
The Program-Size Complexity of Self-Assembled Paths∗

Pierre-Étienne Meunier
Hamilton Institute,

Department of Computer Science,
Maynooth University
Maynooth, Ireland

pmeunier@mailbox.org

Damien Regnault
IBISC, Université Évry, Université

Paris-Saclay
91025, Evry, France

damien.regnault@univ-evry.fr

Damien Woods
Hamilton Institute,

Department of Computer Science,
Maynooth University
Maynooth, Ireland

damien.woods@mu.ie

ABSTRACT
We prove a Pumping Lemma for the noncooperative abstract Tile
Assembly Model, a model central to the theory of algorithmic self-
assembly since the beginning of the field.This theory suggests, and
our result proves, that small differences in the nature of adhesive
bindings between abstract square molecules gives rise to vastly dif-
ferent expressive capabilities.

In the cooperative abstract Tile Assembly Model, square tiles at-
tach to each other using multi-sided cooperation of one, two or
more sides. This precise control of tile binding is directly exploited
for algorithmic tasks including growth of specified shapes using
very few tile types, as well as simulation of Turing machines and
even self-simulation of self-assembly systems. But are cooperative
bindings required for these computational tasks?The definitionally
simpler noncooperative (or Temperature 1) model has poor control
over local binding events: tiles stick if they bind on at least one side.
This has led to the conjecture that it is impossible for it to exhibit
precisely controlled growth of computationally-defined shapes.

Here, we prove such an impossibility result. We show that any
planar noncooperative system that attempts to grow large, tile-
efficient assemblies in an algorithmic way must also grow infinite
non-algorithmic (pumped) structures with a simple closed-form
description, or else suffer blocking of intended algorithmic struc-
tures. Our result holds for both directed and nondirected systems,
and gives an explicit upper bound of (8|𝑇 |)4 |𝑇 |+1 (5|𝜎 | + 6), where
|𝑇 | is the size of the tileset and |𝜎 | is the size of the seed assembly,
beyond which any path of tiles is pumpable or blockable.

CCS CONCEPTS
• Mathematics of computing; • Theory of computation →
Models of computation; Computational geometry;

∗Supported by European Research Council (ERC) award number 772766 and Science
foundation Ireland (SFI) grant 18/ERCS/5746 (this manuscript reflects only the au-
thors’ view and the ERC is not responsible for any use that may be made of the in-
formation it contains). Some of this work was supported by, and carried out at, Inria,
Paris, France.This version is merely an Extended Abstract, the full paper can be found
on the arxiv at arXiv:2002.04012v1 [cs.CC] and contains proofs, figures and addi-
tional intuitive explanations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
STOC ’20, June 22–26, 2020, Chicago, IL, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6979-4/20/06…$15.00
https://doi.org/10.1145/3357713.3384263

KEYWORDS
Self-assembly, tilings, pumping lemma, DNA computing

ACM Reference Format:
Pierre-Étienne Meunier, Damien Regnault, and Damien Woods. 2020. The
Program-Size Complexity of Self-Assembled Paths. In Proceedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC ’20),
June 22–26, 2020, Chicago, IL, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3357713.3384263

1 INTRODUCTION
Disclaimer: The version of this work you are reading is merely a
brief Extended Abstract, the full paper [45] can be found on the
arxiv (arXiv:2002.04012v1 [cs.CC]) and contains proofs, figures
and additional intuitive explanations.

Themain challenge of molecular programming is to understand,
build and control matter at the molecular level. The dynamics of
molecules can embed algorithms [42] and the theory of algorith-
mic self-assembly [13, 34, 43] is one formal way to think about the
computational capabilities of autonomic self-assembling molecu-
lar systems. That theory, and more broadly the theory of models
of computation, guides advances in experimental work to this day:
the self-assembling binary counter ofWinfree and Rothemund [38]
was later implemented using tiles made of DNA [17], as were bit-
copying systems [2, 3, 39] and discrete self-similar fractals [20,
36]. More recently, twenty-one self-assembly algorithms were im-
plemented using DNA single-stranded tiles [44], including a tile-
based implementation [7] of vonNeuman’s fair-bit-from-an-unfair-
coin and a 3-bit instance of the computationally universal cellular
automata Rule 110 [9, 32]. Besides guiding experiment, the theory
itself has undergone significant developments, with the long-term
vision of understanding the kinds of structure-building capabili-
ties and computational mechanisms that are implementable and
permitted by molecular processes.

Perhaps the most studied model of algorithmic self-assembly
is the abstract Tile Assembly Model (aTAM), introduced by Win-
free [42] as a computationalmodel of DNA tile-based self-assembly.
The model is an algorithmic version of Wang tilings [41], can be
thought of as an asynchronous cellular automaton [5] and has fea-
tures seen in other distributed computing models. In each instance
of the model, we have a finite set of unit square tile types, with
colours on their four sides, and an infinite supply of each type.
Starting from a small connected arrangement of tiles on the Z2
plane, called the seed assembly, we attach tiles to that assembly
asynchronously and nondeterministically based on a local rule de-
pending only on the colour of the sides of the newly placed tile and

727

https://arxiv.org/abs/2002.04012v1
https://doi.org/10.1145/3357713.3384263
https://doi.org/10.1145/3357713.3384263
https://arxiv.org/abs/2002.04012v1

STOC ’20, June 22–26, 2020, Chicago, IL, USA Pierre-Étienne Meunier, Damien Regnault, and Damien Woods

of the sides of the assembly that are adjacent to the attachment po-
sition.

This model can simulate Turing machines [42], self-assemble
squares with few tile types [37, 38], assemble any finite spatially-
scaled shape using a small, Kolmogorov-efficient, tile set [40], and
there is an intrinsically universal tile set capable of simulating the
behaviour (produced shapes and growth dynamics) of any other
tile set, up to spatial rescaling [14].

However, these results have all been proven using the so-called
cooperative tile assembly model. In the cooperative, or temperature
2, model there are two kinds of bonds: strong and weak. A tile
can attach to an assembly by one side if that side forms a strong
(“strength 2”) bond with the assembly, or it can attach if two of
its sides each match with a weak (“strength 1”) bond. Intuitively,
the cooperative model exploits weak bonds to create a form of syn-
chronisation. The attachment of a tile by two weak glues sticking
to two neighbour tiles can only occur after both neighbour tiles are
present, allowing the system to wait rather than (say) proceeding
with potentially inaccurate or incomplete information.

But what happens if we allow only one kind of bond? We get a
simple model called the noncooperative, or temperature 1, model. In
the noncooperative model, tiles may attach to the assembly when-
ever at least one of their sides’ colour matches the colour of a side
of the assembly adjacent to the position where they attach. Intu-
itively, they need not wait for more bonds to appear adjacent to
their attachment position. In this model it seems non-obvious how
to implement synchronisation; we have no obvious programmable
feature that enables one growth process to wait until another is
complete. Our attempts to build such things typically lead to ram-
pant uncontrolled growth.

The question of whether the noncooperative (or “non-waiting”)
model has any non-trivial computational abilities has been open
since the beginning of the field [38]. Perhaps a reason for this
is that actually proving that one can not synchronise growth is
tricky; maybe noncooperative self-assembly can somehow simu-
late synchronisation using some complicated form of in-plane geo-
metric blocking? Restrictions of the model have been shown to be
extremely weak [26, 38], generalisations shown to be extremely
powerful [4, 6, 10–12, 15, 18, 19, 23–25, 33, 35, 37], and, to further
deepen the mystery, the model has been shown capable of some
(albeit limited) efficient tile reuse [27, 30].

1.1 Main Result
Our main result is stated in Theorem 1.1, although a number of no-
tions have yet to be formally defined (see Section 2 for definitions).
Intuitively if a noncooperative tile assembly system produces a
large assembly, it is capable of also producing any path of tiles in
that assembly. Our statement says that if the tile assembly system
can produce a long enough path 𝑃 , then it must also produce as-
semblies where either an infinite ultimately periodic path appears
(𝑃 is “pumpable”), or else the path cannot appear in all terminal
assemblies (because some other tiles can be placed to block the
growth of 𝑃), in which case we say that 𝑃 is fragile. Let 𝑇 be a set
of tile types, and let |𝜎 | denote the number of tiles in the (seed)
assembly 𝜎 .

Theorem 1.1. Let T = (𝑇, 𝜎, 1) be any tile assembly system in
the abstract Tile Assembly Model (aTAM), and let 𝑃 be a path pro-
ducible by T . If 𝑃 has vertical height or horizontal width at least
(8|𝑇 |)4 |𝑇 |+1 (5|𝜎 | + 6), then 𝑃 is pumpable or fragile.

Our result rules out noncooperative implementation of the kind
of Turing machine simulations, and other kinds of computations,
that have appeared in the literature to date and execute precisely
controlled growth patterns [4, 6, 10–12, 15, 18, 19, 23–26, 33, 35, 37].
We do so by showing that any attempt to noncooperatively carry
out long computations such as these, which provably require large
assemblies and thus long paths, will result in unbounded pumped
growth or the blocking of such paths.

The essence of algorithmic self-assembly is tile reuse: growing
structures that are larger than the number of available tile types [13,
34, 38, 43]. Meunier and Regnault [30] show that some noncooper-
ative systems are capable of tile reuse in the following sense: there
is a tile assembly system with multiple terminal assemblies, all of
finite size, such that each of them contains the same long path 𝑃 ,
where 𝑃 is of width𝑂 (|𝑇 | log |𝑇 |) (i.e. larger than |𝑇 |). In that con-
struction, 𝑃 is neither pumpable (all assemblies are finite) nor frag-
ile (𝑃 appears in all terminal assemblies, hence no assembly or path
can block it).Their result should be contrasted with ours since here
we show that any attempt to generalise such a construction beyond
our exponential-in-|𝑇 | boundwill fail – thus we give a limitation of
the amount of tile reuse possible in such constructions. Analogous
tile reuse limitations do not appear in cooperative systems [38],
due to their ability to run arbitrary algorithms.

Our theorem statement is quite similar to the pumpability con-
jecture of Doty, Patitz and Summers [16] (Conjecture 6.1). In that
work [16] under the assumption that the conjecture is true, they
achieve a complete characterisation of producible assemblies. Our
result is slightly different from that conjecture, being stronger in
two ways, and weaker in one:
• First, their conjecture was stated for directed systems (that

produce a single terminal assembly), but here we prove the
result for both directed and undirected systems (systems
that produce many terminal assemblies).1 In the directed
case, our result shows that any attempt to simulate com-
putations by growing longer and longer paths is doomed
to also produce a terminal assembly littered with more and
more infinite pumped paths.
• Second, we give an explicit bound (exponential in |𝑇 |) on

the length a path can reach before it is pumpable or fragile.
• Our result is weaker in one way: indeed, while our result

only applies to paths grown all the way from the seed, the
conjecture is that arbitrary paths are pumpable, regardless
of their position relative to the seed.
However, we conjecture that our result is sufficient to achieve
the same characterisation of producible assemblies, using
the same techniques and arguments as [16].

Our result can be applied to other models. After the aTAM, an-
otherwell-studiedmodel in the theory of algorithmic self-assembly
is the hierarchical, or two-handed, model (2HAM) [6, 8, 12, 15].
There is no seed assembly in the 2HAM: in the noncooperative
1Directed systems do not have fragile paths, hence for directed systems the conclusion
of the theorem statement systems simply reads “… then 𝑃 is pumpable”.

728

The Program-Size Complexity of Self-Assembled Paths STOC ’20, June 22–26, 2020, Chicago, IL, USA

(temperature 1) 2HAM tiles stick together if glues match on one
tile side, forming a collection of assemblies, and those assemblies
can in turn stick to each other if they can be translated to touch
without overlapping and with adjacent matching glues between
them. As an almost direct corollary of Theorem 1.1 we get:

Corollary 1.2. Let H = (𝑇, 1) be any tile assembly system in
the Two-Handed Assembly Model (2HAM), and let 𝑃 be a path pro-
ducible by H . If 𝑃 has vertical height or horizontal width at least
(88|𝑇 |)4 |𝑇 |+1, then 𝑃 is pumpable or fragile.

Intuitively, the corollary comes from the fact that aTAM-like
growth is permitted in the 2HAM. In fact, if we fix a tile set 𝑇 and
a temperature of 1, the set of producible assemblies in a 2HAM sys-
tem over 𝑇 is a superset (sometimes a strict superset [6]) of those
in the aTAM over 𝑇 . A brief proof sketch is given an Appendix to
the full version of this paper [45].

1.2 Relationship With Other Prior Work
Perhaps due to the difficulty of analysing the standard noncooper-
ative model (2D, square tiles, tiles attach one at a time), researchers
have looked at different variants of that model.

The first restriction studied was where we permit only termi-
nal assemblies that are “fully connected” meaning all tiles are fully
bound to all of their neighbour tiles): Rothemund andWinfree [38]
showed that for each large enough 𝑛 ∈ N there does not exist a
noncooperative system that builds a fully-connected 𝑛 × 𝑛 square
in a tile-efficient way (using < 𝑛2 tile types). Since embedding al-
gorithms in tiles are essentially our best (and perhaps only) way
to exhibit efficient tile reuse, our result shuts the door on a wide
class of algorithmic approaches. Other restrictions proven weak
are where we disallow adjacent mismatching colours [26], or even
force any pair of adjacent tiles to bind to each other [38].

Another, quite productive, approach has been to study gener-
alisations of the noncooperative model (e.g. 3D, non-square tiles,
multi-tile assembly steps, more complicated ‘active’ tiles, etc.): it
turns out that these generalisations and others are powerful enough
to simulate Turing machines [4, 6, 10–12, 15, 18, 19, 21–26, 33, 35,
37]. Each such result points to a specific feature or set of features
in a generalised model that provably needs to be exploited in order
to avoid our negative result.

Cook, Fu, and Schweller [10] have shown that for any Turing
machine there is an undirected tile assembly system, whose seed
encodes an input, and where the largest producible terminal as-
sembly (which is possibly infinite) simulates the Turing machine
computation on that input. However, in that construction, “block-
ing errors” can occur where growth is prematurely blocked and is
stopped before the simulation, or computation, is completed (hence
their result is stated in a probabilistic setting). Indeed their tile as-
sembly systems that simulate Turing machines will produce many
such erroneous assemblies. Our result shows that this kind of block-
ing is unavoidable.

Assemblies that cannot be “blocked” have the opposite issue,
where it seems there is always a part of the assembly that can be
repeated forever, which led Doty, Patitz and Summers [16] to their
pumpability conjecture. They go on to show that, assuming the
pumpability conjecture holds, projections to the vertical/horizontal
axes of assemblies produced by directed noncooperative systems

have a straightforward closed-form description (as the union of
semi-linear sets).

In the direction of negative results on Temperature 1, reference [31]
showed that the noncooperative planar aTAM is not capable of sim-
ulating – in the sense used in intrinsic universality [43] – other
noncooperative aTAM systems. In other words intrinsic univer-
sality is not possible for the planar noncooperative model. The
Temperature 2 (or, cooperative) model is capable of such simula-
tions [14], hence the main result of [31] shows a difference in the
self-simulation capabilities of the two models. Prior to that work,
another result showed that Temperature 1 cannot simulate Tem-
perature 2 intrinsically [28], and hence the former model is strictly
weaker than the later in this setting (where we ignore spatial scal-
ing). However, to obtain both of those results, the use of simulation
and intrinsic universality permitted a techniquewherewe choose a
particular class of shapes wewant to simulate, and restrict the anal-
ysis of produced assemblies to (scaled versions of) these shapes.
The proofs [28, 31] then involved forcing certain paths to grow out-
side of these pre-determined shapes. Here, we make use of a num-
ber of tools from [31]. However, the setting here is significantly
more challenging as we have no geometric hypotheses whatso-
ever on producible assemblies and therefore can not directly lever-
age [31], although we do make use of the tools of visibility and
the notion of right/left priority exploited in that prior work. As
already noted, positive constructions have been found that some
limited form of efficient reuse of tile types is possible in the stan-
dard 2D noncooperative model [27, 30]. This paper also builds on
extensive previous work by two of the authors [29].

1.3 New Tools and Future Work
We develop a collection of new tools to reason about paths in Z2.
In order to carry out computation in tile-assembly, a key idea is to
reuse tile types (analogous to how a Boolean circuit reuses gates
of a given type, or how a computer program reuses instructions
via loops). Our main technical lemma, which we term the “shield”
lemma, shows that if a path 𝑃 has a certain form that reaches so
far to the east that it reuses some tile types, then we can use 𝑃
to construct a curve in R2 that is an almost-vertical cut 𝑐 of the
plane. We use this cut of the plane to show one of two things must
happen: either that iterations of a pumping of 𝑃 are separated from
one another, and hence that the pumping is simple, which means
that 𝑃 is pumpable, or else that a path can be grown that blocks
the growth of 𝑃 .

This cut, and our subsequent argument can be thought of as a
kind of “Window Movie Lemma” [28], or pumping tool, but tar-
geted specifically at noncooperative self-assembly.

The shield lemma can only be applied when 𝑃 is of a certain
form. Our second tool is a combinatorial argument on the height
and width of a path. We begin by applying some straight-froward
transformations to put any wide enough or tall enough path (i.e.,
that meets the hypothesis of Theorem 1.1) into a form where its
last tile is also its eastern-most tile. Then, for any such path 𝑃 ,
our combinatorial argument shows that we can always find a cut
that satisfies the hypothesis of the shield lemma. We hope that the

729

STOC ’20, June 22–26, 2020, Chicago, IL, USA Pierre-Étienne Meunier, Damien Regnault, and Damien Woods

techniques developed in this paper can be applied to other self-
assembly models – as an example we apply them to the 2HAM
(Corollary 1.2).

Although we answer one of the main unresolved questions on
noncooperative self-assembly, our result does not close all ques-
tions on the model. First, there is still a large gap between the
best known lower bounds on the size of assemblies, which was
shown in [30] is𝑂 (|𝑇 | log |𝑇 |), and the bound (8|𝑇 |)4 |𝑇 |+1 (5|𝜎 |+6)
we prove here. It remains as future work to reduce that gap. We
also conjecture that our result can be used to characterise the as-
semblies producible by directed systems, using the same argument
as [16]. A number of decidability questions are also still open such
as: can we decide whether a planar nondirected tile assembly sys-
tem is directed (i.e. produces exactly one terminal assembly)? An
important part of self-assembly is related to building shapes (as
opposed to decidability questions). In this direction, can we build
𝑛 × 𝑛 squares any more efficiently than the best known result of
2𝑛 − 1 tile types for noncooperative systems? For this common
benchmark of shape-building, cooperative systems achieve a tile-
set size as low as Θ(log𝑛/log log𝑛) [1, 22, 38].

2 DEFINITIONS AND PRELIMINARIES
As usual, let R be the set of real numbers, let Z be the integers,
and let N be the natural numbers including 0. The domain of a
function 𝑓 is denoted dom(𝑓), and its range (or image) is denoted
𝑓 (dom(𝑓)).

2.1 Abstract Tile Assembly Model
The abstract tile assembly model was introduced by Winfree [42].
In this paper we study a restriction of the abstract tile assembly
model called the temperature 1 abstract tile assembly model, or
noncooperative abstract tile assembly model. For definitions of the
full model, as well as intuitive explanations, see for example [37,
38].

A tile type is a unit square with four sides, each consisting of
a glue type and a nonnegative integer strength. Let 𝑇 be a a finite
set of tile types. In any set of tile types used in this paper, we as-
sume the existence of a well-defined total ordering which we call
the canonical ordering of the tile set. The sides of a tile type are
respectively called north, east, south, and west, as shown in the
following picture:

West East

South

North

An assembly is a partial function 𝛼 : Z2 d 𝑇 where𝑇 is a set of
tile types and the domain of 𝛼 (denoted dom(𝛼)) is connected.2 We
letA𝑇 denote the set of all assemblies over the set of tile types𝑇 . In
this paper, two tile types in an assembly are said to bind (or interact,
or are stably attached), if the glue types on their abutting sides are
equal, and have strength ≥ 1. An assembly𝛼 induces an undirected
weighted binding graph 𝐺𝛼 = (𝑉 , 𝐸), where 𝑉 = dom(𝛼), and
there is an edge {𝑎,𝑏} ∈ 𝐸 if and only if the tiles at positions 𝑎 and
2Intuitively, an assembly is a positioning of unit-sized tiles, each from some set of
tile types𝑇 , so that their centers are placed on (some of) the elements of the discrete
plane Z2 and such that those elements of Z2 form a connected set of points.

𝑏 interact, and this edge is weighted by the glue strength of that
interaction. The assembly is said to be 𝜏-stable if every cut of 𝐺𝛼

has weight at least 𝜏 .
A tile assembly system is a triple T = (𝑇, 𝜎, 𝜏), where𝑇 is a finite

set of tile types, 𝜎 is a 𝜏-stable assembly called the seed, and 𝜏 ∈ N
is the temperature. Throughout this paper, 𝜏 = 1.

Given two 𝜏-stable assemblies 𝛼 and 𝛽 , we say that 𝛼 is a sub-
assembly of 𝛽 , and write 𝛼 v 𝛽 , if dom(𝛼) ⊆ dom(𝛽) and for
all 𝑝 ∈ dom(𝛼), 𝛼 (𝑝) = 𝛽 (𝑝). We also write 𝛼 →T1 𝛽 if we
can obtain 𝛽 from 𝛼 by the binding of a single tile type, that is:
𝛼 v 𝛽 , |dom(𝛽) \ dom(𝛼) | = 1 and the tile type at the position
dom(𝛽)\dom(𝛼) stably binds to 𝛼 at that position.We say that𝛾 is
producible from 𝛼 , and write 𝛼 →T 𝛾 if there is a (possibly empty)
sequence 𝛼1, 𝛼2, . . . , 𝛼𝑛 where 𝑛 ∈ N ∪ {∞}, 𝛼 = 𝛼1 and 𝛼𝑛 = 𝛾 ,
such that 𝛼1 →T1 𝛼2 →T1 . . .→T1 𝛼𝑛 . A sequence of 𝑛 ∈ Z+∪{∞}
assemblies 𝛼0, 𝛼1, . . . over A𝑇 is a T -assembly sequence if, for all
1 ≤ 𝑖 < 𝑛, 𝛼𝑖−1 →T1 𝛼𝑖 .

The set of productions, or producible assemblies, of a tile assembly
system T = (𝑇, 𝜎, 𝜏) is the set of all assemblies producible from
the seed assembly 𝜎 and is writtenA[T]. An assembly 𝛼 is called
terminal if there is no 𝛽 such that 𝛼 →T1 𝛽 . The set of all terminal
assemblies of T is denoted A□ [T].

2.2 Paths and Noncooperative Self-Assembly
Let 𝑇 be a set of tile types. A tile is a pair ((𝑥,𝑦), 𝑡) where (𝑥,𝑦) ∈
Z2 is a position and 𝑡 ∈ 𝑇 is a tile type. Intuitively, a path is a finite
or one-way-infinite simple (non-self-intersecting) sequence of tiles
placed on points of Z2 so that each tile in the sequence interacts
with the previous one, or more precisely:

Definition 2.1 (Path). A path is a (finite or infinite) sequence 𝑃 =
𝑃0𝑃1𝑃2 . . . of tiles 𝑃𝑖 = ((𝑥𝑖 , 𝑦𝑖), 𝑡𝑖) ∈ Z2 ×𝑇 , such that:
• for all 𝑃 𝑗 and 𝑃 𝑗+1 defined on 𝑃 , their positions (𝑥 𝑗 , 𝑦 𝑗)

and (𝑥 𝑗+1, 𝑦 𝑗+1) are adjacent nodes in the grid graph of Z2,
moreover 𝑡 𝑗 and 𝑡 𝑗+1 interact (have matching glues on their
abutting sides), and
• for all 𝑃 𝑗 , 𝑃𝑘 such that 𝑗 ≠ 𝑘 it is the case that (𝑥 𝑗 , 𝑦 𝑗) ≠
(𝑥𝑘 , 𝑦𝑘).

By definition, paths are simple (or self-avoiding), and this fact
will be repeatedly used throughout the paper. For a tile 𝑃𝑖 on some
path 𝑃 , its x-coordinate is denoted x𝑃𝑖 and its y-coordinate is de-
noted y𝑃𝑖 . The concatenation of two paths 𝑃 and 𝑄 is the concate-
nation 𝑃𝑄 of these two paths as sequences, and 𝑃𝑄 is a path if and
only if (1) the last tile of 𝑃 interacts with the first tile of 𝑄 and (2)
𝑃 and 𝑄 do not intersect each other.

For a path 𝑃 = 𝑃0 . . . 𝑃𝑖𝑃𝑖+1 . . . 𝑃 𝑗 . . ., we define the notation
𝑃𝑖,𝑖+1,..., 𝑗 = 𝑃𝑖𝑃𝑖+1 . . . 𝑃 𝑗 , i.e. “the subpath of 𝑃 between indices 𝑖
and 𝑗 , inclusive”. Whenever 𝑃 is finite, i.e. 𝑃 = 𝑃0𝑃1𝑃2 . . . 𝑃𝑛−1 for
some 𝑛 ∈ N, 𝑛 is termed the length of 𝑃 and denoted by |𝑃 |. In the
special case of a subpathwhere 𝑖 = 0, we say that 𝑃0,1,..., 𝑗 is a prefix
of 𝑃 and that 𝑃 is an extension of 𝑃0,1,..., 𝑗 . The prefix or extension
are said to be strict if 𝑗 < |𝑃 | − 1. Else, when 𝑗 = |𝑃 | − 1, we say
that 𝑃𝑖,..., |𝑃 |−1 is a suffix of 𝑃 , and is a strict suffix of 𝑃 if 𝑖 > 0.

For any path 𝑃 = 𝑃0𝑃1𝑃2, . . . and integer 𝑖 ≥ 0, we let pos(𝑃𝑖) ∈
Z2, or (x𝑃𝑖 , y𝑃𝑖) ∈ Z2, for the position of 𝑃𝑖 and type(𝑃𝑖) for the
tile type of 𝑃𝑖 . Hence if 𝑃𝑖 = ((𝑥𝑖 , 𝑦𝑖), 𝑡𝑖) thenpos(𝑃𝑖) = (x𝑃𝑖 , y𝑃𝑖) =

730

The Program-Size Complexity of Self-Assembled Paths STOC ’20, June 22–26, 2020, Chicago, IL, USA

(𝑥𝑖 , 𝑦𝑖) and type(𝑃𝑖) = 𝑡𝑖 . A “position of 𝑃” is an element of Z2 that
appears in 𝑃 (and therefore appears exactly once), and an index 𝑖
of a path 𝑃 of length 𝑛 ∈ N is a natural number 𝑖 ∈ {0, 1, . . . , 𝑛−1}.
For a path 𝑃 = 𝑃0𝑃1𝑃2 . . . we write pos(𝑃) to mean “the sequence
of positions of tiles along 𝑃”, which we define to be pos(𝑃) =
pos(𝑃0)pos(𝑃1)pos(𝑃2)

Although a path is not an assembly, we know that each adjacent
pair of tiles in the path sequence interact implying that the set of
path positions forms a connected set in Z2 and hence every path
uniquely represents an assembly containing exactly the tiles of the
path, more formally: for a path 𝑃 = 𝑃0𝑃1𝑃2 . . . we define the set of
tiles asm(𝑃) = {𝑃0, 𝑃1, 𝑃2, . . .} which we observe is an assembly3
and we call asm(𝑃) a path assembly. Given a tile assembly system
T = (𝑇, 𝜎, 1) the path 𝑃 is a producible path ofT if asm(𝑃) does not
intersect4 the seed 𝜎 and the assembly (asm(𝑃) ∪𝜎) is producible
byT , i.e. (asm(𝑃)∪𝜎) ∈ A[T], and 𝑃0 interacts with a tile of𝜎 . As
a convenient abuse of notation we sometimes write 𝜎∪𝑃 as a short-
hand for 𝜎 ∪ asm(𝑃). Given a tile assembly system T = (𝑇, 𝜎, 1)
we define the set of producible paths of T to be5 P[T] = {𝑃 |
𝑃 is a path that does not intersect 𝜎 and (asm(𝑃) ∪ 𝜎) ∈ A[T]}.

So far, we have defined paths of tiles (Definition 2.1). In our
proofs, we will also reason about (untiled) binding paths in the
binding graph of an assembly.

Definition 2.2 (Binding path). Let𝐺 = (𝑉 , 𝐸) be a binding graph.
A binding path 𝑞 in 𝐺 is a sequence 𝑞0,1,..., |𝑞 |−1 of vertices from
𝑉 such that for all 𝑖 ∈ {0, 1, . . . , |𝑞 | − 2}, {𝑞𝑖 , 𝑞𝑖+1} ∈ 𝐸 (𝑞 is con-
nected) and no vertex appears twice in 𝑞 (𝑞 is simple).

Observation 2.3. Let T = (𝑇, 𝜎, 1) be a tile assembly system
and let 𝛼 ∈ A[T]. For any tile ((𝑥,𝑦), 𝑡) ∈ 𝛼 either ((𝑥,𝑦), 𝑡) is a
tile of 𝜎 or else there is a producible path 𝑃 ∈ P[T] that for some
𝑗 ∈ N contains 𝑃 𝑗 = ((𝑥,𝑦), 𝑡).

For 𝐴, 𝐵 ∈ Z2, we define −→𝐴𝐵 = 𝐵 − 𝐴 to be the vector from
𝐴 to 𝐵, and for two tiles 𝑃𝑖 = ((𝑥𝑖 , 𝑦𝑖), 𝑡𝑖) and 𝑃 𝑗 = ((𝑥 𝑗 , 𝑦 𝑗), 𝑡 𝑗)
we define −−−→𝑃𝑖𝑃 𝑗 = pos(𝑃 𝑗) − pos(𝑃𝑖) to mean the vector from
pos(𝑃𝑖) = (𝑥𝑖 , 𝑦𝑖) to pos(𝑃 𝑗) = (𝑥 𝑗 , 𝑦 𝑗). The translation of a path 𝑃
by a vector −→𝑣 ∈ Z2, written 𝑃 +−→𝑣 , is the path𝑄 such that |𝑃 | = |𝑄 |
and for all indices 𝑖 ∈ {0, 1, . . . , |𝑃 | − 1}, pos(𝑄𝑖) = pos(𝑃𝑖) + −→𝑣
and type(𝑄𝑖) = type(𝑃𝑖). We always use parentheses for scoping
of translations when necessary, i.e. 𝑃 (𝑄 + −→𝑣) is the sequence con-
taining the path 𝑃 followed by the translation of the entire path𝑄
by vector −→𝑣 . The translation of an assembly 𝛼 by a vector −→𝑣 , writ-
ten 𝛼 + −→𝑣 , is the assembly 𝛽 defined for all (𝑥,𝑦) ∈ (dom(𝛼) + −→𝑣)
as 𝛽 (𝑥,𝑦) = 𝛼 ((𝑥,𝑦) − −→𝑣).

Let 𝑃 be a path, let 𝑖 ∈ {1, . . . , |𝑃 |−2} and𝐴 ≠ 𝑃𝑖+1 be a tile such
that 𝑃0,1,...,𝑖𝐴 is a path. Let also 𝜌 be the clockwise rotation matrix
defined as 𝜌 =

(
0 1
−1 0

)
, and let Δ = (𝜌−−−−−→𝑃𝑖𝑃𝑖−1, 𝜌2

−−−−−→
𝑃𝑖𝑃𝑖−1, 𝜌3

−−−−−→
𝑃𝑖𝑃𝑖−1)

(intuitively, Δ is the vector of possible steps after 𝑃𝑖 , ordered clock-
wise). We say that 𝑃0,1,...,𝑖𝐴 turns right (respectively turns left)

3I.e. asm(𝑃) is a partial function from Z2 to tile types, and is defined on a connected
set.
4Formally, non-intersection of a path 𝑃 = 𝑃0𝑃1, . . . and a seed assembly 𝜎 is defined
as: ∀𝑡 such that 𝑡 ∈ 𝜎 , �𝑖 such that pos(𝑃𝑖) = pos(𝑡) .
5Intuitively, although producible paths are not assemblies, any producible path 𝑃 has
the nice property that it encodes an unambiguous description of how to grow asm(𝑃)
from the seed 𝜎 , in path (𝑃) order, to produce the assembly asm(𝑃) ∪ 𝜎 .

from 𝑃0,1,...,𝑖+1 if −−→𝑃𝑖𝐴 appears after (respectively before) −−−−−→𝑃𝑖𝑃𝑖+1
in Δ.

Definition 2.4 (The right priority path of a set of paths or binding
paths). Let 𝑃 and 𝑄 be two paths, where 𝑃 ≠ 𝑄 and moreover
neither is a prefix of the other, and with pos(𝑃0) = pos(𝑄0) and
pos(𝑃1) = pos(𝑄1). Let 𝑖 be the smallest index such that 𝑖 ≥ 0 and
𝑃𝑖 ≠ 𝑄𝑖 . We say that 𝑃 is the right priority path of 𝑃 and𝑄 if either
(a) 𝑃0,1,...,𝑖 is a right turn from𝑄 or (b) pos(𝑃𝑖) = pos(𝑄𝑖) and the
type of 𝑃𝑖 is smaller than the type of 𝑄𝑖 in the canonical ordering
of tile types.

Similarly, let 𝑝 and 𝑞 be two binding paths, where 𝑝 ≠ 𝑞 and
moreover neither is a prefix of the other, and with 𝑝0 = 𝑞0 and
𝑝1 = 𝑞1. Let 𝑖 be the smallest index such that 𝑖 ≥ 0 and 𝑝𝑖 ≠ 𝑞𝑖 . We
say that 𝑝 is the right priority path of 𝑝 and 𝑞 if 𝑝0,1,...,𝑖 is a right
turn from 𝑞.

For any finite set 𝑆 of paths, or of binding paths, we extend this
definition as follows: let 𝑝0 ∈ Z2, 𝑝1 ∈ Z2 be two adjacent posi-
tions. If for all 𝑠 ∈ 𝑆 , we have 𝑠0 = 𝑝0 and 𝑠1 = 𝑝1, we call the
right-priority path of 𝑆 the path that is the right-priority path of all
other paths in 𝑆 .

For all 𝑖 ∈ {0, 1, . . . , |𝑃 | − 2}, we define glue(𝑃𝑖𝑃𝑖+1) = (𝑔, 𝑖),
where 𝑔 is the shared glue type between consecutive tiles 𝑃𝑖 and
𝑃𝑖+1 on the path 𝑃 . Similarly, when we say “glue” in the context of
a path 𝑃 , we mean a pair of the form (glue type, path index). We de-
fine type(glue(𝑃𝑖𝑃𝑖+1)) = 𝑔 to denote the glue type of glue(𝑃𝑖𝑃𝑖+1).
We say that glue(𝑃𝑖𝑃𝑖+1) is pointing to the north (or points to the

north, for short) if −−−−−→𝑃𝑖𝑃𝑖+1 =

(
0
1

)
, pointing to the west if −−−−−→𝑃𝑖𝑃𝑖+1 =(

−1
0

)
, pointing to the south if −−−−−→𝑃𝑖𝑃𝑖+1 =

(
0
−1

)
, and pointing to the

east if −−−−−→𝑃𝑖𝑃𝑖+1 =

(
1
0

)
.

2.3 Fragile Paths
If two paths, or two assemblies, or a path and an assembly, share
a common position we say that they intersect at that position. Fur-
thermore, we say that two paths, or two assemblies, or a path and
an assembly, agree on a position if they both place the same tile
type at that position and conflict if they place a different tile type
at that position. We say that a path 𝑃 is fragile to mean that there
is a producible assembly 𝛼 that conflicts with 𝑃 (intuitively, if we
grow 𝛼 first, then there is at least one tile that 𝑃 cannot place), or
more formally:

Definition 2.5 (Fragile). Let T = (𝑇, 𝜎, 1) be a tile assembly sys-
tem and 𝑃 ∈ P[T]. We say that 𝑃 is fragile if there exists a pro-
ducible assembly 𝛼 ∈ A[T] and a position (𝑥,𝑦) ∈ (dom(𝛼) ∩
dom(asm(𝑃))) such that 𝛼 ((𝑥,𝑦)) ≠ asm(𝑃) ((𝑥,𝑦)).6

2.4 Pumping a Path
Next, for a path 𝑃 and two indices 𝑖, 𝑗 on 𝑃 , we define a sequence
of points and tile types (not necessarily a path) called the pumping
of 𝑃 between 𝑖 and 𝑗 :
6Here, it might be the case that 𝛼 and 𝑃 conflict at only one position by placing two
different tile types 𝑡 and 𝑡 ′, but that 𝑡 and 𝑡 ′ may place the same glues along 𝑃 . In this
case 𝑃 is not producible when starting from the assembly 𝛼 because one of the tiles
along the positions of 𝑃 is of the wrong type.

731

STOC ’20, June 22–26, 2020, Chicago, IL, USA Pierre-Étienne Meunier, Damien Regnault, and Damien Woods

Definition 2.6 (Pumping of 𝑃 between 𝑖 and 𝑗). Let T = (𝑇, 𝜎, 1)
be a tile assembly system and 𝑃 ∈ P[T]. We say that the “pumping
of 𝑃 between 𝑖 and 𝑗” is the sequence 𝑞 of elements from Z2 × 𝑇
defined by:

𝑞𝑘 =

{
𝑃𝑘 for 0 ≤ 𝑘 ≤ 𝑖

𝑃𝑖+1+((𝑘−𝑖−1) mod (𝑗−𝑖)) +
⌊
𝑘−𝑖−1
𝑗−𝑖

⌋ −−−→
𝑃𝑖𝑃 𝑗 for 𝑖 < 𝑘

Intuitively, 𝑞 is the concatenation of a finite path 𝑃0,1,...,𝑖 and
an infinite periodic sequence of tile types and positions (possibly
intersecting 𝜎 ∪ 𝑃0,1,...,𝑖 , and possibly intersecting itself). We for-
malise this intuition in Lemma B.2 of the full version of this pa-
per [45].

The following definition gives the notion of pumpable path used
in our proofs. It is followed by a less formal but more intuitive
description.

Definition 2.7 (Pumpable path). Let T = (𝑇, 𝜎, 1) be a tile assem-
bly system. We say that a producible path 𝑃 ∈ P[T], is infinitely
pumpable, or simply pumpable, if there are two integers 𝑖 < 𝑗 such
that the pumping of 𝑃 between 𝑖 and 𝑗 is an infinite producible
path, i.e. formally: 𝑞 ∈ P[T].

In this case, we say that the pumping vector of 𝑞 is −−−→𝑃𝑖𝑃 𝑗 , and that
𝑃 is pumpable with pumping vector

−−−→
𝑃𝑖𝑃 𝑗 .

For a path 𝑃 to be pumpable between 𝑖 and 𝑗 implies that 𝑃𝑖+1 +−−−→
𝑃𝑖𝑃 𝑗 interacts with 𝑃 𝑗 . It also implies that 𝑞 is self-avoiding and
that in particular, for any positive integers 𝑠 ≠ 𝑡 , the path 𝑃𝑖+1,..., 𝑗 +
𝑠
−−−→
𝑃𝑖𝑃 𝑗 does not intersectwith the path 𝑃𝑖+1,..., 𝑗+𝑡

−−−→
𝑃𝑖𝑃 𝑗 . LemmaB.1 of

the full version of this paper [45] shows that a sufficient condition
for this is that 𝑃𝑖+1,..., 𝑗 does not intersect 𝑃𝑖+1,..., 𝑗 +

−−−→
𝑃𝑖𝑃 𝑗 .

2.5 2D Plane
2.5.1 Column, Glue Column, Row, Glue Row. When referring to
sets of positions, we use the term “the column 𝑥” for some fixed
𝑥 ∈ Z to mean the set {(𝑥,𝑦) | 𝑦 ∈ Z}, and the term “the row 𝑦” for
some fixed 𝑦 ∈ Z to mean the set {(𝑥,𝑦) | 𝑥 ∈ Z}. The glue column
𝑥 , for some fixed 𝑥 ∈ Z, is the set of 2D half-integer positions
{(𝑥 + 0.5, 𝑦) | 𝑦 ∈ Z}. The glue row 𝑦, for some fixed 𝑦 ∈ Z, is the
set of 2D half-integer positions {(𝑥,𝑦 + 0.5) | 𝑥 ∈ Z}.

Using the canonical embedding of Z2, the definition of a glue
column 𝑥 can also be defined as the set of edges of the grid graph
of Z2 between column 𝑥 and column 𝑥 +1, and the glue row𝑦 is the
set of edges of the grid graph of Z2 between row 𝑥 and row 𝑥 + 1.
Which definition we use will always be clear from the context.

2.5.2 Curves. A curve 𝑐 : 𝐼 → R2 is a function from an interval
𝐼 ⊂ R to R2, where 𝐼 is one of a closed, open, or half-open. All the
curves in this paper are polygonal, i.e. unions of line segments and
rays.

For a finite path 𝑃 , we call the embedding 𝔈[𝑃] of 𝑃 the curve
defined for all 𝑡 ∈ [0, |𝑃 | − 1] ⊂ R by:

𝔈[𝑃] (𝑡) = pos(𝑃 b𝑡 c) + (𝑡 − b𝑡c)
−−−−−−−−−→
𝑃 b𝑡 c𝑃 b𝑡 c+1

Similarly, for a finite binding path 𝑝 , the embedding 𝔈[𝑝] of 𝑝 is
the curve defined for all 𝑡 ∈ [0, |𝑝 | − 1] ⊂ R by:

𝔈[𝑝] (𝑡) = 𝑝 b𝑡 c + (𝑡 − b𝑡c)−−−−−−−−−→𝑝 b𝑡 c𝑝 b𝑡 c+1

The ray of vector−→𝑣 from (or, that starts at) point𝐴 ∈ R is defined
as the curve 𝑟 : [0, +∞[→ R2 such that 𝑟 (𝑡) = 𝐴+ 𝑡−→𝑣 . The vertical
ray from a point 𝐴 to the south (respectively to the north) is the ray
of vector (0,−1) (respectively (0, 1)) from 𝐴, and the horizontal
ray from a point 𝐴 to the west (respectively to the east) is the ray of
vector (−1, 0) (respectively (1, 0)) from 𝐴.

If𝐶 is a curve defined on some real interval of the form [𝑎, 𝑏] or
]𝑎,𝑏], and 𝐷 is a curve defined on some real interval of the form
[𝑐, 𝑑] or [𝑐, 𝑑 [, and moreover 𝐶 (𝑏) = 𝐷 (𝑐), then the concatena-
tion concat(𝐶, 𝐷) of 𝐶 and 𝐷 is the curve defined on dom(𝐶) ∪
(dom(𝐷) − (𝑐 − 𝑏)) by:7

concat(𝐶, 𝐷) (𝑡) =
{
𝐶 (𝑡) if 𝑡 ≤ 𝑏

𝐷 (𝑡 + (𝑐 − 𝑏)) otherwise

A curve 𝑐 is said to be simple or self-avoiding if all its points are
distinct, i.e. if for all 𝑥,𝑦 ∈ dom(𝑐), 𝑐 (𝑥) = 𝑐 (𝑦) ⇒ 𝑥 = 𝑦.

For 𝑎, 𝑏 ∈ R with 𝑎 ≤ 𝑏, the notation [𝑎,𝑏] denotes a closed real
interval,]𝑎,𝑏 [an open real interval, and [𝑎, 𝑏 [and]𝑎, 𝑏] are open
on one end and closed on the other. The reverse 𝑐← of a curve 𝑐
defined on some interval [𝑎,𝑏] (respectively [𝑎,𝑏 [,]𝑎, 𝑏],]𝑎, 𝑏 [)
is the curve defined on [−𝑏,−𝑎] (respectively] − 𝑏,−𝑎], [−𝑏,−𝑎[,
]− 𝑏,−𝑎[) as 𝑐← (𝑡) = 𝑐 (−𝑡).

If 𝐴 = (𝑥𝑎, 𝑦𝑎) ∈ R2 and 𝐵 = (𝑥𝑏 , 𝑦𝑏) ∈ R2, the segment
[
𝐴, 𝐵

]
is defined to be the curve 𝑠 : [0, 1] → R2 such that for all 𝑡 ∈ [0, 1],
𝑠 (𝑡) = ((1−𝑡)𝑥𝑎+𝑡𝑥𝑏 , (1−𝑡)𝑦𝑎+𝑡𝑦𝑏).We sometimes abuse notation
and write

[
𝐴, 𝐵

]
even if 𝐴 or 𝐵 (or both) is a tile, in which case we

mean the position of that tile instead of the tile itself.
For a curve 𝑐 : R → R2 we write 𝑐 (R) to denote the range of

𝑐 (whenever we use this notation the curve 𝑐 has all of R as its
domain). When it is clear from the context, we sometimes write 𝑐
to mean 𝑐 (R), for example

For a path or binding path, 𝑝0,1,...,𝑘 of length ≥ 1, for 0 ≤
𝑖 < 𝑘 the notation mid(𝑝𝑖𝑝𝑖+1) denotes the midpoint of the unit-
length line segment𝔈[𝑝𝑖,𝑖+1]. For a path 𝑃 , we have mid(𝑝𝑖𝑝𝑖+1) =
pos(glue(𝑃𝑖𝑃𝑖+1)), hence this notation is especially useful for bind-
ing paths, since they do not have glues.

2.5.3 Cutting the Plane with Curves; Left and Right Turns. In this
paper we use finite and infinite polygonal curves to cut the R2
plane into two pieces. The finite polygonal curves we use consist
of a finite number of concatenations of vertical and horizontal seg-
ments of length 1 or 0.5. If the curve is simple and closed we may
apply the Jordan Curve Theorem to cut the plane into connected
components.

Theorem 2.8 (JordanCurve Theorem). Let 𝑐 be a simple closed
curve, then 𝑐 cuts R2 into two connected components.

Here, we have stated the theorem in its general form, although
for our results the (easier to prove) polygonal version suffices.

The second kind of curve we use is composed of an infinite ray,
then a finite number of length 0.5 or length 1 segments, and then
another infinite ray. For such infinite polygonal curves we also

7dom(𝐷) − (𝑐 −𝑏) means [𝑏,𝑑 − (𝑐 −𝑏)] if dom(𝐷) = [𝑐,𝑑], and [𝑏,𝑑 − (𝑐 −𝑏) [
if dom(𝐷) = [𝑐,𝑑 [

732

The Program-Size Complexity of Self-Assembled Paths STOC ’20, June 22–26, 2020, Chicago, IL, USA

state and prove a slightly different version of the polygonal Jor-
dan Curve Theorem, as Theorem B.3 in the full version of this pa-
per [45].

In Appendix B of the full version of this paper [45] we define
what it means for one curve to turn left or right from another, as
well as left hand side and right hand side of a cut of the real plane.

2.5.4 Visibility. Let 𝑃 be a path producible by some tile assembly
system T = (𝑇, 𝜎, 1), and let 𝑖 ∈ {0, 1, . . . , |𝑃 | − 2} be such that
glue(𝑃𝑖𝑃𝑖+1) points east orwest.We say that glue(𝑃𝑖𝑃𝑖+1) is visible
from the south if and only if the ray ℓ𝑖 of vector (0,−1) starting at
ℓ𝑖 (0) =

(
x𝑃𝑖 +x𝑃𝑖+1

2 , y𝑃𝑖

)
does not intersect 𝔈[𝑃] nor 𝜎 .8

We define the terms visible from the east, visible from the west
and visible from the north similarly.

In many of our proofs, we will use curves, in particular curves
that include visibility ray(s), to define connected components. For
example, consider the curve 𝑒 , wherewe have a path 𝑃𝑖+1,𝑖+2,..., 𝑗, 𝑗+1
with 𝑖 < 𝑗 and two glues glue(𝑃𝑖𝑃𝑖+1) and glue(𝑃 𝑗𝑃 𝑗+1) which are
visible from the south with respective visibility rays 𝑙𝑖 and 𝑙 𝑗 :

𝑒 = concat
(
𝑙𝑖
←
,
[
𝑙𝑖 (0), pos(𝑃𝑖+1)

]
,𝔈[𝑃𝑖+1,..., 𝑗],

[
pos(𝑃 𝑗), 𝑙 𝑗 (0)

]
, 𝑙 𝑗

)
The curve 𝑒 is defined on]−∞, +∞[= R.
We will use the following lemma about visibility, which was

stated in [31] (it is the fusion of Lemmas 5.2 and 6.3 in that pa-
per). For the sake of completeness, we prove this result again, with
slightly different notation.

Lemma 2.9. Let 𝑃 be a path producible by some tile assembly sys-
tem T = (𝑇, 𝜎, 1) such that the last glue of 𝑃 is visible from the north.
Let 𝑖, 𝑗 ∈ {0, 1, . . . , |𝑃 | − 2} be two integers. If both glue(𝑃𝑖𝑃𝑖+1)
and glue(𝑃 𝑗𝑃 𝑗+1) are visible from the south and glue(𝑃𝑖𝑃𝑖+1) points
to the east (respectively to the west), and x𝑃𝑖 < x𝑃 𝑗 (respectively
x𝑃𝑖 > x𝑃 𝑗), then 𝑖 < 𝑗 and glue(𝑃 𝑗𝑃 𝑗+1) points to the east (respec-
tively to the west).

We will sometimes use this lemma when the last tile of 𝑃 is the
unique easternmost tile of 𝜎 ∪ asm(𝑃), in this case the last glue of
𝑃 is visible from the south and from the north.

3 SHIELD LEMMA
In this section we state Lemma 3.2, our main technical tool. The
following definition, illustrated in Figure 1, is crucial to the lemma
statement:

Definition 3.1 (A shield (𝑖, 𝑗, 𝑘) for 𝑃). Let 𝑃 be a path producible
by some tile assembly system T = (𝑇, 𝜎, 1). We say that the triple
(𝑖, 𝑗, 𝑘) of integers is a shield for 𝑃 if 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 < |𝑃 | − 1, and
the following three conditions hold:

(1) glue(𝑃𝑖𝑃𝑖+1) and glue(𝑃 𝑗𝑃 𝑗+1) are both of the same type,
visible from the south relative to 𝑃 and pointing east; and

(2) glue(𝑃𝑘𝑃𝑘+1) is visible from the north relative to 𝑃 , for nota-
tion let 𝑙𝑘 be the visibility ray to the north of glue(𝑃𝑘𝑃𝑘+1);
and

8For a glue ray (whose range has half-integer x-coordinate), to not intersect 𝜎 (whose
tiles are on integer points), we mean that the glue ray does not intersect any segment
between two adjacent tiles of 𝜎 (even if these adjacent tiles do not interact).

(3) 𝔈[𝑃𝑖,𝑖+1,...,𝑘]∩(𝑙𝑘 +
−−−→
𝑃 𝑗𝑃𝑖) ⊆ {𝑙𝑘 (0)+

−−−→
𝑃 𝑗𝑃𝑖 }. In other words, if

𝔈[𝑃𝑖,𝑖+1,...,𝑘] intersects 𝑙𝑘+
−−−→
𝑃 𝑗𝑃𝑖 (whichmay not be the case),

there is exactly one intersection, which is at the start-point
of the ray 𝑙𝑘 + −−−→𝑃 𝑗𝑃𝑖 .

Lemma 3.2 (Shield lemma). Let 𝑃 be a path producible by some
tile assembly system T = (𝑇, 𝜎, 1), such that (𝑖, 𝑗, 𝑘) is a shield for
𝑃 (see Definition 3.1). Then 𝑃 is pumpable with pumping vector

−−−→
𝑃𝑖𝑃 𝑗 ,

or 𝑃 is fragile.
Moreover, if 𝑃 is fragile, there is a path 𝑄 , entirely contained in

the workspace of shield (𝑖, 𝑗, 𝑘), such that 𝑃0,1,...,𝑖𝑄 is a producible
path and conflicts with 𝑃𝑖+1,𝑖+2,...,𝑘 .

Intuition for the proof of Lemma 3.2. Starting from a pro-
ducible path 𝑃 with the properties described in Definition 3.1, we
define three indices on 𝑃 (called a “shield”) which in turn are used
to define an infinite curve 𝑐 that partitionsR2.Thenwe build a path
𝑅 that stays on the right hand side of 𝑐 , and that will ultimately al-
low us to reason about 𝑃 and show that 𝑃 is pumpable or fragile.
Since the proof is rather involved, we split it up into parts, each
containing one or more Claims:
• Using Definition 3.1, we define a bi-infinite curve 𝑐 using

the ray 𝑙𝑖 , the path 𝑃𝑖+1,𝑖+2,...,𝑘 and the ray 𝑙𝑘 (see Figure 2).
In the full version of this paper [45], we prove that 𝑐 cuts
R2 into two pieces: the left-hand and right-hand side of 𝑐 .
In the rest of the proof, we use the right-hand side C ⊂ R2
of 𝑐 as a “workspace” where we can edit paths freely. The
intuition is that 𝑐 “shields our edits” from 𝜎 ∪asm

(
𝑃0,1,...,𝑖

)
,

which is entirely in the left-hand side of 𝑐 , and thus pre-
vents 𝜎 ∪ asm

(
𝑃0,1,...,𝑖

)
from blocking these paths in the

workspace C.
• We then reason by induction on the length of 𝑃 . The initial

setup for the inductive argument goes as follows (in a num-
ber of places we may reach the early conclusion that 𝑃 is
fragile, in which case we are done with the entire proof of
Lemma 3.2):
– We define a tile 𝑃𝑚0 of 𝑃 called a dominant tile, see Fig-

ure 3. We then show that 𝑃𝑚0 is such that for all integers
𝑛 ≥ 0, 𝑃𝑚0 + 𝑛

−−−→
𝑃𝑖𝑃 𝑗 is in C.

– Then, we define a binding path 𝑟 in Z2 and prove a num-
ber of key properties about about it and its translation
𝑟 + −−−→𝑃 𝑗𝑃𝑖 (see Figure 4). We then use 𝑟 as a sequence of
locations along which we we can either tile a producible
path 𝑅, or else show that 𝑃 is fragile. The path 𝑅 is built
in such a way that both 𝑅 and 𝑅 + −−−→𝑃 𝑗𝑃𝑖 are producible
and in C.

– To complete the setup for the inductive argument, we use
𝑅 and𝑚0 to define the initial inductive indices 𝑢0 and 𝑣0
(see Figure 5 for an example). To define these indices, we
use a ray 𝐿𝑚0 that starts from the tile 𝑃𝑚0 and splits the
component C into two parts (called C+ and C−), which
guarantees that 𝑢0 ≤ 𝑚0 ≤ 𝑣0, which in turn means that
the pumping of 𝑃 between 𝑢0 and 𝑣0 is well-defined (i.e.
𝑢0 < 𝑣0) and has pumping vector −−−→𝑃𝑖𝑃 𝑗 . (note that the
pumping is not a simple path until the last step of the

733

STOC ’20, June 22–26, 2020, Chicago, IL, USA Pierre-Étienne Meunier, Damien Regnault, and Damien Woods

𝑃 𝑗
𝑃𝑖

𝑃𝑘

𝑙 𝑗𝑙𝑖

𝑙𝑘𝑙𝑘 + −−−→𝑃 𝑗𝑃𝑖

Figure 1: A suffix 𝑃𝑖,𝑖+1,...,𝑘+1 of a path 𝑃 . Tiles 𝑃𝑖 , 𝑃 𝑗 and 𝑃𝑘 are shown along with the four rays and the three glues (at ray
starting points) of Hypotheses 1–3 of Definition 3.1, thus (𝑖, 𝑗, 𝑘) is a shield for 𝑃 .

C

𝑙 𝑗𝑙𝑖

𝑙𝑘𝑙𝑘 + −−−→𝑃 𝑗𝑃𝑖

Figure 2: The path and shield triple (𝑖, 𝑗, 𝑘) from Figure 1, annotated with curve 𝑐 and component C. The border of the shaded
region is the curve 𝑐, and the shaded region itself is the component C.

induction, where we eventually find a simple pumping
of 𝑃).

In the inductive step, we show that either 𝑃 is pumpable or
fragile, or else we can use 𝑅 again, along with inductive in-
dices 𝑢𝑛 , 𝑚𝑛 , 𝑣𝑛 , to find new indices 𝑢𝑛+1, 𝑚𝑛+1 and 𝑣𝑛+1,
but with 𝑚𝑛+1 > 𝑚𝑛 . Since 𝑃 is of finite length, we will
eventually run out of new indices (values for𝑚𝑛+1, in par-
ticular), leading to the conclusion that 𝑃 is either pumpable
or fragile.

4 INTUITION AND ROADMAP FOR THE
PROOF OF THEOREM 1.1

For the proof [45] of Theorem 1.1, we need to find three indices
𝑖, 𝑗, 𝑘 ∈ {0, 1, . . . , |𝑃 | − 1} of 𝑃 that satisfy the hypotheses of the
Shield Lemma (Lemma 3.2, Definition 3.1), the conclusion of which
is that 𝑃 is pumpable or fragile.Throughout the proof [45] we apply
the Shield Lemma in several different ways. We proceed in three
steps:

(1) First, we make some trivial modifications to 𝑃 (a rotation
and translation of our frame of reference, and a truncation)
so that 𝑃 is in a canonical form where it reaches far to the
east (𝑃 ’s final tile is to the east of the seed𝜎).We then invoke

734

The Program-Size Complexity of Self-Assembled Paths STOC ’20, June 22–26, 2020, Chicago, IL, USA

C

𝑙𝑖

𝑙𝑘

𝜌

𝑃𝑚0

𝐿𝑚0

Figure 3:The ray 𝜌 and tile 𝑃𝑚0 .We define 𝜌 as the southernmost ray of vector−−−→𝑃𝑖𝑃 𝑗 that starts on 𝑙𝑖 and intersects the position of
at least one tile of 𝑃𝑖+1,𝑖+2,...,𝑘 . The easternmost such intersection is then defined to be pos(𝑃𝑚0), and 𝑃𝑚0 is called the dominant
tile.

C

𝑙 𝑗𝑙𝑖

𝑙𝑘

C

𝑙 𝑗𝑙𝑖

𝑙𝑘

Figure 4: Left: Following from Figure 2,𝔈[𝑃𝑖+1,𝑖+2,...,𝑘+1] is shown in brown and𝔈[𝑃 𝑗+1, 𝑗+2,...,𝑘+1] +
−−−→
𝑃 𝑗𝑃𝑖 is shown in green. Right:

The route traced by (the embedding of) the binding path 𝑟 : red indicates when 𝑟 takes positions from 𝑃𝑖+1,𝑖+2,...,𝑘 only, and
brown indicates when 𝑟 takes positions from 𝑃 𝑗+1, 𝑗+2,...,𝑘 +

−−−→
𝑃 𝑗𝑃𝑖 and/or 𝑃𝑖+1,𝑖+2,...,𝑘 . It turns out that either the binding path 𝑟 can

be tiled to give a producible path 𝑅, or else 𝑃 conflicts with 𝑅, or conflicts with 𝑅’s forward translation 𝑅 + −−−→𝑃𝑖𝑃 𝑗 , in such a way
that means 𝑃 is fragile and we are done with the proof of Lemma 3.2.

Theorem 1.1, the combinatorial-based proof of which goes
through the following steps.

(2) Then, we show that either 𝑃 is pumpable or fragile (in turn,
by applying Lemma 3.2), or else that at most |𝑇 | + 1 glues of
𝑃 that are visible from the south or from the north can be
pointing west (the remaining ≥ (4|𝑇 |) (4 |𝑇 |+1) (4|𝜎 | + 6) −
|𝑇 | − |𝜎 | glues visible from the south are pointing east).

(3) Then, we introduce the notion of spans (see Figure 6), and
show that if we find two spans 𝑆 = (𝑠, 𝑛) and 𝑆 ′ = (𝑠 ′, 𝑛′)
of the same orientation and type, and such that 𝑠 < 𝑠 ′ and
the height of 𝑆 ′ is at least the height of 𝑆 , then we can apply
Lemma 3.2 to 𝑃 , proving that 𝑃 is pumpable or fragile.

(4) Finally, the proof of Theorem 1.1 uses a combinatorial ar-
gument, showing that if the path is long enough, there are
enough spans that we can always find two spans of the same

735

STOC ’20, June 22–26, 2020, Chicago, IL, USA Pierre-Étienne Meunier, Damien Regnault, and Damien Woods

𝑅𝑎,𝑎+1,...,𝑏 +
−−−→
𝑃𝑖𝑃 𝑗

𝑃𝑣0𝑃𝑢0

𝑙 𝑗𝑙𝑖

𝑙𝑘

𝐿𝑚0

Figure 5: Growing the path 𝑅 +−−−→𝑃𝑖𝑃 𝑗 and defining the base case (indices 𝑢0,𝑚0 and 𝑣0) for an inductive argument in the proof of
Lemma 3.2. Following from Figure 4, the path 𝑅 can be grown forward-translated by −−−→𝑃𝑖𝑃 𝑗 (a few ties of which are shown in red),
and this in turn is used to define the indices 𝑢0 and 𝑣0. The path segment 𝑅𝑎,𝑎+1,...,𝑏 +

−−−→
𝑃𝑖𝑃 𝑗 shares its start position pos(𝑅𝑎 +

−−−→
𝑃𝑖𝑃 𝑗)

with the tile 𝑃𝑣0 and pos(𝑃𝑢0) = pos(𝑅𝑎). In the proof of Lemma 3.2, we find that 𝑅𝑎,𝑎+1,...,𝑏 = 𝑃𝑢0,𝑢0+1,...,𝑚0 , and we go on to show
that 𝑢0 ≤ 𝑚0 ≤ 𝑣0, 𝑃𝑢0 = 𝑃𝑣0 +

−−−→
𝑃 𝑗𝑃𝑖 , which establishes key facts for the base case of the inductive argument. In that inductive

argument, intuitively, for any index 𝑖 on 𝑃 , and given a valid triple of indices (𝑢𝑖 ,𝑚𝑖 , 𝑣𝑖) we either find that either 𝑃 is pumpable
or fragile, or else that there is a subsequent triple (𝑢𝑖+1,𝑚𝑖+1, 𝑣𝑖+1), found via growth of a suitable path in C. But since 𝑃 is of
finite length we can not encounter the latter case forever, thus 𝑃 is pumpable or fragile. See [45] for details.

𝜎

𝑃𝑠

𝑃𝑛

𝑃𝑛′

𝑃𝑠′

𝑃𝑛′′

𝑃𝑠′′

Figure 6: The seed is in blue, and 𝑃 is in brown. Three example spans are shown in this figure, 𝑆 = (𝑠, 𝑛), 𝑆 ′ = (𝑠 ′, 𝑛′) and
𝑆 ′′ = (𝑠 ′′, 𝑛′′). A span (𝑠, 𝑛) is a pair of indices such that glue(𝑃𝑠𝑃𝑠+1) is visible from the south, glue(𝑃𝑛𝑃𝑛+1) is visible from the
north, and glue(𝑃𝑠𝑃𝑠+1) and glue(𝑃𝑛𝑃𝑛+1) are on the same glue column. Here, both 𝑆 and 𝑆 ′ have both of their glues pointing
east, hence we say that the span is pointing east. Moreover, since 𝑠 < 𝑛 and 𝑠 ′ < 𝑛′, 𝑆 and 𝑆 ′ are “up spans”. On the other
hand, 𝑆 ′′ has its south glue pointing east, and its north glue pointing west, hence 𝑆 ′′ is not pointing in any particular direction.
Moreover, 𝑛′′ < 𝑠 ′′, hence 𝑆 ′′ is a “down span”. Span 𝑆 has height 6, and spans 𝑆 ′ and 𝑆 ′′ have height 8. If the spans (𝑠, 𝑛) and
(𝑠 ′, 𝑛′) happen to be of the same type (meaning type(glue(𝑃𝑠𝑃𝑠+1)) = type(glue(𝑃𝑠′𝑃𝑠′+1))), since the height of 𝑆 ′ is at least the
height of 𝑆 , we could apply Lemma 3.2 directly to prove that 𝑃 is pumpable or fragile.

type and orientation, and of increasing height. This allows
us to use Lemma 3.2 to conclude that 𝑃 is pumpable or frag-
ile.

REFERENCES
[1] Leonard Adleman, Qi Cheng, Ashish Goel, andMing-DehHuang. 2001. Running

time and program size for self-assembled squares. In STOC: Proceedings of the

736

The Program-Size Complexity of Self-Assembled Paths STOC ’20, June 22–26, 2020, Chicago, IL, USA

33rd Annual ACM Symposium onTheory of Computing. Hersonissos, Greece, 740–
748. https://doi.org/10.1145/380752.380881

[2] Robert D Barish, Paul WK Rothemund, and Erik Winfree. 2005. Two compu-
tational primitives for algorithmic self-assembly: Copying and counting. Nano
letters 5, 12 (2005), 2586–2592.

[3] Robert D Barish, Rebecca Schulman, Paul WK Rothemund, and Erik Winfree.
2009. An information-bearing seed for nucleating algorithmic self-assembly. Pro-
ceedings of the National Academy of Sciences 106, 15 (2009), 6054–6059.

[4] B. Behsaz, J. Maňuch, and L. Stacho. 2012. Turing universality of step-wise and
stage assembly at Temperature 1. In DNA18: Proc. of International Meeting on
DNA Computing and Molecular Programming (LNCS), Vol. 7433. Springer, 1–11.

[5] Hugues Bersini and Vincent Detours. 1994. Asynchrony induces stability in
cellular automata based models. In Artificial life IV. MIT Press, MA, 382–387.

[6] Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J.
Patitz, Robert Schweller, Scott M. Summers, and Andrew Winslow. 2013. Two
Hands Are Better Than One (up to constant factors). In STACS: Proceedings of
the Thirtieth International Symposium on Theoretical Aspects of Computer Science.
LIPIcs, 172–184. Arxiv preprint: 1201.1650.

[7] Cameron T Chalk, Bin Fu, Alejandro Huerta, Mario A Maldonado, Eric Mar-
tinez, Robert T Schweller, and Tim Wylie. 2015. Flipping Tiles: Concentration
Independent Coin Flips in Tile Self-Assembly. In DNA21: Proceedings of the 21st
International Conference on DNAComputing andMolecular Programming (LNCS),
Andrew Phillips and Peng Yin (Eds.), Vol. 9211. Springer, 87–103.

[8] Qi Cheng, Gagan Aggarwal, Michael H. Goldwasser, Ming-Yang Kao, Robert T.
Schweller, and Pablo Moisset de Espanés. 2005. Complexities for Generalized
Models of Self-Assembly. SIAM J. Comput. 34 (2005), 1493–1515.

[9] Matthew Cook. 2004. Universality in elementary cellular automata. Complex
systems 15, 1 (2004), 1–40.

[10] Matthew Cook, Yunhui Fu, and Robert T. Schweller. 2011. Temperature 1 self-
assembly: deterministic assembly in 3D and probabilistic assembly in 2D. In
SODA: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algo-
rithms. 570–589. Arxiv preprint: arXiv:0912.0027.

[11] Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Matthew J. Patitz,
Robert T. Schweller, Andrew Winslow, and Damien Woods. 2014. One Tile to
Rule Them All: Simulating Any Tile Assembly System with a Single Universal
Tile. In ICALP: Proceedings of the 41st International Colloquium on Automata, Lan-
guages, and Programming (LNCS), Vol. 8572. Springer, 368–379. Arxiv preprint:
arXiv:1212.4756.

[12] Erik D. Demaine,Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, ScottM.
Summers, and DamienWoods. 2013. The two-handed tile assembly model is not
intrinsically universal. In ICALP: Proceedings of the 40th International Colloquium
on Automata, Languages, and Programming (LNCS), Vol. 7965. Springer, 400–412.
Arxiv preprint: arXiv:1306.6710.

[13] David Doty. 2012. Theory of algorithmic self-assembly. Commun. ACM 55, 12
(Dec. 2012), 78–88. https://doi.org/10.1145/2380656.2380675

[14] David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Sum-
mers, and Damien Woods. 2012. The tile assembly model is intrinsically univer-
sal. In FOCS: Proceedings of the 53rd Annual IEEE Symposium on Foundations of
Computer Science (New Brunswick, New Jersey). IEEE, 439–446. Arxiv preprint:
arXiv:1111.3097.

[15] David Doty, Matthew J. Patitz, Dustin Reishus, Robert T. Schweller, and Scott M.
Summers. 2010. Strong Fault-Tolerance for Self-Assembly with Fuzzy Tempera-
ture. In FOCS: Proceedings of the 51st Annual IEEE Symposium on Foundations of
Computer Science. 417–426.

[16] David Doty, Matthew J. Patitz, and Scott M. Summers. 2011. Limitations of self-
assembly at temperature 1.Theoretical Computer Science 412, 1–2 (2011), 145–158.
Arxiv preprint: arXiv:0903.1857v1.

[17] Constantine Glen Evans. 2014. Crystals that count! Physical principles and exper-
imental investigations of DNA tile self-assembly. Ph.D. Dissertation. California
Institute of Technology.

[18] Sándor P. Fekete, Jacob Hendricks, Matthew J. Patitz, Trent A. Rogers, and
Robert T. Schweller. 2015. Universal Computation with Arbitrary Polyomino
Tiles in Non-Cooperative Self-Assembly. In SODA: ACM-SIAM Symposium on
Discrete Algorithms. SIAM, 148–167. http://arxiv.org/abs/1408.3351

[19] Bin Fu, Matthew J. Patitz, Robert T. Schweller, and Robert Sheline. 2012. Self-
assembly with Geometric Tiles. In ICALP: Proceedings of the 39th Interna-
tional Colloquium on Automata, Languages, and Programming (LNCS), Vol. 7391.
Springer, 714–725.

[20] Kenichi Fujibayashi, Rizal Hariadi, Sung Ha Park, Erik Winfree, and Satoshi Mu-
rata. 2007. Toward Reliable Algorithmic Self-Assembly of DNA Tiles: A Fixed-
Width Cellular Automaton Pattern. Nano Letters 8, 7 (2007), 1791–1797.

[21] David Furcy and ScottMSummers. 2018. Optimal Self-Assembly of Finite Shapes
at Temperature 1 in 3D. Algorithmica 80, 6 (2018), 1909–1963.

[22] David Furcy, Scott M Summers, and Christian Wendlandt. 2019. New Bounds
on the Tile Complexity of Thin Rectangles at Temperature-1. In DNA25: Inter-
national Conference on DNA Computing and Molecular Programming. Springer,
100–119.

[23] Oscar Gilbert, Jacob Hendricks, Matthew J Patitz, and Trent A Rogers. 2016.
Computing in continuous space with self-assembling polygonal tiles. In SODA:
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 937–956. Arxiv preprint:
arXiv:1503.00327.

[24] JacobHendricks, Matthew J. Patitz, Trent A. Rogers, and ScottM. Summers. 2014.
The Power of Duples (in Self-Assembly): It’s Not So Hip To Be Square. In CO-
COON: Proceedings of 20th International Computing and Combinatorics Confer-
ence. 215–226. Arxiv preprint: arXiv:1402.4515.

[25] Natasa Jonoska and Daria Karpenko. 2014. Active Tile Self-assembly, Part 1:
Universality at temperature 1. Int. J. Found. Comput. Sci. 25, 2 (2014), 141–164.
https://doi.org/10.1142/S0129054114500087

[26] Ján Maňuch, Ladislav Stacho, and Christine Stoll. 2010. Two lower bounds for
self-assemblies at Temperature 1. Journal of Computational Biology 17, 6 (2010),
841–852.

[27] Pierre-Étienne Meunier. 2015. Non-cooperative Algorithms in Self-assembly. In
UCNC: Unconventional Computation and Natural Computation (LNCS), Vol. 9252.
Springer, 263–276.

[28] Pierre-Étienne Meunier, Matthew J. Patitz, Scott M. Summers, Guillaume
Theyssier, Andrew Winslow, and Damien Woods. 2014. Intrinsic universal-
ity in tile self-assembly requires cooperation. In SODA: Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms. 752–771. Arxiv preprint:
arXiv:1304.1679.

[29] Pierre-Étienne Meunier and Damien Regnault. 2015. A pumping lemma for
noncooperative self-assembly. (2015). Arxiv preprint: arXiv:1312.6668v4
[cs.CC].

[30] Pierre-Étienne Meunier and Damien Regnault. 2019. Non-cooperatively assem-
bling large structures. In DNA Computing and Molecular Programming - 25th
International Conference, DNA 25, Seattle, WA, USA, August 5-9, 2019, Proceed-
ings.

[31] Pierre-Étienne Meunier and Damien Woods. 2017. The non-cooperative tile as-
sembly model is not intrinsically universal or capable of bounded Turing ma-
chine simulation. In STOC: Proceedings of the 49th Annual ACM SIGACT Sympo-
sium onTheory of Computing. ACM, Montreal, Canada, 328–341. Arxiv preprint
with full proofs: arXiv:1702.00353v2 [cs.CC].

[32] Turlough Neary and Damien Woods. 2006. P-completeness of cellular automa-
ton Rule 110. In ICALP: The 33rd International Colloquium on Automata, Lan-
guages and Programming (LNCS), Vol. 4051. Springer, 132–143.

[33] Jennifer E. Padilla, Matthew J. Patitz, Robert T. Schweller, Nadrian C. Seeman,
Scott M. Summers, and Xingsi Zhong. 2014. Asynchronous Signal Passing for
Tile Self-Assembly: Fuel Efficient Computation and Efficient Assembly of Shapes.
International Journal of Foundations of Computer Science 25, 4 (2014), 459–488.
Arxiv preprint: arxiv:1202.5012.

[34] Matthew J. Patitz. 2014. An introduction to tile-based self-assembly and a survey
of recent results. Natural Computing 13(2) (2014), 195–224. https://doi.org/10.
1007/s11047-013-9379-4

[35] Matthew J. Patitz, Robert T. Schweller, and Scott M. Summers. 2011. Exact
Shapes and Turing Universality at Temperature 1 with a Single Negative Glue.
In DNA 17: Proceedings of the Seventeenth International Conference on DNA Com-
puting and Molecular Programming (LNCS). Springer, 175–189. Arxiv preprint:
arXiv:1105.1215.

[36] PaulW.K. Rothemund, Nick Papadakis, and ErikWinfree. 2004. Algorithmic Self-
Assembly of DNA Sierpinski Triangles. PLoS Biology 2, 12 (2004), 2041–2053.

[37] Paul W. K. Rothemund. 2001. Theory and Experiments in Algorithmic Self-
Assembly. Ph.D. Dissertation. University of Southern California.

[38] Paul W. K. Rothemund and Erik Winfree. 2000. The Program-size Complexity of
Self-Assembled Squares (extended abstract). In STOC: Proceedings of the thirty-
second annual ACM Symposium onTheory of Computing. ACM, Portland, Oregon,
459–468. https://doi.org/10.1145/335305.335358

[39] Rebecca Schulman, Bernard Yurke, and Erik Winfree. 2012. Robust self-
replication of combinatorial information via crystal growth and scission. Pro-
ceedings of the National Academy of Sciences 109, 17 (2012), 6405–6410.

[40] David Soloveichik and Erik Winfree. 2007. Complexity of Self-Assembled
Shapes. SIAM J. Comput. 36, 6 (2007), 1544–1569.

[41] HaoWang. 1961. ProvingTheorems by Pattern Recognition – II. The Bell System
Technical Journal XL, 1 (1961), 1–41.

[42] Erik Winfree. 1998. Algorithmic Self-Assembly of DNA. Ph.D. Dissertation. Cali-
fornia Institute of Technology.

[43] Damien Woods. 2015. Intrinsic universality and the computational
power of self-assembly. Philosophical Transactions of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences 373, 2046 (2015).
dx.doi.org/10.1098/rsta.2014.0214.

[44] Damien Woods, David Doty, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin,
and Erik Winfree. 2019. Diverse and robust molecular algorithms using repro-
grammable DNA self-assembly. Nature 567, 7748 (2019), 366–372.

[45] Pierre Étienne Meunier, Damien Regnault, and Damien Woods. 2020. The
program-size complexity of self-assembled paths. Arxiv preprint with full
proofs: arXiv:2002.04012 [cs.CC].

737

https://doi.org/10.1145/380752.380881
http://arxiv.org/abs/1201.1650
http://arxiv.org/abs/0912.0027
http://arxiv.org/abs/1212.4756
http://arxiv.org/abs/1306.6710
https://doi.org/10.1145/2380656.2380675
http://arxiv.org/abs/1111.3097
http://arxiv.org/abs/0903.1857v1
http://arxiv.org/abs/1408.3351
http://arxiv.org/abs/1503.00327
http://arxiv.org/abs/1402.4515
https://doi.org/10.1142/S0129054114500087
http://arxiv.org/abs/1304.1679
http://arxiv.org/abs/1312.6668v4
https://arxiv.org/abs/1702.00353v2
http://arxiv.org/abs/1202.5012
https://doi.org/10.1007/s11047-013-9379-4
https://doi.org/10.1007/s11047-013-9379-4
http://arxiv.org/abs/1105.1215
https://doi.org/10.1145/335305.335358
http://dx.doi.org/10.1098/rsta.2014.0214
https://arxiv.org/abs/2002.04012

	Abstract
	1 Introduction
	1.1 Main Result
	1.2 Relationship With Other Prior Work
	1.3 New Tools and Future Work

	2 Definitions and Preliminaries
	2.1 Abstract Tile Assembly Model
	2.2 Paths and Noncooperative Self-Assembly
	2.3 Fragile Paths
	2.4 Pumping a Path
	2.5 2D Plane

	3 Shield Lemma
	4 Intuition and Roadmap for the Proof of Theorem 1.1
	References

