine Learning Research, vol. 12, pp. 2825-2830,

2011.

[51] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.

Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,

D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu

and X. Zheng, “"Tensorflow: A System for Large-Scale Machine Learning.,” in

12th {USENIX} symposium on operating systems design and implementation

({OSDI}, Savannah, GA, USA, 2016.

[52] J. Wahlström, M. Hagberg, P. Johnson, J. Svensson and D. Rempel, “Influence

of Time Pressure and Verbal Provocation on Physiological and Psychological

Reactions During Work with a Computer Mouse,” European Journal of

Applied Physiology, vol. 87, no. 3, pp. 257-263, 2002.

[53] S. Bergin and R. Reilly, “The Influence of Motivation and Comfort-Level on

Learning to Program,” in 17th Workshop of the Psychology of Programming

Interest Group, Brighton, UK, 2005.

[54] B. C. Wilson and S. Shrock, “Contributing to Success in an Introductory

Computer Science Course: a Study of Wwelve Factors,” ACM SIGSCE Bulletin,

vol. 33, no. 1, p. 133.1, 2001.

[55] N. Culligan and K. Casey, “What the Mouse Said: How Mouse Movements Can

Relate to Student Stress and Success,” in Psychology of Programming Interest

Group, Toronto, Canada, 2020.

[56] N. Culligan and K. Casey, “Exploring the Coding Behaviour of Successful

Students in Programming by Employing Neo-Piagetian Theory,” in Psychology

of Programming Interest Group, Toronto, Canada, 2020.

[57] A. Hagberg, P. J. Swart and S. A. Daniel , “Exploring Network Structure,

Dynamics, and Function Using NetworkX,” in Proceedings of the 7th Python in

Science Conference, Pasadena, CA, 2008.

[58] T. J. McCabe and C. W. Butler, “Design Complexity Measurement and

Testing,” Communications of the ACM, vol. 32, no. 12, p. 1989, 1989.

[59] J. Sitthiworachart and M. Joy, “Effective Peer Assessment for Learning

Computer,” ACM SIGCSE Bulletin, vol. 36, no. 3, pp. 122-126, 2004.

[60] A. Radermacher and G. Walia, “Gaps Between Industry Expectations and the

Abilities of Graduates,” in Proceeding of the 44th ACM technical symposium

190

on Computer science education, Denver, Colorado, USA, 2013.

[61] A. Begel and B. Simon, “Struggles of New College Graduates in Their First

Software Development Job,” in Proceedings of the 39th SIGCSE technical

symposium on Computer science educatio, Portland, OR, USA, 2008.

[62] B. A. Becker, “An Exploration of the Effects of Enhanced Compiler Error

Messages for Computer Programming Novices,” in Masters Thesis, DIT,

Dublin, 2015.

[63] C. Connolly, E. Murphy and S. Moore, “Programming Anxiety Amongst

Computing Students—A Key in the Retention Debate?,” IEEE Transactions on

Education, vol. 52, no. 1, pp. 52 - 56, 2009.

[64] R. da Silva Ribeiro, T. V. M. Faria, L. de Oliveira Brandão and A. A. F. Brandão,

“Programming web-course analysis: how to introduce computer

programming?,” in IEEE Frontiers in Education Conference (FIE) Proceedings,

Madrid, Spain, 2014 .

[65] M. Bernard and T. Martin, “Clusters and Patterns of Novice Programmers,” in

The meeting of the American Educational Research Association, New Orleans,

USA, 2011.

[66] J. C. Caiza and J. M. Del Alamo, “Programming Assignments Automatic

Grading: Review of Tools and Implementations,” in 7th international

technology, education and development conference (INTED2013), Valencia,

Spain, 2013.

[67] A. Katrutsa and V. Strijov, “Comprehensive Study of Feature Selection

Methods to Solve Multicollinearity Problem According to Evaluation

Criteria.,” Expert Systems with Applications, vol. 76, pp. 1-11., 2017.

[68] T. Martin, T. Benton, C. Petrick Smith and D. Davis, “Using Learning Analytics

to Understand the Learning Pathways of Novice Programmers,” Journal of the

Learning Sciences, vol. 22, no. 4, pp. 564-599, 2013.

[69] H.-T. Pao, “A Comparison of Neural Network and Multiple Regression Analysis

in Modeling Capital Structure,” Expert Systems with Applications, vol. 35, p.

720–727, 2008.

