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We study properties of the thermal transition in QCD, using anisotropic, fixed-scale lattice simulations
with Nf ¼ 2þ 1 flavors of Wilson fermion. Observables are compared for two values of the pion mass,
focusing on chiral properties. Results are presented for the Polyakov loop, various susceptibilities, the chiral
condensate and its susceptibility, and the onset of parity doubling in the light and strange baryonic sector.
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I. INTRODUCTION

Mapping out the QCD phase diagram remains one of the
outstanding challenges in the theory of the strong inter-
actions. By now, it is well established that the transition
along the temperature axis, at vanishing baryon density, is a
crossover [1]. This result has been obtained, and confirmed,
using simulations of lattice QCD with physical quark
masses in the continuum limit [2–4]. It is expected that
the transition becomes a proper phase transition for quarks
lighter than those in nature, reflecting the chiral symmetry
of massless quarks. The manner in which this occurs
depends on the way the chiral limit is taken, e.g., by
consideringNf ¼ 3 degenerate quark flavors, or instead the
Nf ¼ 2þ 1 case, with the strange quark mass fixed at its
physical value. In the latter situation, a possible scenario is
that the chiral transition is second order for exactly

massless light quarks only, but a crossover for nonzero
quark masses [5,6]. This aspect of the QCD thermal
transition, including the value of the transition temperature
in the chiral limit, is currently an active area of study, see,
e.g., Refs. [7–9]. Most lattice studies, including those
mentioned above, have been carried out using the staggered
fermion formulation. It is important to investigate proper-
ties of the crossover with alternative fermion formulations,
such as Wilson quarks, which avoid any potential uncer-
tainty with this approach, e.g., with regard to the rooting
of staggered fermions and taste symmetry violations.
This provides one motivation for the work presented in
this paper.
Besides the phase structure, many questions arise related

to spectroscopy, i.e., the behavior of hadrons as the temper-
ature of the hadronic gas is increased to approach and then
exceed the crossover temperature, turning the system into a
quark-gluon plasma (QGP). This is highly relevant for
heavy-ion phenomenology, where the in-medium modifica-
tion and melting of hadrons provides an important charac-
terization of the QGP. In a sequence of papers some of us
have studied this question, for heavy-quark bound states
(bottomonium) [10–13], hidden and open charm [14], and
positive- and negative-parity light baryons [15,16] and
hyperons [17]. In these studies we used Wilson fermions,
for which there is a clear practical motivation: all time slices
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are available for spectroscopic analysis, avoiding the stag-
gering present in temporal correlators obtained using the
staggered formulation. In addition, we use anisotropic
lattices, with aτ=as ≪ 1 (here aτ and as are the temporal
and spatial lattice spacing respectively), to further increase
the number of data points in the temporal direction available
for analysis. The studies listed above have been obtained at a
single lattice spacing, using light quarks that are heavier than
in nature, while the strange quark takes its physical value.
In order to improve on this, one has to systematically reduce
the lattice spacing and the two light quark masses. Due to the
anisotropy, this is a nontrivial endeavor as a tuning of the
bare parameters at T ¼ 0 (gauge and fermion anisotropies,
light and strange quark masses) is required for each value of
the lattice spacing and quark masses, done in such a way that
the anisotropy is kept approximately constant. As a next step
in this program, we present here a new set of ensembles at
eleven different temperatures for lighter quarks, reducing the
pion mass from approximately 384 MeV (employed in
Refs. [13–17]) to 236 MeV, keeping the lattice spacing
unchanged. In order to embark on a spectroscopic analysis of
these ensembles, it is necessary to characterize them from a
thermodynamic viewpoint and determine the properties of
the thermal crossover. This is the second motivation of
this study.
In the remainder of this introduction, we discuss several

other works that have employedNf ¼ 2þ 1Wilson quarks
to investigate QCD at nonzero temperature, for compari-
son. As mentioned above, none of these studies have used
physical quark masses and taken the continuum limit
simultaneously, mostly due to the inherent cost in simulat-
ing Wilson fermions over staggered ones. We note that all
studies described below, including ours, use the fixed-scale
approach, in which the temperature T ¼ 1=ðaτNτÞ is varied
by changing Nτ at fixed aτ. The benefit is that it is
straightforward to generate and compare ensembles at
different temperatures, without the need to change the
bare parameters, once the ensembles at T ¼ 0 have been
tuned. This should be contrasted with the fixed-temperature
approach, where the main goal is the extrapolation to the
continuum limit, obtained by varying the lattice spacing
and temporal extent of the lattice simultaneously, such that
the temperature is kept fixed. In Refs. [18,19] the Budapest-
Wuppertal group studied Nf ¼ 2þ 1 QCD thermodynam-
ics on isotropic lattices, while taking the continuum limit
using two, three or four values of the lattice spacing. The
pion masses were approximately 545, 440 and 285 MeV.
As the pion mass is reduced, the pseudocritical temperature
is seen to decrease, but no estimates for its value are given.
TheWHOT collaboration, in a series of papers [20–22], has
studied Nf ¼ 2þ 1 QCD thermodynamics using gradient
flow. They employ isotropic lattices at a single lattice
spacing, with a pion heavier than in nature. Preliminary
results at the physical point are given in Ref. [23]. The final
related work we mention here, by the tmfT collaboration,

employs twisted-mass fermions with Nf ¼ 2þ 1þ 1 fla-
vors, including at the physical point, at a single lattice
spacing [24,25]. We come back to those results later on in
the paper. We emphasize that all papers mentioned above
use isotropic lattices.
This paper is organized as follows. In the following

section, we introduce the new ensembles and make a brief
comparison between these and the previous ones. The
Polyakov loop and heavy-quark entropy are discussed in
Sec. III. Susceptibilities related to quark number are ana-
lyzed in Sec. IV. Section V gives results on the chiral
condensate and its susceptibility. Results for parity doubling
in light baryonic channels as a sign of chiral symmetry
restoration are presented in Sec. VI. A comparison of the
various results for the pseudocritical temperature is finally
given in Sec. VII. Appendix contains details of the lattice
action, the parameter choices and the code used. Preliminary
results have been presented in Refs. [26,27].

II. FINITE-TEMPERATURE ENSEMBLES

We employ the anisotropic lattice formulation intro-
duced by the Hadron Spectrum Collaboration and use the
same bare gauge and fermion anisotropies and bare sea
quark masses as employed in their extensive spectroscopy
program, see for example Refs. [28,29] and references
therein. In brief, we employ a Symanzik-improved gauge
action and a Wilson tadpole-improved clover fermion
action, with stout-smeared links. Further details of the
action are given in Appendix of this paper; the full details of
the action and the parameter tuning strategy were described
in Refs. [30,31]. In our previous work [13–17,32], the
Nf ¼ 2þ 1 Generation 2 (Gen2) ensembles corresponded
to a physical strange quark mass and a bare light quark
mass of aτml ¼ −0.0840, yielding a pion mass of mπ ¼
384ð4Þ MeV (see Table I). The latter was determined from
exponential fits to a 3 × 3 matrix of Gaussian-smeared
correlation functions [30]. The pion mass quoted more
recently by the Hadron Spectrum Collaboration is
mπ ¼ 391 MeV, determined from ππ P-wave scattering,
using distillation and a large basis of interpolating operators
on multiple lattice volumes [28,33]. We will use the value
of mπ ¼ 384ð4Þ MeV to indicate the Gen2 results in the
plots below. The target anisotropy is 3.5; the renormalized
anisotropy ξ is given in Table I.
The new Nf ¼ 2þ 1 Generation 2L (Gen2L, L for light)

ensembles have the same physical strange quark mass and
lighter (degenerate) up and down quark masses, with a bare
mass of aτml ¼ −0.0860. Following the Hadron Spectrum
Collaboration as before, this corresponds to a pion mass of
mπ ¼ 236ð2Þ MeV [28]. The Gen2L ensembles introduced
here allow a study of the light quark mass dependence, with
almost all other parameters unchanged in the simulation.
The spatial lattice volume is increased (Ns ¼ 24 → 32) to
ensure a large enough physical volume (mπL > 4), and the
anisotropy, ξ ¼ as=aτ, measured from the pion dispersion
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relation on the lowest temperature ensembles is approx-
imately the same [28]. A comparison of the two ensembles
is given in Table I.
In the fixed-scale approach, it is straightforward to

generate ensembles at nonzero temperature, simply by
changing the temporal extent Nτ. Details of the finite-
temperature ensembles are listed in Table II. Here Ncfg

refers to the number of independent configurations gen-
erated (after thermalization) and Nstoch to the number of
Gaussian random vectors used for the computation of
susceptibilities. The Gen2 ensemble at the lowest temper-
ature, labeled with a *, has been kindly provided by
HadSpec; for Gen2L we consider the Nτ ¼ 128 ensembles
as the “T ≈ 0” ensemble. Since these ensembles satisfy
Nτ > ξNs, or 1=T > L, it is indeed appropriate to consider
them to be at zero temperature. For the sake of consistency
of notation, we will assign a nominal temperature T ¼
1=ðaτNτÞ to these ensembles in the following. The Gen2L
ensembles at the two highest temperatures (Nτ ¼ 12, 8) are
not used either; since the temperatures are above 500 MeV,
they do not provide additional information on the thermal
transition. In Gen2, we include one ensemble on a 323

volume, namely with Nτ ¼ 48, to increase the number
of available temperatures in the hadronic phase, in par-
ticular for the analysis of the chiral condensate and
susceptibilities.
In the next sections we will present an overview of the

crossover as inferred from the Polyakov loop and in
particular from fermionic observables (susceptibilities,
chiral condensate, baryon parity doubling). We note here
that for Gen2 the pseudocritical temperature has already
been determined via the renormalized Polyakov loop and
estimated to be TP

pc ¼ 185ð4Þ MeV [32]. This value of Tpc

is used in the third column of Table II for Gen2, leading to
four ensembles above and five below Tpc. For Gen2L we
will see that a reliable estimate for the pseudocritical
temperature follows from the chiral condensate, with
Tψ̄ψ
pc ¼ 164ð2Þ MeV. Hence there are a sufficient number

of ensembles in both the hadronic phase and the quark-
gluon plasma to allow us to study the thermal transition
in detail.

III. POLYAKOV LOOP

The Polyakov loop acts as an order parameter for the
spontaneous breaking of centre symmetry at high temper-
ature in Yang-Mills theory. In the presence of quarks, centre
symmetry is explicitly broken and the Polyakov loop no
longer plays this role. Nevertheless, it is often used as an
indicator of the thermal transition, although its relevance is
diminished as the simulated quarks becomes lighter [2–4].
The Polyakov loop is defined, on a single configuration, as

the trace of the product of the links in the temporal direction,

Px ¼ 1

3
Tr

YNτ−1

τ¼0

Uðτ;xÞ;4: ð1Þ

Similarly, the conjugate Polyakov loop is given by P†
x. Their

expectation values are real and directly related to the free
energy of an infinitely heavy (anti)quark,

TABLE II. Temporal extent, temperature in MeV, number of
configurations, and number of Gaussian random vectors, used for
susceptibilities for the ensembles of Generation 2 (above) and
Generation 2L (below). Ensembles marked with “� � �” were not
used for results presented in this paper.

Generation 2, 243 × Nτ

Nτ T [MeV] T=Tc Ncfg Nstoch

128a 44 0.24 305 100
48b 117 0.63 251 1200
40 141 0.76 502 800
36 156 0.84 501 400
32 176 0.95 1000 400
28 201 1.09 1001 400
24 235 1.27 1002 100
20 281 1.52 1000 100
16 352 1.90 1000 100

Generation 2L, 323 × Nτ

Nτ T [MeV] Ncfg Nstoch

128 47 1024 400
64 94 1041 1600
56 107 1042 1600
48 125 1123 1200
40 150 1102 1200
36 167 1119 800
32 187 1090 400
28 214 1031 400
24 250 1016 400
20 300 1030 100
16 375 1102 100
12 500 1267 � � �
8 750 1048 � � �

aThe low-temperature ensemble marked “a” was provided by
HadSpec [30,31].

bThe Nτ ¼ 48 Gen2 ensemble is on a spatial volume of 323.

TABLE I. Comparison of Generation 2 and 2L ensembles. The
temporal lattice spacing is determined using the mass of Ω
baryon. ξ is the renormalized anisotropy, determined via the slope
of the pion dispersion relation.

Gen2 Gen2L

aτ [fm] 0.0350(2) 0.0330(2)
a−1τ [GeV] 5.63(4) 5.997(34)
ξ ¼ as=aτ 3.444(6) 3.453(6)
as [fm] 0.1205(8) 0.1136(6)
Ns 24 32
mπ [MeV] 384(4) 236(2)
mπL 5.63 4.36
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Lbare ¼ hPxi ¼ e−F
q=T; Lc

bare ¼ hP†
xi ¼ e−F

q̄=T: ð2Þ

The subscript “bare” is used to emphasize that these are
unrenormalized. At vanishing baryon chemical potential,
Fq ¼ Fq̄ and

LbareLc
bare ¼ hPxihP†

xi ¼ e−2F
q=T: ð3Þ

This expression is useful when analysing simulations,
since the imaginary parts of Lbare and Lc

bare both fluctuate
around zero.
The free energy contains an additive divergence [2–4],

which results in a multiplicative, temperature-dependent
renormalization of the Polyakov loop. Following the same
procedure as in our earlier Gen2 analysis [32], the renor-
malized Polyakov loop is defined as

LR ¼ e−F
q
R=T ¼ e−ðFqþΔFqÞ=T ¼ ZNτ

L Lbare; ð4Þ

which relates ΔFq to ZL. In turn, ZL may be fixed by
imposing a renormalization condition at an (arbitrary)
reference temperature T�,

LRðT�Þ≡ constant: ð5Þ

Here we follow Ref. [32] (Fig. 1, scheme A) and fix
LRðT�Þ ¼ 1 at T� ¼ 352 MeV (N�

τ ¼ 16) for Gen2. Since
the temporal lattice spacing is different for Gen2L, the
corresponding value of N�

τ is no longer an integer.
However, since any T� may be set as a reference point,
this does not create a problem.
The renormalized Polyakov loop is shown for both Gen2

and Gen2L in Fig. 1. At high temperature, the results for the
two generations are in good agreement, emphasising the

importance of the renormalization. At lower temperatures,
there is a slight difference, indicating a dependence on the
pion mass in the crossover region. Fitting the data with cubic
splines allows for an extraction of the inflection point, using
the derivative of the spline. For Gen2 the pseudocritical
temperature was estimated to be TP

pc ¼ 185ð4Þ MeV [32],
where the uncertainty reflected the spread between different
renormalization schemes but did not include statistical
uncertainties. Here we determine the statistical uncertainty
using a bootstrap analysis. Choosing Scheme A as above
we find Tpc ¼ 183þ5

−8 MeV for Gen2 and 183þ6
−3 MeV for

Gen2L, where the uncertainties are now purely statistical.
This implies that the Polyakov loop is not sensitive to the
pion mass in this regime. However, it should be noted that
for this observable the transition region is rather broad,
reflecting the fact that it is not an order parameter. This result
of course provides an important motivation to focus on
observables linked to chiral symmetry.
Before doing so, however, we present one more result

linked to the Polyakov loop, namely the entropy of a single,
infinitely heavy quark. Following Refs. [34,35], this
entropy is defined as

Sq ¼ −
∂Fq

R

∂T ¼ ∂
∂T ðT lnLRÞ; ð6Þ

and our results for Sq are presented in Fig. 2. An estimate
of the transition temperature is provided by its peak [34].
We find Tpc ¼ 168ð5Þ MeV for Gen2 and 144(8) MeV for
Gen2L respectively. Hence in this case a clear pion mass
dependence can be observed. The values for Tpc obtained in
this section, along with those obtained below, are summa-
rized in Table IV in Sec. VII, where they will be compared
in more detail.

FIG. 1. Renormalized Polyakov loop LR on the Gen2 (heavier
pion) and Gen2L (lighter pion) ensembles. Data points are
connected via cubic splines, excluding the points at the lowest
and highest temperatures. The hashed regions indicate the
uncertainties in its derivatives needed to locate an inflection point.

FIG. 2. Single heavy-quark entropy Sq on the Gen2 and 2L
ensembles. The maxima are located at Tpc ¼ 168ð5Þ MeV and
144(8) MeV respectively. The hashed regions indicate the
uncertainties.

G. AARTS et al. PHYS. REV. D 105, 034504 (2022)

034504-4



IV. SUSCEPTIBILITIES

To study the thermodynamic properties, we now discuss
susceptibilities, i.e., fluctuations of light and strange quark
number, as well as of baryon number, electric charge and
isospin. These are defined in the usual way (see, e.g.,
Ref. [32]) via the quark number density and quark number
susceptibilities,

nf ¼ T
V
∂ lnZ
∂μf ; χff0 ¼

T
V

∂2 lnZ
∂μf∂μf0 ¼

∂nf
∂μf0 ; ð7Þ

where Z is the partition function, V the spatial volume, and
μf the quark chemical potentials for flavors f ∈ fu; d; sg.
Note that baryon (B), isospin (I) and electrical charge (Q)
chemical potentials are related to the quark chemical
potentials as

μu ¼
1

3
μB þ 2e

3
μQ þ 1

2
μI; μs ¼

1

3
μB −

e
3
μQ;

μd ¼
1

3
μB −

e
3
μQ −

1

2
μI: ð8Þ

Here the electrical charge of the quark is denoted as eqf,
with e the elementary charge and qf ¼ 2=3 or −1=3 its
fractional charge.
Quark number susceptibilities for flavor f are given by

χff, while for baryon number, isospin and charge suscep-
tibility, we find [32]

χB ¼ 1

9

X
f;f0

χff0 ; χI ¼
1

4
ðχuu þ χdd − 2χudÞ;

χQ ¼ e2
X
f;f0

qfqf0χff0 : ð9Þ

We follow the approach described in the previous study
[32,36], increasing the number of configurations and sto-
chastic vectors for Gen2 substantially (see Table II) and
extending the calculation to the new Gen2L ensembles.
Overall, the computational cost is dominated by the sto-
chastic estimates of disconnected contributions [32,36]. The
only exception here is the isospin susceptibility χI, where the
disconnected parts cancel out in the case of degenerate light
quarks. Stochastic estimators with Gaussian random vectors
are employed in calculations; the number of vectors for each
temperature may be found in Table II. The signal-to-noise
ratio for all susceptibilities allows us to interpolate and
extract inflection points, with the baryon number suscep-
tibility exhibiting the largest statistical fluctuations.
The results are presented in Figs. 3 and 4, for the light

and strange quark number susceptibilities and the isospin,
charge and baryon number susceptibilities respectively.
The susceptibilities are normalized with the corresponding
quantities in the Stefan–Boltzmann limit for massless
Wilson quarks on lattices with the same geometry, using

the renormalized anisotropy. The qualitative behavior is the
same for the heavier and the lighter pion masses; the main
difference is the shift of the transition region to lower
temperature. The effect of reducing the light quark mass is
(marginally) the most pronounced for the isospin suscep-
tibility. At high temperature, all susceptibilities approach
the Stefan–Boltzmann limit from below. Again, the effect
of reducing the light quark mass is most pronounced for the
isospin susceptibility.
As a pragmatic definition for the transition temperature,

we have fitted the data with cubic splines and extracted the
inflection point. These temperatures are indicated with the
vertical lines and are summarized in Table IV in Sec. VII.
The data included in the splines were selected so as to have
roughly equal number of fitted points on each side of the
extracted Tpc. We estimate systematic effects by compari-
son with fits leaving out one point; in almost all cases this

FIG. 3. Comparison of light and strange quark number sus-
ceptibilities for both sets of ensembles. The results are normalized
with the respective quantities on the lattice for massless quarks in
the Stefan–Boltzmann limit. Dotted lines represent interpolations
by cubic splines. Vertical lines indicate the inflection point.

FIG. 4. As in Fig. 3, for the isospin, charge and baryon number
susceptibilities.
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error is dominated by leaving out the point to the high-T
side of the range. Statistical errors are estimated via
bootstrap. As expected, reducing the light quark masses
brings the pseudocritical temperatures determined from the
inflection points closer to the one observed for physical
quark masses [2,4]. A more detailed discussion will be
given in Sec. VII.

V. CHIRAL CONDENSATE AND SUSCEPTIBILITY

The key physical quantities used to study chiral proper-
ties of the system are the chiral condensate and its
corresponding susceptibility,

hψ̄fψfi ¼
T
V
∂ lnZ
∂mf

χψ̄ψ ¼ T
V
∂2 lnZ
∂m2

f

: ð10Þ

Both quantities contain additive and multiplicative diver-
gences, which are regularized by the lattice cutoff. Since in
the fixed-scale approach the lattice spacing is identical for
all temperatures, a complete renormalization is not required
when we are only interested in extracting the pseudocritical
temperature. However, for a more detailed comparison
between the two generations—with slightly different lattice
spacings—renormalization is necessary.
To renormalize the chiral condensate we follow

Ref. [18], which builds on the formulation laid out in
Ref. [37]. In this approach, additive divergences are
cancelled by a zero-temperature subtraction, while multi-
plicative divergences are absorbed via the quark mass. Here
we summarize the main equations. The subtracted chiral
condensate is defined as

Δψ̄ψðTÞ ¼ hψ̄ lψ liðTÞ − hψ̄ lψ liðT ¼ 0Þ; ð11Þ

where hψ̄ lψ li is the bare chiral condensate for Nf ¼ 2

degenerate light flavors, i.e.,

hψ̄ lψ li ¼ hψ̄uψui þ hψ̄dψdi: ð12Þ

The subtracted pseudoscalar susceptibility is defined as

ΔPPðTÞ ¼
Z

d4xhPðxÞPð0ÞiðTÞ

−
Z

d4xhPðxÞPð0ÞiðT ¼ 0Þ; ð13Þ

where PðxÞ is the bare pseudoscalar density

PðxÞ ¼ 1

Nf
ðψ̄uγ5ψu þ ψ̄dγ5ψdÞ: ð14Þ

Both quantities are related to the product of the renormal-
ized quark mass mR and the renormalized subtracted chiral
condensate hψ̄ψiRðTÞ, via [18,37]

mRhψ̄ψiRðTÞ ¼ 2Nfm2
PCACZ

2
AΔPPðTÞ; ð15Þ

mRhψ̄ψiRðTÞ ¼ mPCACZAΔψ̄ψðTÞ þ… ð16Þ

where mPCAC is the PCAC mass, ZA is a finite renormal-
ization constant, and the … vanish in the continuum limit.
Following Ref. [18], the product of the renormalized mass
and condensate can now be obtained from the ratio

mRhψ̄ψiRðTÞ ¼
Δ2

ψ̄ψðTÞ
2NfΔPPðTÞ

þ…; ð17Þ

where the (bare) quantities on the right-hand side (rhs) can
be computed directly and there is no need to determine
mPCAC and ZA separately.
The result is presented in Fig. 5. It is made dimensionless

by dividing with m2
πm2

Ω, using the “zero-temperature”
values for each ensemble, such that the ratio is finite in
the chiral limit. We note that the two sets of points agree
with each other, except that the transition region is shifted
to lower temperature for the lighter pion mass. To extract
the pseudocritical temperature, we fit the data points to
the Ansatz

mRhψ̄ψiRðTÞ
m2

πm2
Ω

¼ c0 þ c1 arctan ½c2ðT − TpcÞ�; ð18Þ

discarding the two (three) highest temperature points
for Gen2 (Gen2L). These fits, with χ2=d:o:f: ≈ 0.8, yield
Tψ̄ψ
pc ¼ 181ð2Þ MeV for Gen2 and 164(2) MeV for Gen2L

(see Table IV). We will discuss these results further in
Sec. VII.
To further analyze the effect of renormalization and

verify that the pseudocritical temperature does not depend

FIG. 5. Renormalized chiral condensate for Nf ¼ 2 light
quarks in the combination mRhψ̄ψiRðTÞ=ðm2

πm2
ΩÞ, for both sets

of ensembles. The dashed lines are fits according to Eq. (18),
discarding the two/three highest points for Gen2/2L. Vertical
lines indicate the inflection points.
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on the choice of observable in the fixed-scale approach, we
show the bare subtracted chiral condensate Δψ̄ψðTÞ and
pseudoscalar susceptibility ΔPPðTÞ separately in Fig. 6.
While the details of the data points now depend on the
ensemble (i.e., the lattice spacing), the pseudocritical
temperatures do not. Using again the fit (18), we find,
from Δψ̄ψ , Tpc ¼ 183ð3Þ MeV for Gen2 and 166(2) MeV
for Gen2L, and fromΔPPðTÞ, Tpc ¼ 186ð2Þ MeV for Gen2
and 166(2) MeV for Gen2L, which are consistent with the
results given above, as it should be.
In Fig. 7 we present the chiral susceptibility for the two

light flavors, with the value at “zero temperature” sub-
tracted (using the Nτ ¼ 128 results for both generations),
but without any multiplicative renormalization. We note

that we show the full susceptibility, i.e., the sum of the
connected and disconnected contributions (the former
shows essentially no sensitivity to the crossover). The peak
in the susceptibility is considerably more pronounced for
the lighter pion. To extract the corresponding pseudocritical
temperature, we used the fit

χψ̄ψðTÞ − χψ̄ψ ð0Þ
¼ c0

c1 þ ðT − TpcÞ2
þ c2 þ c3 tanh ½c4ðT − TpcÞ�: ð19Þ

Taking c3 ¼ 0 yields an adequate fit in the temperature
region near the peak, using 5 points for both Gen2 and
Gen2L, giving T

χψ̄ψ
pc ¼ 170ð3Þ MeV for Gen2 and 165

(2) MeV for Gen2L (see Table IV). By adding the term
proportional to c3 a fit for all data points can be found. The
difference in Tpc obtained using the first and the second
form may be considered as an estimate of the systematic
error. The fit with c3 ≠ 0 provides a somewhat smaller
χ2=d:o:f: and increases the pseudocritical temperature by
2 MeV for both generations. We added this as an additional
error for T

χψ̄ψ
pc in Table IV. One may observe that the

difference between the pseudocritical temperatures from
the chiral susceptibility in Gen2 and Gen2L is very small
compared to other fermionic observables, which may be
explained by the absence of a clear peak for the larger
pion mass.
We note here that we also calculated the chiral con-

densate and susceptibility for the strange quark. Since it
turned out to be much noisier than the light quark
quantities, we do not present it here.

VI. PARITY DOUBLING FOR OCTET AND
DECUPLET BARYONS

As the final probe of the thermal transition we consider
here the emergence of parity doubling in baryonic corre-
lators, which is a signal of chiral symmetry restoration.
We construct the baryon R parameter [15–17,38] from
the positive- and negative-parity correlators GþðτÞ and
G−ðτÞ ¼ −Gþð1=T − τÞ, according to

R ¼
P

nRðτnÞ=σ2ðτnÞP
n1=σ

2ðτnÞ
; ð20Þ

where σðτnÞ denotes the statistical error for RðτnÞ, and
RðτnÞ is defined as

RðτnÞ ¼
GþðτnÞ −Gþð1=T − τnÞ
GþðτnÞ þ Gþð1=T − τnÞ

: ð21Þ

The sum over the time slices τn in Eq. (20) includes
4≤n<Nτ=2 at all temperatures, to suppress lattice arte-
facts at small values of τn. Since Rð1=T − τÞ ¼ −RðτÞ,
only time slices with n < Nτ=2 contribute independently.

FIG. 6. Dimensionless combinations Δψ̄ψ ðTÞ=m3
Ω for the bare

chiral condensate (above), see Eq. (12), and ΔPPðTÞ=m2
Ω for the

pion susceptibility (below), see Eq. (13), for both sets of
ensembles. Dashed and vertical lines are as in the preceding
figure.

FIG. 7. Subtracted chiral susceptibility χψ̄ψ ðTÞ − χψ̄ψ ðT ¼ 0Þ
for light degenerate quarks (Nf ¼ 2), for both ensembles. It was
normalized on the relevant mass on Ω-baryon to make the
quantity dimensionless. The dotted lines are fits according to
Eq. (19).
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The physical reason to introduce this R parameter is as
follows (for a detailed discussion, see Ref. [16]): when
chiral symmetry is unbroken, positive- and negative-parity
correlators are degenerate and R ¼ 0. On the other hand, if
chiral symmetry is broken, and G�ðτÞ are dominated by
their respective ground states, and the mass of the negative-
parity partner is substantially larger than the positive-parity
one, then R ≃ 1. Hence the expectation is that this param-
eter is close to one in the hadronic phase and close to zero at
high temperature, with a transition in the crossover region.
This is indeed the case; Refs. [15–17] contain a discussion
in the context of the Gen2 ensembles.
A comparison between both sets of ensembles is shown

in Figs. 8 and 9, for the octet and decuplet baryons
respectively. The R parameter is distinctly nonzero and
close to one at the lowest temperature. Subsequently, as the
temperature is increased, it goes toward zero in the quark-
gluon plasma. With massive quarks, chiral symmetry is

explicitly broken and R ≠ 0 also in the high-temperature
phase. This effect is expected to go away at very high
temperature, as mq=T → 0. The consequence of the lighter
quarks in Gen2L is visible especially in the nucleon and Δ
channels, where R approaches zero more rapidly. We note
that the amount of smearing used to compute the baryon
correlators has some effect on the detailed shape of the R
curve [15]. Here we are interested in the transition and the
shift of the transition region toward lower temperature for
the lighter pion. To analyze this, we have fitted the data
with cubic splines and extracted the temperature of the
inflection points, these are indicated with the vertical lines
in Figs. 8 and 9, and are listed in the Table III. As
previously, the second error is the systematic effect of
omitting a data point from the spline at one extremum. For
Gen2L the effect is negligible; for Gen2, with a smaller
number of available T, the systematic error dominates. We
also tried arctan-like fit of the form (18), it lowers Tpc

values by approximately 2 MeV compared to the ones from
inflection, and the results remain the same within the error
bars. One may observe, that inflection point occurs at a
lower temperature for the ensembles with the smaller pion
mass. Moreover, the (weak) strangeness dependence
observed for Gen2 in Ref. [17] is absent for Gen2L.

VII. DISCUSSION AND SUMMARY

We have analyzed the thermal transition in QCD with
Nf ¼ 2þ 1 flavors of improved Wilson fermions, using a
wide range of observables related to the quark degrees of
freedom, for two values of the pion mass. A summary of the
pseudocritical temperatures found is provided in Table IV.
For the renormalized Polyakov loop we noted a smooth
behavior manifesting itself by an absence of a clearly
distinguishable peak and a negligible dependence on the
pion mass, see Fig. 1. In contrast, the heavy-quark entropy
shows a sharper crossover and a dependence on the pion
mass, even though it is closely linked to the Polyakov loop.
We continue the discussion by focusing on fermionic
quantities, which are related to chiral symmetry. For these
we observe that the temperature where the crossover occurs
is reduced as the pion gets lighter, as expected, see Fig. 10.
Moreover, we note that the spread of the pseudocritical

FIG. 8. Parity-doubling R parameter as a function of temper-
ature for octet baryons, for both sets of ensembles. Dotted lines
represent interpolations by cubic splines. Vertical lines indicate
the inflection point.

FIG. 9. As in Fig. 8, for decuplet baryons.

TABLE III. Inflection-point temperatures T inf of the R param-
eter for the baryon channels considered, for both ensembles. The
first error quoted is statistical, the second systematic as described
in the text.

T inf [MeV] N Σ Λ Ξ

Gen2 169(1)(2) 164(2)(2) 171(1)(2) 169(1)(3)
Gen2L 157(2)(0.04) 158(2)(0.2) 156(2)(0.3) 160(4)(0.2)

T inf [MeV] Δ Σ� Ξ� Ω

Gen2 169(0.5)(3) 170(1)(3) 173(1)(4) 177(3)(3)
Gen2L 158(3)(0.2) 158(2)(0.2) 158(2)(0.2) 160(2)(0.1)
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temperatures among the different observables is reduced.
This focusing of the pseudocricitical temperatures may be
interpreted as a sign for the presence of a proper phase
transition as the quark mass is still further reduced, as
discussed in the Introduction. Indeed, it is expected that the
chiral transition becomes either first order (ending in a
second order point at a finite value of the pion mass) or
second order (for a massless pion). We note here that the
pseudocritical temperature extracted from the chiral sus-
ceptibility is somewhat of an outlier, taking on a smaller
than expected value at the heavier pion mass—note that
from the theory of critical scaling, one expects T ψ̄ψ

pc < T
χψ̄ψ
pc ,

which is not the case for Gen2. This may be caused by the
absence of a pronounced peak of the chiral susceptibility
for the Gen2 ensembles, see Fig. 7.
With only two values of the pion mass, it is not possible

to make a more quantitative statement about the critical
temperature for either physical or massless quarks.
However, to look for consistency we may compare our
results with those obtained using other lattice fermion
formulations (in particular of the Wilson type) in the same
pion mass range. In Ref. [24], the thermal transition was
studied in Nf ¼ 2þ 1þ 1 QCD using twisted-mass fer-
mions, for pions with masses between 213 and 466 MeV,
at a single lattice spacing. In Fig. 11, we compare the
pseudocritical temperatures extracted from the inflection
point of the chiral condensate. We observe a consistent pion
mass dependence, within the relatively large uncertainties.
In an attempt to extrapolate to the physical point, we fit the
data according to

T ψ̄ψ
pc ðmπÞ ¼ T0 þ κm2=Δ

π ; ð22Þ
where Δ ¼ 1.833 is fixed and represents the Oð4Þ univer-
sality class critical exponent [39]. The critical temperature
in the chiral limit T0 and the coefficient κ are parameters to
be determined. Fitting the six data points we find

κ ¼ 0.064ð11Þ MeV1−2=Δ; T0 ¼ 144ð5Þ MeV: ð23Þ
Extrapolating this fit to the physical pion mass yields

T ψ̄ψ
pc ¼ 158ð3Þ MeV ðphysical pointÞ; ð24Þ

which is consistent with the results obtained from the
chiral condensate by the Wuppertal-Budapest [2] and

FIG. 10. Estimates of the pseudocritical temperatures for the
two pion masses considered, mπ ¼ 236ð2Þ; 384ð4Þ MeV, from
different susceptibilities and the chiral condensate (on the left),
and from the baryon R parameter for different channels (on the
right). Numerical values are summarized in the Tables III and IV.
Dashed lines are plotted to guide the eye.

TABLE IV. Pseudocritical temperatures extracted from the
renormalized Polyakov loop and the single heavy-quark entropy
(see Sec. III), various susceptibilities (Sec. IV), the renormalized
chiral condensate and its susceptibility (Sec. V), and the parity-
doubling parameter R for baryons (Sec. VI). The figure in the
second brackets is an estimate for systematic uncertainty as
described in the text.

Tpc [MeV]

Observable mπ ¼ 236ð2Þ MeV mπ ¼ 384ð4Þ MeV

LR 183þ6
−3 183þ5

−8
Sq 144(8) 168(5)
χlight 157(1)(3) 166(6)(3)
χstrange 162(2)(3) 184(3)(2)
χI 157(0.4)(2) 168(0.6)(3)
χQ 158(0.6)(3) 168(0.6)(3)
χB 158(2)(3) 172(5)(3)
hψ̄ψiR 164(2)(1) 181(2)(4)
χψ̄ψ 165(2)(2) 170(3)(2)
Rbaryon 156–160 164–177

FIG. 11. Estimates for the pion mass dependence of T ψ̄ψ
pc ,

extracted from the inflection point of the renormalized chiral
condensate, for Nf ¼ 2þ 1þ 1 twisted-mass [24] and Nf ¼
2þ 1 Wilson-clover (this work) fermions. The dashed line
presents the fit (22), with the diamond denoting the extrapolated
value at the physical pion mass, Tψ̄ψ

pc ¼ 158ð3Þ MeV.

PROPERTIES OF THE QCD THERMAL TRANSITION WITH … PHYS. REV. D 105, 034504 (2022)

034504-9



HotQCD [40] collaborations, although we stress that no
continuum extrapolation has been performed here. The
error quoted in Eq. (24) is statistical only.
As an outlook, we are in the process of studying the fate

of hadrons at finite temperature on the Gen2L ensembles,
with the lower pion mass, which is the main motivation
for this work. Preliminary results for bottomonium have
appeared in Ref. [41]. In addition, we are currently
tuning the lattice parameters to simulate directly using
physical quark masses, while still at fixed lattice spacing.
This may also allow us to perform a proper investigation
of critical scaling.
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APPENDIX: LATTICE ACTION AND
SIMULATIONS

Here we summarize the action formulation and its
parameters, see also Refs. [30–32]. The gauge action reads

SG ¼ β

Ncγg

X
x;i>i0

�
c0
u4s

Pii0 ðxÞ þ
c1
u6s

fRii0 ðxÞ þ Ri0iðxÞg
�

þ βγg
Nc

X
x;i

�
c0 þ 4c1
u2su2τ

Pi4 þ
c1
u4su2τ

fRi4ðxÞ þ R4iðxÞg
�
;

ðA1Þ

where β ¼ 2Nc=g2 (with Nc ¼ 3) is the gauge coupling
[42], γg is the bare gauge anisotropy, us and uτ are the
tadpole improvement factors for the spatial and temporal
links respectively, c0;1 are the usual tree-level coefficients,
and Pμν and Rμν describe the 4-link plaquette and plain
rectangular plaquette respectively,

Pμν ¼ Nc − Tr½Ux;μUxþμ̂;νU
†
xþν̂;μU

†
x;ν�;

Rμν ¼ Nc − Tr½Ux;μUxþμ̂;μUxþ2μ̂;νU
†
xþν̂þμ̂;μU

†
xþν̂;μU

†
x;ν�:

ðA2Þ

The indices i, i0 denote spatial directions (i; i0 ¼ 1, 2, 3) and
the index 4 denotes temporal direction in Eq. (A1) and
below. Note that only plain rectangular plaquettes Rμν were
used, “chairlike” 6-link plaquettes were not included. The
choice of parameter values used here is listed in Table V.

TABLE V. Parameters in the lattice action (A1)–(A4). Note that the bare fermion anisotropy is obtained as
γf ¼ γg=ν.

Gauge coupling (fixed-scale approach) β ¼ 1.5
Tree-level coefficients c0 ¼ 5=3; c1 ¼ −1=12
Bare gauge, fermion anisotropy γg ¼ 4.3, γf ¼ 3.399
Ratio of bare anisotropies ν ¼ γg=γf ¼ 1.265
Spatial tadpole (without, with smeared links) us ¼ 0.733566, ũs ¼ 0.92674
Temporal tadpole (without, with smeared links) uτ ¼ 1, ũτ ¼ 1
Spatial, temporal clover coefficient cs ¼ 1.5893, cτ ¼ 0.90278
Stout smearing for spatial links ρ ¼ 0.14, isotropic, 2 steps
Bare light quark mass (Gen2, Gen2L) m̂0;light ¼ −0.0840;−0.0860
Bare strange quark mass m̂0;strange ¼ −0.0743
Light quark hopping parameter (Gen2, Gen2L) κlight ¼ 0.2780, 0.27831
Strange quark hopping parameter κstrange ¼ 0.2765

G. AARTS et al. PHYS. REV. D 105, 034504 (2022)

034504-10



Concerning the fermionic action, SF ¼ P
xy ψ̄xDxyψy,

the Dirac operator reads

D ¼ m̂0 þDW;4 þ
1

γf

X
i

DW;i

−
cτ
2

X
i

σ4iF̂4i −
cs
2γg

X
i<i0

σii0F̂ii0 ; ðA3Þ

with

DW;4 ¼
1

2
ð1 − γ4ÞUx;4δxþ4̂;y þ

1

2
ð1þ γ4ÞU†

y;4δx−4̂;y;

DW;i ¼
1

2
ð1 − γiÞUð2Þ

x;i δxþ{̂;y þ
1

2
ð1þ γiÞUð2Þ†

y;i δx−{̂;y;

and σμν ¼ i½γμ; γν�=2. Here m̂0 ¼ aτmf defines the bare
quark mass, γf sets the bare fermion anisotropy, and DW;4

and DW;i are the temporal and spatial Wilson terms
respectively. It is important to note that these Wilson terms
contain no tadpole improvement. The spatial links are stout
smeared [43] with two steps of smearing, using the weight

ρ ¼ 0.14, which is reflected as a superscript Uð2Þ
x;i in (A4).

The Dirac operator (A3) also contains the clover terms
F̂μν [44] consisting of four “cloverlike” link paths,

F̂μνðxÞ ¼
i
8

X4
p¼1

½UðpÞ
μν ðxÞ −UðpÞ†

μν ðxÞ�;

Uð1Þ
μν ðxÞ ¼ Ux;μUxþμ̂;νU

†
xþν̂;μU

†
x;ν;

Uð2Þ
μν ðxÞ ¼ Ux;νU

†
x−μ̂þν̂;μU

†
x−μ̂;νUx−μ̂;μ;

Uð3Þ
μν ðxÞ ¼ U†

x−μ̂;μU
†
x−μ̂−ν̂;νUx−μ̂−ν̂;μUx−ν̂;ν;

Uð4Þ
μν ðxÞ ¼ U†

x−ν̂;νUx−ν̂;μUxþμ̂−ν̂;νU
†
x;μ: ðA4Þ

Note that the spatial links in the clover term are stout
smeared in the same way as in DW;i. The factors cτ and cs
in front of the clover terms in Eq. (A3) are the temporal
and spatial clover coefficients respectively. They may be
expressed as

cτ ¼
1

2

�
γg
γf

þ 1

ξtarget

�
1

ũ2s ũτ
; cs ¼

γg
γf

1

ũ3s
; ðA5Þ

where ũs;τ are the tadpole factors obtained with smeared
links (see Table V) and ξtarget ¼ 3.5 is the target anisotropy.
The renormalized values of the anisotropy may be found
in Table I.
Finally we note that in the case of anisotropic lattices the

bare quark mass is related to the hopping parameter κ as
follows [45]:

1

2κ
¼ m̂0 þ 1þ 3

γf
; ðA6Þ

where γf is again the bare fermion anisotropy. The choice
of parameter values for the fermionic action can be found in
the Table V. Actually, the only difference between Gen2
and Gen2L action setup is the light quark mass m̂0;light (or,
alternatively, κlight, using Eq. (A6) to limited accuracy),
because all other parameters including γf remain the same.
The Generation 2 ensembles were generated with the

Chroma software [46]. To generate the Generation 2L
ensembles with the lighter quarks, we have adapted
openQCD [47] code—which at the time had more
advanced algorithms for LA solvers compared to
Chroma—to include anisotropic lattices and stout-smeared
gauge links. In addition, our fork makes use of AVX-512
optimizations, further improving performance on recent
Intel Skylake and Knights Landing CPUs [48], which are
deployed at DiRAC Extreme Scaling machines. This
adaptation of openQCD is publicly available [49,50]; it
is an order of magnitude faster than the version of Chroma
we employed in the past. Moreover, we introduced new
modules to openQCD code, e.g., a stand-alone measure-
ment code which constructs hadronic two-point functions
[51] and allows to perform the calculations of correlation
functions for various operators, with and without Gaussian
smearing at the sources (sinks), using the definitions of
Ref. [52]. This measurement code and other modules are
available at the same location as our openQCD fork [49].
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