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Abstract: This article explores the rapidly advancing
innovation to endow robots with social intelligence cap-
abilities in the form of multilingual and multimodal emo-
tion recognition, and emotion-aware decision-making
capabilities, for contextually appropriate robot behaviours
and cooperative social human–robot interaction for the
healthcare domain. The objective is to enable robots to
become trustworthy and versatile social robots capable
of having human-friendly and human assistive interac-
tions, utilised to better assist human users’ needs by
enabling the robot to sense, adapt, and respond appropri-
ately to their requirements while taking into consideration
their wider affective, motivational states, and behaviour.
We propose an innovative approach to the difficult research
challenge of endowing robots with social intelligence cap-
abilities for human assistive interactions, going beyond the

conventional robotic sense-think-act loop. We propose an
architecture that addresses a wide range of social coopera-
tion skills and features required for real human–robot social
interaction, which includes language and vision analysis,
dynamic emotional analysis (long-term affect and mood),
semantic mapping to improve the robot’s knowledge of
the local context, situational knowledge representation,
and emotion-aware decision-making. Fundamental to this
architecture is a normative ethical and social framework
adapted to the specific challenges of robots engaging with
caregivers and care-receivers.

Keywords: social human–robot interaction, sHRI, com-
puting affect, emotion analysis, healthcare robots, robot-
assisted care, robot ethics

1 Introduction

One of the very distinct human intelligence abilities that
distinguish us from machines is our ability to gauge,
sense, and appropriately respond to emotions. However,
ever increasing advances in AI and hardware technology
are enabling machines to extract emotion from our verbal
and non-verbal communication. Despite these advance-
ments, there has been a narrow adoption of “emotion-
aware technology” in social robotic applications due to
the many scientific and technical hurdles involved. Many
of these are related to the difficulty of dealing with the
complexities of real-world human interactions, which
has frequently resulted in poor results or even failure of
non-robotic interactive AI applications. The complexities
that robot applications focused on social human–robot
interaction (sHRI) have to overcome is immense, resulting
in most of the sHRI robots being more “robotic toys” than
genuine social robots. The motivation for the research
agenda we present in this article is to equip robots in
the healthcare application area with multimodal affective
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capabilities of enabling human-friendly and human assis-
tive interactions that can be accomplished only by recog-
nising the user’s emotional state.

Smart interface technology is ubiquitous in all areas of
our lives; we use conversational smart assistant interfaces
like Amazon’s Alexa, we use facial recognition for authen-
tication, and we use our voice to control our connected
devices. However, research shows that user interaction
with smart interfaces that are not “emotionally intelligent”
results in one-directional commands rather than genuine
dialogue between humans and machines [1].

Unsurprisingly, previous sHRI applications have had
limited adoption as they failed to live up to expectations
and users found that their lack of empathy, social intelli-
gence, and inability to understand context led to inap-
propriate responses or no response at all, eventually
resulting in frustration and dissatisfaction [2,3]. The market
is recognising the rising consumer demand for a more per-
sonalised experience, where a robot can recognise emotions
(such as joy, trust, fear, surprise, sadness, anticipation,
anger, and disgust) based on Robert Plutchik’s eight basic
emotions [4], considering not only what the user wants but
also appreciating how they feel in that moment and mod-
ifying the interaction accordingly.

A user-centred design [5] is crucial to technology
innovation and acceptance [6] and is a core part of our
research, as new assistive interactive technology often
fails, because factors which affect how humans perceive
technology were not taken into account by developers at
the design stage, or insufficient attention was paid to
contextual barriers and ethical challenges. To enable
meaningful and trustworthy social interaction with social
agents, a person needs to perceive their dialogue partner
as an autonomous entity, requiring both a physical presence
and the possibility to directly interact and emote appropri-
ately. This propensity to anthropomorphise increases mean-
ingful social interaction between robots and people [7] and
helps interactive assistive technologies succeed.

Our core premise is that future autonomous robots,
from the simplest service robot to the most sophisticated
individualised support robot, will all require some level
of affective and social cognition to succeed in a dynamic
and complex human-populated environment. We pro-
pose leveraging technologies and techniques from the
fields of Affective Computing [8], Natural Language Pro-
cessing (NLP) [9], Computer Vision (CV) [10], and Complex
Decision-Making in HRI [11,12] to develop an “emotion-
aware architecture” called Computing Affect and Social
IntelligencE (referred to in the text as “CASIE,” which

refers to a robot that makes use of the technology we
propose). By allowing the robot to manage the complex-
ities associated with real-world human interactions,
“CASIE robots” can facilitate the adoption of assistive
healthcare robotic applications.

1.1 Social robots in healthcare

The COVID-19 pandemic has clearly demonstrated that
our healthcare systems and workforce are operating close
to their limits, and in some EU regions, even before the
current crisis, some countries’ vulnerability to future
shocks and stresses had already been identified in the
“2019 State of Health in the EU” report [13]. There is
now an urgent need to adopt innovative technologies
that can help reduce workload and stress on the health
systems and healthcare professionals, we need to be
better prepared for the next crisis.

The number of people who could benefit from social
robots used in healthcare is vast, the following applica-
tions shown in the following list have been identified as
particularly promising for increased adoption of social
robots. Not because we already have operational social
robotics solutions, but because these healthcare settings
have been extensively explored in recent years using
mock-ups and remote control, i.e. non-autonomous or
semi-autonomous robot prototypes [14].

1. Hospitals:
(a) Offering support to patients, such as companionship,

informing patients, encouraging them to adhere to a
healthcare programme using social assistance [15].

(b) Robots that are able to evaluate aspects of the
current physical state of the patient in psychiatric
clinics.

(c) Interactive robots for reception and waiting rooms
of hospitals and doctors’ offices.

2. Nursing homes:
(a) Helping residents to be more independent, sup-

porting residents through offering entertainment
and diversion, monitoring residents (specifically resi-
dents with dementia), providing companionship,
and supporting health promoting activities [16–18].

(b) Emotion-aware robots deployed in elderly care
settings to enable more socially appropriate inter-
actions with users based on their facial expression
and emotions in speech.
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3. Care facilities and home use:
(a) Assisting people with cognitive impairments, such

as autism spectrum disorders [19–21].
(b) Socially and emotionally-aware robots that can

help people in their daily life, such as dealing
with loneliness and anxiety.

As we design sHRI applications for the healthcare
domain, we must consider the effects that these robots
can have not only on the care-receiver but also on the
caregiver, how the robot fits into the overall network and
dynamics of the user’s social relationships, and, most im-
portantly, when and where their use is appropriate and
ethical [22]. Social robots have been shown to improve
social engagement, reduce negative emotions and beha-
vioural symptoms, and promote a positive mood and
quality of care experience [23]. Patients who use socially
assistive robots in a patient-centred manner are perceived
to have higher emotional intelligence [24,25], which can
influence caregivers to form a more favourable impres-
sion of the patient, directly leading to an improvement in
the quality of care a patient may be given [26,27].

Basic companion/service robots have shown that they
can improve users’ quality of life, social and cognitive
health, mitigate depression, increase social connected-
ness and resilience, and reduce loneliness [28]. In parti-
cular, the efficacy of companion/service robots used in
care settings for people with dementia has been validated,
evenwhen the robot lacks emotion-aware capabilities [29].
These results demonstrate that sHRI applications can
further improve care in healthcare settings where compa-
nion/service robots have already been implemented and
enable new ones where a companion/service robot would
have no impact. For example, social robots are being used
in novel ways to improve human–human interactions.

Inspired by the context above, we propose enabling
a robot to sense, analyse, and interpret an individual’s
behaviour and mood from what they say and how they
say it, from their speech, subtleties of tone, facial expres-
sions, micro-expressions, gestures, and body language.
The recognition of the nuances of non-verbal communi-
cation is essential for meaningful sHRI; they influence how
messages are perceived and understood. For example,
reading body language is integral to how we navigate
social situations. Empowering a robot to recognise all
these verbal and non-verbal communications enables the
robot to respond more appropriately with emotion-aware
behaviours, communication, and social interaction. This
social intelligence capability empowers robots to interact
more naturally with people in everyday real-world sce-
narios, hence further increasing the quality of the sHRI,
allowing them to be deployed in new domains and applica-
tionswhich require social intelligencewhilealsodelivering

a contextually appropriate interactive experience andnot
a standard one-directional command interaction.

The growth and demand for advanced social robotic
applications were highlighted in a Microsoft Research
report on AI [30], where the combination of robotics and
AI to perform advanced tasks was ranked second only to
machine learning as the most useful technology for Eur-
opean companies deploying AI solutions. The report empha-
sises the importance of social intelligence capabilities for
building the future AI applications. However, social intelli-
gence competencies were listed last, emphasising the scar-
city of available resources and knowledge, which in part is
limiting the adoption of new sHRI applications.

The pandemic is motivating hospitals and healthcare
facilities to implement autonomous robotic systems more
than ever. It is critical, particularly in close-contact situa-
tions, that these robots collaborate in a socially intuitive
and trustworthy manner. They must be capable of per-
ceiving human emotions, intentions, social boundaries,
and expectations. These features will help humans to feel
more secure, comfortable, and amiable when interacting
with robots. In light of the pandemic, the robotics com-
munity issued a call to action for new robotic solutions
for public health and infectious disease management,
with a particular emphasis on increased adoption of
social robots [31], as quarantine orders have resulted in
prolonged isolation of individuals from social interac-
tion, which may have a detrimental effect on their mental
health. To tackle this problem, social robots could be
deployed in healthcare and residential settings to main-
tain social interactions. The authors acknowledge the
challenges inherent in achieving this goal, as social inter-
actions require the development and maintenance of
complex models of people, including their knowledge,
beliefs, and emotions, as well as the context and environ-
ment in which they occur, which would be too challenging
for the current generation of social robots architecture.

Europe’s healthcare systems are becoming overbur-
dened with numerous problems due to ageing popula-
tions, disparities in medical systems and social protection
across countries, and crippling medical events that can
put the global medical community under tremendous
strain. Getting enough healthcare staff for the future will
become an increasing challenge. In many cases, medical
jobs are unappealing because of the low pay, night shift
work, long hours, and the risk of being exposed to harm-
ful viruses. The World Health Organization estimated in
a 2016 study on a global strategy on human resources for
health [32] that the expected healthcare staff shortage
for the EU28 alone will reach 4.1 million in 2030, which
includes 600k physicians, 2.3million nurses, and 1.3million
other health care professionals [33]. In Europe, health
workforce imbalances and shortages have long been a
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problem, and despite recent increases in workforce num-
bers, this improvement will not be sufficient to meet the
needs of ageing populations. For example, this increased
healthcare demand is projected to require up to 500k
additional full-time healthcare and long-term care staff
in Germany by 2030. In light of these circumstances, we
argue that robotics can be an effective tool for resolving
future staff issues. They can assist with specific social and
care tasks while allowing the staff to focus on their core
competencies and functions.

2 Studies and investigations

2.1 Bringing soft skills to robots

The next generation of social robots must be trustworthy,
contextual, and culturally aware to provide meaningful
assistance to the healthcare industry. The research agenda
outlined in this article can significantly contribute to over-
coming the challenges of enabling a robot to have human-
friendly, human assistive, and emotion-aware interactions,
accelerating the adoption of AI and social robots applica-
tions in healthcare and beyond.

Robotic deployment in healthcare applications is not
a simple task, as each medical environment and medical
condition presents unique challenges and varies in terms
of legal and regulatory requirements. However, all of
them require social and emotional recognition and con-
current adaptability. For example, in a nursing home
setting, a care-receiver may be seeking treatment, guid-
ance, or simply some small talk. The robot must be able
to recognise their emotions and react appropriately and
compassionately within a given context. This could be
accomplished by the robot speaking slower and louder
to someone who has difficulty hearing, slowing down
when guiding people with walking disabilities, and using
appropriate gestures, words, and tone during a conversa-
tion. As a result, emotion-aware social robots must be
fundamentally aware of their current situation and cap-
able of contextualising new information. Additionally,
they must remember people and be capable of adapting
to their current users over time.

2.2 User informed design

From a user perspective, CASIE will need to interact with
two distinct types of end users, each with distinct needs
and expectations of the system, as illustrated in Figure 1.

1. Care-receiver: The first group are patients or residents
of hospitals or nursing homes, which we consider the
care-receivers. The robot is responsible for their well-
being and being their primary means of contact or
assisting the doctors with their care. It can connect
them to medical staff and be a social connection to
the outside world (e.g. for isolated elderly in a nursing
home).

2. Caregiver: Additionally, caregivers can benefit from
robotic assistance. These may include hospital doctors
and nurses, nursing home staff, and family members
who deploy a robot assistant to assist their elderly rela-
tives at home. For this group of users, the robot serves as
a tool rather than a companion. Caregivers prefer direct
interaction, assigning specific tasks to the robot and
expecting direct access to the robot’s knowledge base.

Analysis of care-receiver data, particularly from private
conversations between care-receivers and robots, holds
enormous potential for treatment improvement, as patients
share information in a completely different way when com-
municating with robots. When speaking with a human
doctor, a subconscious need to justify and explain oneself
arises, because people are conscious that robots do not
judge; they tend to be more honest [6]. Thus, the data
gathered by a social robot maymake a significant difference
in the treatment of a variety of medical conditions such as
mental health problems.

Figure 1: Exemplary list of role-specific use cases from a list of
potential applications.
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Importantly, Western societies’ healthcare and pro-
fessional care workforce’s are generally highly feminised.
The history of technology, particularly healthcare tech-
nology, has revealed implicit and explicit gender biases
and stereotyping in technology design [34,35]. Addition-
ally, men and women express emotions, feelings, and
illness symptoms differently, and their expressions vary
with specific illnesses. The World Health Organization
asserts that gender plays a critical role in mental health
and illness [36].

A user-centred approach that considers the role of
gender in technology development ensures that the robotic
platform is informed from the start by caregiver and care-
receiver knowledge, and the iterative development of the
architecture in tandemwith the intended use cases enables
the developers to adjust for unintended gender or other
biases.

3 Comments on studies

3.1 State-of-the-art for the addressed
disciplines and fields

The successful deployment of CASIE in healthcare set-
tings depends on a number of critical key aspects. The
most important one is the user acceptance of both care-
receivers and caregivers. Besides ethical elements, this also
involves the system’s reliability and ease of use. CASIE
robots should be simple enough to allow roll-out after a
single day workshop with caregivers, such as medical staff,
who need to be able to operate the system without a tech-
nical background, including updating the system’s config-
uration (e.g. updating the map of the environment), instal-
ling software updates, and even doing minor repairs.

Because the CASIE is focused on robots in healthcare
settings, a new level of robustness in robotics is required.
A CASIE robot will constantly be required to recognise
and manage situations it has never encountered before,
such as new patients with unique behaviours, mixed lan-
guages or dialects, and changes in the situation while
maintaining short response times to facilitate fluent con-
versations. To illustrate, studies show that human speakers
have extremely fast response times, from 250 ms, depend-
ing on the spoken language, and frequently interrupt their
dialogue partner before their sentences are completed [37].
Given that many of today’s state-of-the-art NLP systems are
cloud-based or edge-based, a CASIE robot should provide
basic integrated language processing functionality as

a failsafe. On the other hand, CASIE will be required to
support external systems via interfaces (e.g. an appoint-
ment calendar of a hospital).

Ideally, CASIE robots would be affordable to consu-
mers, allowing for widespread adoption of social robot
assistants. We can circumvent this issue by making CASIE
as hardware-independent as possible, allowing it to run on
a wide variety of current robot platforms. Depending on
technological advancements, the system could be added
to lower-cost consumer robots. However, a CASIE robot
must earn the trust of both end-user groups. While this is
influenced by a variety of factors, including the system’s
reliability and ease of use, it is heavily influenced by emo-
tional awareness and the ability to take appropriate actions.
Developing an emotion-aware architecture for robots
pushes the boundaries of several technical, ethical, and
legal disciplines. As such, we view progress in this field of
research through the lens of the following nine complemen-
tary and overlapping challenge areas.

3.2 Challenges

3.2.1 Challenge 1: Affective (emotive) speech and
language processing

While processing emotion from speech is difficult, it is
necessary for empathic communication. Detecting and com-
prehending emotion in speech are critical for computer-
assisted technologies [38], as it is determining the speaker’s
intent [39]. Additionally, speech synthesis enhances the
effectiveness of machine–human interactions [40]. When
it comes to sHRI in a specific domain, such as health, noisy
incomplete spoken language input presents a number of
difficulties.

While these issues are typically resolved when pro-
cessing edited texts (e.g. web news), they become signifi-
cantly more problematic when analysing short, noisy
text utterances (incomplete sentences, missing words,
speech processing errors). For linguistic processing tasks
such as tokenisation, sentence boundary detection, part-
of-speech tagging, and syntactic parsing, such noisy input
complicates attempts to recognise, classify, and connect
concepts/entities within linguistic content to a knowledge
base for concept/aspect-based emotion analysis of text
(using opinion mining techniques) [41], which requires
associating an emotion with a specific target entity.

Developing human-like dialogue-based NLP presents
particular challenges in addition to those mentioned
previously, including real-time processing in accordance
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with human language processing time frames, concur-
rent language processing to enable the generation of
responses during an ongoing utterance, the ability to
process multimodal linguistic cues, for example, deictic
terms accompanied by body movements which constrain
possible interpretations of linguistic expressions, and
bi-directional exchange of information flow [42].

Handling abusive language, such as offensive, obscene,
culturally, and socially insensitive remarks, changing the
subject, and detecting utterances spoken in multiple lan-
guages are also well-known challenges when processing
human-to-robot dialogue. Additionally, extracting the neces-
sary features for emotion recognition from speech can take
several dozen seconds per utterance, which can be overcome
using deep learning algorithms [43]. These approaches have
significantly advanced dialogue generation, particularly in
terms of social intelligence [44].

The challenges are exacerbated further when dealing
with noisy and domain-specific non-English input. This
raises the following research questions: how do you develop
native emotion analysis applications and neural language
models in the absence of sufficient language resources?
And how, in this context, can Machine Translation be used
to support domain-specific, concept-based multilingual
emotion analysis of short text content?

3.2.2 Challenge 2: Spatial perception

While much information can already be obtained from
linguistic interaction, CASIE’s focus is also on the visual
perception of humans and the robot’s environment. In
addition to the voice analysis described above, both
facial and body pose recognition to understand a user’s
intentions and emotional state is required.

For humans to accept robots as socially intelligent
entities, they must exhibit social intelligence in several
forms. Recent advances in deep neural networks have led
to a step change in the performance of emotion classifi-
cation, person detection [45], body pose estimation [46]
algorithms, and, therefore, a CASIE robot will have to
incorporate such advances as a core part of its perception
system allowing it to work effectively with and among
people. AI facial coding technology for recognising basic
human emotions and attention states through a combina
tion of a Convolutional Neural Network and a Temporal
Convolutional Network is well established but has had
limited adoption in healthcare robotics applications.

It is important that a socially intelligent robot can
move around in human environments. The approach
we favour for CASIE robots is to feature a modern simul-
taneous localization and mapping (SLAM) system. While

many working solutions for indoor SLAM have already
been demonstrated, our CASIE conceptual model is about
interconnecting mapping, object recognition, and the
robot’s knowledge base while considering the limitations
of our target platforms, both with regard to available
sensors and computing power. The last decade has seen
research in SLAMmove towards handling dynamic envir-
onments [47], numerous different approaches have been
demonstrated, such as deforming the scene in a rigid as
possible method [48], estimation of joints [49], or warp
fields [50]. As CASIE robots are intended to face moving
people, or even beds, and bigger objects being moved
around, the framework we suggest requires taking temporal
factors into account to extract the actual minimal map over
time while tracking certain objects over extended periods.

Moreover, CASIE robots will need to navigate large
environments, such as nursing homes or hospitals, making
the implementationmore complex due tomemory and com-
puting power limitations. Further integration with object
recognition techniques is necessary to enable robots to
access contextual knowledge and investigate methods
for simplifying the teaching of new objects. A critical skill
for a socially intelligent robot is navigating in a socially
acceptable manner and may optionally include escorting
or guiding someone to a destination. Given the impor-
tance of people in the context of the robot’s operation,
we will build on recent advances in person detection and
body pose estimation to compute a social map of the
robot’s environment to augment semantic and geometric
maps with suitable human location, pose, and dynamics
data. This will entail combining the estimated 2D pose
with the output of the depth channel of the robot’s
RGBD sensor to upgrade the pose to a full 3D model,
allowing the resulting data to be grounded relative to
the robot’s model of the environment. We will extend
the social map with a predictive model of human dynamics,
initially based on filtering the body poses. The overall aim
of our approach will be to extend traditional robot naviga-
tion solutions to observe social rules regarding proxemics
[51], approaches, interactions, guiding, and following.

3.2.3 Challenge 3: High-level control

To respond in a contingent manner to interaction events,
and specifically to the emotional and affective states of
the user, CASIE robots will require a control mechanism
that is sensitive to these aspects of the external world.
While low-level aspects of the robot’s control (such as
dialogue management, social navigation, or non-verbal
behaviour) or delegated to low-level control mechanisms,
a high-level control mechanism is needed to drive the
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robots’ long-term behaviour. One feasible approach is to
rely on non-deterministic finite state machines to switch
between different behaviours [52]. However, while this
approach can handle small-scale interaction in which
the programmer can foresee most actions, we expect that
long-term interaction in complex domains will require a
robotic planner. The novel aspect here is making decisions
and chunked plans on affective data, handling incomplete
information, and managing potential conflicting decision
resolutions. Automated reasoning with incomplete informa-
tion, sometimes referred to as default reasoning, focuses on
computational methods to efficiently generate non-determi-
nistic solutions, and then pruning such solutions based on
preferences (or penalties) to rank possible final outcomes.
Default reasoning has only recently been applied for hand-
ling streaming data with substantial limitations in scalability
(e.g. the LARS framework [53]). On the other hand, reasoning
under uncertainty requires the handling of knowledge and
inference mechanisms that are probabilistic in nature.

These two approaches, traditionally used to solve
different problems, will be combined to handle incomple-
teness and uncertainty in dynamic scenarios. In health-
care scenarios such as those described in Section 2.2, there
is a need for a scalable hybrid approach of this sort that can
consider qualitative and quantitative aspects of dynamic
reasoning combined with multiple real-time criteria for
complex decision-making.

Such approaches can be seen as an advantage only if
we can deal with the potential reduction in the quality of
information represented by incompleteness and uncer-
tainty. However, decision-making may fall short as it is
not able to generate plans and reason about potential
future outcomes of actions. The main challenge is repre-
sented by the interplay between logical and probabilistic
inference to help reduce the complexity of logical rea-
soning and support learning from observations.

3.2.4 Challenge 4: Knowledge base

The CASIE requirements pose a technical challenge of
determining an appropriate system architecture that
enables the storage and query of knowledge and provides
a sufficiently detailed API for other components and pro-
cesses. Numerous research questions arise as a result of
this: What is an appropriate graph model? A knowledge
base is a graph of vertices and edges. There are numerous
ways to represent such a structure within a system [54].
There is no one “best fit” model, and a suitable model is
derived from a combination of the system requirements
and the underlying data which resides in the knowledge
base. How to determine an efficient path through the know-

ledge graph? Querying a graph requires a graph traversal,
which can be a time-consuming process. An efficient query
processor requires the ability to prune the available state
space of all edges within the graph to minimise the number
of possible paths that can satisfy a query.

Furthermore, frequently accessed paths can be indexed
[55] using polyglot persistence [56] to minimise query pro-
cessing time. How to learn from historical queries to predict
and cache frequently posed queries? A common method
in database optimisation is the caching of frequently stored
queries in memory for instant retrieval. Due to the high
number of queries being posed to the graph and the require-
ment to respond effectively, a query-cache is required.
Within a graph, this involves identifying sub-graphs [57]
that are frequently visited during query processing and
caching these in memory.

3.2.5 Challenge 5: Multimodal data fusion

To generate a meaningful and engaging affective dialogue,
a robot must be able to interact with humans on a shared
sensory level, where communication is often enriched by
facial expressions, body language, voice pitch, and the con-
text in which the communication occurs. A dialogue sys-
tem must be capable of capturing and aggregating all
of these stimuli in order to direct the system’s response.
Apart from the numerous challenges involved in process-
ing and extracting relevant data from each of these sources,
this task entails additional difficulties associated with syn-
chronising these disparate streams and selecting relevant
portions to include. To extract emotions frommultiplemod-
alities, it is necessary to model each source’s temporal
dynamics and align the extracted features [58].

All of this pre-processing must occur in real-time,
burdening these systems with complexity when dealing
with large amounts of user-generated data. There is also
a personal dimension to detecting emotions from hetero-
geneous sources: there is no standard model for con-
veying emotions, which can be expressed in a variety of
ways (e.g. some people express anger by emphasising
their voice pitch, while others use body language) [59].
As a result, a one-size-fits-all algorithm may struggle to
capture these nuances, as it may fail to recognise the
context in which the dialogue occurs.

3.2.6 Challenge 6: Affective (emotive) dialogue and
speech production

A coherent, consistent, and interesting dialogue requires
several key components: emotion awareness and expres-
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siveness, personalisation, and knowledge [60]. Emotion
recognition components extract emotions from utterances
using either annotated dialogue corpora or external emo-
tion classifiers to create an end-to-end dialogue system.
Each of these components poses a challenge to non-Eng-
lish languages, particularly those with limited resources.

Engaging content is generated when the system’s
responses are personalised based on the patient’s history
and personality. By fusing medical knowledge with the
patient’s cultural and social context, it is possible to gen-
erate engaging and pertinent dialogues. It is critical that
we combine them all to optimise the performance of the
robot and the overall care-receiver experience. To accom-
plish this, we will train the robots in the relevant medical
data/discourses. This will necessitate a number of experi-
ments. Through the incorporation of reinforcement learning,
the dialogue system will be able to adjust its response and
learn from previous interactions. To achieve the desired out-
come, the robot’s dialogue generation must be aligned with
the appropriate emotion. The current state-of-the-art enables
this expressive speech synthesis [61,62]. The main chal-
lenges will be selecting the appropriate emotion automa-
tically based on the spoken text [63] and adapting the
dialogue to the patient’s language and context.

3.2.7 Challenge 7: Non-verbal interaction

Other than verbal interaction, non-verbal interaction is very
important for robots to understand. This requires compo-
nents for interpreting the social environment: reading emo-
tion from facial expression and body posture, the interpre-
tation of hand and arm gestures, the interpretation of
intent, and the assessment of proxemics and social space.
In addition, components to express non-verbal behaviour
will be required, such as non-linguistic utterances, motion,
and space to interact with the social environment.

Next to the purely technical challenges of creating
a powerful SLAM and tracking system for keeping track
of walking humans (see Challenge 2), spatial, social inter-
actions [64], and, in particular, social aspects of naviga-
tion around humans need to be investigated [65–69]. Such
interactions include proxemics [50], avoiding, giving
way, approaching, guiding, and following, among others.
Although considerable research has been published in this
area [70], deploying such capabilities robustly in a real-
world context, such as a crowded hospital waiting room
environment, remains a significant research and engi-
neering challenge.

Here the following questions need to be addressed:
How close does a robot need to stay behind a person to
follow someone without giving the feeling of tailgating or

getting lost behind? How far can a robot move ahead when
guiding someone? How can we signal an approaching or
crossing person that we noticed him or her? Given the
healthcare settings, particular challenges include ensuring
that spatial, social interaction caters to the diverse range of
abilities and needs of the target populations.

3.2.8 Challenge 8: Hardware requirements

In terms of hardware requirements, on the one hand, the
sensors on the robots must meet the algorithms’ specifi-
cations. For instance, microphones must be sensitive
enough, and cameras must have a high enough resolution
and repetition rate. Additionally, all sensors must be cali-
brated on-site. On the other hand, the robot’s computing
power must be sufficient to execute real-time algorithms
which require low latencies locally. The deployment archi-
tecture is also determined by the robots’ performance and
the local network infrastructure. As a result, algorithmsmust
be shared between the robot, local base stations (Edge), and
the cloud. Subsequently, software deployment is contingent
on the robot and local infrastructure, increasing develop-
ment effort and, in many cases, precluding deployment
for economic reasons. To enable widespread adoption of
robotics, a hardware-independent implementation must be
developed.

3.2.9 Challenge 9: Ethical and social considerations

CASIE robots will be designed with trustworthiness and
ethics in mind. They must operate within a high-level
normative framework that is tailored to the unique chal-
lenges of care, communication, and robotic ethics. This
framework must be informed by empirical data per-
taining to the unique ethical and social challenges asso-
ciated with robots operating in a healthcare setting in
various countries. The framework will also need to evolve
in tandem with critical public (e.g. AI HLEG – the EU’s
high-level expert group on artificial intelligence) and pro-
fessional governance considerations for designing and
deploying social robots (e.g. IEEE).

3.3 Proposed robotic focused software
architecture

The proposed CASIE platform’s architecture is depicted in
Figure 2, which adapts the established robotics control
loop concept – sense, think, act – to a design focused on
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sHRI with emotion processing capabilities. CASIE robots
are designed to process audio input to analyse speech and
tone, as well as video streams to detect faces and emotions
in order to understand their environment. Unlike the con-
ventional approach of a simple control loop, the core idea
is to use this input data not only as a basis for CASIE’s
decision-making components but also to build up a knowl-
edge base, enabling the robot to remember faces, conver-
sation topics, and even context from its environment while
utilising remotely stored knowledge. A CASIE robot would
be capable of detecting human emotions as well as locating
amissing object (in its knowledge base) in the environment,
such as a lost set of keys. Finally, CASIE must carry out the
originally planned actions, which may include a combina-
tion of screen and speech output in order to carry out phy-
sical motions. Each component is described in the following
section.

3.3.1 CASIE components

Multilingual affective (emotion) speech and natural
language analysis – This functionality is required to
process spoken input (to determine the emotion and
source language) and to generate text from speech (see
Challenge 6).

First, the source language must be identified, fol-
lowed by the emotion elicited by the dialogue in accor-
dance with the dialogue’s intention. This technique can
be based on Deep Learning with a subsample of the audio
analysed quickly. Deep Learning techniques can also be
used to analyse the speaker’s prosody (tone of voice) and
emotion.

The first step towards decoding a user’s speech and
interpreting their intent, emotion, sentiment polarity,
and expectations is speech-to-text conversion. This func-
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Figure 2: High-level overview of the planned CASIE architecture.
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tionality can be implemented using a hybrid knowledge-
based/deep learning (Long Short-Term Memory, Artificial
Recurrent Neural Network [71] NLP pipeline, such as the
open-source platform developed [72] in EU H2020 project
“SSIX”: https://cordis.europa.eu/project/id/645425). To
classify emotions, we could modify the SSIX aspect-
based sentiment pipeline for short texts [72]. This involves
pre-processing linguistic data, including tokenisation,
sentence splitting, lemmatisation, part-of-speech tagging,
and syntactic parsing, followed by Named Entity Recog-
nition and Classification. A similar approach resulted in
developing a multi-label maximum entropy social emotion
classificationmodel, which uses social emotion lexicons to
identify entities and behaviours that elicit various social
emotions [73]. Additionally, a pSenti lexicon and learning-
based hybrid approach developed for concept-level senti-
ment analysis could be applied to emotion analysis [74].
The National Research Council’s (NRC) Word-Emotion
Association Lexicon (EmoLex) [75] resource could be
used to add support to over 100 languages [76].

Visual and spatial perception – This functionality,
which is implemented as a module in the CASIE architec-
ture, functions as a complement to the language proces-
sing functionality. While the latter focuses on speech
processing, this module focuses on Computer Vision and
other sensor readings that can be interpreted spatially,
such as camera images, but may also include data from
ultrasonic sensors or joint positions (see Challenge 2).

This module comprises a number of parallel pipe-
lines in the proposed CASIE architecture, including those
for face recognition, pose and body language recognition,
object recognition, localisation, and mapping. Depending
on the output, the data may be processed by the decision-
making components or may be directly stored in the local
knowledge base (e.g. changes to the map or updated loca-
tions of objects).

Multimodal aggregation and fusion – Human com-
munication typically makes use of a variety of verbal and
non-verbal cues beyond simple utterances and textual
statements, including voice inflection, facial expression,
and body language (see Challenge 5). CASIE’s dialogue
system must aggregate and fuse these disparate data in
order to obtain an accurate estimate of the emotions and
sentiment polarity conveyed during the user interaction.
This functionality is implemented as a component in the
architecture by aggregating classifiers trained indepen-
dently on each modality. Aggregation techniques vary
considerably, ranging from simple majority voting to
exert rules and ensemble learning.

Additionally, this module will examine more advanced
techniques for feature-level fusion that make use of recent

advances in deep neural networks for the purpose of
learning robust feature representations. While representing
multimodal inputs in a common feature space may have
the advantage of capturing correlations between different
features, an open challenge remains the incorporation of
temporal interactions between the various modalities. The
component will make use of the SSIX platform’s analysis
pipelines for classifier aggregation/fusion. The statistical
analysis component of SSIX, the “X-Score Engine,” provides
fine-grained sentiment metrics on analysed textual content
via anAPI. It generates continuousmetrics called“X-Scores”
that provide insight into a target entity’s sentiment beha-
viour via a customNamed Entity Recognition pipeline. This
component will be modified to aggregate emotion scores
derived from various classification outputs.

Control, decision making, and planning – It is
easy to see how a robot will be required to make complex
real-time decisions as part of the various use cases. There
is a High-Level Control Centre for this purpose, which
comprises three interconnected components that cater to
the requirements of diverse use cases (see Challenge 3).
The first component is a non-deterministic Finite-State
Machine that controls the robots’ behaviour in the “here
and now” and for a decision that is unlikely to have any
long-term impact. The second component is Emotion-
Based Decision-Making, which addresses the problems
of using emotion and affect states (gleaned from voice,
events, and video data) to choose between possibly con-
flicting actions. The following questions need to be solved
within the component implementation process, such as
what parameters from emotion states should be used?
What emotion patterns should the robot look for? How
do we reuse decision mechanisms across scenarios and
robot implementations? The third component is the Robotic
Planner, which is a probabilistic planner used to plan
a series of actions that have the highest probability of
reaching a goal set by the robot users. The planner will
need to deal with incomplete, partially observable, sto-
chastic information, and uncertain post conditions; all ele-
ments inherent to the use of interactive robots in dynamic
scenarios.

The three components each handle a different tem-
poral aspect of the robots’ control, with the non-determi-
nistic Finite State Machines handling immediate events and
the planner handling actions with a long-term horizon.

Knowledge base – The robot’s knowledge base repre-
sents its long-term memory. In general, its role is to store
data that have been classified as relevant by the decision-
making component. Moreover, it also acts as an abstrac-
tion layer for external data sources and services to provide
a structured approach for the planning and decision-
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making components. It is to be expected that the knowl-
edge base system may receive a high frequency of queries.
As such, any queries posed to the systemmust be executed
and responded to quickly and efficiently. A suitable system
architecture for storing, querying, and updating the
knowledge base would be composed of three components:
a Query Processor, a Query Optimiser, and a Query-Cache.
Central to a knowledge base is the Knowledge Graph.
A query to the knowledge base ultimately requires a tra-
versal of the knowledge graph. The query processor com-
ponent aims to analyse the input query to the knowledge
base and determine a path through the Knowledge Graph,
which best satisfies the said query. Graph traversal can be
a time-consuming process, and the knowledge base may
have to respond to a high frequency of queries. As such,
the purpose of the query optimiser is to analyse historical
queries and determine what the following query to the
system would be to improve response times. Predicted
queries with a high probability of being posed to the
knowledge base will be stored in the query-cache for
immediate retrieval when a matching query is poised.
The knowledge base will be exposed to other processes
and components using a query API, allowing continued
optimisation and upgrading of the knowledge base
without interfering with other components and processes.
Finally, there is a need for external APIs, and interfaces
for external services, such as a hospital’s database, are
provided.

Affective dialogue management, production, and
speech synthesis – This functionality is concerned with
the dialoguemanagement andNatural Language Generation
(NLG) [77] components of the dialogue system. It is respon-
sible for defining and implementing a Dialogue Manager for:
(i) tracking the state of the current dialogue, (ii) updating
the knowledge base where appropriate, and (iii) deciding
the next dialogue action of the system based on the current
state. The dialogue manager may also interface with the
planning/behaviour selection component to initiate physical
actions when needed. The NLG component will be respon-
sible for translating the given action into natural language.
Semantic-based representation learning techniques will be
adopted to mitigate problems generated by changing user
intents. This task will build on current state-of-the-art tech-
nology to modify the text before the Text-to-Speech and
increase control over emotional signals (breath, vocal tract
length, speed, and tone).

Ethical and social framework – While developing
an appropriate ethical and social framework is a contri-
bution in itself, this will also frame and impact the work
of the technical challenges. For example, a key ethical
and social consideration is the need to minimise the

potential for gender bias in the choice of training data,
language models, and facial recognition models for the
architecture. We see the need for novel computational
models and methods that can mitigate bias and make
transparent how research deals with gender or other
potential forms of bias in language, emotion, and mate-
rial embodiment (which involve challenges 1, 6, 7, and 9).
Combating computational bias is an ongoing challenge
for AI systems, as they are only as good as the data we put
into them. Inadequate data can contain implicit racial,
gender, or ideological biases. Consideration will also be
given to the importance, or not, of assigning gender to
the robots and the possible impact of that on the overall
research goals and outcomes. Robots using CASIE must
be transparent and accountable in relation to how they
deal with patient needs (in relation to a medical condi-
tion, gender, age, and language), in different caring con-
texts (nursing home, hospital, and private home) and social
densities (individuals, small groups, larger groups). Local
attitudes to robots in care contexts and the acceptability of
robot autonomywill need to be accounted for; our approach
considers the local barriers to robot acceptance and the
potential positive impacts of social robot communication
in different care contexts and situations [78,79].

Motion planning and execution – Challenges 7 and
8 are a collection of software modules responsible for
executing non-verbal tasks formulated by the decision-
making engine. This could be simple gestures or screen
output during a conversation and more complex naviga-
tion goals requiring additional data from the robot’s
knowledge base, like a map of the environment.

3.3.2 CASIE compute architecture

Figure 3 provides an overview of CASIE’s compute archi-
tecture. Starting from the computational capabilities
embedded in the robot, which, depending on the parti-
cular type of robot, might be enhanced by CASIE as well,
edge and cloud computing layers are used to map the
different functions required.

4 Discussion

The CASIE platform sets out an ambitious research chal-
lenge to develop an innovative multimodal emotion-
aware robotics platform that enables novel applications
in healthcare and beyond. In this section, we presented
the current state-of-the-art solutions relevant to CASIE
areas. For completeness, below are additional robotic
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solutions currently used in relevant healthcare applica-
tions which are equipped with varying degrees of social
intelligence.

4.1 Other existing robotic solutions

Furhat – It has incredibly alive faces and gestures. It can
engage and react to users, while a camera enables it to
maintain eye contact. It can interact with humans the
way we interact with each other. Merck has trialled it as
a pre-screening medical robot to educate people on how
to take better care of their health while simultaneously
alleviating the embarrassment that people often feel when
discussing stigmatised health issues. The trial showed how
social robots provide a very intuitive and engaging way to
interact with people to raise awareness, pre-screen, and
potentially onboard people with high risks of certain med-
ical conditions.

Care-O-Bot – It is a mobile robot assistant which can
make simple gestures and express emotions. It was designed
to actively support humans in domestic environments.

ElliQ – It is a social robot designed to be a friendly,
intelligent, curious presence in older adults’ daily lives,
helping them, offering tips and advice, responding to
questions, surprising them with suggestions. Using real-
time sensory data, ElliQ understands situational context to
proactively engage with users over the course of the day at
the ideal moment, offering personalised suggestions that
anticipate their needs and preferences.

Moxi – It is a socially intelligent hospital robot assis-
tant that helps clinical staff with non-patient-facing tasks.
Created with a face to visually communicate social cues
and able to show its intention before moving to the next
task, Moxi is built to foster trust between patients and
caregivers.

Buddy Pro – It is an emotional companion robot that
can hear, speak, see, and make head movements. It is
built on an integrated end-to-end robotics framework
and platform for robotics manufacturers and integrators
to enable the delivery of highly relevant and customised
service robots across several domains.

Sophia – It is a human-like robot endowed with a
vibrant personality and holistic cognitive AI. Sophia can
engage emotionally and deeply with people. It can main-
tain eye contact, recognise faces, understand speech, hold
natural conversations, and learn and develop through
experience. Sophia was designed to show deep engagement
and report a warm, to create a real emotional connection.

4.2 Patents for emotion-aware technologies

Next, we examine relevant emotion-aware patents uti-
lising text, audio, and video analysis techniques that
are intended to be used in a social robot architecture:

“Adapting robot behavior based upon human–robot
interaction” (D. A. Florencio, D. Guimarães, D. Bohus,
U.S. Patent No. 9956687, 2018) – Microsoft wants to make
social robots that adapt to human behaviour. Technologies

Figure 3: Overview of CASIE Robot to Cloud computing architecture including major technologies and features.
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pertaining to HRI, a task that is desirably performed by the
robot, are to cause the human to engage with the robot.
The model is updated while the robot is online, such that
the behaviour of the robot adapts over time to increase
the likelihood that the robot will successfully complete the
task. The technology marks a move towards more dynamic
human–computer interactions, signifying the increasing
sophistication of intelligent devices.

“Object control system and object control method”
(S. Honda, A. Ohba, H. Segawa, Japan Patent No. WO2018-
203501A1, 2018) – Sony has designed a “feeling deduction
unit,” a robot that can understand a user’s mood and
respond appropriately. By analysing a feed of data from
a camera and sensors, the robot would notice the user’s
verbal, paralinguistic (e.g. speed, volume, and tone of
voice), non-verbal cues, and the user’s sweat and heart
rates. The system would categorise these inputs based
on an emotion index, such as joy, anger, love, and sur-
prise. The robot would then respond in real-time through
speech and gestures, for example, by throwing its arms up
in celebration. If the robot observes that the user is living
an irregular life, such as if the user is staying up late at
night to play video games, it may prompt users by saying,
“let’s go to bed soon.” This sets up the robot to have a
more deeply integrated position in users’ lives, beyond
turning on the TV.

“Human emotion assessment reporting technology system
and method” (R. Thirumalainambi, S. Ranjan, U.S. Patent
No. 9141604, 2015) – A novel method of analysing and
presenting results of human emotion during a conversa-
tional session, such as chat, video, audio, and combina-
tion thereof in real-time. The analysis is done using semiotic
analysis and hierarchical slope clustering to give feedback
for the session or historical sessions to the user or any
professional. The method is useful for identifying reactions
for a specific session or detecting abnormal behaviour and
emotion dynamics. The unique algorithm is useful in get-
ting instant feedback to help maintain or in the session or
indicate a need for a change in strategy for a desired result
during the session.

“Emotion state prediction method and robot” (M. Dong,
U.S. Patent No. 2019038506, 2015) – It provides a method
for a robot to continually predict the emotional status of
a user. The method determines a user’s initial emotion
status, then predicts a second emotion status based on
the first emotion status and a first emotion prediction
model, where the second emotion status is the emotion
status of the first user at the second moment, and the
second moment is later than the first moment; and finally,
based on the second emotion status, the system outputs
a response to the user. According to the method, the

emotion status prediction model can provide a timely
warning or a communication skill suggestion for a robot
or application, thereby further improving the conversation
effect and enhancing user experience.

4.3 Current products and solutions in
emotion-aware technologies

Emotion-aware technologies utilising text, audio, and
video analysis techniques for specific tasks in the health-
care domain are already on the market, with the fol-
lowing being some emerging market solutions that relate
to CASIE.

Winterlight labs – It quantifies speech and language
patterns to help detect and monitor cognitive and mental
diseases.

Ellipsis health – It provides natural speech analysis as
a behavioural health vital sign used to measure anxiety
and depression. Their system only requires a few minutes
of natural speech to create a real-time assessment.

Eyeris – It offers a suite of face analytics, body tracking,
action recognition, and activity prediction APIs. Eyeris tech-
nology is currently being used in automotive and social
robotics commercial applications.

Clarigent health – It detects mental health issues
early, with the goal of preventing suicide in at-risk chil-
dren and adolescents. The technology is based on lin-
guistics, including word selection and sentence construc-
tion. Their system can identify vocal biomarkers in at-risk
youth and discovered a correlation with the use of abso-
lutist words and certain pronouns, as well as the pace,
breathiness, and inflection of speech.

OliverAPI – It is a speech emotion API that offers
a variety of emotional and behavioural metrics. It allows
both real-time and batch audio processing and can readily
support heavy-duty applications.

DeepAffex – It is a cloud-based affective intelligence
platform that utilises innovative facial blood-flow ima-
ging technology to provide analysis of human physiology
and psychological affect.

MATRIX Coding System [80] – It is an NLP content
analysis system for psychotherapy sessions that trans-
forms session transcripts into code. It offers therapists
a direct observation of ongoing psychotherapy processes
where analytics are used to tailor psychotherapy treatments.

Moxie – It is a social robot platform that enables
children to engage through natural interaction, evoking
trust, empathy, motivation, and deeper engagement to pro-
mote developmental skills. Moxie can perceive, process,
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and respond to natural conversation, eye contact, facial
expressions, and other behaviour, and recognise and
recall people, places, and things to create a unique and
personalised learning experience for a child.

Ellie [81] – It is a virtual interviewer who can detect
non-verbal cues and respond accordingly. The system
analyses the patient’s face and speech pattern before
answering questions. Ellie’s actions, movements, and
speech mimic those of a real therapist, but not entirely,
which is advantageous for patients who are fearful of
therapy.

4.4 Future research potential and
conclusions

From a robotics perspective, allowing robots to operate in
social contexts and react to their human users’ social and
emotional circumstances is a significant and crucial step
towards expanding their use and applicability in our
society. While providing them with basic social intelli-
gence may seem trivial from a human perspective, this
represents a significant advancement that must be built
upon from a machine perspective. The proposed social
intelligence functionality from the initial design is hard-
coded andmimetic, devised to have autonomy and learning
capabilities. From a technological standpoint, we conclude
that robotic social intelligence components’ autonomy,
decision-making, and learning capabilities are the most
critical aspects that could be significantly enhanced and
extended in future research. This is because decision-
making is still in its infancy, as robotic functionality and
complete robotic autonomy necessitate continuous heavy
decision-making processes. Then learning capabilities will
continuously enhance the robotic adaptability and will
have to go hand in hand with improved computer hardware
performance due to ever-increasing computing demands
from more complex scenarios. In this regard, the scope
for future advancement and possibilities resulting from
the successful implementation of our proposed approach
for emotion recognition and analysis technology into robots
is endless, both in the AI and IT hardware domain.
Applications range from social robotics, healthcare, enter-
tainment, industry in general and manufacturing in parti-
cular, ecology, space exploration, tourism, and education,
which can impact several markets and facets of our daily
and future life.

At the same time, it can boost and open new possibi-
lities and opportunities for further research and innovation.
Some of these include integrating “CASIE” technologies

with AI stand-alone technologies for entirely new types of
applications or product enhancements. The AImarket could
use this technology to have much better data to improve
their analysis and decisions and provide more valuable and
human-like responses and use CASIE for very different AI-
type applications, especially in the healthcare application
area. CASIE can also boost service and social robots and, as
a result, their future applications and innovations or other
existing technologies like smart spaces or other autono-
mous vehicles.

This article presents a detailed approach and an in-
depth attempt to enhance robotic interactions with social
intelligence, relying heavily on new AI and IT technolo-
gies. The above material will be further developed and
structured as an EU proposal submission for the Horizon
Europe program in 2021. The authors also hold various
elements of the required CASIE technology to continue
their independent development and enhancements with
novel functionalities.
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