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Abstract. The Collatz process is defined on natural numbers by iter-
ating the map T (x) = T0(x) = x/2 when x ∈ N is even and T (x) =
T1(x) = (3x+1)/2 when x is odd. In an effort to understand its dynam-
ics, and since Generalised Collatz Maps are known to simulate Turing
Machines [Conway, 1972], it seems natural to ask what kinds of algo-
rithmic behaviours it embeds. We define a quasi-cellular automaton that
exactly simulates the Collatz process on the square grid: on input x ∈ N,
written horizontally in base 2, successive rows give the Collatz sequence
of x in base 2. We show that vertical columns simultaneously iterate
the map in base 3. This leads to our main result: the Collatz process
embeds an algorithm that converts any natural number from base 3 to
base 2. We also find that the evolution of our automaton computes the
parity of the number of 1s in any ternary input. It follows that predict-
ing about half of the bits of the iterates T i(x), for i = O(log x), is in
the complexity class NC1 but outside AC0. These results show that the
Collatz process is capable of some simple, but non-trivial, computation
in bases 2 and 3, suggesting an algorithmic approach to thinking about
prediction and existence of cycles in the Collatz process.

Keywords: Collatz map · Model of computation · Reachability
problem

1 Introduction

The Collatz process is defined on natural numbers by iterating the map T (x) =
T0(x) = x/2 when x ∈ N is even and T (x) = T1(x) = (3x + 1)/2 when x
is odd. The Collatz conjecture states that for all x ∈ N a finite number of
iterations lead to 1. We know that 1-variable generalised Collatz maps (iterated
linear equations of a single natural number variable with arbitrary mod) are
capable of running arbitrarily algorithms [8], modulo an exponential simulation
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scaling, which motivates our point of view in this paper: how complicated are the
dynamics of the Collatz process? Perhaps the reason this process has resisted
understanding is that it embeds algorithm(s) that solve problems with high
computational complexity? Or perhaps by showing that this is not the case, we
can get a handle on its dynamics?

We study the structure of iterations of the Collatz process both in binary and
in ternary. We define a 2D quasi-cellular automaton (CQCA) that consists of a
local rule, and a non-local1 rule. A natural number is encoded as a binary string
input to the CQCA, whose subsequent dynamics exactly execute the Collatz
process with one horizontal row per odd iterate. Simultaneously, vertical columns
simulate all iterations (both odd and even), but in base 3.

Results. Our main result, Theorem 11, is that the CQCA embeds a base con-
version algorithm that can convert any natural number x from base 3 to base 2.
This base conversion algorithm is natural and efficient, running in Θ(log x) Col-
latz iterations. The result puts strict constraints on the short-term dynamics of
the Collatz process and enables us to characterize the complexity of natural pre-
diction problems on the dynamics of the CQCA: predicting about half of the bits
of the iterates T i(x), for i = O(log x), is in the complexity class NC1 but outside
AC0 (see Fig. 4). Our algorithmic perspective is suggestive of an open problem:
small Collatz cycles: Does there exist x > 2 ∈ N such that x = T≤�log2 x�(x)?

The proofs of our main result and supporting lemmas use the fact that the
local (CA-like) component of the CQCA can be thought of as simultaneously
iterating two finite state transducers (FSTs). One FST computes x/2 in ternary
on vertical columns, the other FST computes 3x+1 in binary on horizontal rows,
as shown in Fig. 3. Interestingly, the two FSTs are dual in the sense that states of
one are symbols of the other, and arrows of one are read/write instructions of the
other. In addition, intuitively, the non-local component of the CQCA initiates,
or “bootstraps”, these two FSTs by providing the location of the least significant
bit to each.

Related and Future Work. Since the operations 3x + 1 and x/2 have natural
base 2 interpretations, studying the process in binary has been fruitful [4,7,11,24].
For example, in binary, predecessors in the Collatz process are characterised by
regular expressions [25]: for each x, k ∈ N there is a regular expression, of size
exponential in k, that characterises the binary representations of all y ∈ N that
lead to x via k applications of T1 and any number of T0.

Cloney, Goles and Vichniac give a unidimensional “quasi” CA that simulates
the Collatz process [6]. Their system works in base 2, for any x ∈ N given as an
input in base 2, successive downward rows encode the iterates x, T (x), T 2(x), . . .,
in binary. The choice of whether to apply x/2 and 3x + 1 is done explicitly
based on the least significant bit, hence the rule is not local. In a similar spirit,

1 The CQCA could easily be altered to remove the non-local rule and have it be a CA,
but the obvious ways to do so would involve using more states and make the mapping
to the Collatz process less direct. The CQCA has the freezing property [9,27]; states
change obey a partial order, with a constant number of changes permitted per cell.
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Bruschi [3] defines two distinct non-local 1D CA-like rules, one which works
in base 2 and the other in base 3. Finally, in base 6, the Collatz process can
be expressed as a local CA because carry propagation does not occur [13,15].
However, because these systems do not include carries in the automaton state’s
space, our base conversion result, and parity-based observations on the structure
of Collatz iterates, are not apparent, nor is the CQCA-style embedding of dual
FSTs that compute 3x + 1 and x/2.

Base conversion is a problem which has been studied in several ways: it is
known to be computable by iterating Finite State Transducers [2], it is known to
be in the circuit complexity class NC1 [10] and the complexity of computing base
conversion of real numbers (infinite expansion) has been explored [1,2,12]. While
we know that our framework generalises well to the Collatz process running on
infinite binary strings (i.e. the extension [17,19,23] of T to Z2, see Remark 9),
we leave to future work to show how our base conversion result applies in that
case: for instance, can the CQCA convert any element x ∈ Z3 ∩ Z2 ∩ Q from Z3

(i.e. infinite ternary expansion) to Z2 (i.e. infinite binary expansion)?
Generalised Collatz maps, and related iterated dynamical systems, of both

one and two variables, simulate Turing machines [8,14,16,20–22]. With two vari-
ables these maps simulate Turing machines in real time, just one map applica-
tion per Turing machine step, and so have a P-complete prediction problem. The
situation is less clear with 1-variable generalised Collatz maps (1D-GCMs), of
which Collatz is an instance. Conway [8] showed that 1D-GCMs simulate Turing
machines, but via an exponential slowdown, and it remains as a frustrating open
problem whether the simulation can be made to run in polynomial time.2 As
with the 2-variable case, Turing Machines simulate 1D-GCMs in polynomial-in-
n time (giving an upper bound), but a matching lower bound for predicting n
steps of a 1D-GCM on an n-digit input remains elusive. Is the problem in NC, or
even in NL? Is it P-complete? This point of view provides the motivation for a
quest to understand the kinds of algorithmic behaviour that might be embedded
in 1D-GCMs, and in their prime example, the Collatz map. Here, we show an
AC0 lower bound on that prediction problem in the CQCA model, and an NC1

upper bound on roughly half the bits produced over O(n) iterations. Finding
a separation between the Collatz process itself, and 1D-GCMs, is an obvious
next step. The structure we find in Collatz iterations leads us to guess that the
CQCA n-step prediction problem might be simpler than the analogous problem
for 1D-GCMs. We leave that challenging problem for future work.

We contend that our approach gives a fresh perspective that could lead to
progress in understanding the Collatz process. We illustrate with two examples.
Firstly, the CQCA runs in a maximally parallel fashion along a 135◦ diagonal (see
Fig. 2(b)), thus our main base conversion result (Theorem 11) implies that such
a diagonal encodes a natural number being converted from base 3 to 2. Hence, it
implies that the Collatz process can be interpreted as running along successive

2 The problem is closely related to the 2-counter machine problem: when simulat-
ing Turing machines, are 2-counter machines exponentially slower than 3-counter
machines? See, for example, [14,18,22].
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CQCA diagonals (rather than rows/columns), giving a new perspective on its
dynamics, that we leave to future work. Secondly, by Theorem 23, and illustrated
in Fig. 4, if we pick any cell along a column, the entire upper rectangle (above
and to the left of the cell) is tightly characterised by our results: it is a base 3-to-2
conversion diagram (computable in NC1, but not in AC0). This leaves as future
work the lower rectangle (below and to the left) and, we believe, embeds the
full complexity of computing n forward Collatz steps and answering the small
Collatz cycles conjecture. Section 4, Fig. 4 and Fig. 5 contain some additional
discussion.

A simulator, simcqca, was built in order to run the CQCA3. The reader is
invited to experience the results of this paper through the simulator.

2 The Collatz 2D Quasi-Cellular Automaton

The Collatz Process. Let N = {0, 1, . . . }, N
+ = {1, 2, . . . } and let Z be the

integers. The Collatz process consists of iterating the Collatz map T : N → N

where T (x) = T0(x) = x/2 if x is even and T (x) = T1(x) = (3x + 1)/2 if x is
odd. The Collatz conjecture states that for any x ∈ N the process will reach 1
after a finite number of iterations. The cyclic Collatz conjecture states that the
only strictly positive cycle is (1, 2, 1, . . . ).

CQCA Definition. The CQCA is pictorially defined in Fig. 1 and more
formally defined in Sect. 2.3 of the full version of this paper [26]. A config-
uration is defined on Z

2, where each cell in Z
2 has a state (s, c) ∈ S =

{0, 1,⊥}2\{(⊥, 0), (⊥, 1)} containing sum bit s and carry bit c, said to be defined
if 0/1 or undefined otherwise (⊥). We say that the cell is defined if both the sum
and carry defined, half-defined if sum is defined and carry undefined, and unde-
fined if sum and carry are undefined. Note, in all Figures, cell colour distinguishes
between a carry bit being undefined or being 0, and empty light/dark grey cells
have sum bit 0, as defined in Fig. 1(a).

A configuration update step is parallel and synchronous: First, the non-local
rule is applied (at most 1 row per step is updated by the non-local rule) then,
on the updated configuration, the local rule is applied everywhere it can be.
The non-local rule implements the + 1 part of the 3x + 1 operation as follows:
on any horizontal row which has only half-defined cells, with exactly one cell
ρ having sum bit 1, then the neighbour immediately to the right of ρ gets, ex
nihilo, a carry bit equal to 1 (shown in red in Fig. 1(a), see [26] for a formal
definition). The local rule works as shown in Fig. 1(a): for any undefined cell
e ∈ Z

2, with a half-defined north neighbour with sum s1, and defined north-east
neighbour with sum s0 and carry c0, e’s sum bit becomes s2 := s0 + c0 + s1
mod 2. Simultaneously, the carry, c1 := (s0 + c0 + s1 ≥ 2), is placed on the
cell to the north of e. Figure 2(b) shows that the “natural” evolution frontier
of the CQCA is along a 135◦ diagonal. Let the unit cardinal vectors in Z

2 be
EAST = (1, 0), WEST = (−1, 0), NORTH = (0, 1), SOUTH = (0,−1).
3 Comprehensive instructions and tutorial at: https://github.com/tcosmo/simcqca.
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Fig. 1. CQCA definition and examples. (a) CQCA local rule, and non-local rule,
for sum bit (s2: written as 0 or 1), and carry bit (c1: over-bar for c1 = 1, omit-
ted for c1 = 0), where the bits c0, s0 and s1 are already defined. Cell colour dis-
tinguishes between carry bit being undefined or 0, and empty light/dark grey cells
have sum bit 0. (b) Two examples of the local rule. (c) Example run of the CQCA
on base 2 (horizontal) input w = 1100011, showing the initial configuration c0[w]
(Definition 2), then 3 steps, then > 20 steps. The CQCA evolves in the south-
west direction, with successive rows corresponding to odd Collatz iterates in binary
(Lemma 10), in this case (99,149, 224, 112, 56, 28, 14,7, . . . ), i.e., [[1100011]]2 = 99
(magenta), [[10010101]]2 = 149 (blue) and [[111]]2 = 7. (d) Part of the limit configuration
c∞[w] (Lemma 4) associated to w = 1100011. The trivial cycle (1,2), in blue, has been
reached. In orange, an instance of the base conversion theorem (Theorem 11): north
of the green cell (anchor cell) reads in base 3′ (Definition 1), [[0̄0̄0̄]]3′ = [[111]]3 = 13
and is equal to the base 2 number represented by the sum bits to the west of the green
cell: [[1101]]2 = 13. (e) Example run of the CQCA on vertical base 3 input α = 111
encoded in base 3′ as 0̄0̄0̄ (Definition 1). Each column is a successive T -iterate, from
magenta to orange, we read: [[0̄0̄0̄]]3′ = 13, [[1̄01̄]]3′ = 20 = T (13), [[0̄00̄]]3′ = 10 = T (20)
(Lemma 10), see Fig. 2(a) for a larger vertical example. (Color figure online)

Base 2, 3 and 3′. Let {0, 1}∗ be the set of finite binary strings, {0, 1, 2}∗ be the
set of finite ternary strings. We index strings from their rightmost symbol, and
| · | denotes string length, meaning we write, for instance, w = w|w|−1 . . . w1w0 ∈
{0, 1}∗. We use the standard interpretation of strings from {0, 1}∗ and {0, 1, 2}∗

as, respectively, base 2 and base 3 encodings of natural numbers where the
rightmost symbol is the least significant digit. We write [[·]]2 : {0, 1}∗ → N and
[[·]]3 : {0, 1, 2}∗ → N for those interpretations. For instance, [[110]]2 = [[20]]3 = 6.

The CQCA uses a particular encoding for base 3 strings, called base 3′,
over the four-symbol alphabet {0, 0̄, 1, 1̄}. The CQCA states (0, 0), (0, 1), (1, 0),
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Fig. 2. Evolution of a column input in the CQCA. Colours as in Fig. 1. (a) Portion
of c∞[α], the limit configuration of the CQCA on column input α = 111211101211.
Successive columns iterate the Collatz process in base 3′ (Lemma 10). We read:
[[1̄01̄1̄01̄001̄1̄01̄]]3′ = 408314 = T (272209) (blue) and [[0̄00̄0̄00̄000̄0̄00̄]]3′ = 204157 =
T (408314) (orange). (b) Evolution of c0[α] after |α| CQCA steps, highlighting the
“natural” frontier of evolution of the CQCA as a 135◦ diagonal (blue cells). Cells to
the north-east of the diagonal are defined, cells to the south-west are undefined and
cells on the diagonal are half-defined. (Color figure online)

(1, 1) ∈ S respectively represent 0, 0̄, 1, 1̄, using a (sum-bit, carry-bit) notation.
The function [[·]]3′→3 : {0, 0̄, 1, 1̄}∗ → {0, 1, 2}∗ converts base 3′ to base 3 in a
straightforward symbol-by-symbol fashion: 0 �→ 0, 0̄ �→ 1, 1 �→ 1 and 1̄ �→ 2. For
instance, [[0̄0̄011̄]]3′→3 = 11012. We write [[·]]3′ = [[[[·]]3′→3]]3 as the interpretation
of base 3′ strings as natural numbers. However, because there are two choices
for encoding the trit 1 in base 3′, converting from base 3 to base 3′ requires a
definition:

Definition 1 (Base 3 to 3′ encoding). The function [[·]]3→3′ : {0, 1, 2}∗ →
{0, 0̄, 1, 1̄}∗ encodes a base 3 word α as a base 3′ word as follows: 0 is encoded as
0, 2 is encoded as 1̄, and 1 is encoded as 1 when the rightmost neighbour different
from 1 is a 2, and as 0̄ otherwise. E.g., [[111211101211]]3→3′ = 1111̄0̄0̄0̄011̄0̄0̄.

Transducers and Duality. The CQCA rule has a local and non-local compo-
nent. The local component simulates two FSTs: the 3x + 1 FST in binary along
horizontal rows and the x/2 FST in ternary along vertical columns (Fig. 3).
Intuitively, the non-local component of the CQCA provides the least significant
bit to these FSTs, in other words, it runs x/2 in binary (removing a trailing 0)
and 3x + 1 in ternary (adding a trailing 1). Interestingly, these two FSTs are
closely related, we say they are dual : states of one are symbols of the other and
that arrows of one are read/write instructions of the other. The proof of our
main result Theorem 11, and of Lemmas 7 and 10, use the ability of the CQCA
to simulate these FSTs simultaneously, one horizontally and the other vertically.
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Fig. 3. Panels (a) and (b) present the 3x + 1 binary Finite State Transducer (FST)
and the x/2 base 3′ FST. Instructions “s1 : s2” mean “read s1, write s2”. The FSTs
are dual to one another: states of one are symbols of the other and arrows of one are
read/write instructions of the other. Panels (c) and (d) show the relation with the local
CQCA rule: (c) horizontal CQCA applications correspond to simulating the 3x+1 FST
and (d) vertical CQCA applications to simulating the x/2 FST. The same colour code
as Fig. 1 is used. More precisely, in (c), on input [[00110010001]]2 = 401 and initial state
0̄ (rightmost 0 with red carry), we get output [[10010110100]]2 = 1204 = 3 × 401 + 1.
In (d) on input [[0̄0111̄1̄0̄]]3′ = 862 and initial state 0 (top-left most sum bit 0), we
get output [[011̄01̄1̄1̄]]3′ = 431 = 862/2. For clarity of exposition, we are “illegally”
running the CQCA in a vertical (c), or horizontal (d), sequential mode—in the legal,
or “natural”, parallel mode, see Fig. 2(b), more cells would have been computed than
are shown. The non-local component of the CQCA rule provides the FSTs with the
(red) carry at the least significant digit. (Color figure online)

3 Base Conversion in the Collatz Process

Definition 2 (Binary initial configuration c0[w]). For any binary input w ∈
{0, 1}∗, we define c0[w] ∈ SZ

2
to be the initial configuration of the CQCA with

w written on the horizontal ray y = 0, x < 0 as follows: for 1 ≤ i ≤ |w| we set
c0[w](−i, 0) = (wi−1,⊥), for i > |w| we set c0[w](−i, 0) = (0,⊥) and for all other
positions (x, y) ∈ Z

2 we set c0[w](x, y) = (⊥,⊥).

Definition 3 (Ternary initial configuration c0[α]). For any ternary input
α ∈ {0, 1, 2}∗ we define c0[α] ∈ SZ

2
to be the initial configuration of the CQCA

with α′ = [[α]]3→3′ (Definition 1) written on the vertical ray x = 0, y > 0
as follows: for 1 ≤ i ≤ |α| we set c0[α](0, i) = state(α′

i−1) where state :
{0, 0̄, 1, 1̄} → S is such that state(0) = (0, 0), state(0̄) = (0, 1), state(1) =
(1, 0) and state(1̄) = (1, 1). Also, for all x < 0 we set c0[α](x, |α|) = (0,⊥) and
finally at all other positions we set c0[α](x, y) = (⊥,⊥).
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Fig. 4. Structure of the CQCA, and Collatz iterations, implied by our results.
(a) Three instances of Theorem 11. From the innermost to the outermost they read
[[0̄]]3′ = [[1]]3 = [[1]]2 = 1, then [[111̄0]]3′ = [[1120]]3 = [[101010]]2 = 42, and finally
[[0̄0̄00̄0̄0̄01̄]]3′ = [[101111011011]]2 = 3035. Anchor cells are in green. (b) Zoom-in of
base conversion diagram of [[111̄0]]3′ (middle example in (a)). Each column, exclud-
ing its bottom cell, represents successive integer divisions by 2, e.g., from orange to
magenta columns we read [[1120]]3 = 42, [[210]]3 = 21 and [[101]]3 = 10. At each step,
the sum bits of the bottom row “store” the parity information of the previous column
that was divided by 2: the orange bit gives the parity of the orange column and so
on. Checking parity in base 3′ is checking the parity of the number of 1s (both sum
and carry bits), hence outside AC0 (Corollary 15, Theorem 19). (c) For any input
z ∈ N the schematic shows n = �log2 x� iterations of the Collatz map T . The values
x, T (x), T 2(x), . . . , Tn(x) appear as n columns, written in ternary (base 3′). The con-
figuration is cut by a horizontal line, whose cells encode z in binary (Theorem 11). The
‘base conversion’ upper z-rectangle is simple to define in terms of z, and is computable
in NC1. The lower z-rectangle embeds the full complexity of computing n iterations
of T , but with input being in base 2 and output in base 3′. (d) The influence of
z = [[0̄0̄00̄0̄0̄01̄]]3′ = [[11011102]]3 = 3035 on its next n = �log2 z� Collatz iterates. The
column in orange on the right is the base 3′ encoding of z. By Lemma 10, the column in
orange on the left is the base 3′ encoding of Tn(z) = T 12(z) = [[2020002]]3 = 1622. By
Theorem 11, the orange horizontal sum bits give the base 2 representation of z. Hence
the cells outlined in blue (upper z-rectangle) in T 4(z) (second outlined column to the
right) and T 9(z) (third outlined column), are entirely determined by the base 3′ to
base 2 conversion diagram of z, only the cells outlined in magenta (lower z-rectangle)
are independent from the base conversion algorithm. (Color figure online)

Each initial configuration has a well-defined unique limit configuration:

Lemma 4 (Limit configurations c∞[w] and c∞[α]). Let w ∈ {0, 1}∗ be a
finite binary string and α ∈ {0, 1, 2}∗ be a finite ternary string. Then, in the
CQCA evolution from the initial configurations c0[w] ∈ SZ

2
, and c0[α] ∈ SZ

2
,
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both sum and carry bits in any cells are final: if set, they never change. Hence,
limit configurations c∞[w] = lim

i→∞ F i(c0[w]) and c∞[α] = lim
i→∞ F i(c0[α]) exist.4

Proof. Both the local and non-local rules of the CQCA can only be applied either
on undefined cells or half-defined cells. Furthermore, if applied on an undefined
cell, the cell becomes half-defined or defined, and when applied on a half-defined
cell it becomes defined. Hence, the following partial order (⊥,⊥) < (s,⊥) <
(s, c) with s, c ∈ {0, 1} holds on the states of the CQCA: it has the freezing
property [9,27] and cells can change state at most twice. Limit configurations
are well-defined by taking the final state of each cell. 	

Example 5. Figure 1(c) (top) and (d) respectively show c0[w] and a portion
of c∞[w] for w = 1100011. Figure 2(a) shows a portion of c∞[α] for α =
111211101211; by Definition 1 we have [[111211101211]]3→3′ = 1111̄0̄0̄0̄011̄0̄0̄.

Next, we define how to read base 2 strings on rows and base 3′ on columns
of the CQCA:

Definition 6 (Mapping rows and columns to natural numbers). Let
x0, y0 ≤ 0 and c ∈ SZ

2
be a configuration. A finite segment of defined cells

along a horizontal row x0 of c is said to give word w ∈ {0, 1}∗ if w is exactly the
concatenation of the sum bits in these cells (LSB on right). An infinite horizontal
row y0 of c is said to give w ∈ {0, 1}∗ if there is a k ≥ 0 such that the defined
sum bits on y0 are 0∞w0k.

A contiguous segment of defined cells on the column of c with x-coordinate x0

is said to give the base 3′ word q ∈ {0, 0̄, 1, 1̄}∗ if q is exactly the concatenation
of the base 3′ symbols corresponding to each cell’s state5 (where the southmost
cell gives the least significant trit).

Intuitively, the following lemma says that rows of CQCA encode odd Collatz
iterates in binary. There is one odd iterate per row, Fig. 1(c).

Lemma 7 (Rows simulate Collatz in base 2). Let z ∈ N
+ and let w ∈

{0, 1}∗ \ {0}∗ be the standard base 2 representation of z and, by Lemma 4, let
c∞[w] ∈ SZ

2
be the CQCA limit configuration on input w. Then, the horizontal

row y0 ≤ 0 of c∞[w] gives the base 2 representation of the |y0|th odd term in the
Collatz sequence of z (Definition 6).

Proof. Note that it is enough to show that row y = −1 of c∞[w] gives the
base 2 representation of the second odd term in the Collatz sequence of z and
then inductively apply the argument to all rows y < −1 to get the result. We
have w �= 0n, hence there is at least one 1 in w and so, on row y = 0 of

4 Furthermore, although the following fact is not used in the rest of this paper, one
can prove that limit configurations contain no half-defined cells: each cell is either
defined or undefined.

5 The CQCA defined states are (0, 0), (0, 1), (1, 0), (1, 1) and they respectively map to
base 3′ symbols 0, 0̄, 1, 1̄.
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c∞[w], the non-local rule of the CQCA (Fig. 1(a)) was applied exactly once,
at position x0 = max({x < 0 | c∞[w](x, 0) = (s, c) with s = 1}) + 1 and we
have c∞[w](x0, 0) = (0, 1). Sum bits on row y = 0 up to column x0 − 1 give the
representation of z′ ∈ N (Definition 6), the first odd term in the Collatz sequence
of z = [[w]]2.

From position x = x0 − 1 down to x0 = −∞, the local rule of the CQCA
was applied to produce carries on row y = 0 and sum bits on row y = −1. Given
the definition of the CQCA local rule, that computation corresponds exactly to
applying the binary 3x+1 FST (Fig. 3(a) and (c)): input is read in the sum bits
of row y = 0 from x = x0 − 1 down to x = −∞, output is produced in the sum
bits of row y = −1, the initial state is 0̄, corresponding to c∞[w](x0, 0) = (0, 1).
Hence, by Lemma 5 in the full version of this paper [26], which asserts the
correctness of the 3x+1 FST computation, sum bits of row y = −1 from x = −∞
to x = x0 − 1 give the binary representation of 3z′ + 1; starting with a (0)∞

prefix and with LSB to the east. By ignoring the m ≥ 1 trailing zeros on row
y = −1 (there is at least one because 3z′ + 1 is even), we get the representation
of (3z′ + 1)/2m, the second odd iterate in the Collatz sequence of z. Note the
non (0)∞ part of row y = −1 is produced in ≤ |w| + 2 steps in the CQCA. �

Remark 8. Although Lemma 7 only deals with odd Collatz iterations, even Col-
latz iterations also naturally appear in the CQCA: even terms occurring between
the ith and the (i+1)th odd Collatz iterates correspond to the trailing 0s on row
y = −(i + 1) of the CQCA. For example, on the third row in Fig. 1(c) (bottom)
we read 7 = [[111]]2 but also, in the trailing 0s, all 2n · 7 for 1 ≤ n ≤ 6.

Remark 9. The Collatz process can be generalised to an uncountable class of
numbers that includes both N and Z: Z2, the ring of 2-adic integers which
syntactically corresponds to the set of infinite binary words [5,17]. Given that
generalisation, the Collatz process can be run on more exotic numbers such
as − 4

23 ∈ Z2 ∩ Q and the Collatz conjecture generalises as follows: all rational
2-adic integers eventually reach a cycle6 (known as Lagarias’ Periodicity Conjec-
ture [17]). When running the 3x+1 FST on infinite binary inputs, one can show
that it is computing the 3x+1 function on 2-adic integers (see [26], Appendix B).
Hence, Lemma 7 and the CQCA framework in general, can be generalised for
working with infinite binary inputs and the Collatz process in Z2.

Intuitively, the following lemma says that columns of the CQCA encode all
Collatz iterates, even and odd, in ternary, as in Figs. 1(e) and 2(a).

Lemma 10 (Columns simulate Collatz in base 3′). Let z ∈ N
+ and let

α ∈ {0, 1, 2}∗\{0}∗ be the standard base 3 representation of z, and, by Lemma 4,
let c∞[α] ∈ SZ

2
be the CQCA limit configuration on input α. Then, the vertical

column x0 < 0 in c∞[α] gives the base 3′ representation of T |x0|(z) (as the defined
cells down to, and excluding, the southmost cell with sum bit 0, Definition 6).
6 The set Z2∩Q exactly corresponds to irreducible fractions with odd denominator and

parity is given by the parity of the numerator. For instance, the first Collatz steps of
− 4

23
are: (− 4

23
, − 2

23
, − 1

23
, 10
23

, 5
23

, . . . ). It reaches the cycle ( 5
23

, 19
23

, 40
23

, 20
23

, 10
23

, 5
23

. . . ).
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Proof. Note that it is enough to show that column x0 = −1 of c∞[α] gives the
base 3′ representation of T (z), with z = [[α]]3, and then inductively apply the
argument to all columns x < −1 to get the result. By construction of c0[α]
(Definition 3) and because all bits are final (Lemma 4) we have that the sum
bit of c∞[α](−1, |α|) is 0 (more generally, for all x < 0 we have the sum bit
of c∞[α](x, |α|) is 0). From there, the local CQCA rule (Fig. 1) is applied to
each position (−1, y) with 1 ≤ y ≤ |α|. This application of the rule corresponds
exactly to running the base 3′ x/2 FST (Fig. 3(b) and (d)) by reading the
input on the base 3′ symbols of cells of column x = 0 (both sum and carry
bits of these cells are defined in c0[α]), writing the base 3′ output on the cells
of column x = −1 starting from initial FST state 0 (corresponding to the sum
bit of c∞[α](−1, |α|) being 0). In that interpretation, the sum bit output to the
south of a cell by the local CQCA rule corresponds to the new FST state after
reading the east base 3′ symbol, hence the sum bit s of cell (−1, 0) corresponds
to the state of the x/2 FST after reading all base 3′ symbols of [[α]]3→3′ (the
least significant digit is at position (0, 1)). Two cases, with z = [[α]]3:

1. If z ≡ 0 mod 2, by Lemma 6 in the full version of this paper [26], we have
that the final state of the x/2 FST after reading [[α]]3→3′ is 0 and that the
output word α′ ∈ {0, 0̄, 1, 1̄} is such that [[α′]]3′ = [[α]]3/2 = z/2. Hence, we
deduce that column x = −1, from y = |α| down to y = 1, gives the base 3′

representation of T (z) = z/2 which is what we wanted.
2. If z ≡ 1 mod 2, by Lemma 6 of [26], we have that the final state of the

x/2 FST after reading [[α]]3→3′ is 1 and that the output word γ ∈ {0, 0̄, 1, 1̄},
which is written on column x = 1, y = |α| down to y = 1, is such that
[[γ]]3′ = ([[α]]3 − 1)/2 = (z − 1)/2. Furthermore, for e = (0, 0) ∈ Z

2, the sum
bit of c∞[α](e + WEST), which corresponds to the final state of the x/2 FST,
is s = 1 and c0[α](e) = (⊥,⊥). Hence, the non-local rule will be applied at
position e giving c0[∞](e) = (0, 1) = (se, ce). Then, at the following CQCA
step, since se + ce + s = 0 + 1 + 1 ≥ 2 we get a carry bit of 1 at (e+WEST),
i.e. c0[∞](e + WEST) = (1, 1). It means that on column x = −1, with cell
at position (−1, 0) = e + WEST we add the base 3′ symbol 1̄ on the least
significant side of γ (word γ was output by the FST to the north of position
(−1, 0)). Hence, column x = −1, from row y = |α| down to y = 0, interprets
as: 3 · [[γ]]3′ + 2 = 3 z−1

2 + 2 = 3z+1
2 = T (z). Which is what we wanted.

Hence we get that column x = −1 gives the base 3′ representation of T (z).
From the above points, it is immediate that the cell directly below the base
3′ expression of T (z) on column x = −1 has sum bit equal to 0 and that all
cells below are undefined, giving the end of the Lemma statement. Note that
it requires at most |α| + 2 simulation steps for the CQCA to compute that
representation (at most two extra cells to the south are used). �

We now prove our main result: the natural number written in base 3′ on a
column is converted to base 2 on the row directly south-west to it, see Fig. 4.

Theorem 11 (Base 3-to-2 conversion). Let α ∈ {0, 1, 2}∗ be a finite ternary
string. By Lemma 4 let c∞[α] ∈ SZ

2
be the CQCA limit configuration on input α.
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Then, in c∞[α], any position e = (x0, y0) ∈ Z
2 such that both cells e+NORTH

and e + WEST are defined, is called an anchor cell and has the base conversion
property : there exists z ∈ N such that the defined cells on column x0 strictly to
the north of e give (Definition 6) the base 3′ representation of z and the cells on
row y = y0 strictly to the west of e give the base 2 representation of z.

Proof. A direct consequence of the proof of Lemma 10 is that, in c∞[α] a defined
sum bit s ∈ {0, 1} at position (x1, y0) with x1 < 0 and y0 < |α| gives the state of
the x/2 FST (Fig. 3(b) and (d)) immediately after it reads all base 3′ symbols
from row y = |α| to y = y0 + 1 on column with x-coordinate x1 + 1 of c∞[α].
As s is the final FST state, by Lemma 6 [26], we get that s is 0 if that base 3′

represented number was even; otherwise (if odd) s is 1.
We also know that the output of the FST, i.e. symbols strictly to the north

of (x1, y0) represent �x/2�. Hence, one base conversion step was performed: x
mod 2 is written in the sum bit s at position (x1, y0) and �x/2� is computed to the
north of it. By induction, all the other base conversion steps are also performed
to the west of (x1, y0) and we get the result for the anchor cell (x0, y0) with
x0 = x1 + 1. �

Remark 12. Figure 4(a) presents several instances of Theorem 11. Note that
position (0, 0) is always an anchor cell in c0[α] meaning that the CQCA converts
[[α]]3→3′ from base 3′ to base 2. Hence, the CQCA can effectively convert any
base 3′ input to base 2. Figure 4(b) presents the details of such a base conversion
and shows that the CQCA base conversion algorithm is rather natural: at each
step the parity of the input is computed, then the input is divided by 2. Also,
the algorithm is efficient: for x ∈ N, it can be shown that �log2(x)� + �log3(x)�
CQCA steps are sufficient to convert x from base 3 to base 2.

Remark 13. Theorem 11 also implies that limit configurations of row inputs are
very similar to limit configurations of column inputs. Indeed, for z ∈ N, with
base 2 representation w ∈ {0, 1}∗ and base 3 representation α ∈ {0, 1, 2}∗, we
have: for all x ≤ 0 and y ≤ 0, c∞[w](x, y) = c∞[α](x, y). Thus, for all x ≤ −|w|
and y < 0, columns of c∞[ω] iterate the Collatz process in ternary and the
base conversion property holds for any anchor cell. Hence, the base conversion
property naturally appears in the CQCA, for both row and column inputs.

Remark 14. Theorem 11 implies that cells with state (0, 1) because of the non-
local rule (red carries in Fig. 1 and 4) have an interesting interpretation column-
wise: they implement the operation 3x + 1 in ternary. Indeed, in base 3 the
operation 3x + 1 is trivial: it consists of appending 1 (represented here by 0̄ via
Definition 1) to the base 3′ representation of x. Thus, the CQCA “stacks” trivial
ternary steps (3x + 1) on the same column, and trivial binary steps (x/2, i.e. a
shift in binary) on the same row (Remark 8).

Corollary 15 (Parity checking in Collatz). Let α ∈ {0, 1, 2}∗ and, by
Lemma 4, let c∞[α] ∈ SZ

2
be the limit configuration of the CQCA on input α

(written in base 3′ on column x = 0). For any anchor cell (Theorem 11) at posi-
tion e ∈ Z

2, let s ∈ {0, 1} be the sum bit of the cell at e + WEST. Then, s is the



The Collatz Process Embeds a Base Conversion Algorithm 143

parity of the number written in base 3′ on the column at e + NORTH and going
to the north (Definition 6): this number is even iff s = 0 and odd iff s = 1.

Proof. Immediately implied by the proof of Theorem 11: the sum bit s at position
e+WEST gives the state in which the x/2 FST was after reading base 3′ symbols
on the column to the north of e. By Lemma 6 in the full version of this paper
[26], the bit s is the parity of the number given by that column. �

Example 16. Figure 4(b) outlines instances of Corollary 15.

3.1 Computational Complexity of CQCA Prediction

In this section we leverage our previous results to make statements about the
computational complexity of predicting the CQCA.

Definition 17 (Bounded CQCA prediction problem). Given (a) any
ternary input α, of length n ∈ N with resulting CQCA limit configuration
c∞[α], and (b) any (x, y) ∈ Z

2, where max(|x|, |y|) = O(n), what is the state
c∞[α](x, y)?

Remark 18. The version of this prediction problem, where the question is to
predict the state c∞[α](x, y) for any (x, y) ∈ Z

2, is at least as hard as the
Collatz conjecture which in CQCA terms states that the (1, 2, 1, 2, . . . ) “glider”
will eventually occur, cf. blue outlined cells in Fig. 1(d).

It is straightforward to see that the bounded CQCA prediction problem is in
the complexity class P, we can also give a lower bound in terms of AC0 which is
the class of problems solved by uniform7 polynomial size, constant depth Boolean
circuits with arbitrary gate fanin [22]:

Theorem 19. The bounded CQCA prediction problem is in P and not in AC0.

Proof. To see that the problem is in P, simply encode the initial configuration
as input to a two-tape Turing machine and, in O(n2) time, run the simulation
forward until we have filled the plane up to distance n from the input.

To show the problem is outside AC0, let v ∈ {0, 1}∗, and let α ∈ {0, 1, 2}∗

be the base 3 word such that α = v. Let c∞[α] be the limit configuration of
the CQCA on (column) input α written in base 3′ (as usual) on column x = 0.
Since there are no 2-symbols in v, by Definition 1, the base 3′ encoding of v
maps 0 to 0 and 1 to 0̄, an encoding straightforward to represent in binary, and
straightforward to compute in AC0. Let b be the sum bit of c∞[α](−1, 0), i.e.

7 Here, uniform has the meaning used in Boolean circuit complexity: that members of
the circuit family for an infinite problem (set of words) are produced by a suitably
simple algorithm [10]. The class AC0 is of interest as it is “simple” enough to be
strictly contained in P, that is, AC0

� P [22]. This enables us to give lower bounds
to the computational complexity, or inherent difficulty, of some problems, such as
the bounded CQCA prediction problem.
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(−1, 0) + NORTH + EAST is the first symbol of α, hence (well) within the bound
n = O(|α|) set by Definition 17.

Deciding whether a natural number is odd or even is equivalent to checking
the parity of its number of 1s written in base 3. In base 3′, this translates to
checking the parity of the total number of sum and carry bits. By Corollary 15, b
is the parity of the natural number represented by α, equivalently, b is the parity
of the number of 1s in v. Hence the CQCA solves the problem PARITY = {v ∈
{0, 1}∗ | v has an odd number of 1s} on the input v, with the result placed at
distance 2 < |α| from the input word α. Since PARITY sits outside the complexity
class AC0 [22], the Bounded CQCA prediction problem is not in AC0. 	

Remark 20. The proof of the previous theorem shows how to use the CQCA to
solve PARITY. In fact, we can say something stronger: in any CQCA configura-
tion, each sum bit with defined NORTH + EAST neighbour solves an instance of
the PARITY problem. See Fig. 4.

Definition 21 (Upper z-rectangle prediction problem). Let α ∈ {0, 1, 2}∗,
z = [[α]]3 ∈ N and let n = �log2 z� ∈ N. Let c[α] be the associated CQCA initial
configuration (Definition 3) and R = {(x, y) | −n ≤ x ≤ 0, 0 ≤ y ≤ |α|} � Z

2.
The upper z-rectangle prediction problem asks: What are the states, in the limit
configuration c∞[α], of all cells with positions (x, y) ∈ R.

Example 22. Figure 4(c) gives a schematic representation of R, the upper z-
rectangle. Figure 4(d) and Fig. 5 each give and instance of R, respectively for
z = [[101111011011]]2 = 3035 and z = [[11110010]]2 = 242.

NC1 is the class of problems solved by uniform polynomial size, logarithmic
depth (in input length) Boolean circuits with gate fanin ≤ 2 [10]. The proof of
the following theorem intuitively comes from the fact that predicting the entire
upper z-rectangle amounts to running �log3 z� base conversions in parallel (the
proof is in the full version of this paper [26], Theorem 28).

Theorem 23. The upper z-rectangle prediction problem is in NC1, and is not
in AC0.

Open Problem 1 (Lower z-rectangle prediction problem). What is the
complexity of filling out the lower z-rectangle? I.e. the rectangle defined by M =
{(x, y) | −n ≤ x ≤ 0,−n ≤ y ≤ 0} � Z

2 (same notation as Definition 21 and
shown on Fig. 4(c)). We know it is in P, and that it is not in AC0 (Theorem 19).
Can we get matching lower and upper bounds?

These prediction problems are closely related to what we call small positive
Collatz cycles. Indeed, if predicting M (Open Problem 1) was easy, one could
hope to easily answer whether there exists x > 2 such that x = T≤�log2(x)�(x):
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Fig. 5. A small positive cycle, almost. The rightmost magenta column encodes
z = [[1̄1̄1̄1̄1̄]]3′ = 242 in base 3′. By Lemma 10, the leftmost magenta column is
T �log2(x)�(x) = [[1̄1̄11̄1̄]]3′ = [[22122]]3 = 233. The numbers 242 and 233 differ in only
one trit (in blue): they almost generate a small positive Collatz cycle (Definition 24).
Theorem 11 tells us that the region above the magenta row is characterised by base
conversion, what about the region below?

Definition 24 (Small positive Collatz cycles). Let x ∈ N
+. We say that x

generates a small positive Collatz cycle if x = Tm(x) with 0 < m ≤ �log2(x)�.
Open Problem 2. There are no small positive Collatz cycles besides
(2, 1, 2, 1, . . .).

Example 25. Figure 5 shows that answering the question about small posi-
tive Collatz cycle seems challenging. Indeed, the Figure illustrates that for
x = [[1̄1̄1̄1̄1̄]]3′ = [[22222]]3 = 242, we have T �log2(x)�(x) = [[22122]]3 = 233.
The two numbers differ only in one trit, it is almost a small positive Collatz
cycle.

Remark 26. One can also reformulate the small positive Collatz cycles problem
by saying that, although the Collatz process is able to compute base 3′-to-2
conversion, it can never compute base 2-to-3′ in �log2(x)� CQCA steps (except
for x = 2). Note that the CQCA would have to produce base 3 trits, from most
to least significant trit which seems very hard to in the �log2(x)� time constraint.

4 Discussion: Structural Implications on Collatz
Sequences

Figure 4 summarises some strong consequences of our results on the structure of
Collatz sequences. First, since columns are iterating the Collatz process in base 3
(Lemma 10), the base conversion theorem implies that any z ∈ N is giving some
rather specific constraints on the next �log2 z� iterations of the Collatz process.
Specifically, the upper z-rectangle, Fig. 4(b), which corresponds to the diagram
of the conversion of z from base 3′ to base 2, is constraining, on average, half of
the trits (base 3 digits) of any iteration T ≤ �log2 z�(z)(z), Fig. 4(d).

Second, Theorem 23 tells us that this upper z-rectangle is easy to predict,
in the sense that the entire region can be computed in NC1. The computational
complexity of lower z-rectangle prediction remains open.
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Third, Fig. 4(b) illustrates how the parity checking result of Corollary 15
places constraints on future iterates. A sum bit at any position e ∈ Z

2 of a
configuration c∞[α] is constrained to be the parity of the number of 1 s in the
entire column (both sums and carries) whose base is at the north-east of e.

We should note that these phenomena are occurring everywhere, at each
Collatz iterate. Hence, although patterns have been notoriously hard to identify
in the Collatz process, our results give a new lens which reveals some detail.
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