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Abstract 

The primary focus of this thesis is the re-formulation and extension of traditional mode-

matching methods, and the development of the software package SCATTER-TNG (S-TNG) to 

incorporate them. The foundations of this software are built on the legacy of mode matching 

routines developed by the Terahertz Group at Maynooth University. This new adaptation aims 

to enable continued contributions to the design, analysis, and efficient characterisation of the 

sensitive pixel (feed, cavity, and absorber) structures of future far-infrared instruments. 

Contemporary waveguide technologies increasingly rely on the exploitation of multi-moded 

behaviour and operation in higher frequency bands. In these scenarios a more comprehensive 

approach is required to correctly predict their behaviour as the assumption of ideal surfaces 

may no longer be entirely valid. 

In S-TNG, the fundamental description of fields within waveguides and at discontinuities relies 

on auxiliary vector potentials rather than their measurable electric and magnetic field 

quantities. Moreover, the necessary mode matching integrals are derived in terms of contour 

rather than surface integrals. The reformulations offer an alternative, somewhat more flexible, 

mathematical representation of the mode matching problem. Furthermore, mode matching 

methods are extended to allow for non-PEC (Perfect Electrically Conductive) treatment of the 

boundary walls. These non-PEC boundary walls consider mechanisms for loss which are 

generally not included in the modal analysis of guide structures. In particular, losses may 

manifest themselves more significantly in multi-moded structures, as field distributions for 

increasing higher order modes are localised to a greater extent at the boundary walls.  

The motivation for this body of work stemmed from ESA contracted work focused on “New 

Technology High Efficiency Horn Antennas for Cosmic Microwave Background Experiments 

and Far-Infrared Astronomy” – fulfilling the requirement to model multi-moded pixel devices 

for THz space instruments. This included the ability to easily model arbitrary shaped absorbers 

in an infinitely thin absorber layer model achieved via the contour integral implementation. 

The software tools developed have since been applied to the design and analysis of some 

proposed pixel and feed designs for the SPICA/SAFARI instrument. In particular, there is great 

interest in the non-PEC treatment of the boundary walls for the analysis of prototype designs. 
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Chapter 1 – Introduction 

Terahertz (THz) radiation is a form of electromagnetic radiation which covers the frequency 

range of 0.1 to 10 THz. Effectively this portion of the spectrum bridges the gap between short-

microwave (3.0 mm) and far-infrared (0.03 mm) radiation. Antennas which operate in this 

portion of the spectrum require specialised techniques to accurately model and characterise 

their response to external stimulus. In fact, to model complete terahertz instruments a number 

of different modelling techniques may be used in tandem: Physical Optics (PO) (Hecht 2001), 

Ray Tracing (Hecht 2001), Gaussian Beam Mode-Analysis (GBMA) (Goldsmith 1998), Finite 

Element Methods (FEM) (C. A. Balanis 2012) and Mode Matching (Olver et al. 2011) routines. 

The primary focus of this thesis is the development of mode matching routines for the accurate 

and efficient analysis of the sensitive pixels (feed, cavity, and absorber sections) which make 

up the detector plane of terahertz instruments as shown in Figure 1-1. Modal analysis of pixel 

structures is critical for the development of terahertz instruments, these methods offer much 

improved simulation times compared to FEM especially for electrically large structures. The 

Experimental Physics Department at Maynooth University has a legacy in the development 

and application of mode matching routines, most notably contributing to the millimetre and 

sub-millimetre instruments on board the Planck and Herschel space telescopes. This thesis aims 

to present the advances made in mode matching techniques over the last number of years which 

are captured in the newly developed software package SCATTER-TNG. 

Figure 1-1: Shows the modelling techniques applied to the optics and focal plane of a terahertz instrument. The 

optical system is composed of the mirrors, lenses, polarisers and other intermediate optics (Roelfsema 2018). 

The pixel is broken down into the following key components A) multi-mode feed horn B) absorber layer C) Si 

wafer support beams and D) back-short cavity section (Korte et al. 2012). 

Optical System 
Physical Optics 

Gaussian Beam Mode Analysis 

Ray Tracing 

Pixel Detector Arrays 
Mode Matching 

Finite Element Methods 
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Much of this development fed into ESA (European Space Agency) contracted work, with the 

aim to facilitate the design and analysis of feed structures for use in future far-infrared missions. 

One such mission was SPICA (Space Infrared Telescope for Cosmology and Astrophysics) 

(Roelfsema 2018), an infrared space observatory collaboration between ESA and JAXA 

(Japanese Aerospace Exploration Agency). In October 2020 ESA and JAXA announced their 

decision to not proceed with SPICA as a candidate for the M5 Cosmic Visions Programme. 

More directly, the developed mode matching methods would have been applied to the SAFARI 

(SPICA Far-Infrared Instrument) instrument, with the aim of aiding in the design and analysis 

of its detector arrays being developed by Cambridge, Cardiff and SRON (Netherlands Institute 

for Space Research).  

In this chapter, an effort is made to provide context to the mathematical and modelling focused 

content of the thesis. Here, the significant applications of terahertz imaging to the astronomical 

and wider fields are presented, along with a review of the state of the art in terahertz 

technologies. Finally, a proposed future terahertz space mission (SPICA) is discussed, to which 

the SCATTER-TNG software will be applied in later chapters. 

1.1 Astronomical Observations at GHz – THz Frequencies  

Astronomical observations at terahertz frequencies are vital to answering a number of key 

questions in cosmology. By observing the terahertz radiation arriving from astronomical 

sources such as the Interstellar Medium (ISM), the Cosmic Microwave Background (CMB), 

Young Stellar Objects (YSO) and Active Galactic Nuclei (AGN), information about the 

formative processes and evolution of solar systems, galaxies and even the Universe itself can 

be uncovered (Walker 2015). Terahertz photons are emitted via changes to a molecule’s 

thermal or vibrational state, or by bending of molecular state (De Maagt 2007). Due to the 

nature of terahertz emissions observations at these frequencies provide a unique window into 

the very cold Universe (Withington et al. 2014): 

 Objects with physical temperatures of 4 − 100 K have a blackbody spectrum which 

peaks in the terahertz range. 

 Diffuse molecular gases have rotational and vibrational transitions in the terahertz range 

which are excited by low temperature collisions. 
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 Observations can be made through particulate matter, such as grains of graphite, which 

are generally opaque to shorter wavelengths e.g. proto-planetary disc and star forming 

regions. 

By observing terahertz emissions, information about the molecular concentrations and the 

physical condition (temperature, pressure and dynamics) of the imaged source can be 

determined (De Maagt 2007). As such, observations in the terahertz range provide a unique 

point of view and complementary data to observations in other spectral ranges. This is critical 

to further understanding many astronomical phenomenon and the Universe itself. It is thought 

that much of the matter in the Universe is cold, with studies indicating that approximately half 

of the total luminosity and 98% of photons emitted since the big bang fall into the sub-

millimetre and far-infrared range (Siegel 2002). In Figure 1-2, the GHz – THz range covers 

most of the Cosmic Infrared Background (CIB) where many of these astronomical sources can 

be observed. 

Two contributing factors have meant that observations in this GHz-THz regime have been 

limited up until the late 20th century (Walker 2015). Firstly, it is well understood that water is 

a very efficient absorber of electromagnetic energy across the spectrum and this is particularly 

true for GHz – THz photons, see Figure 1-3 (Yang, Shutler, and Grischkowsky 2011). 

Atmospheric absorption of terahertz photons is a limiting factor to where terahertz instruments 

may be located. As a result, observations are limited to either space based telescopes or a select 

number of ground based sites such as Atacama, Chile and Mauna Kea, Hawaii. These sites 

Figure 1-2: Spectral Energy distributions of the Cosmic Optical, Infrared and Microwave Backgrounds 

(Dole et al. 2006). 
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offer a relatively unimpaired window for frequencies ranging from 100 GHz – 1.2 THz the 

requirement being that these be “high and dry”. Transmission at these sites range from 95% at 

the lowest band to 30% at the highest band (Withington et al. 2014). 

Secondly, the emission process associated with terahertz photons means that their energies are 

~100 times less than typical optical photons emitted via relaxation processes between atomic 

states (De Maagt 2007). Thus, the sensitivity requirement for observing in the terahertz regime 

is much more demanding. A lack of commercial viability and serious investment meant that 

the necessary technology threshold was only met towards the end of the 20th century (Wiltse 

1984). Enabled by advances in material sciences, the development of powerful coherent 

terahertz sources and sensitive terahertz detectors opened up the region to experimentation 

(Walker 2015). These advances have been driven by astronomy and Earth science demands. 

Here the focus has been on the development of high-resolution spectroscopy and remote 

sensing technologies. Heterodyne and Fourier transform techniques have allowed for the 

mapping of thermal emission lines for light-weight molecules (Siegel 2002). 

Since the 1980s there have been a number of highly successfully millimetre and sub-millimetre 

missions which have enabled remarkable science. By considering a select few of these 

instruments, both legacy and currently active, the science case for future instruments to further 

explore the terahertz spectrum is presented. In the following section, the ALMA (Atacama 

Large Millimetre Array) and Herschel telescopes are studied to provide an overview of the 

unique observations which can be made at this portion of the electromagnetic spectrum. Future 

Figure 1-3: Atmospheric transmission levels of terahertz radiation. Here the circled numbers 1-6 

indicate ‘water windows’- regions which provide relative transparency to terahertz radiation (Yang, 

Shutler, and Grischkowsky 2011) 
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terahertz based mission must have science drivers which complement the capabilities of ground 

based measurements and expand on the legacy of past missions. Understanding the limitations 

of legacy instruments also highlights the necessary developments of terahertz technologies to 

obtain the required sensitivity and achieve space qualification. 

1.1.1 Atacama Large Millimetre Array – ALMA 

The Atacama Desert, Chile is home to the Atacama Large Millimetre Array (ALMA) and is 

one of the few locations on Earth where terahertz observations can be made relatively 

unimpaired. Atacama is an arid region with little precipitation year round; on average the 

regions sees ~ 15 mm of rainfall per year and in some locations as little as 3 mm. Combined 

with an elevation of 5000 m above sea level, the Atacama region provides an ideal high and 

dry site which minimises atmospheric attenuation at terahertz frequencies (‘ALMA - ESO’ 

2013).  

ALMA facilitates excellent science which can be achieved with ground based terahertz 

observations, with over 1000 per-reviewed papers published using ALMA data since becoming 

fully operational in 2013. The main array consists of 50 mobile-antennas of 12 m in diameter, 

allowing for different observation configurations and spatial resolutions. Furthermore, an 

additional 12 antennas of 7 m in diameter, combined with 4 of the main array antennas make-

up the Atacama Compact Array (ACA) which facilitates auxiliary measurements to the main 

array (‘ALMA - ESO Receiver Bands’ 2016). ALMA spans a wide-range of frequencies (35 −

950 GHz) with a total of 10 distinct bands covering millimetre and sub-millimetre wavelengths, 

each with a focus on different astronomy goals. An overview of each band is presented in the 

following table. 

Table 1-1: Overview of the ALMA bands including their operating range, manufacture, receiver technology and 

year of first light (‘ALMA - ESO Receiver Bands’ 2016). 

HEMT - High-Electron-Mobility Transistor, SIS - Superconductor–Insulator–Superconductor 

 

 

 

 

 

ALMA Band
Wavelength 

coverage (mm)

Noise 

Temperature (K) 

Specification

Frequency (GHz) Produced by
Receiver 

Technology
First light

1 6–8.5 26 35 – 50 ASIAA HEMT 2021

2 3.3–4.5 47 65 – 90 TBD HEMT TBD

3 2.6–3.6 60 84 – 116 HIA SIS 2009

4 1.8–2.4 82 125 – 163 NAOJ SIS 2013

5 1.4–1.8 105 163 – 211 OSO / NOVA SIS 2016

6 1.1–1.4 136 211 – 275 NRAO SIS 2009

7 0.8–1.1 219 275 – 373 IRAM SIS 2009

8 0.6–0.8 292 385 – 500 NAOJ SIS 2013

9 0.4–0.5 261 602 – 720 NOVA SIS 2011

10 0.3–0.4 344 787 – 950 NAOJ SIS 2012
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The receiver technologies of ALMA’s bands (bands 1-2: HEMT - High-Electron-Mobility 

Transistor, bands 3-10: SIS - Superconductor–Insulator–Superconductor) which are both types 

of coherent detectors and are discussed in section 1.2. These bands span ALMA’s spectral 

range, each enabling a host of different observations to be made (‘ALMA - ESO Receiver 

Bands’ 2016): 

 Band 1 (35 − 50 GHz): formal development of the Band 1 receivers was announced in 

2016 with first light planned for 2020. Band 1 aims to detail the evolution of grains in 

protoplanetary disks and detect CO 3-2 line (carbon monoxide) emission from galaxies 

during the epoch of reionization (Di Francesco et al. 2013). 

 Band 2 (65 − 90 GHz): represents the final band on ALMA to be completed and 

development of the Band 2 receivers was announced in 2020 with first light dependent 

on the performance of pre-production receivers currently being tested. Band 2 aims to 

study gas in external galaxies allowing for measurement of the cool molecular gas mass 

and study the properties and evolution of dense gas where star-forming density is 

rapidly declining (Fuller et al. 2016). 

 Band 3 (84 − 116 GHz): is used to observe molecular clouds in galactic and extra-

galactic regions, image molecules in the cold interstellar medium (ISM) and detect 

molecular gas in the disks of young stellar objects (YSO). It covers the longest currently 

active wavelength range and aids in phase calibrations of the other bands. 

 Band 4 (125-163 GHz): is used to observe the ISM and aid in understanding the 

formation of stars and galaxies. In the 125 − 163 GHz band molecules including 

carbon sulphide, formaldehyde, deuterium compounds, and carbon chain molecules can 

be detected. In cool, star-forming regions these substances can be found in abundance. 

 Band 5 (163-211 GHz): provides detailed studies of the water content in a wide range 

of objects such as young and evolved stars, the ISM and regions surrounding black 

holes. Furthermore, the emission of ionised carbon from objects seen soon after the big-

bang has been detected by Band 5. This may enable astronomers to probe the earliest 

stages of galaxy formation. 

 Band 6 (211-275 GHz): allows for the study of a variety of objects including, molecular 

gas in planetary nebulae, molecules on active comets, the heating processes in red giants 

and afterglows of GRBs (gamma ray bursts). 

 Band 7 (275-373 GHz): provides astronomers with an insight into the gas and dust disks 

which surround new-born stars, seeing into regions obscured in the visible spectrum 
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such as star-forming clouds and early galaxies. Band 7 has also enabled measurements 

of global wind patterns on Mars and has measured the water content of Venus’s 

atmosphere. 

 Band 8 (385-500 GHz): enables interferometric imaging of the atomic carbon 

distribution around a planetary nebula. Many atoms and molecules have radio emission 

lines, with one of the most attractive being the carbon line at 0.6 mm. 

 Band 9 (602-720 GHz): allows astronomers to study molecular clouds at higher 

temperatures and densities with greater angular resolution. Observation of dust traps 

surrounding young stars using Band 9 have answered long-standing planetary 

formations questions. These regions provide a haven for dust particles to grow and 

become large enough to survive on their own eventually forming comets, planets, and 

other rocky bodies 

 Band 10 (787-950 GHz): the highest frequency band of ALMA can only operate under 

ideal atmospheric conditions due to low atmospheric transmission. Recently has 

enabled the detection of complex molecules and jets of heavy water streaming from star 

forming regions in the Cat’s Paw Nebula (‘NRAO - ALMA Band 10’ 2018). 

 

Although the scope of the science performed by ALMA is remarkable, there are many 

limitations to ground based observations. In Figure 1-4, the atmospheric transmission across 

ALMA’s spectral range is shown. Each of ALMA’s bands span “water-windows” and it is clear 

Figure 1-4: Overview of the atmospheric transmission of ALMA’s different bands as measured from the 

Atacama site (‘ALMA - ESO Receiver Bands’ 2016). 
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that there is substantial attenuation even at this ideal ground based site. These limited windows 

also mean that abundant atmospheric molecules such as H2O, O2 and many other species are 

blocked from observation (Tak 2012). Aside from attenuating the source signal, the atmosphere 

and areas surrounding the instrument emit their own thermal signal giving rise to “sky-noise” 

which can be orders of magnitude greater than the sources signal (Archibald et al. 2002). This 

limits the effective sensitivity of the instrument. Techniques such as chopping and telescope 

nodding are used to overcome these problems, but residual effects remain in the measured 

signal. Furthermore, variations in the atmosphere’s refractive index can cause fluctuations in 

path lengths from the source to the telescope which degrades the instruments signal to noise 

ratio. 

1.1.2 Herschel Space Observatory 

The Herschel Space Observatory completed a 3.5-year study of the far-infrared (FIR) from 

2009-2013. Herschel was the first and only dedicated space telescope to study celestial objects 

in the FIR range (55 − 671 μm). The mission’s prime science objectives focused on 

understanding the physical and dynamical processes in the ISM, the following objectives were 

outlined in its mission statement (Pilbratt et al. 2010): 

 “To conduct a wide-area sky survey measuring the dust-obscured star formation 

activity over cosmic time of galactic and extra-galactic sources”.  

 “Provide detailed physical and chemical studies of the ISM of our own galaxy and 

beyond”.  

 “Use observational astro-chemistry tools to understand the stellar and interstellar 

lifecycles and to investigate the processes involved in star formation and stellar 

evolution, including gas and dust disks around young, main sequence and evolved 

stars”.  

 “Investigate the atmospheres of solar system objects including minor bodies such as 

comets and trans-neptunium’s objects”  
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Set in a classical Cassegrain arrangement, Herschel imaged sources in the sub-millimetre and 

far-infrared range (55 − 671 μm) through its science payload comprised of three instruments: 

HiFi (Heterodyne Instrument for the Far Infrared), PACS (Photodetector Array Camera and 

Spectrometer) and SPIRE (Spectral and Photometric Imaging Receiver) (Pilbratt et al. 2010).  

1. The HIFI instrument was a very high-resolution spectrometer and observed in seven 

bands covering 480 − 1910 GHz. Bands 1 to 5 provided continuous coverage from 

480 − 1250 GHz using SIS mixers. Band 6, split into low and high sub-bands, covered 

the range 1410 − 1910 GHz using hot-electron bolometer (HEB) mixers (Pilbratt et al. 

2010) 

2. PACS consisted of two sub-instruments: an imaging dual-band photometer and integral 

field line spectrometer. In imaging dual-band photometry mode, PACS imaged a field 

of view of 1.75 ×  3.5 arcminutes2 simultaneously in two bands, either 60 −  85 μm 

or 85 −  125 µm and 125 −  210 µm, with full beam sampling in each band (Pilbratt 

et al. 2010). In integral field spectroscopy mode, PACS performed spectroscopy 

between 51 and 220 µm with a field of view of 47 ×  47 arcseconds2, resolved into 

5 ×  5 germanium/gallium photoconductor pixel arrays. In this mode PACS had a 

resolving power between 1000 and 4000. 

3. SPIRE was comprised of a three band imaging photometer and an imaging Fourier 

transform spectrometer, using arrays of spider-web bolometers with neutron 

transmutation doped (NTD) germanium temperature sensors as its detectors (Pilbratt et 

Figure 1-5: Composite image in the FIR (Herschel) and X-ray (XMM-Newton) of the Andromeda Galaxy. 

(‘ESA - Andromeda Galaxy (M31)’ 2011). 
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al. 2010). The spectrometer was operated in continuous scan mode and its spectral 

resolution could be adjusted in the range between 0.04 and 0.8 cm−1.  

The legacy left by Herschel over its short lifetime can be captured by the numerous Herschel 

related publication (~2500 papers) and the insights made into fundamental processes which 

occur in the Universe. Herschel-HIFI has uncovered detail about the structure and chemical 

composition of the ISM, finding that the atomic and molecular phases of interstellar clouds are 

mixed rather than layered (Tak 2012). Another key finding was that neither H2O nor O2 are 

major carriers of oxygen in the ISM and play only a minor role in the ISM’s cooling processes 

(Tak 2012). In Solar studies, it was found that planetary interaction plays an important role. 

That was shown by observations of exchange of compounds (such as H2O) through comets and 

asteroids with planets and their moons (Tak 2012). Herschel-SPIRE has shown through 

observations of Arp 220, a nearby ultra-luminous infrared galaxy with two merging nuclei, that 

the molecular gas is influenced by the mechanical energy from the ongoing merger (Rangwala 

et al. 2011).  

The proposed FIR space observatory SPICA, section 1.4, would have provided the next step in 

the advancement of FIR astronomy building on the legacy of Herschel. Herschel was 

fundamentally limited by its poor sensitivity, only objects with powers > 10−18 Wm−2 could 

be imaged. This meant Herschel could only resolve a handful of the brightest, closest and most 

massive young protoplanetary discs (Ferlet et al. 2010). SPICA aimed to overcome this 

limitation by offering two orders of magnitude increased sensitivity, allowing for a much wider 

catalogue objects to be imaged. Furthermore, SPICA aimed to offer coverage of frequency 

ranges beyond those measurable from ground based site such as ALMA. Observing in this 

domain would provide complementary diagnostic measurements for example of the dust, ice 

and atomic features of protoplanetary disc. 

1.1.3 Wider Applications of Terahertz Imaging 

The applications of terahertz radiation are far-reaching, extending beyond just astronomical 

applications. With great interest in the possibilities this portion of the spectrum offers, 

applications to many sectors have be found including: Earth-science, medicine, security, 

manufacturing and communications.  

Meteorological studies often rely on complementary observations made in the millimetre wave 

range. Remote sensing at these frequencies exploit lines of high attenuation i.e. 183 GHz, to 



 

11 

 

obtain temperature and humidity profiles of the atmosphere (De Maagt 2007). At selected 

windows, observations of the Earth can be made from orbit even under adverse weather 

conditions. Particularly interesting is imaging of the sea-ice and ice-clouds, to better understand 

their composition which is then fed into climate models. Moreover, terahertz observations can 

aid in climatological models, making important measurement of the concentrations of man-

made pollutants such as CFCs (chlorofluorocarbons) which have caused damage to the Ozone 

layer (De Maagt 2007). 

In the medical field there is great interest in the development of terahertz imaging methods 

because of the non-ionizing nature of the radiation and the unique perspective provided 

compared to conventional medical imagining techniques i.e. CT (computerized tomography), 

MRI (magnetic resonance imaging) and ultrasound. The most exciting application is the use of 

terahertz imaging for cancer detection, especially in the early stages – when cancers are much 

more treatable greatly increasing patient’s survival rate (Cheon 2019). Most solid cancers begin 

on the surface of soft tissues, a region which is not optimal for conventional imaging methods. 

Terahertz radiation is sensitive to variations in the cell structure and hydration levels associated 

with the malignant process (Cheon 2019). 

The use of terahertz imaging in the security and manufacturing sectors has been widely 

adopted. The technologies are used in airport scanners to make non-invasive inspections of 

passengers for weapons or illegal substances, seeing through materials which are normally 

opaque (De Maagt 2007). Terahertz imaging also provides a means of non-destructive testing 

allowing for the inspection and quality control of manufactured goods (De Maagt 2007). In the 

communications sector, promising developments have been made at terahertz frequencies. 

Laboratory experiments have even seen data transfer speeds of up to 100 Gbps over 20 m, and 

it is envisioned that the terahertz band will enable Tbps transfer speeds in the near future 

(Akyildiz, Jornet, and Han 2014).  

Figure 1-6 a)Image of a cancer lesion on a patients arm, b) Terahertz image of the surface of the lesion, c) 

Terahertz image of the tumour at 250 𝜇𝑚  (Cheon 2019) 
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1.2 Terahertz Technologies – Detector Systems  

In general, detection systems can be broken into two distinct categories: coherent and 

incoherent. To probe the dynamics and composition of the interstellar medium, detectors 

capable of resolving terahertz emissions and atomic absorption lines are required. Both 

coherent and incoherent detectors are capable of such observations. However, the application 

of each detector technology is dependent on the observations being made. Coherent detector 

systems are favoured when finer spectral resolution is required. For example, to probe the 

composition of individual dust clouds a frequency resolution of ~ 1 MHz or sub-km/s velocity 

resolution is required (Walker 2015). For many observations such resolution is not necessary, 

for example studies of the CMB, dust continuum and external galaxies. In these cases, 

incoherent detectors are favoured as they are not bound by the quantum mechanical noise limits 

associated with coherent detector systems (Harris 1990).  

Before detailing the two implementations of the detector systems and their associated devices, 

it is important to consider how environmental and system (electrical and heat) noise levels can 

effect detector efficiency. Detector systems are used to increase the source’s observed flux 

density to a level where it can be detected and quantified. The unwanted noise produced from 

optics, detectors and the atmosphere should be minimised. The power received from a source 

can be much less than the noise power generated from the detector system itself (Walker 2015). 

Moreover, for ground based experiments there is an added noise power level due to the 

interaction of cosmic photons with water vapour in the atmosphere which adds to the difficulty 

of isolating the source signal. 

As discussed in section 1.1, ground based terahertz telescopes are located at specialised sites 

which minimise atmospheric attenuation and sky-noise levels. Unfortunately, this alone is not 

sufficient since the instrument noise flux stemming from the detector system may still drown 

out any astronomical signals (Walker 2015). The detector’s noise flux, 𝑆𝑣
𝑠𝑦𝑚

, depends on 

contributions from each element in the system. A signal to noise ratio (SNR) equal to one 

implies that the rms-noise level is equal to the observed signals flux density 𝑆𝑣
𝑜: 

 𝑆𝑣
𝑜 ≈ ∆𝑆𝑣

𝑟𝑚𝑠, for SNR = 1  . (1.2.1) 
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When expressed in terms of noise temperatures the relationship between rms-noise and system 

flux noise is given as: 

 ∆𝑇𝑣
𝑟𝑚𝑠 =

𝐾𝑠𝑇𝑠𝑦𝑚

√∆𝜏𝑖𝑛𝑡𝐵𝑝𝑑
 

(1.2.2) 

where ∆𝑇𝑣
𝑟𝑚𝑠 – rms noise temperature of the system (K), 𝑇𝑠𝑦𝑚 – system noise temperature, 𝐾𝑠 

– sensitivity constant, ∆𝜏𝑖𝑛𝑡 – post detection integration time and 𝐵𝑝𝑑 – post detection 

bandwidth related to the frequency resolution (Hz) (Walker 2015). To detect an astronomical 

source with a temperature of 𝑇𝑣
𝑠, one must integrate over time ∆𝜏𝑖𝑛𝑡 with a prediction 

bandwidth 𝐵𝑝𝑑, until the source temperature is above the rms-noise floor. The greater the 

system noise temperature 𝑇𝑠𝑦𝑚, the longer the necessary integration time is to reach the target 

value of ∆𝑇𝑣
𝑟𝑚𝑠: 

 
𝑇𝑣
𝑠

∆𝑇𝑣
𝑟𝑚𝑠 > 1  . (1.2.3) 

Integration times are limited in practice by gain stability, which restricts ∆𝜏𝑖𝑛𝑡 to 10 – 30 

seconds. Instabilities can arise from individual components, interactions between components 

or atmospheric noise. Methods known as position-switching or frequency-switching are used 

to normalise these effects (Walker 2015). Observations are made in an off position or frequency 

where no source signal is seen, for the same length of time (∆𝜏𝑖𝑛𝑡). The off measurements are 

then subtracted from the on measurement of the source, and the difference spectrum calibrated 

by multiplying the receivers output power by a temperature conversion factor or Cal. This Cal 

is obtained by having the receiver observe a load at a known temperature. Many scans (on and 

off) can be averaged together to meet the total ∆𝜏𝑖𝑛𝑡 requirement.  

1.2.1 Coherent Detection 

The vast majority of stellar emissions are produced by random atomic processes in celestial 

bodies and as such these sources are largely incoherent. At terahertz frequencies coherent 

receivers are used to investigate the composition, evolution and dynamics of astronomical 

objects such as star-forming regions, molecular clouds, photo-dominated regions around young 

or bright stars and shock processes in the ISM. Coherent detection relies on relationship 
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between the incident radiation and an internal synthetic reference signal. The incoming signal’s 

component which is in phase with the monochromatic local oscillator (LO) is selected. This 

retention of the phase information is what separates the coherent and incoherent detector 

technologies.  

However, as a consequence of retaining the phase information there is a limitation on the 

sensitivity of coherent detection. This limit is known as the Quantum Limit and refers to the 

phase selection imposed by the LO causing an uncertainty on the number of photons detected. 

The advantage of coherent detection is that there is greater spectral resolution and the signals 

from different telescopes can be coherently combined. In theory, coherent detectors are limited 

by the Heisenberg Uncertainty principle, and can never be as sensitive as incoherent detectors. 

They cannot measure the incoming energy at a given time to within one photon of energy 

(Harris 1990). 

 Δ𝐸Δ𝑡 ≥
ℏ

2
⇒ Δ𝑁Δ𝜙 ≥

1

2
 , (1.2.4) 

where Δ𝑁and Δ𝜙 give the number of photons and their phase respectively. Coherent detectors 

or heterodyne-spectrometers for the terahertz band consist of two distinct parts. The first is the 

receiver-end, which performs a frequency shift on the incoming radiation. The LO signal 

effectivity phase stamps photons as they arrive, this is necessary for the frequency shift. The 

second, detector-end, consists of spectrometers which preform analysis on the shifted signal. 

These different parts are illustrated in Figure 1-7.  

 

Figure 1-7 Schematic drawing of the layout of a coherent detection system. Receiver-end shows the mixing of 

the signal and local oscillators sources to produce the intermediate frequency, the detector-end shows the 

detector/spectrometer arrangement (Harris 1990) 
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If two currents, of different but near-by frequency, beat in the same non-linear electric circuit 

a new set of frequencies will be produced by these currents. This is the basic operational 

principle of a mixer device in the receiver, whose purpose is to translate the frequency of an 

electromagnetic signal. Frequency mixers are generally thought of a 3-port devices: 2-ports are 

inputs and the remaining port is an output. An ideal mixer takes two input signals and combines 

them in such a manner that the output is the sum and difference of the two base sources, or 

some multiple of their sum or difference. The ports have the following labels associated with 

them LO (Local Oscillator), RF (Signal Frequency) and IF (Intermediate Frequency) (Walker 

2015).  

A heterodyne receiver is optimised for detection of this difference frequency, typically down-

converted to a few GHz for a terahertz heterodyne receiver. The receiver-end deals with the 

terahertz radiation directly from the source and its main components are: the LO which delivers 

a continuous reference frequency to the mixer, the mixer onto which the SF and LO radiation 

impinge and the optics which couple incoming radiation to the mixer (Hübers 2008). The 

detector-end deals with the converted IF signal and its main components are: the IF processor 

that amplifies the difference signal output by the mixer and the spectrometer/detector 

components for the detection of the processed IF signal (Hübers 2008). The IF and SF can be 

interchanged as secondary inputs or output depending on the desired application i.e. down-

conversion or up-conversion (Hübers 2008). 

The operation of the mixer is somewhat similar to that of relay device. It is activated by the LO 

signal which moderates the flow of photons through the receiver. The mixer is biased on the 

kink of the I-V curve so that the LO’s voltage excursions are sufficient to swing the mixing 

Figure 1-8 Graphical overview of the down/up conversion routines (Marki and Marki 2010) 



 

16 

 

device between on and off states. The sharper the kink of the I-V curves the better, as less LO 

and signal power will be required for the down conversion process, implying the receiver will 

be more sensitive (Walker 2015). The IF amplifier’s input bandwidth defines the spectral 

window centred on the down converted signal which will appear at the receiver’s output. Two 

such frequency bands may be down-converted, one centred at 𝑓𝑈𝑆𝐵 = 𝑓𝐿𝑂 + 𝑓𝐼𝐹 (upper 

sideband) and another at 𝑓𝐿𝑆𝐵 = 𝑓𝐿𝑂 − 𝑓𝐼𝐹 (lower sideband). Some mixers separate both of 

these side bands i.e. Dual Side Band (DSB) devices. However, other mixers may only retain 

information about a Single Side Band (SSB). 

1.2.2 Mixers 

Mixers for the terahertz band fall into two classes – non-cryogenically or cryogenically cooled. 

The assignment to one of these classes depends largely on the type of mixing device that is 

employed – Schottky Diode Mixer (SDM), Superconductor Insulator Superconductor (SIS) or 

Hot-Electron Bolometer (HEB). SDM is a semiconductor device which can operate at a range 

of different temperatures and may benefit from cooling but it is not strictly necessary. SIS and 

HEB exploit phenomena associated with superconductivity and thus are required to be 

cryogenically cooled to operate. Devices which do not rely on heavy cryogenic systems and 

may be adequately cooled by passive methods have many advantages over their cryogenic 

counterparts. Figure 1-9, shows that all of these technologies have uses across the terahertz 

range, with the noise temperature requirement ultimately determining the required mixer type.  

Figure 1-9 Noise temperatures of the different mixer technologies (SDM, HEB and SIS) at their 

operating frequencies (Hübers 2008) 
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Superconducting materials rely on the formation of weakly bound electron pairs known as 

Cooper pairs. Cooper pairs are formed via free electron interaction with the materials 

crystalline lattice. As electrons pass by positive ions in the lattice an acoustic wake is left 

behind, due to the attractive force between them. In the acoustic wake a tube of positive ions 

is left which can attract a second electron. If the first electron moves exactly opposite the 

second it will be attracted to its acoustic wake. The transfer of acoustic energy between 

electrons passing through the material’s crystalline lattice forms weak bonds. Electrons linked 

in this manner share the same energy state and are known as Cooper pairs. Their existence 

leads to zero DC resistivity observed when the material is said to be super conducting i.e. below 

its critical temperature. The bonds in these Cooper pairs are so weak that an incoming stream 

of photons or current in excess of a critical current can cause them to break, resulting in the 

superconducting material returning to normal non-superconducting behaviour. 

Schottky Diode Mixers have the highest noise and require the largest amount of LO power (~ 

3 mW) but do not require cryogenic cooling. Furthermore, they have the widest IF bandwidth 

and are quite stable. A potential barrier is formed by bringing together a semiconductor and a 

small amount of metal wire. The charge neutrality at the interface results in a parabolic curve 

of the potential and the formation of a depletion region in the semiconductor. The current flow 

through the diode is due to: thermionic emission over the barrier, tunnelling through the barrier 

and generation or recombination inside or outside the depletion region. At terahertz 

frequencies, conduction occurs primarily through thermionic emission. For such cases, the I-V 

characteristic curve of the Schottky Diode takes on an exponential form. This exponential 

nature of the I-V curve provides the necessarily sharp non-linearity required for efficient high 

sensitivity mixing. Upper limits of these devices depend on the junction capacitance and series 

resistance at the operating bias voltage (Walker 2015).   

Figure 1-10 Surface channel design for a Schottky diode mixer (Hübers 2008) 
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Superconductor Insulator Superconductor Mixers provide the lowest noise temperature and can 

have a relatively wide bandwidth ~10 GHz. They require very small LO power (~ 3 μW) but 

have an upper frequency limit imposed by the energy gap of the superconductive material 

typically ~1.4 THz. SIS devices are formed by creating a “superconducting sandwich” 

composed of two superconducting layers separated by an insulating layer effectively forming 

a capacitor type shaped device. The insulating layer must have thickness roughly equal to the 

coherence length of Cooper pairs in the superconducting material (Walker 2015). This keeps 

the potential for Cooper pairs to form across the insulating layer. As Cooper pairs occupy the 

same energy level quantum mechanical tunnelling across the insulating layer can occur even 

with no voltage applied. This device is known as a Josephson junction and tunnelling of Cooper 

pairs produces a Josephson supercurrent observed on the SIS device I-V curve as a sharp spike. 

This current maximum value depends on the cross-sectional area of the insulating layer and the 

Josephson critical current density, which itself depends on the type and thickness of the 

insulating layer used (Walker 2015). 

The characteristic I-V curve for an SIS-device appears at zero bias voltage as a vertical spike, 

if the system is supplied with some +/- bias voltage a steady slope is observed on the I-V curve, 

see Figure 1-11. This causes a change in potential energy and as a result the Cooper pairs on 

either side of the insulating layer will no longer share the same energy level causing the 

associated supercurrent to cease, in effect the device is powered off. Some small leakage is 

experienced until the bias voltage reaches that of the binding energy of Cooper pairs, this is 

known as the sub-gap region (Walker 2015). The bias voltage at this point is referred to as the 

energy gap voltage. For bias voltages which exceed the energy gap voltage, the tenuous bonds 

Figure 1-11 a) SIS mixer illustration of the tunnelling process with applied voltage and b) 

example of the non-linearity of the pumped and un-pumped states (Hübers 2008) 
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between Cooper pairs can be broken and there is a rush of electrons across the insulator, 

resulting in a sharp transition in the I-V Curve, at this point the SIS device is powered on. 

Effectively all Cooper pairs are broken and the device returns to normal operation. This high-

level of non-linearity is exploited by the SIS mixer to achieve very high efficiency mixing. The 

device is biased just below this non-linearity such that any incoming photons will deliver the 

energy necessary to break the Cooper pairs already under stress from the bias voltage. 

1.2.3 Incoherent Detection 

Incoherent detectors do not retain any knowledge of the phase information of the incident 

photon. As discussed in section 1.2, coherent detectors systems are favoured where high 

spectral resolution is required. However, for many observation including CMB studies and dust 

continuum measurements this high spectral resolution is not necessary. Incoherent detectors’ 

indifference to phase means that they are not subject to the quantum mechanical noise limits 

associated with coherent detector systems (Walker 2015). The scheme for the incoherent 

receivers is much more straight forward. Photons enter the optical system which selects the 

frequency range to be observed, and the filtered light is then incident on one or more detectors 

which produce an output signal which is proportional to the incident power. Many incoherent 

detectors use bolometric type devices to measure incident radiation. Bolometers are thermal 

detectors that exploit the change in electrical resistance of a material with temperature. Photons 

incident on an absorbing layer cause a heating effect, which in turn produces a change in the 

material’s resistance. Typically, heavily doped semiconductors materials such as ion-implanted 

silicon or neutron-transmutation doped germanium are used.  

Two emerging superconducting incoherent detector devices which have been identified for use 

in contemporary terahertz telescope systems: 

 Transition Edge Sensors (TES) – Advanced bolometric devices 

 Microwave Kinetic Inductance Detectors (MKIDs) – Similar to SIS mixer  

In fact, Transition Edge Sensors have been selected as the detection technology for the SAFARI 

instrument, see section 1.4.1. These devices take advantage of this tenuous bond between 

Cooper pairs, by DC biasing a superconducting bridge in the transition region between 

superconducting and non-superconducting. The slightest influx of power from an incident 

photon will result in heating and cause a transition between these two states of the 
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superconducting material. Some of the challenges associated with the development of this 

technology were to: 

 develop a stable biasing method which did not interfere with the state of the device, and 

 develop a mechanism to readout when transitions between states had occurred. 

The superconducting devices are voltage biased rather than current biased. This choice avoids 

any potential for Joule heating that can lead to thermal runaway inside the superconducting 

material. This can occur when bias electrons and the crystal lattice cause a portion of the device 

to return to normal, which leads to further heating and so on until the whole device is no longer 

below the required critical temperature to be superconducting. Often TES sensors are used in 

conjunction with another superconducting device known as SQUID (Superconducting 

Quantum Interference Device) to readout the transitions, see Figure 1-12. SQUIDs are 

composed of two identical Josephson junctions in parallel and are employed as very sensitive 

magnetometers (Walker 2015). 

In a typical set-up the TES is voltage biased by driving a current source through a load resistor. 

A voltage is selected such that the TES is placed in a self-biased region where power dissipated 

in the device is constant with the applied voltage. Furthermore, the TES is operated in series 

with a coil, which is inductively coupled to the SQUID. The coil produces a magnetic field 

which is dependent on the bias current to the circuit, as such variations in the photon flux 

Figure 1-12 Shows the transition curve between the superconducting and non-superconducting 

phases. Inner circuit diagram details the typical arrangement of the TES and SQUID readout devices 

(Höhne et al. 1999) 
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through the TES device can be measured via the change in magnetic field in the coil via the 

coupled SQUID. 

Microwave Kinetic Inductance Detectors achieve their sensitivity through the breaking of 

Cooper pairs within a superconducting film. However, the pair-breaking mechanism is 

exploited differently than in other superconducting devices. Here, it is the variation of the 

superconducting layer’s impedance due to pair-breaking that is used to determine the incident 

photon flux (Walker 2015). When photons strike the super-cooled material the time varying 

potential associated with the photons will accelerate the Cooper pair charge carriers in such a 

way as to reflect or absorb the incoming photons. The acceleration will be opposed by the 

inertia of the Cooper pairs, causing a phase lag between the incident electric field and the field 

produced by the Cooper pairs at the superconductors surface.  

Electrical phase lag is the same that would be produced by an inductor which opposes the finite 

rate of current-change through it. As the phase lag is rooted in the Cooper pairs dynamics, it is 

referred to as a kinetic inductance. The kinetic inductance, 𝐿𝐾, can be determined by equating 

the total kinetic energy of the Cooper pairs, 𝐾𝐸𝐶, with the equivalent inductive energy, 𝐼𝐸𝐶 

 1

2
(2𝑚𝑒𝑣

2)(𝑛𝐶𝑃𝑙𝐴) =
1

2
𝐿𝐾𝐼

2 (1.2.5) 

where 𝑣 is the average Cooper pair velocity, 𝑛𝐶𝑃 is the number density of Cooper pairs and 𝐼 

is the superconducting current through the film. Incident photons with energies greater than the 

binding energy of the Cooper pairs can break them causing a reduction in the number of pairs 

Figure 1-13 a) MKIDs circuit diagram with incident photon causing a change in the kinetic inductance and 

b)incident photon causes a variation in both inductance and resistance which alters the circuit’s resonance 

point  (Day et al. 2003) 

a) b) 
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available in the material (Walker 2015). This reduces the device’s superconductivity and causes 

increased resistance and inductance. Generally, the increase in inductance is many times 

greater than it is for resistance. The kinetic inductance can be determined by building a 

resonance circuit with the superconducting layer placed in parallel with a known capacitance 

and measuring the circuit’s resonance frequency. In Figure 1-13, the variation of inductance 

when illuminated causes a change in the MKID’s resonance frequency and as a result 

transmission at a fixed frequency. This change in frequency or transmission can be used to 

determine the incident power. 

1.3 Terahertz Technologies – Sources 

There now exist several technologies for sources of terahertz radiation to be used as local 

oscillators, or to emit a freely propagating beam in the terahertz band. Good LO sources must 

have the following properties: 

 LO frequency must be selected such that down conversion can be performed at the 

signal frequency () i.e. 𝑓𝐿𝑂 = 𝑓𝑅𝐹 ± 𝑓𝐼𝐹. 

 LO power must be sufficient to switch between the on and off states across the non-

linearity of the I-V curve of the mixer device. 

 LO power must be stable, such that the Allen-time of the receiver is not impacted by 

variation in power (Walker 2015). 

 LO must be of pure enough tone in frequency and phase such that sufficient tolerance 

is maintained. Typical tolerance could be less than ~5 times the linewidth to be 

measured (Walker 2015). 

Schottky diode frequency multipliers are commonly used as LO sources in ground and space 

based millimetre and sub-millimetre instruments. At Maynooth a Rohde & Schwarz VNA 

(Vector Network Analyser), with millimetre converter heads, allows for measurements of 

antennas in the W-band (75 − 110 GHz ZVA-Z110) and beyond (500 − 1100 GHz) via newly 

purchased converters RPG-ZC750 and RPG-ZC1100. However, due to the nature of frequency 

multiplied sources, with increasing multiplication factors comes significant power loss. This 

means that it becomes extremely challenging to push frequency multiplied sources into the 

“super-THz” range beyond 2.0 THz (Walker 2015). To make the move into higher frequencies 

while maintaining adequate power levels an alternative source known as a Quantum Cascade 

Laser (QCL) is commonly used. These devices can reach frequencies of ~5 THz, but require 
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cryogenic cooling to operate (Walker 2015). A QCL provides a coherent narrowband source 

for the analysis of an Offner re-imaging system, presented in chapter 5, as a potential focal 

plane solution for the SAFARI instrument. 

Because of fundament physical limitations of conventional laser diodes, they cannot coherently 

emit photons at terahertz frequencies. Quantum Cascade Laser devices overcome these 

limitations by taking a different approach. Regular semiconductor lasers have electrons 

recombining with holes to release photons with an emission frequency equal to the bandgap, 

which is dependent on the composition of the semiconductor material. The QCL is a unipolar 

device (i.e. only one type of charge carrier is involved as only the conduction band is used) 

which exploits optical transitions between electronic states created by spatial confinement in 

semiconductor multi-quantum-wells, via the quantum engineering of electronic wave functions 

on a nanometre scale (O’Sullivan and Murphy 2012). Typically, 500 – 1500 alternating layers 

of thickness of just a few atoms are grown of alloy materials. 

QCLs are generally based on a three-level system, electrons are injected into the upper level of 

the active region, where laser transition occurs to the middle level followed by a rapid depletion 

to the lower level. The injector region collects and provides electrons for the upper level of the 

quantum wells, and a suitable design of layer thicknesses creates a population inversion 

between the upper and middle levels – this is shown in Figure 1-14. The cascading of super-

lattice periods means that the passage of one electron can produce many photons (O’Sullivan 

and Murphy 2012). The most common QCL designs are based on GaAs or AlGaAs super-

lattices. To select the desired frequency and generate a terahertz beam, a periodic series of slots 

Figure 1-14 Conduction band diagram for two adjacent QCL stages. Each stage has an a) injector region – 

where electron injection and transitions occur b) active region – where lasing occurs (Mei et al. 2017) 
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are etched into the top conducting electrode and the active layer at half wavelength intervals. 

As terahertz photons propagate through the layers the slots provide a region of constructive 

interference that guides the photons and forms terahertz beams at each end of the layer 

(O’Sullivan and Murphy 2012). Development of QCLs is still on going, and significant 

challenges remain in expanding the frequency regime of these devices, along with increasing 

their operational temperature. 

Frequency Multipliers share similarities with the mixer devices introduced in section 1.2.1, as 

both rely on a non-linear device and a strong signal. However, unlike mixers, frequency 

multiplied sources receive only a single signal (𝑉𝑆𝐹 = 0), leaving the Taylor expansion 

equation with only a cos(𝜔𝐿𝑂𝑡)
𝑛 terms. In a generic multiplier for each value of 𝑛 it will 

generate a harmonic signal of frequency 𝑛 × 𝜔𝐿𝑂 with an additional multiplicative amplitude 

factor of [2𝑛−1]−1. These frequency multipliers act as harmonic generators with decreasing 

amounts of power for higher frequency components, dependent on 𝑛 (Walker 2015). 

For an 𝑛𝑡ℎ-harmonic multiplier, the highest possible values of power converted 𝑃𝑛 occurs when 

there is only real power in the circuit of the harmonic of interest. Here, the multiplier is said to 

be 100% efficient. This condition is only met when the device is terminated in a pure reactance 

for all but the desired frequency. A typical frequency converter chain is shown in Figure 1-15. 

The chain begins with a computer controlled microwave synthesiser source, capable of 

producing a continuous wave with power ~15 mW and frequencies in the X-band (8 −

11 GHz) or Ku-band (12 − 18 GHz). This synthetic wave is passed through one or many active 

multipliers (frequency multiplier and amplifier unit) until a desired frequency is reached, 

typically W-band frequency. The W-band signal must then pass through a power amplifier, 

which typically increases the signal power to ~100 mW. Finally, the signal is then further 

frequency multiplied to achieve the desired LO frequency with the multiplication factor given 

by 𝑛 = 𝑓𝐿𝑂/𝑓𝑊−𝑏𝑎𝑛𝑑 . To reach 𝑓𝐿𝑂, the signal is passed through a chain of multipliers, with 

Figure 1-15 Frequency multiplied-based source chain. Here, a synthetic signal (~10 𝐺𝐻𝑧) goes through two 

stages of multiplication, from X-band to W-band and then from W-band to the desired LO frequency. The W-

band signal is amplified to accommodate for losses in the multiplication process  (Walker 2015). 
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multiplication factors of × 2, × 3 or × 4. The multiplier’s efficiency drops sharply with 

increasing multiplication factor and to counteract this most devices are composed of a chain of 

doublers or triplers. 

1.4 Space Infrared Telescope for Cosmology and Astrophysics (SPICA) 

The Infrared Space Observatory, SPICA (Space Infrared Telescope for Cosmology and 

Astrophysics) was shortlisted as one of three candidate missions for the ESA medium-class 

mission program M5. In October 2020 SPICA was withdrawn from the M5 mission program 

due to financial constraints. This ambitious project, along with the technological advancements 

made, will eventually be restructured into a future far-infrared mission, hopefully succeeding 

with the strong foundation the SPICA mission consortium has provided. SPICA was 

collaboration between ESA and the Japanese Aerospace Exploration Agency (JAXA) with a 

number of international collaborators driving the development of the science instruments.  

In many ways SPICA was the successor to the Herschel Space Observatory, section 1.1.2, 

offering observations of celestial objects in the mid to far-infrared range. SPICA aimed to 

expand the work of Herschel, addressing remaining questions around the formative and 

evolutionary processes of galaxies, stars and planetary systems. Observations in the FIR range 

provide an insight into their dynamical and chemical states which are obscured to other 

frequency ranges. The science objectives of the SPICA mission can be separated into three core 

Figure 1-16 SPICA spacecraft arrangement, showing the instrument, cryogenic and service 

modules (Roelfsema 2018) 



 

26 

 

packages (1) birth and evolution of active galactic nuclei, (2) star formation history of the 

universe and (3) formation of planetary systems (Roelfsema 2018). 

1.4.1 SPICA Instrument Overview 

SPICA had planned a Ritchey-Chrétien arrangement, with payload of two imaging-

spectrometer instruments that make up the focal plane assembly: SAFARI (SPICA Far-Infrared 

Instrument) and SMI (SPICA Mid-Infrared Instrument) (Roelfsema 2018). Together SAFARI 

and SMI provide continuous spectroscopic coverage over a wavelength range of 17 − 230 μm. 

SPICA’s telescopic system is composed of two Silicon Carbide (SiC) mirrors, the large cooled 

primary mirror (2.5 m) and the secondary mirror (0.612 m) which utilizes wavefront 

correction technology. SAFARI and SMI utilize state-of-the-art detector technologies, which 

in combination with the large cooled telescope unit provide sensitivity levels which far exceeds 

Herschel, see Figure 1-17. An ESA study of “a next generation cryogenic infrared telescope” 

and proven heritage technologies from the Herschel and AKARI missions informed many of 

these design choices (Roelfsema 2018). 

SMI covers the wavelength range of 12 − 36 μm with four separate channels. These channels 

are summarised in Figure 1-17 and detailed below with their respective wavelength ranges and 

resolutions: 

Figure 1-17 SPICA’s instruments wavelength coverage and sensitivity compared with past, 

present and future missions (Roelfsema 2018) 
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 SMI/LR (Low Resolution) – wavelength range of 17 − 36 μm with resolution of 𝑅 =

50 − 120. 

 SMI/MR (Mid Resolution) - wavelength range of 18 − 36 μm with resolution of 𝑅 =

1300 − 2300. 

 SMI/HR (High Resolution) - wavelength range of 12 − 18 μm with resolution of 

𝑅~23000. 

 SMI/CAM – Broadband central wavelength at 34 μm with resolution of 𝑅 = 5. 

Two types of detector technologies are utilized by the SMI channels. For the shorter 

wavelength SMI/HR channels Si:As 1000 × 1000 photoconductors arrays are used, while for 

the remaining longer wavelength channels Si:Sb 1000 × 1000 photoconductors arrays are 

used. There is a significant drop in quantum efficiency of these detectors in each other bands, 

thus, both are required to cover SMI’s spectral range. 

SAFARI covers the wavelength range of 34 − 230 μm and is optimised to achieve the highest 

level of sensitivity at moderate resolutions of 𝑅~300 (limited by the thermal, power, pixel 

number and mass of space-based telescopes). Additionally, SAFARI can operate in a high 

resolution mode to study line profiles, which would enable such measurements as the inflow 

and outflow of gases from active galactic nuclei. This is achieved via the use of a Martin-

Puplett interferometer (Audley, de Lange, Jackson, et al. 2018) – allowing for the LR mode to 

achieve sensitivity values of 5 × 10−20 W/m2 for a transition edge sensor (TES) array with a 

NEP of 2 × 10−19 W/√Hz (Audley, de Lange, Gao, et al. 2018). The intermediate optics of 

SAFARI includes an Offner relay arrangement (see chapter 5) which, via a 2D beam steering 

mirror (BSM), is used to switch between calibration sources or SAFARI’s two resolution 

modes. 

SAFARI’s full spectral range is covered by four separate grating modules, covering the short, 

medium, long and very-long wavelength regions of the desired spectral range (SW: 34 −

56 μm, MW: 54 − 89 μm, LW: 87 − 143 μm, VLW: 140 − 230 μm). Each of the grating 

modules contains a block of super-cooled TES detector arrays coupled to multimode 

waveguide feeds and reflecting cavities (Audley, de Lange, Gao, et al. 2018). The ultra-

sensitive TES detectors are being developed and fabricated at Cambridge, along with ongoing 

collaboration for the complete pixel design between Cardiff, SRON and Maynooth. The TESs 

offer 2 orders of magnitude greater sensitivity than bolometers previously used in ground based 
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observations, an optical efficiency of > 50% and an NEP of 2 × 10−19 W/√Hz has been 

demonstrated for single detectors (Audley, de Lange, Gao, et al. 2018). 

Each block of TES detector arrays is composed of three detector rows of 294 spectral pixels, 

each row corresponding to a single spatial pixel on the sky. Together three spatial pixels in a 

line give 2 arcmin of SAFARI field-of-view, each row samples the 147 elements of the 

dispersed spectrum. Compared with square arrays, the row layout allows for easier packing and 

wiring of the detectors due to the increased space available in the spatial direction as shown in 

Figure 1-18. Here focal ratios are used to define the spectral (F1) and spatial (F2) directions. 

The three spatial rows are used to avoid gaps in spectral coverage due to possible detector 

failures. Furthermore, with three spatial pixels it can be ensured that there is always a spatial 

pixel on the sky such that there are no observation time penalties for background subtraction 

(Audley, de Lange, Gao, et al. 2018). 

Adjacent detector rows are offset by 1/3 of a spatial pixel, ensuring that a narrow (unresolved) 

line which falls on a spectral pixel boundary in one of the spatial pixels will be captured even 

if it falls on a dead spectral pixel in one of the rows. Pixel spacing of ∆𝑥 = 4𝐹2𝜆 is sufficient 

to ensure no contamination between on-source and off-source pointings for background 

subtraction (Audley, de Lange, Gao, et al. 2018). The physical size of the focal plane is dictated 

by the focal and wavelength, for each grating module there is a slight variation ranging from 

7 mm × 239 mm for the SW band to 9 mm × 251 mm for the VLW band. The total detector 

count is limited by the thermal conductance of the readout wiring. For the full instrument there 

are a total of 3840 detectors and, with multiplexing factor of 160, the detectors could be read 

Figure 1-18 SAFARI detector array configuration. Each cell represents a feed aperture, colour coded to 

show the dispersion direction and each row represents a single spatial pixel on the sky (Audley, de Lange, 

Gao, et al. 2018). 
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by 24 channels, with an excess readout capacity for up to 10 blind pixels per channel (Audley, 

de Lange, Gao, et al. 2018). The configuration of the detector arrays combines shorter subarray 

modules of 3 × 49 detectors to make up the desired 3 × 294 detectors in the focal plane for 

the four bands. 

1.5 Thesis Overview 

Each of SAFARI’s sensitive pixels are composed of a multi-moded feed structure, an absorbing 

layer and a reflecting cavity. These devices rely on accurate and efficient modelling techniques 

to ensure optimal performance of the instrument. In the following chapters the necessary mode-

matching routines needed to model each section of the pixel are developed and applied in the 

analysis of SAFARI-type pixels. 

Chapter 2: Introduces the core waveguide, scattering, cascading and mode-matching theory 

used throughout the thesis for ideal cases. Many of these fundamental methods have been 

reformulated in terms of vector potentials and line-integrals, the consequences of these 

reformulations are detailed. Finally, the methods are applied to complete waveguide system to 

obtain their scattering parameters and characterise their far-field pattern. 

Chapter 3: Extends the mode-matching techniques detailed in chapter 2 to allow for non-ideal 

boundary surfaces to be modelled. The effects of non-PEC (Perfect Electrically Conductive) 

walls on the uniform section and junction section are considered in detail. Furthermore, a 

simple but powerful model is adapted to allow for the inclusion of a surface roughness on the 

non-PEC boundary walls. Finally, a method for including an absorber layer as an infinitely thin 

sheet is detailed and the mechanism using the line-integral form which allows for the modelling 

of arbitrary absorber shape is detailed.  

Chapter 4: Many novel features which have been developed are presented in this chapter. The 

first steps towards developing a fully parallelised version of the scattering code are presented 

with promising results in both speed and accuracy. Here a single powerful GPU device and 

PyOpenCL (Opencl 2009) are used to develop a working prototype of mode matching code 

with GPU optimisations. A novel idea of constructing a virtual non-reciprocal port to which all 

structure losses could be mapped to is presented. Using the absorber layer as the lossy element 

the advantages and limitations of this approach are considered.  
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Chapter 5: In this chapter much of the work done in modelling components for the SAFARI 

device is presented. Several different aspects of the overall design are considered, from the 

focal plane arrangement to the different pixel and feedhorn designs. The mode matching and 

physical optics tools developed at Maynooth are used to characterise and optimise these 

different components. 
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Chapter 2 – Theoretical Framework 

For millimetre and sub-millimetre wave applications the ability to accurately design and 

characterise components is of critical importance. These devices commonly take the form of 

waveguide structures, which function to guide the incident electromagnetic radiation to some 

of the sensor technologies introduced earlier or to further optics in an efficient manner (i.e. 

with minimal loss in power). In this chapter the fundamental theory used to describe the fields 

within the waveguides, in terms of auxiliary vector potentials, is introduced. Moreover, the 

building blocks necessary to realise complete waveguide structures are introduced and their 

effect on the field properties is characterised. 

Above, in Figure 2-1, a schematic drawing of a guide structure is presented. This waveguide is 

a hollow structure which is filled with an isotropic medium, often taken to be vacuum or free 

space. The medium is bound by a conducting surface, which is commonly assumed to be ideal 

or a perfect electric conductor (PEC). For an applied stimulus to the entrance aperture, here 

taken as the left hand side, the excitation of the fields which may exist within the structure will 

occur namely transverse electric (TE) and transverse magnetic (TM) fields (C. A. Balanis 

2012). These fields can propagate within the bound structure and produce an aperture field at 

the opposite end of the guide which will radiate out from the exiting aperture of the guide. This 

field will be highly dependent on the geometry of the structure. It must be accurately modelled 

to fully understand its radiation characteristics.  

Figure 2-1: Schematic drawing of a guide structure with PEC walls, vacuum medium and a stimulus applied to 

the throat of the guide producing a radiation field from the exiting aperture. 
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The example shown in  Figure 2-1, while very much simplified in terms of the number of 

distinct steps, is representative of actual millimetre and sub-millimetre components. As 

illustrated in Figure 2-2, it may be segmented into smaller fundamental components i.e. 

uniform sections and junction sections. These components are the necessary building blocks 

needed to represent complete guide structures. The junction sections are used to link the 

uniform guide sections together to build up the overall shape of the device. Equivalently, the 

electromagnetic problem can be broken down into a description of propagation in individual 

uniform sections, in terms of a set of waveguide modes, and a description of scattering of those 

modes at discontinuities. 

To achieve this, Maxwell’s equations for each section must be solved subject to strict boundary 

conditions. These boundary conditions are imposed by the geometry of the structure and the 

bounding material (C. A. Balanis 2012). Key among those is the requirement that within a PEC 

section there exists no transverse electric field component along the wall. However, before this 

can be correctly applied the relevant electromagnetic theory must be first introduced to describe 

the problem. Much of the electromagnetic theory necessary in the implementation of the 

modified mode-matching methods in taken from (C. A. Balanis 2012) and is presented in a 

distilled form in the following sections. 

Figure 2-2: Exploded view of the elements which make up the guide section presented earlier. The uniform 

guide and junction sections represent the core components necessary for modelling waveguide components. 
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2.1 Auxiliary Vector Potentials 

The devices that are to be modelled are mostly hollow and bound by electrically conducting 

surfaces. Hollow here means being filled with either vacuum or a dielectric medium such as 

air. As such, those interior regions are free of field sources.  In the absence of sources 

Maxwell’s equations for harmonic fields of frequency 𝜔 take the following form in SI units: 

𝛻 ∙ 𝑫 = 0  (2.1.1) ∇ ∙ 𝑩 = 0  (2.1.2) 

∇ × 𝑬 = −𝑗𝜔𝑩  (2.1.3) ∇ × 𝑯 = 𝑗𝜔𝑫  (2.1.4) 

𝑫 = 𝜖𝑬 (2.1.5) 𝑩 = 𝜇𝑯 (2.1.6) 

At this point it may be natural to proceed by directly solving Maxwell’s equations, with 

appropriate boundary conditions, to find the electric and magnetic fields, which are measurable 

quantities. This approach is taken by many (Gleeson 2004; Doherty 2012; McCarthy 2014; 

Kalinauskaitė and Murphy 2018) and is a perfectly valid. In the interest of greater flexibility 

when dealing with arbitrary geometries, an alternative approach is taken here. 

Instead of directly solving Maxwell’s equations to obtain the fields, the procedure can be split 

into two steps. Firstly, the auxiliary electric and magnetic vector potentials are determined. 

These potentials give an alternative mathematical representation of the problem. Secondly, and 

only when needed, the electric and magnetic fields are explicitly evaluated from those 

potentials. The electric and magnetic auxiliary vector potentials are formally introduced now, 

as in C. A. Balanis (2012), while in the following sections it is demonstrated that this approach 

offers an advantage when dealing with more complex geometries (such as offset transitions 

between rectangular and cylindrical waveguides). In some of the steps taken to introduce the 

auxiliary vector potentials the following common vector calculus identities are required: 

∇ × (𝒖1 + 𝒖2) = ∇ × 𝒖1 + ∇ × 𝒖2  (2.1.7) ∇ ∙ ∇ × 𝒖1 = 0  (2.1.8) 

∇ × ∇ �̃� = 0  (2.1.9) ∇ × ∇ × 𝒖1 = ∇(∇ ∙ 𝒖1) − ∇2𝒖1  (2.1.10) 
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2.1.1 Magnetic Vector Potential 

In a source free region, the magnetic flux density 𝑩 is always solenoidal (∇ ∙ 𝑩 = 0). For an 

arbitrary vector potential 𝑨, the magnetic flux density 𝑩𝑨 defined as: 

 𝑩𝐴 = ∇ × 𝑨  (2.1.11) 

automatically this satisfies the divergence equation (2.1.2), due to the identity given in (2.1.8). 

Here subscript ( )𝐴 denotes fields due to the vector potential 𝑨. The magnetic field 𝑯𝑨 is then 

given by: 

 𝑯𝐴 = 
1

𝜇
∇ × 𝑨 (2.1.12) 

From Maxwell’s curl equation (2.1.3), the electric field is also related to 𝑨 by: 

 ∇ × 𝑬𝐴 = −𝑗𝜔𝜇𝑯𝐴 = −𝑗𝜔∇ × 𝑨  (2.1.13) 

 ∇ × (𝑬𝐴 + 𝑗𝜔𝑨) = 0 (2.1.14) 

Using vector identity (2.1.9) the vector field (𝑬𝐴 + 𝑗𝜔𝑨) can be expressed as the gradient of a 

scalar function 𝜓𝑒 such that: 

 𝑬𝐴 + 𝑗𝜔𝑨 = −∇𝜓𝑒  (2.1.15) 

 𝑬𝐴 = −∇𝜓𝑒 − 𝑗𝜔𝑨 (2.1.16) 

Expressing both sides of equation (2.1.4) in terms of functions of vector potential 𝑨 gives: 

 ∇ ×
1

𝜇
∇ × 𝑨 = 𝑗𝜔𝜇𝜖(−∇𝜓e − 𝑗𝜔𝑨)  (2.1.17) 
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1

𝜇
[∇( ∇ ∙ 𝑨) − ∇2𝑨] = 𝑗𝜔𝜇𝜖(−∇𝜓e − 𝑗𝜔𝑨)  (2.1.18) 

 ∇2𝑨 + 𝛽2𝑨 = ∇( ∇ ∙ 𝑨 + 𝑗𝜔𝜇𝜖𝜓𝑒)  (2.1.19) 

where 𝛽 = 𝜔√𝜇𝜖.  

Using the Lorentz gauge: 

 ∇ ∙ 𝑨 = −𝑗𝜔𝜇𝜖𝜓𝑒 (2.1.20) 

 
𝜓𝑒 = −

1

𝑗𝜔𝜇𝜖
∇ ∙ 𝑨 (2.1.21) 

equation (2.1.19) can be reduced to a simple wave equation form in a source free region: 

 ∇2𝑨 + 𝛽2𝑨 = 0,  (2.1.22) 

and the electric field due to 𝑨 is:  

 
𝑬𝑨 = −𝑗𝜔𝑨− 𝑗

1

𝜔𝜇𝜖
𝛁(𝛁 ∙ 𝑨) (2.1.23) 

2.1.2 Electric Vector Potential 

Alternatively, the electric vector potential 𝑭 can be used to represent the fields. In a source free 

region, the electric flux density 𝑫 is always solenoidal (∇ ∙ 𝑫 = 0). For an arbitrary vector 

potential 𝑭, the electric flux density 𝑫𝑭 defined as: 

 𝑫𝐹 = −∇ × 𝑭  (2.1.24) 
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which satisfies the divergence equation (2.1.1), due to the identity given in (2.1.8). Here 

subscript ( )𝐹 denotes fields due to the vector potential 𝑭. The electric field 𝑬𝑭 is then given 

by: 

From Maxwell’s curl equation (2.1.4), the magnetic field is also related to 𝑭 by: 

 ∇ × 𝑯𝐹 = 𝑗𝜔𝜖𝑬𝐹 = 𝑗𝜔(−∇ × 𝑭)  (2.1.26) 

 ∇ × (𝑯𝐹 + 𝑗𝜔𝑭) = 0  

Using vector identity (2.1.9) the vector field (𝑯𝐹 + 𝑗𝜔𝑭) can be expressed as the gradient of a 

scalar function 𝜓𝑚 such that: 

  𝑯𝐹 + 𝑗𝜔𝑭 = −∇𝜓𝑚  (2.1.27) 

  𝑯𝐹 = −∇𝜓𝑚 − 𝑗𝜔𝑭   

Expressing both sides of equation (2.1.3) in terms of functions of vector potential 𝑭 gives: 

 ∇ × −
1

𝜖
∇ × 𝑭 = 𝑗𝜔𝜇𝜖(−∇𝜓𝑚 − 𝑗𝜔𝑭)  (2.1.28) 

 
1

𝜖
[∇2𝑭 − ∇( ∇ ∙ 𝑭)] = 𝑗𝜔𝜇𝜖(−∇𝜓𝑚 − 𝑗𝜔𝑭)  (2.1.29) 

 ∇2𝑭 + 𝛽2𝑭 = ∇( ∇ ∙ 𝑭 + 𝑗𝜔𝜇𝜖𝜓𝑚)  (2.1.30) 

Using the Lorentz gauge: 

 𝑬𝑭 = −
1

𝜖
∇ × 𝑭 (2.1.25) 
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 ∇ ∙ 𝑭 = −𝑗𝜔𝜇𝜖𝜓𝑚 (2.1.31) 

 𝜓𝑚 = −
1

𝑗𝜔𝜇𝜖
∇ ∙ 𝑭  (2.1.32) 

equation (2.1.30) can be reduced to a simple wave equation form in a source free region: 

 ∇2𝑭 + 𝛽2𝑭 = 0,  (2.1.33) 

and the magnetic field due to 𝑭 is:  

 
𝑯𝑭 = −𝑗𝜔𝑭− 𝑗

1

𝜔𝜇𝜖
𝛁(𝛁 ∙ 𝑭) (2.1.34) 

2.2 Electromagnetic Modes in Uniform Waveguide Sections 

Electromagnetic modes are particular field configurations that satisfy Maxwell’s equations, 

subject to appropriate boundary conditions. Mathematically this sets up a boundary value 

problem (BVP). In general, there exist infinitely many solutions to such BVPs and thus an 

infinite number of modes. In this section only hollow guides, uniform in cross-section and 

bound by conducting walls, are considered. Independent modes propagating in such structures 

can be selected to be either transverse electric (TE) or transverse magnetic (TM) – with electric 

or magnetic field components, respectively, orthogonal to the direction of propagation. 

Transverse electromagnetic (TEM) modes are not admitted (C. A. Balanis 2012).  

2.2.1 Transverse Electric (TE) Modes 

Transverse electric modes are field configurations with electric field orthogonal to a reference 

direction. Here the reference direction is taken to be the guide axis, which is also the z-axis of 

a Cartesian coordinate system. The mode’s reference direction is indicated in its name, where 

it might be ambiguous. A TE mode propagating in the z-direction is given in this notation as 

TE𝑧.  
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Assuming a source free region within the guide boundaries, the fields can be given in terms of 

the electric vector potential 𝑭, as shown in section 2.1.2. Cartesian components of the electric 

field are found by expanding equation (2.1.25): 

 
𝑬𝑭 = �̂�𝒙 [−

1

𝜖
(
𝜕𝐹𝑧
𝜕𝑦

−
𝜕𝐹𝑦

𝜕𝑧
)] + �̂�𝒚 [−

1

𝜖
(
𝜕𝐹𝑥
𝜕𝑧

−
𝜕𝐹𝑧
𝜕𝑥
)]+�̂�𝒛 [−

1

𝜖
(
𝜕𝐹𝑦

𝜕𝑥
−
𝜕𝐹𝑥
𝜕𝑦

)] (2.2.1) 

It is clear that an arbitrary TE𝑧 field configuration (with 𝐸𝑧 = 0) can be produced if 𝐹𝑥 = 𝐹𝑦 =

0 and 𝐹𝑧 ≠ 0, and therefore a single scalar function 𝐹𝑧(𝑥, 𝑦, 𝑧) can be used to define fields that 

are automatically TE𝑧. From equations (2.1.25) and (2.1.34) the corresponding Cartesian field 

component are: 

𝐸𝑥 = −
1

𝜖

𝜕𝐹𝑧
𝜕𝑦

 (2.2.2) 𝐻𝑥 = −𝑗
𝑐2

𝜔

𝜕2𝐹𝑧
𝜕𝑥𝜕𝑧

 (2.2.3) 

𝐸𝑦 =
1

𝜖

𝜕𝐹𝑧
𝜕𝑥

 (2.2.4) 𝐻𝑦 = −𝑗
𝑐2

𝜔

𝜕2𝐹𝑧
𝜕𝑦𝜕𝑧

 (2.2.5) 

𝐸𝑧 = 0  (2.2.6) 𝐻𝑧 = −𝑗
𝑐2

𝜔
(
𝜕2𝐹𝑧
𝜕𝑧2

+ 𝛽2𝐹𝑧)  (2.2.7) 

since 𝑭 = (0, 0,  𝐹𝑧). Equation (2.1.33) also reduces to: 

2.2.2 Transverse Magnetic (TM) Modes 

Likewise, transverse magnetic modes are field configurations with magnetic field orthogonal 

to a reference direction. With the reference direction aligned with the guide axis (z-axis of a 

Cartesian coordinate system). Again, where necessary the mode’s reference direction is 

indicated in its name. A TM mode propagating in the z-direction is given as TM𝑧. 

Assuming a source free region within the guide boundaries, the fields can be given in terms of 

the magnetic vector potential 𝑨, as shown in section 2.1.1. Cartesian components of the 

magnetic field are found by expanding equation (2.1.12): 

 ∇2𝐹𝑧 + 𝛽2𝐹𝑧 = 0 (2.2.8) 
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𝑯 = �̂�𝒙 [

1

𝜇
(
𝜕𝐴𝑧
𝜕𝑦

−
𝜕𝐴𝑦

𝜕𝑧
)] + �̂�𝒚 [

1

𝜇
(
𝜕𝐴𝑥
𝜕𝑧

−
𝜕𝐴𝑧
𝜕𝑥

)]+�̂�𝒛 [
1

𝜇
(
𝜕𝐴𝑦

𝜕𝑥
−
𝜕𝐴𝑥
𝜕𝑦

)] (2.2.9) 

It is clear that an arbitrary TM𝑧 field configuration (with 𝐻𝑧 = 0) can be produced if 𝐴𝑥 =

𝐴𝑦 = 0 and 𝐴𝑧 ≠ 0, and therefore a single scalar function 𝐴𝑧(𝑥, 𝑦, 𝑧) can be used to define 

fields that are automatically TM𝑧. From equations (2.1.12) and (2.1.23) the corresponding 

Cartesian field component are: 

𝐻𝑥 =
1

𝜇

𝜕𝐴𝑧
𝜕𝑦

 (2.2.10) 𝐸𝑥 = −𝑗
𝑐2

𝜔

𝜕2𝐴𝑧
𝜕𝑥𝜕𝑧

 (2.2.11) 

𝐻𝑦 = −
1

𝜇

𝜕𝐴𝑧
𝜕𝑥

 (2.2.12) 𝐸𝑦 = −𝑗
𝑐2

𝜔

𝜕2𝐴𝑧
𝜕𝑦𝜕𝑧

 (2.2.13) 

𝐻𝑧 = 0  (2.2.14) 𝐸𝑧 = −𝑗
𝑐2

𝜔
(
𝜕2𝐴𝑧
𝜕𝑧2

+ 𝛽2𝐴𝑧)  (2.2.15) 

since 𝑨 = (0, 0,  𝐴𝑧). Equation (2.1.22) also reduces to: 

  

 ∇2𝐴𝑧 + 𝛽2𝐴𝑧 = 0 (2.2.16) 
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2.2.3 Transverse Electric and Magnetic Modes in Infinite Uniform Waveguides with PEC 

Walls 

Solutions to the scalar wave equations, (2.2.8) and (2.2.16)(2.1.16), are found using the 

separation-of-variables method. Here a scalar potential 𝑄(𝑥, 𝑦, 𝑧) can be expressed as: 

The form of 𝐺(𝑥, 𝑦) and ℎ(𝑧) must be selected carefully to reduce the complexity of the 

problem and will depend on the boundary conditions. Here the guide is unbounded in the z-

direction, therefore an appropriate form of ℎ(𝑧) is a combination of travelling waves given by: 

where the first and the second term represent forward and backward propagating waves, 

respectively. The form of 𝐺(𝑥, 𝑦) is not fixed at this point. Individual solutions for the wave 

equation for TE modes are therefore sought in the following form: 

 𝐹𝑧(𝑥, 𝑦, 𝑧) = −𝜖𝐹(𝑥, 𝑦)𝑒∓𝑗𝛽𝑧
𝑇𝐸𝑧,  (2.2.19) 

while the equivalent form for TM modes is: 

 𝐴𝑧(𝑥, 𝑦, 𝑧) = ∓𝜇𝐴(𝑥, 𝑦)𝑒∓𝑗𝛽𝑧
𝑇𝑀𝑧 (2.2.20) 

The additional terms −𝜖 and ∓𝜇 make the solutions consistent with the phase convention 

commonly used in literature. Where alternative signs are given such as ∓, the top corresponds 

to forward traveling waves and the bottom to backward traveling waves.  

In equation (2.2.19) the form of 𝐹(𝑥, 𝑦) depends on the guide cross-section and captures the x 

and y dependence of the scalar potential function 𝐹𝑧. Substituting this form of the potential into 

equation (2.2.8) gives: 

 𝑄(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑦)ℎ(𝑧) (2.2.17) 

 ℎ(𝑧) = 𝐴1𝑒
−𝑗𝛽𝑧𝑧 + 𝐴2𝑒

+𝑗𝛽𝑧𝑧, (2.2.18) 
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 𝜕
2
𝐹𝑧

𝜕𝑥2
+
𝜕
2
𝐹𝑧

𝜕𝑦2
− (𝛽

𝑧
𝑇𝐸
)
2
𝐹𝑧 + 𝛽

2𝐹𝑧 = 0  (2.2.21) 

 𝜕2𝐹𝑧
𝜕𝑥2

+
𝜕2𝐹𝑧
𝜕𝑦2

+ 𝛽𝑐
2𝐹𝑧 = 0  (2.2.22) 

The scalar wave equation can then be written as: 

 ∇2𝐹(𝑥, 𝑦) + (𝛽
𝑐
𝑇𝐸)

2
𝐹(𝑥, 𝑦) = 0  (2.2.23) 

where 

Here 𝛽𝑐
𝑇𝐸  gives the cutoff wave number, and eigenvalue, of a particular modal field and sets 

the TE mode’s propagation constant 𝛽𝑧
𝑇𝐸 .  

The scalar potential 𝐹(𝑥, 𝑦) is subject to boundary conditions at the walls. The tangential 

electric field must be zero at the interface between the guide’s inner volume and the PEC wall. 

∇𝐹(𝑥, 𝑦) is perpendicular to the transverse electric field, since  ∇𝐹(𝑥, 𝑦) ∙ 𝑬𝒕 = (
𝜕𝐹

𝜕𝑥
,
𝜕𝐹

𝜕𝑦
) ∙

(−
1

𝜖

𝜕𝐹𝑧

𝜕𝑦
,
1

𝜖

𝜕𝐹𝑧

𝜕𝑥
) = 0 due to the functional relationship between 𝐹𝑧 and 𝐹(𝑥, 𝑦) as in equation 

(2.2.19) and both lie in the same xy-plane. Since 𝐸𝑧 = 0 everywhere for a TE mode, the 

tangential component of the electric field at the wall is zero if and only if ∇𝐹(𝑥, 𝑦) has no 

component normal to the wall: 

 𝜕𝐹(𝑥, 𝑦)

𝜕�̂�
= ∇𝐹(𝑥, 𝑦) ∙ �̂� = 0  (2.2.25) 

Each mode has an associated admittance given by the ratio of the orthogonal components of 

the mode’s electric and magnetic field, given in equations (2.2.2) – (2.2.7). For TE waveguide 

modes the admittance is given by: 

 
(𝛽𝑐

𝑇𝐸)2 = 𝛽2 − (𝛽
𝑧
𝑇𝐸
)
2
with 𝛽

𝑧
𝑇𝐸
= √𝛽2 − (𝛽𝑐

𝑇𝐸)2  (2.2.24) 



 

42 

 

 
𝑌𝑇𝐸 =

𝐻𝑦
𝐸𝑥

= −
𝐻𝑥
𝐸𝑦

 (2.2.26) 

 or in terms of the mode’s propagation constant: 

The mode’s transverse and longitudinal (z) field components (equations (2.2.2) – (2.2.7)) can 

be expressed concisely in terms of the gradient of scalar potential function 𝐹(𝑥, 𝑦). Here the 

transverse field components at 𝑧 = 0 are given by: 

 
𝑬𝑡,𝑇𝐸 = −

1

𝜖
∇𝐹𝑧 × �̂� = ∇𝐹(𝑥, 𝑦)× �̂�  (2.2.28) 

 
𝑯𝑡,𝑇𝐸 = ±

𝛽
𝑧
𝑇𝐸𝑐2

𝜔
𝜖∇𝐹(𝑥, 𝑦) = ±𝑌𝑇𝐸∇𝐹(𝑥, 𝑦)  (2.2.29) 

and the only non-zero z-component as: 

Likewise, the same procedure can be applied to a TM mode, expressed in terms of a scalar 

potential function 𝐴(𝑥, 𝑦). The scalar wave equation reduces to: 

 ∇2𝐴(𝑥, 𝑦) + (𝛽
𝑐
𝑇𝑀)

2
𝐴(𝑥, 𝑦) = 0  (2.2.31) 

where 

𝑌𝑇𝐸 =
𝛽𝑧
𝑇𝐸

𝜇𝜔
=
𝛽𝑧
𝑇𝐸

𝜇𝑐𝛽
= √

𝜖

𝜇

𝛽𝑧
𝑇𝐸

𝛽
=
𝛽𝑧
𝑇𝐸

𝛽
𝑌0  (2.2.27) 

𝐻𝑧
𝑇𝐸 = −𝑗

𝑐2

𝜔
(
𝜕2𝐹𝑧
𝜕𝑧2

+ 𝛽2𝐹𝑧) = −𝑗
𝑐2

𝜔
(− (𝛽

𝑧
𝑇𝐸
)
2
+ 𝛽2)𝐹𝑧 = 𝑗

(𝛽
𝑐
𝑇𝐸
)
2

𝜔𝜇
𝐹(𝑥, 𝑦)  (2.2.30) 

 
(𝛽𝑐

𝑇𝑀)2 = 𝛽2 − (𝛽
𝑧
𝑇𝑀
)
2
⇒ 𝛽

𝑧
𝑇𝑀

= √𝛽2 − (𝛽𝑐
𝑇𝑀)2  (2.2.32) 
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Here 𝛽𝑐
𝑇𝑀 gives the cutoff wave number, and eigenvalue, of a particular modal field and sets 

the TM modes propagation constant 𝛽𝑧
𝑇𝑀.  

The scalar potential 𝐴(𝑥, 𝑦) is subject to boundary conditions at the walls. The tangential 

electric field must be zero at the interface between the guide’s inner volume and the PEC wall. 

At the wall 𝐸𝑧 is tangential to the wall for a uniform guide and as such must be zero: 

𝐸𝑧 = −𝑗
𝑐2

𝜔
(
𝜕2𝐴𝑧
𝜕𝑧2

+ 𝛽2𝐴𝑧) = −𝑗
𝑐2

𝜔
(−(𝛽𝑧

𝑇𝑀)2𝐴𝑧 + 𝛽2𝐴𝑧)

= −𝑗
𝑐2

𝜔
(𝛽

𝑐
𝑇𝑀)

2
𝐴𝑧 = 0 

(2.2.33) 

Consequently, for the tangential electric field to disappear on the contour of the guide 𝜕𝑆 it is 

necessary that: 

This also ensures that the tangential component of the electric field at the wall is zero in the xy-

plane. 

Each modal field has an associated impedance which is given by the ratio of the orthogonal 

components of the mode’s electric and magnetic fields:  

 
𝑍𝑇𝑀 =

𝐸𝑥
𝐻𝑦

= −
𝐸𝑦
𝐻𝑥

 (2.2.35) 

or in terms of the mode’s propagation constant: 

 
𝑍𝑇𝑀 =

𝛽𝑧
𝑇𝑀

𝜖𝜔
=
𝛽𝑧
𝑇𝑀

𝜖𝑐𝛽
= √

𝜇

𝜖

𝛽𝑧
𝑇𝑀

𝛽
=
𝛽𝑧
𝑇𝑀

𝛽
𝑍0.  (2.2.36) 

The transverse field components at 𝑧 = 0 are given by: 

 𝐴(𝑥, 𝑦) = 0, on 𝜕𝑆  (2.2.34) 
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𝑬𝑡,𝑇𝑀 =

𝛽
𝑧
𝑇𝑀𝑐2

𝜔
∇𝐴(𝑥, 𝑦) = 𝑍𝑇𝑀∇𝐴(𝑥, 𝑦)  (2.2.37) 

 
𝑯𝑡,𝑇𝑀 =

1

𝜇
∇𝐴𝑧 × �̂� = ±(−∇𝐴(𝑥, 𝑦)× �̂�)  (2.2.38) 

and the remaining non-zero z-component is: 

2.2.4 Modal Field Expansion 

At a particular reference plane along the propagation axis of a waveguide, taken to be 𝑧 = 0, 

the total electric and magnetic fields (representing a solution of the boundary value problem) 

are obtained as a linear combination of modal fields:  

where 

 𝑬𝑎𝑙𝑙
𝑡,𝑇𝐸 =∑(𝑎𝑖

𝑇𝐸,+
𝑬𝑖
𝑡,𝑇𝐸,+ + 𝑎𝑖

𝑇𝐸,−
𝑬𝑖
𝑡,𝑇𝐸,−)

𝑖

 
(2.2.42) 

 
𝑬𝑎𝑙𝑙
𝑡,𝑇𝑀 =∑(𝑎𝑖

𝑇𝑀,+
𝑬𝑖
𝑡,𝑇𝑀,+ + 𝑎𝑖

𝑇𝑀,−
𝑬𝑖
𝑡,𝑇𝑀,−)

𝑖

 
(2.2.43) 

 
𝑯𝑎𝑙𝑙
𝑡,𝑇𝐸 =∑(𝑎𝑖

𝑇𝐸,+
𝑯𝑖
𝑡,𝑇𝐸,+ + 𝑎𝑖

𝑇𝐸,−
𝑯𝑖
𝑡,𝑇𝐸,−)

𝑖

 
(2.2.44) 

 
𝑯𝑎𝑙𝑙
𝑡,𝑇𝑀 =∑(𝑎𝑖

𝑇𝑀,+
𝑯𝑖
𝑡,𝑇𝑀,+ + 𝑎𝑖

𝑇𝑀,−
𝑯𝑖
𝑡,𝑇𝑀,−)

𝑖

 
(2.2.45) 

𝐸𝑧
𝑇𝑀 = −𝑗

𝑐2

𝜔
(
𝜕2𝐴𝑧
𝜕𝑧2

+ 𝛽
 
2𝐴𝑧) = −𝑗

𝑐2

𝜔
(− (𝛽

𝑧
𝑇𝑀
)
2
+ 𝛽2)𝐴𝑧 = ± 𝑗

(𝛽
𝑐
𝑇𝑀
)
2

𝜔𝜖
𝐴(𝑥, 𝑦)  (2.2.39) 

 𝑬𝑡 = 𝑬𝑎𝑙𝑙
𝑡,𝑇𝐸 + 𝑬𝑎𝑙𝑙

𝑡,𝑇𝑀
 (2.2.40) 

 𝑯𝑡 = 𝑯𝑎𝑙𝑙
𝑡,𝑇𝐸 + 𝑯𝑎𝑙𝑙

𝑡,𝑇𝑀, (2.2.41) 
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As before (±) superscripts indicate forward and backward propagating waves respectively and 

𝑎𝑛
𝑋 is the mode’s amplitude. The number of modes is infinite (Olver et al. 2011), but in practice 

only a finite subset of all modes is required to achieve sufficient accuracy.  

Each mode has a cut-off frequency: 

 
𝑓𝑐 =

1

2𝜋
√𝜇𝜖𝛽𝑐  (2.2.46) 

 

Above this frequency 𝛽𝑧 is real. For fixed mode amplitude a change of position along the z-

axis changes the phase of the modal fields but not their magnitude provided there is no 

mechanism for loss i.e. uniform hollow PEC guide. The mode is said to be propagating, and its 

field configuration is consistent with real power flux along the z-axis. On the other hand if 𝑓 <

𝑓𝑐, 𝛽𝑧 becomes imaginary and the magnitude of modal fields decays exponentially with 

position. The mode is said to be non-propagating, or evanescent. Evanescent modes carry only 

imaginary power. 

The impact of highly evanescent modes on power propagation is necessarily localised, because 

of their high rate of decay. As such their contribution to the overall propagating solution 

becomes asymptotically negligible, once their cut-off frequency is sufficiently greater than the 

operating frequency. Conventionally, the number of TE and TM modes that are included in the 

modal expansion is limited to 𝑁𝑇𝐸  and 𝑁𝑇𝑀. This finite subset includes modes effectively 

contributing to the overall field. Furthermore, the transverse field components can be expressed 

using the scalar potentials as follows: 

 

𝑬𝑡 ≅∑(𝑎𝑖
𝑇𝐸,+ + 𝑎𝑖

𝑇𝐸,−)

𝑁𝑇𝐸

𝑖

∇𝐹𝑖(𝑥, 𝑦) × �̂� + ∑(𝑎𝑖
𝑇𝑀,+ + 𝑎𝑖

𝑇𝑀,−)

𝑁𝑇𝑀

𝑗

 𝑍𝑗
𝑇𝑀∇𝐴𝑗(𝑥, 𝑦) (2.2.47) 

 

𝑯𝑡 ≅∑(𝑎𝑖
𝑇𝐸,+ − 𝑎𝑖

𝑇𝐸,−)

𝑁𝑇𝐸

𝑖

𝑌𝑖
𝑇𝐸∇𝐹𝑖(𝑥, 𝑦) + ∑(−𝑎𝑖

𝑇𝑀,+ + 𝑎𝑖
𝑇𝑀,−)

𝑁𝑇𝑀

𝑗

∇𝐴𝑗(𝑥, 𝑦) × �̂� (2.2.48) 
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2.2.5 Modal Power Normalisation 

For a unit amplitude each mode carries certain complex power. This can be used to apply 

consistent normalisation to individual modes. The total complex power carried by the mode is 

obtained from the integral flux of the Poynting vector over the cross-section of the guide: 

where the 𝑬𝑚 and 𝑯𝑚, are the transverse electric and magnetic fields for the mode.  

The complex modal power for a nominally forward propagating TE mode is given by: 

Since the cross-section S is orthogonal to the z-axis: 

where 

Similarly, for a forward propagating TM mode, the complex modal power is:  

where 

 
𝑃𝑚(𝑆) = ∫ (

1

2
𝑬𝑚 × 𝑯𝑚

∗ ) ∙ 𝑑𝑺
 

𝑆

, (2.2.49) 

 
𝑃𝑚
𝑇𝐸(𝑆) = +

1

2
∫((∇𝐹𝑚(𝑥, 𝑦) × �̂�) × (𝑌𝑚

𝑇𝐸∇𝐹𝑚(𝑥, 𝑦))
∗) ∙ 𝑑𝑺

 

𝑆

 (2.2.50) 

 
𝑃𝑚
𝑇𝐸(𝑆) = +

1

2
𝑌𝑚
𝑇𝐸∗∫(∇𝐹𝑚(𝑥, 𝑦)

∗ ∙ ∇𝐹𝑚(𝑥, 𝑦)) 𝑑𝑆
 

𝑆

= +
1

2
𝑌𝑚
𝑇𝐸∗𝐷𝑚𝑚, (2.2.51) 

 
𝐷𝑖𝑗 = ⟨∇𝐹𝑖|∇𝐹𝑗⟩ = ∫(∇𝐹𝑚(𝑥, 𝑦)

∗ ∙ ∇𝐹𝑚(𝑥, 𝑦)) 𝑑𝑆
 

𝑆

 
(2.2.52) 

 
𝑃𝑚
𝑇𝑀(𝑆) = +

1

2
∫((𝑍𝑚

𝑇𝑀∇𝐴𝑚(𝑥, 𝑦)) × (∇𝐴𝑚(𝑥, 𝑦) × �̂�)
∗) ∙ 𝑑𝑺

 

𝑆

 (2.2.53) 

 
𝑃𝑚
𝑇𝑀(𝑆) = +

1

2
𝑍𝑚
𝑇𝑀∫(∇𝐴𝑚(𝑥, 𝑦)

∗ ∙ ∇𝐴𝑚(𝑥, 𝑦)) 𝑑𝑆
 

𝑆

= +
1

2
𝑍𝑚
𝑇𝑀 𝐶𝑚𝑚, (2.2.54) 
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Here 𝐷𝑚𝑚 and 𝐶𝑚𝑚 give the frequency-independent modal power factors for TE and TM 

modes respectively. These integrals correspond to self-coupling of modes within a uniform 

waveguide, and their value can be determined analytically for common waveguide cross-

sections. 

The power carried by a TE or TM mode also depends on the modal admittance or impedance 

respectively. These quantities are proportional to the mode’s propagation constant (equations 

(2.2.27) and (2.2.36)). Their value is real for propagating modes, imaginary for evanescent 

modes and zero at the cut-off frequency: 

 

𝑌𝑇𝐸 = +
𝑌0𝛽𝑧
𝛽

=

{
  
 

  
 
𝑌0
𝛽
√𝛽 2 − 𝛽𝑐2 , for 𝑓 > 𝑓𝑐

 
0 , for 𝑓𝑐 = 𝑓                   

 

−
𝑗𝑌0
𝛽
√𝛽𝑐2 − 𝛽2, for 𝑓 < 𝑓𝑐

 (2.2.56) 

 

𝑍𝑇𝑀 = +
𝑍0𝛽𝑧
𝛽

=

{
  
 

  
 
𝑍0
𝛽
√𝛽 2 − 𝛽𝑐2 , for 𝑓 > 𝑓𝑐

 
0 , for 𝑓𝑐 = 𝑓                   

 

−
𝑗𝑍0
𝛽
√𝛽𝑐2 − 𝛽2, for𝑓 < 𝑓𝑐

 (2.2.57) 

In past implementations of the mode matching method, such as (Kalinauskaitė and Murphy 

2018), modes were strictly normalised to unit power magnitude (+1 Watt for propagating 

modes, +𝑗 Watt for evanescent TE modes and −𝑗 Watt for evanescent TM modes). However, 

modes cannot strictly be normalised this way at their cut-off frequency. Even close to cut-off 

numerical implementations can suffer from instability, due to an abrupt step from unit 

imaginary to real power as the character of the mode changes. 

𝐶𝑖𝑗 = ⟨∇𝐴𝑖|∇𝐴𝑗⟩ = ∫(∇𝐴𝑚(𝑥, 𝑦)
∗ ∙ ∇𝐴𝑚(𝑥, 𝑦)) 𝑑𝑆

 

𝑆

 
(2.2.55) 
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This can be avoided by normalising the mode to a unit power magnitude asymptotically, far 

from its cut-off frequency, by passing the magnitude of modal power through zero as the 

frequency passes through the cut-off, as exemplified in Figure 2-3. The character of modal 

power, that is whether the value is real or positive imaginary, or negative imaginary, remains 

unchanged. 

In this work modes are normalised to have the following magnitude of power: 

𝑃𝑛𝑜𝑟𝑚 𝑚𝑎𝑔
𝑇𝐸 =

{
 
 

 
 

𝑌𝑇𝐸

𝑌0
for 𝑓 ≥ 𝑓𝑐

√
𝛽2

𝛽𝑐2
|𝑌𝑇𝐸|

𝑌0
 for 𝑓 < 𝑓𝑐

 

𝑃𝑛𝑜𝑟𝑚 𝑚𝑎𝑔
𝑇𝑀 =

{
 
 

 
 

𝑍𝑇𝑀

𝑍0
for 𝑓 ≥ 𝑓𝑐

√
𝛽2

𝛽𝑐2
|𝑍𝑇𝑀|

𝑍0
 for 𝑓 < 𝑓𝑐

 

 

 

Figure 2-3: Illustration of the new frequency dependent approach to mode normalisation. Below cut-off modes 

are evanescent carrying imaginary power only, as they pass through their respective cut-off frequencies there is 

a smooth transition from complex to real power through zero as required. The values shown are for modes in 

WR10 waveguide section 



 

49 

 

 

  

Figure 2-4: Modal power magnitude as a function of frequency. For frequencies far away from cut-off 

complex modal power tends towards ±𝑗 for evanescent modes and +1 for propagating modes, as shown in 

Figure 2-3 
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2.3 Rectangular and Cylindrical Waveguides 

In this section the specific boundary conditions posed by uniform rectangular or cylindrical 

waveguide sections are considered. The expressions for scalar potential functions 𝐹(𝑥, 𝑦) and 

𝐴(𝑥, 𝑦) that satisfy equations (2.2.23) and (2.2.31), respectively, are derived. As shown, these 

potentials functions give the modal transverse field components consistent with the guide’s 

cross-section. 

2.3.1 Uniform Rectangular Waveguides 

A uniform rectangular guide section is defined by dimensional parameters (𝑎, 𝑏) that give the 

guide’s width and height. At a given frequency the number of guide modes propagating will 

be limited by these dimensions. With set boundaries, the form of the scalar potential 𝐹(𝑥, 𝑦) 

and 𝐴(𝑥, 𝑦) can be found. The general boundary condition requires the tangential electric field 

to be zero at the walls. Thus, the boundary conditions for the rectangular waveguide are given 

by: 

 𝐸𝑥(0 ≤ 𝑥 ≤ 𝑎, 𝑦 = 0 or 𝑏, 𝑧) = 0 𝐸𝑧(0 ≤ 𝑥 ≤ 𝑎, 𝑦 = 0 or 𝑏, 𝑧) = 0 (2.3.1) 

 𝐸𝑦(𝑥 = 0 or 𝑎, 0 ≤ 𝑦 ≤ 𝑏, 𝑧) = 0 𝐸𝑧(𝑥 = 0 or 𝑎, 0 ≤ 𝑦 ≤ 𝑏, 𝑧) = 0 (2.3.2) 

where the limits in equation (2.3.1) provide the boundary conditions for the top and bottom of 

the guide, while equation (2.3.2) governs the left and right boundaries.  

Figure 2-5: Geometry of the model rectangular waveguide section with dimensions (a,b) orientated with respect 

to the propagation direction z. 
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With set (𝑥, 𝑦) boundaries, the separation-of-variables method can be completed for the scalar 

potential function 𝐹𝑧(𝑥, 𝑦, 𝑧) such that: 

 𝐹𝑧(𝑥, 𝑦, 𝑧) = 𝐹(𝑥, 𝑦)ℎ(𝑧) = 𝑓(𝑥)𝑔(𝑦)ℎ(𝑧) (2.3.3) 

In section 2.2.3, the scalar potential 𝐹𝑧(𝑥, 𝑦, 𝑧) has a z-dependency that takes the form of a 

traveling waves. As the guide is bound in both x and y directions the form of the remaining 

transverse components must take the form of standing waves. Thus, the holding solution in 

equation (2.3.3) is expressed with a more appropriate set of function equations that describe 

the standing and traveling wave components. 

 𝑓(𝑥) = 𝐶1 cos(𝛽𝑥𝑥) + 𝐷1 sin(𝛽𝑥𝑥) (2.3.4) 

 𝑔(𝑦) = 𝐶2 cos(𝛽𝑦𝑦) + 𝐷2 sin(𝛽𝑦𝑦) (2.3.5) 

 ℎ(𝑧) = 𝐴3𝑒
−𝑗𝛽𝑧𝑧+𝐵3𝑒

𝑗𝛽𝑧𝑧      (2.3.6) 

The forward traveling scalar potential 𝐹𝑧(𝑥, 𝑦, 𝑧) can then be substituted into equations (2.2.2) 

and (2.2.4), and gives the TE mode’s electric field components as 

 
𝐸𝑥
+(𝑥, 𝑦, 𝑧) = −𝐴3

𝛽𝑦

𝜖
[𝐶1 cos(𝛽𝑥𝑥) + 𝐷1sin (𝛽𝑥𝑥)][−𝐶2 sin(𝛽𝑦𝑦)

+ 𝐷2cos(𝛽𝑦𝑦)]𝑒
−𝑗𝛽𝑧𝑧 

(2.3.7) 

 
𝐸𝑦
+(𝑥, 𝑦, 𝑧) = −𝐴3

𝛽𝑥
𝜖
[−𝐶1 sin(𝛽𝑥𝑥) + 𝐷1cos (𝛽𝑥𝑥)][𝐶2cos(𝛽𝑦𝑦)

+ 𝐷2sin(𝛽𝑦𝑦)]𝑒
−𝑗𝛽𝑧𝑧 

(2.3.8) 

The boundary conditions along the guide walls are given by equations (2.3.1) - (2.3.2). The 

trivial solutions for these boundary conditions are 𝐷1 = 𝐷2 = 0. The non-trivial solutions for 

the given boundary conditions require that sin(𝛽𝑦𝑏) = 0 and sin(𝛽𝑥𝑎) = 0, with solutions: 
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 𝛽𝑥 =
𝑚𝜋

𝑎
 and 𝛽𝑦 =

𝑛𝜋

𝑏
 for 𝑚, 𝑛 ∈ ℤ+ ∪ {0}, (2.3.9) 

where 𝛽𝑥 and 𝛽𝑦 represent the transverse wavenumbers consistent with the boundary 

conditions. Applying these solutions, the electric field components reduce to: 

 
𝐸𝑥
+ = −𝐴3

𝛽𝑦

𝜖
[𝐶1 cos(𝛽𝑥𝑥)][−𝐶2 sin(𝛽𝑦𝑦)]𝑒

−𝑗𝛽𝑧𝑧 (2.3.10) 

 
𝐸𝑦
+ = 𝐴3

𝛽𝑥
𝜖
[−𝐶1 sin(𝛽𝑥𝑥)][𝐶2cos(𝛽𝑦𝑦)]𝑒

−𝑗𝛽𝑧𝑧 (2.3.11) 

Thus, the scalar potential function, 𝐹𝑧
+(𝑥, 𝑦, 𝑧), can be expressed in the following form: 

 𝐹𝑧
+(𝑥, 𝑦, 𝑧) = 𝐴𝑚𝑛 cos(𝛽𝑥𝑥) cos(𝛽𝑦𝑦) 𝑒

−𝑗𝛽𝑧𝑧 (2.3.12) 

where 𝐴𝑚𝑛 is obtained by expressing the remaining constant values as a single normalisation 

factor. In a similar manner the magnetic scalar potential function 𝐴𝑧
 (𝑥, 𝑦, 𝑧) can be shown to 

be: 

 𝐴𝑧
+(𝑥, 𝑦, 𝑧) = 𝐵𝑚𝑛 sin(𝛽𝑥𝑥) sin(𝛽𝑦𝑦) 𝑒

−𝑗𝛽𝑧𝑧 (2.3.13) 

The eigenvalue of the wave equation in both cases is given by: 

 
𝛽𝑐
2 = 𝛽𝑥

2 + 𝛽𝑦
2 = (

𝑚𝜋

𝑎
)
2

+ (
𝑛𝜋

𝑏
)
2

 (2.3.14) 



 

53 

 

Each rectangular waveguide mode is indexed by a pair of integer values 𝑚,𝑛 shown in equation 

(2.3.9), such that the transverse electric and magnetic modes are in general expressed as TE𝑚𝑛 

or TM𝑚𝑛. The indices are subject to some restrictions. For TE modes both mode indices 𝑚,𝑛 

cannot be zero at the same time. For TM modes (in a rectangular guide) 𝑚,𝑛 must be non-zero. 

Otherwise, the scalar potential becomes constant and all components given by the electric and 

magnetic fields vanish. The cutoff frequency can be expressed in terms of the eigenvalues 

derived as shown below: 

For TE and TM modes their electric field components, as in equations (2.2.28) - (2.2.29) and 

(2.2.37) - (2.2.38) respectively, are obtained from the complete form of the scalar potential 

functions letting 𝐴𝑚𝑛 = 1. The electric field components for TE and TM modes are then given 

by: 

 𝑬𝑡,𝑇𝐸 = (−𝛽𝑥 sin(𝛽𝑥𝑥) cos (𝛽𝑦𝑦)) �̂�  + (−𝛽𝑦 cos(𝛽𝑥𝑥) sin(𝛽𝑦𝑦)) �̂� (2.3.16) 

 𝑬𝑡,𝑇𝑀 = (𝛽𝑥 cos(𝛽𝑥𝑥) sin(𝛽𝑦𝑦)) �̂� + (𝛽𝑦 sin(𝛽𝑥𝑥) cos(𝛽𝑦𝑦)) �̂� (2.3.17) 

Furthermore, the modal powers of TE and TM modes can be derived analytically from their 

resulting fields. The modal power, given in equations (2.2.51) and (2.2.54) corresponds to self-

coupling modes within uniform waveguides. The modal power magnitude expression for the 

rectangular TE modes (𝐷𝑖𝑗) is: 

 

𝐷𝑖𝑗 = (𝛽𝑐,𝑖
𝑇𝐸)

2
𝛿𝑖𝑗∫∫cos2(𝛽𝑥,𝑖𝑥) cos

2(𝛽𝑦,𝑖𝑦)𝑑𝑦𝑑𝑥

𝑏

0

𝑎

0

 (2.3.18) 

 
= (𝛽𝑐,𝑖

𝑇𝐸)
2
𝛿𝑖𝑗 (

𝑎

2
+
sin(2𝛽𝑥,𝑖𝑎)

4𝛽𝑥,𝑖
)(

𝑏

2
+
sin(2𝛽𝑦,𝑖𝑏)

4𝛽𝑦,𝑖
) (2.3.19) 

 
𝑓𝑐 =

1

2𝜋
√𝜇𝜖 𝛽𝑐 =

1

2𝜋
√𝜇𝜖 √𝛽𝑥2 + 𝛽𝑦2 (2.3.15) 
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= ((

𝑚𝑖𝜋

𝑎
)
2

+ (
𝑛𝑖𝜋

𝑏
)
2

) (
𝑎𝑏

4
) (1 + 𝛿𝑚𝑖,0

)(1 + 𝛿𝑛𝑖,0)𝛿𝑖𝑗 (2.3.20) 

and for TM (𝐶𝑖𝑗) modes: 

 

𝐶𝑖𝑗 = (𝛽𝑐,𝑖
𝑇𝑀)

2
𝛿𝑖𝑗∫∫sin2(𝛽𝑥,𝑖𝑥) sin

2(𝛽𝑦,𝑖𝑦) 𝑑𝑦𝑑𝑥

𝑏

0

𝑎

0

 (2.3.21) 

 
= ((

𝑚𝑖𝜋

𝑎
)
2

+ (
𝑛𝑖𝜋

𝑏
)
2

) (
𝑎𝑏

4
) 𝛿𝑖𝑗  (2.3.22) 

A selection of modal fields that exist in a rectangular waveguide section are presented in Figure 

2-6. The field distribution of the fundamental TE10 mode (fundamental mode) is shown along 

with a few higher order modes which are either TE or TM.   

  

Figure 2-6: Shows an example of the modal fields which are supported in the uniform rectangular guide 

section. 
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2.3.2 Uniform Cylindrical Waveguides 

In this section the same procedure as in section 2.3.1 is followed to describe the modal fields 

within cylindrical waveguide sections. However, because of the symmetry of the problem’s 

geometry it is convenient to change coordinate systems from Cartesian to cylindrical 

coordinates. The cylindrical guide’s cross-section, shown in Figure 2-7, is described by a single 

dimensional parameter (𝑎) that gives the guide’s radius. The boundary conditions require that 

the tangential electric field be zero at the guide walls:  

 𝐸𝜙(𝜌 = 𝑎, 𝜙, 𝑧) = 0 (2.3.23) 

Moreover, the fields must be finite within the guide and have a minimum periodicity in 𝜙 of 

2𝜋. 

In the cylindrical case the scalar potential function 𝐹𝑧(𝑥, 𝑦, 𝑧) becomes 𝐹𝑧(𝜌, 𝜙, 𝑧), the 

separation-of-variables method can be completed for the scalar potential function 𝐹𝑧(𝜌, 𝜙, 𝑧) 

such that: 

 𝐹𝑧(𝜌, 𝜙, 𝑧)  = 𝑓(𝜌)𝑔(𝜙)ℎ(𝑧) (2.3.24) 

The scalar potential is sought with a z-dependence given by equation (2.2.19). As the guide is 

bound in the radial directions the form of the radial terms represent standing waves given by 

Figure 2-7 Details the geometry of the cylindrical waveguide section of radius (𝑎) orientated with respect to the 

propagation direction z 
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the first and second kind of the Bessel function, while the cosine and sine terms represent 

periodic waves which naturally have the periodicty required in 𝜙 (C. A. Balanis 2012). Thus, 

the holding solution in equation (2.3.24) can be expressed with a more appropriate set of 

functions that describe the standing and traveling wave components. 

 𝑓(𝜌) = 𝐴1𝐽𝑚(𝛽𝜌𝜌) + 𝐵1𝑌𝑚(𝛽𝜌𝜌) (2.3.25) 

 𝑔(𝜙) = 𝐶2 cos(𝑚𝜙) + 𝐷2 sin(𝑚𝜙) (2.3.26) 

 ℎ(𝑧) = 𝐴3𝑒
−𝑗𝛽𝑧𝑧+𝐵3𝑒

𝑗𝛽𝑧𝑧      (2.3.27) 

From properties of the Bessel function constant 𝐵1 must be equal to zero since 𝑌𝑚(𝜌 = 0) =

∞, and the field must remain finite within the guide: 

 𝑓(𝜌) = 𝐴1𝐽𝑚(𝛽𝜌𝜌) (2.3.28) 

 𝑔(𝜙) = 𝐶2 cos(𝑚𝜙) + 𝐷2 sin(𝑚𝜙) (2.3.29) 

 ℎ(𝑧) = 𝐴3𝑒
−𝑗𝛽𝑧𝑧+𝐵3𝑒

𝑗𝛽𝑧𝑧      (2.3.30) 

The forward traveling scalar potential 𝐹𝑧(𝜌, 𝜙, 𝑧) can then be substituted into equation (2.2.28), 

and gives the TE mode’s electric field components as: 

 
∇𝐹𝑧(𝜌, 𝜙, 𝑧) =

𝜕𝐹𝑧
𝜕𝜌

�̂� +
1

𝜌

𝜕𝐹𝑧
𝜕𝜙

�̂� +
𝜕𝐹𝑧
𝜕𝑧

�̂� (2.3.31) 

 
𝐸𝜙
+(𝜌 = 𝑎, 𝜙, 𝑧) = 𝛽𝜌

𝐴𝑚𝑛
𝜖

𝐽𝑚
′ (𝛽𝜌𝑎) [𝐶2 cos(𝑚𝜙) + 𝐷2 sin(𝑚𝜙)]𝑒

−𝑗𝛽𝑧𝑧 (2.3.32) 

The required boundary condition, 𝐸𝜙(𝜌 = 𝑎, 𝜙, 𝑧) = 0, is only satified provided 𝐽𝑚
′ (𝛽𝜌𝑎) = 0 

which can only occur for: 
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𝛽𝜌 =

𝜒𝑚𝑛
′

𝑎
 (2.3.33) 

where 𝜒𝑚𝑛
′  is the nth root (𝑛 = 1,2, …) of the derivative of the Bessel function 𝐽′𝑚 of the first 

kind and of order 𝑚 (𝑚 = 0,1,2, …). The scalar potential function can be expressed in the form 

of two orthogonal solutions given by: 

Applying the same treatment to the transverse magnetic field, a similar expression for 

𝐴𝑧
+(𝜌, 𝜙, 𝑧) is obtained, again in the form of two orthogonal solutions:  

 𝐴𝑧
+(𝜌, 𝜙, 𝑧) = 𝐵𝑚𝑛𝐽𝑚(𝛽𝜌𝜌) (

cos (𝑚𝜙)

sin (𝑚𝜙)
) 𝑒−𝑗𝛽𝑧𝑧 (2.3.35) 

where 𝛽𝜌 =
𝜒𝑚𝑛
 

𝑎
 where 𝜒𝑚𝑛 is the nth root (𝑛 = 1,2,…) of the Bessel function 𝐽𝑚 of the first 

kind and of order 𝑚 (𝑚 = 0,1,2,…). The two orthogonal solutions also define the modes 

polarisation direction, either cosine or sine i.e. TE11c or TE11s. 

The general equation for the cutoff frequency for either the transverse electric or magnetic 

modes is given as: 

𝛽𝑐 = 𝛽𝜌 ⇒ 𝑓𝑐 =
𝛽𝜌

2𝜋√𝜇𝜖
 (2.3.36) 

Furthermore, the modal powers factors of TE and TM modes can be derived analytically from 

their resulting fields. The modal power, given in equations (2.2.51) and (2.2.54) correspond to 

self-coupling modes within uniform waveguides. Below the modal power magnitude factors 

for the cylindrical TE modes (𝐷𝑖𝑗) are: 

 
𝐷𝑖𝑗 = (𝛽𝑐,𝑖

𝑇𝐸)
2
𝛿𝑖𝑗∫(𝐹𝑖)

2𝑑𝑆

 

𝑆

 
(2.3.37) 

 𝐹𝑧
+(𝜌, 𝜙, 𝑧) = 𝐴𝑚𝑛𝐽𝑚(𝛽𝜌𝜌) (

cos (𝑚𝜙)
sin (𝑚𝜙)

) 𝑒−𝑗𝛽𝑧𝑧 (2.3.34) 
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𝐷𝑖𝑗 = (𝛽𝑐,𝑖
𝑇𝐸)

2
𝛿𝑖𝑗∫∫ 𝐽𝑚𝑖

2 (𝛽𝜌,𝑖𝜌) (
sin(𝑚𝜙)2

cos(𝑚𝜙)2
) 𝜌𝑑𝜌𝑑𝜙

2𝜋

0

𝑎

0

 (2.3.38) 

 

= (𝛽𝑐,𝑖
𝑇𝐸)

2
𝛿𝑖𝑗𝜋(1 + 𝛿𝑚𝑖,0)∫𝜌

𝑎

0

𝐽𝑚𝑖
2 (𝛽𝜌,𝑖𝜌)𝑑𝜌 (2.3.39) 

 

= (𝛽𝑐,𝑖
𝑇𝐸)

2
𝛿𝑖𝑗𝜋(1 + 𝛿𝑚𝑖,0)∫𝑎𝑡

1

0

𝐽𝑚𝑖
2 (𝜒𝑚𝑛

′ 𝑡)𝑎𝑑𝑡 (2.3.40) 

To reduce the integral involving the Bessel function, to standard form it is necessary to consider 

the integral identity along with the Bessel recurrence relations (F. W. Olver et al. 2017): 

Applying the integral identity and the appropriate recurrence relations an analytic solution may 

be obtained in standard form as: 

 
𝐷𝑖𝑗 = (

𝜒𝑚,𝑛
′

𝑎
)

2

𝛿𝑖𝑗𝜋(1 + 𝛿𝑚𝑖,0)𝑎
2 [

1

2𝜒′𝑚,𝑛
2 (𝜒′𝑚,𝑛

2
−𝑚2)𝐽𝑚𝑖

2 (𝜒𝑚𝑛
′ )] (2.3.44) 

 
=
𝛿𝑖𝑗𝜋(1 + 𝛿𝑚𝑖,0)

2
(𝜒′𝑚,𝑛

2
−𝑚2)𝐽𝑚𝑖

2 (𝜒𝑚𝑛
′ ) (2.3.45) 

The modal power magnitude factors for TM modes (𝐶𝑖𝑗) are: 

 

∫𝑥𝐽𝑚
2 (𝑐𝑥)𝑑𝑥

𝑏

𝑎

=
𝑥2

2
[𝐽𝑚
2 (𝑐𝑥) − 𝐽𝑚−1(𝑐𝑥)𝐽𝑚+1(𝑐𝑥)]𝑏

𝑎 (2.3.41) 

 2𝑚𝐽𝑚(𝑥)

𝑥
= 𝐽𝑚−1(𝑥) + 𝐽𝑚+1(𝑥) (2.3.42) 

 2𝐽𝑚
′ (𝑥) = 𝐽𝑚−1(𝑥) − 𝐽𝑚+1(𝑥) (2.3.43) 
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𝐶𝑖𝑗 = (𝛽𝑐,𝑖

𝑇𝑀)
2
𝛿𝑖𝑗∫(𝐴𝑖)

2𝑑𝑆

 

𝑆

 
(2.3.46) 

 

= (𝛽𝑐,𝑖
𝑇𝑀)

2
𝛿𝑖𝑗∫∫ 𝐽𝑚𝑖

2 (𝛽𝜌,𝑖𝜌) (
sin(𝑚𝜙)2

cos(𝑚𝜙)2
)𝜌𝑑𝜌𝑑𝜙

2𝜋

0

𝑎

0

 (2.3.47) 

 
=
𝛿𝑖𝑗𝜋(1 + 𝛿𝑚𝑖,0)𝜒𝑚𝑛

2

2
𝐽𝑚𝑖
2 (𝜒𝑚𝑛

′ ) (2.3.48) 

Cylindrical modes are indexed by integer values 𝑚 and 𝑛 and a polarisation index which selects 

either cosine or sine modulation in 𝜙 (denoted by 𝑐 or 𝑠 respectively). In most cases there exist 

two valid orthogonal solutions for each set of 𝑚, 𝑛 indices as shown in equations (2.3.34) and 

(2.3.35). For 𝑚 = 0, only one non-trivial solution exists, the cosine solution for both TE and 

TM modes. An example of the modal fields which can exist in cylindrical waveguides is shown 

in Figure 2-8. 

Figure 2-8: Shows an example of the modal fields which are supported in the uniform cylindrical guide 

section. 
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The relationship between the modal electric field and its potential is different for TE and TM 

modes, their polarisation indices must be opposite for the electric field to be aligned in the same 

direction. Coupling between TE and TM modes is much more likely to occur if their fields 

point in the same direction. In Figure 2-9, the TE11c and TM11s have their electric field in the 

same direction so there is a potential for coupling (this is not the case for TE11c and TM11c). 

  

Figure 2-9 Shows the cylindrical waveguide modes, for counter-polarised modes, with E-field lines 

present only 
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2.3.3 Scattering Operators 

Each guide section can be represented by its own scattering matrix 𝑺, this matrix describes the 

power coupling between guide modes at the different ports which compose the network (Olver 

et al. 2011). In Figure 2-10, this network section has only two ports and is said to be a two-port 

network. The scattering matrix is a matrix of size 𝑚 ×𝑚 where 𝑚 is the number of ports in 

the network. The elements that compose the scattering matrix are known as scattering 

parameters or s-parameters, which describe the mode coupling at particular ports. Here these 

ports are defined arbitrarily at planes within a length of a guide section. Conventionally ports 

would be at the beginning and end of a network where there is a transition i.e. to a VNA head 

or free-space. The 𝑺11 and 𝑺22 s-parameters describe the power reflected from port 1 and 2 

respectively for a given excitation at the port. In contrast, 𝑺12 and 𝑺21 give the power 

transmitted between ports. For some stimulus applied to the network, the transfer of power is 

described by: 

 
[
𝒃1
𝒃2
] = [𝑺] [

𝒂1
𝒂2
] = [

𝑺11 𝑺12
𝑺21 𝑺22

] [
𝒂1
𝒂2
] (2.3.49) 

Above, the terms 𝒂1 and 𝒂2 are column vectors which give the input mode amplitudes at port 

1 and 2 respectively while the column vectors 𝒃1 and 𝒃2 give the outgoing mode amplitudes 

that are obtained by solving equation (2.3.49).  

Fields in a uniform PEC guide section are described by a set of propagating and evanescent 

modes (TE and TM). As the guide is uniform throughout and the walls are idealised, there is 

Figure 2-10 A schematic overview of the network arrangement of a two-port device. At each port there exist 

incoming and outgoing amplitudes “a” and “b” respectively. The relationship between these amplitudes is 

governed by the reflection and transmission through the network as represented by the s-parameters. 



 

62 

 

no back-scattering or reflection from this guide. Thus, the scattering parameters which describe 

the power reflected from the network’s ports must be zero i.e. 𝑺11 = 𝑺22 = 𝟎. Since the guide 

is uniform the modes present may only couple bijectively to themselves. As such, the 

transmission scattering parameters 𝑺12 and 𝑺21 must be purely diagonal matrices. 

Consequently, since there is no mechanism for loss i.e. zero reflection of power, once the mode 

is fully propagating there will be lossless transmission of power in that mode. Each mode has 

a phase delay introduced by its respective propagation constant 𝛽𝑖. The transmission scattering 

parameters are described by:  

 [𝑺21] = [𝑺12] = [𝑽] = [𝛿𝑚𝑛𝑒
−𝛽𝑚𝑙] (2.3.50) 

Where represents 𝛿𝑚𝑛 the diagonal modes self-coupled power. In Figure 2-11, the simulated 

scattering parameters for an example waveguide section are shown. There is no reflection 

component shown as a null result is obtained from both CST and S-TNG simulation and full 

transmission is achieved once the mode is propagating i.e. 𝑓 > 𝑓𝑐. 

2.4 Mode Matching in PEC guides 

Mode matching methods are required at step discontinuities (junctions) between waveguide 

sections, to ensure that the overall propagation is modelled correctly (Olver et al. 2011). The 

mode matching technique matches the total transverse fields, carried by individual modes, on 

both sides of a junction. The transverse fields must be matched at this interface such that the 

conservation of complex power for incident modes is maintained (Figlia and Gentili 2002). 

The coupling between modes is highly dependent on the symmetry at the discontinuity, for 

concentric guides section coupling will occur between modes of same azimuthal orders only. 

Figure 2-11 : Scattering parameters for a uniform cylindrical guide section of radius 1.4 mm. Zero reflection is 

obtained from simulation results of this section and full transmission is observed once the mode begins fully 

propagating. 
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If symmetry is broken this behaviour is not guaranteed. Junction configurations where one 

guide is fully retained in the others cross-section are only discussed. 

In such a junction, the two guides will be referred to as ‘Left’ and ‘Right’ or 𝐿 and 𝑅 at 𝑧 =  0. 

The order of the guides, with cross-sections 𝑆𝐿 & 𝑆𝑅 is such that 𝑆𝐿 ⊂ SR. The common cross 

section of the two guides is Ω = SL ∩ 𝑆𝑅 and the region defined by Σ = (𝑆𝐿 ∪ 𝑆𝑅) − Ω 

represents an overlap between 𝑆𝑅 and a PEC material bounding 𝑆𝐿. Here, since guide L and R 

are ordered “small” to “large”, 𝑆𝐿 = Ω. The general boundary conditions required for 

transverse fields at the PEC junction are: 

 𝑬𝐿 = 𝑬𝑅 , on Ω (2.4.1) 

 𝑯𝐿 = 𝑯𝑅 , on Ω  (2.4.2) 

 𝑬𝐿 = 𝑬𝑅 = 0, on Σ (2.4.3) 

The electric and magnetic fields on both sides of the interface must be equal (continuous). By 

definition the electric field in the left and right guide must be zero over Σ. 

From section 2.2.4, the complete set of functions which span any transverse electric or 

magnetic fields are the set of corresponding modal TE and TM fields, shown in equations  and 

(2.2.47) and (2.2.48). In guide R, the complete set of functions required to span the electric 

field are given by (∇𝐹𝑖
R × �̂�, 𝑍𝑗

𝑇𝑀∇𝐴𝑗
𝑅). Here the super-script “R” refers to the cross-section of 

guide R while the terms 𝑖, 𝑗 denote the modes index of the TE and TM modes respectively. The 

electric field in guide L is spanned by the same function set, as the fields must match on Ω. 

Likewise, the complete set of functions which span any transverse magnetic field is the set of 

modal TE and TM magnetic fields, given in guide L as (𝑌𝑖
𝑇𝐸∇𝐹𝑖

L, ∇𝐴𝑗
𝐿 × �̂�). 

A scalar product (𝑃 =  ∫ 𝑨𝑡
∗
∙ 𝑩𝑡  𝑑𝑆

 

𝑆
) can be defined for the transverse fields. In PEC 

junctions, the potentials can be made real valued so the conjugation is not strictly necessary. 

For continuous fields at the interface, the scalar product with the appropriate base functions 

can be determined. Furthermore, in each case the mapping of modal power across the junction 

through mode coupling paths (TE − TE, TE − TM, TM − TE and TM − TM) are considered. 
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2.4.1 Electric Field and Magnetic Field Projections 

The boundary conditions imposed by the PEC junction require that both the electric and 

magnetic fields be continuous across the intersection of the two guide sections Ω, while the 

electric field disappears on Σ (i.e. 𝑬𝐿 = 𝑬𝑅 and  𝑯𝐿 = 𝑯𝑅 over Ω). By determining the scalar 

products for the corresponding set of functions which span both the electric (∇𝐹𝑖
R ×

�̂�, 𝑍𝑗
𝑇𝑀∇𝐴𝑗

𝑅) and magnetic fields (𝑌𝑖
𝑇𝐸∇𝐹𝑖

L, ∇𝐴𝑗
𝐿 × �̂�), and enforcing the boundary conditions, 

the projections appropriate for electric and magnetic fields can be expressed as shown: 

As the cross-section of guide R is composed of the intersection and overlap region of the two 

guides (i.e. Σ = (𝑆𝐿 ∪ 𝑆𝑅) − Ω) and since the electric field  is necessarily zero on Σ, it is correct 

to consider only the cross-section of guide L when performing the projection. These integrals 

can be expanded using the relationships between the transverse modal fields and vector 

potentials introduced in section 2.2.3 and shown in equations (2.2.47) and (2.2.48). Once 

expanded, the field matching problem is expressed in terms of a set of integrals involving 

Base Electric Field Projections  

TE ∫(∇𝐹𝑖
𝑅 × �̂�)(𝑬𝑡𝑎𝑙𝑙

𝑇𝐸,𝐿
+ 𝑬𝑡𝑎𝑙𝑙

𝑇𝑀,𝐿
)𝑑𝑆

 

𝑆𝐿

= ∫(∇𝐹𝑖
𝑅 × �̂�)(𝑬𝑡𝑎𝑙𝑙

𝑇𝐸,𝑅
+ 𝑬𝑡𝑎𝑙𝑙

𝑇𝑀,𝑅
)𝑑𝑆

 

𝑆𝐿

 
(2.4.4) 

TM ∫(∇𝐴𝑗
𝑅)(𝑬𝑡𝑎𝑙𝑙

𝑇𝐸,𝐿
+ 𝑬𝑡𝑎𝑙𝑙

𝑇𝑀,𝐿
)𝑑𝑆

 

𝑆𝐿

= ∫(∇𝐴𝑗
𝑅)(𝑬𝑡𝑎𝑙𝑙

𝑇𝐸,𝑅
+ 𝑬𝑡𝑎𝑙𝑙

𝑇𝑀,𝑅
)𝑑𝑆

 

𝑆𝐿

 
(2.4.5) 

Base Magnetic Field Projections  

TE ∫(∇𝐹𝑖
𝐿)(𝑯𝑡

𝑎𝑙𝑙
𝑇𝐸,𝐿

+𝑯𝑡
𝑎𝑙𝑙
𝑇𝑀,𝐿

)𝑑𝑆

 

𝑆𝐿

= ∫(∇𝐹𝑖
𝐿)(𝑯𝑡

𝑎𝑙𝑙
𝑇𝐸,𝑅

+𝑯𝑡
𝑎𝑙𝑙
𝑇𝑀,𝑅

)𝑑𝑆

 

𝑆𝐿

 
(2.4.6) 

TM ∫(∇A𝑗
L × �̂�)(𝑯𝑡

𝑎𝑙𝑙
𝑇𝐸,𝐿

+𝑯𝑡
𝑎𝑙𝑙
𝑇𝑀,𝐿

)𝑑𝑆

 

𝑆𝐿

= ∫(∇A𝑗
L × �̂�)(𝑯𝑡

𝑎𝑙𝑙
𝑇𝐸,𝑅

+𝑯𝑡
𝑎𝑙𝑙
𝑇𝑀,𝑅

)𝑑𝑆

 

𝑆𝐿

 
(2.4.7) 
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individual modal electric and magnetic potentials. For example, by expanding the TE base 

function for the electric field projection, shown in equation (2.4.4), the following constraints 

are obtained for modal amplitudes; for each TE base function (∇𝐹𝑖
R × �̂�) is indexed by “i”:  

 

∑(𝑎𝑗
𝐿,𝑇𝐸,+ + 𝑎𝑗

𝐿,𝑇𝐸,−)

𝑁𝑇𝐸

𝑗

∫ (∇𝐹𝑖
R × �̂�)(∇𝐹𝑗

L × �̂�)𝑑𝑆
 

𝑆𝐿

+ ∑(𝑎𝑗
𝐿,𝑇𝑀,+ + 𝑎𝑗

𝐿,𝑇𝑀,−)

𝑁𝑇𝑀

𝑗

𝑍𝑗
𝐿,𝑇𝑀∫ (∇𝐹𝑖

R × �̂�)(∇𝐴𝑗
𝐿)𝑑𝑆

 

𝑆𝐿

=∑(𝑎𝑗
𝑅,𝑇𝐸,+ + 𝑎𝑗

𝑅,𝑇𝐸,−)

𝑁𝑇𝐸

𝑗

∫ (∇𝐹𝑖
R × �̂�)(∇𝐹𝑗

R × �̂�)𝑑𝑆
 

𝑆𝑅

+ ∑(𝑎𝑗
𝑅,𝑇𝑀,+ + 𝑎𝑗

𝑅,𝑇𝑀,−)

𝑁𝑇𝑀

𝑗

𝑍𝑗
𝑅,𝑇𝑀∫ (∇𝐹𝑖

R × �̂�)(∇𝐴𝑗
𝑅)𝑑𝑆

 

𝑆𝐿

 

(2.4.8) 

In all of these constraints a series of common integrals appear, and reoccur in other scattering 

problems considered in the following chapters. By evaluating these common integrals, the 

scattering problem for the PEC junction is converted to a system of algebraic equations: 

Type Integrals Modes Involved  

B 

𝐵𝑖𝑗
𝑘𝑙(𝑆) = ∫∇𝐴𝑖

𝑘 ∙ (∇𝐹𝑗
𝑙 × �̂�)𝑑𝑆

 

𝑆

 

−𝐵𝑗𝑖
𝑙𝑘(𝑆) = ∫∇𝐹𝑖

𝑘 ∙ (∇𝐴𝑗
𝑙 × �̂�)𝑑𝑆

 

𝑆

 

Mixes TE & TM modes (2.4.9) 

C 𝐶𝑖𝑗
𝑘𝑙(𝑆) = ∫∇𝐴𝑖

𝑘 ∙ ∇𝐴𝑗
𝑙𝑑𝑆

 

𝑆

 Only TM (2.4.10) 

D 𝐷𝑖𝑗
𝑘𝑙(𝑆) = ∫∇𝐹𝑖

𝑘 ∙ ∇𝐹𝑗
𝑙𝑑𝑆

 

𝑆

 Only TE (2.4.11) 

where indices 𝑘, 𝑙 indicate the guide, while 𝑖, 𝑗 index the modes in their respective guides. 
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The modal field amplitudes can also be reduced to a more concise form, using: 

 𝒆𝑇𝐸/𝑇𝑀
𝑔 = [𝑎𝑖

𝑥,𝑇𝐸/𝑇𝑀,+
+ 𝑎𝑖

𝑥,𝑇𝐸/𝑇𝑀,−], for 𝑔 = 𝐿 𝑜𝑟 𝑅 (2.4.12) 

 𝒉𝑇𝐸/𝑇𝑀
𝑔 = [𝑎𝑖

𝑥,𝑇𝐸/𝑇𝑀,+
− 𝑎𝑖

𝑥,𝑇𝐸/𝑇𝑀,−], for 𝑔 = 𝐿 𝑜𝑟 𝑅 (2.4.13) 

Using this more concise notation for the integrals and the corresponding amplitudes, the 

electric field projections shown in equations (2.4.4) and (2.4.5) can be reduced to the following 

form: 

Base Electric Field Projections  

TE 𝒆𝑇𝐸
𝐿 𝑫𝑅𝐿(𝑆𝐿) + 𝒆𝑇𝑀

𝐿 𝒁𝐿,𝑇𝑀𝑩𝐿𝑅(𝑆𝐿) = 𝒆𝑇𝐸
𝑅 𝑫𝑅𝑅(𝑆𝑅) + 𝒆𝑇𝑀

𝑅 𝒁𝑅,𝑇𝑀𝑩𝑅𝑅(𝑆𝑅) (2.4.14) 

TM 𝒆𝑇𝐸
𝐿 𝑩𝑅𝐿(𝑆𝐿) + 𝒆𝑇𝑀

𝐿 𝒁𝐿,𝑇𝑀𝑪𝑅𝐿(𝑆𝐿) = 𝒆𝑇𝐸
𝑅 𝑩𝑅𝑅(𝑆𝑅) + 𝒆𝑇𝑀

𝑅 𝒁𝑅,𝑇𝑀𝑪𝑅𝑅(𝑆𝑅) (2.4.15) 

The projections can be expressed in matrix form, which fully captures the electric field 

boundary constraint, as shown: 

 
[
𝑫𝐿
𝑅𝐿 (𝑩𝐿

𝐿𝑅)𝑇𝒁𝐿

𝑩𝐿
𝑅𝐿 𝑪𝐿

𝑅𝐿𝒁𝐿
] [
𝒆𝑇𝐸
𝐿

𝒆𝑇𝑀
𝐿 ] = [

𝑫𝑅
𝑅𝑅 (𝑩𝑅

𝑅𝑅)𝑇𝒁𝑅

𝑩𝑅
𝑅𝑅 𝑪𝑅

𝑅𝑅𝒁𝑅
] [
𝒆𝑇𝐸
𝑅

𝒆𝑇𝑀
𝑅 ] (2.4.16) 

Likewise, the same procedure and notation can be applied to the magnetic field projections to 

obtain the following:  

Base Magnetic Field Projections  

TE 𝒉𝑇𝐸
𝐿 𝒀𝐿,𝑇𝐸𝑫𝐿𝐿(𝑆𝐿) + 𝒉𝑇𝑀

𝐿 𝑩𝐿𝐿(𝑆𝐿) = 𝒉𝑇𝐸
𝑅 𝒀𝑅,𝑇𝐸𝑫𝐿𝑅(𝑆𝐿) + 𝒉𝑇𝑀

𝑅 𝑩𝑅𝐿(𝑆𝐿) (2.4.17) 

TM −𝒉𝑇𝐸
𝐿 𝒀𝐿,𝑇𝐸𝑩𝐿𝐿(𝑆𝐿) + 𝒉𝑇𝑀

𝐿 𝑪𝐿𝐿(𝑆𝐿) = −𝒉𝑇𝐸
𝑅 𝒀𝑅,𝑇𝐸𝑩𝐿𝑅(𝑆𝐿) + 𝒉𝑇𝑀

𝑅 𝑪𝐿𝑅(𝑆𝐿) (2.4.18) 
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In matrix form, this gives the constraint: 

 
[
𝑫𝐿
𝐿𝐿𝒀𝐿 (𝑩𝐿

𝐿𝐿)𝑇

𝑩𝐿
𝐿𝐿𝒀𝐿 𝑪𝐿

𝐿𝐿 ] [
𝒉𝑇𝐸
𝐿

𝒉𝑇𝑀
𝐿 ] = [

𝑫𝑅
𝐿𝑅𝒀𝑅 (𝑩𝐿

𝑅𝐿)𝑇

𝑩𝐿
𝐿𝑅𝒀𝑅 𝑪𝑅

𝐿𝑅 ] [
𝒉𝑇𝐸
𝑅

𝒉𝑇𝑀
𝑅 ] (2.4.19) 

Here the terms 𝒁 and 𝒀 in equations (2.4.16) and (2.4.19) are diagonal matrices composed of 

the modal impedances and admittances, respectively.  

The matrix equations (2.4.16) and (2.4.19), can be solved to find the overall scattering matrix 

of the PEC junction. In the more compact form the matrix equations that describe the 

projections take the following form:  

 𝑷𝐿𝒆
𝐿 = 𝑸𝑅𝒆

𝑅 (2.4.20) 

 𝑸𝐿𝒉
𝐿 = 𝑷𝑅𝒉

𝑅 (2.4.21) 

where 𝑷𝐿 and 𝑷𝑅 represent the power coupled between modes across the discontinuity, while 

𝑸𝐿 and 𝑸𝑅 represent the “self-coupled” power of modes on the left and right hand side of the 

discontinuity respectively.  

To determine the scattering parameters for this system it is assumed that there is only excitation 

through a single port at a time. For example, by considering an excitation through guide L only 

the 𝑺𝐿𝐿 and 𝑺𝑅𝐿 can be determined. With no excitation through guide R the TE and TM modal 

fields amplitudes can be reduced as shown: 

 𝒆𝑇𝐸
′𝑅 = [𝑎𝑅,𝑇𝐸,+] = 𝒉𝑇𝐸

′𝑅  ∴  𝑷𝐿𝒆
𝐿 = 𝑸𝑅𝒆

′𝑅 (2.4.22) 

 𝒆𝑇𝑀
′𝑅 = [𝑎𝑅,𝑇𝑀,+] = 𝒉𝑇𝑀

′𝑅 ∴  𝑸𝐿𝒉
𝐿 = 𝑷𝑅𝒆

′𝑅 (2.4.23) 

Using the pseudo-inverse of 𝑸𝑅, a best fit expression for 𝒆′𝑅 = 𝑸𝑅
+𝑷𝐿𝒆

𝐿 is obtained. The 

pseudo-inverse 𝑸𝑅
+ is the 𝑛 ×𝑚 matrix which inverts 𝑸𝑅 from column to row space and 

satisfies the Moore-Penrose conditions (Strang 2013). . Substituting this new expression into 
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the second matrix equation given in equation (2.4.23), the scattering parameter 𝑺𝐿𝐿 can be 

obtained: 

 𝑸𝐿𝒉
𝐿 = 𝑷𝑅𝑸𝑅

+𝑷𝐿𝒆
𝐿  ⇒ 𝒉𝐿 = 𝑸𝐿

+𝑷𝑅𝑸𝑅
+𝑷𝐿𝒆

𝐿 (2.4.24) 

 𝒂𝐿,+ − 𝒂𝐿,− = 𝑸𝐿
+𝑷𝑅𝑸𝑅

+𝑷𝐿(𝒂
𝐿,+ + 𝒂𝐿,−) (2.4.25) 

 (𝑰 − 𝑸𝐿
+𝑷𝑅𝑸𝑅

+𝑷𝐿)𝒂
𝐿,+ = (𝑰 + 𝑸𝐿

+𝑷𝑅𝑸𝑅
+𝑷𝐿)𝒂

𝐿,− (2.4.26) 

 𝑺𝐿𝐿 = (𝑰 + 𝑸𝐿
+𝑷𝑅𝑸𝑅

+𝑷𝐿)
−1(𝑰 − 𝑸𝐿

+𝑷𝑅𝑸𝑅
+𝑷𝐿) (2.4.27) 

From equation (2.4.22) the scattering parameter 𝑺𝑅𝐿 can be determined by taking similar 

approach and using the previously derived form of the 𝑺𝐿𝐿 scattering parameter as: 

 𝑸𝑅
+𝑷𝐿(𝒂

𝐿,+ + 𝒂𝐿,−) = 𝒂𝑅,+  ⇒ 𝒂𝑅,+ = 𝑸𝑅
+𝑷𝐿(𝑰 + 𝑺𝐿𝐿)𝒂

𝐿,+ (2.4.28) 

 𝑺𝑅𝐿 = 𝑸𝑅
+𝑷𝐿(𝑰 + 𝑺𝐿𝐿) (2.4.29) 

The remaining scattering parameters for the junction formulation can be determined by 

repeating this procedure, assuming excitation only through the opposite guide R. The resulting 

scattering parameters for the PEC junction are as follows: 

 𝑺𝐿𝐿 = (𝑰 + 𝑸𝐿
+𝑷𝑅𝑸𝑅

+𝑷𝐿)
−1(𝑰 − 𝑸𝐿

+𝑷𝑅𝑸𝑅
+𝑷𝐿) (2.4.30) 

 𝑺𝑅𝐿 = 𝑸𝑅
+𝑷𝐿(𝑰 + 𝑺𝐿𝐿) (2.4.31) 

 𝑺𝑅𝑅 = (𝑸𝑅
+𝑷𝐿𝑸𝐿

+𝑷𝑅 + 𝑰)−1(𝑸𝑅
+𝑷𝐿𝑸𝐿

+𝑷𝑅 − 𝑰) (2.4.32) 

 𝑺𝐿𝑅 = 𝑸𝐿
+𝑷𝑅(𝑰 − 𝑺𝑅𝑅) (2.4.33) 
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2.4.2 Line Integral Form of Common Integrals 

The common integrals present in the previous section, equations (2.4.9) - (2.4.11), are defined 

as surface integrals. By reformulating these in terms of line integrals a more readily numerically 

integrable form of the mode coupling equations is achieved. This form allows for increased 

efficiency when numerical methods are required i.e. for scenario were no analytic solutions to 

coupling integrals can be found. Type-B integrals, which mix TE and TM modes, were defined 

as: 

 
𝐵𝑖𝑗
𝑘𝑙(𝑆) = ∫∇𝐴𝑖

𝑘 ∙ (∇𝐹𝑗
𝑙 × �̂�)𝑑𝑆

 

𝑆

 
(2.4.34) 

where 𝑘, 𝑙 identify the guide (L or R), 𝑖 indexes TM modes in guide 𝑘 and 𝑗 indexes 𝑇𝐸 modes 

in guide 𝐿. Using symmetries of the scalar triple product this can be expressed as: 

By applying the general vector calculus relations ∇ × ∇𝜓 = 0 and ∇ × (𝜙𝒖 ) = 𝜙∇ × 𝒖 +

∇𝜙 × 𝒖, with 𝒖 = ∇𝐹𝑗
𝑙 and 𝜙 = 𝐴𝑖

𝑘, it is shown that: 

Or alternatively, with 𝒖 = ∇𝐴𝑖
𝑘 and 𝜙 = 𝐹𝑗

𝑙: 

The expression for the Type-B integral becomes: 

 
𝐵𝑖𝑗
𝑘𝑙(𝑆) = ∫∇𝐴𝑖

𝑘 × ∇𝐹𝑗
𝑙 ∙ �̂�𝑑𝑆

 

𝑆

= ∫∇𝐴𝑖
𝑘 × ∇𝐹𝑗

𝑙 ∙ 𝑑𝑺
 

𝑆

 
(2.4.35) 

 ∇ × (𝐴𝑖
𝑘∇𝐹𝑗

𝑙 ) = 𝐴𝑖
𝑘∇ × ∇𝐹𝑗

𝑙 + ∇𝐴𝑖
𝑘 × ∇𝐹𝑗

𝑙 = ∇𝐴𝑖
𝑘 × ∇𝐹𝑗

𝑙 (2.4.36) 

 ∇ × (𝐹𝑗
𝑙∇𝐴𝑖

𝑘 ) = 𝐹𝑗
𝑙∇ × ∇𝐴𝑖

𝑘 + ∇𝐹𝑗
𝑙 × ∇𝐴𝑖

𝑘 = ∇𝐹𝑗
𝑙 × ∇𝐴𝑖

𝑘 (2.4.37) 

 ∴ ∇𝐴𝑖
𝑘 × ∇𝐹𝑗

𝑙 = ∇ × (𝐴𝑖
𝑘∇𝐹𝑗

𝑙 ) = −∇ × (𝐹𝑗
𝑙∇𝐴𝑖

𝑘 )  
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Finally, by applying Stokes’ Theorem as in Figlia and Gentili (2002) the integral can be 

reduced to line integral form as: 

From the boundary conditions given in section 2.2.3, the potential 𝐴𝑖
𝑘 = 0 on the edge of guide 

𝑆𝑘, therefore 𝐵𝑖𝑗
𝑘𝑙(𝑆𝑘) = 0. In the case for 𝑘 = 𝐿 and 𝑙 = 𝑅, this corresponds to the well-known 

property of a junctions – TM modes from the smaller guide do not couple to TE modes in the 

larger guide. This result can be used to simplify some of the elements in the power coupling 

matrices 𝑷𝐿 and 𝑷𝑅 in section 2.4.1. 

A similar procedure is applied to the Type-C and D integrals to obtained their line-integral 

form. For example, the Type-D, which couples the TE modes across the discontinuity, is 

reduced:  

By applying Green’s first theorem the integral is expressed in terms of both a line and surface 

integral: 

 
𝐷𝑖𝑗
𝑘𝑙(𝑆) = ∫ ∇𝐹𝑖

𝑘 ∙ ∇𝐹𝑗
𝑙𝑑𝑆 = ∫ 𝐹𝑖

𝑘∇𝐹𝑗
𝑙 ∙ �̂�𝑑𝑙

 

𝜕𝑆

−∫𝐹𝑖
𝑘∇ ∙ ∇𝐹𝑗

𝑙𝑑𝑆
 

𝑆

 

𝑆

 
(2.4.41) 

 
𝐷𝑖𝑗
𝑘𝑙(𝑆) = ∫ ∇𝐹𝑖

𝑘 ∙ ∇𝐹𝑗
𝑙𝑑𝑆 = ∫ 𝐹𝑗

𝑙∇𝐹𝑖
𝑘 ∙ �̂�𝑑𝑙

 

𝜕𝑆

−∫𝐹𝑗
𝑙∇ ∙ ∇𝐹𝑖

𝑘𝑑𝑆
 

𝑆

 

𝑆

 
(2.4.42) 

By applying the Laplacian operator in both equations, the following expressions are obtained: 

 
𝐵𝑖𝑗
𝑘𝑙(𝑆) = ∫∇𝐴𝑖

𝑘 × ∇𝐹𝑗
𝑙 ∙ 𝑑𝑺

 

𝑆

= ∫∇ × (𝐴𝑖
𝑘∇𝐹𝑗

𝑙) ∙ 𝑑𝑺
 

𝑆

= −∫∇ × (𝐹𝑗
𝑙∇𝐴𝑖

𝑘) ∙ 𝑑𝑺
 

𝑆

 
(2.4.38) 

 
𝐵𝑖𝑗
𝑘𝑙(𝑆) = ∫ (𝐴𝑖

𝑘∇𝐹𝑗
𝑙) 𝑑𝒍

 

𝜕𝑆

= −∫ (𝐹𝑗
𝑙∇𝐴𝑖

𝑘) 𝑑𝒍
 

𝜕𝑆

 
(2.4.39) 

 
𝐷𝑖𝑗
𝑘𝑙(𝑆) = ∫∇𝐹𝑖

𝑘 ∙ ∇𝐹𝑗
𝑙𝑑𝑆

 

𝑆

 
(2.4.40) 
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where 𝛽𝑐,𝑗
𝑙,𝑇𝐸

describes the cutoff wave number for the mode. At this point three distinct cases 

can be considered: 

(i) 𝑘 = 𝑙 gives that the cross-section of the guides is the same, this reduces the 

problem to that of the uniform guide case. Here the boundary condition will 

require that  ∇𝐹𝑗
𝑙 ∙ �̂� = 0 as derived in section 2.2.3. 

 
𝐷𝑖𝑗
𝑘𝑘(𝑆) = (𝛽𝑐,𝑗

𝑘,𝑇𝐸)
2
∫𝐹𝑖

𝑘𝐹𝑗
𝑘𝑑𝑆

 

𝑆

 
(2.4.45) 

(ii) 𝑘 ≠ 𝑙 gives that the cross-sections of the guides are not the same (i.e. R and L 

respectively) and here it is assumed that modes are not the same i.e. have 

different cutoff wavenumbers. By obtaining the difference of equations (2.4.43) 

and (2.4.44) and again applying the boundary condition, the Type-D integral 

can be expressed in line integral form: 

 
𝐷𝑖𝑗
𝑅𝐿(𝑆𝐿) =

(𝛽𝑐,𝑖
𝐿,𝑇𝐸)

2
∫ 𝐹𝑗

𝐿∇𝐹𝑖
𝑅 ∙ �̂�𝑑𝑙

 

𝑑𝑆

(𝛽𝑐,𝑗
𝐿,𝑇𝐸)

2

− (𝛽𝑐,𝑖
𝑅,𝑇𝐸)

2
 

(2.4.46) 

(iii) 𝑘 ≠ 𝑙 gives that the cross-sections of the guide are not the same and here it is 

assumed that modes have the same cutoff wavenumbers. 

 
𝐷𝑖𝑗
𝑅𝐿(𝑆𝐿) = (𝛽𝑐,𝑗

𝐿,𝑇𝐸)
2
∫𝐹𝑖

𝑅𝐹j
𝐿𝑑𝑆

 

𝑆

 
(2.4.47) 

 
𝐷𝑖𝑗
𝑘𝑙(𝑆) = ∫ 𝐹𝑖

𝑘∇𝐹𝑗
𝑙 ∙ �̂�𝑑𝑙

 

𝜕𝑆

− (𝛽𝑐,𝑗
𝑙,𝑇𝐸)

2
∫𝐹𝑖

𝑘𝐹𝑗
𝑙𝑑𝑆

 

𝑆

 
(2.4.43) 

 
𝐷𝑖𝑗
𝑘𝑙(𝑆) = ∫ 𝐹𝑗

𝑙∇𝐹𝑖
𝑘 ∙ �̂�𝑑𝑙

 

𝜕𝑆

− (𝛽𝑐,𝑖
𝑘,𝑇𝐸)

2
∫𝐹𝑗

𝑙𝐹𝑖
𝑘𝑑𝑆

 

𝑆

 
(2.4.44) 
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It is clear that equation (2.2.46) will have a singularity, where 𝛽𝑐,𝑗
𝐿,𝑇𝐸 = 𝛽𝑐,𝑖

𝑅,𝑇𝐸
, as shown in 

Figure 2-12. However, it is not strictly necessary to use equation (2.4.47) for numerical 

evaluation. Instead, by slightly altering the radius of one of the guides, and thus its 

corresponding modes wavenumber, the singularity can be avoided i.e. (𝛽𝑐,𝑗
𝐿,𝑇𝐸)

2
−

(𝛽𝑐,𝑖
𝑅,𝑇𝐸 × (1 + 𝜖))

2
≠ 0. For a set of 𝜖 = [−𝜖,+𝜖], for 𝜖 → 0 the integral results can be 

determined close to both sides of the singularity. Through interpolation methods an excellent 

approximation of the result for 𝐷𝑖𝑗
𝑅𝐿(𝑆𝐿) can be obtained. From Figure 2-12, it can be shown 

that there is excellent agreement between the interpolated and analytic result. 

The procedure for obtaining the expression for the Type-C integrals is almost identical to the 

Type-D case, only the boundary condition will differ. For completeness the Type-C coupling 

equations are presented: 

 
(𝑖) 𝐶𝑖𝑗

𝑘𝑘(𝑆) = (𝛽𝑐,𝑗
𝑘,𝑇𝑀)

2
∫𝐴𝑖

𝑘𝐴𝑗
𝑘𝑑𝑆

 

𝑆

 
(2.4.48) 

 

(𝑖𝑖) 𝐶𝑖𝑗
𝑅𝐿(𝑆𝐿) =

(𝛽𝑐,𝑖
𝑅,𝑇𝑀)

2
∫ 𝐴𝑖

𝑅∇𝐴𝑗
𝐿 ∙ �̂�𝑑𝑙

 

𝑑𝑆

(𝛽𝑐,𝑖
𝑅,𝑇𝑀)

2
− (𝛽𝑐,𝑗

𝐿,𝑇𝑀)
2  

(2.4.49) 

Figure 2-12 Demonstrates the interpolation method used to avoid the singularity. 
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(𝑖𝑖𝑖) 𝐶𝑖𝑗

𝑅𝐿(𝑆𝐿) = (𝛽𝑐,𝑗
𝐿,𝑇𝑀)

2
∫𝐴𝑖

𝑅𝐴j
𝐿𝑑𝑆

 

𝑆

 
(2.4.50) 

For several classes of junction geometries, the coupling integrals (B, C and D) can be 

determined analytically. Where analytic solutions are available they are used in preference to 

the numerical form and are shown in Appendix A.1. 
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2.4.3 Testing and Verification of the PEC Junctions 

To verify the essential correctness of the implementation and to ascertain its numerical 

accuracy, the mode-matching approach is benchmarked against an industry standard software 

package for computational electromagnetics. CST Microwave Studio, a finite element solver, 

is used to produce reference estimates of the scattering parameters for identical systems. Even 

where applicable symmetries are applied to the CST models, the modes used in these 

simulations can be identified by their waveguide order and cutoff frequencies allowing for 

direct comparison. Modes in CST are identified by numerically solving the relevant boundary 

value problem, and as such occasional phase mismatches are present due to the different phase 

conventions used (±180°). However, this does not indicate a lack of equivalency. The 

following test cases are considered for the verification of the PEC mode-matching method 

(SCATTER-TNG), the frequency range for each test case was selected to allow many modes 

to propagate in the test structures. 

 Junction of two cylindrical waveguides of radius 1.4 mm and 1.7 mm with lengths 

1 mm, over a frequency range of 𝑓 = 50 − 150 GHz (144 modes considered: 16 radial  

and 5 azimuthal orders).  

o With no offset (concentric case) and  

o With a 0.2 mm offset in the x-direction of the second guide 

 Junction of two rectangular waveguides a WR10 section (2.54 mm × 1.27 mm) and 

rectangular waveguide (3.2 mm × 2.0 mm) with lengths 1 mm, over a frequency range 

of 𝑓 = 30 − 250 GHz (112 modes considered: 8 Cartesian orders). 

o With no offset (concentric case) 

o With a 0.2 mm offset in the x-direction of the second guide 

 Junction of a WR10 and a cylindrical 𝑟 = 1.7 mm guides with lengths 1 mm, over 𝑓 =

50 − 150 GHz (with 112 modes and 120 modes 8 radial/8 azimuthal orders considered) 

o With no offset (concentric case) 

o With a 0.25 mm offset in the x-direction of the second guide 

The number of channels allowed for mode coupling is highly dependent on the level of 

symmetry between the two guides involved in the mode-matching integrals. For concentric 

cases modes are restricted to coupling to modes with the same azimuthal order and provided 

they have the correct polarisation. However, when offsets are introduced the axes of symmetry 

can be reduced or completely lost opening further channels to mode coupling. For cases were 
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modes do not couple to one another the integral for these cases can be ignored in favour of the 

analytic result of zero. In terms of simulation times, with geometry, frequency sampling and 

the number of mode being accurately modelled taken as equivalent, simulation times for CST 

can be significantly longer. The verifying datasets produced below for simple coupling sections 

took 1 hour to be generated using S-TNG and upwards of 5 hours to for CST. It should be noted 

that this implementation of S-TNG was prototyped in Python and one would expect much 

reduced simulation times for compiled code such as C. 

2.4.3.1 Cylindrical to cylindrical junction: 

In the concentric case comparisons with the equivalent CST models shows excellent 

agreement. Here, in both reflection and transmission (𝑆11 and 𝑆21) there is agreement between 

the two models even down to a level of below −80 dB.  Furthermore, the correct channels for 

mode coupling are present. In this test case it can be seen that there is coupling of modes to the 

same mode and also between different mode types provided they have the correct polarisation.  

Figure 2-13: Concentric PEC cylindrical junction 1.4 𝑚𝑚 − 1.7 𝑚𝑚 with,144 modes 16 radial orders and 5 

azimuthal orders considered. Reflection (𝑆11) and Transmission (𝑆21) scattering parameters shown for both 

CST and SCATTER-TNG. The legend notation of the following figures denotes the coupling between modes i.e. 

coupling between (Mode A, Mode B) 
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In the non-centric case, the requirement that modes must only couple to modes with the same 

azimuthal order is no longer in place. This offset case introduces scattering among many 

different azimuthal orders, see Figure 2-14. As such the number of azimuthal and radial order 

modes needed to accurately model non-concentric cases is larger than that of the completely 

concentric case. However, the level of agreement between the CST and SCATTER-TNG 

models is equivalent to the concentric case.  

Figure 2-14: (a) Offset (𝛥𝑥 = 0.2 mm) PEC cylindrical junction 1.4 𝑚𝑚 − 1.7 𝑚𝑚 with,144 modes 16 radial 

orders and 5 azimuthal orders considered. (b)Shows the extra channels of mode coupling which exist due to the 

offset present 

a 

b 
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Again, there is excellent agreement between the two models even down a level of below 

−80 dB and that the expected channels for mode coupling are present. It can be shown that 

those extra channels introduced by the offset also have excellent agreement.  

2.4.3.2 Rectangular to rectangular junctions:  

In Figure 2-15 and Figure 2-16, for both the concentric and offset comparisons with the 

equivalent CST models effectively perfect agreement is observed. Here, in both reflection and 

transmission (𝑆11 and 𝑆21) there is agreement between the two models even down a level of 

below −80 dB. Furthermore, the correct channels for mode coupling are present. In the CST 

results, below −80 dB, noise can be observed in phase and magnitude due to the finite accuracy 

of the numerical solver which may be also limited by the CST simulation settings selected.  

 

 

Figure 2-15: Concentric PEC rectangular junction with 112 modes 8 Cartesian orders considered. Reflection 

(𝑆11) and Transmission (𝑆21) scattering parameters shown for both CST and SCATTER-TNG 
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2.4.3.3 Rectangular to Circular Junction 

An important transition between rectangular and circular geometries can now be effectively 

treated numerically using the contour mode matching approach presented in section 2.4.2. This 

type of transition often appears in the throat region of feedhorns where there is a necessary 

region which morphs from rectangular to circular cross-section i.e. a cylindrical waveguide fed 

by a WR10 connected to a VNA source.  

As before, CST is used as an independent benchmark in the test cases. To ensure the correct 

polarisation directions are used, CST waveguide ports must have their polarisations fixed. 

Without this, modes will have the correct orthogonality in their respective and similar guides 

but not necessarily when geometries are mixed. In CST’s port definition the polarisation is 

locked at 0 degrees and 90 degrees for the rectangular and circular guides respectively. This 

ensures the same convention as that used in SCATTER-TNG is employed. In Figure 2-17 and 

Figure 2-18, excellent agreement for both offset and non-offset case is observed. As the 

geometry is mixed a large number of modes is required to accurately model this scenario. 

 

Figure 2-16: Offset (dx 0.2) PEC rectangular junction with 112 modes 8 Cartesian orders considered. 

Reflection (𝑆11) and Transmission (𝑆21) scattering parameters shown for both CST and SCATTER-TNG 
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Figure 2-17: PEC concentric junction mixed geometry junction WR10 (112 Modes 8 Cartesian orders) to 

Circular (144 Modes 16 radial orders and 5 azimuthal orders).. Reflection (𝑆11) and Transmission (𝑆21) 

scattering parameters shown for both CST and SCATTER-TNG 

Figure 2-18 PEC offset junction mixed geometry junction WR10 (112 Modes 8 Cartesian orders) to Circular 

(144 Modes 16 radial orders and 5 azimuthal orders). Reflection (𝑆11) and Transmission (𝑆21) scattering 

parameters shown for both CST and SCATTER-TNG 
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2.5 Cascading of Scattering Matrices 

Cascading methods are used to construct more complex structures from the basic building 

blocks that were introduced in sections 2.3 and 2.4. Cascading combines the scattering matrices 

of two distinct networks, such as a uniform network element and junction network, to form the 

overall scattering matrix of the composite system. By repeating this process, the scattering 

matrix for a complete waveguide structure can be constructed. These individual networks will 

usually have only two ports but the method can be extended to allow for cascading between 

𝑚: 𝑛 port, should it be necessary. The cascading technique can be introduced by considering 

two N-port networks A and B, both of which can be represented by their own scattering 

matrices which take the form: 

 𝒃𝐴 = [𝑺𝐴]𝒂𝐴 (2.5.1) 

 𝒃𝑩 = [𝑺𝐵]𝒂𝐵 (2.5.2) 

Where 𝒂𝑋 = [𝑎𝑖
𝑋] represents the amplitudes of the incident modes, 𝒃𝑋 = [𝑏𝑖

𝑋] represents the 

amplitudes of the outgoing modes and 𝑋 gives the network element of interest. Ports in the two 

constituent networks that are connected to each other will vanish in the resulting network, while 

the remaining will become its external ports. The number of modes considered in each network 

is given by 𝑁𝑋. These modes can be separated into remaining (in the external ports; denoted 

by R) and vanishing (those in the vanishing internal ports of the complete network; denoted by 

V). This puts further constraints on the amplitudes of the incident and outgoing modes, which 

Figure 2-19: Representation of a two port network AB composed of the enclosed two port networks A and B. 

The enclosed networks are cascaded together such that new network correctly accounts for reflection and 

transmission of the constituent networks.  
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are reordered to put all remaining modes first. The scattering matrix for each network can be 

correspondingly refactored using the same notation as shown: 

 𝒂𝑋 = [𝒂
𝑋,𝑅

𝒂𝑋,𝑉
] (2.5.3) 

 𝒃𝑋 = [𝒃
𝑋,𝑅

𝒃𝑋,𝑉
] (2.5.4) 

 
[𝒃

𝑋,𝑅

𝒃𝑋,𝑉
] = [

𝑺𝑅,𝑅
𝑋 𝑺𝑅,𝑉

𝑋

𝑺𝑉,𝑅
𝑋 𝑺𝑉,𝑉

𝑋 ] [𝒂
𝑋,𝑅

𝒂𝑋,𝑉
] (2.5.5) 

The vanishing modes of network A are connected one-to-one to the same modes in network B, 

while the remaining modes of the network do not mix.  

 𝑁𝐴,𝑅 = 𝑁𝐴 −𝑁𝐴,𝑉 (2.5.6) 

 𝑁𝐵,𝑅 = 𝑁𝐵 −𝑁𝐵,𝑉 (2.5.7) 

 𝑁𝐴,𝑉 = 𝑁𝐵,𝑉 = 𝑁𝑉 (2.5.8) 

 ∴ 𝒂𝐵,𝑉 = 𝒃𝐴,𝑉and 𝒂𝐴,𝑉 = 𝒃𝐵,𝑉 (2.5.9) 

To obtain the scattering matrix for the combined network the amplitudes of the remaining 

outgoing modes [𝒃
𝐴,𝑅

𝒃𝐵,𝑅
] must be expressed wholly in terms of the amplitudes of the remaining 

input modes [𝒂
𝐴,𝑅

𝒂𝐵,𝑅
]. The overall scattering matrix of the combined network 𝑆𝐴𝐵  links the input 

and output modes as follows: 

 [𝒃
𝐴,𝑅

𝒃𝐵,𝑅
] = 𝑺𝐴𝐵 [𝒂

𝐴,𝑅

𝒂𝐵,𝑅
] (2.5.10) 

and can be shown to be: 
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𝑆𝐴𝐵 = [

𝑆𝑅,𝑅
𝐴 + 𝑆𝑅,𝑉

𝐴 (𝐼 − 𝑆𝑉,𝑉
𝐵 𝑆𝑉,𝑉

𝐴 )
−1
𝑆𝑉,𝑉
𝐵 𝑆𝑉,𝑅

𝐴 𝑆𝑅,𝑉
𝐴 (𝐼 − 𝑆𝑉,𝑉

𝐵 𝑆𝑉,𝑉
𝐴 )

−1
𝑆𝑉,𝑅
𝐵

𝑆𝑅,𝑉
𝐵 (𝐼 − 𝑆𝑉,𝑉

𝐴 𝑆𝑉,𝑉
𝐵 )

−1
𝑆𝑉,𝑅
𝐴 𝑆𝑅,𝑅

𝐵 + 𝑆𝑅,𝑉
𝐵 (𝐼 − 𝑆𝑉,𝑉

𝐴 𝑆𝑉,𝑉
𝐵 )

−1
𝑆𝑉,𝑉
𝐴 𝑆𝑉,𝑅

𝐵
] (2.5.11) 

The complete derivation of the cascading procedure is given in Appendix A.2. 

Some common situations where the cascading procedure is required are as follows:  

 Joining of a uniform segment with a junction segment and repeating this process allows 

for complete horn geometries to be constructed.  

 Joining of a uniform network with a network representing a short allows a cavity section 

to be modelled.  

2.5.1 Example: cascading a 2-port network with a 2-port network 

The second port of the network A is connected to the first port of network B. The number of 

modes in port 1 (remaining) and 2 (vanishing) are respectively 𝑁𝐴,1 = 𝑁𝐴,𝑅 and 𝑁𝐴,2 = 𝑁𝐴,𝑉 =

𝑁𝑉. In network B the number of modes in port 1 (vanishing) is 𝑁𝐵,1 = 𝑁𝐴,2 = 𝑁𝑉 while the 

remaining port 2 modes are 𝑁𝐵,2 = 𝑁𝐵,𝑅. All remaining modes of network A are in port 1 while 

all remaining modes of network B are in port 2. The scattering matrix for the cascaded network 

has the form: 

 

 
𝑺𝐴𝐵 = [

𝑺11
𝐴𝐵 𝑺12

𝐴𝐵

𝑺21
𝐴𝐵 𝑺22

𝐴𝐵] (2.5.12) 

 𝑺11
𝐴𝐵 = 𝑺11

𝐴 + 𝑺12
𝐴 (𝑰 − 𝑺11

𝐵 𝑺22
𝐴 )−1𝑺11

𝐵 𝑺21
𝐴  

𝑺12
𝐴𝐵 = 𝑺12

𝐴 (𝑰 − 𝑺11
𝐵 𝑺22

𝐴 )−1𝑺12
𝐵  

𝑺21
𝐴𝐵 = 𝑺21

𝐵 (𝑰 − 𝑺22
𝐴 𝑺11

𝐵 )−1𝑺21
𝐴  

𝑺22
𝐴𝐵 = 𝑺22

𝐵 + 𝑺21
𝐵 (𝑰 − 𝑺22

𝐴 𝑺11
𝐵 )−1𝑺22

𝐴 𝑺12
𝐵  

(2.5.13) 
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2.5.2 Example: cascading a 2-port network with a 1-port network 

The second port of A is connected to the only port of B. The number of modes in network A’s 

port 1 (remaining) and port 2 (vanishing) are given respectively as 𝑁𝐴,1 = 𝑁𝐴,𝑅 and 𝑁𝐴,2 =

𝑁𝐴,𝑉 = 𝑁𝑉. In network B’s only port (vanishing) has its mode number given by 𝑁𝐵,1 = 𝑁𝐴,2 =

𝑁𝑉, and 𝑁𝐵,𝑅 = 0. In this case 𝑺𝑅,𝑉
𝐵 , has zero rows, 𝑺𝑅,𝑅

𝐵  has no elements and 𝑺𝑉,𝑅
𝐵  has zero 

columns. This means that the overall scattering matrix for the cascaded system reduces to a 

single scattering parameter as all modes are in one port: 

 𝑺𝐴𝐵 = [𝑺𝑅,𝑅
𝐴 + 𝑺𝑅,𝑉

𝐴 (𝑰 − 𝑺𝑉,𝑉
𝐵 𝑺𝑉,𝑉

𝐴 )
−1
𝑺𝑉,𝑉
𝐵 𝑺𝑉,𝑅

𝐴 ] (2.5.14) 

 𝑺11
𝐴𝐵 = 𝑺11

𝐴 + 𝑺12
𝐴 (𝑰 − 𝑺11

𝐵 𝑺22
𝐴 )−1𝑺11

𝐵 𝑺21
𝐴  (2.5.15) 

2.5.3 Single Port Networks 

There are some fundamental networks which have yet to be discussed up to this point. 

Following on from the example of cascading a 2-port network with a 1-port network presented 

in section 2.5.2, there are two single port networks that can be introduced. These are the Short 

and Match networks. The short network or backshort can be cascaded with a waveguide section 

to form a cavity structure, such that there is reflection from the back-end of the guide. Here, 

perfect reflection is expected from a PEC backshort and as such its only scattering parameter 

has the following form: 

 𝑺11
𝑏𝑎𝑐𝑘𝑠ℎ𝑜𝑟𝑡 = −𝑰, (2.5.16) 

Figure 2-20 : Representation of a 1 port network AB composed of the enclosed networks A (2-

port) and B (1-port). 
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Conversely, the match network can also be cascaded with a waveguide section to provide an 

idealised termination point for the guide i.e. there will be no reflection from the match-network. 

Here, perfect absorption is expected from the match and its only scattering parameter has the 

following form: 

 𝑺11
𝑚𝑎𝑡𝑐ℎ = [𝟎] (2.5.17) 

2.6 Far-Field Propagation 

For a complete description of the waveguide structures, a thorough analysis of their radiation 

characteristics is required. While there exist many different types of antenna structures, in this 

thesis only aperture antenna type designs are considered. Aperture antennas are described by 

their definite aperture, usually a few wavelengths in cross-section, and have electric and 

magnetic fields present at the aperture when excited. The process for determining the radiation 

patterns of these structures can separated into two operations. 

 Internal propagation – this deals with determining the fields present at the aperture of 

the antenna. 

 External propagation – this deals with predicting the far-field radiation pattern, and 

near field if required, based on the aperture field of the waveguide. 

The following sections will discuss the underlying theory and the methods used in SCATTER-

TNG to evaluate radiated fields. Furthermore, an SVD routine developed by (McCarthy 2014) 

to aid in the computation and interpretation of these radiation patterns is introduced. 

2.6.1 Internal Propagation – Aperture Fields 

The correct prediction of the radiation field depends significantly on the accurate description 

of the antenna’s aperture field. Effectively, the aperture field becomes the source for the 

radiation field in the far-field (Olver et al. 2011). The field equivalence principle states that a 

radiating field 𝑬,𝑯 at 𝑧 > 0 caused by some source at 𝑧 < 0 may also be obtained by 

introducing an imaginary conducting surface at 𝑧 = 0, which has an electric current density 𝑱𝒔 

and magnetic current density 𝑱𝒎 given by:  

 𝑱𝒔 = �̂� × 𝑯𝒂 −  surface current  (2.6.1) 
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 𝑱𝒎 = −�̂� × 𝑬𝒂 −magnetic surface current (2.6.2) 

Here, this imaginary surface represents the aperture of the antenna where 𝑬𝒂 and 𝑯𝒂 describe 

the tangential electric and magnetic fields at this new surface defined as the aperture plane. 

These 𝑬𝒂 and 𝑯𝒂 fields are obtained by solving the waveguide structure’s internal problem.  

The modal fields described earlier in section 2.2.3 can be exploited to the determine the 

required electric and magnetic fields at the aperture. The aperture fields of pure waveguide 

modes in uniform sections have already been given in section 2.3. However, to assemble the 

final guide’s full aperture field requires considering all of its modes, and each of their individual 

contributions with correct amplitude and phase. The respective electric and magnetic tangential 

aperture fields can be obtained from following equations:  

 

𝑬𝒂 =∑𝐴𝑖 ∙ 𝑬𝒊

𝑵

𝒊

 (2.6.3) 

 

𝑯𝒂 =∑𝐴𝑖 ∙ 𝑯𝒊

𝑵

𝒊

  (2.6.4) 

where 𝑁 gives the mode number being considered, 𝐴𝑖 gives the relative amplitude of the mode 

and 𝑬𝒊 or 𝑯𝒊 gives the modal electric or magnetic field. The relative amplitudes of the 

propagating modes are required to obtain the exiting aperture field. Conveniently, the scattering 

parameters, introduced in section 2.3.3, describe how the modal amplitudes are transformed 

Figure 2-21: Demonstration of the Field Equivalence Principle applied to a plane aperture. 
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between the input and output ports of the radiating structure. Using the 𝑺21 scattering 

parameter, an expression for the modal amplitudes at the exit aperture is obtained: 

 𝒃2 = 𝑺21 ∙ 𝒂1 (2.6.5) 

where the column vector 𝒂1 gives the incident mode amplitudes that provide the excitation to 

port 1. Equation (2.6.5) ensures that the correct outgoing amplitudes, 𝒃2, for each modal field 

are obtained. 

2.6.2 External Propagation – Radiation Fields 

The aperture is aligned such that its surface normal �̂� is in the +𝑧-direction, and aperture field 

is orientated in the xy-plane as in Figure 2-22. The solution to the inhomogeneous vector 

potential wave equation describes how the radiation field propagates due to a current density 

at some source position (C. A. Balanis 2012). In the z-direction this vector potential wave 

equation takes a familiar form: 

 ∇2𝐴𝑧 + 𝛽2𝐴𝑧 = −𝜇𝐽𝑧 (2.6.6) 

where 𝐴𝑧 is the z-component of the vector potentials, and 𝐽𝑧 is the z-component of the current 

density present. The solution to this equation is given by:  

 
𝐴𝑧 =

𝜇

4𝜋
∭ 𝐽𝑧

𝑒−𝑗𝛽𝑟

𝑟

 

𝑉

𝑑𝑣′ (2.6.7) 

Figure 2-22: Shows the layout of the aperture field and its projection to a point in the far-field. 
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For the generalised form of the wave equation, the remaining x and y-components must be 

considered. The source itself need not be located at the origin of the system and is defined by 

the primed coordinates (𝑥′, 𝑦′, 𝑧′) in the vector potential solution as given by:  

 
𝑨𝒔(𝑥, 𝑦, 𝑧) =

𝜇

4𝜋
∭ 𝑱𝒔(𝑥′, 𝑦′, 𝑧′)

𝑒−𝑗𝜷∙𝑹

𝑅

 

𝑉

𝑑𝑣′ (2.6.8) 

Equation (2.6.8) represents the vector potential field due to the electric current density. In a 

similar manner, the vector potential which exists as a result of solely magnetic current density 

is: 

 
𝑨𝒎(𝑥, 𝑦, 𝑧) =

𝜖

4𝜋
∭ 𝑱𝒎(𝑥′, 𝑦′, 𝑧′)

𝑒−𝑗𝜷∙𝑹

𝑅

 

𝑉

𝑑𝑣′ (2.6.9) 

Here, the length 𝑅 gives the distance from any point at the source to the observation point and 

is expressed in the following manner from (C. Balanis 2016). If the source is assumed to be a 

thin dipole (i.e. 𝑥′ = 𝑦′ = 0), positioned along the z-axis then 𝑅 becomes: 

 𝑅 = |𝑹| = |𝒓 − 𝒓′| = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2 (2.6.10) 

 𝑅 = √𝑥2 + 𝑦2 + (𝑧 − 𝑧′)2 = √𝑥2 + 𝑦2 + 𝑧2 + (−2𝑧𝑧′ − 𝑧′2)  (2.6.11) 

 
𝑅 = √𝑟2 + (−2𝑟𝑧′ cos 𝜃 − 𝑧′2) ≈ 𝑟 − 𝑧′ cos𝜓 +

1

𝑟
(
𝑧′2

2
sin𝜓) +⋯ (2.6.12) 

where 

here 𝜓 represents the angle between 𝒓 and 𝒓′.  

 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2 

𝑧 = 𝑟 cos 𝜓 
(2.6.13) 
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Using the binomial expansion, the radial component is approximated by the first two terms of 

the expansion. The remaining higher order terms of the binomial expansion tend to zero as the 

far-field zone (𝛽𝑟 ≫ 1) is approached, simplifying the radiation equations significantly. The 

radial distance component in the far-field 𝑹, from any point (𝑥′, 𝑦′, 𝑧′) on the aperture plane to 

the observation point (𝑥, 𝑦, 𝑧) can be assumed to be parallel to the radial distance 𝒓 from the 

origin to the same observation point. Here, amplitude variations with depend on 𝑅 ≈ 𝑟, while 

phase variations are given by 𝑅 ≈  𝑟 − 𝑟′ cos 𝜓. 

The aperture plane and the observation screen may be arbitrarily curved, however, it is common 

to assume that they are both flat. Effectively the volume integrals defined for the vector 

potentials can be reduced to surface integrals (Orfanidis 2008). Thus, the vector potentials from 

both current density sources on the aperture plane can be defined in the as: 

 
𝑨𝒔(𝒓) = 𝜇

𝑒−𝑗𝛽𝑟

4𝜋𝑟
∬𝑱𝒔(𝒓′)𝑒

−𝑗𝒌∙𝒓′
 

𝐴

𝑑𝑥′𝑑𝑦′ (2.6.14) 

 
𝑨𝒎(𝒓) = 𝜖

𝑒−𝑗𝛽𝑟

4𝜋𝑟
∬𝑱𝒎(𝒓′)𝑒

−𝑗𝒌∙𝒓′
 

𝐴

𝑑𝑥′𝑑𝑦′ (2.6.15) 

For a flat aperture in the xy-plane, 𝒌 ∙ 𝒓′ is expanded as:  

 𝒌 ∙ 𝒓′ = 𝑘𝑥𝑥
′ + 𝑘𝑦𝑦

′ = 𝑘 cos𝜙 sin 𝜃 𝑥′ + 𝑘 sin𝜙 sin 𝜃 𝑦′ (2.6.16) 

A common approximation made at this point is to assume the aperture fields are of type TEM. 

This assumes that these fields approximately satisfy the Huygens source definition i.e. assumes 

an orthogonal relationship between the electric and magnetic components (𝐸𝑎𝑥 = 𝜂0𝐻𝑎𝑦) and 

(𝐸𝑎𝑦 = −𝜂0𝐻𝑎𝑥). By assuming the axial electric and magnetic fields approach zero at the guide 

aperture the aperture fields can be taken approximately as Huygens sources. 

The integrals given in equations (2.6.14) and (2.6.15), which describes the radiation vectors, 

can be redefined in terms of the aperture fields present on the aperture plane. In these integrals 

the electric and magnetic field components can be separated from one another, simplifying the 

problem: 
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𝑨𝒔(𝜃, 𝜙) = 𝜇
𝑒−𝑗𝛽𝑟

4𝜋𝑟
(�̂� × 𝒈(𝜃, 𝜙)) = 𝜇

𝑒−𝑗𝛽𝑟

4𝜋𝑟
�̂� ×∬𝑯𝒂(𝒓′)𝑒

−𝑗𝒌∙𝒓′
 

𝐴

𝑑𝑥′𝑑𝑦′ (2.6.17) 

𝑨𝒎(𝜃, 𝜙) = 𝜖
𝑒−𝑗𝛽𝑟

4𝜋𝑟
(−�̂� × 𝒇(𝜃, 𝜙)) = 𝜖

𝑒−𝑗𝛽𝑟

4𝜋𝑟
− �̂� ×∬𝑬𝒂(𝒓′)𝑒

−𝑗𝒌∙𝒓′
 

𝐴

𝑑𝑥′𝑑𝑦′ (2.6.18) 

where 𝑯𝒂 = �̂�𝐻𝑎𝑥 + �̂�𝐻𝑎𝑦 and 𝑬𝒂 = �̂�𝐸𝑎𝑥 + �̂�𝐸𝑎𝑦. Likewise, the two expression for 𝒇, 𝒈 can 

be resolved into their separate components. The radiated E-field, in spherical coordinates, is 

given by: 

Applying Huygens principle simplifies the radiated E-field given in equations (2.6.19) and 

(2.6.20) to: 

 
𝐸𝜃 = 𝑗𝑘

𝑒−𝑗𝑘𝑟

4𝜋𝑟
[(1 + cos 𝜃)(𝑓𝑥 cos 𝜙 + 𝑓𝑦 sin𝜙)] (2.6.21) 

 
𝐸𝜙 = 𝑗𝑘

𝑒−𝑗𝑘𝑟

4𝜋𝑟
[(1 + cos 𝜃)(𝑓𝑦 cos 𝜙 − 𝑓𝑥 sin𝜙)] (2.6.22) 

where the (1 + cos 𝜃) term is known as the obliquity factor.  

For aperture antennas it is common practice to present the polarised co-polar and cross-polar 

fields. Using Ludwig’s third definition, these can be readily obtained from the spherical 

coordinates of the radiated E-field (Olver et al. 2011). The co-polar and cross-polar fields are 

expressed in terms of spherical coordinates as: 

 
𝐸𝜃 = 𝑗𝑘

𝑒−𝑗𝑘𝑟

4𝜋𝑟
[(𝑓𝑥 cos 𝜙 + 𝑓𝑦 sin𝜙) + 𝜂 cos 𝜃 (𝑔𝑥 cos 𝜙 − 𝑔𝑦 sin𝜙)] (2.6.19) 

 
𝐸𝜙 = 𝑗𝑘

𝑒−𝑗𝑘𝑟

4𝜋𝑟
[cos 𝜃 (𝑓𝑦 cos 𝜙 − 𝑓𝑥 sin𝜙) − 𝜂(𝑔𝑥 cos 𝜙 + 𝑔𝑦 sin𝜙)] (2.6.20) 
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This definition assumes the aperture’s electric field is directed along the y-axis. The co-polar 

component represents the field aligned with the preferred direction and the cross-polar 

component represents its orthogonal pair, counter to the preferred direction. 

2.6.3 Far-Field Representation - Rectangular and Circular Apertures 

In sections 2.3.1 and 2.3.2, the expressions for the electric and magnetic modal fields are 

presented for rectangular and cylindrical geometries. The radiated far-field from these 

waveguide sections can be obtained by taking the Fourier transform of the field component of 

interest. Thus, the far-field radiation pattern for a rectangular aperture is given in Cartesian 

coordinates as: 

Electric Fields 

𝑓𝑥(𝜃0, 𝜙0) ≅ ∫𝐸𝑎𝑥(𝑥, 𝑦) exp(𝑗𝑘(𝑥 sin 𝜃0 cos 𝜙0 + 𝑦 sin 𝜃0 sin𝜙0))  𝑑𝑆

 

𝑆

 
(2.6.25) 

𝑓𝑦(𝜃0, 𝜙0) ≅ ∫𝐸𝑎𝑦(𝑥, 𝑦) exp(𝑗𝑘(𝑥 sin 𝜃0 cos 𝜙0 + 𝑦 sin 𝜃0 sin𝜙0))  𝑑𝑆

 

𝑆

 
(2.6.26) 

Magnetic Fields 

𝑔𝑥(𝜃0, 𝜙0) ≅ ∫𝐻𝑎𝑥(𝑥, 𝑦) exp(𝑗𝑘(𝑥 sin 𝜃0 cos 𝜙0 + 𝑦 sin 𝜃0 sin𝜙0))  𝑑𝑆

 

𝑆

 
(2.6.27) 

𝑔𝑦(𝜃0, 𝜙0) ≅ ∫𝐻𝑎𝑦(𝑥, 𝑦) exp(𝑗𝑘(𝑥 sin 𝜃0 cos 𝜙0 + 𝑦 sin 𝜃0 sin𝜙0))  𝑑𝑆

 

𝑆

 
(2.6.28) 

 𝐸𝑐𝑜 = 𝐸𝜃 sin𝜙 + 𝐸𝜙 cos 𝜙 (2.6.23) 

 𝐸𝑥𝑝 = 𝐸𝜃 cos 𝜙 − 𝐸𝜙 sin𝜙 (2.6.24) 
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In a similar manner, the far-field radiation pattern from a cylindrical aperture is obtained. For 

convenience the Fourier transform is performed in cylindrical coordinates, which gives: 

Electric Fields 

𝑓𝑥(𝜃0, 𝜙0) ≅ ∫∫ 𝐸𝑎𝑥(𝜌, 𝜙𝑎) exp(𝑗𝑘(𝜌 sin 𝜃0 cos(𝜙0 − 𝜙𝑎))) 𝜌𝑑𝜌𝑑𝜙𝑎

2𝜋

0

𝜌

0

 (2.6.29) 

𝑓𝑦(𝜃0, 𝜙0) ≅ ∫∫ 𝐸𝑎𝑦(𝜌, 𝜙𝑎) exp(𝑗𝑘(𝜌 sin 𝜃0 cos(𝜙0 − 𝜙𝑎))) 𝜌𝑑𝜌𝑑𝜙𝑎

2𝜋

0

𝜌

0

 (2.6.30) 

Magnetic Fields 

𝑔𝑥(𝜃0, 𝜙0) ≅ ∫∫ 𝐻𝑎𝑥(𝜌, 𝜙𝑎) exp(𝑗𝑘(𝜌 sin 𝜃0 cos(𝜙0 − 𝜙𝑎))) 𝜌𝑑𝜌𝑑𝜙𝑎

2𝜋

0

𝜌

0

 (2.6.31) 

𝑔𝑦(𝜃0, 𝜙0) ≅ ∫∫ 𝐻𝑎𝑥(𝜌, 𝜙𝑎) exp(𝑗𝑘(𝜌 sin 𝜃0 cos(𝜙0 − 𝜙𝑎))) 𝜌𝑑𝜌𝑑𝜙𝑎

2𝜋

0

𝜌

0

 (2.6.32) 

2.6.4 Singular Value Decomposition Applied to Far-Field Propagation 

An antenna’s far-field radiation pattern is dependent on its aperture field. For single moded 

horns the aperture field is composed of a single mode, some single mode horns may use 

contributions from higher order modes to improve the performance i.e. shaped horns, but 

ultimately only one mode is present in the aperture. While in multimoded horns, the aperture 

field is composed of the contributions from many partially coherent modes which propagate in 

the structure. As such, the resulting radiation patterns behaviour can be challenging to 

understand. 

A singular value decomposition (SVD) approach, as detailed in McCarthy (2014), allows for 

the modeset required for field reconstruction to be reduced to a subset of effective contributing 

modes or ‘singular’ modes, without any loss in accuracy. These form a new basis set to 
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represent the system, meaning they are orthogonal and independent of one-another. Singular 

modes may be neither TE or TM modes, but can be a combination of both i.e. the hybrid HE11 

would be a valid singular mode of a corrugated type horn. By performing SVD the valid mode 

combinations and their contributions are determined. Allowing for a greater knowledge of the 

devices behaviour for the singular modes present. SVD can also be implemented to achieve 

significant performance improvements in the analysis of multi-mode structures. For an 

arbitrary field excitation at the aperture, the known singular modes obtained from SVD allow 

the excitation to be reduced to mode amplitudes which propagate in the structure. This can lead 

to reduced simulation time for repeated arbitrary field excitations. 

For 𝑺 an 𝑚 × 𝑛 matrix, which represents a scattering parameter (normally 𝑆21 is considered). 

The SVD of this matrix is given by: 

 𝑺 = 𝑼 ∙ 𝚺 ∙ 𝑽+ (2.6.33) 

Here each of these elements have the following meaning: 

 𝑼 is an 𝑚 ×𝑚 unitary matrix, the columns of 𝑼 are known as the left singular vectors 

𝒖𝒊. 

 𝚺 is an 𝑚 × 𝑛 diagonal matrix, where the diagonal elements are the singular values of 

𝑺. These are indexed by 𝜎𝑖 = Σ𝑖𝑖 arranged in order of decreasing value, of these singular 

values only 𝛽 elements are non-zero and this gives the length of singular values which 

needs to be considered 

 𝑽+ is an 𝑛 × 𝑛 unitary matrix, where the + indicates the pseudoinverse or conjugate 

transpose such that 𝑽+ ∙ 𝑽 = 𝑰𝒏. The columns of 𝑉 are known as the right singular 

vectors 𝒗𝒊. 

It can be shown that the left singular vectors are the eigenvectors of 𝑺 ∙ 𝑺+, and likewise the 

right singular vectors are the eigenvectors of 𝑺+ ∙ 𝑺. The singular values are given by the non-

zero roots of the eigenvalues from these expressions. Vectors 𝑼 and 𝑽 are said to be unitary 

meaning their columns form a set of orthonormal vectors, which can be taken as a basis set to 

represent 𝑺. 
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 𝑺 = 𝑼 ∙ 𝚺 ∙ 𝑽+ (2.6.34) 

 𝑺 ∙ 𝑽 = 𝑼 ∙ 𝚺 ∙ 𝑽+ ∙ 𝑽 = 𝑼 ∙ 𝚺 (2.6.35) 

 𝑺+ ∙ 𝑺 ∙ 𝑽 = 𝑽 ∙ 𝚺+ ∙ 𝑼+ ∙ 𝑼 ∙ 𝚺 ∙ 𝑽+ ∙ 𝑽 = 𝑽 ∙ 𝚺+ ∙ 𝚺 (2.6.36) 

Singular modes are obtained from the basis sets contained within the columns of the two unitary 

vectors. The aperture fields of the horn for an arbitrary excitation can be reconstructed using 

them as a basis set instead of all individual waveguide modes. Singular value theory gives the 

following relation: 𝑺 ∙ 𝒗𝒊 = 𝜎𝑖𝒖𝒊. It is clear from this that the right eigenvectors can be used as 

a basis to represent the input modes and the left eigenvectors can represent the output modes, 

once they are scaled by their corresponding singular value. Assuming correctly normalised 

mode coefficients 𝑨, the input field can be expressed as: 

 
𝚱𝑖𝑛 =∑𝐴𝑖𝒗𝒊

 

𝑖

= 𝑽 ∙ 𝑨 
(2.6.37) 

 
𝚱𝑖𝑛
+ ∙ 𝚱𝑖𝑛 = 𝑨+ ∙ 𝑽+ ∙ 𝑽 ∙ 𝑨 =  ∑|𝐴𝑖|

2

 

𝑖

 
(2.6.38) 

This gives the total power in the input field. The output field is obtained by applying the 

scattering parameter being considered. This transforms the singular vector at the input field to 

the output as the scattering matrix operates on the input modes.  

 
𝚱𝑜𝑢𝑡 =∑𝐴𝑖𝑺 ∙ 𝒗𝒊

 

𝑖

= 𝑺 ∙ 𝑽 ∙ 𝑨 = 𝑼 ∙ 𝚺 ∙ 𝑽+ ∙ 𝑽 ∙ 𝑨 = 𝑼 ∙ 𝑩 
(2.6.39) 

 𝑩 = 𝚺 ∙ 𝑨 ⇒ 𝐵𝑖 = 𝜎𝑖𝐴𝑖  (2.6.40) 
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𝚱𝑜𝑢𝑡
+ ∙ 𝚱𝑜𝑢𝑡 = 𝑨+ ∙ 𝚺+ ∙ 𝑼+ ∙ 𝑼 ∙ 𝚺 ∙ 𝑨 =  ∑|𝜎𝑖|

2|𝐴𝑖|
2 =

 

𝑖

∑𝛼𝑖|𝐴𝑖|
2

 

𝑖

 
(2.6.41) 

The output field can be then expressed as in equation (2.6.41). Here 𝑩 represents the effective 

output mode coefficients which are related to the effective input mode coefficients through the 

singular values of 𝑺. Using this method, the effective modes which contribute meaningfully to 

propagation of power can be isolated, as can their contribution to the far-field of the system. 

2.7 Design and Implementation of Pure and Multimode Horns 

The choice of feed horn is very much dependent on the application of the instrument. Whether 

for communications or measurement, the application of the device places requirements on the 

type of feed to be used. For example, the size, bandwidth, efficiency and co/cross-polar levels 

are all factors which must be considered when choosing the feed structure. A short summary 

of each type of feed modelled in this thesis is given.  

2.7.1 Pure-Mode Horns 

Pure-Mode type horns, as the name suggests, have aperture fields composed of a single 

waveguide mode only and as such single mode dependent radiation patterns. Compared to other 

devices, the geometry of the structure does not influence the radiation field as significantly. 

The radiation pattern is highly dependent on the transverse components of the aperture field. 

Common structures that may produce single moded horns are conical and pyramidal 

geometries.  

Pure-Mode horns can be split into two groups based on the ratio of the aperture size and the 

desired wavelength of operation. These groups are (i) small aperture horns ~1.5 𝜆 (ii) medium 

aperture horns ~6 𝜆.  

 For small aperture pure mode horns, the relationship between the geometry of the 

device and the structures radiation pattern are more strongly dependent on one another. 

As such, the precise geometry of the horn must be known in order to accurately model 

the structure. This is due to the currents outside the structure further contributing to the 

observed field pattern.  These types of horns are employed for use in small diameter 

front fed reflector antennas where there a limits on mass and volume of the detector 

system. 
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 Medium aperture pure mode horns are not suitable for high performance feeds since 

their radiation patterns often have relatively high cross-polar levels. These types of 

structures are more commonly employed as separate antenna elements rather than 

feeds. Pyramidal type horns are commonly used as standard gain horns since they can 

be manufactured accurately and are well understood. 

2.7.1.1 Conical Pure-Mode Horns 

In conical pure-mode horns the TE11 mode exists as the fundamental singular mode which 

dominates the aperture field. In general, these types of structures make for poor feed horns as 

they have poor radiation pattern symmetry and high cross-polar levels. High cross-polar levels 

are not desirable and limit the applicability of these structures in high performance feed 

devices. The cross-polar levels here are a function of the aperture diameter. By reducing the 

aperture diameter, the cross-polar fields may be also reduced or cancelled resulting in a better 

performing horn in terms of lower cross-polar levels; typically this occurs for 𝐷 ≈ 1.15 𝜆. The 

co-polar pattern is a function of the phase centre s-factor  

(𝑠 =
𝑎2

2𝜆𝐿
) for increasing phase factor values wider beam patterns are observed along with 

increased asymmetry between the E and H fields.  

Broader beams and bandwidth leads to reduced gain and poor aperture efficiency. When 

designing conical feed horns there is a delicate balancing act to obtain acceptable cross-polar 

levels, desired bandwidth and minimum losses at the aperture field. These factors greatly 

influence the design of the horn. The pure-mode conical horn illustrated in Figure 2-23 taken 

from Olver, Clarricoats, et al. (2011), has an aperture diameter of 4𝜆 and a semi-flare angle of 

5°, it was designed for operation at 100 GHz. As observed in Olver, Clarricoats, et al. (2011) 

Figure 2-23: Shows the profile of the conical structure and a 3D visualisation of the feed. 
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and discussed earlier, this structure is expected to have quite high cross-polar levels and have 

poor symmetry between the E and H-plane co-polar patterns. From the simulation of this horn 

performed, shown in Figure 2-24, peak cross-polar levels of ~ − 18 dB and high asymmetry 

between the co-polar cuts are observed. Such radiation patterns are typical of pure mode conical 

devices. 

2.7.1.2 Pyramidal Pure-Mode Horns 

In Pyramidal Pure-Mode horns the 𝑇𝐸10 is the fundamental mode which dominates the aperture 

field of horn. These structures have either a rectangular or square aperture and can be thought 

of as being composed of two sectoral horns. One which will determine the E-field “E-field 

Horn” and another which will determine the H-field “H-field Horn”. The phase factors or s-

factors which influence the overall design of the horn for the E-field and H-field horns are 

given by 

 
𝑠𝐻 =

𝐴2

8𝜆𝑅𝐻
, 𝑠𝐸 =

𝐵2

8𝜆𝑅𝐸
 (2.7.1) 

Figure 2-24: Plot of the co-polar and cross-polar fields for the conical case; it is observed that there is poor 

symmetry in the co-polar field cuts and quite high peak cross-polar levels. 
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Where 𝐴 and 𝐵 represent the width and height dimensions of the guide, while 𝑅𝐻 and 𝑅𝐸  give 

the wall length from the centre of the E-field and H-field horns throat to the aperture. As before 

in the conical case, the cross-polar levels are linked to the aperture dimensions. For increasing 

aperture size, a greatly reduced cross-polar component is observed below acceptable levels 

~ − 40 dB. The range of application for pyramidal horns is limited by the asymmetry of the 

co-polar patterns. As they are essentially found from the two different sectoral horns which 

compose the pyramidal structure they do not interact in the same manner as in the conical case.  

A pure-mode pyramidal horn shown in Figure 2-25, again taken from (Olver et al. 2011) has a 

square aperture of width 5𝜆 and a semi-flare angle of 12°. It was also designed for operation 

at 100 GHz. The structure is fed by a WR10 waveguide. 

For this structure, using (Olver et al. 2011) as a benchmark, peak cross-polar levels of the order 

of −40 dB with respect to the co-polar values are expected with co-polar cuts that have poor 

symmetry. As observed in Figure 2-26, simulation gives the expected low cross-polar levels 

and asymmetric co-polar radiation pattern. 

 

 

 

Figure 2-25: Shows the profile of the pyramidal structure and a 3D visualisation of the feed. 
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2.7.2 Hybrid-mode and Multimode Horns 

There is an important distinction to be made when one considers multi-moded horns; a true 

multi-moded horn is defined as having many modes propagating end-to-end in the structure. 

As such, the aperture field will be made of a combination of the modal fields present in the 

aperture. In contrast, single-moded waveguide’s aperture field is only composed of the 

fundamental mode for that structure. Single-moded horns can however take advantage of 

higher order modes to improve their performance but are not considered true multi-moded 

horns but rather hybrid-mode horns by definition. The number of non-negligible singular 

values obtained from the SVD procedure will indicate whether the structure is multimoded 

(𝑠 > 1) or single-moded (𝑠 = 1). An example of a multimoded structure is presented in the 

last section of this chapter.  

As a natural progression from pure-mode horns, the hybrid-mode horns are discussed. The 

aperture field of hybrid-mode horns is no longer purely composed of the fundamental 

waveguide mode. Instead, there will be a combination of desired modes which make up the 

aperture field which have been selected to enhance the radiation pattern of the fundamental 

mode. There is a difficulty in designing these structures such that the desired modes are 

generated and are propagated efficiently through the device. Commonly, these devices are split 

Figure 2-26: Plot of the co-polar and cross-polar fields for the pyramidal case; it is observed that there is poor 

symmetry in the co-polar field cuts and reduced peak cross-polar levels compared to the conical case. 



 

99 

 

into two classes (i) shaped pattern horns and (ii) tracking horns. Only shaped pattern horns are 

considered here (Olver et al. 2011). 

In shaped pattern horns, higher-order modes are added with the correct phase and amplitude to 

the fundamental mode to improve the horn’s radiation and efficiency performance. In the 

design process, certain modes are selected in the aperture of the horn so that the desired 

radiation pattern can be achieved. To excite these new modes suitable geometric additions must 

be made to the smooth walled horns already introduced in the last section. Here, higher order 

modes can be excited via the introduction of a sharp discontinuity or by introducing a dielectric 

section, effectively modes can be made to propagate by changing the geometry or the medium. 

The discontinuity is typically followed by a phasing section to phase the modes in the correct 

ratio.  

The transitions selected to excite particular waveguide modes are highly frequency dependent 

i.e. beyond an upper frequency limit undesired modes may begin to propagate as their cut-off 

frequencies are exceeded. As such, the operational bandwidth of shaped horns is typically 

limited i.e. structures are limited to operate in particular wavelength ranges. Shaped pattern 

horns are typically designed to improve certain performance factors of the horn: 

 to reduce the cross-polar levels and improve co-polar pattern symmetry 

 to alter the basic shape of a Gaussian co-polar pattern; this can make illumination of 

the reflector more uniform with a change in angle, increasing the overall efficiency, or 

 to specifically match the focal region fields of reflector antennas. 

The shaped pattern or spline horn design shown in Figure 2-27 was developed as one focal 

plane solution for the proposed COrE (Cosmic Origins Explorer) project (Bouchet et al. 2010). 

This is a single band device with an operating range between 85 – 115 GHz. This design is 

optimised for low return loss and high co-polar symmetry and Gaussicity. In Figure 2-27 the 

COrE horn structure is shown. By applying this shaped pattern to the horn’s geometry much 

improved radiation performance versus conventional conical structures can be achieved. 

Simulated radiation patterns for this horn can be seen in Figure 2-28.  
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Here cross-polar levels are below −40 dB and there is excellent symmetry observed in the co-

polar components. This is achieved by the excitation of higher-order modes in the shaped 

structure which has been optimised to combine modes with the fundamental TE11 mode in the 

correct manner. A similar approach is used in corrugated structures, however, shaped horns 

have the advantage of being easier to manufacture compared to corrugated horns (Granet, 

Bolton, and Moorey 2004). 

Figure 2-27: Shows the profile of the COrE feed and a 3D visualisation of the feed. 

Figure 2-28: Plot of the co-polar and cross-polar fields for the COrE horn; it is observed that there is excellent 

symmetry in the co-polar field cuts and low peak cross-polar levels. 
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2.7.3 Corrugated Horns 

Corrugated horns have become the favoured feed antenna for use in reflector antennas for a 

wide range of applications including commutations and remote sensing where high 

performance is required. These feeds have superior performance compared to their smooth 

walled counterparts. In their radiation patterns, high co-polar symmetry is observed along with 

exceptionally low cross-polar levels. High-performance operation is dependent on the internal 

structure of the horn, which alters the field pattern. Here the field is changed such to provide 

the desirable axial beam symmetry, low-side-lobes and low cross-polarisation, over a certain 

bandwidth.  

These criteria can only be met when the horn produces an aperture electric field which has 

almost no curvature. Some slight non-linearity is required to cancel all cross-polar components. 

The linear fields required cannot be produced by a guide which supports TE or TM modes only 

since these inherently have some curvature associated with their field patterns. Only hybrid 

modes, a combination of TE and TM modes, can produce the desired linear field.  

In the design of corrugated horn structures, one typically begins with a list of desired 

specifications and during the developmental stages the design is analysis and altered to obtain 

the ideal radiation properties and input impedance of the device. Typically, there are four main 

parts to consider when designing a corrugated horn (Olver et al. 2011). 

 Aperture Diameter – An appropriate aperture diameter must be selected to give the 

desired co-polar beam width. However, there is an inherent trade of between aperture 

diameter and flare angle which must be considered.  

 Flare Angle and Horn Profile – Are selected to satisfy the horns length and co-polar 

requirement obtained from the horns specifications. As the flare angle is increased, the 

influence of the spherical phase cap becomes dominant and the dependence on the 

aperture diameter is lost. There are advantages and disadvantages to wide-flare angle 

horns and profiled horns.  

 Corrugation Geometry – The geometry of the corrugation must be chosen to give the 

minimal cross-polarisation levels at the desired central frequency. For a large aperture 

this requires the corrugations to be ~
1

4
𝜆 in depth, if there are a large number of 

corrugations per wavelength. For shorter wavelengths, the optimal depth increases as it 

also does if there are fewer corrugations per wavelength. If slots are less than this 
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quarter wavelength value, inductive reactance can be generated and the EH11 mode can 

be excited. This is a surface wave mode and has a concentration of power near the 

boundary walls and causes high levels of cross-polarisation (Abbas-Azimi, Mazlumi, 

and Behnia 2009). 

 Throat Region – The throat of the horn should be designed to give a good impedance 

match to the smooth walled input selection, allowing for efficient transfer of power 

between the horn and throat sections. Typically a TE11 mode is matched with a hybrid 

𝐻𝐸11 mode in the corrugated section. To achieve this, the corrugation depth can be 

tapered from the first few slots ~
1

2
𝜆 down to the operational depth within the 

corrugated device. This gradual increase in slot depth can avoid the excitation of the 

EH11 mode (Abbas-Azimi, Mazlumi, and Behnia 2009). 

The feed horns designed for the QUBIC (Q & U Bolometric Interferometer for Cosmology) 

mission are an example of corrugated structures (Scully et al. 2016). These are dual-band 

devices with an operational range of 120 – 240 GHz (single-moded 120 –  170 GHz, multi-

moded 200 –  240 GHz). At the higher frequency range the QUBIC horn becomes multimoded 

as higher order modes reach their cut-off frequencies and begin to propagate. The geometry of 

a QUBIC type horn is given in Figure 2-29. 

The single moded far-field pattern for the frequency range (120 –  170 GHz) is shown in Figure 

2-30, and is consistent with the predictions made earlier. The cross-polar levels are at –40 dB 

and there is excellent symmetry in the co-polar field cuts due to the formation of the hybrid 

HE11 mode as desired.  

 

Figure 2-29: Shows the profile of the QUBIC feed and a 3D visualisation of the feed. 
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In general, for the multi-moded corrugated structures, the cross-polar levels tend to increase 

with the inclusion of higher order modes. The co-polar patterns shape is highly dependent on 

the relative phasing of the modes that exist in the guide, which is controlled by the horn’s 

profile (A. D. Olver et al. 2011). Again, this must be tailored to specific design criteria for the 

application of the multimoded structure.  

Although the QUBIC horn has a multimoded range it is designed such that much of the co-

polar symmetry from the single moded case is retained and the cross-polar levels remain quite 

low. As shown in Figure 2-31, there is good symmetry in the co-polar cuts above -15 dB and 

the cross-polar levels have increased but remain below −20 dB. However, the QUBIC horn 

cannot be considered an example of a truly multimoded horn. The characteristic of true 

multimoded horns are that its co-polar field becomes flat and symmetry between the cuts is 

lost. In chapter 6, the SAFARI type horn provides an example of a truly multimoded 

waveguide. 

 

Figure 2-30: Plot of the co-polar and cross-polar fields for the QUBIC horn; it is observed that there is 

excellent symmetry in the co-polar field cuts and quite low peak cross-polar levels. 
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Figure 2-31: Plot of the Co-polar and Cross-polar fields for the QUBIC horn multimode case; it is observed 

that there is good symmetry in the co-polar field cuts and  acceptable peak cross-polar levels. 
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2.8 Summary 

This chapter introduces the new theoretical framework upon which S-TNG is built. The key 

components being the reformulation of the mode matching methods in terms of auxiliary 

potential functions, a completely new mechanism for mode normalisation and the derivation 

of the line integral form of the common mode coupling integrals (i.e. the common B, C and D 

types shown in section 2.4.2). The accuracy of this new formulation is demonstrated throughout 

this chapter with direct comparison to industry standard software CST Microwave Studio. 

Combined with the cascading methods, shown in section 2.5, the ability to model complete 

waveguide structures is achieved. Finally, for completeness the methods necessary for 

examining the radiation characteristics of horn antenna’s (aperture field calculations, Fourier 

transforms and singular value decomposition) are discussed, implemented, and demonstrated 

in sections 2.6 and 2.7.  
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Chapter 3 – Extension of Mode-Matching Methods 

As waveguide technologies continue to be developed for use in millimetre and sub-millimetre 

applications, the need for their accurate and efficient characterisation remains. Many of these 

new devices rely on exploiting multi-moded operation and operate in higher frequency bands. 

However, a more comprehensive approach is required to correctly predict the behaviour of 

these structures than presented in chapter 2. In particular, the assumption of ideal surfaces (i.e. 

perfect electrically conducting boundaries) may no longer be entirely valid. At higher 

frequencies the surface impedance 𝑍𝑠(𝜔), due the finite wall conductivity of the waveguide, 

approaches non-negligible levels. Furthermore, in multi-moded structures the necessary higher 

order modes will have their fields distributed away from the centre of the guide. Thus, there is 

potential for power dissipation from the higher order modes through the non-PEC walls, and 

the PEC assumption may no longer be appropriate. 

To overcome this, the mode-matching methods are extended to consider finite wall 

conductivity along the boundary. Here the boundary is assumed to be a good conductor, but 

with non-zero surface impedance. These surfaces are referred to as “lossy” throughout this 

chapter. The extension to the mode-matching method is based on work presented in J Shafii 

and Vernon (2002) and Wade and Macphie (1990), where the physical foundations of a modal 

description of the operation of such lossy guides and junctions were first discussed. When non-

zero surface impedance is assumed due to the physical surface parameters, such as finite wall 

conductivity, the boundary conditions considered previously change. Most importantly the 

tangential electric field is no longer zero along the boundary as illustrated in Figure 3-1. 

This has consequences for both the uniform guide and junction sections, which will be covered 

in the following sections. 

Figure 3-1: Shows the necessary non-zero tangential electric field along the interface between free-space 

and boundary wall of finite conductivity. 
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In line with the lossy waveguide sections introduced in this chapter, a method to model an 

absorber layer using the mode-matching methods is presented in section 3.3. The method 

developed by (Doherty 2012) is re-considered, where the absorber layer is treated as an 

infinitely thin layer with sheet resistance 𝑅𝑠. Moreover, the absorber layer can now have any 

arbitrary shape via application of the contour-integral approach presented in chapter 2. This 

will allow for characterisation and optimisation of cavity or waveguide coupled absorber 

sections. 

As the device’s operational frequency increases, the waveguide dimensions are reduced 

correspondingly. As such, high frequency components require novel manufacturing methods 

to be realised. Manufacturing techniques such as direct etching or wire erosion are employed 

for singular THz waveguide and platelet stacking techniques are used for waveguide arrays 

(Chattopadhyay et al. 2018). Surface imperfections or associated surface roughnesses are an 

unavoidable result of fabrication and can have a dramatic effect on the surface impedance at 

sub-millimetre wavelengths. The Gradient Model as presented in G Gold and Helmreich (2017) 

is adapted to the mode-matching method to model surface imperfections. For a given roughness 

associated with the wall material, its contribution to the effective surface impedance can be 

determined and included in the model. 
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3.1 Ohmic Losses in Guide Walls 

To correctly model multi-moded and high frequency waveguide components, a rigorous 

treatment of the boundary walls is required. As presented in J Shafii and Vernon (2002), by 

including large yet finite conductivity in the description of the mode-matching method the 

effects of lossy surface can be accurately modelled. In this section the procedure for including 

ohmic losses in waveguide walls is presented. Furthermore, the necessary modifications to the 

uniform PEC guide section are given using the notation introduced in chapter 2. 

Along the guide wall, at the interface between an isotropic non-conducting medium and a 

perfect conducting surface (denote media 1 and 2 respectively)the boundary conditions from 

(Jackson 1998) are: 

 �̂� ∙ 𝑫𝟏 = 𝑞𝑒𝑠 (3.1.1) 

 �̂� × 𝑯𝟏 = 𝑱𝑠 (3.1.2) 

 �̂� × (𝑬𝟏 − 𝑬2) = 0 (3.1.3) 

 �̂� ∙ (𝑩𝟏 −𝑩2) = 0 (3.1.4) 

with a unit normal (�̂�) directed outward from the conducting surface and 𝑞𝑒𝑠 surface charge 

density. Only the normal electric and tangential magnetic fields can exist just outside the PEC 

surface and fields drop to zero within the conductor. 

Figure 3-2 Arrangement along the interface between the conducting and propagation media, with a 

description of the fields near the surface of a perfect conductor (Jackson 1998) (subscripts n and t refer to 

the normal and tangential fields respectively). 
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Fields in the vicinity of conducting surfaces with large yet finite conductively must behave 

approximately as those at a PEC interface. For thin skin depths (𝛿 ≈ √
2

𝜔𝜇𝑐𝜎
), the boundary 

conditions given in (3.1.1) and (3.1.2) remain approximately true, however, care must be taken 

to correctly examine the processes in this thin transitional region. From Ohms law (𝑱 = 𝜎𝑬), 

for finite conductivity there cannot be a surface layer of current as implied by equation (3.1.2). 

Instead this becomes: 

 �̂� × (𝑯𝟏 −𝑯2) = 0 (3.1.5) 

Assuming just outside the conductor there exists a normal electric field 𝑬𝑛 and tangential 

magnetic field 𝑯𝑡, as for the PEC case. If 𝑯𝑡 exists outside the conductor then from equation 

(3.1.5), this implies the same 𝑯𝑡 exists inside the surface. Ignoring current displacement in the 

conductor, Maxwell’s curl equations become: 

 
𝑬2 ≅

1

𝜎
∇ × 𝑯2 (3.1.6) 

 
𝑯2 ≅ −

𝑖

𝜇𝑐𝜔
∇ × 𝑬2 (3.1.7) 

where harmonic variation 𝑒−𝑖𝜔𝑡 is assumed. The gradient operator is simplified, to ∇≅ −�̂�
𝜕

𝜕𝜉
, 

with 𝜉 being the normal coordinate into the conductor. Other derivative directions operating 

on the fields are neglected, and the curl equations become: 

 
𝑬2 ≅ −

1

𝜎
�̂� ×

𝜕𝑯2

𝜕𝜉
 (3.1.8) 

 
𝑯2 ≅

𝑖

𝜇𝑐𝜔
�̂� ×

𝜕𝑬2
𝜕𝜉

 (3.1.9) 

where 𝜇𝑐 gives the permeability of the conductor. Combined these give: 
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 𝜕2

𝜕𝜉2
(�̂� × 𝑯2) +

2𝑖

𝛿2
(�̂� × 𝑯2) = 0 (3.1.10) 

 �̂� ∙ 𝑯2 = 0 (3.1.11) 

where 𝛿 gives the skin depth of the material. The solution for the magnetic field in the 

conductor is: 

 
𝑯2 = 𝑯𝑡𝑒

−
𝜉
𝛿
(1−𝑖)

 (3.1.12) 

From �̂� ∙ 𝑯2 = 0, the field must be parallel to the surface. Finally, the electric field in the 

conductor is approximately given as: 

 
𝑬2 ≈ √

𝜇𝑐𝜔

2𝜎
(1 − 𝑖)(�̂� × 𝑯2) (3.1.13) 

These solutions for the fields within the conductor exhibit a rapid exponential decay as 

observations are made further into the conductor. Fields in the conductor are parallel to the 

surface and propagate normal to it, with magnitudes that depend only on the tangential 

magnetic field on the surface. From equation (3.1.3), there exists a small tangential electric 

field on the surface given by: 

 

𝑬1𝑡 ≈ √
𝜇2𝜔

2𝜎2
(1 − 𝑖)(�̂� × 𝑯2)  where 𝜉 = 0 then 𝑯2 = 𝑯𝑡 (3.1.14) 

where �̂� is the unit vector normal to the contour of the waveguide interior, and �̂� is the unit 

vector tangential to the contour, both being orthogonal to the propagation direction �̂�: 

 �̂�  × �̂� = �̂�,    �̂� × �̂� = �̂�,    �̂� × �̂� = �̂�. (3.1.15) 
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Without solving the complete problem, it is clear from the derivation of the tangential electric 

field component at the boundary that this additional boundary condition accounts for the ohmic 

loss dissipation of the overall field. This in effect is the result of a perturbation from the PEC 

boundary conditions. In this section purely DC treatment on the conductivity is considered 

which are unlikely to hold true for THz or far-infrared frequencies (Kirley et al. 2015). 

3.1.1 Ohmic Losses in Uniform Guide Sections 

In a uniform guide section, the transverse and axial fields can be determined by exploiting the 

relationship between the electric and magnetic fields and unit vector identities given in equation 

(3.1.15). The guide’s surface normal (�̂�𝑠) is opposite to the contour normal, such that �̂�𝑠 =

−�̂�. Hence, the 𝑧-component of  the magnetic field is always tangential to the surface of the 

guide. As such, it is linked to the component of the electric field parallel to �̂�. This relationship 

between the axial magnetic field and the tangential electric field is shown:  

  Axial Magnetic Field    

 𝑬𝑡 = 𝑍𝑠(𝜔)�̂�𝑠 ×𝑯 (3.1.16) 

 𝑬𝑡 = 𝑍𝑠(𝜔)(−�̂�) × (�̂�𝑯)�̂� = 𝑍𝑠(𝜔)(−�̂�) × 𝐻
𝑧�̂� (3.1.17) 

 𝑬𝑡 = 𝑍𝑠(𝜔)𝐻
𝑧�̂� = 𝐸𝑡 �̂� (3.1.18) 

 
𝐻𝑧 =

𝐸𝑡

𝑍𝑠(𝜔)
 (3.1.19) 

Since �̂� is orthogonal to �̂�, only 𝑬𝑡 must be considered. 

In a similar manner, the component of the magnetic field parallel to �̂� is linked to the 𝑧-

component of the electric field, as shown: 

 

 



 

112 

 

 Axial Electric Field  

 𝑬𝑡 = 𝑍𝑠(𝜔)�̂�𝑠 ×𝑯 (3.1.20) 

 𝑬𝑡 = 𝑍𝑠(𝜔)(−�̂�) × ((�̂�𝑯)�̂�) (3.1.21) 

 𝑬𝑡 = 𝑍𝑠(𝜔)(�̂�𝑯)�̂� × �̂� = −𝑍𝑠(𝜔)(�̂�𝑯)�̂� = 𝐸𝑧�̂� (3.1.22) 

 𝐸𝑧 = −𝑍𝑠(𝜔)(�̂�𝑯) (3.1.23) 

As for the PEC junction, the complete set of functions that span any transverse electric field is 

the set of modal (TE and TM) electric fields in the guide (∇𝐹𝑖 × �̂�, 𝑍𝑗
𝑇𝑀∇𝐴𝑗). For the transverse 

magnetic field, the appropriate base function set is the set of modal (TE and TM) magnetic 

fields in guide (𝑌𝑖
𝑇𝐸∇𝐹𝑖 , ∇𝐴𝑗 × �̂�). Similarly, the complete set of functions that span any axial 

electric field is the set of modal electric fields in the guide (𝐴𝑗) as defined. For the axial 

magnetic field, the appropriate base function set is the modal magnetic fields in the guide (𝐹𝑖). 

For the axial fields the inner product can be defined as: 

 
〈𝐴, 𝐵〉 = ∫𝑨𝑧∗ × 𝑩𝑧𝑑𝑆,

 

𝑆

 
(3.1.24) 

where ∗ indicates a complex conjugate, as the associated impedance for the lossy uniform 

section can take on complex values, it is necessary to include this.  

In general, the curl form of Maxwell’s equations will be used for the derivation of the lossy 

waveguide solutions. For clarity, only the set-up and main results of the derivation are shown.  

 (∇ × 𝑯)𝑧 = +𝑗𝜔𝜖𝑬𝑧 ⇒ ∇(𝑯𝑡 × �̂�) = +𝑗𝜔𝜖𝐸𝑧 (3.1.25) 

 (∇ × 𝑬)𝑧 = −𝑗𝜔𝜇𝑯𝑧 ⇒ ∇(𝑬𝑡 × �̂�) = −𝑗𝜔𝜇𝐻𝑧 (3.1.26) 
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(∇ × 𝑯)𝑡 = +𝑗𝜔𝜖𝑬𝑡 ⇒ (∇t𝐻

𝑧 ×
𝜕𝑯𝑡

𝜕𝑧
) × �̂� = +𝑗𝜔𝜖𝑬𝑡 (3.1.27) 

 
(∇ × 𝑬)𝑡 = −𝑗𝜔𝜇𝑯𝑡 ⇒ (∇t𝐸

𝑧 ×
𝜕𝑬𝑡

𝜕𝑧
) × �̂� = −𝑗𝜔𝜇𝑯𝑡 (3.1.28) 

The axial electric and magnetic field projects are obtained by taking the inner product of the 

axial Maxwell curl equations with their corresponding base functions: 

Axial Electric Field Projection 

 
∫(𝐴𝑙)

∗∇(𝑯𝑡 × �̂�)

 

𝑆

𝑑𝑆 = ∫(𝐴𝑙)
∗∇(𝑗𝜔𝜖𝐸𝑧)

 

𝑆

𝑑𝑆 
(3.1.29) 

Axial Magnetic Field Projection 

 
∫(𝐹𝑘)

∗∇(𝑬𝑡 × �̂�)

 

𝑆

𝑑𝑆 = ∫(𝐹𝑘)
∗∇(−𝑗𝜔𝜇𝐻𝑧)

 

𝑆

𝑑𝑆 
(3.1.30) 

Moreover, the transverse field projections are now obtained from the inner product of the 

transverse Maxwell curl equations and their corresponding base functions: 

Transverse Electric Field Projection 

TE ∫(𝐹𝑘 × �̂�)
∗ ((∇𝐻𝑧 −

𝜕𝑯𝑡

𝜕𝑧
) × �̂�)

 

𝑆

𝑑𝑆 = ∫(𝐹𝑘 × �̂�)
∗(𝑗𝜔𝜖𝑬𝑡)

 

𝑆

𝑑𝑆 
(3.1.31) 

TM ∫(𝑍𝑗
𝑇𝑀∇𝐴𝑗)

∗
((∇𝐻𝑧 −

𝜕𝑯𝑡

𝜕𝑧
) × �̂�)

 

𝑆

𝑑𝑆 = ∫(𝑍𝑗
𝑇𝑀∇𝐴𝑗)

∗
(𝑗𝜔𝜖𝑬𝑡)

 

𝑆

𝑑𝑆 
(3.1.32) 
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The projections are performed in a similar manner as in the PEC junction derivation shown in 

chapter 2 allowing for the field relationships to be expressed algebraically. The modal field 

expansions of 𝐻𝑧, 𝐸𝑧, 𝑬𝑡 and 𝑯𝑡 are expressed in chapter 2 section (2.2.2) – (2.2.4). 

An important point to note is that because of the new boundary condition, the PEC waveguide 

basis is not ideal since the PEC basis modes require 𝐸𝑡 = 0. A strong assumption is made, as 

in J Shafii and Vernon (2002), that these modes remain appropriate. The guide wall is 

considered to be a good conductor and as such the mode should not be strongly perturbed. In 

fact, even if 𝐸𝑡 ≠ 0, the magnetic field component will not be strongly perturbed.  

Transverse Magnetic Field Projection 

TE ∫(𝑌𝑘
𝑇𝐸∇𝐹𝑘)

∗ ((∇𝐸𝑧 −
𝜕𝑬𝑡

𝜕𝑧
) × �̂�)

 

𝑆

𝑑𝑆 = ∫(𝑌𝑘
𝑇𝐸∇𝐹𝑘)

∗(−𝑗𝜔𝜇𝑯𝑡)

 

𝑆

𝑑𝑆 
(3.1.33) 

TM ∫(∇𝐴𝑗 × �̂�)
∗
((∇𝐸𝑧 −

𝜕𝑬𝑡

𝜕𝑧
) × �̂�)

 

𝑆

𝑑𝑆 = ∫(∇𝐴𝑗 × �̂�)
∗
(−𝑗𝜔𝜇𝑯𝑡)

 

𝑆

𝑑𝑆 
(3.1.34) 

Figure 3-3 Plot of the electric and magnetic field components along the boundary for PEC and Lossy (𝜎 =
5.8 × 104 𝑆/𝑚) walls generated from CST. Here ‘R’ and ‘PHI’ correspond to the transverse and normal 

components respectively.  
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In the derivation, for integrals along the edge involving 𝐸𝑡, the magnetic field expression is 

used to avoid explicit evaluation of the electric field along the boundary. This allows for the 

modes to be treated as effectively unchanged. By inspecting the fields along the wall from CST 

these assumptions can be investigated. From Figure 3-3, it can be seen that at the boundary 

there is significant increase in the electric field magnitude away from 𝐸𝑡 = 0 when non-PEC 

walls are considered. Comparatively, the magnitude of the magnetic field varies by just a small 

amount. 

Performing these projections leads to a set of differential equations which describe the mode 

amplitude for the modes present in the uniform lossy guide. The full system of equations when 

solved is given as: 

 𝑑𝒂

𝑑𝑧
= [

𝜷𝒛 𝟎
𝟎 𝜷𝒛

]
+

[
−𝑖𝜷𝒛

𝟐 + 𝑿 + 𝒀 𝑿 − 𝒀

−𝑿 + 𝒀 𝑖𝜷𝒛
𝟐 − 𝑿 − 𝒀

]𝒂 = 𝑾𝒂 (3.1.35) 

where 

with the 𝑿 and 𝒀 matrices given by:  

 
𝑿 =

1

2
𝑍𝑠(𝜔)𝛽𝑧

+ [
𝑯 𝟎
𝟎 𝟎

] 
(3.1.38) 

 
𝒀 =

1

2
𝑍𝑠(𝜔)𝛽𝑧

+ [
𝑲 𝑳
𝑴 𝑵

] 
(3.1.39) 

 

𝒂+ = [𝒂
𝑇𝐸,+

𝒂𝑇𝑀,+
] and 𝒂− = [𝒂

𝑇𝐸,−

𝒂𝑇𝑀,−
] give 𝒂 = [

𝒂𝑇𝐸,+

𝒂𝑇𝑀,+

𝒂𝑇𝐸,−

𝒂𝑇𝑀,−

]  (3.1.36) 

 

𝜷𝒛 = [
𝜷𝒛
𝑻𝑬 𝟎

𝟎 𝜷𝒛
𝑻𝑴
] =

[
 
 
 
 
 
𝛽𝑧,1
𝑇𝐸 0 0

0 ⋱ 0
0 0 𝛽𝑧,𝑁𝑇𝐸

𝑇𝐸

  0   0    0
0 ⋱    0
0 0    0

    

 0  0    0
0 ⋱    0
0 0    0

  

𝛽𝑧,1
𝑇𝑀 0 0

0 ⋱ 0
0 0 𝛽𝑧,𝑁𝑇𝑀

𝑇𝑀
]
 
 
 
 
 

 (3.1.37) 
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The integrals elements of 𝑿 and 𝒀 are given by: 

If the 𝑿 and 𝒀 matrices are zero, then it is apparent that the solution of equation (3.1.35) returns 

to that of a PEC guide: 

 𝑑𝒂

𝑑𝑧
= [

𝜷𝒛 𝟎
𝟎 𝜷𝒛

]
+

[
−𝑖𝜷𝒛

𝟐 𝟎

0 𝑖𝜷𝒛
𝟐
]𝒂 = [

−𝑖𝜷𝒛𝜷𝒛
𝟐 𝟎

𝟎 𝑖𝜷𝒛𝜷𝒛
𝟐
𝒛

]

+

𝒂 (3.1.45) 

The coupled mode equations have solutions that can also be expressed using the transmission 

matrix for guide of given length i.e. (𝒂(𝑧) = 𝑻(𝑧)𝒂(0)). Here the complex amplitude vector 

at a given location can be expressed in terms of the transmission matrix over a given length 

and the input mode amplitudes. The expression for the coupled mode equations is given as: 

 
𝐻𝑖𝑗 = −

𝑍𝑠(𝜔)(𝛽𝑐,𝑖
𝑇𝐸)

2
(𝛽𝑐,𝑗

𝑇𝐸)
2

𝜔𝜇𝐷𝑖𝑖
∫𝐹𝑖𝐹𝑗𝑑𝑙

 

𝛿𝑆

 (3.1.40) 

 
𝐾𝑖𝑗 = −

𝑍𝑠(𝜔)𝛽𝑌𝑖
𝑇𝐸𝑌𝑗

𝑇𝐸

𝑌0𝐷𝑖𝑖
∫(�̂�∇𝐹𝑖)(�̂�∇𝐹𝑗)𝑑𝑙

 

𝛿𝑆

 
(3.1.41) 

 
𝐿𝑖𝑗 = −

𝑍𝑠(𝜔)𝛽𝑌𝑖
𝑇𝐸

𝑌0𝐷𝑖𝑖
∫(�̂�∇𝐹𝑖)(�̂�∇𝐴𝑗)𝑑𝑙

 

𝛿𝑆

 
(3.1.42) 

 
𝑀𝑖𝑗 = −

𝑍𝑠(𝜔)𝛽𝑌𝑗
𝑇𝐸

𝑍0𝐶𝑖𝑖
∫(�̂�∇𝐴𝑖)(�̂�∇𝐹𝑗)𝑑𝑙

 

𝛿𝑆

 
(3.1.43) 

 
𝑁𝑖𝑗 = −

𝑍𝑠(𝜔)𝛽

𝑍0𝐶𝑖𝑖
∫(�̂�∇𝐴𝑖)(�̂�∇𝐴𝑗)𝑑𝑙

 

𝛿𝑆

 
(3.1.44) 
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 𝑑

𝑑𝑧
𝒂(𝑧) = 𝑾𝒂(𝑧),where 𝒂(𝑧) = [

𝑎1(𝑧)
⋮

𝑎𝑛(𝑧)
] and 𝑾 = [𝑛 × 𝑛] (3.1.46) 

The familiar eigenvalue equation gives: 

where 𝜆𝑖 and 𝒙𝒊 give the ith eigenvalues and eigenvectors of the matrix 𝑾. If the corresponding 

eigenvectors of 𝑾 form column entries of a matrix 𝑸. Then 𝑾 can be diagonalised, such that 

the diagonal elements of 𝚲 are the eigenvalues of 𝑾: 

 
𝚲 = 𝑸−𝟏𝑾𝑸 = [

𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑛

] (3.1.48) 

For the PEC case the matrix 𝑾 is already diagonal and as such: 

 
𝚲 = 𝑾 = [

𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑛

] (3.1.49) 

For a single matrix entry, it can be shown that the solution takes the form of a first order 

ordinary differential equation and for the first amplitude component has the simple exponential 

solution: 

 𝑑

𝑑𝑧
𝑎1(𝑧) = 𝑤1,1 𝑎1  (3.1.50) 

 Soln: 𝑎𝑛(𝑧) = 𝑒𝜆𝑛𝑧𝑐𝑛𝑥𝑛 

= 𝑒𝜆𝑛𝑧𝑎𝑛(0), where 𝑎𝑛(0) solves the initial value problem 

 

 𝑾𝒙𝒊 = 𝜆𝑖𝒙𝒊  (3.1.47) 
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∴
𝑑

𝑑𝑧
𝑎1(𝑧) = 𝜆1𝑒

𝜆1𝑡𝑥1 = 𝑾𝑒𝜆1𝑧𝑥1 (3.1.51) 

 𝜆1𝑥1 = 𝑾𝑥1  

Thus, the solution to the full differential equation is: 

 𝒂(𝑧) = 𝑒𝜆1𝑧𝑐1𝑥1 +⋯+ 𝑒𝜆𝑛𝑧𝑐𝑛𝑥𝑛 (3.1.52) 

And for 𝑧 = 0:  

 

𝒂(0) = 𝑐1𝑥1 +⋯+ 𝑐𝑛𝑥𝑛 = [
|
𝑥1
|
… 

|
𝑥𝑛
|
] [
𝑐1
⋮
𝑐𝑛
] = 𝑸𝒄 (3.1.53) 

Complete solutions for 𝒂(𝑧) can be found by extending this form shown for a single amplitude: 

 𝒂(𝑧) = 𝑸exp(𝚲z)𝐜 (3.1.54) 

where 𝒄 represents  the constants 𝑐 = 𝑸−1𝒂(0) such that 𝒂(𝑧) = 𝑸exp(𝚲z) 𝑸−1𝒂(0) as 

shown in (Strang 2013). Therefore, the transmission matrix must take the following form: 

For the non-PEC case the matrix 𝑾 may not be diagonal and as such the first entry of the 

differential equation has the form: 

 𝑑

𝑑𝑧
𝑎1(𝑧) = 𝑤1,1𝑎1 +⋯+𝑤1,𝑛𝑎𝑛 (3.1.56) 

In this case there is evidence that as 𝑾 is no longer guaranteed to be diagonal, the modal 

amplitudes may mix. The off-diagonal elements of 𝑾 will be non-zero for valid mode 

 𝑻(𝒛) = 𝑸exp(𝚲z)𝑸−𝟏 (3.1.55) 
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combinations in the integrals (3.1.40) – (3.1.44). In the PEC result there was strictly no mixing 

of the modal amplitudes.  

Assuming that the first port of the system is located at 𝑧 = 0 and the second port is located at 

some distance 𝑧 = 𝑙, the corresponding section transmission matrix is 𝑻(𝑙). Using the notation 

for modal amplitudes defined in chapter 2, the system is described by the transmission matrix: 

 
[
𝒃2
𝒂2
] = [

𝒂𝑙 
+

𝒂𝑙
−] = 𝑻(𝑙) [

𝒂0
+

𝒂0
−] = 𝑻(𝑙) [

𝒂1
𝒃1
] (3.1.57) 

 
[
𝒃2
𝒂2
] = [

𝑻11
𝑻21

 
𝑻12
𝑻22

] [
𝒂1
𝒃1
] (3.1.58) 

Or by the scattering matrix: 

 
[
𝒃1
𝒃2
] = [

𝑺11
𝑺21

 
𝑺12
𝑺22

] [
𝒂1
𝒂2
] (3.1.59) 

where 

 
𝑺 =  [

𝑺11
𝑺21

 
𝑺12
𝑺22

] = [
𝑻22
−1𝑻21

𝑻11 − 𝑻12𝑻22
−1𝑻21

       
𝑻22
−1

𝑻12𝑻22
−1 ] (3.1.60) 

For a section of finite length, the transformation can only be performed if 𝑻22 can be inverted, 

as shown the inversion of this term is fundamental to obtaining the scattering parameters. The 

transfer parameter 𝑻22 describes the attenuation in the guide, as the length of the section grows 

so too does the attenuation. Thus, determining 𝑻22
−1 becomes increasingly problematic due to 

the finite accuracy of the numerical implementation. The approach taken to overcome this 

limitation is to operate on shorter sections of the lossy guide. Complete sections can be halved 

as many times as required to ensure accurate computation of their scattering matrices, and then 

cascaded with itself the same number of times to obtain the scattering matrices of the section 

of full length. 
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3.1.2 Mode Coupling in Uniform lossy Sections 

The coupling mechanism in uniform PEC guide section requires modes to couple bijectively 

to themselves only. This process is observed due to the diagonal nature of the matrix 𝑾 in the 

coupled mode equation for PEC guides. However, in uniform lossy guide sections this is no 

longer the case. The additional boundary condition along the guide wall gives rise to off-

diagonal entries in 𝑾, given by integrals (3.1.40) – (3.1.44), which sees coupling between some 

modes. 

In over-moded uniform lossy sections, the effect of interfering currents at the bounding wall 

due to multiple modes present must be considered. The relative phases of these guide modes 

can have a strong effect on the power dissipated in waveguide. In general, it is not always 

correct to consider the individual losses (J Shafii and Vernon 2002). Thus, it can be taken that 

the power dissipated by modes at the guide walls must be taken together. As a consequence, 

the correct prediction involves a coupling of the modes within the uniform lossy section. As 

shown in (J Shafii and Vernon 2002), this method has been verified against other models 

detailed in both (Collins 1991) and (Jackson 1998). 

PEC Lossy  

TEmn ↔ TExy for TEmn = TExy 

TMmn ↔ TMxy for TMmn = TMxy 

TEmn ↔ TExy for m = x 

TMmn ↔ TMxy for  m = x 

TEmn ↔ TMxy for  m = x ≠ 0 

(3.1.61) 

The valid mode combinations are given by the non-zero solutions to the integrals (3.1.40) – 

(3.1.44), which have solutions similar to those for the PEC junctions coupling integrals. That 

is, coupling between the modes is dependent on the azimuthal orders in cylindrical structures 

and transverse orders of rectangular structures. The resulting mode coupling mechanisms are 

highlighted in Figure 3-4. 
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3.1.3 Testing and Verification of the Uniform Lossy Guide 

As for the PEC junction, CST Microwave Studio is used to independently verify the lossy 

section results for cylindrical and rectangular guide cross-sections. The results presented here 

are for very low wall conductivity. This is done to exaggerate the effect of the surface 

impedance, such that a significant deviation from the PEC result is observed. The following 

test cases are considered for the verification of the uniform lossy guide method: 

 A uniform cylindrical guide section of radius 1.4 mm, length 1.0 mm and wall 

conductivity of 𝜎 = 5.4 × 104 S/m (56 modes considered: 8 radial and 4 azimuthal 

orders). 

 A uniform rectangular guide section with dimensions of a WR10 guide (𝑎 =

2.54 mm, 𝑏 = 1.27 mm) and wall conductivity of 𝜎 = 5.4 × 104 S/m (112 modes 

considered: 8 Cartesian orders). 

Identical systems are modelled in both CST and the developed mode matching software 

(SCATTER-TNG or S-TNG) over a frequency range of 30 − 300 GHz and for a select set of 

modes the reflection (𝑆11) and transmission (𝑆21) results are compared.  

Figure 3-4: Shows the coupling mechanisms for: a) PEC walled uniform guide; self-coupling of waveguide modes 

is observed b) Lossy walled uniform guide; coupling of modes of similar azimuthal orders is observed (here only 

like colours will couple to each other). 
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In Figure 3-5, the scattering coefficients for the uniform cylindrical test case are shown and 

excellent agreement is observed between the results from S-TNG and CST. Additional 

observation can be made with regard to the cross-coupling of orthogonal modes i.e. (TE11c →

TM11s) in lossy guides as discussed in section 3.1.2. This is in contrast to a PEC guide, where 

modes strictly do not couple to others.  

In Figure 3-5, there exists non-zero components of reflection in the lossy guide and a reduction 

to the overall transmission in each mode, due to the non-zero surface impedance. The results 

obtained are contrasted with the PEC case in Table 3-1.  

Figure 3-5: Shows the magnitude and phase of the reflection/transmission scattering parameters for a number 

of mode combinations in a cylindrical lossy uniform guide section. The results are in excellent agreement with 

the results from an identical simulation performed in CST. 
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We consider a uniform rectangular guide section with dimensions of a WR10 guide (𝑎 =

2.54 mm, 𝑏 = 1.27 mm) and wall conductivity of 𝜎 = 5.4 × 104 S/m. Over a frequency 

range of 30 − 300 GHz, the result is compared to an identical system modelled in CST and 

the results for both simulations are shown in Figure 3-6.  The results obtained are in line with 

those obtained for the circular test case and are summarized in the Table 3-1.  

Table 3-1 Summarises the expected scattering results for the uniform guide sections, contrasting the results 

from the PEC and Lossy guide sections for cylindrical and rectangular geometries. 

 PEC NON-PEC 

 Circular Case 

Mode 1 Mode 2 |S11| |S12| |S11| |S12| 

TE11c TE11c 0 1 > 0 0 < |S12| < 1 − |S11| 

TM11s TM11s 0 1 > 0 0 < |S12| < 1 − |S11| 

TE11c TM11s 0 0 > 0 0 < |S12| < 1 − |S11| 

 

Figure 3-6: Shows the magnitude and phase of the reflection/transmission scattering parameters for a number 

of mode combinations in a rectangular lossy uniform guide section. The results are in perfect agreement with 

the results from an identical simulation performed in CST. 
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3.2 Ohmic Losses at Waveguide Discontinuities 

The mode matching methods introduced in chapter 2 to account for step discontinuities must 

also be adapted to consider ohmic losses on the junction boundary walls. In the PEC junction 

the transverse electric field was zero on the overlap region Σ, which is defined by the 

intersection of the left guide’s metallic wall and the right guide as shown in Figure 3-7. 

However, when finite wall conductivity is considered this is no longer the case. The overlap 

region will have non-zero surface impedance, which must be considered. As discussed in 

section 3.1, there is an electric field component produced on the overlapping region Σ, linked 

to the surface current density and the tangential component of the magnetic field as in equation 

(3.1.14). In a similar manner to the uniform lossy guide section the changed boundary 

conditions will introduce another channel for mode attenuation as power is dissipated over the 

lossy region. Such representation of the junction element will be from now referred to as lossy 

junction. 

For a junction between two guides, as seen in Figure 3-7, the notation previously introduced 

for a PEC junction is used, the two guides will be referred to as ‘Left’ and ‘Right’ or 𝐿 and 𝑅 

at 𝑧 =  0. The order of the guides, with cross sections 𝑆𝐿 & 𝑆𝑅 is such that 𝑆𝐿 ⊂ SR. The 

common cross section of the two guides is Ω = SL ∩ 𝑆𝑅 and the region defined by Σ =

(𝑆𝐿 ∪ 𝑆𝑅) − Ω represents an overlap between 𝑆𝑅 and a conducting material bounding 𝑆𝐿. Here, 

since guide L and R are ordered “small” to “large”, Ω = 𝑆𝐿. As in the PEC case, electric and 

magnetic fields on both sides of the interface must be equal: 

Figure 3-7 Schematic drawing of the junction between two uniform guide sections in which the small is fully 

enclosed by the large guide. The regions of interest at the junction plane are indicated; 𝛺 is the intersection 

region and 𝛴 is the overlap region of the guides, which has finite wall conductivity. 
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 𝑬𝐿 = 𝑬𝑅 , on Ω (3.2.1) 

 𝑯𝐿 = 𝑯𝑅 , on Ω  (3.2.2) 

Through redefinition of the boundary walls, the electric field in the right guide must be non-

zero on the boundary and thus the electric field on the overlap region is given as: 

where 𝑍𝑤 gives the surface impedance of the overlap region. The complete set of functions 

which span any transverse electric or magnetic fields are the set of corresponding modal TE or 

TM fields which are again taken to be those of the PEC waveguide modes. In guide R, the 

complete set of functions required to span the electric field are those given by (∇𝐹𝑖
R ×

�̂�, 𝑍𝑗
𝑇𝑀∇𝐴𝑗

𝑅). The electric field in guide L is also spanned by the same function set, as the fields 

must match on Ω. Likewise, the complete set of functions which span the transverse magnetic 

field being matched is the set of modal TE and TM magnetic fields given in guide L as 

(𝑌𝑖
𝑇𝐸∇𝐹𝑖

L, ∇𝐴𝑗
𝐿 × �̂�). 

A scalar product (𝑃 =  ∫ 𝑨𝑡
∗
∙ 𝑩𝑡  𝑑𝑆

 

𝑆
) can be defined for the transverse fields, where ∗ 

indicates a complex conjugate. For the lossy junction case the modal fields are no longer always 

real valued so the conjugation must be explicitly retained. The procedure for the lossy junction 

network follows that of the PEC case, apart from the inclusion of the non-zero electric field on 

the overlap.  

3.2.1 Electric field and Magnetic Field Projections 

The lossy junction sections boundary conditions require continuous fields at the intersection of 

the guides and a non-zero component on the overlap region as detailed in equations (2.4.1) - 

(2.4.3). By determining the scalar products for corresponding set of functions which span both 

the electric (∇𝐹𝑖
R × �̂�, 𝑍𝑗

𝑇𝑀∇𝐴𝑗
𝑅) and magnetic fields (𝑌𝑖

𝑇𝐸∇𝐹𝑖
L, ∇𝐴𝑗

𝐿 × �̂�) the boundary 

conditions can be expressed as: 

 

 𝑬𝑅 ≅ 𝑍𝑤�̂� × 𝑯𝑅 , on Σ (3.2.3) 
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Base Electric Field Projections  

TE ∫(∇𝐹𝑖
𝑅 × �̂�)∗(𝑬𝑡𝑎𝑙𝑙

𝑅
)𝑑𝑆

 

𝑆𝑅

= ∫(∇𝐹𝑖
𝑅 × �̂�)∗(𝑬𝑡𝑎𝑙𝑙

𝑅
)𝑑𝑆

 

𝑆𝑅

 
(3.2.4) 

∫(∇𝐹𝑖
𝑅 × �̂�)∗(𝑬𝑡𝑎𝑙𝑙

𝐿
)𝑑𝑆

 

SL

+ 𝑍𝑠
∗∫(∇𝐹𝑖

𝑅 × �̂�)(�̂� × 𝑯𝑡
𝑎𝑙𝑙
𝑅
)𝑑𝑆

 

Σ

= ∫(∇𝐹𝑖
𝑅 × �̂�)∗(𝑬𝑡𝑎𝑙𝑙

𝑅
)𝑑𝑆

 

𝑆𝑅

 

TM ∫(𝑍𝑗
𝑇𝑀∇𝐴𝑗

𝑅)
∗
(𝑬𝑡𝑎𝑙𝑙

𝑅
)𝑑𝑆

 

𝑆𝑅

= ∫(𝑍𝑗
𝑇𝑀∇𝐴𝑗

𝑅)
∗
(𝑬𝑡𝑎𝑙𝑙

𝑅
)𝑑𝑆

 

𝑆𝑅

 
(3.2.5) 

𝑍𝑗
𝑇𝑀∗ ∫∇𝐴𝑗

𝑅∗(𝑬𝑡𝑎𝑙𝑙
𝐿
)𝑑𝑆

 

SL

+ 𝑍𝑗
𝑇𝑀∗𝑍𝑠

∗∫(∇𝐴𝑗
𝑅)

∗
(�̂� × 𝑯𝑡

𝑎𝑙𝑙
𝑅
)𝑑𝑆

 

Σ

= 𝑍𝑗
𝑇𝑀∗ ∫(∇𝐴𝑗

𝑅)
∗
(𝑬𝑡𝑎𝑙𝑙

𝑅
)𝑑𝑆

 

𝑆𝑅

 

Base Magnetic Field Projections  

TE ∫(𝑌𝑖
𝑇𝐸∇𝐹𝑖

𝐿)∗(𝑯𝑡
𝑎𝑙𝑙
𝑇𝐸,𝐿

+𝑯𝑡
𝑎𝑙𝑙
𝑇𝑀,𝐿

)𝑑𝑆

 

𝑆𝐿

= ∫(𝑌𝑖
𝑇𝐸∇𝐹𝑖

𝐿)∗(𝑯𝑡
𝑎𝑙𝑙
𝑇𝐸,𝑅

+𝑯𝑡
𝑎𝑙𝑙
𝑇𝑀,𝑅

)𝑑𝑆

 

𝑆𝐿

 
(3.2.6) 

TM ∫(∇𝐴𝑗
L × �̂�)

∗
(𝑯𝑡

𝑎𝑙𝑙
𝑇𝐸,𝐿

+𝑯𝑡
𝑎𝑙𝑙
𝑇𝑀,𝐿

)𝑑𝑆

 

𝑆𝐿

= ∫(∇𝐴𝑗
L × �̂�)

∗
(𝑯𝑡

𝑎𝑙𝑙
𝑇𝐸,𝑅

+𝑯𝑡
𝑎𝑙𝑙
𝑇𝑀,𝑅

)𝑑𝑆

 

𝑆𝐿

 
(3.2.7) 

At this point it can be observed that the magnetic field projections are identical to those already 

obtained in the PEC case with the addition of the strict conjugation to the potential base. The 

constraints for the magnetic field scalar products, as derived in chapter 2, are: 

 
[
𝒀𝐿∗𝑫𝐿

𝐿𝐿𝒀𝐿 𝟎

𝟎 𝑪𝐿
𝐿𝐿] [

𝒉𝑇𝐸
𝐿

𝒉𝑇𝑀
𝐿 ] = [

𝒀𝐿∗𝑫𝑅
𝐿𝑅𝒀𝑅 𝒀𝐿∗(𝑩𝐿

𝑅𝐿)𝑇

𝟎 𝑪𝑅
𝐿𝑅 ] [

𝒉𝑇𝐸
𝑅

𝒉𝑇𝑀
𝑅 ] (3.2.8) 
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It is clear from the boundary conditions and equation (2.4.4) and (3.2.5) that the modulation to 

the PEC solution appear in the electric field projection only. In fact, by rearranging these 

expressions the extra term due to the surface impedance can be isolated where the same process 

as in chapter 2 is applied to obtain the matrices in terms of the common integrals: 

[
𝑫𝐿
𝑅𝐿 (𝑩𝐿

𝐿𝑅)𝑇𝒁𝐿

(𝒁𝑅)∗𝑩𝐿
𝑅𝐿 (𝒁𝑅)∗𝑪𝐿

𝑅𝐿(𝒁𝐿)
] [
𝒆𝑇𝐸
𝐿

𝒆𝑇𝑀
𝐿 ] − 𝑍𝑤 [

𝑫Σ
𝑅𝑅𝒀𝑅 (𝑩Σ

𝑅𝑅)𝑇

(𝒁𝑅)∗𝑩Σ
𝑅𝑅𝒀𝑅 (𝒁𝑅)∗𝑪Σ

𝑅𝑅] [
𝒉𝑇𝐸
𝑅

𝒉𝑇𝑀
𝑅 ] 

= [
𝑫𝑅
𝑅𝑅 (𝑩R

𝐿𝑅)𝑇𝒁𝑅

(𝒁𝑅)∗𝑩𝑅
𝑅𝑅 (𝒁𝑅)∗𝑪R

𝑅𝑅𝒁𝑅
] [
𝒆𝑇𝐸
𝑅

𝒆𝑇𝑀
𝑅 ] 

(3.2.9) 

[
𝑫𝐿
𝑅𝐿 𝟎

(𝒁𝑅)∗𝑩𝐿
𝑅𝐿 (𝒁𝑅)∗𝑪𝐿

𝑅𝐿(𝒁𝐿)
] [
𝒆𝑇𝐸
𝐿

𝒆𝑇𝑀
𝐿 ] = [

𝑫𝑅
𝑅𝑅 𝟎

𝟎 (𝒁𝑅)∗𝑪R
𝑅𝑅𝒁𝑅

] [
𝒆𝑇𝐸
𝑅

𝒆𝑇𝑀
𝑅 ] 

+𝑍𝑤 [
𝑫Σ
𝑅𝑅𝒀𝑅 (𝑩Σ

𝑅𝑅)𝑇

(𝒁𝑅)∗𝑩Σ
𝑅𝑅𝒀𝑅 (𝒁𝑅)∗𝑪Σ

𝑅𝑅] [
𝒉𝑇𝐸
𝑅

𝒉𝑇𝑀
𝑅 ] 

(3.2.10) 

The highlighted term in (3.2.10) represents the effect of non-zero surface impedance on the 

overlap region between the guides. Using the notation introduced in chapter 2 the constraints 

on the modal amplitudes are expressed as: 

 𝑷𝐿𝒆
𝐿 = 𝑸𝑅𝒆

𝑅 + 𝑍𝑤𝑾𝒉𝑅 (3.2.11) 

 𝑸𝐿𝒉
𝐿 = 𝑷𝑅

+𝒉𝑅 (3.2.12) 

where 𝑾 represents the self-coupling of modes on the overlap region Σ arising from the 

modified boundary condition. The scattering parameters can be obtained via the same process 

as for the PEC case, by assuming the ports are alternately excited and determine the respective 

parameters for the excited ports one at a time. The expressions for the scattering parameters 

are given by: 
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3.2.2 Testing and Verification of the Lossy Junction 

As before, CST Microwave Studio is used to produce reference estimates of the scattering 

parameters of identical systems. Only concentric systems are presented as examples in this 

section. The accuracy of the lossy junction model for offset geometries is similar to the PEC 

case. Again, very low wall conductivity is used to exaggerate the effect of the surface 

impedance, so that a significant deviation from the PEC case is observed. The following test 

cases are considered for the verification of the lossy junction method. 

 The junction between two cylindrical waveguide sections: the first of radius 1.4 mm 

and the second of radius 1.7 mm, both with length 1 mm and wall conductivity of 𝜎 =

5.4 × 104 S/m (72 modes considered: 8 radial and 5 azimuthal orders). 

 The junction between two rectangular waveguide sections: a WR10 section 

(2.54 mm × 1.27 mm) and a larger section (3.2 mm × 2.0 mm) both with lengths of 

1 mm and wall conductivity of 𝜎 = 5.4 × 104 S/m (112 modes considered: 8 

Cartesian orders). 

 𝑺𝐿𝐿 = (𝑰 + 𝑸𝐿
+𝑷𝑅

+(𝑸𝑅 + 𝑍𝑤𝑾)+𝑷𝐿)
−1(𝑰 − 𝑸𝐿

+𝑷𝑅
+(𝑸𝑅 + 𝑍𝑤𝑾)+𝑷𝐿) (3.2.13) 

 𝑺𝑅𝐿 = (𝑸𝑅 + 𝑍𝑤𝑾)+𝑷𝐿(𝑰 + 𝑺𝐿𝐿) (3.2.14) 

 𝑺𝑅𝑅 = (𝑸𝑅
+𝑷𝐿𝑸𝐿

+𝑷𝑅
+ + 𝑍𝑤𝑸𝑅

+𝑾+ 𝑰)−1(𝑸𝑅
+𝑷𝐿𝑸𝐿

+𝑷𝑅
+ + 𝑍𝑤𝑸𝑅

+𝑾− 𝑰) (3.2.15) 

 𝑺𝐿𝑅 = 𝑸𝐿
+𝑷𝑅

+(𝑰 − 𝑺𝑅𝑅) (3.2.16) 
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Identical systems are modelled in both CST and the developed software S-TNG over a 

frequency range of 30 − 300 GHz and for a select set of modes the results the reflection (𝑆11) 

and transmission (𝑆21) results are compared. For the cylindrical and rectangular junctions there 

is excellent agreement between the two simulations, as seen in Figure 3-8 and Figure 3-9.  

 

 

Figure 3-8: Concentric Lossy cylindrical junction 1.4 𝑚𝑚 − 1.7 𝑚𝑚 (𝜎 = 5.4 × 104 𝑆/𝑚) with,8 

radial orders and 5 azimuthal orders considered. Reflection (𝑆11) and Transmission (𝑆21) 

scattering parameters shown for both CST and S-TNG 

Figure 3-9: Concentric Lossy rectangular junction (𝜎 = 5.4 × 104 𝑆/𝑚) with 112 modes considered. 

Reflection (𝑆11) and Transmission (𝑆21) scattering parameters shown for both CST and S-TNG 
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The cylindrical lossy test case represents the same geometry as used for PEC cylindrical 

junction test case in chapter 2 (two cylindrical waveguides of radius 1.4 mm and 1.7 mm with 

lengths 1 mm, over a frequency range of 𝑓 = 50 − 150 GHz). By inspecting the transmission 

and reflection coefficients of the fundamental mode in both of these test cases the effects of 

lossy surface can be observed Figure 3-10. There is slight variation in the reflection coefficient 

and a much more pronounced effect on the transmission coefficient with much greater 

attenuation observed in the lossy cases. However, this result is quite exaggerated as due to the 

poor wall conductivity of σ = 5.4 × 104 S/m used. 

 

  

Figure 3-10 Fundamental mode s-parameters shown for concentric cylindrical junction 1.4 𝑚𝑚 − 1.7 𝑚𝑚 for 

walls 𝜎 = 5.4 × 104 𝑆/𝑚 and PEC. 



 

131 

 

3.3 Absorber Layer as an Infinitely Thin Ohmic Sheet 

As discussed in chapter 1, waveguides are commonly used to guide electromagnetic radiation 

to the detector elements of GHz/THz instruments. Depending on the application these detectors 

may be either coherent or incoherent. In this section the mode matching analysis techniques 

are extended to model a class of bolometers detectors (Walker 2015), which are treated as 

absorbers. 

A block of absorber material of finite thickness 𝑡 partially fills the guide cross-section 𝑆. To 

accurately model this system, it would be necessary to define two new modesets; one new basis 

modeset within the absorber material Ω and another set of co-axial modes. These co-axial 

modes would exist in the overlapping region between the absorber’s edge and the boundary 

walls over a length 𝑡 equal to the thickness of the absorber (Doherty 2012). The set of boundary 

conditions at the interface of these mode sets would be quite challenging to solve. Instead, to 

effectively capture these absorber elements the following assumptions are made; the absorber 

resides completely within the guide’s cross-section 𝑆, the absorber’s shape is described by the 

contour on Ω and the absorber material is assumed to have negligible thickness, i.e. absorber 

is considered as a two dimensional resistive sheet, as illustrated in Figure 3-11.  

By considering these simplifications, the boundary conditions become much more manageable; 

requiring that the electric field remain continuous across the absorber layer, while there is a 

jump in the magnetic field. This is due to the induced surface currents on the resistive sheet 

Figure 3-11: Schematic drawing of the infinitely thin absorber section, where the zero lengths are stretched for 

clarity. The absorber layer (𝛺) is placed within a cross-section (𝑆) orientated such that its surface normal is in 

the direction of propagation. 
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(Bracken 2015). Finally, as the co-axial modes exist over a null space only i.e. with thickness 

𝑡 = 0, their influence may be neglected. Using the same definitions of the spaces within the 

guide as in section 3.2, the boundary conditions for the transverse field are given as: 

 𝑬𝐿 = 𝑬𝑅 , on S (3.3.1) 

 𝑯𝐿 = 𝑯𝑅 , on Σ  (3.3.2) 

 𝑯𝐿 = 𝑯𝑅 −𝑲× �̂�, on Ω. (3.3.3) 

where 𝑲 =
𝑬𝑳

𝑅𝑠
=

𝑬𝑹

𝑅𝑠
, �̂� defines the direction of propagation and 𝑅𝑆 is the absorber’s sheet 

resistance with units of ohms per square (Ω/∎).  

Sheet resistance is a measure of the resistance of a two dimensional section where the material’s 

thickness is negligible. As such induced current only occur in the plane of the sheet. The bulk 

resistance of a material is given by a materials resistivity 𝜌 (Ωm) where 𝑅 =
𝜌𝐿

𝐴
. For the area 

of the absorber layer composed of width 𝑊 and thickness 𝑡 then the resistance becomes: 

 
𝑅 =

𝜌𝐿

𝑊𝑡
=
ρ

t

𝐿

𝑊
= RS

L

𝑊
  (3.3.4) 

where sheet resistance is given as 𝑅𝑠 =
𝜌

𝑡
. The unit (Ω/∎) is used if 𝐿 = 𝑊 then a square with 

𝑅𝑆 = 30 Ω/∎ has resitance of 𝑅 = 30 Ω regardless of the size of the square. 

Although the cross-section remains constant it is convenient to keep track of the L and R 

regions, as shown in Figure 3-11. The complete set of functions which span any transverse 

electric or magnetic fields are the set of corresponding modal TE or TM fields which are the 

Figure 3-12: Illustration of conventional resistance and sheet resistance. 
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same as those presented in chapter 2. As discussed in chapter 2, this implementation of the 

mode matching method relies on the use of contour integrals over the surface integrals typically 

used. This reformulation provides a more readily numerical integrable form of the coupling 

equations and allows for arbitrary geometry shapes to be efficiently considered in the coupling 

integrals (Figlia and Gentili 2002).  

3.3.1 Electric field and Magnetic Field Projections 

The absorber layer section’s boundary conditions require continuous fields across the guide 

with a jump in magnetic field across the absorber layer as detailed in equations (3.3.1) - (3.3.3). 

By determining the scalar products for corresponding set of functions which span both the 

electric (∇𝐹𝑖
R × �̂�, 𝑍𝑗

𝑇𝑀∇𝐴𝑗
𝑅) and magnetic fields (𝑌𝑖

𝑇𝐸∇𝐹𝑖
L, ∇𝐴𝑗

𝐿 × �̂�) the boundary conditions 

can be expressed as: 

From the boundary conditions it is clear that the electric field component is unperturbed across 

the absorber layer. As such, the resulting constraints are identical to those of an ideal junction 

where the two guide sections have the same cross-section: 

Base Electric Field Projections  

TE 

∫(∇𝐹𝑖
𝑅 × �̂�)∗(𝑬𝑡𝑎𝑙𝑙

𝑇𝐸,𝐿
+ 𝑬𝑡𝑎𝑙𝑙

𝑇𝑀,𝐿
)𝑑𝑆

 

𝑆

= ∫(∇𝐹𝑖
𝑅 × �̂�)∗(𝑬𝑡𝑎𝑙𝑙

𝑇𝐸,𝑅
+ 𝑬𝑡𝑎𝑙𝑙

𝑇𝑀,𝑅
)𝑑𝑆

 

𝑆

 

(3.3.5) 

TM 

∫(𝑍𝑗
𝑇𝑀∇𝐴𝑗

𝑅)
∗
(𝑬𝑡𝑎𝑙𝑙

𝑇𝐸,𝐿
+ 𝑬𝑡𝑎𝑙𝑙

𝑇𝑀,𝐿
)𝑑𝑆

 

𝑆

= ∫(𝑍𝑗
𝑇𝑀∇𝐴𝑗

𝑅)
∗
(𝑬𝑡𝑎𝑙𝑙

𝑇𝐸,𝑅
+ 𝑬𝑡𝑎𝑙𝑙

𝑇𝑀,𝑅
)𝑑𝑆

 

𝑆

 

(3.3.6) 

 
[
𝑫(𝑆) 𝟎

𝟎 (𝒁 )∗𝐶(𝑆)
 (𝒁 )

] [
𝒆𝑇𝐸
𝐿

𝒆𝑇𝑀
𝐿 ] = [

𝑫(𝑆) 𝟎

𝟎 (𝒁)∗𝑪(𝑆)
 (𝒁 )

] [
𝒆𝑇𝐸
𝑅

𝒆𝑇𝑀
𝑅 ] (3.3.7) 
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The magnetic field over the absorber is perturbed through the material as given in equation 

(3.3.3).  As such, the magnetic field projection the term scaled by 𝑅𝑠 represents the drop in the 

magnetic field due to the induced surface currents on the absorber layer: 

Base Magnetic Field Projections  

TE 

∫(𝑌𝑖
𝑇𝐸∇𝐹𝑖

𝐿)∗(𝑯𝑡
𝑎𝑙𝑙
𝑇𝐸,𝐿

+𝑯𝑡
𝑎𝑙𝑙
𝑇𝑀,𝐿

)𝑑𝑆

 

𝑆

= ∫(𝑌𝑖
𝑇𝐸∇𝐹𝑖

𝐿)∗(𝑯𝑡
𝑎𝑙𝑙
𝑇𝐸,𝑅

+𝑯𝑡
𝑎𝑙𝑙
𝑇𝑀,𝑅

)𝑑𝑆

 

Σ

+ ∫(𝑌𝑖
𝑇𝐸∇𝐹𝑖

𝐿)∗(𝑯𝑡
𝑎𝑙𝑙
𝑇𝐸,𝑅

+𝑯𝑡
𝑎𝑙𝑙
𝑇𝑀,𝑅

)𝑑𝑆

 

Ω

−
1

𝑅𝑆
∫(𝑌𝑖

𝑇𝐸∇𝐹𝑖
𝐿)∗(𝑬𝑡𝑎𝑙𝑙

𝑇𝐸,𝑅
+ 𝑬𝑡𝑎𝑙𝑙

𝑇𝑀,𝑅
)𝑑𝑆

 

Ω

 

(3.3.8) 

TM 

∫(∇𝐴𝑗
L × �̂�)

∗
(𝑯𝑡

𝑎𝑙𝑙
𝑇𝐸,𝐿

+𝑯𝑡
𝑎𝑙𝑙
𝑇𝑀,𝐿

)𝑑𝑆

 

𝑆

= ∫(∇𝐴𝑗
L × �̂�)

∗
(𝑯𝑡

𝑎𝑙𝑙
𝑇𝐸,𝑅

+𝑯𝑡
𝑎𝑙𝑙
𝑇𝑀,𝑅

)𝑑𝑆

 

Σ

+ ∫(∇𝐴𝑗
L × �̂�)

∗
(𝑯𝑡

𝑎𝑙𝑙
𝑇𝐸,𝑅

+𝑯𝑡
𝑎𝑙𝑙
𝑇𝑀,𝑅

)𝑑𝑆

 

Ω

−
1

𝑅𝑆
∫(∇𝐴𝑗

L × �̂�)
∗
(𝑬𝑡𝑎𝑙𝑙

𝑇𝐸,𝑅
+ 𝑬𝑡𝑎𝑙𝑙

𝑇𝑀,𝑅
)𝑑𝑆

 

Ω

 

(3.3.9) 

 
[
𝒀∗𝑫(𝑆)𝒀 𝟎

𝟎 𝑪(𝑆)
] [
𝒉𝑇𝐸
𝐿

𝒉𝑇𝑀
𝐿 ] = [

𝒀∗𝑫(𝑆)𝒀 𝟎

𝟎 𝑪(𝑆)
] [
𝒉𝑇𝐸
𝑅

𝒉𝑇𝑀
𝑅 ] 

+
1

𝑅𝑠
[
𝒀∗𝑫(Ω)𝒀 𝒀∗(𝑩(Ω))

𝑇

𝑩(Ω)𝒀 𝑪(Ω)
] [
𝒆𝑇𝐸
𝑅

𝒆𝑇𝑀
𝑅 ] 

(3.3.10) 
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Applying the same reduced form of notation as in the PEC derivation, the above matrix 

equations are simplified to an equivalent form given by 

 𝑸𝐸𝒆
𝑳 = 𝑸𝐸𝒆

𝑹 (3.3.11) 

 𝑸𝐻𝒉
𝑳 = 𝑸𝐻𝒉

𝑹 + 𝑨𝒃𝒆
𝑹 (3.3.12) 

Each of the ports can be excited independently and applying the same procedure as in the PEC 

and lossy junction the scattering parameters of the absorber network are determined as: 

𝑺𝐿𝐿 = (𝑰 + 𝑸𝐻
+𝑸𝐻𝑸𝐸

+𝑸𝐸 +𝑸𝐻
+𝑨𝒃𝑸𝐸

+𝑸𝐸)
−1(𝑰 − 𝑸𝐻

+𝑸𝐻𝑸𝐸
+𝑸𝐸 −𝑸𝐻

+𝑨𝒃𝑸𝐸
+𝑸𝐸) (3.3.13) 

𝑺𝑅𝐿 = 𝑸𝐸
+𝑸𝐸(𝑰 + 𝑺𝐿𝐿) (3.3.14) 

𝑺𝑅𝑅 = (𝑸𝐸
+𝑸𝐸𝑸𝐻

+𝑸𝐻 +𝑸𝐸
+𝑸𝐸𝑸𝐻

+𝑨𝒃 + 𝑰)−1(𝑸𝐸
+𝑸𝐸𝑸𝐻

+𝑸𝐻 −𝑸𝐸
+𝑸𝐸𝑸𝐻

+𝑨𝒃 − 𝑰) (3.3.15) 

𝑺𝐿𝑅 = 𝑸𝐸
+𝑸𝐸(𝑺𝑅𝑅 + 𝑰) (3.3.16) 

Clearly, there must be full symmetry between the reflection and transmission scattering 

parameters for both waveguide ports. For a matrix 𝑨 with linearly independent columns 𝑨+ =

(𝑨∗𝑨)−𝟏𝑨∗, here the pseudoinverse gives a left inverse such that 𝑨+𝑨 = 𝑰. This allows 

equations (3.3.13)- (3.3.16) to be simplified to the fully symmetric form:  

 𝑺𝐿𝐿 = (2𝑰 + 𝑸𝐻
+𝑨𝒃)

−1(−𝑸𝐻
+𝑨𝒃) (3.3.17) 

 𝑺𝑅𝐿 = (𝑰 + 𝑺𝐿𝐿) (3.3.18) 

 𝑺𝑅𝑅 = (2𝑰 + 𝑸𝐻
+𝑨𝒃)

−1(−𝑸𝐻
+𝑨𝒃) (3.3.19) 

 𝑺𝐿𝑅 = (𝑺𝑅𝑅 + 𝑰) (3.3.20) 
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3.3.2 Testing and Verification of the Infinitely Thin Absorber Model 

As before, CST Microwave Studio is used to independently verify the mode-matching 

implementation of the absorber layer section for selected test cases. The test cases involved a 

range of waveguide and absorber geometry combinations as shown in Table 3-2. There is 

particular interest in mixed geometries (i.e. circular absorber in a rectangular guide section) 

and arbitrary absorber shapes as these examples are easier to model accurately in the line-

integral formulation. For all test cases the absorber layers are placed mid-way in a section of 

length 𝑙 = 1 mm with a sheet resistance value of 𝑅𝑆 = 377 Ω/∎. 

Table 3-2 Summary of the verification test cases for the infinitely thin absorber section 

Test No. Code Description 

1 CC-1 Fully filling concentric circular absorber in a cylindrical guide  

2 CC-2 Partially filling concentric circular absorber in a cylindrical guide 

3 CR-1 Partially filling concentric rectangular absorber in a rectangular guide 

4 AC-1 Annulus absorber in a cylindrical guide 

5 AR-1 Annulus absorber in a rectangular guide 

6 CJc-1 Partially filling concentric circular absorber in a cavity section  

 

Test No. 1  CC-1: 

Test case CC-1 is shown in Figure 3-13, for the selected set of modes there is excellent 

agreement in both the reflection and transmission results generated by S-TNG and CST as 

shown in Figure 3-15. In this case, the S-TNG simulation considered 112 modes, 16 radial and 

4 azimuthal orders. 

Figure 3-13: Illustration of the system being modelled taken from CST: Cylindrical waveguide and fully filling 

absorber section. 
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CC-1 gives the simplest geometrical arrangement i.e. axial symmetry and no mixing of modes 

due to the absorber being fully filling (Σ = Ω), Since no mixing occurs the number of modes 

can be drastically reduced in the S-TNG simulation while maintaining excellent agreement 

with the CST results as shown in Figure 3-14 for the same set of modes. Here, 12 modes are 

considered, 4 radial and 2 azimuthal orders 

Figure 3-15: Cylindrical waveguide and fully filling absorber section with 112 modes considered, 16 radial and 

4 azimuthal orders. Reflection (𝑆11) and Transmission (𝑆21) scattering parameters shown for both CST and S-

TNG 

Figure 3-14: Cylindrical waveguide and fully filling absorber section with reduced number of modes present 12 

modes are considered, 4 radial and 2 azimuthal orders. Reflection (𝑆11) and Transmission (𝑆21) scattering 

parameters shown for both CST and S-TNG  
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Test No. 2  CC-2: 

Test case CC-2 is shown in Figure 3-16, for the selected set of modes there is excellent 

agreement in both the reflection and transmission results generated by S-TNG and CST as 

shown in Figure 3-17.  

For test case CC-2: 

 To achieve this level of agreement with CST 112 modes are considered, 16 radial and 

4 azimuthal orders. 

Figure 3-16: Illustration of the system being modelled taken from CST: Cylindrical waveguide and half filling 

absorber section. 

Figure 3-17: Cylindrical waveguide and half filling absorber section with 112 modes considered, 16 radial and 

4 azimuthal orders. Reflection (𝑆11) and Transmission (𝑆21) scattering parameters shown for both CST and S-

TNG 
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 This increase in mode-number compared to test case CC-1 is required to accurately 

model CC-2. 

 Although axial symmetry remains, mixing of modes occurs due to the partially filling 

absorber layer. 

 In Figure 3-18, when fewer modes are considered, the accuracy of the S-TNG 

simulation drops and deviation from the CST result is observed. Here, 12 modes are 

considered, 4 radial and 2 azimuthal orders. 

 

 

 

 

 

 

Figure 3-18: Cylindrical waveguide and half filling absorber section with reduced number of modes present 12 

modes are considered, 4 radial and 2 azimuthal orders; it is apparent that there is a loss in agreement between 

the CST and S-TNG results compared to the previous result. Reflection (𝑆11) and Transmission (𝑆21) scattering 

parameters shown for both CST and S-TNG. 
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Test No.3 CR-1 

Test case CR-1 is shown in Figure 3-19, for the selected set of modes there is excellent 

agreement in both the reflection and transmission results generated by S-TNG and CST as 

shown in Figure 3-20. 

For test case CR-1: 

 As in CC-2, because the absorber section is only partially filling there is a potential for 

mode mixing. 

 A greater number of modes are required to accurately represent the system. For fewer 

modes considered the disagreement between CST and S-TNG would grow. 

Figure 3-19: Illustration of the system being modelled taken from CST: Rectangular waveguide section with 

half filling absorber. 

Figure 3-20: : Rectangular waveguide and half filling absorber section with 8 Cartesian orders considered. Reflection 

(𝑆11) and Transmission (𝑆21) scattering parameters shown for both CST and S-TNG 
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 In this case the S-TNG simulation considered 112 modes, corresponding to 8 Cartesian 

orders. 

Test No.4 AC-1 

Test case AC-1 is shown in Figure 3-21, for the selected set of modes there is excellent 

agreement in both the reflection and transmission results generated by S-TNG and CST as 

shown in Figure 3-22. 

 

Figure 3-21: Illustration of the system being modelled taken from CST: Cylindrical waveguide and annulus 

absorber section. 

Figure 3-22: Cylindrical waveguide and an annulus absorber section with 112 modes considered, 16 radial and 

4 azimuthal orders. Reflection (𝑆11) and Transmission (𝑆21) scattering parameters shown for both CST and S-

TNG 
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For test case AC-1: 

 For this test case axial symmetry is maintained even with the unusual shape of the 

absorber see Figure 3-22. 

 There is some slight deviation from the CST results, as before by increasing the number 

of modes this disagreement can be reduced. 

 In this case, the S-TNG simulation considered 112 modes, 16 radial and 4 azimuthal 

orders. 

 Although this absorber geometry has no physical importance, it is interesting to see 

how well the code can adapt and model unusual absorber geometries and still produce 

an acceptably accurate result. 

Test No.5 AR-1 

Test case AR-1 is shown in Figure 3-23, for the selected set of modes there is excellent 

agreement in both the reflection and transmission results generated by S-TNG and CST as 

shown in Figure 3-24. 

For test case AR-1: 

 For this test case axial symmetry is maintained even with the unusual shape of the 

absorber see Figure 3-24. 

Figure 3-23: Illustration of the system being modelled taken from CST: Rectangular waveguide section with an 

annulus absorber. 
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 There is some slight deviation from the CST results, as before by increasing the number 

of modes this disagreement can be reduced. 

 In this case the S-TNG simulation considered 112 modes, corresponding to 8 Cartesian 

orders. 

 

Test No.6 CJc-1 

This example focuses on a much more complicated system with reduced geometry size and an 

increased frequency range considered. The geometry of the system is shown in Figure 3-25, 

the smaller uniform guide feeding the cavity has a diameter of 1.2 mm and is of length 1 mm. 

Figure 3-25: Illustration of the system being modelled taken from CST: Cylindrical uniform guide 

feeding the cavity section. 

Figure 3-24: Rectangular waveguide and an annulus absorber section with 8 Cartesian orders considered. 

Reflection (𝑆11) and Transmission (𝑆21) scattering parameters shown for both CST and S-TNG 
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The cavity section is formed by cascading the backshort network introduced in chapter 2. While 

the cavity has a diameter slightly larger than that of the feeding guide, 1.4 mm and has length 

3 mm. The absorber section is partially filling the cavity and has an impedance equal to the 

intrinsic impedance of the free space 377 Ω/∎. Again, simulations are performed in both CST 

and S-TNG allowing for a direct comparison. As shown in Figure 3-26, for propagating modes 

the agreement between the two sets of results is excellent and as before would improve for a 

larger number of modes present in the S-TNG simultation. For this test case the S-TNG 

simulation considered only 8 modes per azimuthal order and 5 azimuthal orders were 

considered. 

 

 

 

 

 

Figure 3-26: Cylindrical cavity with a half filling absorber section Reflection (𝑆11) 

scattering parameter shown for both CST and S-TNG 
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3.4 Flat Backshort with Ohmic Losses 

In chapter 2 the concept of the PEC backshort was introduced which could be cascaded with a 

typical waveguide section to form a perfectly reflecting cavity structure. This arrangement is 

similar to the case were an absorber layer completely fills the cross-section (𝑆) of the 

waveguide. As discussed in section 3.1, where the wall material is assumed to be a good 

conductor there exists a surface impedance (𝑍𝑠(𝜔)). The general boundary conditions for 

transverse fields required 𝑬𝑡 = 𝑍𝑠(𝜔)�̂�𝑠 ×𝑯 on 𝑆. As the surface normal is in the opposite 

direction of propagation �̂� = −�̂�, the general boundary condition required for transverse fields 

at the lossy backshort is: 

Applying the same procedure as before the complete set of functions which span any transverse 

electric or magnetic fields are the set of corresponding modal TE or TM fields which are the 

same as those presented in section 3.2. A scalar product for the transverse fields can be defined, 

which fully captures the electric field boundary constraint, as: 

 𝑬𝑡 = 𝑍𝑠(𝜔)𝑯 × �̂� on 𝑆 (3.4.1) 

 
[
𝑫 𝟎

𝟎 𝑍𝑇𝑀𝑪 
 ] [
𝒆𝑇𝐸
 

𝒆𝑇𝑀
 ] = [

𝑍𝑠𝑌
𝑇𝐸𝑫(𝑆) 𝟎

𝟎 𝑍𝑠𝑪 
 ] [
𝒉𝑇𝐸
 

𝒉𝑇𝑀
 ] (3.4.2) 

Figure 3-27: Illustration of a cavity coupled absorber section with backshort indicated. The backshort 

provides a termination point where incident modes are reflected, depending on the wall material these modes 

may lose power upon reflection. 
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From equation (3.4.2), the scattering parameters for the TE and TM modes can be solved by 

expanding the matrices into the following linear equations: 

The flat backshort reflects modes according to their own impedance mismatch with the wall 

with no scattering between modes. The resulting 𝑺11 is a diagonal matrix, with TE and TM 

elements shown populating the diagonal entries. It is clear that for a PEC wall (𝑍𝑠 = 0) the 

scattering matrix becomes [𝑺11
𝑏𝑎𝑐𝑘𝑠ℎ𝑜𝑟𝑡] = [−𝑰] as required. 

3.5 Physical Surface Roughness Model 

The quality of the boundary wall’s surface is an important factor to consider when 

characterising waveguide devices for millimetre and sub-millimetre wave applications. Sub-

wavelength surface imperfections or roughness that can arise from the manufacturing process 

may have a significant impact on the devices performance. At some level, surface 

imperfections are an unavoidable consequence of the fabrication process. However, the ability 

to model and analyse these effects is critical for the efficient development of new technologies, 

especially higher frequency devices where new manufacturing techniques are being refined.  

In this section an extension to the mode-matching method to also include a surface roughness 

model is discussed. The Gradient Model, as presented in (Gold and Helmreich 2017), provides 

a simple but powerful model of surface roughness at GHz-THz frequencies. The same approach 

is employed in CST’s Lossy Metal material, which allows for the inclusion of roughness along 

the boundary walls of guide sections. By including the gradient model in the mode-matching 

simulation, the effects of loss due to the boundary walls can be more thoroughly characterised. 

 𝑫𝒆𝑇𝐸
 = 𝑍𝑠𝑌

𝑇𝐸𝑫𝒉𝑇𝐸
 ⇒ 𝑫(𝒂𝑇𝐸,+ + 𝒂𝑇𝐸,−) = 𝑍𝑠𝑌

𝑇𝐸𝑫(𝒂𝑇𝐸,+ − 𝒂𝑇𝐸,−) (3.4.3) 

 
𝑆𝒊𝒋
𝑇𝐸 =

𝑍𝑠𝑌
𝑇𝐸 − 1

𝑍𝑠𝑌𝑇𝐸 + 1
𝛿𝑖𝑗 (3.4.4 

 𝑍𝑇𝑀𝑪𝒆𝑇𝑀
 = 𝑍𝑠𝑪𝒉𝑇𝑀

 ⇒ 𝑍𝑇𝑀𝑪(𝒂𝑇𝑀,+ + 𝒂𝑇𝑀,−) = 𝑍𝑠𝑪(𝒂
𝑇𝑀,+ − 𝒂𝑇𝑀,−) (3.4.5) 

 
𝑆𝒊𝒋
𝑇𝑀 =

𝑍𝑠 − 𝑍𝑇𝑀

𝑍𝑠 + 𝑍𝑇𝑀
𝛿𝑖𝑗  (3.4.6 
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The effective surface impedance along the wall will be a result of both the wall’s finite bulk 

conductivity and its surface roughness. 

3.5.1 Surface Roughness Gradient Model 

The gradient model uses observable roughness parameters and electromagnetic theory to 

describe surface roughness. A macroscopic view is taken to describe the interaction between 

the propagating electromagnetic field and the material’s surface. It is assumed that the 

electromagnetic field interacts with the average surface profile of the material (Gold and 

Helmreich 2017). This is given in terms of the rms-roughness parameter, often included in the 

technical documents which accompany machined components. This model does not consider 

the microscopic profile of the surface, as other physical or statistical models such as the 

snowball model (Huray et al. 2007) do, which relies on many parameters. The gradient model’s 

simplicity means that it is readily implemented, and as macroscopic imperfections are 

considered valid roughness values will have a non-negligible effect on the surface impedance.  

The profile of most machined surfaces has an irregular or random pattern which can be 

approximated by a normal distribution. This profile of the distribution of heights, is described 

by a single statistical parameter the rms-roughness (𝑅𝑞). The rms-roughness gives the standard 

deviation of the measured distribution of the height profile of the surface. Furthermore, this 

parameter gives the width of the probability density function (𝑃𝐷𝐹(𝑥)). The probability 

density function describes the probability of finding a point on the surface with height 𝑥. 

Finally, integrating the 𝑃𝐷𝐹 gives the cumulative distribution function (𝐶𝐷𝐹(𝑥)) which will 

describe the contact percentage with the material at some distance 𝑥 from the surface i.e. the 

amount of the material in contact at that point. The relationship between these statistical 

parameters is summarised by: 

 

𝑅𝑞 = √
1

𝐿
∫ℎ(𝑥)2𝑑𝑥

𝐿

0

 (3.5.1) 

 
𝑃𝐷𝐹(𝑥) =

1

𝑅𝑞√2𝜋
𝑒
−
𝑥2

2𝑅𝑞
2
 (3.5.2) 



 

148 

 

 

𝐶𝐷𝐹(𝑥) = ∫𝑃𝐷𝐹(𝑢)𝑑𝑢

𝑥

−∞

 (3.5.3) 

Figure 3-28 provides a graphical summary of the key statistical parameters required by the 

gradient model.  

The conditions under which electromagnetic waves can propagate along rough surfaces are 

considered. For this model to work some restrictions must be made: 

 Wavelength must be greater than the conductor dimensions (𝜆 ≫ 𝑤, 𝑡 −

width, thickness) 

 Conductor dimensions must be greater than the skin depth (𝑤, 𝑡 ≫ 𝛿) 

 Skin depth must be less than or equal to the rms-roughness (𝛿 ≤ 𝑅𝑞) 

 Finally, 𝑅𝑞 must be much less than the structure’s dimensions (𝑅𝑞 ≪ 𝑤, 𝑡), as the 

electromagnetic field will interact with the average surface profile of the material 

arising from its roughness.  

Figure 3-28 Provides a summary of the statistical parameters required to model the surface roughness; a) 

rms-roughness obtained from the surface profile b) probability density of finding a point at a certain height 

c) cumulative distribution function give contact percentage with the bulk material (Gold and Helmreich 

2017). 
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The appropriate macroscopic surface parameter to describe this is a location dependent 

conductivity 𝜎(𝑥). The profile of the location dependent conductivity follows that of the 𝐶𝐷𝐹 

and is scaled by the bulk conductivity 𝜎𝐷𝐶 of the material: 

 𝜎(𝑥) = 𝜎𝐷𝐶 ∙ 𝐶𝐷𝐹(𝑥) (3.5.4) 

In Figure 3-29, the DC and location dependent conductivity profiles are seen. For the DC 

conductivity profile an abrupt step from zero to the bulk conductivity is observed, while the 

location dependent conductivity profile follows the 𝐶𝐷𝐹(𝑥) with bulk conductivity reached 

well inside the material. 

The skin depth of a material can be derived by solving the Helmholtz equation for a smooth 

material with finite wall conductivity. The solution to this form of the Helmholtz equation 

describes an exponential decrease in magnetic field and current density, in the material, for 

increasing depth: 

 Δ𝑩 + 𝑘2𝑩 = 0 (3.5.5) 

where 𝑘 is the wavenumber and 𝑘2 =
𝜔

𝑐0
𝜖𝑟𝜇𝑟 − 𝑘𝜔𝜇0𝜇𝑟𝜎. 

 

Figure 3-29: Contrasts the conductivity profile of the rough surface (𝜎𝐷𝐶 ∙ 𝐶𝐷𝐹(𝑥)) with the DC-conductivity 

step of a smooth conductive material. 
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The problem can be reduced to a single dimension, by assuming translational invariance 

parallel to the conductor’s boundary, i.e. the change in a transmission line’s surface profile is 

assumed to be much larger than the penetration depth into the conductor: 

 𝜕2𝐵| | 

𝜕𝑥2
− 𝑗𝜔𝜇0𝜎𝐵| | = 0 (3.5.6) 

Here, the 𝑥-axis is taken as pointing upright into the material, leading to a differential equation 

for the magnetic field parallel to the surface given as:  

This solution for the smooth case gives important information about the nature of the result at 

the upper and lower bounds of the model.  

The one-dimensional form of the Helmholtz equation where a location dependent conductivity 

is considered takes the form: 

 𝜕2𝐵| | 

𝜕𝑥2
− 𝑗𝜔𝜇0𝜎𝐵| | −

𝜕

𝜕𝑥
𝑙𝑛(𝜎) ∙

𝜕𝐵| | 

𝜕𝑥
= 0 (3.5.8) 

here the highlighted term is related to the location dependent conductivity. This is a Riccati 

type differential equation and, in general, can only be solved numerically. The 𝑥-direction is 

chosen to be perpendicular to the metal surface, which is then located in the 𝑦𝑧-plane. If the 𝑧-

direction corresponds to the propagation direction, the remaining component of the magnetic 

field is 𝐵𝑦. In this case, the current density in the 𝑧-direction, 𝐽𝑧, can be calculated as shown: 

 

𝐵| |(𝑥) = 𝐵| |(0)𝑒
−(1+𝑗)

𝑥
𝛿, with 𝛿 = √

2

𝜔𝜇0𝜎
. (3.5.7) 

 
(∇ × 𝑩)𝑧 =

𝜕𝐵𝑦

𝜕𝑥
−
𝜕𝐵𝑥
𝜕𝑦

= 𝜇0𝐽𝑧  (3.5.9) 

 
𝐽𝑧 =

1

𝜇0

𝜕𝐵𝑦

𝜕𝑥
  (3.5.10) 
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In Figure 3-30, the magnetic field is shown for the conventional and the location dependent 

form of the Helmholtz equation for a set of frequencies [1, 10, 100] GHz. In the smooth case, 

there is an abrupt transition from the field outside the conductor to within. While in the rough 

case there is a gradual transition from outside to inside the conductor, here 𝑅𝑞 = 1 μm. This 

behaviour is consistent with the conductivity profiles shown in Figure 3-29. Clearly, the 

roughness impacts the magnetic fields away from the plane surface. Furthermore, well inside 

and away from the conductor the smooth and rough fields begin to match up as expected. 

Two methods for determining the surface impedance of the rough material are presented in 

(Gold and Helmreich 2017). One method depends on a single complex frequency component 

and the other on two real effective material parameters associated with the rough fields. Using 

the definition of surface impedance, the ratio of the rough fields is determined from Faraday’s 

and Ampere’s Laws to obtain 𝑍∎,𝑟𝑜𝑢𝑔ℎ, the rough surface impedance.  

Faraday’s Law gives: (∇ × 𝐸)𝑦 = −
𝜕𝐸𝑧
𝜕𝑥

= −𝑗𝜔𝐵𝑦 ⇒ 𝐸𝑧 = ∫ 𝐵𝑦𝑑𝑥

 

𝜎>0

 
(3.5.11) 

Ampere’s Law gives: (∇ × 𝐸)𝑦 = −
𝜕𝐸𝑧
𝜕𝑥

= −𝑗𝜔𝐵𝑦 ⇒ 𝐸𝑧 = ∫ 𝐵𝑦𝑑𝑥

 

𝜎>0

 
(3.5.12) 

Figure 3-30: Comparison of the magnetic field strengths at [1, 10, 100] GHz inside and outside the conductor 

for smooth and rough surfaces with equal DC-conductivity. There is a clear effect on the magnetic field 

strength for the rough surface as the conductor is approached. 
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The region of integration is only valid for the extent where the conductor is present i.e. 𝜎 > 0. 

3.5.2 Verification of Implementation and Analysis of Rough Surface Impedance 

To verify the correctness of this implementation of the gradient model CST is used as a 

benchmark. For test cases with varying degrees of roughness 𝑅𝑞 = [0.5, 1.0, 5.0] μm the 

surface impedance values generated from S-TNG and CST are plotted against one another for 

a fixed conductivity of 5.8 × 107S/m. 

In Figure 3-31, perfect agreement is observed between the two implementations for all 

roughness value considered.  

 
𝑍∎,𝑟𝑜𝑢𝑔ℎ = −𝜇0

𝐸𝑧
𝐵𝑦

= −𝑗𝜔
∫ 𝐵𝑦𝑑𝑥
 

𝜎>0

∫ 𝐽𝑧𝑑𝑥
 

𝜎>0

 (3.5.13) 

Figure 3-31: Shows the excellent agreement between the CST implementation and the mode-matching implementation 

for bulk conductivity of 5.8 × 107 𝑆/𝑚. For a) 𝑅𝑞 = 0.5 𝜇𝑚 b) 𝑅𝑞 = 1 𝜇𝑚 and c) 𝑅𝑞 = 5 𝜇𝑚 
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In sections 3.1.3 and 3.2.2, an exaggerated conductivity value of 𝜎 = 5.8 × 104 S/m was used 

to observe significant deviation from the PEC case. However, it is clearly not correct to assume 

this value when modelling physical systems. Typically materials with conductivity values of 

the order of ~107 S/m are used in waveguide structures. Here, the variation of surface 

impedance at 100 GHz for a material with excellent conductivity (𝜎 = 5.8 × 107S/m) and 

varying roughness 𝑅𝑞 = [0.25 − 25] μm is investigated.  

In Figure 3-32, the rough surface impedance values are compared with smooth copper 

(𝜎 = 5.8 × 107S/m) and the poor conductor (𝜎 = 5.8 × 104S/m) used in earlier test cases. 

For a roughness of ≈ 7 μm the real impedance for the rough copper material and smooth poor 

conductor have comparable magnitude, while the imaginary component matches at ≈ 1 μm.  

Although the real and imaginary terms grow at different rates, losses consistent with those 

observed in earlier test cases are obtained by taking the magnitude of the surface impedance. 

Here, for a roughness of 3 μm the magnitude of the rough surface impedance would be 

consistent with that of the poor conductor. This is close to 0.1% of the wavelength at 100 GHz, 

which corresponds to quite an extreme level of roughness (one would hope to have roughness 

at W-band be closer to 0.1 μm). However, at higher frequency measurements, where the 

wavelength is in the sub-millimetre range, this level of roughness may be more realistic. 

 

Figure 3-32: Illustrates the variation of surface impedance with increasing surface roughness at 100 GHz 

plotted with the smooth copper result. The poor conductivity value 𝜎 = 5.8 × 104 𝑆/𝑚 used in earlier 

simulations is also plotted to show how roughness can impact the material’s surface impedance. 
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Likewise, by considering how impedance grows with frequency the same trend is observed for 

the smooth lossy material. 

In Figure 3-33, a plot of surface impedance against frequency is shown where the three 

materials introduced earlier are considered. The roughness value selected, 1.0 μm, gives 

impedance close to the initial starting impedance of the smooth poor conductor case.  

The cylindrical junction test presented in section (3.2.2) is revisited with rough lossy walls 

considered. As observed in Figure 3-34, there is excellent agreement between the two cases. 

However, the rough surface approach offers a description of the waveguide which is more in 

line with a real world system. 

Figure 3-34 Show a comparison between the levels of loss for a copper material with 𝑅𝑞 = 1.0 𝜇𝑚 and the poor 

conductor material considered in earlier test cases. 

Figure 3-33: Illustrates the variation in surface impedance with frequency for copper with 𝑅𝑞 = 1.0 𝜇𝑚, 

smooth cooper and the poor conductor value 𝜎 = 5.8 × 104 𝑆/𝑚. 
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3.6 Experimental Work 

For completeness, it was envisioned that the newly developed mode-matching analysis 

methods would be applied to simple experimental arrangements that could be performed using 

the Department of Experimental Physics VNA (Vector Network Analyser) laboratory. These 

measurements would provide experimental verification of the techniques presented in this 

chapter. The structures to be analysed were a lossy uniform guide section and a cavity coupled 

absorber device, as shown in Figure 3-35. These systems represent systems which can now be 

modelled through advancements in the mode-matching software i.e. lossy surfaces and an 

absorbing surface. 

A significant amount of preparation was required to facilitate both of these measurements. In 

the case of the uniform lossy guide section, components had to be machined and a custom 

Through Reflection Line (TRL) calibration kit for the VNA was designed and fabricated in 

house. Performing the TRL calibration would allow for the lossy line to be isolated and more 

accurately measured. In the case of the cavity coupled absorber section, the plan was to suspend 

the absorber layer (resistive carbon ink) within the guide on 3D printed layer. This meant that 

the absorber layer sheet resistance and the 3D printed material dielectric properties had to be 

well characterised before any modelling of the system could be completed.  

At this time the results from these experimental test cases are not of sufficient quality to present 

in this thesis. Ultimately this is due to a number of factors: time constraints due to the VNA 

laboratory not being accessible for an extended period of time (due to Covid-19 emergency), 

quality of the machined components necessary for TRL calibration and control of the absorber 

layer surfaces. However, much of the groundwork has been done so perhaps these 

measurements may be revisited at another time.  

Figure 3-35 a) Shows the lossy uniform guide section complete with the necessary electric field constraints b) 

Shows the cavity coupled absorber section with the PLA substrate and suspended absorber layer. 

a b 
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3.7 Summary 

This chapter focuses on the advancements made in the modelling capabilities of mode matching 

methods. The most important of which is the more rigorous treatment of the boundary walls 

which is necessary for the accurate analysis of high frequency and multimoded waveguides. In 

the description of the mode-matching method the effects of non-zero surface impedance along 

the boundary can be accurately modelled by including a large but finite wall conductivity. 

Furthermore, the non-PEC treatment of the boundary was extended to allow for surface 

roughness to be included via the simple but power Gradient Model. As in Chapter 2 verifying 

test cases are presented throughout this chapter to validate the correctness of this lossy walled 

approach. Finally, the infinitely this absorber layer model developed by (Doherty 2012) was 

revisited. Using the newly implemented contour integral form of the mode-matching methods 

it was shown how arbitrary absorber shapes could be trivially modelled. 
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Chapter 4 – New Tools for Pixel Modelling  

The development of additional techniques for the analysis of millimetre and sub-millimetre 

wave technologies is discussed in this chapter. These features are developed with efficiency, 

accuracy and simplicity in mind, to provide a new set of tools to solve specific problems 

encountered by the mode matching software. One potential bottleneck for the analysis of 

waveguide structures is the use of numerical techniques to evaluate the coupling integrals. 

Often there may be a situation where no analytic solutions are available (e.g. offset cylindrical 

junction sections). For more complex geometries or systems, where a large number of modes 

are considered, the problem becomes increasingly computationally intensive. 

By using hardware acceleration methods, such as GPU (Graphical Processing Unit) computing, 

these numerical constraints can be alleviated. The implementation of the mode matching 

methods detailed in the previous chapters have relied on sequential programming techniques, 

as shown in Figure 4-1, this means tasks are scheduled in order and take place one after another. 

By considering parallelising the tasks using the added power of the GPU, independent tasks 

can be separated and performed at the same time, as shown in Figure 4-1. This can radically 

improve the performance of the software. In this chapter the initial steps are taken towards the 

development of a fully parallelised implementation of the mode matching techniques presented 

so far. This section will introduce the necessary tools, software and parallel thinking required 

to develop efficient implementations of the mode matching methods. 

Figure 4-1: Sequential, Concurrent and Parallel execution of processes (https://medium.com/platformer-

blog/node-js-concurrency-with-async-await-and-promises-b4c4ae8f4510) 
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Another novel tool developed in this chapter is the virtual non-reciprocal waveguide port. In 

Chapter 3, the concept of lossy elements was introduced, including in particular the absorber 

network segment. It is often difficult to determine the total power dissipated by such a lossy 

element for a given excitation. Here, rather than determining the overall loss with and without 

the absorber present, i.e. using the return loss method, the information can be obtained from 

augmenting the scattering matrix for the system. The conventional 2-port scattering matrix 

description of the absorber layer is extended to include a virtual port. This virtual port is 

mapped to the lossy element, enabling the real power dissipated by the lossy element to be 

accounted for through outgoing virtual modes under the condition of non-reciprocity. In this 

chapter a practical method for power monitoring of lossy elements using this technique is 

presented in detail. 

Finally, an alternative treatment of the interface between waveguide aperture and free-space is 

considered. So far this transition has been largely ignored and zero reflection at the aperture 

was assumed. However, to fully model compact open ended waveguide devices (OEGs), such 

as waveguide probes, the correct scattering of modes at the interface must be determined. In an 

attempt to more accurately account for the free-space transition a method to match guide modes 

to a large but finite set of free-space modes (composed of fan of radiating plane-waves) was 

proposed. Ultimately, the mode matching method was not suited to this implementation due to 

the necessarily high density of free-space modes.  
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4.1 Development of a Parallelised Routine for Mode-Matching Methods 

A significant drawback to the sequential numerical technique is the time taken to evaluate the 

integrals presented in Chapters 2 and 3 where the structure is complex or over-moded. In this 

section, the set of tools and routines required to solve the numerical coupling integral in parallel 

are developed. The main goal is to improve the simulation times with no loss in accuracy. 

Hardware devices such as GPUs (graphical processing units) are well suited to these 

computationally intensive tasks due to their underlying architecture. One restriction made is 

that any developed software must be portable across many devices and architectures. As such, 

OpenCL (Open Computing Language) is chosen as the development framework for the 

parallelised mode matching methods. Unlike other frameworks, such as CUDA or Tensor, 

OpenCL is an open source and widely implemented API (Application Programming Interface) 

for the development of parallel routines. Some devices have architecture designs which can be 

better utilized by code developed specifically with that architecture in mind i.e. NVIDIA with 

CUDA. Each device may have a different underlying architecture, however, OpenCL employs 

a universal design pattern which is portable across all devices (Opencl 2009). Thus, portable 

programs can be developed that may use all resource available, regardless of architecture, 

potentially on a heterogeneous platform i.e. including a combination of CPUs, GPUs, FPGAs, 

etc. The OpenCL language is based on C99 but has many custom features to aid in the 

development of parallelised code (Opencl 2009).  

Efficient development of parallel code relies on good knowledge of the hardware architecture 

available. However, OpenCL provides an abstraction of the architecture to provide a clearer 

Figure 4-2: Overview of the OpenCL development framework; Each compute device (separate GPU’s or 

CPU’s) is made up of a number of compute units which operate in parallel and which contain a number of 

processing elements which too can operate in parallel. The number of parallel process which can take place on 

a compute device is governed by the device itself. Each compute device is scheduled and initialised by some 

host device (Opencl 2009). 
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picture of the hardware device’s execution cycle. The framework for OpenCL at its core is 

quite straightforward, but is governed by a strict set of rules that must be adhered to. In Figure 

4-2, an overview of the development framework used for OpenCL is presented. 

OpenCL handles the workflow across many devices through a dedicated host device. The host 

is used to manage and schedule the memory and execution operations on the available devices 

on the platform. Each of the non-host devices are available for computation operations and are 

referred to as compute devices which are sub-divided into compute units or work groups (Gaster 

et al. 2013). Work groups can be further sub-divided into processing elements or work items. 

This architecture is highlighted in framework overview shown in Figure 4-2. The problem is 

defined by an object known as the kernel which contains the code to be executed on the device, 

effectively it is the entry point of the OpenCL code i.e. its main function (Gaster et al. 2013). 

The kernel may be executed across one or many Compute Devices depending on the 

application. In this implementation only the operation for one compute device being utilized is 

considered. The architecture of OpenCL can also be seen in the memory map detailed in Figure 

4-3. 

Memory management in OpenCL is left explicitly to the programmer, they must control the 

flow of data between the compute devices and host (Opencl 2009). There are three types of 

memory in OpenCL: 

 Global and Constant Memory is visible to all work items. It is the largest and slowest 

of the memories available on the device. Constant memory is read only for the device.  

o 1-10 GB of Global Memory  

Figure 4-3 Shows an overview of the OpenCL memory model. The local memory banks for each work groups 

are separate from each other and must be scheduled to write to global memory such that the completed task 

can be required to the host device. 
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o 10-100 KB of Constant Memory 

 Local Memory is shared memory within work groups. It is smaller but much faster than 

global memory.  

o 1-10 KB per work-group 

 Private Memory is available to individual work items. It is also very limited in size but 

has rapid memory operations.  

o 10 bytes per work item 

This memory allocation is shown in Figure 4-3, it can be seen that the global and constant 

memory banks are shared between the host and the computing device. Since these are separate 

devices there is clear a bottleneck where data must be transferred between them. The host 

device or host context defines all memory management and scheduling aspects of the 

execution. This context becomes especially important where multiple devices or kernels must 

operate concurrently. Scheduling and synchronisation in OpenCL is critical. Work items can 

be easily synchronised within individual work groups. However, between different work 

groups this is no longer possible as they operate on different local memory banks. Utilities such 

as barriers and memory fences provide a mechanism to synchronise operations between work 

groups during execution (Gaster et al. 2013). These tools ensure all local and global operations 

have been executed before proceeding any further. The theory introduced in this section gives 

the necessary tools to develop parallel scripts to tackle the coupling integral problem. 

The OpenCL framework provides an abstraction from the individual architectures of different 

hardware devices. However, there are certain hardware aspects that must be considered which 

may influence the design choices made by the programmer or to gain the maximum 

performance from the compute devices. Each device will have a certain number of CPUs or 

compute units (CUs) in the case of GPUs, certain precision limits/speeds and amount of 

memory bandwidth. For example, in GPUs typically there are > 40 CUs, while CPUs typically 

have 4-8 Cores. Because of this GPUs are more suited towards parallel applications as the 

problem has many more available compute units. The main development device used in this 

work is an AMD FirePro™ W9100 GPU, see Figure 4-4. The key features of this card are 

that: 

 Stream Processors and Compute Units: 2816 and 44 CUs. 

 Peak Single (FP32)/Double Precision (FP64) Performance: 5.24/2.62 TFLOPs. 

 Memory Size/Type: 32 GB GDDR5 



 

162 

 

 Memory Bandwidth: 320 GB/s. 

The interface code used by the host device to perform the scheduling and memory management 

aspects of the program is typically written in a more modern accessible language. Here, the 

development language is Python and using the PyOpenCL module the parallel code can be 

easily integrated into existing code. The best way to understand the development of the 

OpenCL code is through example. In the following section the solution for the coupling 

integrals in parallel is presented with reference to the components introduced in this section to 

give a clear insight into the development and operation of OpenCL code. 

4.1.1 Parallel Algorithm Solution to Numerical Coupling-Integrals 

The networks introduced in Chapter’s 2 and 3 rely on the solutions to the common coupling 

integrals type i.e. Type B, C or D. In many cases there are analytical solutions to these integrals, 

however, where no analytic solutions can be found the problem must be solved numerically. 

This section outlines an approach which can be applied to either rectangular or cylindrical 

geometries, however there is a particular focus on the offset cylindrical junctions as there exists 

no analytical solution to this scenario. As shown in Chapter 2, the surface integral for the 

common integrals can be reduced to contour integrals, which are more readily integrable, and 

interpolation methods can be exploited to deal with singularities in the contour integral 

approach. The common integral presented in Chapter 2 must be re-formulated to take 

advantage of the parallel capabilities of the GPU device.  

Figure 4-4: Overview of the AMD FirePro™ W9100 GPU architecture (AMD 2013) 
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The contour integrals can be expressed in general as the inner product of the potentials of the 

two different modeset as shown in equation (4.1.4). This general form of the solution will be 

the foundation of the parallel formulation. Here Ω represents the intersection region between 

the two uniform guide sections that must be integrated over, A and B represent the potentials 

associated with each mode being considered. Collectively they span all the necessary coupling 

integrals for the normal (TE-TE, TM-TM) and tangential (TE-TM, TM-TE) mode coupling 

cases. The algorithm developed here works by breaking the problem into independent blocks 

which are divided among the available work groups.  

Type     Surface Integral Form      Line Integral Form  

B 

𝐵𝑖𝑗
𝑘𝑙(𝑆) = ∫∇𝐴𝑖

𝑘 ∙ (∇𝐹𝑗
𝑙 × �̂�)𝑑𝑆

 

𝑆

 

−𝐵𝑗𝑖
𝑙𝑘(𝑆) = ∫∇𝐹𝑖

𝑘 ∙ (∇𝐴𝑗
𝑙 × �̂�)𝑑𝑆

 

𝑆

 

𝐵𝑖𝑗
𝑘𝑙(𝑆) = ∫ (𝐴𝑖

𝑘∇𝐹𝑗
𝑙) 𝑑𝑙

 

𝑑𝑆

 

𝐵𝑖𝑗
𝑘𝑙(𝑆) = −∫ (𝐹𝑗

𝑙∇𝐴𝑖
𝑘) 𝑑𝑙

 

𝑑𝑆

 

(4.1.1) 

C 𝐶𝑖𝑗
𝑘𝑙(𝑆) = ∫∇𝐴𝑖

𝑘 ∙ ∇𝐴𝑗
𝑙𝑑𝑆

 

𝑆

 𝐶𝑖𝑗
𝑅𝐿(𝑆𝐿) =

(𝛽𝑐,𝑖
𝑅,𝑇𝑀)

2
∫ 𝐴𝑖

𝑅∇𝐴𝑗
𝐿 ∙ �̂�𝑑𝑙

 

𝑑𝑆

(𝛽𝑐,𝑖
𝑅,𝑇𝑀)

2
− (𝛽𝑐,𝑗

𝐿,𝑇𝑀)
2  

(4.1.2) 

D 𝐷𝑖𝑗
𝑘𝑙(𝑆) = ∫∇𝐹𝑖

𝑘 ∙ ∇𝐹𝑗
𝑙𝑑𝑆

 

𝑆

  𝐷𝑖𝑗
𝑅𝐿(𝑆𝐿) =

(𝛽𝑐,𝑖
𝐿,𝑇𝐸)

2
∫ 𝐹𝑗

𝐿∇𝐹𝑖
𝑅 ∙ �̂�𝑑𝑙

 

𝑑𝑆

(𝛽𝑐,𝑗
𝐿,𝑇𝐸)

2

− (𝛽𝑐,𝑖
𝑅,𝑇𝐸)

2
 

(4.1.3) 

 ∫𝑨 ∙ ∇𝑩 𝑑𝑙

 

𝑑Ω

 
(4.1.4) 
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To demonstrate the method, consider 4 workgroups and 8 modes on both sides of the interface 

between the guides. Each of the blocks works on a solving the coupling integrals for a particular 

sub-group of the modes, the outer-product of these modesets must be taken as the modes can 

couple in a bijective manner. The notation for the modal potentials for the left and right 

modesets A and B are defined. The work groups are split up such that the sub-groups of these 

modal potentials cover all cases of the outer product between the two sets of modal potentials 

as shown in Figure 4-5. 

 

𝑨 = {𝐴0, … , 𝐴7} 

𝑩 = {𝐵0, … , 𝐵7} 
(4.1.5) 

The outer product of the modal potentials within each of these work groups gives all valid 

modal potentials that may exist. Set-up of the problem is handled strictly by the host device, 

the compute device operates on the mode data supplied. As such, any mode partitioning must 

be done externally to the OpenCL code. The complete set of coupling integrals will have the 

following form where the contribution from all the sub-groups are brought together to give the 

full result for the given modesets. 

Figure 4-5: Division of modeset among workgroups, each workgroup will operate on a different subset of 

modes to produce a complete scattering matrix 
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Within each work group the coupling integrals, which make up the set of modal combination 

shown in Figure 4-6, are solved using Riemann sums over the region of integration. Here these 

are all solved in parallel by the work items which are available in each work group, each 

combination gets a dedicated branch of local memory. By contrasting this splitting of the work 

load with the OpenCL code given in Figure 4-7. The work groups constituent work items 

generate the modal potentials X (which are by far the most computationally intensive part of 

the kernel call). After which, a barrier is placed to ensure that all potential have been determined 

before the outer product of the sub-group of modes is calculated. The solutions to the outer 

product are continuously summed Y such that by Riemann sums the coupling integral for the 

modes is calculated. These are then passed to global memory and read by the host Z. Each of 

the different cases for couple between the different mode types is also handled by the OpenCL 

code. This code scales cubically, such that for 16 work groups a similar pattern can be followed 

to determine the overall coupling integrals of the modes. The modeset solutions are padded to 

retain the square shape and pads can be removed after the execution cycle of the OpenCL code. 

Figure 4-6: Joining of the results obtained from each workgroup, this has the form of the required 

scattering matrix composed of the modesets A and B 
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The host is responsible for all of the set-up and execution calls as well as reading/building the 

OpenCL code and providing a context for the kernel execution. As well as this the argument 

types for the kernels can be predefined here as they are not expected to change once the code 

has been built. Here any common structures needed between Python and OpenCL can be 

defined such as mode structures and boundary shapes. These can be passed to the device once 

populated as a type which is dependent on the structure or as a None type. Calls to the kernel 

involve firstly determining the problem size and then assigning the appropriate amount of 

resources to the kernel call. Here the required memory assets local/global are assigned 

including any constant values such as the boundary. These assets are then given to the kernel 

where it is then queued and executed. The final result is fetched from the kernel and the device 

X 

Y 

Z 

Figure 4-7: OpenCL code for the integrate scalar normal case core blocks are: X generates the modal 

potentials, Y continuously summed outer-products, Z passed to global memory and read by the host. 
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memory assets are released. Finally, unwrapping and stacking of the data blocks highlighted in 

the previous section is performed. The final result is then passed where the scaling a refactoring 

can occur. 

The correct scaling factors associated with the coupling integrals must be also applied to get 

correctly normalised results. These are generated at a mesh-grid which perform elementwise 

multiplication on the blocks of integral results. In some cases, padding of the mode-sets is 

performed to ensure square matrices are produced, these extra elements must be removed from 

the final result. These extra elements are pushed to the sides and bottoms of the blocks and 

require just the last few row and columns to be removed before progressing. Each of the results 

from the blocks algorithms are cast together using a concatenate function to assemble the TE-

TE, TE-TM, TM-TE and TM-TM results. Lastly, this separation of the modes into their 

transverse electric and magnetic components is not natural when discussing cylindrical guide 

section. Instead, they should be ordered in terms of their azimuthal and radial orders. This 

requires refactoring the OpenCL result into this form. Test cases were performed to gauge the 

performance gain of the OpenCL implementation of the integration code. Two circular guide 

sections with dimensions r = 1.4 mm and r = 1.7 mm were cascaded together, with an offset 

dx (0.2 mm) & dy (0.2 mm) present. For the numerical coupling integrals PEC and generalised 

(lossy) single runs of the full modesets are performed and the timing is shown below.  

Figure 4-8:Shows the performance gain of parallel execution over serial execution: a) shows the raw 

simulation times of different networks using serial and parallel code b) gives the ratio of serial and parallel 

simulation times for identical systems. 
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Table 4-1 Gives the times of serial and parallel executions for varying number of modes included. Significant 

slowdown in serial execution with increasing modeset size is observed. 

4.1.2 Testing and Verification of the Parallelised Code 

Verification of the method relies on CST Microwave Studio to produce reference estimates of 

the scattering parameters for identical systems as performed for the networks in Chapters 2 and 

3. Considering the same test cases, the OpenCL implementation can be compared against 

identical CST simulation results. As before, very low wall conductivity is used to exaggerate 

the effect of the surface impedance, so that a significant deviation from the PEC case is 

observed. The following test cases are considered for the verification of the parallelised 

implementation. 

 Junction of two cylindrical waveguide sections: the first of radius 1.4 mm and the 

second of radius 1.7 mm, both with length 1 mm and PEC walls (210 modes 

considered: 14 radial  and 8 azimuthal orders). 

o With no offset (concentric case) 

o With a 0.2 mm offset in the x-direction of the second guide 

 Junction of two cylindrical waveguide sections: the first of radius 1.4 mm and the 

second of radius 1.7 mm, both with length 1 mm and wall conductivity of 𝜎 = 5.4 ×

104 S/m (210 modes considered: 14 radial  and 8 azimuthal orders). 

o With no offset (concentric case) 

o With a 0.2 mm offset in the x-direction of the second guide 

Type No. Modes Execution time 
(Python) 

Execution time 
(OpenCL) 

Coupling Integral (offset) 6 0.07 (s) 0.0312 (s) 

 28 3.06 (s) 0.042 (s) 

 56 13.9 (s) 0.047 (s) 
 88 47.04 (s) 0.0589 (s) 

 120 110.5 (s) 0.0745 (s) 

 150 182.4 (s) 0.0795 (s) 

 190 341.6 (s) 0.159 (s) 
    

Generalised Integral (Lossy) 6 0.13 (s) 0.0312 (s) 

 28 2.9 (s) 0.11 (s) 

 56 10.4 (s) 0.132 (s) 
 88 30.9 (s) 0.127 (s) 

 120 69.13 (s) 0.170 (s) 

 150 104.5 (s) 0.175 (s) 

 190 185 (s) 0.30 (s) 
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The following figures demonstrate the correctness of the accelerated mode matching code over 

a frequency range of 30 − 300 GHz and for a select set of modes the results the reflection 

(𝑆11) and transmission (𝑆21) results. For the both the concentric and offset PEC junctions there 

is excellent agreement between the two simulations as observed in Figure 4-9 and Figure 4-10. 

 

Figure 4-9: Results for selected modes in a 1.4mm circular to 1.7mm circular guide junction, with no offset. The 

OpenCL method is used in this case with 14 radial orders included. 

Figure 4-10 Results for selected modes in a 1.4mm circular to 1.7mm circular guide junction, with dx = 0.2 

mm offset. The OpenCL method is used in this case with 14 radial orders included. 
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Furthermore, for the both the concentric and offset lossy junctions (𝜎 = 5.4 × 104 S/m) 

excellent agreement is also observed between the two simulations as shown in Figure 4-11 and 

Figure 4-12. 

 

  

Figure 4-11 Results for selected modes in a 1.4mm circular to 1.7mm circular guide junction, with no offset, 

here lossy walls with conductivity of (5.8 × 104 𝑆/𝑚). The OpenCL method is used in this case with 14 radial 

orders included. 

Figure 4-12 Results for selected modes in a 1.4mm circular to 1.7mm circular guide junction, with dx 0.2 

mm offset, here lossy walls with conductivity of (5.8 × 104 𝑆/𝑚). The OpenCL method is used in this case 

with 14 radial orders included. 
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4.2 Power Monitoring Via Virtual Non-Reciprocal Port 

Power monitoring within guide sections is an essential tool needed to accurately account for 

power absorption in waveguide systems, such as waveguide or cavity coupled absorber 

sections. Furthermore, with many mechanisms available for power loss i.e. absorber layers, 

lossy walls, free-space gaps, etc, the normal technique used to determine the power absorbed 

can become cumbersome and inaccurate. That is the return loss method, which accounts for 

power loss on each element by running the simulation multiple times with and without the 

structures of interest. Rather than determining the overall loss of the system, its scattering 

matrix can be augmented. The power dissipated by the lossy elements is accounted for through 

virtual modes on virtual non-reciprocal ports. The virtual modes are determined by enforcing 

conservation of total real power on networks including virtual ports. The scattering notation 

introduced in Chapter 2 is employed to describe the new 3-port network, as shown in Figure 

4-13.  

The additional port will, at first, be treated as any other port and is assumed to have the same 

properties as the waveguide port before any restrictions are applied. As such, the scattering 

formulation of this network is given by: 

 [
𝐛1
𝐛2
𝐛3

] = [
𝐒11 𝐒12 𝐒13
𝐒21 𝐒22 𝐒23
𝐒31 𝐒32 𝐒33

] [

𝐚1
𝐚2
𝐚3
] (4.2.1) 

Figure 4-13 Schematic overview of the network arrangement of a three-port device. At each 

port there exist incoming and outgoing amplitudes “𝑎” and “𝑏” respectively. 
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At this point the virtual modes at port 3 and their modal powers are not determined. The power 

at each port can be found by summing the square of the magnitudes of the modal amplitudes 

and the modal power over all the available modes at the port. The input power for the whole 

network is the sum of the input powers at all ports. 

 𝑃𝑥 =∑|𝑎𝑥,𝑖|
2
𝑃𝑥,𝑖 , for

𝑁𝑥

𝑖=1

 𝑥 = 1,2,3 (4.2.2) 

In a matrix formulation this is shown below: 

 𝑃𝑖𝑛 = [𝐚1 𝐚2 𝐚3]∗ [
𝑷1 𝟎 𝟎
𝟎 𝑷2 𝟎
𝟎 𝟎 𝑷3

] [

𝐚1
𝐚2
𝐚3
] or 𝑃𝑖𝑛 = < 𝐚|�̃�|𝐚 >  (4.2.3) 

with 𝑃1, 𝑃2 and 𝑃3 being diagonal modal power matrices. 

The reflected power for the network or the individual ports can be obtained in a similar manner, 

here the amplitudes would be those of the reflected modes 𝒃 i.e. 𝑃𝑜𝑢𝑡 = < 𝐛|�̃�|𝐛 >. If the 

conservation of power is to be maintained the input and output powers must be equal i.e. 𝑃𝑖𝑛 =

𝑃𝑜𝑢𝑡. Furthermore, the relationship between the incident and reflected mode amplitudes gives 

|𝐛 >= 𝐒|𝐚 > and < 𝐛|=< 𝐚|𝐒+ as shown below  

 |𝐛 >= 𝐒|𝐚 > ⇒ [
𝐛1
𝐛2
𝐛3

] = [
𝐒11 𝐒12 𝐒13
𝐒21 𝐒22 𝐒23
𝐒31 𝐒32 𝐒33

] [

𝐚1
𝐚2
𝐚3
] (4.2.4) 

 < 𝐛|=< 𝐚|𝐒+ ⇒ [𝐛1 𝐛2 𝐛3]
∗ = [𝐚1 𝐚2 𝐚3]∗ [

𝑺11
+ 𝑺21

+ 𝑺31
+

𝑺12
+ 𝑺22

+ 𝑺32
+

𝑺13
+ 𝑺23

+ 𝑺33
+

] (4.2.5) 

By applying this relationship and enforcing the conservation of real power for arbitrary 

excitation it can be shown that: 



 

173 

 

 [

𝑺11
+ 𝑺21

+ 𝑺31
+

𝑺12
+ 𝑺22

+ 𝑺32
+

𝑺13
+ 𝑺23

+ 𝑺33
+

] [
𝑷1 𝟎 𝟎
𝟎 𝑷2 𝟎
𝟎 𝟎 𝑷3

] [
𝐒11 𝐒12 𝐒13
𝐒21 𝐒22 𝐒23
𝐒31 𝐒32 𝐒33

] = [
𝑷1 𝟎 𝟎
𝟎 𝑷2 𝟎
𝟎 𝟎 𝑷3

] (4.2.6) 

and therefore 𝑺+�̃�𝑺 = �̃� where + denotes the conjugate transpose of a matrix. 

This assumption of conservation of real power through the guide section includes any power 

that may be fed in at the additional port. With the generic scattering matrix for a 3-port network 

derived in equation (4.2.6) some restrictions can be imposed based on the requirements of the 

virtual port. Since this port is mapped to a non-radiating element in the network, unlike a 

traditional waveguide port, this port will have no mechanism for excitations as no stimulus can 

be applied. Thus, any scattering parameters originating from this port must be zero, i.e. 𝑺13 =

𝑺23 = 𝑺33 = 0, while scattering paths from the waveguide ports to the virtual port are retained. 

Furthermore, there is no input power associated with the virtual port i.e. 𝑃3(in) = 0. Applying 

this to the matrix system defined in equation (4.2.6), the scattering matrix can be significantly 

simplified:  

 
[
𝐾1 𝐾2
𝐾3 𝐾4

] = [
𝑆11
+ 𝑆21

+ 𝑆31
+

𝑆12
+ 𝑆22

+ 𝑆32
+ ] [

𝑃1 0 0
0 𝑃2 0
0 0 𝑃3

] [
𝑆11 𝑆12
𝑆21 𝑆22
𝑆31 𝑆32

] = [
𝑃1 0
0 𝑃2

] (4.2.7) 

At this point the matrix equation (4.2.7) can be expanded and a set of linear equations (4.2.8)-

(4.2.11) are obtained: 

 𝐾1 = 𝑆11
+ 𝑃1𝑆11 + 𝑆21

+ 𝑃2𝑆21 + 𝑆31
+ 𝑃3𝑆31 = 𝑃1 (4.2.8) 

 𝐾2 = 𝑆11
+ 𝑃1𝑆12 + 𝑆21

+ 𝑃2𝑆22 + 𝑆31
+ 𝑃3𝑆32 = 0 (4.2.9) 

 𝐾3 = 𝑆12
+ 𝑃1𝑆11 + 𝑆22

+ 𝑃2𝑆21 + 𝑆32
+ 𝑃3𝑆31 = 0 (4.2.10) 

 𝐾4 = 𝑆12
+ 𝑃1𝑆12 + 𝑆22

+ 𝑃2𝑆22 + 𝑆32
+ 𝑃3𝑆32 = 𝑃2 (4.2.11) 
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By solving these linear constraints the required 𝑺31 and 𝑺32 scattering parameters can be 

determined. The most straight forward method to find a solution consistent with these 

constraints, is to impose a further restriction on the symmetry and reciprocity of the system. In 

this case, the virtual port is mapped to an absorber layer of zero length meaning the scattering 

parameters must be symmetric across the waveguide ports as shown in Chapter 3 i.e. 𝑺11 =

𝑺22, 𝑺21 = 𝑺12 and 𝑃1 = 𝑃2. Now there exists just two independent linear equations 𝐾1 and 𝐾2. 

It can also be shown that solutions of either satisfies the other for the symmetric case. 

PROOF The relationship between the  𝑆11 and 𝑆21 scattering parameters for the infinitely thin 

absorber layer is that 𝑆21 = (𝐼 + 𝑆11). Using this fact, it can be shown that if 𝐾1 is satisfied 

then so is 𝐾2: 

From the derivation presented in equations (4.2.12), that if the constraints 𝐾1 and 𝐾2 are 

equivalent then 𝑆31
+ 𝑃3𝑆31 = 𝑆31

+ 𝑃3𝑆32 if and only if 𝑆32 = 𝑆31. Furthermore, the virtual port 

Re-arranging 𝑲𝟏 and 𝑲𝟐: 

𝐾1 ⇒ 𝑆11
+ 𝑃1𝑆11 + 𝑆21

+ 𝑃2𝑆21 + 𝑆31
+ 𝑃3𝑆31 = 𝑃1 

𝐾2 ⇒ 𝑆11
+ 𝑃1𝑆12 + 𝑆21

+ 𝑃2𝑆22 + 𝑆31
+ 𝑃3𝑆32 = 0 

Enforcing symmetry relations: 

𝐾1 ⇒ 𝑆11
+ 𝑃1𝑆11 + 𝑆21

+ 𝑃1𝑆21 + 𝑆31
+ 𝑃3𝑆31 = 𝑃1 

𝐾2 ⇒ 𝑆11
+ 𝑃1𝑆21 + 𝑆21

+ 𝑃1𝑆11 + 𝑆31
+ 𝑃3𝑆32 = 0 

Applying the relation 𝑺𝟐𝟏 = (𝑰 + 𝑺𝟏𝟏) to 𝑲𝟐: 

𝑆11
+ 𝑃1(𝐼 + 𝑆11) + 𝑆21

+ 𝑃1(𝑆21 − 𝐼) + 𝑆31
+ 𝑃3𝑆32 = 0 

𝑆11
+ 𝑃1 + 𝑆11

+ 𝑃1𝑆11 + 𝑆21
+ 𝑃1𝑆21 − 𝑆21

+ 𝑃1 + 𝑆31
+ 𝑃3𝑆32 = 0 

𝑆11
+ 𝑃1𝑆11 + 𝑆21

+ 𝑃1𝑆21 + 𝑆31
+ 𝑃3𝑆32+𝑆11

+ 𝑃1 − (𝐼 + 𝑆11)
+𝑃1 = 0 

𝑆11
+ 𝑃1𝑆11 + 𝑆21

+ 𝑃1𝑆21 + 𝑆31
+ 𝑃3𝑆32 − 𝑃1 = 0 

∴ 𝐾1 ≡ 𝐾2 

(4.2.12) 
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scattering parameters 𝑆31 and  𝑆32 must be equivalent for the symmetric infinitely thin absorber 

layer. By enforcing this symmetry, the system is further simplified and its only required to 

solve a single linear equation (𝐾1) to find a set of virtual modes and modal powers which satisfy 

the conservation of power requirements. Through eigenvalue decomposition the virtual port 

scattering parameter (𝑆31) and powers (𝑃3) can be obtained. By enforcing the constraint:  

Eigenvalue decomposition, as shown in equation (4.2.14), diagonalises the matrix (Strang 

2013). 𝐾1 is taken to be a normal-Hermitian matrix, with Λ a diagonal matrix of real valued 

eigenvalue entries and 𝑄 a unitary matrix (𝑄−1 = 𝑄+) giving the corresponding eigenvectors. 

The eigenvectors of 𝑄 corresponds to the virtual modes (channels for power dissipation) and 

likewise, the eigenvalues Λ give the real valued virtual port powers. 

The virtual port method is first applied to an infinitely thin cylindrical absorber layer section, 

as seen in section 3.3, with a partially filling absorber to verify the correctness of the approach. 

To benchmark the virtual port method, the return loss results for the same system are obtained. 

As shown in Figure 4-14, this mechanism for obtaining the loss due to the absorber layer works 

perfectly with the return loss and power absorbed matching across the wavelength range.  

 𝐾1 ∶  𝑆31
+ 𝑃3𝑆31 = 𝑃1 − (𝑆11

+ 𝑃1𝑆11 + 𝑆21
+ 𝑃2𝑆21) (4.2.13) 

 𝐾1 = 𝑄Λ𝑄−1 ⇒ 𝑆31 = 𝑄+ and 𝑃3 = Λ  (4.2.14) 

Figure 4-14: Measured power through the virtual port versus return loss value for zero length absorber 

segment network. 
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It is important to note that the method used here for an absorber layer will not be valid for all 

lossy cases, in particular where the loss cannot be localised or when reciprocity relations are 

not in place i.e. loss along a lossy uniform guide or junction section. Physical guide lengths 

leading to the absorber layer can be accounted for by either scaling the scattering parameters 

using phase factors consistent with the guide lengths, or by simply cascading additional guide 

sections where necessary to complete the system. The cascading procedure for such an 

arrangement is present in the following section. 

4.2.1 Cascading a uniform section (2-port) with short absorber network (3-port) 

Using the network and cascading theory developed in Chapter 2, an expression for the resulting 

S-matrix formed from the cascading of a 2-port and 3-port device can also be obtained. As 

shown in Figure 4-15, the two networks considered are network A (2-port uniform guide) and 

network B (3-port absorber layer). In a similar manner to the 2-port cascading example the 

remaining and vanishing modes are defined. The vanishing modes of network A (𝑁𝐴,2 = 𝑁𝐴,𝑉) 

are mapped one-to-one to the modes in network B (𝑁𝐵,1 = 𝑁𝐵,𝑉) such that  𝑁𝐴,𝑉 = 𝑁𝐵,𝑉 = 𝑁𝑉. 

The modal amplitudes of the input and outputs modes of the two networks will be linked as 

𝒂𝐵,𝑉 = 𝒃𝐴,𝑉  and 𝒂𝐴,𝑉 = 𝒃𝐵,𝑉. The remaining modes of network A are 𝑁𝐴,1 = 𝑁𝐴,𝑅 and of 

network B are 𝑁𝐵,2 +𝑁𝐵,3 = 𝑁𝐵,𝑅. 

 
[𝒃

𝐴,𝑅

𝒃𝐴,𝑉
] = [

𝑺𝑅,𝑅
𝐴 𝑺𝑅,𝑉

𝐴

𝑺𝑉,𝑅
𝐴 𝑺𝑉,𝑉

𝐴 ] [𝒂
𝐴,𝑅

𝒂𝐴,𝑉
] (4.2.15) 

Figure 4-15: Uniform segment cascades with an infinitely short absorber segment. 
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[𝒃

𝐵,𝑅

𝒃𝐵,𝑉
] = [

𝑺𝑅,𝑅
𝐵 𝑺𝑅,𝑉

𝐵

𝑺𝑉,𝑅
𝐵 𝑺𝑉,𝑉

𝐵 ] [𝒂
𝐵,𝑅

𝒂𝐵,𝑉
] (4.2.16) 

For clarity the remaining and vanishing scattering parameters of network B are given explicitly: 

 𝑺𝑅,𝑅
𝐵 = [𝑺22

𝑩 𝑺32
𝑩 ] (4.2.17) 

 𝑺𝑅,𝑉
𝐵 = [𝑺21

𝑩 𝑺31
𝑩 ] (4.2.18) 

 𝑺𝑉,𝑅
𝐵 = [𝑺12

𝑩 𝑺13
𝑩 ] (4.2.19) 

 𝑺𝑉,𝑉
𝐵 = [𝑺11

𝑩 ] (4.2.20) 

To find the scattering matrix of the cascaded section, the individual scattering matrices are 

considered as shown in equation (4.2.15) – (4.2.16). The modal amplitudes of the input and 

outputs modes of the two networks will be linked as 𝒂𝐵,𝑉 = 𝒃𝐴,𝑉  and 𝒂𝐴,𝑉 = 𝒃𝐵,𝑉. Using the 

relationship between the modal amplitudes of the networks the matrices can be redefined as: 

 
[𝒃

𝐴,𝑅

𝒃𝐴,𝑉
] = [

𝑺𝑅,𝑅
𝐴 𝑺𝑅,𝑉

𝐴

𝑺𝑉,𝑅
𝐴 𝑺𝑉,𝑉

𝐴 ] [𝒂
𝐴,𝑅

𝒃𝐵,𝑉
] (4.2.21) 

 
[𝒃

𝐵,𝑅

𝒃𝐵,𝑉
] = [

𝑺𝑅,𝑅
𝐵 𝑺𝑅,𝑉

𝐵

𝑺𝑉,𝑅
𝐵 𝑺𝑉,𝑉

𝐵 ] [𝒂
𝐵,𝑅

𝒃𝐴,𝑉
] (4.2.22) 

To solve for the new scattering matrix, an expression for the outgoing modal amplitudes 

[𝒃𝐴,𝑅 𝒃𝐵,𝑅] in terms of the input amplitudes [𝒂𝐴,𝑅 𝒂𝐵,𝑅] and the known scattering 

parameters from equations (4.2.21) and (4.2.22) must be found. 

 
[𝑏

𝐴,𝑉

𝑏𝐵,𝑉
] = [

(𝐼 − 𝑆𝑉,𝑉
𝐴 𝑆𝑉,𝑉

𝐵 )
−1
𝑆𝑉,𝑅
𝐴 (𝐼 − 𝑆𝑉,𝑉

𝐴 𝑆𝑉,𝑉
𝐵 )

−1
𝑆𝑉,𝑉
𝐴 𝑆𝑉,𝑅

𝐵

(𝐼 − 𝑆𝑉,𝑉
𝐵 𝑆𝑉,𝑉

𝐴 )
−1
𝑆𝑉,𝑉
𝐵 𝑆𝑉,𝑅

𝐴 (𝐼 − 𝑆𝑉,𝑉
𝐵 𝑆𝑉,𝑉

𝐴 )
−1
𝑆𝑉,𝑅
𝐵

] [𝑎
𝐴,𝑅

𝑎𝐵,𝑉
] (4.2.23) 
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Moreover, these new linear equations can be expressed in matrix form as shown in equation 

(4.2.23). From (4.2.23) the required expressions for [𝒃𝐴,𝑅 𝒃𝐵,𝑅]  in terms of [𝒂𝐴,𝑅 𝒂𝐵,𝑅]  

can be obtained by following the procedure outline in Appendix A.2. The scattering matrix of 

the joint network [AB] can be evaluated, where network [AB’s] non-zero scattering parameters 

are found to be:  

 𝑆11
𝐴𝐵 = 𝑆11

𝐴 + 𝑆12
𝐴 (𝐼 − 𝑆11

𝐵 𝑆22
𝐴 )−1𝑆11

𝐵 𝑆21
𝐴  (4.2.24) 

 𝑆12
𝐴𝐵 = 𝑆12

𝐴 (𝐼 − 𝑆11
𝐵 𝑆22

𝐴 )−1𝑆12
𝐵  (4.2.25) 

 𝑆21
𝐴𝐵 = 𝑆21

𝐵 (𝐼 − 𝑆22
𝐵 𝑆11

𝐴 )−1𝑆21
𝐴  (4.2.26) 

 𝑆22
𝐴𝐵 = 𝑆22

𝐵 + 𝑆21
𝐵 (𝐼 − 𝑆22

𝐵 𝑆11
𝐴 )−1𝑆22

𝐴 𝑆12
𝐵  (4.2.27) 

 𝑆31
𝐴𝐵 = 𝑆31

𝐴 +𝑆32
𝐴 (𝐼 − 𝑆11

𝐵 𝑆22
𝐴 )−1𝑆11

𝐵 𝑆21
𝐴  (4.2.28) 

 𝑆32
𝐴𝐵 = 𝑆32

𝐴 (𝐼 − 𝑆11
𝐵 𝑆22

𝐴 )−1𝑆12
𝐵  (4.2.29) 
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4.2.2 Test and Verification of the Absorber Network Virtual Port 

To verify the implementation of the virtual port power tracking and the cascading method’s 

several test cases were considered. These test cases also aim to promote potential use cases of 

this tool. Firstly, a uniform cylindrical guide section of radius 1.4 mm, length 3 mm with 

partially filling circular absorber layer of radius 0.7 mm and 𝑅𝑆 = 200 Ω/∎ was modelled. 

The network was excited by random amplitudes at both waveguide ports simultaneously and 

for number of different absorber positions along the length of the guide the power absorbed 

was computed.  

In Figure 4-16, the results from this test case are shown. In all cases it can be seen that there is 

perfect agreement between the return loss method and the power absorbed through the virtual 

port. Using this method, the optimal position for an absorber layer within the guide across a 

frequency range can be determined. 

In a similar manner, the virtual port routine could be used to obtain the optimal position for a 

cavity coupled absorber layer. As in the previous test case, the absorber position can be easily 

varied and the power absorber through the virtual port can be tracked. By cascading the 

absorber network segment with a perfect reflector or backshort the 3 port network is collapsed 

to 2 ports. Here the remaining ports correspond to the waveguide/cavity opening and the virtual 

absorber port. In the following test case, a circular absorber layer of radius 0.7 mm and 𝑅𝑆 =

200 Ω/∎ is contained within a uniform cylindrical cavity section with radius 1.4 mm and 

Figure 4-16: Tracking of power absorbed with varying absorber position in a uniform waveguide section with 

the virtual non-reciprocal port verified against the return loss method. 
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length 3 mm.  By varying the absorber layers position in steps of 0.25 mm the variation in 

absorption across the frequency range can be observed and optimised as shown in Figure 4-17. 

Likewise, using the same approach the shape of the absorber can be optimised for a particular 

position within the guide or cavity section. Assuming the range 100 –  120 GHz is desired for 

measurement, 2.0 mm is taken to be the optimal position as it is quite linear across this range 

and gives adequate power absorption. In Figure 4-18, the absorption patterns for absorber 

layers with varying radii and shapes are shown. From these different geometries it can be 

observed how the shape and size of the absorber can be optimised to improve the absorber 

efficiency. 

Figure 4-17: Tracking of power absorbed with varying position in a uniform cavity section with the virtual non-

reciprocal port verified against the return loss method. 

Figure 4-18: Tracking of power absorbed with varying absorber shape in a uniform cavity section with the 

virtual non-reciprocal port verified against the return loss method. 
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Finally, a test case is considered which highlights the advantage of this technique over 

traditional return loss mechanisms. Such a system could have multiple absorber elements, with 

more than a single mechanism for loss, traditional power extraction techniques require the 

simulation to be repeated with and without some elements for the effect of each to be accounted 

for. This method is inefficient and leaves scope for inaccuracies in power tracking. The single 

virtual port method is extended to multiple virtual ports with the aim to accurately track power 

lost through each lossy element. By attaching a virtual port to both of the absorber elements 

such that if the networks were separate there would be two independent 3-port devices. 

Cascading these elements together gives a single 4-port network with the additional ports 

associated with the lossy elements virtual ports. The cascading procedure is similar to the 

method for cascading a uniform section (2-port) with short absorber network (3-port) already 

outlined. Here the virtual ports retain the non-radiating condition which reduces the complexity 

cascading complexity.  

Consider the following test case where there are two similar uniform sections, cylindrical with 

radius 1.4 mm, with virtual ports assigned to circular absorbers of radii 0.7 mm and 𝑅𝑆 =

200 Ω/∎ placed within them. Figure 4-19 shows the power through these virtual ports which 

are placed asymmetrically in the system. Again both ports are excited and the corresponding 

return loss is shown. 

Here, there is a clear difference in the power absorber by the two different absorber layers due 

to their different positions. While the return loss only gives the overall system loss, it is clear 

Figure 4-19: Tracking of power absorbed by multiple absorbers in a uniform waveguide section; here the return 

loss method can only give the total power lost in the system while the virtual port method can distinguish 

between the different paths of power loss. 
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that to retain information about the losses on individual elements that virtual port assignment 

can be a powerful tool.  

As discussed, this method fails when the loss cannot be localised or when reciprocity relations 

are not in place, as stated earlier. To demonstrate this, the virtual port analysis is performed on 

a network made up of a circular absorber layer of radius 0.7 mm and 𝑅𝑆 = 200 Ω/∎ placed at 

the midpoint of a lossy uniform cylindrical section (𝜎 = 5.8 × 104 S/m) with radius 1.4 mm 

and length 3 mm. 

In Figure 4-20, the virtual port method fails to extract the correct amount of power lost when 

compared to the return loss mechanism. Although power is lost through the guide walls it 

cannot be localised to a single plane and as such a disagreement between the two methods is 

observed. While this example highlights the limitations of the virtual port method’s ability to 

determine power loss from non-localised or non-reciprocal elements, it does allow for greater 

flexibility in isolating power loss per element. By using the return loss and virtual port methods 

in tandem increased granularity of the lossy elements can be achieved. In Figure 4-20, the 

difference between the return loss and power absorber through the virtual port can only be 

attributed to the power lost through the guide walls. Extracting this from the power tracking 

data the performance of the lossy guide section and absorber layer can be viewed separately. 

 

  

Figure 4-20: Tracking of power absorbed in a uniform lossy section with an absorber layer present: here the 

there is disagreement between the return loss and the virtual port methods which highlights the limitations of the 

virtual port method. However, power lost through the absorber layer and via ohmic losses can be distinguished 
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4.3 Note on Free-Space Modes as Plane Waves 

In Chapter 2, the method for obtaining radiation fields from waveguide apertures was 

introduced. Although correct, an important factor is omitted, that is the handling of the 

transition between waveguide aperture and free-space. Normally, in well-designed waveguides 

antennas, mode combinations at the aperture are well matched to the free-space impedance and 

thus the contribution of this transition is negligible. However, in more compact open ended 

waveguide devices (OEGs), such as probes, this impedance mismatch is no longer negligible 

and at the free-space interface there will be a non-zero reflection which must be captured to 

accurately model the device. A naïve approach to account for this reflection would be to 

determine the reflection coefficient from the impedance mismatch of the waveguide modes and 

free-space. However, this drastically underestimates the magnitude of reflection and provides 

no mechanism for accounting for the scattering between waveguide modes. This can be 

observed in the example test case of the reflection from the aperture of WR10 waveguide shown 

in Figure 4-21. 

To account for this an approximate method is proposed which model the free-space modes as 

a combination of plane waves which form a finite fan of angles radiating from the waveguide 

aperture. Using mode-matching techniques as introduced in previous chapters an estimate for 

the scattering parameters at this transition can be obtained. Here, the two modesets will be 

dissimilar. On one side conventional waveguide modes are considered and on the other a 

symmetric combination of free-space plane wave-like modes are used. 

 

Figure 4-21 Refection coefficient of a 𝑊𝑅10 guide section obtained from CST and the impedance 

mismatch of the fundamental mode and the intrinsic impedance of free-space. 
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Uniform plane waves, with no rotations applied, propagate wholly along the z-axis in an 

unbounded medium (free-space). Initially two orthogonal plane waves, effectivity y and x 

polarisations, are defined by: 

Where +/− indicate forward and backward travelling components. Of course only forward 

propagating plane waves are necessary to match the radiation from the waveguide aperture. 

When transformed by non-zero rotations of 𝜃 and 𝜙 these fields cover all possible directions 

and polarisations of plane waves. The appropriate Euler rotations which enable such 

projections are given by: 

 y-polarised field x-polarised field  

 

𝑬+ = �̂�𝑦𝐸0 exp(−𝑗𝜷
+ ∙ 𝒓) 

𝑯+ = −�̂�𝑥𝐻0 exp(−𝑗𝜷
+ ∙ 𝒓) 

𝑬− = �̂�𝑦𝐸0 exp(𝑗𝜷
− ∙ 𝒓) 

𝑯− = �̂�𝑥𝐻0 exp(𝑗𝜷
− ∙ 𝒓) 

𝑬+ = �̂�𝑥𝐸0 exp(−𝑗𝜷
+ ∙ 𝒓) 

𝑯+ = �̂�𝑦𝐻0 exp(−𝑗𝜷
+ ∙ 𝒓) 

𝑬− = �̂�𝑥𝐸0 exp(𝑗𝜷
− ∙ 𝒓) 

𝑯− = −�̂�𝑦𝐻0 exp(𝑗𝜷
− ∙ 𝒓) 

(4.3.1) 

 𝜷+ = (0,0, 𝛽), 𝜷− = (0,0, −𝛽), 𝒓 = (0,0, 𝑧) (4.3.2) 

 
Rot(𝜃) = (

cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃

)  and Rot(𝜙) = (
cos𝜙 −sin𝜙 0
sin𝜙 cos𝜙 0
0 0 1

) (4.3.3) 

Figure 4-22 Shows the waveguide section with a fan of plane-waves radiating from the aperture 
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Applying these rotations to the orthogonal fields defined in equation (4.3.3) cause the plane 

wave fields to take the form of either transverse electric or magnetic plane wave-like modes as 

shown in Figure 4-23. 

In practice such an implementation proved impractical, especially since it was proposed to 

provide an approximate and lightweight solution to the free-space interface problem. To 

accurately account for the reflection of the OEG, evanescent free-space modes had to be 

included in the analysis. The necessary density of the free-space modeset (which was 

effectively infinite (Bois, Benally, and Zoughi 1998)) meant that the computation of mode 

matching coupling integrals could not be completed in reasonable time. At the point of 

concession convergence could not be achieved for upwards of 10000 free-space modes 

included. In reality there exist a number of more practical solutions to the free-space problem 

(Selvan 2004), (Bois, Benally, and Zoughi 1998) and (McCarthy 2014) which provide much 

less intensive approaches to determining the correct aperture reflection from OEGs. The 

solution outlined in (McCarthy 2014) is used in Chapter 5 to account for the free-space 

transition in a prototype SAFARI pixel design. 

 

 

 

 

 

Figure 4-23 Shows the electric and magnetic field components of the y and x-

polarised fields which give a) TE mode and b) TM mode upon 𝜃 rotation. 
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4.4 Summary 

In this chapter several tools have been developed to expand and enhance the modelling 

capabilities of the S-TNG software. In section 4.1, certain coupling-integral cases where no 

analytical solutions were identified i.e. offset cylindrical junctions. Significant work was done 

to develop a parallelised implementation of the numerical mode-matching method and to 

remove this obvious bottleneck. It was shown that through this parallelised implementation 

that there was significant performance gains, approaching simulation times close to purely 

analytic calculations, with little loss in accuracy. Furthermore, a method to model power 

dissipated through lossy elements is introduced. Here power loss is monitored through virtual 

modes on virtual non-reciprocal ports. This approach was verified using the standard return 

loss approach typically used to monitor power loss and in section 4.2.2 the advantages of such 

a power monitoring mechanism are shown.  
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Chapter 5 – SAFARI Instrument Investigations 

The proposed far-infrared space telescope SPICA and more directly the SAFARI instrument 

were of particular interest to this project. Many of the mode matching tools presented in earlier 

chapters have been developed with aim of aiding in the design and analysis of SAFARI’s 

detector arrays. In this chapter a number of the detector pixel designs are discussed and 

analysed using the developed routines. Furthermore, a potential focal plane solution for the 

SAFARI instrument is considered and analysed using in-house developed software MODAL 

(Maynooth Optical Design and Analysis Laboratory). The investigations presented in this 

chapter focus on: 

 an Offner relay focal plane arrangement utilizing a beam steering mirror (BSM) to 

translate the instrument’s point spread function (Hecht 2001) (PSF) between the 

different grating modules and to the high-resolution MP-interferometer, 

 analysis of a modified SAFARI pixel testbed design, 

 analysis of experimental results of a prototype SAFARI M-band subarray design, and 

 analysis and optimisation of the S-band feed design of SAFARI 4.0. 

As outlined in Chapter 1, one potential focal plane solution of the SAFARI instrument relies 

on an Offner relay arrangement. Here, a BSM is used to select between the different grating 

modules and resolution modes of the instrument. As part of an ongoing collaboration between 

Maynooth University and SRON, there was an involvement in a brief measurement campaign 

focused on the analysis of an Offner relay system. This work concentrated on the optical 

modelling of the system using MODAL. Most of the design and implementation of the system 

was performed as part of a Master’s research project (Schallig 2015a). However, some 

unexplained irregularities in the measured beam pattern from the Offner relay were observed. 

In this chapter the Offner arrangement is introduced and the potential origin of these 

irregularities in the beam pattern is investigated. Furthermore, the Offner system is investigated 

using Gaussian Beam Mode analysis to better approximate the laboratory QCL source and the 

imaging of polychromatic sources is also considered. 

Over the development cycle of the SAFARI, there have been a number of revisions to the pixel 

design. Using these prototype designs much of the necessary code was tested and developed, 

such that comprehensive analysis of SAFARI type pixels could be performed in a timely 

manner. A combination of physical optics (MODAL) and mode matching (S-TNG) are used to 
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determine the pixel’s response to external stimulus. In previous investigations, detailed in 

(McCarthy 2014), the SAFARI pixels response to on-axis illumination has been studied. The 

work presented in this chapter focuses on an amended off-axis optical arrangement to 

illuminate the prototype SAFARI pixel. Here, the viability of such an arrangement to illuminate 

the SAFARI pixel is investigated. 

A prototype subarray feed structure for SAFARI’s M-band is considered and characterised. 

The prototype design was developed by Cardiff University and is the latest of the subarray feed 

designs to be realised. The subarray implementation is given in the technical description of 

SAFARI in chapter 1. To reconcile the measurement data with simulation results the routines 

developed in chapter 3 are utilized. The prototype feed design relies on novel manufacturing 

techniques and as such the surface impedance of the boundary walls play an important role. 

Simulations are performed with both finite conductivity and surface roughness included to 

model the structure more accurately. 

Following on from the analysis of the prototype M-band SAFARI subarray design, work was 

commenced on the modelling of a new antenna design for the short wavelength band (S-band) 

of the SAFARI 4.0 instrument. The goal of this investigation was to use the roughness model 

to make informed design decisions from the very beginning. Here, free parameters such as the 

length, throat-aperture size and shape were investigated along with the response to varying 

levels of roughness. This allowed roughness losses to be mitigated and bounds to be set for the 

manufacturing tolerances of the feeds. 
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5.1 Offner Relay System  

One focal plane solution for the proposed SAFARI instrument is an Offner relay system, which 

will make use of a beam steering mirror (BSM) to select the grating modules which span 

SAFARI’s spectroscopic range. The optical arrangement of the Offner relay is comprised of 

two spherical mirrors concentric about their centres of curvature, see Figure 5-1. The primary 

mirror (M1) is concave, while the secondary mirror (M2) is convex and has a radius of 

curvature that is half that of M1. The mirrors are aligned to image in a plane containing a 

common centre, governed by M2, and perpendicular to the optical axis. This configuration 

offers unit magnification and image reproduction without the introduction of aberrations or 

astigmatisms (Fischer and Fischer 2003). By actuating M2, the BSM, the point spread function 

(PSF) can be translated in the focal plane where the detector array of the of the instrument is 

located.  

In an idealised optical system, the limiting shape of the PSF is an Airy pattern (Hecht 2001). 

By comparing the idealised result against the measured PSF in the focal plane, aberrations 

introduced by the optical system can be determined. The intensity pattern associated with the 

PSF is given by: 

 𝐼(𝜃, 𝜆) = 𝐼(0, 𝜆) [
2𝐽1 (

𝜋𝐷
𝜆
sin 𝜃)

(
𝜋𝐷
𝜆 sin 𝜃)

]

2

 (5.1.1) 

Figure 5-1 Overview of the Offner system optical arrangement, dashed red line indicates 

regions where absorber was placed to limited stray light reflections.  
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where 𝐽1 is the 1st order Bessel function, 𝜃 is the angle of observation, 𝐷 is the aperture diameter 

and 𝜆 the wavelength (Hecht 2001).  

5.1.1 Experimental Optical Arrangement 

In the experimental Offner arrangement, M1 had a radius of curvature of 1000 mm, diameter 

of 350 mm giving a focal length of 500 mm. The BSM had a radius of curvature of 500 mm, 

diameter of 30 mm and a focus of 250 mm. This mirror was actuated via an attocube device 

(Schallig 2015a), a goniometer power by a piezo motor, allowing for positioning of the BSM’s 

angle. The source (QCL) and detector (IRLabs Si Bolometer) are placed 1000 mm from M1 

in the plane containing the optical centre of both mirrors. In Figure 5-2, which shows the system 

as modelled in the MODAL modelling software, M1 is shown with two smaller inner sections 

representing the active regions of the mirror. As indicated in Figure 5-1, M1 is partially masked 

away from these regions to limited stray light reflections. The source and detector are separated 

in the axis perpendicular to the optical axis by approximately 260 mm, where both the centre 

point of the source and detector are equidistant from the centre of curvature of the mirrors. This 

separation is governed by the size of the primary mirror and can cause issues with alignment 

which will be discussed later. 

The QCL source operating at 3.91 THz provided a coherent narrowband source (𝜆 =

0.077 mm ± 0.002 mm (Thor Laboratories 2014)) which illuminates a limiting circular 

aperture with a diameter of 30 mm. The relatively large available power and coherent 

frequencies make this an appropriate source to test the response of the optical system. Although 

the QCL allows for testing of optical systems at terahertz frequencies, at these wavelengths 

alignment becomes critical and often more difficult. The bolometer detector has a spectral 

response of [15 − 2000] μm and is sensitive to radiation produced by the QCL source. 

Figure 5-2: Overview of the implementation of the Offner system in MODAL  
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Appropriate filters were available to remove noise from background sources. As standard the 

bolometer comes with 2 filters with either 13 or 100 μm cut-on (Infrared Laboratories 2015). 

Polychromatic measurements are made with the 100 μm and QCL measurements are made 

with the 13 μm filter. 

5.1.2 Modelling 

The simulated Offner relay uses a uniformly illumined circular aperture as shown in Figure 

5-3. This arrangement appears to differ somewhat from the experimental layout; however, this 

is superficial. The primary mirror M1 is split into two smaller mirror segments covering only 

the active regions (RHS and LHS). Segmenting of M1 allowed for a vast reduction in the total 

Figure 5-4: Shows the key apparatus used in the experimental Offner system: a) the cryostats of the QCL 

and bolometer detector along with the actuated secondary mirror, b) the large primary mirror is shown 

without its baffle present, c) the controller for the secondary mirror is shown. 

Figure 5-3: Simulation set-up in MODAL with the split primary mirror 

a b 

c 
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mapping area improving the simulation time. The quality of the imaged PSF is assessed via 

direct comparison with the simulated results where both phase and amplitude are taken into 

consideration. Any deviations will indicate there are underlying issues with the optical system 

itself or that care has not been taken when performing the experiment. 

5.1.3 System Alignment Analysis 

For initial alignment and validation of the Offner relay measurements were made with the BSM 

in a fixed position. The detector bolometer was mounted on an XYZ stage and scans of the 

imaged PSF were made. This alignment must be completed for meaningful comparisons to be 

made with simulation results. Firstly, PSF must be centred in the detection plane which 

required zeroing of the BSM to its centred position. This was done using an optical laser, 

imaging screen and the known separation between the sources and detector about the optical 

axis. Secondly, the location of the imaged PSF’s waist or focus must be determined. A series 

of measurements, varying in the z-direction, were made to find the optimal positon to place the 

bolometer. Scans of the detector moving in and out from the focal point of the optical system 

are shown in Figure 5-5. 

For all experimental result a pinhole of size 1 mm is placed in front of the bolometer detector 

to ensure there is no blurring of the imaged PSF. Detailed analysis on different pinhole sizes is 

given in (Schallig 2015a). There is a relatively narrow range of about [± 10 mm] to locate the 

position of the beam waist. In Figure 5-5, the experimental cuts are shown with the simulated 

MODAL result at the focus. By inspection, the focal point appears to occur at approximately 

Figure 5-5: X-cuts of the experimental data for the detector moving into focus over a range of ±50 𝑚𝑚, 

Modal simulation results at the focus is used as a benchmark. 
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30 mm. The MODAL simulation predicts a slightly narrower Airy pattern so it is likely the 

exact focus lies within the 20 mm increment between 30 mm and 50 mm. 

This conclusion is supported by further MODAL simulations, which show the spreading out 

of the beam as observations are made progressively further from the focus, see Figure 5-6. The 

importance of accurate determination of the focus position is clear, as deviation from the focus 

causes a loss in the definition of the imaged PSF. However, at these short wavelengths 

accurately finding the exact focus experimentally is difficult. 

For both the experimental and simulated results there is a definite beam waist associated with 

the optical system. The same spreading of the PSF is observed away from the focus, i.e. an 

increase in the side-lobes is observed. Although the focus is difficult to find exactly due to the 

short wavelength, the structure of the PSF remains well defined near the waist, as illustrated in 

Figure 5-5 and Figure 5-6. 

The initial alignment enabled the bolometer detector to be centred at the origin of the 

measurement plane. Operation of the Offner relay could then be investigated through 

translation of the PSF in the measurement plane. This was done using the attocube device to 

sweep the BSM through a range of angles. A number of scans of the PSF were made, in Figure 

5-8 cuts of the imaged PSF’s are shown alongside the simulated MODAL result. Here, the 

imaged PSF is in good agreement with the simulation result obtained from MODAL. However, 

there does appear to be an asymmetry present in the measured PSF. This feature is present in a 

number of the measurements made and also appears in results shown in (Schallig 2015a). To 

Figure 5-6:Modal simulation x-cuts of the detector plane moving into focus over a range of ±50 𝑚𝑚, clearly 

there is a spreading of the beam away from the focus at 𝑧 = 0 𝑚𝑚. 
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investigate this further the performance of the Offner relay is investigated for varying angles 

of throw in MODAL. 

The reliability of the Offner system is examined by observing the PSF of the Offner relay at 

the extremum angles of the secondary mirror (±1.5 deg in both axes). Angles exceeding this 

range would cause the reflected beam to go beyond the mirror’s active region. By investigating 

the simulation results at these extremum angles any inherent aberrations introduced by the 

rotation of the secondary mirror may be observed. For a range of angles, for which the reflected 

signal remains inside the LHS of the primary mirror, the PSF is examined. 

Figure 5-7: Modal simulation x-cuts of the Offner systems for the extremum angles of 

the secondary mirror. 

Figure 5-8: Modal simulation x-cuts of the Offner systems for the extremum angles of 

the secondary mirror. 
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In Figure 5-7, it can be observed that there is no deviation from the well aligned case at (0°, 0°). 

Due to symmetry and clarity of expressing the result only the −1.5° extremum angles are 

shown. Thus, for rotations of the secondary mirror kept at small angles, such that reflected 

beam remains inside the boundary of LHS of the primary mirror, the optical system introduces 

no aberrations to the resolved PSF. However, the BSM can achieve angles beyond this range 

and no limits were imposed on the controller software for the attocube. 

In an effort to explain the asymmetry observed in Figure 5-8, the effect of the BSM’s angle of 

throw being too severe is investigated. In such a scenario a portion of the beam reflected from 

the BSM would lie beyond the active region of the LHS of M1. To simulate this overlap with 

the masked region the BSM set with an angle of throw of (2.1°, 2.1°). Due to this overlap of 

the reflected beam with the masked region of M1 part of the signal is lost resulting in an 

asymmetric PSF from the MODAL simulation as shown in Figure 5-9. 

The mismatch in the side-lobe levels of the imaged PSF is quite similar to the simulated result 

where the overlap is present. This range of translation of the reflected ray is well within the 

angles achievable by the experimental set-up. It is possible that during the scanning of the BSM 

the reflected beam overlapped with the masked region of M1 causing this asymmetry. 

Furthermore, this could explain why acceptable result were obtained when the BSM was fixed, 

see Figure 5-5. 

Figure 5-9: Shows the comparison between experimental data and the MODAL simulation where there is an 

overlap with the boundary of the primary mirror. 
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5.1.4 Gaussian Beam Source 

Although the QCL does not produce a perfectly spherical wavefront, an attempt is made to 

capture the most spherically symmetric part of the wavefront when illumining the circular 

aperture (𝐷 = 30 mm). It is assumed that in the far-field this section of the QCLs beam pattern 

roughly provides uniform illumination of the aperture. Measurements were taken of the QCL’s 

radiation field 20 cm from the opening window shown in Figure 5-10. 

From the measured radiation field, it can be seen that the main part of the beam covers a region 

well over 10 x 10 mm2 in size. Thus, the incident radiation field should provide reasonable 

illumination of the circular aperture. From (Fathololoumi et al. 2008) and (Adam et al. 2006) 

it is found that the most intense part of the QCL beam will have a somewhat Gaussian peak as 

shown in Figure 5-11.  

 

 

Figure 5-10 Plot of the beam pattern of the QCL with cuts taken through the maximum of the pattern. 
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Using this result, the uniformly illuminated aperture used in MODAL is replaced by a Hermite 

Gaussian source which illuminates an equivalent limiting aperture. This provides a better 

representation of the experimental Offner arrangement. The Gaussian source is defined with 

𝑓 = 3.91 THz and a phase radius of curvature of 0.5 m, which equals the propagation distance 

from the source to the limiting aperture. The beam waist of the source is set to 𝜔0 = 15 mm 

such that it fully fills the limiting aperture. The system is imaged in a standard set-up with no 

offsets or rotations introduced as shown in Figure 5-12. The simulation result for the uniformly 

illuminated aperture is shown and here the shape of the two beams agrees quite well.  

Furthermore, using this Gaussian approximation the effect of the QCL source not fully 

illuminating the aperture may also be investigated. In Figure 5-13, the imaged PSF from the 

Offner system is shown for progressively narrowing beam waists 𝜔0 = [15, 7.5, 3.75] mm.  

Figure 5-12: Shows a comparison between the PSF from a Gaussian and uniform source.  

Figure 5-11: Plots of the beam profile and intensity pattern of a QCL a)(Fathololoumi et al., 2008) & 

b)(Adam et al., 2006). 

a b 
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The narrower beams do not provide sufficient illumination and as a result the Airy pattern 

shape is not present. For 𝜔0 = 3.75 mm a simple Gaussian is observed and only when the 

waist begins to increase is the expected Airy pattern observed.  

5.1.5 Polychromatic Airy pattern 

A quasi-monochromatic QCL source provides an ideal test case for the Offner relay’s 

performance to be tested against simulated results. However, in the instrument the system must 

also deal with polychromatic sources. The PSF for a polychromatic source is found by 

integrating the monochromatic PSF over the wavelength range of the source:  

 𝐼(𝑟) = 𝐼0∫
1

𝜆2
[
2𝐽1 (

𝜋𝑟
𝐹𝜆
)

𝜋𝑟
𝐹𝜆

]

2

 𝑑𝜆
𝜆2

𝜆1

, (5.1.2) 

where uniform intensity profile is assumed across the range. 

The polychromatic source used was a DLS200X2224G2X IR – Emitter (700 ℃) with a 

wavelength range between 0.1 and 1 mm.  A spectral analysis of the emission of this source 

was conducted by (Schallig 2015a), where the effects of atmospheric absorption can be clearly 

observed as can the frequency ranges where the maximum irradiance from the source is 

obtained. From Figure 5-14, the region where the maximum irradiance is obtained lies between 

60 – 100 cm-1 (0.1 – 0.1667 mm). Below this there is significant absorption, and the maximum 

Figure 5-13: Resulting PSF for various beams waists at the source aperture. 
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irradiance is quite low. As a result, only the region of maximum irradiance is considered when 

performing simulations. 

In the experimental arrangement the QCL and limiting aperture are removed and the 

polychromatic source is fixed in the same position. The polychromatic source is fitted with a 

pinhole of 0.63 mm to minimise any blurring due to the finite aperture sizes. As observed 

earlier the minima of the monochromatic PSF are in agreement with the roots of the first order 

Bessel function. However, for the polychromatic case these minima are no longer well defined 

due to the integration over the wavelength range. An example of this can be observed for in the 

polychromatic PSF in Figure 5-15a. 

 

In the Figure 5-15a, there is good agreement between the experimental results and analytical 

result. The MODAL simulations were performed with a uniformly illuminated aperture (since 

Figure 5-14:Theoretical spectra of black-body radiation with a pathlength of 3 m air between the globar 

and the detector (Schallig 2015a). 

Figure 5-15: Shows the polychromatic measurements and the agreement with MODAL and the analytical 

result (0.1 – 0.1667 mm). 

a b 
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good agreement between this and the Gaussian source has been shown in Figure 5-12). The 

MODAL result predicts a wider PSF than the analytical result, this is potentially due to the 

number of samples taken between 0.1 and 0.1667 mm not being large enough. However, 

reasonable agreement is still observed. However, in Figure 5-15b although the beam width 

matches quite well extra features are observed in the experimental results. These anomalies 

may be attributed to stray light from background sources or from the improperly shielded 

regions of the experimental set-up or as before, over rotation of the BSM. 

5.1.6 Conclusion 

Through comprehensive PO simulations in MODAL the idealised Offner relay system was 

shown to translate the beam with minimal aberrations to the PSF as expected. Initial alignment 

of the experimental arrangement showed good agreement with the simulated results. However, 

full operation of the Offner relay, via actuation of the BSM, introduced irregularities to the 

imaged PSF. In practice the critical alignment of the system is challenging and as shown in 

section 5.1.3 an overlap of the reflected beam with the primary mirror shield offers some 

explanation to the observed irregularities in the PSF. 

A strong assumption was made that the QCL source fills the Offner relay system’s aperture. 

Scans of the QCL beam profile showed that the beam should provide adequate illumination of 

the aperture. Furthermore, simulations using GBA to illuminate the aperture for narrowing 

beam waist, showed the effect of an under-illuminated aperture on the resolved PSF. Finally, 

the Offner system was investigated using a polychromatic source. Experimental and simulated 

results were shown to be in good agreement with some potential beam irregularities again 

attributed to over rotation of the BSM.  
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5.2 Analysis of an Amended SAFARI Pixel Design 

The work presented in this section summarises the computational modelling and analysis of a 

prototype SAFARI pixel, completed as part of contracted work for the European Space Agency 

(ESA). This study focuses on an amended optical arrangement to illuminate the SAFARI pixel. 

This arrangement is derived from an on-axis solution shown in Figure 5-16. Here, the pixel is 

coupled to a conical horn and is fed by a blackbody source through a number of intermediate 

limiting apertures.  

Facilities at SRON, Groningen allowed for intermediate optics to be introduced in the test bed 

design. It was decided to extend this investigation further to consider an amended off-axis 

optical arrangement as shown in Figure 5-17. In this design the prototype SAFARI pixel was 

illuminated by an aperture limited blackbody source via a focusing elliptical mirror. The 

elliptical mirror was introduced to allow for greater flexibility in the optical test bed, improve 

coupling to the waveguide and potentially improve the pixel efficiency.  

 

 

Figure 5-16: Layout of the previous SAFARI pixel design (McCarthy 2014). 
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The blackbody source (12 × 12 mm2) illuminates the system over SAFARI’s S-band 

(35 μm − 70 μm). The elliptical mirror has radii of curvature 𝑅1 = 30 mm and 𝑅2 =

100 mm, with the source and feedhorn positioned at the appropriate foci. The pixel feedhorn 

is defined by 𝐿 = 4.9 mm, an opening aperture of 0.65 × 0.65 mm2, an opening angle of 30° 

over the first 0.2 mm and an opening angle of 6° over the remainder of the geometry. In the 

detector plane the feedhorn is coupled to a TES cavity. This single horn forms part of the larger 

SAFARI subarray structure as discussed in chapter 1. 

A combination of physical optics (PO) and mode matching techniques was used to characterise 

the performance of the pixel design. For a range of inclination and azimuthal angles the 

blackbody source was rotated, and the response of the optical system was measured. The range 

of inclination and azimuthal angles used lie between 0 − 10 deg and 0 − 180 deg respectively. 

Furthermore, by rotating the source through 90 degrees the effect of the polarisation could be 

investigated. For modes up to and including a Cartesian order of 38 the amplitudes for each 

angular set was recorded. The simulated optical arrangement is shown in Figure 5-18, here a 

simple Gaussian beam illustrates the operation of the optical system. 

Figure 5-18: Schematic of the MODAL set-up of the amended SAFARI system 

Figure 5-17 Proposed optical arrangement of the amended SAFARI pixel design. 
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To reduce simulation time (which for the shortest wavelength can take ~70 hours) some 

optimisations of the model were implemented. Dynamic grid size mapping of the optical 

components was performed to ensure no oversampling. Furthermore, the appropriate ranges 

and step sizes for the beam sweep angles were investigated, such that there is sufficient 

resolution and all symmetries were exploited. The inclination angular range of 0 − 10 deg 

offered adequate coverage (beyond 10 deg essentially no power is coupled to the detector). 

The azimuthal angular range of 0 − 180 deg provided sufficient coverage. The symmetry 

conditions of the pyramidal horn meant that only half of the azimuthal range needed to be 

imaged. 

5.2.1 Modelling the Prototype SAFARI Horn and Cavity Coupled Absorber 

This section deals with the implementation of the mode matching techniques required to 

accurately model the prototype SAFARI pixel arrangement. Many of the mode matching 

routines presented in chapters 2 and 3 were developed as part of the ESA research contract in 

order to model these SAFARI type structures. The main advantage of the mode matching 

techniques, especially for multi-moded structures, is that the matrix description of scattering 

allows many modes to mutually scatter at a single frequency. In Finite Element 

Electromagnetic solvers, such as CST, each mode is propagated independently, and this is 

much more computationally intensive. For electrically large structures i.e. with lengths > 100 

wavelengths and where many modes are included, such solvers are impractical.  

Figure 5-19: a) Geometry of S-Band pyramidal horns being modelled, b) Overview of the SAFARI horn array 

a b 



 

204 

 

In Figure 5-20, a schematic drawing of the pixel layout shows the different features of the 

complete pixel which must be modelled. The mode matching techniques are used to represent 

all possible scattering possibilities within the pixel with a waveguide and freespace mode set. 

This includes scattering in the feed, the exit through the freespace gap (including diffractive 

loss to the sides of the freespace gap) and the possible absorption at the absorber layer including 

reflection from backshort. The pixel’s overall scattering matrix is obtained from the joining of 

the guide, absorber cavity and freespace network sections. In earlier chapters, the necessary 

mode matching routines required to model the guide and absorber cavity networks were 

introduced. However, the methods required to tackle the freespace gap network have yet to be 

discussed. Introduced in (McCarthy 2014), a freespace network model is summarised to 

describe the coupling of power across the pixels freespace region.  

The waveguide modeset at the freespace interface is coupled to a representative set of freespace 

Hermite Gaussian modes: 

 Ψ𝑙,𝑚(𝑥, 𝑦, 𝑧) = 𝑢𝑙(𝑥, 𝑧)𝑢𝑚(𝑦, 𝑧) exp(−𝑗𝑘𝑧) (5.2.1) 

The interface between the aperture and freespace is treated as a normal junction, such that the 

scalar product (𝑃 =  ∫ 𝑨𝑡
∗
∙ 𝑩𝑡  𝑑𝑆

 

𝑆
) can be defined for the transverse fields. The field in 

freespace is given by the sum of the Hermite Gaussian modeset, each scaled by their 

corresponding mode coefficients: 

Figure 5-20 Representation of the geometry modelled using the developed rectangular mode 

matching code 
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 𝐸𝑖𝑛 =∑𝐴𝑛Ψ𝑛(𝑊𝑖𝑛, 𝑅𝑖𝑛, 𝜙𝑖𝑛) (5.2.2) 

this field must now be propagated through a freespace gap distance z which will then excite the 

cavity coupled absorber section. Thus, the evolution of the field must be modelled as the field 

propagates through the freespace region to obtain the outgoing field: 

 𝐸𝑜𝑢𝑡 =∑𝐴𝑛Ψ𝑛(𝑊𝑜𝑢𝑡, 𝑅𝑜𝑢𝑡, 𝜙𝑜𝑢𝑡) (5.2.3) 

Geometrical ray tracing methods are adapted to allow for the propagation of Gaussian beams 

(McCarthy 2014), within the paraxial limit, to be represented via ABCD matrices. Here, the 

method requires complex valued rays to be considered. Gaussian beams have waist positions 

which corresponds to a plane where the beam width and intensity are minimised and maximised 

respectively. It is assumed that the fundamental Gaussian beam is a spherical wave radiating 

from a complex source. If a point source is approximated to have field distribution given by: 

 
𝐸 = exp (

−𝑗𝑘𝑟2

2𝑞
), (5.2.4) 

then this can be represented by allowing the field to have a complex radius of curvature, 

(Goldsmith 1998), given by: 

 1

𝑞
=

1

Re(𝑞)
− 𝑗 (

1

Im(𝑞)
). (5.2.5) 

If this is to be constant with the fundamental Gaussian mode, the real component must represent 

the reciprocal of the phase radius of curvature and the complex component represents the 

Gaussian variation of off-axis amplitude: 

 1

𝑞
=
1

𝑅
− 𝑗 (

𝜆

𝜋𝑊(𝑧)2
) (5.2.6) 
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Thus, the field distribution of the point source becomes: 

 
𝐸 = exp(

−𝑗𝑘𝑟2

2𝑞
) = exp (

−𝑗𝑘𝑟2

2𝑅
)exp (

−𝜆

𝜋𝑊(𝑧)2
) (5.2.7) 

The complex beam parameter therefore tracks the required Gaussian beam parameters and 

hence can be used to follow the evolution of the system. The complex beam parameter is 

transformed by an optical system (represented by an ABCD matrix) as follows: 

 
𝑞𝑜𝑢𝑡 =

𝐴𝑞𝑖𝑛 + 𝐵

𝐶𝑞𝑖𝑛 + 𝐷
 (5.2.8) 

Thus, the output phase radius of curvature and beam radius are given by: 

 
1

𝑅𝑜𝑢𝑡
= Re(

1

𝑞𝑜𝑢𝑡
) = Re(

𝐶 +
𝐷
𝑅𝑖𝑛

−
𝑗𝐷𝜆
𝜋𝑊𝑖𝑛

2

𝐴 +
𝐵
𝑅𝑖𝑛

−
𝑗𝐵𝜆
𝜋𝑊𝑖𝑛

2

) (5.2.9) 

 

𝑊𝑜𝑢𝑡 = √
−𝜆

𝜋Im(
1
𝑞𝑜𝑢𝑡

)
=

√
  
  
  
  
  −𝜆

𝜋Im(

𝐶 +
𝐷
𝑅𝑖𝑛

−
𝑗𝐷𝜆
𝜋𝑊𝑖𝑛

2

𝐴 +
𝐵
𝑅𝑖𝑛

−
𝑗𝐵𝜆
𝜋𝑊𝑖𝑛

2

)

 

(5.2.10) 

For a known phase slippage at the input plane, the output phase slippage is given by: 

 
𝜙𝑜𝑢𝑡 − 𝜙𝑖𝑛 = −𝐴𝑟𝑔(𝐴 + 𝐵 (

1

𝑞𝑖𝑛
)). (5.2.11) 

Thus, the evolution of the Gaussian beam through some optical system can be tracked via 

ABCD matrices. In the case of the free space gap the ABCD matrix is given by: 
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 [
𝐴 𝐵
𝐶 𝐷

] = [
1 𝑑
0 1

]   (5.2.12) 

where 𝑑 gives the propagation distance allowing the freespace section to be represented for the 

pixel.  

Additionally, power leakage can occur at the sides of the freespace gap. To account for this 

truncating sections are placed on the freespace side of each transition plane. This truncates 

power loss beyond the pixel geometry and suppresses reflections. To achieve this, infinitely 

thin perfect absorbers form the truncating sections, with gaps made equal to that of the pixels’ 

width. As reflections are modelled to be zero from the surrounding material on either side of 

the TES absorber, the transmission matrices are simply the overlap integrals between the 

Hermite Gaussian modes on either side of the TES absorber, across the area of the gap, as 

illustrated in Figure 5-21. 

The associated scattering matrices for this loss mechanism then become: 

 
𝑺 = [

𝟎 𝑺𝟏𝟐
𝑺𝟐𝟏 𝟎

] = [
𝟎 𝑷𝟐
𝑷𝟏 𝟎

] (5.2.13) 

with: 

Figure 5-21 The introduction of loss due to diffractive loss in the free space gap of the waveguide pixel 
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𝑃1 = ∫ 𝑒𝑛
−

𝑟𝑝 

0

𝑒𝑛
−𝑑𝑟 (5.2.14) 

 

𝑃2 = ∫ 𝑒𝑛
−

𝑟𝑝 

0

exp(
𝑗𝑘𝑟2

2𝑅
)𝑒𝑛

− 𝑑𝑟 (5.2.15) 

On the back side of the horn array a reflective surface is implemented around the exit aperture 

of the horn to include reflections from this surface in the scattering regime. In order to verify 

this approach in terms of including the freespace section loss with the SRON rectangular horn 

a simpler, smaller waveguide geometry was analysed with the developed mode matching code 

and also analysed in CST to verify the approach. Finally, an SVD analysis is performed on 𝑆11 

to determine the contributing modes in the scattering matrix. This is done to reduce the 

computational load related to determining the absorption modes of this pixel design. 

5.2.2 Measuring Pixel Efficiency 

Pixel efficiency is the ratio of the total power absorbed by the horn aperture to the total power 

arriving from the black body aperture. By performing an SVD analysis on the pixel’s 𝑆11 matrix 

the individual eigenfields (both propagating and non-propagating) which comprise the aperture 

field of the pixel are found. Progressing to the far-field, the fields are normalised, such that 

they represent the fraction of power coupled to that eigenfield at a given angle of incidence 

compared to the total power coupled to the field from a uniformly illuminated antenna. The 

fraction of the total power arriving at the pixel entrance in each eigenfield can be calculated. 

This gives an aperture efficiency value for each angular set, represented by a data cube 

(𝛢[𝜃, 𝜙]) given by 

 
𝛢[𝜃, 𝜙] =

𝛣[𝜃, 𝜙]

cos(𝜃) ∗ 𝑃max𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
 (5.2.16) 

 

𝛣 =  ∑ 𝑟𝑖
2 ∗ 𝑠𝑖

𝑁𝑚𝑜𝑑𝑒𝑠

𝑖

 (5.2.17) 
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where the 𝛣 represents the absorbed coupling sum, 𝑠𝑖 are the singular values from the SVD 

analysis of the scattering matrix and 𝑟𝑖 are the modulus of the dot product of the mode 

amplitudes at a particular combination of angles with the columns of the singular matrix. Using 

this technique, the effective aperture of the antenna (Γ𝑎𝑝𝑝), for each wavelength is obtained by 

integrating over the range of azimuthal and inclination angles: 

 

Γ𝑎𝑝𝑝 = 2 × ∬ 𝛢[𝜃, 𝜙] × sin 𝜃 𝑑𝜃𝑑𝜙

𝜋,𝜃𝑚𝑎𝑥

0,0

 (5.2.18) 

where 𝜃𝑚𝑎𝑥 = 10° and the explicit factor of two accounts for the symmetry imposed by the 

azimuthal range defined earlier.  

Finally, the total power absorbed by the pixel over the wavelength range can be calculated. The 

power density of the blackbody per unit wavelength, per unit area, per steradian is given by the 

Planck curve: 

 
𝑀𝜆 =

2ℎ𝑐

𝜆5
1

exp (
ℎ𝑐
𝜆𝑘𝐵𝑇

) − 1 
 

(5.2.19) 

The spectral power absorbed (SPA) gives the absorbed power per unit frequency where 𝑆𝑃𝐴 =

𝑀𝜆 ∗ Γ𝑎𝑝𝑝(𝜆). However, since the power is split into two polarisation channels, half the spectral 

irradiances lies with each, and 𝑆𝑃𝐴 =
𝑀𝜆

2
∗ Γ𝑎𝑝𝑝(𝜆) gives the absorbed power per unit 

frequency from an unpolarised blackbody source. The total absorbed power is obtained by 

integrating the spectral power absorbed over the wavelength band as shown below 

 
𝑃𝑝𝑖𝑥𝑒𝑙 = ∫ 𝑆𝑃𝐴 𝑑𝜆

𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

 (5.2.20) 

5.2.3 Analysis of results 

The pixel design is characterised over the wavelength range 40 − 70 μm in 5 μm steps. Due 

to time and equipment constraints at SRON, it is unlikely that the corresponding experimental 
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measurements will be performed. However, the results from previous pixel designs can be used 

to make useful comparisons and comments on the overall performance of the amended pixel 

design. 

From the results from previous measurements, given in Table 5-1, there appears to be only one 

set of results that could be used to draw comparisons to the new design. Based on the blackbody 

aperture alone comparisons are made with test #46, shown in  Table 5-1, which has a radius of 

12 mm which corresponds to an aperture area of ≈ 452 mm2. In contrast the square (12 ×

12 mm) blackbody aperture of the new pixel has an aperture area of 144 mm2. The overall 

effect the aperture size has on radiation entering the system is negligible so effectively these 

test case apertures can be treated as equivalent. The path length to the opening aperture of the 

horn in previous design is a factor of 10 closer to the blackbody source. However, this factor 

is of little importance because of the focusing effect of the elliptical mirror. Below Table 5-1 

shows the distance and aperture measurements along with values for the total absorbed power 

for the simulation and measurements. 

Table 5-1 The measured and simulated power absorbed from test cases of original test bed design. Test #46 

represents the most comparable arrangement of the previous design to the new arrangement. 

Cool-down# DBB LBB 

Measurement 

Pabs [fW] 

Simulation 

Pabs [fW] 

#46 12 mm 17 mm 47.2 76.1 

#47 0.9 mm 10.77 mm 6.28 6.03 

#48 0.5 mm  10.2 mm 2.44 2.33 

#49 1.4 mm  10.2 mm 15 14.34 

Here the values DBB and LBB refer to the diameter of the aperture and the distance to the horn 

from the aperture respectively.  
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Figure 5-22(a) shows a plot of the azimuthally averaged aperture efficiency values over an 

inclination angle range of 0 – 10 degrees for each wavelength with both 0 and 90 degrees 

polarisation. The azimuthal averaging is done for the purpose of illustration, as discussed 

earlier the aperture efficiency values which are referred to as Α[𝜃, 𝜙], contains the aperture 

efficiency values for all combinations of angle for each wavelength. Averaging over the 

azimuthal range provides a sense of the system response to changing wavelength and 

inclination angle. In Figure 5-22(b) is the effective aperture values at each wavelength and 

again in both polarizations, the variation in these effective aperture values are discussed later.  

Using these values along with the blackbody spectrum data shown in Figure 5-23 (a), with the 

appropriate filter present, values for the spectral power absorbed at each wavelength are 

obtained. The values for the spectral power absorbed at each wavelength are shown in Figure 

5-23 (b), integrating over the wavelength range the power absorbed by the pixel is found to be 

8.7 fW. There is a definite decrease in performance for this new pixel considering the relatively 

large blackbody aperture.  

Figure 5-22 Shows (a) the azimuthally averaged aperture efficiency values over the inclination angle range and 

(b) the effective aperture for each wavelength at both 0 and 90 degrees polarisation. 

Figure 5-23 Shows (a) Blackbody spectral irradiance with and without filter applied (b) Spectral power 

absorbed at each wavelength for both polarisations. 

a b 

μm      

a b 

μm      
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Alongside the simulations of the amended pixel design, a ‘benchmark’ system with the aperture 

and mirror removed is defined i.e. just the blackbody is illuminating the horn. This benchmark 

allows for validation of the simulation result. However, the horn design will restrict the range 

of solid angles accepted to illuminate the pixel. In Table 5-2, the power absorbed by both the 

benchmark and the optical system is almost equivalent. 

Table 5-2 Shows the benchmark and simulation results for the amended safari pixel system 

Side Length Length 

Benchmark 

Pabs [fW] 

Simulation 

Pabs [fW] 

0.65 mm 130 mm 8.8 8.7 

One would expect that the optical system would allow for much greater power absorption than 

just the plane illumination of the horn. The blackbody aperture for the benchmark provides 

essentially full illumination of the optical system, as such the same amount of power is present 

in both simulations. The brightness theorem (Quimby 2006) defines brightness or radiance as 

the optical power per unit solid angle per unit area of the emitting surface (W/m2 ∙ sr). Thus, 

a source is said to have a high brightness when it emits light in a narrow range of angles from 

a small surface area. One might think that by focusing the source to create an image with a 

smaller surface area that the brightness could be increased. However, the optics also changes 

the angular distribution of the light according to geometrical optics which reduces the apparent 

increase in brightness (Quimby 2006). To better understand the process which is occurring here 

the results from the benchmark test are illustrated in Figure 5-24.  
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In the benchmark results the loss in aperture efficiency with an increasing inclination angle is 

less dramatic. However, there is also a much-reduced peak efficiency. The elliptical mirror 

allows for the blackbody radiation to be focused directly onto the horn aperture. This gives an 

apparent increase in aperture efficiency but by inspecting the effective aperture values there is 

almost no change.  

This effect becomes even more apparent when the efficiency values of individual modes are 

inspected. In Figure 5-25 the aperture efficiency values for both simulations are shown. It is 

clear the effect of the elliptical mirror has essentially focused the radiation onto a smaller region 

as described by the brightness theorem.  

 

 

Figure 5-24 Shows (a) the azimuthally averaged aperture efficiency values over the inclination angle range 

and (b) the effective aperture for each wavelength at both 0 and 90 degrees polarisation for the benchmark 

tests. 

Figure 5-25 Shows the Aperture Efficiency values per individual mode for 70 µm a) the benchmark test 

case and b) the fully optical simulation. Both polarisations are included here and are labelled accordingly 

a b 

μm μm 

a b 

μm   
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There is a trend observed that the effective aperture values for the 90 degree polarisation values 

are lower than the 0 degree values. At the lower frequencies this effect is diminished so the 

contributing modes in the 90 degrees polarisation must be higher order modes and yet to fully 

cut on at these frequencies.  

5.2.4 Conclusion 

Both the benchmark test and the amended pixel design have overall performances which are 

equivalent in terms of power absorbed. This is due to the fact that there is only a limited amount 

of radiation emitted from the blackbody source that can be coupled to the horn detector per 

solid angle. The influence of the elliptical mirror does not lead to the capture of anymore 

radiation than emitted, it only focuses part of it. Compared to the previous testbed design, there 

is significant loss in performance and the power absorbed values are more comparable to test 

instances in Table 5-1 where a smaller blackbody aperture is present. As such, this type of 

optical arrangement is not entirely suited to the pixel design: if the horn which had a much 

reduced angle of acceptance the benchmark simulation would lose a large amount of power for 

the increasing inclination angles. In this scenario such an optical arrangement would allow 

more of the radiation to be focused into the horn’s narrower angular acceptance range.  

Figure 5-26: Shows the Aperture Efficiency values per individual mode for 55 µm: a) the benchmark test 

case and b) the fully optical simulation. Both polarisations are included here and are labelled accordingly 

a b 

μm μm 



 

215 

 

5.3 Analysis of a Prototype Pyramidal SAFARI M-band Horn 

In this section the mode matching routines developed in chapters 2 and 3 are employed to aid 

in the accurate analysis and characterisation of a prototype sub-array feed block, as described 

in (Audley, de Lange, Gao, et al. 2018), for SAFARI’s mid-wavelength band (60 –  110 μm). 

The prototype MW-feed array consists of 37 pixels realised through a combination of direct 

machining techniques, to form the split block, whereby individual platelets can be doweled 

together to form the complete sub-array block. Individual feeds are rectangular in shape, have 

an axial length of 9 mm, a throat aperture of 120 × 120 μm and an entrance aperture of 

1350 ×  650 µm. 

The advantage of this fabrication method is that only one side of a platelet needs machining, 

via wire erosion cuts to form linearly tapered horn sections. Each feed is then closed by the flat 

wall of the adjacent platelet. The guide’s surface finish, left by wire erosion techniques, affects 

the overall surface impedance along the wall (C. A. Balanis 2012). 

Modal techniques are well established and have contributed greatly to the development of many 

mm and sub mm-wavelength instrument detector array systems (McCarthy 2014). 

Furthermore, it has been shown in this thesis and elsewhere that modal analysis is in excellent 

agreement with finite element methods and has significant advantages in terms of 

computational effort, especially for electrically large systems. Conventionally, treatment of the 

guide’s boundary has been purely PEC, which provides more than adequate representation of 

low-loss guide structures. Upon analysis of the far-field measurement data obtained from the 

prototype SAFARI MW-feed, it was apparent that there was significant deviation from the 

Figure 5-27 a) Image of the prototype sub-array structure b) Profile of the prototype M-band 

SAFARI horn where A and B define the horns x and y dimensions respectively. 
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simulated result, assuming PEC walls. The main observation made was that a significant 

narrowing of the far-field pattern can be seen, consistent with a loss in power in higher order 

modes through ohmic dissipation in the guide walls (Olver et al. 2011). The lossy routines 

introduced in S-TNG are used to help characterise these effects. 

5.3.1 Experimental Set-up and Results: 

The experimental campaign was performed by Peter Ade and his team at Cardiff University. 

The preliminary results for the prototype MW-band horn are presented in here. The 

experimental arrangement, shown in Figure 5-28, was illuminated by a 7 × 7 mm2 silicon 

carbide infrared source (with the appropriate MW-band filters) mounted on an x-y scanning 

stage allowing for the beam map of the prototype feed to be obtained. A vibrating vane 

modulator provides a near square modulation to the source aperture field at a frequency of 28 

Hz and is fixed by the natural resonance of its torsion bar. A secondary aperture in front of the 

modulator limits the detector’s field of view to the source aperture and thus prevents detection 

of stray power from the modulator arm. The prototype feed is placed within a cryogenic 

module, 25 mm from the cryostat’s 30 mm diameter window, providing a scan range of  

± 31°. In order to scan the full range, without any vignetting by the aperture window, the 

scanner must be placed at least 250 mm from the cryostat window. 

 

Figure 5-28 Schematic drawing of the experimental arrangement for the M-band horn test 
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To gather an understanding of the processes that occur within the prototype feed, simulations 

are performed at a single frequency only (2727.27 GHz – lower bound of the MW-band). 

Although this is not truly representative of the full characteristics of the feed, it does provide 

an insight into how the measured results perform against an idealised simulation. The measured 

beam pattern of the prototype feed is shown in Figure 5-29, alongside simulated results where 

PEC and smooth copper (𝜎 = 5.8 × 107 S/m) walls are used. By inspection it can be seen that 

there is poor agreement between the measured and simulated results in both the horizontal and 

vertical cuts. The measured results appear quite narrow indicating possibly that much of the 

power in the higher order modes has been lost, much less that can be explained by losses 

observed in the smooth copper simulation. The impact of surface impedance resulting from 

both the finite conductivity and surface roughness must be considered. 

5.3.2 Accounting for Losses in the SAFARI M-band horn 

In Chapter 3, treatment of non-ideal guide’s bounding walls gave rise to a modification of the 

boundary conditions. The tangential electric field along the boundary was shown to be no 

longer zero, instead 𝑬1𝑡 ≈ 𝑍𝑠(𝜔)(�̂� × 𝑯2). Furthermore, the coupling mechanism introduced 

due to interfering currents along the waveguide walls were discussed and justification that the 

PEC modeset provided an adequate representation of the fields was given. It was shown that 

for non-zero surface impedance, ohmic dissipation of power through the conducting walls 

occurs. These ohmic losses are expected to manifest themselves more significantly in higher 

Figure 5-29 Simulation results for PEC and smooth non-PEC cases plotted with measurement data of 

the total electric field from Cardiff measurement campaign 
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order modes. The rational being that their modal fields are distributed to a greater extent along 

the boundary, thus increasing the potential for power dissipation. 

As shown in Figure 5-30, the field distributions of the cylindrical guide modes TE11 

(fundamental mode) and TE31 (higher order mode) are clearly very different. The TE11 mode 

has the majority of its field localised in the centre of the structure, whereas the TE31 mode is 

present more towards the boundary. 

This effect can be investigated further by modelling an over-moded cylindrical guide section 

where finite wall conductivity is considered. By varying the material conductivity, the effective 

surface impedance on the bounding walls can be controlled. The level of loss experienced by 

each mode is given by the ratio of the modes input and output powers i.e. 𝑃𝑜𝑢𝑡: 𝑃𝑖𝑛. Here, a 

uniform test guide structure (𝑟 = 1.4 mm, 𝐿 = 10 mm) is modelled using S-TNG at 𝑓 =

150 GHz for 𝜎 = [1.0 × 104, 1.0 × 108] S/m. 

Figure 5-30 Modal field distributions for a) 𝑇𝐸11 mode b) 𝑇𝐸31 mode 
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As observed in Figure 5-31, there are losses associated with all modes propagating in the 

structure. However, the losses are more pronounced on the higher order modes (TE31) 

compared to the fundamental mode (TE11) as there is a dramatic decrease in the ratio of 

𝑃𝑜𝑢𝑡: 𝑃𝑖𝑛 as the impedance grows. The variation of surface impedance with roughness is shown 

in Figure 5-32, using the conductivity values in Figure 5-31 as upper and lower bounds. 

 

Figure 5-31 Plot of the propagation losses for singular modes considered in a uniform test guide structure 
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Figure 5-32 Effective wall impedance for varying values of roughness of copper material at 2727.27 GHz 
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For guide aperture dimensions of 120 × 120 μm2 surface imperfections of 0.1% < 𝑅𝑞 <

1.0%, do not seem unreasonable. Here 𝑅𝑞 gives the rms-roughness of the surface. Simulations 

of the prototype SAFARI feed are repeated for copper like walls (𝜎 = 5.8 × 107 S/m) with 

surface roughness values within the range 𝑅𝑞 ≈ [0.1, 1.0] μm. In each case, the simulated far-

field patterns are compared against the measurement results. In Figure 5-33, convergence is 

observed for surface parameters 𝜎 = 5.8 × 107S/m, 𝑅𝑞 = 0.25 μm. 

Here, much improved agreement is observed between the simulated and measured results, the 

width of the vertical cuts match very well, and the horizontal cuts match well on one side only. 

Away from this set of surface parameters the beam was either too wide (indicating much of the 

higher order mode power had been retained) or too narrow (indicating the impedance is too 

great causing excessive reduction in higher order mode power). There appears to be an 

asymmetry in the measured horizontal direction cut, which is more apparent in the measured 

beam map shown in Figure 5-34(b). As this is not observed in the simulated beam map shown 

Figure 5-34(a), which may be due to some measurement errors or offsets in the horn geometry 

which were not considered. 

 

 

 

Figure 5-33 Simulation 0.25 𝜇𝑚 roughness results plotted with measurement data of the total electric 

field from Cardiff measurement 
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5.3.3 Conclusion 

It is clear that the effects of surface roughness particularly at higher frequencies i.e. >1 THz 

can have significant impact on the performance of guide structures. For the prototype SAFARI 

feed, the majority of the contribution from the higher order modes power is lost resulting in a 

much narrower beam than expected. The loss mechanism investigated indicates that there is 

substantial roughness left by the wire erosion manufacture process. Clearly, the manufacturing 

techniques used must be refined if these structures are to perform as expected. 

  

Figure 5-34 Total electric field for a) Rough non-PEC simulation and b) Experimental results 

a b 
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5.4 Redesign of SAFARI’s Focal Plane 

Following the departure of a key member of the SPICA consortium, the focal plane of the 

SAFARI instrument had to undergo a substantial redesign. This departure meant one of the 

four grating modules (GMs) had been lost, as such the desired spectral range had to be covered 

by the remaining GMs. SAFARI’s (SAFARI 4.0) spectral range is now covered by three 

separate GMs with the default spectral resolution of R~300 and cover short, medium, and long 

wavelength regions of the desired spectral range (SW 34 − 63.6 μm, MW 61.8 − 115.6 μm, 

LW 112.2 − 210 μm). The instrument now consists of 3 detector sub-arrays per GM-band 

with each sub-array consisting of 5 × 48 pixels (144 spectral pixels and 5 spatial pixels per 

GM) giving a total pixel count of 2160 pixels. Each GM has 6 LC (inductor-capacitor) chips 

with 2 LC chips per sub-array. Finally, there are 18 readout channels, 6 per band, 2 per sub-

array, giving MUX factor of 120 (total pixel count ÷ number of readout channels). 

The SW-band (34 − 63.6 μm) of the SAFARI 4.0 design is of particular interest since this is 

a key requirement for the project. The band is divided into 3 logarithmically spaced sub-arrays 

SW [1-3], with apertures sizes given by the spectral and spatial direction values (𝑠𝑖 × 𝑝𝑖) 

respectively. The horn blocks will be micro-machined as straight walled parts and must meet 

the desired performance levels if the project is to proceed. The SW-1 sub-array corresponds to 

the smallest and most challenging horn to design for the instrument (𝑠1 = 0.899 mm, 𝑝1 =

0.7 mm). In this section the following questions will be investigated: 

 What effect does surface roughness have on the efficiency of the feed? 

 How does the length of the feed affect efficiency when non-PEC walls are considered? 

Figure 5-35 CAD drawing of the SAFARI-SW grating module 
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 How does the throat-aperture geometry dictate the performance of the device? 

The SW-1 feed is characterised at the central frequency of the band 6143.28 GHz and by 

examining the effects of each of these free parameters (aperture size and feed length) the design 

and tolerance levels required can be finalised. The feed length and aperture size are important 

parameters to tie-down as the instrument’s mass and performance will ultimately be limited by 

these factors. The following test cases are considered to probe these questions. 

Table 5-3 Test cases for SAFARI SW feed parameter investigation 

Test. Description 

IA 

Investigate effects of surface roughness on the SW-1 feed using the PEC result as a 

benchmark. Roughness values considered 𝑅𝑞 = [0.1,  0.3,  1.0 μm], which represent 

the best to worst case tolerance values for the machining equipment. 

IB 

Using the roughness values considered 𝑅𝑞 = [0.1,  0.3,  1.0 μm], investigate how the 

performance of three horn lengths for the SW-1 feed (short – 3.0 mm, medium – 5.0 

mm. long – 7.0 mm) are affected by roughness. 

II 

In IA-B, a throat aperture of 100 × 100 μm2 was used. The test cases are now 

repeated for 120 × 120 μm2,  150 × 150 μm2 and 100 × 150 μm2 to see the effect 

of allowing more modes to propagate has on the feed’s performance 
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5.4.1 IA – Investigation of Surface Roughness 

The rms-roughness values considered are 𝑅𝑞 = [0.1,  0.3,  1.0 μm] which give the upper and 

lower tolerance values for the machining equipment. In Figure 5-36, the impedance of the walls 

is shown for smooth and rough copper for 6143.28 GHz.  

In chapter 3 the justification that PEC waveguide modes provide an adequate basis is presented. 

It was shown that for a good conductor the perturbation of the magnetic field near the wall is 

negligible and may be used to avoid explicit evaluation of the electric field along the boundary. 

It is apparent that there is a rapid increase in surface impedance for increasing frequency when 

relatively large surface roughness is considered. This can be observed by comparing the surface 

impedance plots at M-band and S-band frequencies shown in  Figure 5-32 and Figure 5-36. At 

S-band frequencies it can no longer be assumed for roughness values which exceed 0.3 μm 

that the good conductor requirement holds true. An example the analysis failing for 1.0 μm 

surface roughness is shown in section 5.4.4. 

To investigate the effect of surface roughness on the feed’s performance the shortest (𝐿 =

3 mm) of the proposed SAFARI SW-1 feeds is considered, see Figure 5-37. Simulations are 

performed at the S-band’s central frequency (6143.28 GHz) with 24 of 180 modes considered 

propagating in the horn’s throat aperture (100 × 100 μm2). The structure is modelled with 

both PEC and rough copper walls, with the PEC simulation providing a benchmark result.  

 

Figure 5-36 Shows the variation of impedance with increasing roughness at 6143.28 GHz 
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From Figure 5-38, it can be seen that for increasing surface roughness the peak electric field 

intensity decreases from the benchmark PEC result. For roughness values of 0.1 μm 

and 0.3 μm there is a −1.6 dB and −4.2 dB loss observed with respect to the baseline PEC 

result. Higher order modes, which in general have their field distributions more towards the 

guide boundaries, experience greater loss along the non-PEC boundary. It is clear from the 

narrowing of the 0.3 μm roughness cut that much more of the higher order mode power has 

been lost. However, the 0.1 μm roughness cut has retained much of the beam width of the PEC 

result.   

a b 

Figure 5-38 SAFARI SW-1 Short design far-field pattern taken at 6143 GHz for varying roughness values 

Figure 5-37 a) Profile of the prototype SW-1 horn, b) 3D view of prototype SW-1 horn 
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5.4.2 IB – Investigation of Length with Surface Roughness 

The simulation performed in the previous section are repeated for the medium (𝐿 = 5 mm)  

and long (𝐿 = 7 mm) feed designs of the SAFARI S-band. Investigating the medium and long 

horn designs, a similar pattern emerges with respect to the surface roughness.  In general, the 

0.1 μm roughness cuts are reasonable, with a loss of −2.4 dB for the medium feed and −3.1 dB 

for long feed. Moreover, in both feeds much of the PEC cuts shape is retained. However, for 

increasing roughness the performance of the feeds degrades rapidly. 

By inspecting the far-field plots of the three horn designs shown some remarks can be made: 

A. It is clear that the length of the feed negatively impacts the throughput power with 

respect to the PEC result when rough walls are considered. Considering the 0.3 μm 

cuts, the short feeds peak intensity lies at  −4.2 dB (see Figure 5-39) compared to the 

long feeds peak intensity which lies at −7.5 dB (see Figure 5-39). 

B. Furthermore, by inspecting the shape of the rough beams for each length a number of 

comments can be made. For surface roughnesses of Rq =  0.3 μm there is a substantial 

change in beam shape from the benchmark PEC results. Whereas for surface 

roughness’s of Rq =  0.1 μm this variation in shape is subtle. Here, the multimoded 

features observed in the PEC cuts are retained, meaning that the higher order modes 

were not as significantly affected by this type of surface. In terms of FWHM these 

parameters are summarised in Table 5-4. 

 

Figure 5-39 SAFARI SW-1 Medium and Long designs’ far-field pattern taken at 6143 GHz for varying roughness 

values. 
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Table 5-4 Summary of the key beam parameters for varying feed length and surface type 

 𝟑 𝐦𝐦 𝟓 𝐦𝐦 𝟕 𝐦𝐦 

Surface 
Peak I 
[dB] 

FWHM 
𝟎°𝐜𝐮𝐭 

FWHM 
𝟗𝟎°𝐜𝐮𝐭 

Peak I 
[dB] 

FWHM 
𝟎°𝐜𝐮𝐭 

FWHM 
𝟗𝟎°𝐜𝐮𝐭 

Peak I 
[dB] 

FWHM 
𝟎°𝐜𝐮𝐭 

FWHM 
𝟗𝟎°𝐜𝐮𝐭 

PEC 0 13.6 14.8 0 12.7 15.6 0 12.7 15.9 

0.1 μm -1.6 13.4 13.8 -2.4 12.0 14.0 -3.1 11.4 13.9 

0.3 μm -4.2 11.3 12.9 -6.2 10.1 12.8 -7.5 9.3 12.1 

The point made in remark A can be investigated more thoroughly by looking at the singular 

modes efficiencies. In Figure 5-40, it can be seen that for increasing length there is a drop in 

all singular modes efficiencies. Furthermore, this can all be seen when inspecting the far-fields 

of the three different horn lengths with a roughness of 𝑅𝑞 = 0.3 μm considered. 

It is important to observe how the beam cuts evolve with increasing feed length. Inspecting the 

PEC results for each horn length it is clear that there is a narrowing of the beam, particularly 

in the spectral direction (0 degree cut). The evolution of the beam when minimal surface 

roughness (0.1 μm) present is also examined, see Figure 5-41. Along with the narrowing of the 

beam, a reduction in peak on-axis intensity is observed and with a smoothing of the beam 

sidelobe, again due to the degradation of the higher order modes. 

 

 

Figure 5-40 Plot of the singular modes efficiencies with increasing length of a lossy structure 
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Because of this, the SAFARI instrument is likely to favour the medium length feed design. 

This feed design provides a compromise in terms of on-axis beam intensity, beam definition 

and weight constraints imposed on the instrument. 

5.4.3 II – Investigation of the throat aperture dimensions 

In this section the throat apertures of the three horn designs are expanded to increase throughput 

in an attempt to moderate the losses in the guide walls. The new aperture dimensions considered 

are 120 × 120 μm2, 100 × 150 μm2 and 150 × 150 μm2, which sees an increase in the 

number of the modes propagating in the 100 × 100 μm2 from 24 modes to at most 60 modes. 

The mode numbers for each throat aperture geometry are as follows: 

 120 × 120 μm2 - 34 modes propagating at 6143.28 GHz 

 100 × 150 μm2 - 40 modes propagating at 6143.28 GHz 

 150 × 150 μm2 - 60 modes propagating at 6143.28 GHz 

Figure 5-41 SAFARI SW-1 feed designs far-field pattern taken at 6143 GHz for 𝑅𝑞 = 0.1 𝜇𝑚 
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The short feed design is again initially considered to gauge the effect of varying the aperture 

size. In Figure 5-42, a plot of the peak intensities for all the apertures with PEC walls 

considered is shown. Clearly, there is an increase in peak intensity for the larger aperture where 

more modes are propagating. This increase is of the order of ~0.7 dB from the 100 × 100 μm2 

aperture to 150 × 150 μm2 peak. Moreover, the larger apertures see a widening and flattening 

of the beam compared to the original design. This is expected due to the inclusion of a greater 

number of higher order modes. The rectangular arrangement (100 × 150 μm2) displays this 

trend in the spectral direction (0 degree cut) only.  

The PEC result of the short feed design with the 100 × 100 μm2 aperture is used as a baseline. 

This benchmark is compared to the results of the 0.1 μm and 0.3 μm roughness cuts for the 

different aperture sizes. In Figure 5-43, by observing the rough surface results it can be seen 

that there is an increase in peak on-axis intensity for increasing aperture size. With a maximum 

increase of 1 dB for the 0.1 μm surface and 1.7 dB for the 0.3 μm surface, see Table 5-5 for 

full results. Thus, for larger aperture sizes the peak intensity begins to approach that of the 

baseline PEC result of the 100 × 100 μm2 aperture. This trend continues to be observed for 

the medium and long feed designs. 

Figure 5-42 Far-field cuts of the different apertures with PEC walls considered 
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Table 5-5 Summary of the peak intensities for each of the different aperture geometries for the short feed design. 

It is clear that by increasing the aperture size and allowing more modes to propagate the 

throughput of the SAFARI SW-1 feed increases. However, for larger exit apertures comes a 

deterioration in the detectors’ response time – larger apertures require larger absorbers leading 

to slower devices. The performance of the 100 × 150 μm2 rectangular aperture also sees an 

improvement over the 100 × 100 μm2 aperture. This design is considered as the SAFARI 

grating has high efficiency in one polarisation direction. The beam incident on the SAFARI 

detector plane arrives from a grating spectrometer and as such is ~80% polarised. Furthermore, 

the instrument team have further capitalised on that by using a polarising Fourier Transform 

Spectrometer (FTS) as a high-resolution option which is selected by the use of polarising 

elements in the optical chain. As such, in high resolution mode the input beam at the detector 

would be 100% polarised. This arrangement allows the absorber shape to have a reduced 

spectral footprint while a larger spatial extent enables better coupling to point like sources at 

no expense to detector time. This single polarisation implementation simplifies instrument 

design and allow for reduction in total system mass. 

 𝟏𝟎𝟎 × 𝟏𝟎𝟎 𝛍𝐦𝟐 𝟏𝟐𝟎 × 𝟏𝟐𝟎 𝛍𝐦𝟐 𝟏𝟎𝟎 × 𝟏𝟓𝟎 𝛍𝐦𝟐 𝟏𝟓𝟎 × 𝟏𝟓𝟎 𝛍𝐦𝟐 

Surface Peak I [dB] Peak I [dB] Peak I [dB] Peak I [dB] 

PEC 0 - - - 

0.1 μm −1.6 −1.1 −0.9 −0.6 

0.3 μm −4.2 −3.25 −3.0 −2.5 

Figure 5-43 Far-field cuts of the different apertures for a) 𝑅𝑞 = 0.1 𝜇𝑚 and b) 𝑅𝑞 = 0.3 𝜇𝑚 

a b 



 

231 

 

5.4.4 Limitations of the model 

The original set of test cases shown in Table 5-3 included investigation of surface roughness 

up to 1.0 μm. However, at S-band frequencies the resulting surface impedance exceeds the 

good conductor limitation of this model. To illustrate this the long SAFARI-SW1 feed design 

with the largest aperture is modelled and the results are shown in Figure 5-44. 

The result shown here for the 1.0 μm surface roughness appears possibly non-physical, as it 

exceeds the peak on-axis intensity of the 0.3 μm result. This result is typical of those generated 

for this extreme level of roughness at SAFARI’s S-band. By considering a section of the throat 

aperture of the original SAFARI feed (100 × 100 μm2, 𝐿 = 0.2 mm) the stability of the S-

TNG mode matching ability for increasing poor surfaces can be investigated. Complementary 

simulations are performed in CST to benchmark the S-TNG results. In this test case the section 

is modelled with rough copper walls 𝑅𝑞 = [0.1, 0.3, 0.5, 1.0] μm. 

 

Figure 5-44 SAFARI SW-1 Long design aperture 150 × 150 𝜇𝑚, far-field pattern taken at 6143 GHz 

for varying roughness values. Included to show the breakdown in simulation stability for very poor 

surfaces. 
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In Figure 5-45, results from S-TNG and CST are shown for two different modes TE10 and 

TE12. Firstly, inspecting the results from the fundamental mode, Figure 5-45a, good agreement 

between the S-TNG and CST is observed for all surface roughnesses except for 𝑅𝑞 = 1.0 μm. 

There is an obvious deviation from the corresponding CST result which indicates a failure of 

the model. Next, the results from the simulation of the higher order TE12, Figure 5-45b, mode 

are inspected. In this case, one would expect the limitations of the model to be revealed more 

obviously since the higher order mode’s field is present more towards the boundary. This is 

Figure 5-45 Transmission scattering coefficient through the SAFARI throat section for rough copper walls 

𝑅𝑞 = [0.1, 0.3, 0.5, 1.0] 𝜇𝑚 a) 𝑇𝐸10 mode b) 𝑇𝐸12 mode 

a 

b 
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observed in the complete failure of the S-TNG model for 𝑅𝑞 = 1.0 μm and non-negligible 

deviations for roughness’s 0.3 μm and 0.5 μm. 

The example of the modal fields along the boundary from Chapter 3 is revisited. In this case 

the simulation is performed at S-band frequencies for an appropriate geometry. The electric 

and magnetic field components along the wall are shown for both PEC and rough copper with 

𝑅𝑞 = [0.1, 0.3, 1.0] μm. As in Chapter 3 these results are obtained from CST. 

The justification used in Chapter 3 is that for a good conductor the perturbation of the magnetic 

field near the wall is negligible and may be used to avoid explicit evaluation of the electric 

field along the boundary. However, this is quite arbitrary. An effort is made to tighten this 

assumption and give an estimate for an upper valid limit for the non-PEC mode matching 

method.  

One potential mechanism to impose an upper limit is to quantify the deviation of the electric 

field along the wall compared to the known PEC result. The CST simulation results from Figure 

5-46 are used to determine the electric field magnitude along the wall as a percentage of the 

on-axis maximum electric field (≈ 3.2 × 105 V/m). With knowledge that the S-TNG result 

begins to breakdown beyond 𝑅𝑞 = 0.3 μm the percentage deviation along the walls should be 

limited to ~3% of the on-axis electric field. 

Figure 5-46 Electric and magnetic field components along the boundary for PEC and rough copper (𝜎 = 5.8 ×
107 𝑆/𝑚, 𝑅𝑞 = [0.1, 0.3, 1.0] 𝜇𝑚)  walls generated from CST 
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Table 5-6 Percentage of on-axis electric field present along the guide wall 

Moreover, by no longer enforcing PEC modes at waveguide ports in the CST simulation the 

true field patterns within lossy guides can be inspected. Using these results the assumption that 

PEC guide modes provide an adequate basis can be gauged for increasing surface impedance 

with the fundamental TE11 mode shown as an example. As seen in Figure 5-47, the field 

distributions for the 0.1 μm and 0.3 μm are approximated quite well by the PEC field. 

However, for roughness values beyond this the field distribution of the fundamental TE11 mode 

becomes unrecognisable. Clearly, PEC guide mode basis approximation where excessive 

roughness is present is insufficient. 

 

 

 

 

 

 𝐏𝐄𝐂 𝟎. 𝟏 𝛍𝐦 𝟎. 𝟑 𝛍𝐦 𝟏. 𝟎 𝛍𝐦 

𝚫𝑬𝒘𝒂𝒍𝒍% 0 1.5% 3.2% 6.5% 

Figure 5-47 Field distribution of the 𝑇𝐸11 waveguide mode for increasing surface roughness. 

PEC 𝐑𝐪 = 𝟎. 𝟏 𝛍𝐦 𝐑𝐪 = 𝟎. 𝟑 𝛍𝐦 

𝐑𝐪 = 𝟎. 𝟓 𝛍𝐦 𝐑𝐪 = 𝟏. 𝟎 𝛍𝐦 
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5.5 Summary 

This chapter covered a series of investigations which contributed to the development of the 

SAFARI instrument. Many of the techniques which were developed in earlier charters are 

employed to aid in the analysis of the instrument components of interest. In sections 5.1 and 

5.2, some of the proposed focal plane arrangements of the instrument were studied. The Offner 

relay arrangement, combined with the beam steering mirror, was simulated to explain some of 

disagreement between measurement and theory. A potential source of these irregularities was 

identified as the over rotation of the beam steering mirror which resulted in an overlap with a 

masked region of the primary mirror. Moreover, an off-axis arrangement was considered to 

allow for a compact and optically efficient testbed. However, it was found that this arrangement 

offered no performance advantage when coupled to the SAFARI pixel. 

The developed S-TNG software was also applied in the design and analysis of the prototype 

antenna designs for SAFARI short and medium wavelength bands. In the analysis of the M-

band SAFARI horn it was evident that ideal treatment of the boundary walls did not accurately 

model the experimental results. The measured beam profile was much narrower than the 

idealised simulation. This narrowing was indicative of power loss in the higher order modes 

and these losses could be accounted for by including non-PEC boundary walls in the 

simulations. Finally, the S-TNG software was employed to study the effects of varying lengths, 

aperture sizes and surface roughness values in the design of the shortest of the SAFARI 

prototype horn designs. The results from these simulations were used to guide the 

manufacturing of the optimal horn design with aperture size and feed length selected to 

moderate the throughput and beam profile of the horn when non-PEC surfaces were considered. 
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Conclusions 

In this thesis, significant emphasis is placed on the further development and reformulation of 

traditional mode matching routines. This work was motivated by ESA contracted work to 

develop modelling software for the design and analysis of sensitive pixel devices for future 

millimetre and sub-millimetre instruments. Modelling such structures in commercial software 

solutions, which rely on finite element methods, often becomes impractical due to the large 

volumetric size relative to the wavelength. The mode matching method offers an alternative, 

more computationally efficient method while maintaining good accuracy. This development 

cycle has also seen the extension of the methods to modelling of non-PEC walls, allowing for 

a more comprehensive model of pixels where ohmic and surface roughness losses may be 

important (i.e. high frequency and multi moded cases). Application of these routines has proved 

particularly useful to the design and analysis of the prototype feed structures of the SAFARI 

(SPICA Far-Infrared Instrument) instrument.  

The introductory thesis chapter is used to provide context to the chapters that follow, as often 

the modelling and software development focus is far removed from the overall aim. Here, a 

general overview of terahertz astronomy field is given with a focus on legacy, the Herschel 

space observatory, and ongoing experiments at ALMA (Atacama Large Millimetre Array) 

detailing the observation that can be performed in this portion of the electromagnetic spectrum. 

These missions also provide a platform to discuss the proposed far-infrared mission SPICA 

(Space Infrared Telescope for Cosmology and Astrophysics), whose science goals must 

complement those of ALMA and advance on the legacy of Herschel. The focal plane 

arrangement of the SAFARI instrument is covered in good detail as much of the developed 

software presented in this thesis deals explicitly with this region. Detailed analysis of the 

proposed optical arrangement of the focal plane and of the sensitive pixel designs are presented 

in later chapters. Furthermore, a review of the state-of-the-art in detection and source 

technologies is presented, with a focus on many of the superconducting technologies which are 

emerging. 
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In Chapter 2 the main focus was on the reformulation of a number of key elements of the mode 

matching routines. This reformation can be summarised by three key changes. Firstly, the 

fundamental description of the fields within waveguides was changed to be represented by 

auxiliary vector potentials. Secondly, the modal normalising method was completely 

overhauled allowing for a more natural transition between evanescent and propagating states 

through the mode’s cut-off frequency. Now the mode is normalised to a unit power magnitude 

asymptotically, far from its cut-off frequency, by passing the magnitude of modal power 

through zero as the frequency passes through the cut-off – improving stability of the numerical 

representation. Finally, the necessary coupling integrals for the mode matching routines were 

identified (i.e. the common B, C and D types presented in Chapter 2) and expressed in terms 

of contour integrals. Furthermore, an interpolation routine was implemented to avoid explicit 

calculation of the surface integrals where normal evaluation via contour integral definition is 

not directly possible. This contour integral implementation also allowed for more efficient 

formulation of the scattering problem between mixed and offset geometries i.e. rectangular to 

circular, which were previously challenging to model. 

The remaining portion of this chapter is focused on the verification of the newly developed 

mode matching methods and implementing the necessary techniques to allow for modelling of 

complete waveguide structures. Industry standard software CST Microwave Studio is used to 

verify the essential correctness and accuracy of the mode matching formulation. In a series of 

verifying test cases, near perfect agreement was observed between CST and SCATTER-TNG 

software packages. Agreement to the level of −80 dB was shown in the comparison of the 

scattering parameters plots. The standard cascading routines that are necessary for building up 

complete waveguides are introduced and for completeness, routines necessary for the 

characterisation of radiation properties of feed structures (aperture field calculations, Fourier 

transforms and singular value decomposition) are discussed and implemented. Using all the 

methods presented in this chapter typical aperture antenna designs are described, modelled and 

evaluated. 

The material presented in Chapter 3 represents a significant advancement in the modelling 

capabilities of the mode matching method. Most important is the more rigorous treatment of 

the boundary walls; by including large yet finite conductivity in the description of the mode-

matching method the effects of non-zero surface impedance along the boundary can be 

accurately modelled. This more comprehensive treatment is necessary for the accurate analysis 
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of high frequency and multimoded waveguides. The essential building blocks presented in 

Chapter 2 had to be derived again while allowing for the inclusion of non-PEC walls. Likewise, 

a series of verifying test cases were performed with near perfect agreement between CST and 

S-TNG maintained i.e. to a level of −80 dB. In uniform guide section it was observed that in 

multimoded operation, due to the effects of interfering currents at the bounding wall, coupling 

between guide modes can occur. In contrast, in uniform PEC sections guide modes couple 

bijectively to themselves only. 

The non-PEC wall method was extended to allow for some surface roughness to be included. 

This was enabled by a simple but powerful Gradient Model, which could be extended to 

account for physical surface roughness as well as finite conductivity. Finally, a model of an 

absorber layer section as an infinitely thin sheet was revisited and adapted to the new 

formulation of the mode matching routine. Here, application of the contour integral approach 

allowed for trivial realisation of arbitrary absorber layer shapes. This is demonstrated for a 

number of test cases including mixed geometries and annulus shaped absorber layers, with 

excellent agreement with CST maintained.  

In Chapter 4, a number of the novel routines developed as part of the SCATTER-TNG software 

package are introduced. Firstly, the first steps towards a truly parallel implementation of the 

mode matching methods are introduced. In most cases the common coupling integrals 

identified for the mode matching routines can be solved analytically drastically reducing the 

computational load. However, for offset cylindrical sections no analytical solutions can be 

obtained making tolerance analyses of cylindrical waveguides challenging. Hardware 

acceleration techniques are implemented to overcome this limitation. Here, the common 

coupling integrals are reformulated to take advantage of the parallel capabilities of the GPU 

device. The parallel implementation results are verified for the same test cases as posed in 

previous chapters with comparable accuracy achieved.  

Secondly, a method for monitoring power loss in a system is discussed. Here, the network’s 

scattering matrix is augmented such that the power dissipated by the lossy elements is 

accounted for through virtual modes on virtual non-reciprocal ports. Ultimately it was shown 

that this was limited to infinity short symmetric elements, but made an interesting application 

to monitoring power absorption by absorber layers. This approach was verified using the 

standard return loss approach typically used to monitor power loss. Furthermore, the cascading 
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routines are used to derive the scattering matrix of this novel 3-port arrangement when 

cascaded with typical waveguide sections.   

Chapter 5 reports on a series of investigations into the focal plane arrangement of the SAFARI 

instrument. As part of a short research placement with SRON (Netherlands institute for space 

research) an investigation was performed into feasibility of an Offner reimaging system as a 

focal plane solution for the SAFARI instrument. This arrangement would allow for switching 

between different grating modules or between standard and high resolution modes. However, 

in the measured PSF (point spread function) from the experimental Offner system unexplained 

irregularities were observed. The system was modelled using in-house software MODAL 

(Maynooth Optical Design and Analysis Laboratory), where during normal operation the same 

irregularities could not be recreated. A potential source of these irregularities was identified as 

the over rotation of the BSM (beam steering mirror) of the Offner system which resulted in an 

overlap with a masked region of the primary mirror. An extended analysis was also preformed 

into the adequacy of the uniformly illuminated aperture initially used in the model. Here, a 

number of Gaussian beam profiles were used to show the effect of an under illuminated 

aperture and also confirmed the assumption that the QCL (Quantum Cascade Laser) provided 

uniform illumination of the aperture. Finally, the response of the Offner system to a 

polychromatic source was modelled and was found to be in good agreement with measured 

data where no irregularities in the PSF were observed. 

An off-axis SAFARI pixel arrangement was considered to allow for a more compact test-bed 

arrangement and achieve greater optical efficiency. Comparing this to a previous iteration of 

the design, there was significant loss in performance, with the power absorbed values are more 

comparable to the previous design test case where there was a smaller blackbody aperture 

present. It was found that the elliptical mirror offers no performance advantage when coupled 

to the SAFARI pixel. The influence of the elliptical mirror does not capture any more radiation 

than was emitted, it only focuses part of it. This type of optical arrangement would be more 

suited to a feed design with a much-reduced angle of acceptance. Here, the benchmark 

simulation would lose a large amount of power for the increasing inclination angles. In such 

an arrangement use of this off-axis arrangement would be beneficial. 
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In the analysis of a prototype feed for the medium wavelength band (M-band) of the SAFARI 

instrument, it was found that the measured beam profile was much too narrow when compared 

to the simulated results. This indicated that much of the power in the higher order modes had 

been lost. By including the effects due to the physical surface properties (i.e. finite wall 

conductivity and surface roughness) in the analysis of multi-moded structures a better 

understanding of the losses experienced by the higher order modes due to the non-PEC 

boundary walls can be obtained. As applied to the SAFARI M-band structure, it was observed 

that by performing this type of analysis the lossy simulations allowed for much improved 

agreement with the measurement results compared to the PEC simulation. Furthermore, if the 

values considered for surface roughness are within the tolerance of the wire erosion technique 

finish it is clear that much refinement is required in order to mitigate the losses due to surface 

roughness left behind by the machining process. 

As part of an ongoing collaboration with Cardiff University a significant investigation into the 

design and analysis of the shortest wavelength band (S-band) of the SAFARI instrument was 

performed. Here, the focus was on determining the feed’s performance for varying lengths, 

aperture sizes and surface roughness values. This analysis enabled tolerances values to be set 

for the manufacturing of the SAFARI type waveguides. An upper surface roughness limit of 

𝑅𝑞 = 0.3 μm was determined, with an aim to achieve surface roughness values approaching 

𝑅𝑞 = 0.1 μm. Furthermore, the trade-off between different horn lengths was investigated, with 

a more directive and top-hat shaped beam profile desired. The medium (5 mm) and long 

(7 mm) length horns provided the desired profile, while the medium length horn allowed for a 

reduction to the overall weight of the instrument (which was a key consideration in this early 

design stage). Lastly, a number of aperture geometries were considered. While the larger square 

apertures did indeed increase throughput such an arrangement may compromise the detector 

response time. The results from the rectangular aperture simulation indicate an increase in horn 

throughput and such an arrangement complements the highly polarised field incident at the 

SAFARI detector plane. 

The package of work presented in this thesis extends the capabilities of the mode matching 

methods beyond what could previously be achieved. Fundamentally, this implementation of 

the mode matching method can address more physical systems rather than assuming concentric, 

PEC structures. The extensive validation work performed against CST ensured that systems 

with mixed geometries, offset geometries and non-PEC surfaces could be confidently modelled 
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– using either numeric or analytic results. Moreover, work presented on the parallelisation of 

the numerical routines ensures the method is not badly bottlenecked where no analytic solutions 

are available and lays the foundation of a fully parallel mode matching approach. As shown in 

the final section of Chapter 5, the non-PEC model begins to breakdown for excessively poor 

surfaces. Although not as accurate as finite element analysis, such modelling can still provide 

a valuable insight into the multi-moded operation in the presence of extremely poor surfaces.  
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Appendix A 

 Type B, C and D integrals 

The analytical solutions for the common coupling integrals (B, C and D) required for the mode 

matching method are presented for cylindrical and rectangular guide geometries.   

Cylindrical Geometry: 

The scalar potentials 𝐹𝑧
+(𝜌, 𝜙, 𝑧) and  𝐴𝑧

+(𝜌, 𝜙, 𝑧) can be expressed in the form of two 

orthogonal solutions given by: 

 𝐹𝑧
+(𝜌, 𝜙, 𝑧) = 𝐴𝑚𝑛𝐽𝑚(𝛽𝜌𝜌) (

cos (𝑚𝜙)
sin (𝑚𝜙)

) 𝑒−𝑗𝛽𝑧𝑧 (A.1.1) 

 𝐴𝑧
+(𝜌, 𝜙, 𝑧) = 𝐵𝑚𝑛𝐽𝑚(𝛽𝜌𝜌) (

cos (𝑚𝜙)
sin (𝑚𝜙)

) 𝑒−𝑗𝛽𝑧𝑧 (A.1.2) 

where 𝜌 = √𝑥2 + 𝑦2 and 𝜙 = tan−1
𝑦

𝑥
  are given by. 

Both scalar potentials can be expressed in terms of polar coordinates by setting one of the 

solutions to be imaginary and using the common Euler relation. This is shown for the scalar 

potential 𝐹𝑧
+(𝜌, 𝜙, 𝑧) 

 𝐹𝑧
+(𝜌, 𝜙, 𝑧) = 𝐴𝑚𝑛𝐽𝑚(𝛽𝜌𝜌)[cos(𝑚𝜙) + 𝑖 sin(𝑚𝜙)]𝑒−𝑗𝛽𝑧𝑧 (A.1.3) 

 𝐹𝑧
+(𝜌, 𝜙, 𝑧) = 𝐴𝑚𝑛𝐽𝑚(𝛽𝜌𝜌)𝑒

𝑖𝑚𝜙𝑒−𝑗𝛽𝑧𝑧 (A.1.4) 

Effectively two valid solutions are combined to account for this a normalisation factor must be 

included: 

 𝐹𝑧
+(𝜌, 𝜙, 𝑧) =

𝐴𝑚𝑛

√𝑁
𝐽𝑚(𝛽𝜌𝜌)𝑒

𝑖𝑚𝜙𝑒−𝑗𝛽𝑧𝑧 (A.1.5) 
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where 𝑁 = 1 for zero azimuthal orders 𝑚 (corresponding to the case where only one solution 

exists) and 𝑁 = 2 otherwise (corresponding to the case where the sine solution is not trivial in 

(2.4.50)). Likewise, the same procedure can be applied to 𝐴𝑧
+(𝜌, 𝜙, 𝑧). 

The following integral solution below appears in the derivation of the common integrals: 

 ∫ 𝑒𝑖(𝑚𝑖−𝑚𝑗)𝜙𝑑𝜙 = [
𝑒𝑖(𝑚𝑖−𝑚𝑗)𝜙

𝑖(𝑚𝑖 −𝑚𝑗)
]

0

2𝜋2𝜋

0

 (A.1.6) 

which only has non-zero value for 𝑚𝑖 = 𝑚𝑗. For 𝑘 = 𝑅 and 𝑙 = 𝐿 the B-type integral has the 

following analytical solution:  

 
𝐵𝑖𝑗
𝑅𝐿(𝑆) = ∫ (𝐴𝑖

𝑅∇𝐹𝑗
𝐿) 𝑑𝒍

 

𝜕𝑆

 
(A.1.7) 

 
∇𝐹𝑗

𝐿 = 𝛽𝜌,𝑗
𝐿 𝐽𝑚𝑗

′ (𝛽𝜌,𝑗
𝐿 𝜌)𝑒𝑖𝑚𝑗𝜙�̂� +

1

𝜌
𝑖𝑚𝑗𝐽𝑚𝑗

 (𝛽𝜌,𝑗
𝐿 𝜌)𝑒𝑖𝑚𝑗𝜙�̂�  (A.1.8) 

 𝐴𝑖
𝑅 = 𝐽𝑚𝑖

 (𝛽𝜌,𝑖
𝑅 𝜌)𝑒𝑖𝑚𝑖𝜙 (A.1.9) 

 

𝐵𝑖𝑗
𝑅𝐿(𝑆) =

1

𝑁
𝜌𝐿∫ 𝐽𝑚𝑖

 (𝛽𝜌,𝑖
𝑅 𝜌𝐿)𝑒𝑖𝑚𝑖𝜙 (𝛽𝜌,𝑗

𝐿 𝐽𝑚𝑗
′ (𝛽𝜌,𝑗

𝐿 𝜌𝐿)𝑒𝑖𝑚𝑗𝜙�̂�

2𝜋

0

+
1

𝜌
𝑖𝑚𝑗𝐽𝑚𝑗

 (𝛽𝜌,𝑗
𝐿 𝜌𝐿)𝑒𝑖𝑚𝑗𝜙�̂�) 𝑑𝜙 

(A.1.10) 

 

=
1

𝑁
(𝛼∫ 𝑒𝑖(𝑚𝑖−𝑚𝑗)𝜙𝑑𝜙 + 𝜅

2𝜋

0

∫ −𝑖𝑒𝑖(𝑚𝑖−𝑚𝑗)𝜙𝑑𝜙

2𝜋

0

)

 

=
𝛼2𝜋 − 𝑖𝜅𝛼2𝜋

𝑁
 (A.1.11) 

 𝛼 = 𝜌𝐿𝐽𝑚𝑖
 (𝛽𝜌,𝑖

𝑅 𝜌𝐿)𝛽𝜌,𝑗
𝐿 𝐽𝑚𝑗

′ (𝛽𝜌,𝑗
𝐿 𝜌𝐿), 𝜅 = 𝐽𝑚𝑖

 (𝛽𝜌,𝑖
𝑅 𝜌𝐿)𝑚𝑗𝐽𝑚𝑗

 (𝛽𝜌,𝑗
𝐿 𝜌𝐿) 

(A.1.12) 
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The integration procedure for the remaining common integrals follows directly the method 

used in the B-type form. As such, the detail is excluded and only the result is given. For 𝑘 = 𝑅 

and 𝑙 = 𝐿 the (ii) C-type integral has the following analytical solution:  

Likewise, the (iii) C-type integral has the following analytical solution: 

 
 𝐶𝑖𝑗
𝑅𝐿(𝑆𝐿) = (𝛽𝑐,𝑗

𝐿,𝑇𝑀)
2
∫𝐴𝑖

𝑅𝐴j
𝐿𝑑𝑆

 

𝑆

 
(A.1.15) 

 
 𝐶𝑖𝑗
𝑅𝐿(𝑆𝐿) = 𝑋𝑚𝑗𝑛𝑗

2
𝜋

𝑁
[−𝐽′𝑚𝑗

(𝑋𝑚𝑗𝑛𝑗)]
2

 (A.1.16) 

Finally, for 𝑘 = 𝑅 and 𝑙 = 𝐿 the (ii) D-type integral has the following analytical solution:  

and the (iii) D-type integral has the following analytical solution: 

 
𝐷𝑖𝑗
𝑅𝐿(𝑆𝐿) = (𝛽𝑐,𝑗

𝐿,𝑇𝐸)
2
∫𝐹𝑖

𝑅𝐹j
𝐿𝑑𝑆

 

𝑆

 
(A.1.19) 

 

𝐶𝑖𝑗
𝑅𝐿(𝑆𝐿) =

(𝛽𝑐,𝑖
𝑅,𝑇𝑀)

2
∫ 𝐴𝑖

𝑅∇𝐴𝑗
𝐿 ∙ �̂�𝑑𝑙

 

𝑑𝑆

(𝛽𝑐,𝑖
𝑅,𝑇𝑀)

2
− (𝛽𝑐,𝑗

𝐿,𝑇𝑀)
2  

(A.1.13) 

 

𝐶𝑖𝑗
𝑅𝐿(𝑆𝐿) =

(𝛽𝑐,𝑖
𝑅,𝑇𝑀)

2

(𝛽𝑐,𝑖
𝑅,𝑇𝑀)

2
− (𝛽𝑐,𝑗

𝐿,𝑇𝑀)
2

𝛼2𝜋

𝑁
, for 𝛼 = 𝜌𝐿𝛽𝜌,𝑗

𝐿 𝐽𝑚𝑖
 (𝛽𝜌,𝑖

𝑅 𝜌𝐿)𝐽𝑚𝑗
′ (𝛽𝜌,𝑗

𝐿 𝜌𝐿) 
(A.1.14) 

 

𝐷𝑖𝑗
𝑅𝐿(𝑆𝐿) =

(𝛽𝑐,𝑖
𝐿,𝑇𝐸)

2
∫ 𝐹𝑗

𝐿∇𝐹𝑖
𝑅 ∙ �̂�𝑑𝑙

 

𝑑𝑆

(𝛽𝑐,𝑗
𝐿,𝑇𝐸)

2

− (𝛽𝑐,𝑖
𝑅,𝑇𝐸)

2
 

(A.1.17) 

 

𝐷𝑖𝑗
𝑅𝐿(𝑆𝐿) =

(𝛽𝑐,𝑖
𝐿,𝑇𝐸)

2

(𝛽𝑐,𝑗
𝐿,𝑇𝐸)

2

− (𝛽𝑐,𝑖
𝑅,𝑇𝐸)

2

𝛼2𝜋

𝑁
, for 𝛼 = 𝜌𝐿𝛽𝜌,𝑖

𝑅 𝐽𝑚𝑗
 (𝛽𝜌,𝑗

𝐿 𝜌𝐿)𝐽𝑚𝑖
′ (𝛽𝜌,𝑖

𝑅 𝜌𝐿) 
(A.1.18) 
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𝐷𝑖𝑗
𝑅𝐿(𝑆𝐿) = (𝑋′𝑚𝑗𝑛𝑗

2 −𝑚𝑗
2)
𝜋

𝑁
[𝐽𝑚𝑗
2 (𝑋′𝑚𝑗𝑛𝑗)]

2

 (A.1.20) 

Rectangular Geometry: 

In the rectangular case the surface integral form of the B, C and D-type integral solved as this 

form allows for offsets to be easily considered. Transformations (Δ𝑥, Δ𝑦) are explicitly applied 

to the right hand potential, effectively offsetting the position right hand guide section. For 𝑘 =

𝑅 and 𝑙 = 𝐿 the B-type integral has the following analytical solution 

𝐵𝑖𝑗
𝑅𝐿(𝑆) = ∫∇𝐴𝑖

𝑅 ∙ (∇𝐹𝑗
𝐿 × �̂�)𝑑𝑆

 

𝑆

 
(A.1.21) 

𝐹𝑗
𝐿(𝑥, 𝑦) = cos (𝛽𝑥,𝑗

𝐿 (𝑥 +
𝑎𝐿
2
)) cos (𝛽𝑦,𝑗

𝐿 (𝑦 +
𝑏𝐿
2
)) 

𝐴𝑖
𝑅(𝑥, 𝑦) = sin (𝛽𝑥,𝑖

𝑅 (𝑥 +
𝑎𝑅
2
+ Δ𝑥)) sin(𝛽𝑦,𝑖

𝑅 (𝑦 +
𝑏𝑅
2
+ Δy)) 

(A.1.22) 

∇𝐹𝑗
𝐿 =

𝜕𝐹𝑗
𝐿

𝜕𝑥
�̂� +

𝜕𝐹𝑗
𝐿

𝜕𝑦
�̂� and (∇𝐹𝑗

𝐿 × �̂�) =
𝜕𝐹𝑗

𝐿

𝜕𝑦
�̂� −

𝜕𝐹𝑗
𝐿

𝜕𝑥
�̂� (A.1.23) 

𝐵𝑖𝑗
𝑅𝐿(𝑆) = −𝛽𝑦,𝑗

𝐿 𝛽𝑥,𝑖
𝑅 ∫ cos (𝛽𝑥,𝑖

𝑅 (𝑥 +
𝑎𝑅
2
+ Δ𝑥)) sin(𝛽𝑦,𝑖

𝑅 (𝑦 +
𝑏𝑅
2
+ Δy))

 

𝑆

 

                           cos (𝛽𝑥,𝑗
𝐿 (𝑥 +

𝑎𝐿
2
)) sin(𝛽𝑦,𝑗

𝐿 (𝑦 +
𝑏𝐿
2
))  𝑑𝑆 

                     +𝛽𝑥,𝑗
𝐿 𝛽𝑦,𝑖

𝑅 ∫ sin(𝛽𝑥,𝑖
𝑅 (𝑥 +

𝑎𝑅
2
+ Δ𝑥)) cos (𝛽𝑦,𝑖

𝑅 (𝑦 +
𝑏𝑅
2
+ Δy))

 

𝑆

 

                              sin (𝛽𝑥,𝑗
𝐿 (𝑥 +

𝑎𝐿
2
)) cos (𝛽𝑦,𝑗

𝐿 (𝑦 +
𝑏𝐿
2
))  𝑑𝑆 

(A.1.24) 
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The integral is split such that  ∫ ∇𝐴𝑖
𝑅 ∙ (∇𝐹𝑗

𝐿 × �̂�)𝑑𝑆
 

𝑆
= (𝛼) + (𝛾), with 𝛼 and 𝛾 given by: 

(𝛼) = −𝛽𝑦,𝑗
𝐿 𝛽𝑥,𝑖

𝑅 ∫ cos (𝛽𝑥,𝑖
𝑅 (𝑥 +

𝑎𝑅
2
+ Δ𝑥)) cos (𝛽𝑥,𝑗

𝐿 (𝑥 +
𝑎𝐿
2
))𝑑𝑥

𝑎𝐿
2

−
𝑎𝐿
2

 

                        × ∫ sin(𝛽𝑦,𝑖
𝑅 (𝑦 +

𝑏𝑅
2
+ Δy)) sin(𝛽𝑦,𝑗

𝐿 (𝑦 +
𝑏𝐿
2
))𝑑𝑦

𝑏𝐿
2

−
𝑏𝐿
2

 

(A.1.25) 

(𝛾) = 𝛽𝑥,𝑗
𝐿 𝛽𝑦,𝑖

𝑅 ∫ sin(𝛽𝑥,𝑖
𝑅 (𝑥 +

𝑎𝑅
2
+ Δ𝑥)) sin (𝛽𝑥,𝑗

𝐿 (𝑥 +
𝑎𝐿
2
)) 𝑑𝑥

𝑎𝐿
2

−
𝑎𝐿
2

 

                      × ∫ cos (𝛽𝑦,𝑖
𝑅 (𝑦 +

𝑏𝑅
2
+ Δy)) cos (𝛽𝑦,𝑗

𝐿 (𝑦 +
𝑏𝐿
2
))𝑑𝑦

𝑏𝐿
2

−
𝑏𝐿
2

 

(A.1.26) 

notice: 
𝛽𝑥,𝑖
𝑅 𝑎𝑅
2

=
𝑚𝑖𝜋

2
,
𝛽𝑦,𝑖
𝑅 𝑏𝑅

2
=
𝑛𝑖𝜋

2
 and 

𝛽𝑥,𝑗
𝐿 𝑎𝐿

2
=
𝑚𝑗𝜋

2
,
𝛽𝑦,𝑗
𝐿 𝑏𝐿

2
=
𝑛𝑗𝜋

2
 (A.1.27) 

Integrals involving the product of sine’s and cosine’s appear throughout the derivation of the 

common B, C and D-type integrals. For clarity these trigonometric integral results are 

functionalised. Using the x-derivative as basis the trigonometric integral solutions are given as: 

𝐶𝐶𝑥(𝑢𝑥, 𝑣𝑥, 𝑎𝐿) = ∫ cos(𝑢𝑥) cos(𝑣𝑥)𝑑𝑥

𝑎𝐿
2

−
𝑎𝐿
2

=
1

2
∫ cos(𝑢𝑥 − 𝑣𝑥) + cos(𝑢𝑥 + 𝑣𝑥)𝑑𝑥

𝑎𝐿
2

−
𝑎𝐿
2

 (A.1.28) 

𝑢𝑥 − 𝑣𝑥 = (𝛽𝑥,𝑖
𝑅 − 𝛽𝑥,𝑗

𝐿 )𝑥 +
𝜋

2
(𝑚𝑖 −𝑚𝑗) + 𝛽𝑥,𝑖

𝑅 Δ𝑥 

𝑢𝑥 + 𝑣𝑥 = (𝛽𝑥,𝑖
𝑅 + 𝛽𝑥,𝑗

𝐿 )𝑥 +
𝜋

2
(𝑚𝑖 +𝑚𝑗) + 𝛽𝑥,𝑖

𝑅 Δ𝑥 

(A.1.29) 
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𝐶𝐶𝑥(𝑢𝑥, 𝑣𝑥 , 𝑎𝐿) =
1

2
[
sin(𝑢𝑥 − 𝑣𝑥)

𝑑(𝑢𝑥 − 𝑣𝑥)
𝑑𝑥

+
sin(𝑢𝑥 + 𝑣𝑥)

𝑑(𝑢𝑥 + 𝑣𝑥)
𝑑𝑥

]

−
𝑎𝐿
2

𝑎𝐿
2

 
(A.1.30) 

𝑆𝑆𝑥(𝑢𝑥, 𝑣𝑥, 𝑎𝐿) = ∫ sin(𝑢𝑥) sin(𝑣𝑥)𝑑𝑥

𝑎𝐿
2

−
𝑎𝐿
2

=
1

2
∫ cos(𝑢𝑥 − 𝑣𝑥) − cos(𝑢𝑥 + 𝑣𝑥)𝑑𝑥

𝑎𝐿
2

−
𝑎𝐿
2

 (A.1.31) 

𝑆𝑆𝑥(𝑢𝑥, 𝑣𝑥, 𝑎𝐿) =
1

2
[
sin(𝑢𝑥 − 𝑣𝑥)

𝑑(𝑢𝑥 − 𝑣𝑥)
𝑑𝑥

−
sin(𝑢𝑥 + 𝑣𝑥)

𝑑(𝑢𝑥 + 𝑣𝑥)
𝑑𝑥

]

−
𝑎𝐿
2

𝑎𝐿
2

 
(A.1.32) 

Similar results can be obtained for 𝐶𝐶𝑦(𝑢𝑦 , 𝑣𝑦 , 𝑏𝐿) and 𝑆𝑆𝑦(𝑢𝑦 , 𝑣𝑦 , 𝑏𝐿). Thus, the solution to 

the B-type integral can be expressed as: 

(𝛼) = −𝛽𝑦,𝑗
𝐿 𝛽𝑥,𝑖

𝑅 [𝐶𝐶𝑥 × 𝑆𝑆𝑦] (A.1.33) 

(𝛾) = −𝛽𝑦,𝑗
𝐿 𝛽𝑥,𝑖

𝑅 [𝑆𝑆𝑥 × 𝐶𝐶𝑦 ] (A.1.34) 

The same approach is taken for the C and D-Type integrals, with analytic solutions given by: 

 
𝐶𝑖𝑗
𝑅𝐿(𝑆) = ∫∇𝐴𝑖

𝑅 ∙ ∇𝐴𝑗
𝐿𝑑𝑆

 

𝑆

= (𝛼) + (𝛾) 
(A.1.35) 

 (𝛼) = −𝛽𝑥,𝑗
𝐿 𝛽𝑥,𝑖

𝑅 [𝐶𝐶𝑥 × 𝑆𝑆𝑦] (A.1.36) 

 (𝛾) = −𝛽𝑦,𝑗
𝐿 𝛽𝑦,𝑖

𝑅 [𝑆𝑆𝑥 × 𝐶𝐶𝑦 ] (A.1.37) 

and: 
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𝐷𝑖𝑗
𝑅𝐿(𝑆) = ∫∇𝐹𝑖

𝑅 ∙ ∇𝐹𝑗
𝐿𝑑𝑆

 

𝑆

= (𝛼) + (𝛾) 
(A.1.38) 

 (𝛼) = −𝛽𝑥,𝑗
𝐿 𝛽𝑥,𝑖

𝑅 [𝑆𝑆𝑥 × 𝐶𝐶𝑦] (A.1.39) 

 (𝛾) = −𝛽𝑦,𝑗
𝐿 𝛽𝑦,𝑖

𝑅 [𝐶𝐶𝑥 × 𝑆𝑆𝑦] (A.1.40) 

 Cascading Procedure 

The cascading technique considers two N-port networks A and B, both of which can be 

represented by their own scattering matrices which take the form: 

 𝒃𝐴 = [𝑺𝐴]𝒂𝐴 (A.2.1) 

 𝒃𝑩 = [𝑺𝐵]𝒂𝐵 (A.2.2) 

where 𝒂𝑋 = [𝑎𝑖
𝑋] represents the amplitudes of the incident modes, 𝒃𝑋 = [𝑏𝑖

𝑋] represents the 

amplitudes of the outgoing modes and 𝑋 gives the network element of interest. Ports in the two 

constituent networks that are connected to each other will vanish in the resulting network, while 

the remaining will become its external ports. The number of modes considered in each network 

is given by 𝑁𝑋. These modes can be separated into remaining (in the external ports; denoted 

by R) and vanishing (those in the vanishing internal ports of the complete network; denoted by 

V). The scattering matrix for each network can be correspondingly refactored using the 

remaining and vanishing notation introduced: 

 
[𝑏

𝐴,𝑅

𝑏𝐴,𝑉
] = [

𝑺𝑅,𝑅
𝐴

𝑺𝑉,𝑅
𝐴  

𝑺𝑅,𝑉
𝐴

𝑺𝑉,𝑉
𝐴 ] [𝑎

𝐴,𝑅

𝑏𝐵,𝑉
] (A.2.3) 

 
[𝑏

𝐵,𝑅

𝑏𝐵,𝑉
] = [

𝑺𝑅,𝑅
𝐵

𝑺𝑉,𝑅
𝐵  

𝑺𝑅,𝑉
𝐵

𝑺𝑉,𝑉
𝐵 ] [𝑎

𝐵,𝑅

𝑏𝐴,𝑉
] (A.2.4) 
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[𝒃
𝐴,𝑅

𝒃𝐵,𝑅
] must be expressed wholly in terms of the amplitudes of the remaining input modes 

[𝒂
𝐴,𝑅

𝒂𝐵,𝑅
]. 

 𝑏𝐴,𝑉 = 𝑺𝑉,𝑅
𝐴 𝑎𝐴,𝑅 + 𝑺𝑉,𝑉

𝐴 𝑏𝐵,𝑉 (A.2.5) 

 ⇒ 𝑏𝐴,𝑉 − 𝑺𝑉,𝑉
𝐴 𝑏𝐵,𝑉 = 𝑺𝑉,𝑅

𝐴 𝑎𝐴,𝑅 (A.2.6) 

 𝑏𝐵,𝑉 = 𝑺𝑉,𝑅
𝐵 𝑎𝐵,𝑅 + 𝑺𝑉,𝑉

𝐵 𝑏𝐴,𝑉 (A.2.7) 

 ⇒ −𝑺𝑉,𝑉
𝐵 𝑏𝐴,𝑉 + 𝑏𝐵,𝑉 = 𝑺𝑉,𝑅

𝐵 𝑎𝐵,𝑅 (A.2.8) 

In matrix form: 

 
[

𝐼
−𝑺𝑉,𝑉

𝐵  
−𝑺𝑉,𝑉

𝐴

𝐼
] [𝑏

𝐴,𝑉

𝑏𝐵,𝑉
] = [

𝑺𝑉,𝑅
𝐴

0
 
0
𝑺𝑉,𝑅
𝐵 ] [𝑎

𝐴,𝑅

𝑎𝐵,𝑅
] (A.2.9) 

 
[𝑏

𝐴,𝑉

𝑏𝐵,𝑉
] = [

𝐼
−𝑺𝑉,𝑉

𝐵  
−𝑺𝑉,𝑉

𝐴

𝐼
]
−1

[
𝑺𝑉,𝑅
𝐴

0
 
0
𝑺𝑉,𝑅
𝐵 ] [𝑎

𝐴,𝑅

𝑎𝐵,𝑅
] (A.2.10) 

The inverse of the block matrix is: 

 
[

𝐼
−𝑺𝑉,𝑉

𝐵  
−𝑺𝑉,𝑉

𝐴

𝐼
]
−1

= [
(𝐼 − 𝑆𝑉,𝑉

𝐴 𝑆𝑉,𝑉
𝐵 )

−1

(𝐼 − 𝑆𝑉,𝑉
𝐵 𝑆𝑉,𝑉

𝐴 )
−1
𝑆𝑉,𝑉
𝐵
 
(𝐼 − 𝑆𝑉,𝑉

𝐴 𝑆𝑉,𝑉
𝐵 )

−1
𝑆𝑉,𝑉
𝐴

(𝐼 − 𝑆𝑉,𝑉
𝐵 𝑆𝑉,𝑉

𝐴 )
−1 ] (A.2.11) 

Therefore: 

 
[𝑏

𝐴,𝑉

𝑏𝐵,𝑉
] = [

(𝐼 − 𝑆𝑉,𝑉
𝐴 𝑆𝑉,𝑉

𝐵 )
−1

(𝐼 − 𝑆𝑉,𝑉
𝐵 𝑆𝑉,𝑉

𝐴 )
−1
𝑆𝑉,𝑉
𝐵
 
(𝐼 − 𝑆𝑉,𝑉

𝐴 𝑆𝑉,𝑉
𝐵 )

−1
𝑆𝑉,𝑉
𝐴

(𝐼 − 𝑆𝑉,𝑉
𝐵 𝑆𝑉,𝑉

𝐴 )
−1 ] [

𝑺𝑉,𝑅
𝐴

0
 
0
𝑺𝑉,𝑅
𝐵 ] [𝑎

𝐴,𝑅

𝑎𝐵,𝑅
] (A.2.12) 
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[𝑏

𝐴,𝑉

𝑏𝐵,𝑉
] = [

(𝐼 − 𝑆𝑉,𝑉
𝐴 𝑆𝑉,𝑉

𝐵 )
−1
𝑺𝑉,𝑅
𝐴

(𝐼 − 𝑆𝑉,𝑉
𝐵 𝑆𝑉,𝑉

𝐴 )
−1
𝑆𝑉,𝑉
𝐵 𝑺𝑉,𝑅

𝐴
 
(𝐼 − 𝑆𝑉,𝑉

𝐴 𝑆𝑉,𝑉
𝐵 )

−1
𝑆𝑉,𝑉
𝐴 𝑺𝑉,𝑅

𝐵

(𝐼 − 𝑆𝑉,𝑉
𝐵 𝑆𝑉,𝑉

𝐴 )
−1
𝑺𝑉,𝑅
𝐵

] [𝑎
𝐴,𝑅

𝑎𝐵,𝑅
] (A.2.13) 

The remaining expressions for outgoing modes are obtained by expanding equations (A.2.3)-

(A.2.4) and applying the results of the obtained for the vanishing modes 𝑏𝐴,𝑉 and 𝑏𝐵,𝑉 from 

equations (A.2.12)-(A.2.13)(A.2.8): 

𝑏𝐴,𝑅 = 𝑺𝑅,𝑅
𝐴 𝑎𝐴,𝑅 + 𝑺𝑅,𝑉

𝐴 𝑏𝐵,𝑉 (A.2.14) 

= 𝑺𝑅,𝑅
𝐴 𝑎𝐴,𝑅 + 𝑺𝑅,𝑉

𝐴 (𝐼 − 𝑆𝑉,𝑉
𝐵 𝑆𝑉,𝑉

𝐴 )
−1
𝑆𝑉,𝑉
𝐵 𝑺𝑉,𝑅

𝐴 𝑎𝐴,𝑅 + 𝑺𝑅,𝑉
𝐴 (𝐼 − 𝑆𝑉,𝑉

𝐵 𝑆𝑉,𝑉
𝐴 )

−1
𝑺𝑉,𝑅
𝐵 𝑎𝐵,𝑅 (A.2.15) 

𝑏𝐵,𝑅 = 𝑺𝑉,𝑅
𝐵 𝑎𝐵,𝑅 + 𝑺𝑉,𝑉

𝐵 𝑏𝐴,𝑉 (A.2.16) 

= 𝑺𝑉,𝑅
𝐵 𝑎𝐵,𝑅 + 𝑺𝑉,𝑉

𝐵 (𝐼 − 𝑆𝑉,𝑉
𝐴 𝑆𝑉,𝑉

𝐵 )
−1
𝑺𝑉,𝑅
𝐴 𝑎𝐴,𝑅 + 𝑺𝑉,𝑉

𝐵 (𝐼 − 𝑆𝑉,𝑉
𝐴 𝑆𝑉,𝑉

𝐵 )
−1
𝑆𝑉,𝑉
𝐴 𝑺𝑉,𝑅

𝐵 𝑎𝐵,𝑅 (A.2.17) 

Rearranging this to the form: 

[𝒃
𝐴,𝑅

𝒃𝐵,𝑅
] = 𝑺𝐴𝐵 [𝒂

𝐴,𝑅

𝒂𝐵,𝑅
] (A.2.18) 

Thus the new cascaded matrix 𝑆𝐴𝐵  is given by: 

= [
𝑆𝑅,𝑅
𝐴 + 𝑆𝑅,𝑉

𝐴 (𝐼 − 𝑆𝑉,𝑉
𝐵 𝑆𝑉,𝑉

𝐴 )
−1
𝑆𝑉,𝑉
𝐵 𝑆𝑉,𝑅

𝐴 𝑆𝑅,𝑉
𝐴 (𝐼 − 𝑆𝑉,𝑉

𝐵 𝑆𝑉,𝑉
𝐴 )

−1
𝑆𝑉,𝑅
𝐵

𝑆𝑅,𝑉
𝐵 (𝐼 − 𝑆𝑉,𝑉

𝐴 𝑆𝑉,𝑉
𝐵 )

−1
𝑆𝑉,𝑅
𝐴 𝑆𝑅,𝑅

𝐵 + 𝑆𝑅,𝑉
𝐵 (𝐼 − 𝑆𝑉,𝑉

𝐴 𝑆𝑉,𝑉
𝐵 )

−1
𝑆𝑉,𝑉
𝐴 𝑆𝑉,𝑅

𝐵
] (A.2.19) 

 

 


