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Preface

This volume contains the papers presented at ICALP 2014: the 41st International
Colloquium on Automata, Languages and Programming, held during July 8–11,
2014, at IT University of Copenhagen. ICALP is the main conference and annual
meeting of the European Association for Theoretical Computer Science (EATCS)
and first took place in 1972. This year the ICALP program consisted of three
tracks:

– Track A: Algorithms, Complexity, and Games
– Track B: Logic, Semantics, Automata, and Theory of Programming
– Track C: Foundations of Networked Computation

In response to the call for papers, the three Program Committees received 484
submissions, a record number for ICALP. Track A received 319 submissions
(another record), track B received 106 submissions, and track C received 59
submissions. Each submission was reviewed by at least three Program Committee
members, aided by many subreviewers. The committee decided to accept 136
papers, which are collected in these proceedings. The selection was made by the
Program Committees based on originality, quality, and relevance to theoretical
computer science. The quality of the submissions was very high indeed, and
many deserving papers could not be selected.

The EATCS sponsored awards for both a best paper and a best student paper
for each of the three tracks, selected by the Program Committees.

The best paper awards were given to the following papers:

– Track A: Andreas Björklund and Thore Husfeldt, “Shortest Two Disjoint
Paths in Polynomial Time”

– Track B: Joel Ouaknine and James Worrell.“Ultimate Positivity Is Decidable
for Simple Linear Recurrence Sequences”

– Track C: Oliver Göbel, Martin Hoefer, Thomas Kesselheim, Thomas Schlei-
den, and Berthold Vöcking, “Online Independent Set Beyond the Worst-
Case: Secretaries, Prophets, and Periods”

The best student paper awards, for papers that are solely authored by stu-
dents, were given to the following papers:

– Track A: Sune K. Jakobsen, “Information Theoretical Cryptogenography”
– Track B: Michael Wehar, “Hardness Results for Intersection Non-Emptiness”
– Track C: Mohsen Ghaffari, “Near-Optimal Distributed Approximation of

Minimum-Weight Connected Dominating Set”

Apart from the contributed talks, the conference included invited presenta-
tions by Sanjeev Arora, Maurice Herlihy, Viktor Kuncak, and Claire Mathieu.
Abstracts of their talks are included in these proceedings as well.



VI Preface

The program of ICALP 2014 also included presentation of the Presburger
Award 2014 to David Woodruff, the EATCS Award 2014 to Gordon Plotkin,
and the Gödel Prize to Ronald Fagin, Amnon Lotem, and Moni Naor.

Two satellite events of ICALP were held on 7 July, 2014:

– Trends in Online Algorithms (TOLA 2014)
– Young Researcher Workshop on Automata, Languages and Programming

(YR-ICALP 2014)

We wish to thank all the authors who submitted extended abstracts for con-
sideration, the members of the three Program Committees for their scholarly
efforts, and all additional reviewers who assisted the Program Committees in
the evaluation process. We thank the sponsors Springer-Verlag, EATCS, CWI
Amsterdam, and Statens Kunstfond for their support, and the IT University of
Copenhagen for hosting ICALP 2014.

We are also grateful to all members of the Organizing Committee and to their
support staff.

The conference-management system EasyChair was used to handle the sub-
missions, to conduct the electronic Program Committee meetings, and to assist
with the assembly of the proceedings.

May 2014 Javier Esparza
Pierre Fraigniaud

Thore Husfeldt
Elias Koutsoupias
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Novotný, Petr
Nowotka, Dirk
Nutov, Zeev
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Ta-Shma, Amnon
Tamaki, Suguru
Tamir, Tami
Tan, Li-Yang
Tang, Bo
Tao, Yufei
Tarjan, Robert
Tavenas, Sébastien
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Overcoming the Intractability Obstacle in

Unsupervised Learning

Sanjeev Arora

Computer Science, Princeton University

Abstract. Unsupervised learning—i.e., learning with unlabeled data—
is increasingly important given today’s data deluge. Most natural prob-
lems in this domain—e.g. for models such as mixture models, HMMs,
graphical models, topic models and sparse coding/dictionary learning
— are NP-hard. Therefore researchers in practice use either heuristics
or convex relaxations with no concrete approximation bounds. Several
nonconvex heuristics work well in practice, which is also a mystery.

Recently, a sequence of results has shown that rigorous approaches
leading to polynomial running time are possible for several of these prob-
lems. These involve sidestepping worst-case complexity via special as-
sumptions on the input. Some of this work—e.g. for topic models—even
leads to practical running times (50x faster than previous approaches). It
has even become possible to analyse nonconvex optimization heuristics
such as alternating minimization or kSVD.

The talk will be a survey of these new results, including topic model-
ing, sparse coding, and deep learning.



On the Glass Ceiling Effect in Social

Networks

Claire Mathieu

CNRS, École Normale Supérieure

Abstract. The glass ceiling may be defined as “the un-
seen, yet unbreakable barrier that keeps minorities and
women from rising to the upper rungs of the corporate
ladder, regardless of their qualifications or achievements.”
Although undesirable, it is well documented that many so-
cieties and organizations exhibit a glass ceiling. In this pa-
per we formally define and study the glass ceiling effect in
social networks and provide a natural mathematical model
that (partially) explains it. We propose a biased preferen-
tial attachment model that has two type of nodes, and is
based on three well known social phenomena:
i) rich get richer (preferential attachment),
ii) minority of females (or other group) in the network,

and
iii) homophily (preference to bond with similar people).

We prove that our model exhibits a strong glass ceil-
ing effect and that all three conditions are necessary, i.e.,
removing any one of them, will cause the model not to
exhibit a glass ceiling effect. Additionally we present em-
pirical evidence of student–mentor networks of researchers
that exhibits all the above properties: female minority,
preferential attachment, homophily and a glass ceiling.

Joint work with Chen Avin, Barbara Keller, Zvi Lotker,
David Peleg, and Yvonne-Anne Pignolet.
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Bypassing Erdős’ Girth Conjecture: Hybrid Stretch and Sourcewise
Spanners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608

Merav Parter

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621



Sporadic Solutions to Zero-One Exclusion Tasks

Eli Gafni and Maurice Herlihy
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mph@cs.brown.edu

Abstract. Zero-one exclusion is a family of distributed tasks indexed
by n-bit Boolean signatures b[0], . . . b[n − 1]. We are interested in asyn-
chronous computations where at most n+1 asynchronous processes par-
ticipate. They communicate with one another by reading and writing a
shared memory, and halt after choosing a Boolean value. If m < n + 1
processes participate, then they must not all choose the value b[m − 1].
If all n+1 processes participate, then they must not all choose the same
value.

It is easy to show that some instances of zero-one exclusion are com-
putationally difficult, in the sense that they cannot be solved by any
algorithm in which asynchronous processes communicate by reading and
writing a shared memory. Can we characterize the Boolean signatures
for which zero-one exclusion does have an asynchronous read-write algo-
rithm? We give a partial answer, which we feel is interesting because of
the way it ties together distributed computability, combinatorial topol-
ogy, and elementary number theory.

1 Introduction

This paper poses a simple-sounding puzzle, and uses that puzzle as a window
into some perhaps unexpected connections between distributed computing, com-
binatorial topology, and certain Diophantine equations. This paper is part tu-
torial, and part open problem presentation. We do not present proofs that are
available in other papers, and the proofs we do present are informal sketches
intended to convey the spirit of the material to non-specialists. Although the
results presented here are new, our goal is to convey in elementary terms some
of the connections between these apparently dissimilar areas, and to attract the
attention of a broader community to this area.

2 Model of Computation

A distributed system is a collection of processes, together with a communication
medium, assumed here to be shared read-write memory. Each process executes
a finite protocol. It starts in an initial state, and takes steps until it either fails,
meaning it halts and takes no additional steps, or it halts, usually because it
has completed the protocol. Each other kind of step is a local state transition
along with a read or write to the shared memory. Processes are deterministic:

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 1–10, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014



2 E. Gafni and M. Herlihy

each transition is determined by the process’s current state and the state of the
memory.

As noted, a process can fail, meaning that it simply stops taking steps. Exe-
cution is asynchronous, meaning that processes run at arbitrary, unpredictable
speeds, and there is no bound on process step time. A failed process cannot
be distinguished from a slow process. As many as n out of the n + 1 processes
may fail before taking a step: such processes are said not to participate in the
protocol.

In distributed computing, the basic unit of computation is called a task. In
a task, each process is given its own input value, the tasks communicate for a
bounded number of steps, and each task eventually halts with its own output
value. The task specification states which sets of outputs can be produced in
response to which sets of inputs.

We are interested in classifying tasks according to their relative power. Given
two tasks, can one be used to implement the other, or are they incomparable?
One way to classify tasks is by consensus number [7], the largest number of
processes that can use that task to solve consensus. Nevertheless, tasks that are
too weak to solve consensus for two processes still have a rich structure that
remains poorly understood.

In this paper, we investigate a family of such “sub-consensus” tasks, called
the zero-one exclusion tasks. We use combinatorial arguments to investigate
which tasks in this family can be solved in read-write memory. These solutions
correspond to solutions to certain Diophantine equations.

3 Zero-One Exclusion

Zero-one exclusion [5] is a family of tasks, indexed by an n-bit Boolean signature
b[0], . . . b[n − 1], where each b[i] is either 0 or 1. Any subset of processes can
participate, ranging from 1 to n+ 1. Each process has no inputs, and halts with
a Boolean value, subject to the following restrictions. First, if the number m of
participating processes does not exceed n, then they may not all choose b[m−1].
Second, if all n + 1 processes participate, then they must disagree: some must
choose 0 and some must choose 1.

With respect to classification, the family of zero-one exclusion tasks lies be-
tween two well-known tasks, set-agreement [4] and weak symmetry-breaking
(WSB) [6]. In the set-agreement task, each of the n+ 1 processes starts with an
input, and each must halt with some process’s input, such that no more than
n distinct inputs are chosen. It is known that set agreement has no read-write
protocol [9]. In the WSB task, the processes must choose binary outputs so that
if all n+ 1 processes participate, at least one chooses 0 and one chooses 1. WSB
is strictly weaker than set agreement, and is closely associated with the classical
renaming task [1]. It is known that WSB has a read-write protocol when n + 1
is not a prime power [3,10].

Some instances of zero-one exclusion are computationally equivalent. Any
zero-one exclusion task with signature b can be transformed into its complement :
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b[k] = 1 − b[k]. Any protocol for one task can be trivially transformed into a
protocol for its complement.

4 Elements of Combinatorial Topology

Our results are expressed in the language of elementary combinatorial topology.
Here we review some basic concepts.

Definition 1. Given a set S, and a family A of finite subsets of S, we say that
A is an abstract simplicial complex on S if the following are satisfied:

(1) if X ∈ A, and Y ⊆ X, then Y ∈ A;
(2) {v} ∈ A, for all v ∈ S.

An element of S is a called a vertex, and an element of A is called a simplex.
The set of all vertexes of A is denoted by V (A). A simplex σ ∈ A is said to
have dimension |σ| − 1. In particular, vertexes are 0-dimensional simplexes. We
sometimes mark a simplex’s dimension with a superscript: σn. A simplex of
dimension n is sometimes called an n-simplex.

We usually use lower-case Latin letters to denote vertexes (x, y, z, . . .), lower-
case Greek letters to denote simplexes (σ, τ, . . .), and calligraphic font to denote
simplicial complexes (A,B, . . .).

A simplex τ is a face of σ if τ ⊆ σ, and a proper face if τ ⊂ σ. If τ has
dimension k, then τ is a k-face of σ.

We often add one or more labels to vertexes, λ : V → D, where D is an
arbitrary domain. In particular, Π is a set of process names, and the label
name : V → Π associates each vertex with a process name. Here, every simplex is
properly colored by these names: if u, v ∈ σ and u ∧= v, then name(u) ∧= name(v).
Unless stated otherwise, the complexes considered here are properly colored by
process names. For F ⊆ Π , σF is the face of σ labeled by names from F . A
black-and-white coloring β is a map β : V → {0, 1}. A simplex is monochromatic
if β maps its vertexes to the same color.

A simplicial map M : A → B carries vertexes of complex A to vertexes of
complex B so that every simplex of A maps to a simplex of B. The simplicial
map M : A → B is color-preserving if name(v) = name(M(v)) for every vertex
v in A.

Following Munkres [11], a geometric n-simplex is the convex hull of a set of
n + 1 affinely-independent points in N -dimensional Euclidean space, for some
N ≥ n. A geometric complex is a collection of geometric simplexes closed under
containment such that every pair of distinct simplexes has disjoint interiors.
The point-set occupied by a simplex σ or complex C is denoted |σ| or |C|, and is
called its polyhedron. A subdivision of a simplex σ is a complex S(σ) such that
|S(σ)| = |σ|.

Let Δn be an n-simplex properly colored by process names and Div(Δn) a
subdivision, also properly colored. Define the boundary complex ∂Δn to be the
set of faces of Δ of dimension less than n. Any subdivision Div(Δn) induces
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a subdivision Div (∂Δn)) of its boundary complex. An orientation of Div(Δn)
is a way of assigning ±1 to each n-simplex so that two n-simplexes that share
an (n − 1)-face have opposite orientations. Any subdivision Div(Δn) has two
possible orientations.

+1

+1+1

+1+1

+1

+1

-1

-1-1

-1-1

-1

Fig. 1. Standard chromatic subdivision and standard orientation

For an n-simplex Δn = (s0, . . . , sn), the standard chromatic subdivision
Ch(Δn), illustrated in Fig. 1, is defined as follows. Each vertex of Ch(Δn) is
a pair (s, φ), where phi is a face of Δ, and s a vertex of φ. A set of vertexes of
Ch(Δ) define a simplex if for each pair (s, φ) and (s◦, φ◦), name(s) and name(s◦)
are distinct, and either φ ⊆ φ◦, or φ◦ ⊆ φ. As s ranges over the vertexes of Δn,
the vertexes (s,Δn) define the central simplex of Ch(Δn).

The canonical orientation of Ch(Δn) is defined by assigning a +1 orientation
to the simplex {⇐s0, {s0}⇒, ⇐s1, {s0, s1}⇒, . . . ⇐sn, {s0, . . . , sn}⇒} as illustrated in
Fig. 1. The orientation of any other simplex is determined by the parity of the
number of “flips” across an (n − 1)-face needed to get there from the starting
simplex.

Lemma 1. In the canonical orientation of Ch(Δn), the central simplex κ has
orientation (−1)n.

Proof. As illustrated in Fig. 2, starting from the positively-oriented n-simplex
α, where the vertex labeled with Pi lies in the central simplex of dimension i, it
takes n flips to get to κ.

Lemma 2. Let Δk ⊂ Δn be a proper k-face, κn the central simplex of Ch(Δn),
κk the central simplex of Ch(Δk), κn−k−1 the face of κn labeled with the com-
plement of the process names labeling κk, and κn

k = κn−k−1 ∪κk (see Fig. 3). In
the canonical orientation of Ch(Δn), κn

k has orientation (−1)n+1.
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central simplex
oriented (-1)n

+1

(-1)2

-1

start by orienting 
this simplex +1

n flips to 
get here

Fig. 2. The central simplex of Ch(Δn) has orientation (−1)n

Proof. Starting from the central simplex κn, with orientation (−1)n, we can
reach κn

k with 2k + 1 flips as illustrated in Fig. 3, yielding an orientation of
(−1)n+2k+1 = (−1)n+1.

Let Δn be an n-simplex, Div(Δn) a subdivision, and χ : Div(Δn) → {0, 1}
a black-and-white coloring. The content of a c-monochromatic n-simplex σ ∈
Div(Δn) with orientation d ∈ {±1} is defined to be is defined to be (−1)c·nd.
The content of the subdivision, C(Div(Δn), χ) is sum of the contents of its
monochromatic n-simplexes.

5 Read-Write Solvability

We now show that the question whether a particular zero-one exclusion task has
a read-write protocol is equivalent to the question whether a particular black-
and-white coloring exists. In this way, questions about concurrent computation,
that is, a dynamic process that unfolds in time, can be reformulated in terms of
questions about static combinatorial objects.

The next theorem, which follows from the asynchronous computability theorem
of Herlihy and Shavit [9] [8, Ch.11], provides a first step.

Theorem 1. An (n+ 1)-process zero-one exclusion task b has a read-write pro-
tocol if and only if there is a chromatic subdivision Div and a simplicial map
χ,

χ : Div(Δn) → {0, 1}
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central simplex of k-face
is oriented (-1)n+2k+1 = (-1)n+1

n

(-1)n

n
k

(-1)n+2k+1(-1)n+k+1

k+1 flips

k flips

Fig. 3. It takes k + 1 flips to carry κn to σn
k , and k more to get to κn

k

such that (1) for every proper k-faceΔk ⊂ Δn, Div(Δk) has no b[k]-monochromatic
k-faces, and (2) Div(Δn) contains no monochromatic n-faces.

Simplifying somewhat, the n-simplex Δn represents the starting configuration for
the n + 1 processes. The subdivision Div(Δn) represents all possible executions
of a finite protocol. Each vertex in Div(Δ) represents a final process state when
it halts at the end of its own execution. Each n-simplex σn ∈ Div (Δn) represents
a possible execution in which all n + 1 processes participate: the vertexes of σn

are the participating processes’ final states at the end of that execution. For a
set of (k + 1) processes F ⊆ Π , recall that Δk

F is the k face of Δn labeled by
names from F . Each k-simplex σk ∈ Div(Δk

F ) represents a possible execution in
which all and only the k + 1 processes in F participate: the vertexes of σk are
the participating processes’ final states at the end of that execution. The map
χ represents each process’s decision: if a process finishes the protocol with final
state (vertex) v, it chooses as Boolean output the value χ(v). The requirement
that Div(Δk) has no b[k]-monochromatic k-faces is just a combinatorial way of
stating that if k processes participate, they must not all choose output value
b[k], and the requirement that Div(Δn) contains no monochromatic n-faces just
states that if all processes participate, they must not all choose the same output
value.

While Theorem 1 is a complete characterization, it is not clear how one can
use it to determine whether a particular zero-one exclusion task has a read-
write protocol. Our next step is to shift from counting monochromatic simplexes
to counting them by orientation, through the content C(Div (Δn), χ), which is
easier to compute. Clearly, if C(Div (Δn), χ) is non-zero, then Div (Δn) contains
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at least one monochromatic n-simplex. In general, the converse is false: a content
of zero does not mean there are no monochromatic n-simplexes, only that their
orientations cancel. Nevertheless, Castanñeda and Rajsbaum [3] have shown that
by adjusting the subdivision in a way that leaves the boundary unchanged, it
is possible to make pairs of monochromatic n-simplexes of opposite orientation
“cancel out”, eventually leaving none. More precisely, if C(Div (Δn, )χ) is zero,
then there is a subdivision and black-and-white coloring

χ◦ : Div ◦(Δn) → {0, 1}

where the boundaries agree: Div ◦(∂Δn) = Div(∂Δn), χ and χ◦ agree on that
boundary, but Div ◦(Δn) contains no monochromatic n-simplexes.

We can now reformulate Theorem 1, replacing the ban on monochromatic
n-simplexes with a restriction on content.

Theorem 2. An (n+ 1)-process zero-one exclusion task b has a read-write pro-
tocol if and only if there is a chromatic subdivision Div and a simplicial map
χ,

χ : Div(Δn) → {0, 1}
such that (1) for every proper k-faceΔk ⊂ Δn, Div(Δk) has no b[k]-monochromatic
k-faces, and (2) C(Div (Δn), χ) is zero.

Fig. 4. Replacing the interior of a subdivision with a single simplex without changing
the content

The next step is to replace the unknown subdivisionDiv (Δn) with a known sub-
division, namely Ch(Δn), the standard chromatic subdivision shown in Fig. 1. A
classical result, called the Index Lemma 1, states that the content C(Div (Δn), χ)
depends only on how the coloring χ behaves on Div(∂Δn), the boundary of the
subdivision. (The exact formula need not concern us here.) As a result, as long as

1 The version of the classical Index Lemma used here is adapted from Herlihy et. al. ([8,
Ch. 12].
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we leave the subdivision of the boundary unchanged, we can rearrange the interior
of Div(Δn) without changing the content.

Let
χ : Div(Δn) → {0, 1}

be a black-and-white coloring satisfying the conditions of Theorem 2. We give
a new series of transformations changing Div(Δn) into Ch(Δn) and χ into χ0

without changing the content. Let κ be an n-simplex properly colored with names
from Π . For each set of process names F ⊂ Π , let ΔF be the face of Δn labeled
by process names not in F . Define Divn(Δn) to be the subdivision constructed
by joining each face κF ⊂ κ to Div (ΔF ). Define

χn : Divn(Δn) → {0, 1}

to be 0 on vertexes of κ, and χ on ∂Div(Δn). Because the boundary complex
is unaffected, the content is unchanged: C(Div (Δn), χ) = C(Divn(Δn), χn).
Note that every n-simplex of Divn(Δn) intersects κ, so Divn(Δn) contains no
1-monochromatic n-simplexes.

Moving down one dimension, if b[n] is 0, then for every (n− 1)-face Δn−1 of
Δn, Divn(Δn−1) contains no 0-monochromatic (n−1)-simplexes, and contributes
nothing to the content. We use the same construction to replace the interior of
Divn−1(Δn−1) with a single 1-monochromatic simplex, leaving ∂Divn−1(Δn−1)
unchanged. If b[n] is 1, then for every (n−1)-face Δn−1 of Δn, Divn(Δn−1) con-
tains no 1-monochromatic (n − 1)-simplexes, so each face’s contribution to the
content is its number of 0-monochromatic (n − 1)-simplexes, counted by orien-
tation, which is just the content C(Divn(Δn−1), χn). We replace the interior of
Divn−1(Δn−1) with a single 0-monochromatic simplex, leaving ∂Divn−1(Δn−1)
unchanged. We have defined a new subdivision and coloring

χn−1 : Divn−1(Δn) → {0, 1}

with content C(Div (Δn), χ) = C(Divn−1(Δn), χn−1).
Continuing in this way, Div0(Δn) = Ch(Δn), the standard chromatic subdi-

vision, and χ0 = β, yielding the following theorem.

Theorem 3. The (n+ 1)-process zero-one exclusion task with signature b has a
read-write protocol if and only if there exists a black-and-white coloring

β : Ch(Δn) → {0, 1}

such that (1) for each Δk ⊂ Δn, the central simplex of Ch(Δk) is (1 − b[k])-
monochromatic, and (2) the content of Ch(Δn) is zero.

This construction replaces the subdivision and coloring of Theorem 2 with
a specific subdivision and coloring, making it possible to compute the content.
For each face Δk ⊆ Δn, we can compute the content C(Ch(Δk, β)) in terms
of the contents C(Ch(Δi, β), for the proper faces Δi ⊂ Δk. Because b[0] = 1,
C(Ch(Δ0, β)) = 0 for every vertex Δ0 of Δk. By Lemma 1, the central simplex
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κk of Ch(Δk) contributes (−1)k to the content C(Ch(Δn), β). For each Δi ⊂ Δk,
if b[k− i− 1] is zero, then Ch(Δi) contributes nothing. If b[k− i− 1] is one, then
by Lemma 2, Ch(Δi) contributes (−1)k+1 · C(Ch(Δk−i−1), β). There are

(
k+1
i+1

)

such i-faces, yielding:

C(Ch(Δk), β) = (−1)k · (1 −
k−1∑

i=0

b[k − i − 1] ·
(
k + 1

i + 1

)
· C(Ch(Δn−i−1), β)).

Corollary 1. The zero-one exclusion task with signature b has a read-write pro-
tocol exactly when

0 = 1 −
n−1∑

k=0

b[n− k − 1] ·
(
n + 1

k + 1

)
· C(Ch(Δn−k−1), β) (1)

We will use the following fact from number theory.

Fact 4. The binomial coefficients
(
n+1
1

)
, . . . ,

(
n+1
n

)
are relatively prime if and

only if n + 1 is not a prime power [2].

Lemma 3. An (n + 1)-process read-write protocol for zero-one exclusion task b
exists only if n + 1 is not a prime power.

Proof. A necessary (but not sufficient) condition to solve Equation 1 is that the
binomial coefficients

(
n+1
k+1

)
be relatively prime, for 0 ≤ k ≤ n− 1.

This condition can be strengthened slightly.

Lemma 4. An (n + 1)-process read-write protocol for zero-one exclusion task b
exists only if the binomial coefficients

(
n+1
k+1

)
can be partitioned into two sets S0

and S1 such that the values in each set are relatively prime.

Proof. Let

S0 =

{(
n + 1

k + 1

)
: b[k] = 1

}
.

These terms must be relatively prime to satisfy Equation 1. Since S1 plays the
same role for the complementary zero-one exclusion task b, the same observation
holds.

Lemma 5. There exist zero-one exclusion tasks with read-write protocols.

Proof. It is easy to write an inefficient program to search for solutions. The
smallest dimension for which a solution exists is 29. Here is one:

1110 0110 0010 0110 1101 1100 1100 01

Counting complementary solutions, there are 16 solutions of dimension 29, none
at dimensions 30 or 31 (31 and 32 are prime powers), 4 at dimension 32, 58 at
dimension 33, 32 at dimension 34, and 80 at dimension 35, where our search
stopped.
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6 Conclusions

By presenting this only partially-solved puzzle, we intend to illustrate how the
application of combinatorial topology to concurrent computing can lead in some
perhaps surprising directions. We have barely touched on the most interesting
problem: given a set of “black boxes” that solve instances of zero-one exclusion,
can we compose them to construct solutions to other instances? We can ask this
question of any family of tasks, and these problems are key to understanding
concurrent computability.
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Abstract. Our goal is to help people construct software that does what
they wish. We develop tools and algorithms that span static and dynamic
verification, constraint solving, and program synthesis. I will outline the
current state our verification and synthesis system, Leon, which trans-
lates software into a functional language and uses SMT solvers to reason
about paths in programs and specifications. Certain completeness results
partly explain the effectiveness of verification and synthesis procedures
implemented within Leon, in particular results on decidability of suffi-
ciently surjective abstraction functions, and the framework of complete
functional synthesis.

1 Introduction

Software is more widespread than ever, thanks to trends such as mass adoption
of smartphones and tablets, as well as complex software controllers in, e.g. per-
sonal vehicles. At the same time, it is still too difficult to construct software
that does something meaningful, let alone enforcing that software conforms to
rigorous correctness standards. This motivates our current research on making
software construction more accessible to large user bases, as well as increasing
the confidence in software artifacts being constructed. These tasks require auto-
mated reasoning about requirements, specifications, and implementations. A core
problem is automatically mapping users’ requirements into efficiently executing
systems. The problem has traditionally found home in programming languages,
formal methods, software engineering, and design automation, but is also re-
lated to automated reasoning, human-computer interaction, machine learning,
and natural language processing. We can evaluate our progress on addressing
this problem by building software development tools that help software devel-
opers and users. Their development often required new algorithms for program
verification, analysis, program synthesis, and new decision procedures.

In the sequel I use an example to illustrate several usage scenarios of interest
and define the corresponding algorithmic questions. The examples use the syntax
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of the Scala programming language (http://scala-lang.org/, [59,60]) and are
mostly based on the capabilities of the Leon verification and synthesis system
for a subset of Scala (http://leon.epfl.ch) on which we have been working
for the past few years [10, 17, 35, 40, 45–47,52, 74–76], but we have also explored
related ideas in several other works [15, 16, 24, 26–28, 31, 32, 34, 41–44, 49, 50, 56,
63, 64, 67, 70, 71, 77–81].

2 Problem Definitions through Examples

Consider computations that take inputs i ∈ I and produce outputs o ∈ O. We
view a program as a function f : I → O from inputs to outputs. We view a spec-
ification P : (I × O) → {false, true} as a predicate that takes a potential input
and a potential output and returns true iff the output is considered acceptable
for the given input. We fix this notation throughout this section.

2.1 Four Types of Problems

We consider the following categories of problems:

(RV) Runtime Verification: given P, f and a specific input i1 ∈ I, compute
the value f(i1), then compute whether P (i1, f(i1)) holds.

(SV) Static Verification: given P, f , either prove ∀i ∈ I. P (i, f(i)), or find a
counterexample i1 ∈ I such that ¬P (i1, f(i1)).

(RC) Runtime Constraint solving: given P and an input i1 ∈ I, find one cor-
responding output o1 ∈ O such that P (i1, o1). This succeeds iff ∃o. P (i1, o).

(SC) Static Constraint solving: given P , find a computable function f such
that ∀i ∈ I. P (i, f(i)). This is a form of program synthesis [46, 54].

The classification uses two criteria. The first criterion (R/S) is whether the prob-
lem being solved takes place at runtime (R), that is, during program execution,
or statically (S), at compile time, before the program runs. The second criterion
(V/C) is whether the task is verification (V), when both the program and the
specification are given, or constraint solving (C), when only the specification is
given, and we aim to compute values that satisfy it.

A List Definition in Scala. To make the discussion more concrete, con-
sider the simple example of describing operations on sorted lists of integers. We
choose a purely functional subset of the Scala to implement these operations
(http://scala-lang.org/, [59, 60]). We rely only on a small subset of Scala,
so our functions correspond to the mathematical notion of mutually recursive
functions defined over discrete domains. Listing 1 shows the definition of lists as
an algebraic data type with a zero-arity constructor Nil and a binary constructor
Cons : (Int × List) → List. We define an algebraic data type in Scala using class
inheritance; for pure functions this corresponds to a term algebra [30, 53] with
the corresponding constructors (here: Nil and Cons) and selectors (here: head and
tail). The domain thus represents finite sequences of integers.

http://scala-lang.org/
http://leon.epfl.ch
http://scala-lang.org/
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Insertion into the List. Listing 2 defines a recursive function sortedIns that
inserts a given integer into the sorted list, while preserving the property of being
sorted. This is a concrete example of a program denoted f above. The match

construct performs the usual case analysis on whether the list is empty or not,
and, in the non-empty case, binds the provided variables x, xs to the head and tail
of the list. Such code follows a standard approach for defining recursively defined
structures and functions. Our methodology uses this same executable language
of recursive functions to also describe the desired properties P of programs.

abstract class List
case class Cons(head: Int, tail: List) extends List
case object Nil extends List

Listing 1. List of Integers Defined Using Custom Case Classes

def sortedIns(e: Int, l: List): List = l match {
case Nil ⇒ Cons(e,Nil)
case Cons(x,xs) ⇒ if (x ≤ e) Cons(x,sortedIns(e, xs)) else Cons(e, l) }
Listing 2. Conventional Implementation of Insertion into a Sorted List

def sortedIns(e: Int, l: List): List = {
require(isSorted(l))
l match {
case Nil ⇒ Cons(e,Nil)
case Cons(x,xs) ⇒ if (x ≤ e) Cons(x,sortedIns(e, xs)) else Cons(e, l) }

} ensuring(result ⇒ isSorted(res) && content(result) == content(l) ++ Set(e))

Listing 3. The Insertion into a Sorted List together with its Specification

Writing Specifications for Functions. Suppose that we wish to specify that
sortedIns indeed inserts the given element into the set of elements it stores, and
that it maintains the ordering of the elements in the list. Listing 3 shows how
to write such specification in Scala. We indicate that the input list needs to be
sorted using the require operator, which takes a predicate that should hold for
function arguments (function precondition). In this example we use the isSorted

predicate to define the precondition. Listing 4 shows the definition of isSorted as
a recursive function. To specify the postcondition, we use the ensuring clause,
which also takes a predicate, but this time involving not only parameters of the
function, but also its result, here bound to the result variable. The specification
in Listing 3 indicates that the result should also be a sorted list. Moreover, it says
that the set of elements stored in the resulting list, content(result), should be equal
to the union of the content of the argument list content(l) and the singleton set
{e}, denoted in Scala as Set(e). Listing 5 defines the content function recursively.
We call such function an abstraction function; it abstracts away from the list
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ordering and computes a set. Algebraically, it is a homomorphism, mapping
values of the list algebraic data type with constructor operations into finite sets
with union. The property P that we would like to ensure about the result of
sortedIns when invoked with arguments e and l is thus:

isSorted(l) → (isSorted(result) ∧ content(result) = content(l) ∪ {e})

In the terminology of our classification, the above predicate is the specification P .
the input i is the tuple of arguments (e, l), the output o is result, and the function
f is sortedIns. The overall correctness condition P ((e, l), f(e, l)) is therefore:

isSorted(l) → (isSorted(sortedIns(e,l)) ∧ content(sortedIns(e,l)) = content(l) ∪ {e})
(1)

Runtime Verification. Runtime verification checks the above correctness con-
dition when the values of arguments (in our example, e and l) are known. In
addition, before invoking the function isSorted, the program system checks its
precondition, so the function body only executes when the assumption of the
above implication is true. In general, we assume that both f and P are expressed
in a language of computable recursive functions. Therefore, the applications of
f and P to their arguments are simply computations according to the semantics
of the language. As a result, runtime verification RV is a computable problem in
our context. In fact, the require and ensuring are simply library functions of the
Scala programming language [58], and runtime checking in principle requires no
further support. Runtime checking is nonetheless not a trivial problem, because
the specification P is often written aiming for clarity and provability, and not
aiming for efficiency of evaluation. A naturally written specification often leads
to naive and repeated computation if executed at runtime. Leon can substan-
tially improve the predictability and performance of runtime checks using static
techniques, as we discuss below.

def isSorted(l: List): Boolean = l match {
case Cons(x, Cons(y, ys)) ⇒ x ≤ y && isSorted(Cons(y, ys))
case ⇒ true }

Listing 4. Sortedness Property of a List

def content(l: List): Set[Int] = l match {
case Cons(x, xs) ⇒ Set(x) ++ content(xs)
case Nil ⇒ Set() }

Listing 5. Set of Elements Stored in a List

Static Verification. Whereas runtime verification checks (1) for the particular
e, l, static verification attempts to prove it for all e, l. The Leon verifier takes
the same input as for runtime checking, and attempts to either prove correctness
of (1) or find a counterexample for its correctness. For this purpose, we build on
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the field of Satisfiability Modulo Theory (SMT) solvers [2,19,22], which contain
decision procedures for many theories that support useful combinations of oper-
ations present in programs. For property (1), the unfolding of isSorted requires
reasoning about algebraic data types, handled by the theory of recursive data
types [3] and reasoning about the ordering on integers, handled by integer linear
arithmetic on integers within Z3 [36]. Reasoning about operations on sets is han-
dled using array combinators [20] although more expressive theories of sets with
cardinalities were evaluated in previous versions of Leon [76]. A careful reader
will observe that a specification using sets may be weaker than desired, because
it allows a sorting routing to remove or introduce duplicates. A more precise
specification can naturally be written using multisets, whose simple fragments
can be also encoded using arrays combinators [20], and for which the develop-
ment of decision procedures of optimal complexity is a result of relatively recent
developments [62–64].

In contrast to operators built into Leon’s language subset, recursively defined
functions are not directly supported in SMT solvers, so Leon implements its own
algorithm to handle them [73–75]. Leon’s algorithm [75] is related to bounded
model checking ideas [1,7] and k-induction [23,37], but applies to recursive func-
tions. In our example, when proving correctness of the condition (1), the system
performs satisfiability checks while increasingly unfolding the definitions. For a
relatively small unfolding depth, in this example the formula becomes unsatisfi-
able. In other examples, the system finds a counterexample for certain unfolding
depth. In general, it need not terminate because the problem is undecidable.

However, there are interesting classes of recursive functions for which the
system is a decision procedure [73,74]. The class that we have considered have the
form of homomorphism functions, such as the content function in Listing 5. We
have identified a number of such functions, which we call “sufficiently surjective
abstracts” in [74], thus deriving several families of extensions of term algebras
for which satisfiability of quantifier-free formulas is decidable.

The work can also be viewed [34] from the point of view of Ψ -local theory
extensions [33], where further decidable extensions of term algebras have been
identified [68].

In general, particular recursive functions may require reasoning specialized
to this class. What is remarkable is that for a class of sufficiently surjective
abstraction functions, the unrolling (a form of bounded model checking for re-
cursive functions) becomes a uniform decision procedure [73]. Therefore, we have
a series of decidability results, but the underlying algorithm need not be aware
of them, they simply ensure its completeness in some cases. Our experience sug-
gests that the algorithm works in practice for many other cases as well, which
suggests that there may be further completeness results to be discovered.

Function unfolding is justified for terminating functions, and corresponds to
inductive reasoning according to the well-founded relation that implies termina-
tion of functions. Leon currently does not check termination by default; for some
approaches to check termination, see [13, 65]. Sufficiently surjective abstraction
functions are, however, terminating by their syntactic structure. Note also that
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the properties that we are checking are safety properties, which means that we
could generate logical encoding that uses relations instead functions and is not
sensitive to termination. It remains to be investigated how much we would lose
in practice by using relations instead of functions.

Inductive Generalization. In our experience, more properties turned out to
be k-inductive than what we initially expected. The general-purpose algorithm of
Leon, based on function unfolding, is therefore surprisingly effective in practice.
For some cases, though, it fails to perform the required generalization and find
an invariant that implies the desired property. To address these cases, we have
started incorporating some of the ideas from model checking and constraint-
based static analysis.

One approach is to search for invariants of a particular template form [6]. We
have recently also implemented a refinement of such an approach in Leon and
showed that it is able to compute worst-case execution bounds for sequential
and parallel execution of functional programs [52], which often involve difficult-
to-find numerical constants.

An alternative approach is to generalize predicate abstraction to recursive
functions. State of the art methods use counterexample-guided refinement of the
set of predicates, often based on interpolation. We have applied this approach
to linear integer arithmetic models of programs [67]. The technique requires tree
interpolants [29, 57], which generalizes interpolation problem to more complex
cases of proving consistency of Horn clauses [8, 25, 66].

In both of these approaches to verification with inductive invariant inference,
we were greatly influenced by the works of Andrey Rybalchenko.

Why an Executable Specification Language. The choice of executable
predicates for specifications (as opposed to, for example, logic with quantifiers
or dynamic logic) is somewhat restrictive but very practical. First, the class
of properties is rather large, because we are allowed to use a Turing-complete
language for predicates. Second, it is not an obscure language that happens to
be Turing complete, but a functional language that is already used for imple-
mentations, and which many schools teach to undergraduates. Whereas software
developers may be hesitant to use logical notation, here they just use assertions.
Third, it is an executable language, which immediately enables runtime checking
in program runs and test runs, as discussed above. It also leads to automated
generate-and test approaches to bug finding, which are as complete as theoreti-
cally possible, given that the problem of finding counterexamples is recursively
enumerable. The computable specifications approach is also related to reasons
why bounded model checking is effective for such specifications. Finally, as we
have seen, the absence of counterexamples can also be automated through in-
ductive reasoning. For many of these reasons this has been a popular choice in
other verification tools as well, most notably the ACL2 prover and its prede-
cessors [12,38,39]. That said, given numerous other heavier-weight specification
and verification approaches, we feel that the elegance and the advantages of the
approach of using executable functions can never be emphasized enough.
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Runtime Constraints Solving (Constraint Programming). Using the ab-
straction function and the invariant, we can concisely specify an insert operation
for sorted lists using a constraint as in Listing 6.

def insert(l: List, v: Int) = {
require(isSorted(l))
choose{ (x: List) ⇒ isSorted(x) && (content(x) == content(l) ++ Set(v)) }

}
Listing 6. Insertion Specified using Constraint

Runtime constraint solving allows the developer to describe computations
using predicates alone, avoiding the need to write an explicit function from inputs
to inputs. In other words, they allow programming with “implicit” functions.

Observe that, given f we can define P that characterizes it by defining
P (x, y) ⇐⇒ (f(x) = y). Therefore, input/output specifications (which are re-
lations) subsume implementations (which we consider to be functions). They are
more expressive because they can describe the desired properties of the output,
without specifying it uniquely. This allows us to specify orthogonal properties
separately and then combine them using conjunction to obtain a function as an
intersection of several relations.

The advantages of specifications become even more apparent for more complex
examples. The following method describes the insertion into a red-black tree.1

def insert(t: Tree, v: Int) = {
require(isRedBlack(t))
choose{ (x: Tree) ⇒ isRedBlack(x) && (content(x) == content(t) ++ Set(v)) }

}

In such scenario, the run-time waits until the argument t and the value v are
known, and finds a new tree value x such that the constraint holds. Thanks to our
constraint solver, which has a support recursive functions and also leverages the
Z3 SMT solver, this approach works well for small red-black trees. It is therefore
extremely useful for prototyping and testing and we have previously explored it
as a stand-alone technique for constraint programming in Scala [43].

If we now considered writing a removal operation for trees, an approach based
on conventional imperative or functional code would require writing a separate
removal algorithm, which is non-trivial for red-black trees. Using specifications,
the desired behavior is given simply by replacing ++ sign with -- sign:

def remove(t: Tree, v: Int) = {
require(isRedBlack(t))
choose{ (x: Tree) ⇒ isRedBlack(x) && (content(x) == content(t) -- Set(v)) }

}
1 We omit here the definition of the tree invariant for brevity, which is non-trivial
[14,61], but still rather natural to describe using recursive functions.
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Static Constraint Solving (synthesis). Analogously to verification, we
would like to obtain efficiency and predictability advantages of static compu-
tation also in the case of implicitly defined computations. For this purpose, we
aim to statically solve specifications and convert them into directly executable
functions. This process is typically referred to as program synthesis [46, 54].
The synthesis techniques in Leon [40] heavily rely on the underlying verification
techniques, but also on complete functional synthesis [35, 46–48]. Our current
implementation of synthesis in Leon [40] is able to translate the specification
into the complete implementation shown in Listing 7.

def insert(l: List, v: Int) = {
require(isSorted(l))
l match {
case Cons(head, tail) ⇒
if (v == head) {
l

} elseif (v < head) {
Cons(v, l)

} else {
insert(t, v)

}
case Nil ⇒
Cons(v, Nil)

}
}

Listing 7. Result of Synthesis of Code Shown in Listing 6

Theoretical questions of completeness for synthesis have interesting connec-
tion to logic and automata. For example, synthesis for Presburger arithmetic
turns out to be related to constructive quantifier elimination [46–48]. On the
other hand, we can obtain better theoretical bounds for synthesized code us-
ing automata techniques [28,70]. Parameterized complexity of problems is likely
to be important when theoretically characterizing when synthesis is useful, be-
cause we wish to consider the specification P and the input i as two distinct
input parameters.

Our implemented technique [40] also builds on counterexample-guided ap-
proaches [69]. Techniques for learning representations in logic and automata [51]
are a likely to have further fruitful applications in software synthesis.

In addition to synthesis over discrete domains, an important problem is syn-
thesis of numerical computations that conform to the desired precision guaran-
tees [17, 18].
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2.2 Relationship between Different Problems

This classification gives an overview of typical different tasks, though some of the
most interesting questions arise by considering combinations and relationships
between these four problems.

Optimizing Runtime Checks Using Static Verification. The Leon verifier
can remove the runtime checks that are provable statically, and transform the
programs to avoid duplicate checks. This allows automatic static verification for
as many properties as possible, but still allows the resulting programs to run
and to detect if any leftover checks fail for the values arising during program
use and testing. This is part of an ongoing work with Emmanouil Koukoutos at
EPFL.

Invoking Static Verification at Runtime for Complex Programs. When
program state is complex, static verification techniques face their limitations. It
is therefore interesting to invoke static analyzers at runtime, in parallel with
actual program executions. We have done this in the context of distributed sys-
tem implementations [80] and Java programs (EPFL MSc thesis of Sebastian
Gfeller), and it could also be done to perform eager checks of higher-order func-
tion contracts in functional programs.

Using Counterexamples of Static Verification for Constraint Solving.
A very important connection shows that runtime constraint solving is a dual
to static verification. We perform static verification in Leon, showing validity of
∀i.P (i, f(i)), by proving unsatisfiability of C(x) defined as ¬P (x, f(x)). A satis-
fying assignment for C(x) is a counterexample to the validity. Counterexample
search is thus search for values that satisfy a constraint C(x), expressed in logics
that contain operations from theories, as well as recursive function invocations.
On the other hand, runtime constraint solving tries to find, for a given i1 a value
o such that P (i1, o) holds. If we define C′(x) as P (i1, x), then runtime constraint
solving also corresponds to solving the constraints C′(x) expressed in the same
language as before. Therefore, in our work on constraint programming for Scala,
we were able to use the same constraint solving implementation to solve con-
straints [43]. This mechanism is also avaible in the current Leon system [45], and
allows us to execute very expressive specifications between inputs and outputs.

Combining Constraint Solving and Synthesis. Our deductive synthesis
framework performs a search over different steps that transform specification
into a set of potentially simpler ones. This architecture allows us to combine
synthesis and run-time constraint solving. We illustrate this using an example
of a red-black tree with a cache. Such a tree contains a red-black tree, but also
redundantly stores one of its elements.

case class CTree(cache: Int, data: Tree)

The specification of the invariant inv formalizes the desired property: the cache
value must be contained in the tree unless the tree is empty.
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def inv(ct: CTree) = {
isRedBlack(ct.data) &&

(ct.cache ∈ content(ct.data)) || (ct.data == Empty)
}

The contains operation tests membership in the tree.

def contains(ct: CTree, v: Int): Boolean = {
require(inv(ct))
choose{ (x: Boolean) ⇒ x == (v ∈ content(ct)) }

}

While not being able to fully synthesize it, the deductive synthesis procedure
decomposes the problem and partially synthesizes the constraint. One of its
possible results is the following partial implementation that combines actual
code and a sub-constraint:

def contains(ct: CTree, v: Int): Boolean = ct.data match {
case n: Node ⇒
if (ct.cache == v) {
true

} else {
choose { (x: Boolean) ⇒ x == (v ∈ content(n)) }

}
case Empty ⇒
false

}

We notice that this partial implementation makes use of the cache in accordance
with the invariant. The code accurately reflects the fact that the cache may not
be trusted if the tree is empty. The remaining constraint is in fact a simpler
problem that only relates to standard red-black trees. Our system can then
compile the resulting code, where the fast path is compiled as the usual Scala
code, and the choose construct is compiled using the run-time solving approach.

Using Synthesis to Verify Existential Statements. Note that constraint
solving by itself does not have static guarantees that the synthesized value can
be produced. By successfully solving a synthesis problem, the system establishes
the truth of an existentially quantified statement. Therefore, such synthesis ca-
pability can be used to prove quantified statements. Here we do not mean to
imply that constructive interpretation of quantifiers is the only one possible, nor
that it should be built into the semantics. We merely observe that synthesis is
an interesting method for proving existential statements containing, for example
recursive functions. It is interesting to note that the authors of classical deduc-
tive synthesis [54,55] concluded that better inductive theorem proving is needed
to enable synthesis of recursive programs. Given recent advances in software
synthesis including ours and others [11, 72], it is interesting to re-examine the
use of synthesis algorithms for theorem proving.
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3 Towards Case Studies as Mathematical Statements

One challenge in this research is that software as manipulates inputs from very
large or infinite domains, with rich algebraic structure. Examples include nu-
merical domains such as integers or approximations of real numbers, as well
symbolic domains, such as algebraic data types, sequences, sets, multisets, and
maps. To handle this complexity, it is essential to further advance the field of
Satisfiability Modulo Theories, including the development of new decision pro-
cedures for structures such as multisets and algebraic data types. Moreover, the
applications in embedded and cyber-physical systems call for systematic support
for reasoning about approximations of real numbers, something that we have re-
cently started exploring as well [17], and that connects the area of verification to
numerical analysis and to decision procedures for theories of real numbers [21].

Another challenge is that programs have complex control and language struc-
ture, including conditionals, recursion, higher-order functions, dynamic dispatch,
and concurrency. Much of this complexity can be handled by translation into
first-order side-effect-free functional or logic programming language. This sup-
ports the use of standardized formats for software analysis and program synthesis
problems using either Horn clauses in the language of SMT-LIB theories [8], or
pure subsets of popular programming languages such as Scala.

The format of Horn clauses has a particularly promising future as a way of
taming the complexity of programming languages as well as the methodological
complexity of precise and automated verification algorithms, as witnessed by a
number of successful approaches in this direction. Apart from those mentioned
already, exciting new work includes addressing more complex quantification pat-
terns that go beyond verification of safety properties [4, 5, 9].

When Horn clauses are expressed in SMT-LIB2 format
(http://www.smt-lib.org), rich theories present in the format, combined
with the ability to encode complex control flow, result in a versatile format for
precisely stating mathematical problems about software. Building tools that
handle such benchmarks requires new theoretical insights as well as important
software development and experimental work.

Acknowledgements. The authors would like to thank his group members, his
collaborators. The author also thanks researchers gathered around the EU COST
Action “Rich Model Toolkit” (http://richmodels.epfl.ch), 2009-2013.

References

1. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software
using SMT solvers instead of SAT solvers. In: Valmari, A. (ed.) SPIN 2006. LNCS,
vol. 3925, pp. 146–162. Springer, Heidelberg (2006)

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
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75. Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In:
Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 298–315. Springer, Heidelberg
(2011)

76. Suter, P., Steiger, R., Kuncak, V.: Sets with cardinality constraints in satisfiability
modulo theories. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538,
pp. 403–418. Springer, Heidelberg (2011)
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Abstract. We study the query complexity of WEAK PARITY: the problem of
computing the parity of an n-bit input string, where one only has to succeed
on a 1/2 + ε fraction of input strings, but must do so with high probability
on those inputs where one does succeed. It is well-known that n randomized
queries and n/2 quantum queries are needed to compute parity on all inputs.
But surprisingly, we give a randomized algorithm for WEAK PARITY that makes
only O(n/ log0.246(1/ε)) queries, as well as a quantum algorithm that makes
O(n/

√
log(1/ε)) queries. We also prove a lower bound of Ω (n/ log (1/ε))

in both cases, as well as lower bounds of Ω(logn) in the randomized case and
Ω(

√
log n) in the quantum case for any ε > 0. We show that improving our

lower bounds is intimately related to two longstanding open problems about
Boolean functions: the Sensitivity Conjecture, and the relationships between
query complexity and polynomial degree.1

1 Introduction

Given a Boolean inputX = (x1, . . . , xn) ∈ {0, 1}n, the PARITY problem is to compute

PAR (X) := x1 ⊆ · · · ⊆ xn . (1)

This is one of the most fundamental and well-studied problems in computer science.
Since PAR(X) is sensitive to all n bits at every input X , any classical algorithm

for PARITY requires examining all n bits. As a result, PARITY is often considered
a “maximally hard problem” for query or decision-tree complexity. In the quantum
case, one can get a slight improvement to ⊂n/2→ queries, by applying the Deutsch-
Jozsa algorithm [7] to successive pairs of coordinates ((x1, x2), (x3, x4), etc.) and then
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XORing the results. However, that factor-of-two improvement is known to be the best
possible by quantum algorithms [9,3].2

So we might wonder: can we learn anything about a string’s parity by making a
sublinear number of queries? One natural goal would be to compute the parity, not
for all inputs, but merely for as many inputs as possible. This motivates the following
problem, which will be the focus of this paper.

Problem 1 (WEAK PARITY or WEAKPARn,ε). Given ε > 0, design an algorithm that
queries a Boolean input X ∈ {0, 1}n as few times as possible, and whose acceptance
probability p (X) satisfies

Pr
X∈{0,1}n

[
|p (X)− PAR (X)| ∧ 1

3

]
≥ 1

2
+ ε. (2)

Equivalently, the algorithm should satisfy |A| ≥ (1/2 + ε) 2n, where A ⇐ {0, 1}n is
the set of all inputs X such that |p (X)− PAR (X)| ∧ 1/3.

We will sometimes refer to the above as “bounded-error” WEAK PARITY. In the
“zero-error” variant, we instead want to satisfy the stronger condition

Pr
X∈{0,1}n

[p (X) = PAR (X)] ≥ 1

2
+ ε. (3)

To build intuition, let’s start with some elementary remarks about WEAK PARITY.

(i) Of course it’s trivial to guess PAR(X) on a 1/2 fraction of inputs X , for example
by always outputting 0. (On the other hand, being wrong on a 1/2+ ε fraction of
X’s is just as hard as being right on that fraction.)

(ii) As usual, the constant 1/3 in equation (2) is arbitrary; we can replace it by any
other constant in (0, 1/2) using amplification.

(iii) There is no requirement that the acceptance probability p (X) approximate a total
Boolean function. In other words, if X /∈ A then p (X) can be anything in [0, 1].

(iv) It is not hard to see that WEAK PARITY is completely uninteresting for determin-
istic classical algorithms. Indeed, any such algorithm that makes fewer than n
queries correctly guesses PAR(X) on exactly half of the inputs.

(v) Even a randomized or quantum algorithm must be “uncorrelated” with PAR(X),
if it always makes T < n queries (in the randomized case) or T < n/2 queries
(in the quantum case). In other words, we must have

∑

X∈{0,1}n

(
p (X)− 1

2

)(
PAR (X)− 1

2

)
= 0, (4)

where p (X) is the algorithm’s acceptance probability. The reason is just Fourier
analysis: if we switch domains from {0, 1} to {1,−1}, then PAR(X) = x1 · · ·xn.
But for a randomized algorithm, p (X) is a multilinear polynomial in x1, . . . , xn

of degree at most T < n, while for a quantum algorithm, Beals et al. [3] showed
that p (X) is a multilinear polynomial of degree at most 2T < n. And any such
polynomial has correlation 0 with the degree-n monomial x1 · · ·xn.

2 Moreover, this holds even for unbounded-error quantum algorithms, which only need to guess
PAR(X) with some probability greater than 1/2, but must do so for every X .
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(vi) Crucially, however, equation (4) does not rule out sublinear randomized or quan-
tum algorithms for WEAK PARITY (which exist for all ε = o (1), as we will see!).
The reason is a bit reminiscent of the famous hat puzzle:3 suppose, for example,
that an algorithm output PAR(X) with probability exactly 2/3 on a 3/4 fraction
of inputs X , and with probability 0 on the remaining 1/4 fraction of inputs. Such
an algorithm would succeed at WEAK PARITY for ε = 1/4, despite maintaining
an overall correlation of 0 with PAR(X).

(vii) The correlation argument does establish that, for the zero-error variant of WEAK

PARITY, any randomized algorithm must make at least n queries, and any quantum
algorithm must make at least n/2 queries, with some nonzero probability. Even
then, however, an algorithm that makes an expected sublinear number of queries
on each input X is not ruled out (and as we will see, such algorithms exist).

The regime of WEAK PARITY that interests us the most is where ε is very small—the
extreme case being ε = 1/2n. We want to know: are there fast randomized or quantum
algorithms to guess the parity of X on slightly more than half the inputs?

Despite an immense amount of work on query complexity, so far as we know the
above question was never asked before. Here we initiate its study, both by proving up-
per and lower bounds, and by relating this innocent-looking question to longstanding
open problems in combinatorics, including the Sensitivity Conjecture. Even though
WEAK PARITY might look at first like a curiosity, we will find that the task of under-
standing its query complexity is tightly linked to general questions about query com-
plexity, and these links help to motivate its study. Conversely, WEAK PARITY illustrates
how an old pastime in complexity theory—namely, understanding the largest possible
gaps between query complexity measures for arbitrary Boolean functions—can actu-
ally have implications for the query complexities of specific problems.

2 Our Results

First, in Section 4, we prove an upper bound of O(n/ log0.246 (1/ε)) on the zero-error
randomized query complexity of WEAK PARITY, and an upper bound ofO(n/

√
log 1/ε)

on its bounded-error quantum query complexity. (For zero-error quantum query com-

plexity, we get the slightly worse bound O

(
n · (log log 1

ε )
2

⇒
log 1/ε

)
.)

Our quantum algorithm is based on Grover’s algorithm, while our randomized algo-
rithm is based on the well-known O

(
n0.754

)
randomized algorithm for the complete

binary AND/OR tree. For the zero-error quantum algorithm, we use a recent zero-error
quantum algorithm for the complete binary AND/OR tree due to Ambainis et al. [1].

3 In that puzzle, n players are each assigned a red hat or a blue hat uniformly at random, and can
see the colors of every hat except their own. At least one player must guess the color of her
own hat, and every guess must be correct. Surprisingly, even though each player has only a
1/2 probability of being correct, it is possible for the players to win this game with probability
∼ 1 − 1/n, by “conspiring” so that the cases where they are wrong coincide with each other.
See http://en.wikipedia.org/wiki/Hat puzzle
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Then, in Section 5, we prove a not-quite-matching lower bound of Ω (n/ log (1/ε))
queries, by using random self-reducibility to reduce ordinary PARITY to WEAK PAR-
ITY. This lower bound is the same for randomized and quantum, and for zero-error and
bounded-error.

The gap between our upper and lower bounds might seem tiny. But notice that the
gap steadily worsens for smaller ε, reaching O(n0.754) or O(

⇒
n) or O(

⇒
n log2 n)

versus the trivial Ω (1) when ε = 1/2n. This leads us to ask whether we can prove
a nontrivial lower bound that works for all ε > 0. Equivalently, can we rule out an
O (1)-query randomized or quantum algorithm that computes PARITY on a subset A ⇐
{0, 1}n of size 2n−1 + 1?

In Section 6, we show that we can (barely) rule out such an algorithm. In 1988,
Chung et al. [6] showed that any induced subgraph of the Boolean hypercube {0, 1}n,
of size at least 2n−1 + 1, must have at least one vertex of degree Ω (logn). As a con-
sequence, we deduce that for all ε > 0, any bounded-error randomized algorithm for
WEAK PARITY must make Ω(log n) queries, and any bounded-error quantum algo-
rithm must make Ω(

⇒
logn) queries. For the Ω(log n) randomized lower bound, we

also include a self-contained proof due to Andy Drucker.
It has been conjectured that Chung et al.’s Ω (logn) degree lower bound can be im-

proved to nΩ(1). Previously, however, Gotsman and Linial [10] showed that such an
improvement would imply the notorious Sensitivity Conjecture in the study of Boolean
functions. In Section 6, we observe that an nΩ(1) lower bound for Chung et al.’s prob-
lem would also yield an nΩ(1) lower bound on the bounded-error randomized and
quantum query complexities of WEAK PARITY, for all ε > 0. Thus, while we do
not have a direct reduction between WEAK PARITY and the Sensitivity Conjecture in
either direction, it seems plausible that a breakthrough on one problem would lead to a
breakthrough on the other.

Next, in Section 7, we connect WEAK PARITY to another longstanding open problem
in the study of Boolean functions—and in this case, we give a direct reduction. Namely,
suppose we could prove a lower bound of Ω

(
n/ log1−c (1/ε)

)
on the bounded-error

randomized query complexity of WEAK PARITY. We show that this would imply that
R2 (f) = Ω (deg (f)c) for all total Boolean functions f : {0, 1}n ∪ {0, 1}, where
R2 (f) is the bounded-error randomized query complexity of f , and deg (f) is its exact
degree as a real polynomial. Similar statements hold for other kinds of query com-
plexity (e.g., the bounded-error quantum query complexity Q2 (f), and the zero-error
randomized query complexity R0 (f)).

Nisan [13] showed that R2 (f) = Ω(deg (f)
1/3

) for all total Boolean functions f ,
while Beals et al. [3] showed that Q2 (f) = Ω(deg (f)

1/6
) for all f .4 Meanwhile,

the largest known separations are R2 (f) = O(deg (f)
0.753...

) if f is the complete bi-
nary AND/OR tree (see Section 3 for a definition), and Q2 (f) = O(

√
deg (f)) if f

is the OR function. However, even improving on the 3rd- and 6th-power relations re-
mains open. Our result says that, if there existed Boolean functions f with larger sep-
arations than are currently known, then we could improve our algorithms for WEAK

4 More precisely, they showed respectively that R2 (f) = Ω(D (f)1/3) and Q2 (f) =

Ω(D (f)1/6) for all f . However, the stated results follow by combining those results with
the elementary fact deg (f) ≤ D (f).
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PARITY. And conversely, any randomized lower bound for WEAK PARITY better
than Ω(n/ log2/3 (1/ε)), or any quantum lower bound better than Ω(n/ log5/6 (1/ε)),
would improve the known relations between degree and query complexity for all
Boolean functions.

In the full version of this paper, we also consider the weak query complexities of
functions other than PARITY. We show that, for every Boolean function f , it is possible
to agree with f (X) on 2n−1 + 1 inputs X using a bounded-error quantum algorithm
that makes O(

⇒
n) queries, or a zero-error randomized algorithm that makes O(n0.754)

queries, or a zero-error quantum algorithm that makes O(
⇒
n log2 n) queries.

3 Preliminaries

We assume some familiarity with classical and quantum query complexity; see Buhrman
and de Wolf [5] for an excellent introduction. This section reviews the most relevant
definitions and facts.

Given a Boolean function f : {0, 1}n ∪ {0, 1}, let D(f), R0 (f), and R2 (f) be the
deterministic, zero-error randomized, and bounded-error randomized query complexi-
ties of f respectively. We have n ≥ D(f) ≥ R0 (f) ≥ R2 (f) for every f . It is also
well-known [13,3] that D (f) ∧ R0 (f)

2 and D(f) = O(R2 (f)
3
) for all total Boolean

functions f .
We will write R2(WEAKPARn,ε) to denote the minimum number of queries made

by any randomized algorithm that, for at least a 1/2+ ε fraction of inputs X ∈ {0, 1}n,
outputs PAR(X) with probability at least 2/3. We will also write R0(WEAKPARn,ε)
to denote the minimum number of queries made by any randomized algorithm that
satisfies the following two properties, for at least a 1/2 + ε fraction of inputs X :

– The algorithm outputs PAR(X) with probability at least 2/3.
– If the algorithm does not output PAR(X), then it outputs “don’t know.”

In both the R2 and R0 cases, for the remaining inputs X (i.e., those on which the
algorithm fails), the algorithm’s output behavior can be arbitrary, but the upper bound
on query complexity must hold for all inputs X ∈ {0, 1}n.

Note that we could also define R◦
0(WEAKPARn,ε) as the minimum expected number

of queries made by any randomized algorithm that, for at least a 1/2 + ε fraction of
inputs X , outputs PAR(X) with probability 1. In this case, the expected number of
queries needs to be bounded only for those X’s on which the algorithm succeeds. In
the full version, we prove that R0(WEAKPARn,ε) and R◦

0(WEAKPARn,ε) are equal up
to constant factors.

Let Q0 (f) and Q2 (f) be the zero-error and bounded-error quantum query com-
plexities of f respectively. We have R0 (f) ≥ Q0 (f) ≥ Q2 (f) and R2 (f) ≥ Q2 (f)
for every f . We will use the following results of Beals et al. [3] and Midrijanis [12]
respectively:

Theorem 1 (Beals et al. [3]). D(f) = O(Q2 (f)
6
) for all total Boolean f .

Theorem 2 (Midrijanis [12]). D(f) = O(Q0 (f)
3
) for all total Boolean f .
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We will write Q2(WEAKPARn,ε) and Q0(WEAKPARn,ε) for the bounded-error and
zero-error quantum query complexities of WEAKPARn,ε; these are defined precisely
analogously with R2(WEAKPARn,ε) and R0(WEAKPARn,ε).

Given a Boolean function f , the degree deg (f) is the degree of the (unique) real mul-
tilinear polynomial p : Rn ∪ R that satisfies p (X) = f (X) for all X ∈ {0, 1}n. It is
not hard to see that deg (f) ∧ D (f) for all Boolean functions f . Combined with pre-
vious results, this implies that R2 (f) = Ω(deg (f)

1/3
) and Q2 (f) = Ω(deg (f)

1/6
),

as stated in Section 2.
Given an input X ∈ {0, 1}n and a subset B ⇐ [n], let XB denote X with all the bits

in B flipped. Then for a Boolean function f , the sensitivity sX (f) is the number of
indices i ∈ [n] such that f

(
X{i}) ≤= f (X), while the block sensitivity bsX (f) is the

maximum number of pairwise-disjoint “blocks” B1, . . . , Bk ⇐ [n] that can be found
such that f

(
XBj

) ≤= f (X) for all j ∈ [k]. We then define

s (f) := max
X∈{0,1}n

sX (f) , bs (f) := max
X∈{0,1}n

bsX (f) . (5)

Clearly s (f) ∧ bs (f). The famous Sensitivity Conjecture (see Hatami et al. [11] for a
survey) asserts that the gap between s (f) and bs (f) is never more than polynomial.

Nisan and Szegedy [14] showed that bs (f) ∧ 2 deg (f)
2 (recently improved by Tal

[17] to bs (f) ∧ deg (f)
2), while Beals et al. [3] showed that deg (f) ∧ bs (f)

3. Thus,
degree and block sensitivity are polynomially related. This implies that the Sensitivity
Conjecture is equivalent to the conjecture that sensitivity is polynomially related to
degree.

A particular Boolean function of interest to us will be the complete binary AND/OR
tree. Assume n = 2d; then this function is defined recursively as follows:

T0 (x) := x, (6)

Td (x1, . . . , xn) :=

{
Td−1

(
x1, . . . , xn/2

)
ANDTd−1

(
xn/2+1, . . . , xn

)
if d > 0 is odd,

Td−1

(
x1, . . . , xn/2

)
ORTd−1

(
xn/2+1, . . . , xn

)
if d > 0 is even.

It is not hard to see that D(Td) = deg (Td) = 2d = n. By contrast, Saks and Wigder-
son [15] proved the following.

Theorem 3 (Saks-Wigderson [15]). R0 (Td) = O

((
1+

√
33

4

)d
)

= O(n0.753...).

Saks and Wigderson [15] also proved a matching lower bound of R0 (Td) =
Ω(n0.753...), while Santha [16] proved that R2 (Td) = Ω(n0.753...) even for bounded-
error algorithms. Note that Td gives the largest known gap between D(f) and R2 (f)
for any total Boolean function f .

Recently, building on the breakthrough quantum walk algorithm for game-tree eval-
uation [8] (see also [2]), Ambainis et al. [1] proved the following.

Theorem 4 (Ambainis et al. [1]). Q0 (Td) = O(
⇒
n log2 n).

By comparison, it is not hard to show (by reduction from PARITY) that Q2 (Td) =
Ω(

⇒
n). Once again, Theorem 4 gives the largest known gap between D(f) and Q0 (f)

for any total f .
Finally, the following fact (proved in the full version) will be useful to us.



32 S. Aaronson et al.

Proposition 1. Let n = 2d. The number of inputs X ∈ {0, 1}n such that Td (X) =
PAR(X) is exactly 2n−1 + 1 if d is even, and exactly 2n−1 − 1 if d is odd.

4 Algorithms for WEAK PARITY

We now prove our first result: that there exist nontrivial randomized and quantum algo-
rithms for WEAK PARITY. For simplicity, we first consider the special case ε = 2−n;
later we will generalize to arbitrary ε.

Lemma 1. We have

Q2(WEAKPARn,2−n) = O(
⇒
n), (7)

R0(WEAKPARn,2−n) = O(n0.754), (8)

Q0(WEAKPARn,2−n) = O(
⇒
n log2 n). (9)

Proof. For Q2, observe that the OR function, OR(X), agrees with the parity of X on
2n−1 + 1 inputs X ∈ {0, 1}n: namely, all the inputs of odd Hamming weight, plus the
input 0n. Thus, simply computing OR(X) gives us an algorithm for WEAKPARn,ε

with ε = 2−n. And of course, OR can be computed with bounded error in O (
⇒
n)

quantum queries, using Grover’s algorithm.
For R0, assume for simplicity that n has the form 2d; this will not affect the asymp-

totics. By Proposition 1, if d is even then the AND/OR treeTd (X) agrees with PAR(X)
on 2n−1+1 inputs X , while if d is odd then 1−Td (X) does. Either way, simply com-
puting Td (X) gives us an algorithm for WEAKPARn,2−n . Furthermore, by Theorem
3, there is a zero-error randomized algorithm for Td (X) that makes O(n0.754) queries.

For Q0, we also compute either Td (X) or 1 − Td (X) as our guess for PAR(X),
except now we use the zero-error quantum algorithm of Theorem 4, which makes
O(

⇒
n log2 n) queries.

Next, we give a general strategy for converting a WEAK PARITY algorithm for small
ε into an algorithm that works for larger ε, with the query complexity gradually increas-
ing as ε does.

Lemma 2. R2(WEAKPARkn,ε) ∧ k ·R2(WEAKPARn,ε) for all positive integers k. So
in particular, suppose R2(WEAKPARn,1/f(n)) ∧ T (n). Then for all N and ε > 0,

R2(WEAKPARN,ε) ∧
N · T (

f−1 (1/ε)
)

f−1 (1/ε)
. (10)

Exactly the same holds if we replace R2 by R0, Q2, or Q0 throughout.

Proof. Let A be a randomized algorithm for WEAKPARn,ε, and let X be an input
to WEAKPAR of size kn. Then our strategy is to group the bits of X into n blocks
Y1, . . . , Yn of k bits each, then run A on the input PAR(Y1) , . . . ,PAR(Yn), and output
whatever A outputs. If A made T (n) queries originally, then this strategy can be im-
plemented using k · T (n) queries: namely, k queries to the underlying input X every
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time A queries a bit PAR(Yi). Furthermore, let p (Z) be A’s success probability on
input Z ∈ {0, 1}n. Then the strategy succeeds whenever

|p (PAR (Y1) , . . . , PAR (Yn))− (PAR (Y1)⊆ · · · ⊆ PAR (Yn))| ∧ 1

3
, (11)

and by assumption, this occurs for at least a 1/2 + ε fraction of Z’s.
The inequality (10) is just a rewriting of the hypothesis, if we make the substitutions

ε := 1/f (n) and n := f−1 (1/ε) to get R2(WEAKPARf−1(1/ε),ε) ∧ T
(
f−1 (1/ε)

)
,

followed by k := N/f−1 (1/ε). Finally, since we never used that A was classical or
bounded-error, everything in the proof still works if we replace R2 by R0, Q2, or Q0

throughout.

Combining Lemmas 1 and 2 now easily gives us our upper bounds:

Theorem 5. For all n and ε ∈ [2−n, 1/2], we have

Q2(WEAKPARn,ε) = O(n/
√
log 1/ε), (12)

R0(WEAKPARn,ε) = O
(
n/ log0.246 1/ε

)
, (13)

Q0(WEAKPARn,ε) = O(n · (log log 1/ε)2 /
√
log 1/ε). (14)

We do not know any upper bound on R2(WEAKPARn,ε) better than our upper bound
on R0(WEAKPARn,ε).

As a final note, all of our algorithms actually satisfy a stronger property than the
definition of WEAK PARITY requires. Namely, the algorithms all compute a total
Boolean function f (X) that agrees with PAR(X) on a 1/2+ ε fraction of inputs. This
means, for example, that we can obtain a randomized algorithm that outputs PAR(X)
with probability 1 on a 1/2 + ε fraction of inputs X ∈ {0, 1}n, and that halts after
O(n/ log0.246 (1/ε)) queries in expectation on every input X (not just those inputs for
which the algorithm succeeds).

5 Lower Bound via Random Self-Reducibility

Our next result is a lower bound on the bounded-error randomized and quantum query
complexities of WEAK PARITY. The lower bound matches our upper bounds in its
dependence on n, though not in its dependence on ε.

Theorem 6. Q2(WEAKPARn,ε) = Ω (n/ log (1/ε)) for all 0 < ε < 1
2 .

Proof. Let C be a quantum algorithm for WEAKPARn,ε that never makes more than
T queries. Using C, we will produce a new quantum algorithm C◦, which makes
O
(
T log 1

ε

)
queries, and which guesses PAR(X) on every input X ∈ {0, 1}n with

probability stricter greater than 1/2. But it is well-known that any quantum algo-
rithm of the latter kind must make at least n/2 queries: in other words, that PARITY

has unbounded-error quantum query complexity n/2 (this follows from the polynomial
method [3]). Putting the two facts together, we conclude that T = Ω (n/ log (1/ε)).
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To produce C◦, the first step is simply to amplify C. Thus, let C≤ be an algorithm
that outputs the majority answer among d log 1/ε invocations of C. Then by a Chernoff
bound, provided the constant d is sufficiently large,

Pr
X∈{0,1}n

[|Pr [C≤ (X) accepts]− PAR (X)| ∧ ε] ≥ 1

2
+ ε. (15)

Next, C◦ chooses a string Y ∈ {0, 1}n uniformly at random and sets Z := X ⊆ Y . It
then runs C≤ to obtain a guess b about PAR(Z). Finally, C◦ outputs PAR(Y )⊆ b as its
guess for PAR(X).

Clearly C◦ has the same quantum query complexity as C≤: it is easy to simulate a
query to a bit zi of Z , by querying the corresponding bit xi of X and then XORing
with yi. Furthermore, notice that Z is uniformly random, regardless of X , and that if
b = PAR (Z) then PAR(Y )⊆ b =PAR(X). It follows that C◦ succeeds with probability
at least (

1

2
+ ε

)
(1− ε) =

1

2
+

ε

2
− ε2 >

1

2
(16)

for every X , which is what we wanted to show.

Of course, Theorem 6 implies that Q0(WEAKPARn,ε), R2(WEAKPARn,ε), and
R0(WEAKPARn,ε) are Ω (n/ log (1/ε)) as well. It is curious that we do not get any
lower bounds for Q0, R2, or R0 better than for Q2.

6 Lower Bound via Sensitivity

Theorem 6 shows that our algorithms from Theorem 5 are close to optimal when ε
is reasonably large. Unfortunately, though, Theorem 6 gives nothing when ε = 2−n.
Equivalently, it does not even rule out a randomized or quantum algorithm making
a constant number of queries (!), that correctly decides PARITY on a subset of size
2n−1 +1. We conjecture that nΩ(1) randomized or quantum queries are needed for the
latter task, but we are unable to prove that conjecture—a state of affairs that Section 7
will help to explain. In this section, we at least prove that Ω(log n) randomized queries
and Ω(

⇒
logn) quantum queries are needed to solve WEAK PARITY for all ε > 0.

The key is a combinatorial quantity called Λ (n), which was introduced by Chung,
Füredi, Graham, and Seymour [6]. Abusing notation, we identify the set {0, 1}n with
the Boolean hypercube graph (where two vertices are adjacent if and only if they have
Hamming weight 1), and also identify any subset G ⇐ {0, 1}n with the induced sub-
graph of {0, 1}n whose vertex set is G. Let Δ (G) be the maximum degree of any vertex
in G. Then

Λ (n) := min
G⊆{0,1}n : |G|=2n−1+1

Δ (G) (17)

is the minimum of Δ (G) over all induced subgraphs G of size 2n−1 + 1.
The following proposition relates Λ (n) to WEAK PARITY.

Proposition 2. R2(WEAKPARn,ε) = Ω(Λ (n)) and Q2(WEAKPARn,ε)=Ω(
√

Λ (n))
for all ε > 0.
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Proof. Let U be an algorithm that decides PARITY (with bounded error probability)
on a subset A ⇐ {0, 1}n. Then we claim that U must make Ω(Δ (A)) randomized
or Ω(

√
Δ (A)) quantum queries, which is Ω(Λ (n)) or Ω(

√
Λ (n)) respectively if

|A| > 2n−1. To see this, let X ∈ A be a vertex with degree Δ (A). Then PARITY,
when restricted to X and its neighbors, already yields a Grover search instance of size
Δ (A). But searching a list of N elements is well-known to require Ω(N) randomized
or Ω(

⇒
N) quantum queries [4].

To build intuition, it is easy to find an induced subgraph G ⇐ {0, 1}n such that
|G| = 2n−1 but Δ (G) = 0: consider the set of all points with odd Hamming weight.
But adding a single vertex to that G increases its maximum degree Δ (G) all the way
to n. More generally, Chung et al. [6] were able to prove the following.

Theorem 7 (Chung et al. [6]). Λ (n) ≥ 1
2 log2 n− 1

2 log2 log2 n+ 1
2 .

Combining Theorem 7 with Proposition 2 tells us immediately that

R2(WEAKPARn,ε) = Ω(log n), Q2(WEAKPARn,ε) = Ω(
√

logn) (18)

for all ε > 0.
Now, the best-known upper bound on Λ (n), also proved by Chung et al. [6], is⇒
n + 1, and it is conjectured that this is essentially tight. By Proposition 2, clearly a

proof of that conjecture would imply

R2(WEAKPARn,ε) = Ω(
⇒
n), Q2(WEAKPARn,ε) = Ω(n1/4) (19)

for all ε>0—and more generally, provingΛ (n)≥nΩ(1) would implyR(WEAKPARn,ε)
and Q(WEAKPARn,ε) are nΩ(1).

Unfortunately, proving Λ (n) ≥ nΩ(1) will be challenging. To see why, recall the
famous Sensitivity Conjecture, which says that s (f) is polynomially related to bs (f)
(or equivalently, to deg (f)). In 1992, Gotsman and Linial [10] showed that the Sen-
sitivity Conjecture is equivalent to a statement about the maximum degrees of induced
subgraphs of {0, 1}n:

Theorem 8 (Gotsman-Linial [10]). Given any growth rate h, we have s (f) > h
(deg (f)) for all Boolean functions f : {0, 1}n ∪ {0, 1}, if and only if

max {Δ (G) , Δ ({0, 1}n \G)} ≥ h (n) (20)

for all subsets G ⇐ {0, 1}n such that |G| ≤= 2n−1.

Notice that if |G| ≤= 2n−1, then max {Δ (G) , Δ ({0, 1}n \G)} ≥ Λ (n). To see
this, choose whichever of G or {0, 1}n \G is larger, and then discard all but 2n−1 + 1
of its elements. Thus, any lower bound on Chung et al.’s combinatorial quantity Λ (n)
implies the same lower bound on the function h (n) of Theorem 8. For example, if
Λ (n) ≥ nΩ(1), then s (f) ≥ deg (f)Ω(1).

But this means that any proof of Λ (n) ≥ nΩ(1) would imply the Sensitivity Conjec-
ture!5 Thus, the conjecture Λ (n) ≥ nΩ(1) could be seen as a “common combinatorial
core” of the WEAK PARITY and sensitivity versus block sensitivity questions.

5 Interestingly, we do not know the reverse implication.
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As a final note, Andy Drucker (personal communication) found a self-contained
proof for R2(WEAKPARn,ε) = Ω (logn), one that does not rely on Λ (n), and that
indeed achieves a better constant than the Λ (n)-based proof. We include that proof
in the full version. Interestingly, unlike with our argument based on Λ (n), we do not
know how to generalize Drucker’s argument to prove any lower bound on quantum
query complexity, nor do we know (even conjecturally) how to push the argument be-
yond Ω (logn).

7 Connection to deg (f) vs. Q (f)

In the last section, we identified a known combinatorial conjecture (Λ (n) ≥ nΩ(1)) that
would imply that the randomized and quantum query complexities of WEAK PARITY

are nΩ(1) for all ε > 0. However, since Λ (n) ≥ nΩ(1) would also imply the Sensitivity
Conjecture, it will clearly be difficult to prove.

So could there be a different way to prove tight lower bounds for R2(WEAKPARn,ε)
and Q2(WEAKPARn,ε)—a way that wouldn’t require us to address any longstand-
ing open problems about Boolean functions? Alas, in this section we largely close
off that possibility. In particular, suppose we could prove a strong lower bound on
R2(WEAKPARn,ε). We will show that this would imply a better polynomial relation-
ship between deg (f) and R2 (f) for all total Boolean functions f than is currently
known. Similar statements hold for R0, Q2, and Q0.

Theorem 9. Given a constant c, suppose there exists a sequence of functions {fn}n≥1

such that deg (fn) = n and R2 (fn) = O (nc). Then

R2(WEAKPARn,ε) = O
(
n/ log1−c 1/ε

)
. (21)

The same holds if we replace R2 by R0, Q2, or Q0 in both instances.

Proof. In the full version.

So for example, suppose we could prove thatQ2(WEAKPARn,ε) = Ω(n/
√
log 1/ε);

i.e., that the quantum algorithm of Theorem 5 was optimal. Then we would prove the
longstanding conjecture that Q2 (f) = Ω(

√
deg (f)) for all Boolean functions f (the

bound being saturated when f = OR).
One might wonder: can we also go in the other direction, and use the known poly-

nomial relationships between deg (f) and query complexity measures to prove better
lower bounds for WEAK PARITY? At present, we cannot quite do that, but we can do
something close. Recall from Section 1 that, in defining WEAK PARITY, we did not
impose any requirement that our algorithm’s acceptance probability p (X) approximate
a total Boolean function. However, suppose we do impose that requirement. Then we
can easily show the following (in the full version):

Proposition 3. Fix any ε > 0. Suppose an algorithm’s acceptance probability must
satisfy p (X) ∈ [0, 1/3] ⇔ [2/3, 1] for all X ∈ {0, 1}n. Then any randomized al-
gorithm for WEAKPARn,ε makes Ω

(
n1/3

)
queries, and any quantum algorithm makes
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Ω
(
n1/6

)
queries. Suppose further that the acceptance probability must satisfy p (X) ∈

{0, 1} for all X . Then any randomized algorithm for WEAKPARn,ε makes Ω
(
n1/2

)

queries in expectation, and any quantum algorithm makes Ω
(
n1/3

)
queries.

8 Open Problems

The obvious problem is to close the gaps between our upper and lower bounds on the
query complexity of WEAK PARITY. We have seen that this problem is intimately re-
lated to longstanding open problems in the study of Boolean functions, including poly-
nomial degree versus query complexity, the Sensitivity Conjecture, and lower-bounding
Chung et al.’s [6] combinatorial quantity Λ (n). Perhaps the surprising relationships
among these problems could motivate renewed attacks. In the meantime, can we re-
prove our Ω (n/ log (1/ε)) lower bound for WEAK PARITY (or better yet, improve it)
without exploiting PARITY’s random self-reducibility? How far can we get by using
(say) the polynomial or adversary methods directly?
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Abstract. The Local Alignment problem is a classical problem with ap-
plications in biology. Given two input strings and a scoring function on
pairs of letters, one is asked to find the substrings of the two input strings
that are most similar under the scoring function. The best algorithms
for Local Alignment run in time that is roughly quadratic in the string
length. It is a big open problem whether substantially subquadratic al-
gorithms exist. In this paper we show that for all ε > 0, an O(n2−ε)
time algorithm for Local Alignment on strings of length n would imply
breakthroughs on three longstanding open problems: it would imply that
for some δ > 0, 3SUM on n numbers is in O(n2−δ) time, CNF-SAT on n
variables is in O((2− δ)n) time, and Max Weight 4-Clique is in O(n4−δ)
time. Our result for CNF-SAT also applies to the easier problem of find-
ing the longest common substring of binary strings with don’t cares. We
also give strong conditional lower bounds for the more general Multiple
Local Alignment problem on k strings, under both k-wise and SP scor-
ing, and for other string similarity problems such as Global Alignment
with gap penalties and normalized Longest Common Subsequence.

1 Introduction

Many basic string and pattern matching problems have overwhelming impor-
tance in current bioinformatics research. A well known such problem is the Local
Alignment problem which asks to find the two substrings of two given strings
that are most similar, under some given similarity measure. The fastest theoret-
ical algorithm for this problem runs in time O(n2/ logn) [15,38,8] on n-length
strings, and is not much faster than the classical dynamic programming algo-
rithm of Smith and Waterman [47] which runs in O(n2) time. A faster algorithm
for this problem, one that runs in, say O(n1.5) time, would have tremendous
impact, as witnessed by the 49,000 citations to the paper introducing the prac-
tical BLAST (Basic Local Alignment Search Tool) algorithm [3]. However, there
seems to be very little optimism in the computational biology community that
Local Alignment and other important string problems admit such “truly sub-
quadratic” algorithms, i.e. running in time O(n2−σ) for σ > 0. Yet, the theoretical
computer science community has not provided any evidence for this impossibil-
ity, and in particular, it is yet to give an answer to this pressing question: can
Local Alignment be solved in truly subquadratic time?

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 39–51, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014
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Perhaps the main reason for this lack of an answer, is that we do not have
a clear technique for providing negative answers to such questions. The state of
the art on unconditional lower bounds seems far from proving any significant
superlinear lower bounds in the near future. The theory of NP-completeness
cannot distinguish between quadratic upper bounds and n1.5 ones. The W [t]-
hardness approach of parameterized complexity requires parameterization, and
like NP-hardness, does not distinguish between differing polynomial runtimes.
Another approach is to prove lower bounds for a restricted family of algorithms.
However, it is unclear what an appropriate candidate family would be, and either
way, a restricted model lower bound only gives a partial answer to the question.

Our approach. We follow an approach that can be viewed as a refinement of
NP-hardness. The importance of showing NP-hardness for a certain problem
lies in the consequence that a polynomial time algorithm for this problem would
also imply a polynomial time algorithm for many other problems that are widely
believed to require superpolynomial solutions. The goal of this work and previous
works that are mentioned below is to develop such theory that is able to prove
that improving the exact running times of certain problems would also imply
surprising algorithms for many other problems and is therefore unlikely.

Using this approach we are able to provide the following answer to our pressing
question, which is stated more formally in our theorems: A truly subquadratic
algorithm for Local Alignment is unlikely because it would also give truly faster
algorithms for other famous problems like CNF-SAT, 3-SUM and Max-Weight-4-
Clique, implying breakthroughs in three different areas of computer science: the
satisfiability algorithms and circuit lower bounds, the computational geometry
and the graph algorithms communities!

To provide such answers, to this and other important questions about the
optimality of current upper bounds for string problems, we devise careful reduc-
tions to the string problems from famous problems that are widely believed to
require certain running times, not necessarily quadratic.

1.1 3-SUM Hardness

The most prominent example of this approach is the theory of 3-SUM hardness
which was introduced by Gajentaan and Overmars [25] and has been used to
show that subquadratic upper bounds for many problems in Computational
Geometry are unlikely.

In the 3-SUM problem we are given three lists of n numbers and are asked
whether we can pick a number from each list so that the sum is 0. A simple algo-
rithm solves the problem in Õ(n2) time, and Baran, Demaine and Pǎtraşcu [6]
were able to get a O(n2/ log2 n) solution, yet any improvement beyond this seems
unlikely and it is a widely believed conjecture that a polynomial improvement
on the upper bound is impossible. Support for this belief comes from the τ(n2)
lower bound for the depth of an algebraic decision tree for the problem [23].

Conjecture 1 (3-SUM Conjecture). In the Word RAM model with words of
O(log n) bits, any algorithm requires n2−o(1) time in expectation to determine
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whether three sets A,B,C ∈ {−n3, . . . , n3} with |A| = |B| = |C| = n integers
contain three elements a ⊆ A, b ⊆ B, c ⊆ C with a + b + c = 0.

Since [25], there have been many papers proving the hardness of computa-
tional geometry problems, based on 3SUM, e.g. [19,37,22,13,7]. More recently,
the 3-SUM Conjecture has been used in surprising ways to show polynomial
lower bounds for purely combinatorial problems in dynamic algorithms [40,2]
and Graph algorithms [40,32,48]. The only previous work relating 3-SUM to a
Stringology problem, to our knowledge, is the result of Chen et al. [12] showing
that under the 3-SUM Conjecture, when the input strings are encodings of much
longer strings, using Run-Length-Encoding, then the string matching with don’t
cares problem requires time that is quadratic in the lengths of the compressions.
This string problem, however, is strongly related to geometric problems and is
less “combinatorial” than the problems we consider here (e.g. it is solvable by a
sweep-line algorithm). Thus our reductions require different techniques.

We expand the list of 3-SUM hard problems, showing a reduction from 3-SUM
to the Local Alignment problem, proving that a truly subquadratic algorithm
for Local Alignment is impossible under the 3-SUM Conjecture, provided the
alphabet is large enough.

Theorem 1. If for some σ > 0, λ ⊆ (0, 1), one can solve the Local Align-
ment problem on two strings of length n over an alphabet of size n1−ε in time
O(n2−ε−σ), then the 3-SUM Conjecture is false.

To prove Theorem 1 we combine a recent reduction from k-SUM to k-Vector-
SUM [1] with an efficient self reduction for 3-SUM using hashing [6,40], then we
carefully construct a scoring scheme. The details are given in Section 3.

We note that it is not hard to argue that there is an unconditional lower bound
of min{|Π|2, n2} for Local Alignment where Π is the alphabet. When |Π| = n1−ε,
this lower bound is τ(n2−2ε). Our lower bound for such alphabets is essentially
n2−ε which is a polynomial improvement over n2−2ε. Nevertheless, our reduction
requires alphabet size at least nσ for some arbitrarily small but constant σ > 0,
and the really interesting case of Local Alignment is when the alphabet size is
constant, e.g. 4 for DNA and RNA sequences and 20 for protein sequences. We
are not able to use the 3-SUM Conjecture to conclude a lower bound for this
case. To handle the constant alphabet case, we turn to the presumed hardness
of CNF-SAT to prove a lower bound even for binary strings.

1.2 Strong ETH Hardness

Despite hundreds of papers on faster exponential algorithms for NP-Hard prob-
lems in recent years (see the surveys by Woeginger for an exposition [52]), and
despite the remarkable effort put into obtaining faster satisfiability algorithms,
the best upper bounds for CNF-SAT on n variables and m clauses remain of the
form 2n−o(n)poly (m) (e.g. [28,41,46]). The Strong Exponential Time Hypothe-
sis (Strong ETH) of Impagliazzo, Paturi and Zane, which has received a lot of
attention recently, states that better algorithms do not exist.
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Conjecture 2 (Strong ETH). For every σ > 0, there exists a k, such that
SAT on k-CNF formulas on n variables cannot be solved in O◦(2(1−σ)n) time.

Strong ETH is an extremely popular conjecture in the exact exponential time
algorithms community [11,18,35,17], and Cygan et al. [16] even showed it to
be equivalent to assuming that several other NP-hard problems essentially re-
quire exhaustive search. Recently, many surprising lower bounds in several dif-
ferent areas were shown to hold under the SETH, including lower bounds for
approximating the diameter of a sparse graph [45], for maintaining the number
of strongly connected components in a dynamic graph [2], and for the 3-party
communication complexity of Set-Disjointness [43].

We show a reduction from CNF-SAT to the longest common substring with
don’t cares problem, which is one of the simplest string problems for which truly
subquadratic algorithms are not known and is a very restricted version of the
Local Alignment problem.

Definition 1 (The Longest Common Substring with don’t Cares Prob-
lem). Given a string S over alphabet Π = {0, 1} and a string T over Π ⊂ {β},
find the length of the longest string that is a substring of both S and T , where a
β in T can be treated as either 0 or 1.

If don’t care letters are not allowed, the problem can be solved using a gener-
alized suffix tree in O(n) time [27]. If instead of looking for the longest common
substring, one wants to check whether a binary string with don’t cares appears as
a substring in a length n binary string, then there are O(n logn) time algorithms
based on the Fast Fourier Transform [24,31,33]. Thus only slight variations of the
longest common substring with don’t cares problem admit almost linear time
solutions, yet our reduction implies that a truly subquadratic algorithm for it
refutes Strong ETH!

Theorem 2. If for some σ > 0 one can solve either the Local Alignment problem
on two binary strings of length n, or the longest common substring with don’t
cares problem in time O(n2−σ), then Strong ETH is false.

To prove Theorem 2 we represent a partial assignment to the variables of our
formula with a substring, and we make sure that two substrings will match if
and only if the two partial assignments satisfy all the clauses of our formula.
The details are given in Section 2.

1.3 Multiple Sequence Alignment

In Gusfield’s book [27], algorithms for comparing multiple strings are called “the
holy grail” of current research in computational biology. One of the important
tasks is the Multiple Local Alignment (MLA) problem [34] defined as follows.
Given k strings T1, . . . , Tk over some alphabet, find substrings S1, . . . , Sk (where
Si is a substring of Ti) whose alignment has maximum score. There are multiple
ways to define the alignment score between k substrings but we focus on two
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options, the most general k-wise scoring scheme and the most popular Sum of
Pairs (SP) scoring scheme [5].

The k-wise scoring function s(·, . . . , ·) which is given as a k dimensional matrix
with (|Π|)k entries. This case is called k-wise scoring, and the score of an align-
ment of k strings s1, . . . , sk is

∑
i s(s1[i], . . . , sk[i])1. The second option, which is

called sum of pairs (SP) scoring, is to use a pairwise scoring function s(·, ·) and
to define the score of an alignment to be

∑
i

∑
k<Ω s(sk[i], sΩ[i]).

The MLA problem on k → 3 strings can be defined using either k-wise scoring
or SP scoring. Local Alignment is the k = 2 case and both scoring rules coincide.

For both scoring schemes, unsurprisingly, the best upper bound for the prob-
lem is O(nk) using dynamic programming. The reduction of Wang and Jiang
[49] from the shortest common superstring problem on k strings to a polyno-
mial number of instances of the (global or local) alignment problem on k + 2
strings with SP scoring implies that our problem is NP-hard when the number
of strings is unbounded. Moreover, the W[1]-hardness results of Bodlaender et
al. [10] for unbounded alphabets and of Pietrzak [42] for constant size alphabets
also carry on to our problems, implying that upper bounds of the form f(k) · nc

for a constant c independent of k and n are unlikely. Huang [29] strengthens
Pietrzak’s reduction from k-clique to the shortest common superstring problem
and shows that no(k) algorithms for our problems are not possible under the
plausible Exponential Time Hypothesis [30].

These negative results deliver an important message to biologists, showing
that an efficient algorithm for optimally aligning a hundred strings is not likely
to exist, yet another pressing question remains widely open: is there an algorithm
running in time O(nk−1) or even O(nk/5) for MLA?2 Such algorithms would
imply a major advance in our ability to analyze biological data.

We extend our reduction from CNF-SAT to show that Strong ETH implies a
negative answer to our question, when we are interested in k-wise scoring, even
when the strings are binary.

Theorem 3. If for some σ > 0 the MLA on k binary strings of length n with
k-wise scoring can be solved in time O(nk−σ), then Strong ETH is false.

As is stressed in Gusfield’s book [27], the less general case of SP scoring has
more applications in Bioinformatics. Our reduction from CNF-SAT requires the
computation of an OR function, which is easy with k-wise scoring yet does not
seem possible with SP scoring. We show, however, that the Weighted-k-Clique
problem can explain the hardness of getting faster algorithms even for the SP
case of MLA.

Weighted k-Clique. The Max-Weight k-Clique problem is as follows. Given a
graph G = (V,E) with integer edge weights, find a k-clique of maximum total

1 In a more general alignment, one can align alphabet symbols with spaces, and the
scoring function can take that into account. In this paper, we prove hardness even
for the easier alignment problem where no spaces are allowed.

2 In the reduction of Bodlaender et al. [10] k increases to k2 and in Pietrzak’s [42]
reduction n increases to n7.
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weight, or determine that no k-clique exists. Since k-Clique is a special case
of the problem, the Max-Weight k-Clique problem is NP-complete and W [1]-
hard. The unweighted k-Clique admits an O(n0.792k) time algorithm using matrix
multiplication [39]. When the edge weights are small, one can obtain O(nk−σ)
time algorithms for Max-Weight k-Clique as well, by reducing to a small number
of instances of k-Clique. However, when the weights are larger than nk, the trivial
O(nk) algorithm is essentially the best known (ignoring no(1) improvements).

We show a tight reduction from Max-Weight 2k-Clique to MLA on k strings
with SP scoring, showing that improving on nk time for MLA would also imply
that Max-Weight 2k-Clique has faster than n2k algorithms.

Theorem 4. If for some σ > 0 the MLA on k strings of length n over an
alphabet of size

∧
n with SP scoring can be solved in time O(nk−σ), then Max-

Weight 2k-Clique on n nodes graphs can be solved in time O(n2k−σ).

An immediate corollary of the above theorem is a conditional lower bound
for the Local Alignment problem for two strings, based on the assumption that
Max-Weight 4-Clique does not have improved algorithms.

Corollary 1. If for some σ > 0 the Local Alignment on two strings of length
n over an alphabet of size

∧
n can be solved in time O(n2−σ), then Max-Weight

4-Clique on n nodes graphs can be solved in time O(n4−σ).

We note that the special case of Max-Weight k-clique for k = 3 is especially
interesting. The Max-Weight 3-Clique problem on n-node graphs is known to
be essentially equivalent to the All Pairs Shortest Paths (APSP) problem, in
the sense that if Max-Weight 3-Clique has a truly subcubic algorithm, so does
APSP, and vice versa. It is a longstanding open problem whether APSP on n-
node graphs can be solved in O(n3−σ) time [51]. It is thus a major open problem
whether Max-Weight 3-Clique is in O(n3−σ) time for some σ > 0. Our current
reductions show that a O(n1.5−σ) time algorithm for Local Alignment on two
strings would give O(n3−σ) time for APSP, but we suspect that they can be
strengthened to show a tighter relationship.

Extensions. In the full version of the paper we also show quadratic lower bounds
for well-known generalizations of the Global Alignment problem like Alignment
with Gap penalties [26] and Alignment with moves [36], and for other string
problems like Normalized LCS [4,21] and Partial Match [14,44,9].

2 From CNF-SAT to Alignment

In this section we give a reduction from CNF-SAT on n variables and m clauses
to the longest common substring with don’t cares problem on binary strings of
length N = O(2n/2 ·m) in O◦(2n/2 ·m) time. Thus, given an algorithm for this
problem that runs in time O(N2−σ) for some σ > 0, we can solve CNF-SAT in
time O◦((2n/2 ·m)2−σ) = O◦(2(1−σ/2)n · poly (m)), refuting Strong ETH. In the
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full version of this paper we explain how to get a reduction to Local Alignment
on binary strings, proving Theorem 2, and give the extension to MLA on k
strings to prove Theorem 3.

Our reduction follows the split and list technique introduced by Williams [50].
In particular, our reduction from CNF-SAT to the longest common substring
problem can be obtained by combining his reduction from CNF-SAT to the
orthogonal vectors problem on binary vectors and a simple reduction from the
latter problem to the longest common substring problem. Below we present a
direct reduction from CNF-SAT that makes our extension to MLA on k strings
follow more clearly.

Lemma 1. CNF-SAT over formulas on n variables and m clauses can be re-
duced to the longest common substring with don’t cares problem over strings of
length O(2n/2 ·m) and constant-size alphabet in O◦(2n/2 ·m) time.

Proof. Let V = {x1, . . . , xn} be the n variables of the input CNF formula Δ.
We split V into two sets of n/2 variables, U = {x1, . . . , xn/2} and V \ U . Let

A = {∂1, . . . , ∂N} and B = {φ1, . . . , φN} be the sets of all N = 2n/2 partial
assignments of boolean values to the variables in U and V \ U , respectively.
Combining two partial assignments ∂ ⊆ A and φ ⊆ B gives an assignment (∂ ·φ)
to all the variables in the formula. We say that a partial assignment ∂ satisfies a
clause C if ∂ either assigns TRUE to a variable that appears in C as a positive
literal or it assigns FALSE to a variable that appears in C as a negative literal.
The key idea of the reduction is the following simple observation, which gives a
way of checking the satisfiability of κ: The formula κ is satisfiable if and only if
there are two partial assignments ∂ ⊆ A, φ ⊆ B such that for every clause C in
the formula at least one of ∂ and φ satisfies the clause C.

The reduction will generate two strings S and T . The string S will have N
segments of length 5m corresponding to the N partial assignments in A and
each segment will encode which clauses are satisfied by the partial assignment.
Similarly, T will encode the partial assignments in B. A common substring of S
and T will have to be entirely contained in these segments, and it will be able
to be the whole segment only if the two corresponding assignments satisfy all
the clauses of the formula. Therefore, the longest common substring will be of
length 5m if and only if κ is satisfiable.

Let C1, . . . , Cm be the clauses of our CNF formula κ. For ∂ ⊆ A we define the
segment string Sα to contain a different symbol in the (5j − 2)th position Sα[j]
according to whether ∂ satisfies Cj . Then, ≥j ⊆ [m] :

Sα[(5j − 4) . . . (5j)] = [01xj01],where xj = 1 if ∂ satisfies Cj , and 0 otherwise.

Similarly, for φ ⊆ B we define the segment Tλ as follows. ≥j ⊆ [m] :

Tλ[(5j − 4) . . . (5j)] = [β1yj β 1],where yj = β if φ satisfies Cj , and 1 otherwise.

Note that we can construct these strings for every ∂ ⊆ A and φ ⊆ B given κ in
O◦(2n/2m) time. Finally, we create S by concatenating all the segment strings
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Sαi for all ∂i ⊆ A and placing “unmatchable” [000] segments between them, and
we create T similarly by concatenating the Tλi segment strings and placing [111]
segments between them.

S = Sα1 ⇐ 03 ⇐ Sα2 ⇐ · · · ⇐ 03 ⇐ SαN , T = Tλ1 ⇐ 13 ⇐ Tλ2 ⇐ · · · ⇐ 13 ⇐ TλN

Claim 1. The longest common substring of S and T is of length 5m iff there are
∂ ⊆ A, φ ⊆ B such that every clause Cj in κ is satisfied by at least one of ∂, φ.

To prove Claim 1 we first observe that two segments Sα and Tλ match, giving
a common substring of length 5m, if and only if every clause in κ is satisfied
by at least one of ∂ and φ, which implies that the formula is satisfiable. Then,
we need to argue that any common substring of length 5m cannot contain any
of our “unmatchable” parts and must therefore correspond to two segments Sα

and Tλ that match. The details are given in the full version of this paper.

3 From 3-SUM to Alignment

In this section we prove Theorem 1 by proving the following lemma.

Lemma 2. For any 0 < λ < 1, the 3-SUM problem on n numbers can be reduced
in n2−ε+o(1) time to nε+o(1) instances of the local alignment problem on two
strings of length Õ(n) over an alphabet Π of size Õ(n1−ε).

Proof. Given three lists A,B,C ⇒ {−n3, . . . , n3} of n numbers each, we want to
find a triple of numbers a ⊆ A, b ⊆ B, c ⊆ C that sum to 0. We start by applying
a hashing scheme that is due to Dietzfelbinger [20] and that has been used in
recent works on 3-SUM [6,40,32]. Let R = n1−ε. There is a simple family H of
hash functions h : {−n3, . . . , n3} ∪ [R] such that if we pick a function h ⊆ H
from the family at random, and hash each element x in our input sets A⊂B⊂C
to the bucket B(h(x)), we get the following properties:3

– Almost linearity. For any three numbers a, b, c, if a + b + c = 0 then (h(a) +
h(b) + h(c)) modulo R is either 0 or 1.

– Good load balancing. The average number of elements x hashed into a bucket
B(x) is 3n/R and, in expectation, at most O(R) elements are hashed to
buckets with load exceeding 9n/R.

The reduction picks a random hash function h ⊆ H and hashes each element
x in our lists to a bucket B(h(x)). For the O(R) elements that fall in over-
loaded buckets we can run a brute force check to see if they participate in a
3-sum in O(nR) time. Therefore, we can assume that we have at most R buck-
ets B(1), . . . , B(R), each containing at most t = 9n/R = O(nε) elements. We
order the elements in these buckets B(i) = {x1, . . . , xt}, and for each index j
from 1 to t, we will have a separate stage. In stage j we check whether there

3 The value h(x) is computed by taking a random odd integer a and returning the
logR most significant bits from the number a · x.
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is any element c in C such that c is the jth element of its bucket B(h(c)) and
a + b + c = 0 for some a ⊆ A, b ⊆ B. By the “almost linearity” property, it is
enough to search for the pair a ⊆ A, b ⊆ B among the elements a, b for which
either h(a) + h(b) = −h(c) or h(a) + h(b) = −h(c) + 1 (modulo R). To do these
checks, in every stage j we create no(1) instances of the local alignment problem,
as described below. The total number of instances is therefore t ·no(1) = nε+o(1).

In a recent result by Abboud, Lewi and Williams (Lemma 3.1 in [1]), the
authors show that we can construct a set of simple N = nO(1/ log log n) = no(1)

mappings f1, . . . , fN from numbers in {−n3, . . . , n3} to vectors in {−p, . . . , p}d
where p = logn and d = O(log n/ log logn) with the following useful property4.
If three elements a, b, c ⊆ {−n3, . . . , n3} sum to 0, then for some i ⊆ [N ], the
vectors fi(a), fi(b), fi(c) will sum to the all-zero vector 0, while if three numbers
a, b, c do not sum to 0, then for every i ⊆ [N ], the vectors fi(a), fi(b), fi(c) will
not sum to the all-zero vector. Note that the entries in each coordinate of our
vectors are very small since p = logn.

For every triple of numbers (i, j, z) where i ⊆ [N ], j ⊆ [t], z ⊆ {0, 1} we create
an instance of the Local Alignment problem, i.e. two strings S, T over alphabet Π
and a scoring function s(·, ·). The optimal solution to the (i, j, z) local alignment
instance will determine whether there are three numbers a ⊆ A, b ⊆ B, c ⊆ C
such that

1. c is the jth element in its bucket B(h(c)),
2. h(a) + h(b) + h(c) = z (mod R), and
3. fi(a) + fi(b) + fi(c) = 0.

If we find a triple satisfying these conditions then we have found a 3-sum, since by
the property of the mappings from numbers to vectors described above, condition
3 can only happen if a+b+c = 0. On the other hand, if there is a 3-sum a ⊆ A, b ⊆
B, c ⊆ C, a+ b+ c = 0 in our input set, then for some (i, j, z) ⊆ [N ]× [t]×{0, 1},
the above three conditions will hold and we will find this 3-sum. To see this,
note that by the property of the mappings there must exist an i ⊆ [N ] for which
condition 3 holds, and by choosing j ⊆ [t] to be such that c is the jth element in
its bucket B(h(c)) we satisfy condition 2, and finally, by the “almost linearity”
property of our hash function, z = h(a)+h(b)+h(c) (mod R) is in the set {0, 1}
and condition 2 holds as well.

We now describe the Local Alignment instances that we generate for each
triple (i, j, z) ⊆ [N ] × [t] × {0, 1}. Our alphabet Π will contain a letter (h, y)
for every pair of integers h ⊆ [R] (which will be used to indicate the value
of a hash of a number) and y ⊆ {−p, . . . , p} (which will represent the value
in a coordinate of our vectors). We also add two symbols $1 and $2 to
the alphabet. Note that by our choices of p = logn and R = n1−ε, we get that
|Π| = Õ(n1−ε). As in the reduction from CNF-SAT, the strings will be composed
of segments. For every number a in A we create the segment Sa which will have

4 The idea is simple: each number is mapped to a vector containing the base-p rep-
resentation of the number, then enumerate over all guesses for the carries when
summing k numbers in their base-p representation.
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length d and in its αth coordinate it will contain the letter (h(a), fi(a)[α]). This
letter encodes both the hash of a and the value in the αth entry of the vector
fi(a) (corresponding to a in our current mapping i). Similarly, for every number
b in B we define the segment Tb so that Tb[α] = (h(b), fi(b)[α]) for every α ⊆ [d].
The strings S, T of our instance (i, j, z) are constructed by concatenating the seg-
ments with $ signs between them. Let A = {a1, . . . , an} and B = {b1, . . . , bn},
then S = Sa1 ⇐$1 ⇐Sa2 ⇐$1 ⇐ · · ·⇐$1 ⇐San and T = Tb1 ⇐$2 ⇐Tb2 ⇐$2 ⇐ · · ·⇐$2 ⇐Tbn .

The scoring function s(·, ·) is defined as follows. Given two letters (h1, y1)
and (h2, y2), the scoring function will lookup c ⊆ C, where c is the jth element
in bucket number −(h1 + h2) + z (mod R), and return a score of 1 if fi(c) =
−(y1 + y2). In any other case, the returned score is −≤. Formally, for any pair
of letters (h1, y1), (h2, y2) ⊆ [R] × {−p, . . . , p},

s ((h1, y1), (h2, y2)) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if c ∈ C is the jth element in B((−(h1 + h2) + z) mod R)

and fi(c) = −(y1 + y2).

−∞ otherwise

We also disallow $ symbols and gaps in the optimal alignment by giving a score
of −≤ to any pair containing them.

The proof is completed with the following claim that shows that our construc-
tion will find a 3-sum if it exists. The details are given in the full version of this
paper.

Claim 2. There are two substrings of S, T in the (i, j, z) instance achieving a
score of d if and only if there there is a triple a ⊆ A, b ⊆ B, c ⊆ C satisfying
conditions 1 to 3 above.

4 From Weighted Clique to Alignment

In this section we obtain efficient reductions for all k → 2 from the Max-Weight
2k-Clique problem to the MLA on k strings with SP scoring. We can assume
that the input graph is complete, by making each nonedge have weight −≤.

Lemma 3. Max-Weight 2k-Clique on a weighted graph with n nodes and m
edges with weights in {−M, . . . ,M} can be reduced in O(mk) time to MLA on
k strings of length O(m(k + logM)) and alphabet of size O(n + logM).

An interesting observation about our reduction is that the length of the sub-
strings in the optimal alignment is only O(k+logM), which is quite short, while
one could have hoped for faster algorithms for the restricted problem in which
we are only looking for short substrings. With more work, one can strengthen
the reduction to make the length of the optimal substrings only O(log k+logM).
Theorem 4 in the introduction is an immediate consequence of Lemma 3.

We explain the idea of the proof next and give the formal details in the full
version of this paper. Each of the k input strings will contain m segments, one
for each edge in the graph. These segments will be separated by “unmatchable”
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$ symbols so that the scoring function s(·, ·) will have s($, a) = −≤ for any
symbol a in the alphabet. This will enforce that any solution of positive value
must pick a substring from a single segment from each input string. If a solution
picks an entire segment corresponding to an edge (ui, vi) from each input string
i, then our construction will guarantee that the score of the segment alignment
is exactly

∑
i,j w(ui, vj). Notice that if the vertices in {ui, vi}i are distinct, i.e.

the edges (ui, vi) form a matching, then
∑

i,j w(ui, vj) is exactly the weight of
the 2k-clique formed by these vertices. We make sure that when we align two
segments (ui, vi) and (uj , vj) of two different strings i, j, for each of the weights
w ⊆ {w(ui, vj), w(uj , vi), w(ui, uj), w(vi, vj), w(ui, vi) +w(uj , vj)} there is some
coordinate of the segment alignment in which the pairwise score contributes to
w. We carefully devise these contributions to obtain that the sum of the scores
is exactly the weight of the clique.

Finally, our construction will guarantee that the best solution always picks
an entire segment for each input string. We ensure this by beginning and ending
each segment with a symbol χ, where s(χ,χ) = k2M and s(χ, a) = −≤ if a ⇔= χ.
The choice of s(χ,χ) guarantees that the optimum solution would always align
full segments on top of each other in order to include the χ,χ alignments, and
hence the optimum solution corresponds to the maximum weight of a 2k-clique.
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Abstract. This paper studies distance oracles and distance labeling
scheme with local stretch. Informally we would like to provide stretch
guarantees for the r closest nodes of each node. A distance oracle has
local stretch k for r neighborhoods if for any u, v such that v = M(u, r√)
and r√ ≤ r: dist(u, v) ≤ ˜dist(u, v) ≤ kdist(u, v), where M(u, r√) is the
r√ closest node to u and ˜dist(u, v) is the estimated distance returned by
the distance oracle.

For parameters r > 1, k > 1, we obtain labels of size O(r1/k ln1−1/k r+
ln k), with local stretch of 2k − 1 for r neighborhoods in O(k) time,
significantly improving the query time and stretch constant of [ABN09].

Moreover, our stretch guarantee of 2k − 1 matches the best known
(and conjectured optimal) guarantees of standard distance oracles.

1 Introduction

Given a graph G = (V,E) with |V | = n, let dist(u, v,G) be the length of a short-
est path from u to v on G. [To ease notation, we let dist(u, v) = dist(u, v,G).
Namely, when we refer to the distances in some subgraph H of G, we will al-
ways state the subgraph explicitly and write dist(u, v,H). Otherwise, if we write
dist(u, v) we mean dist(u, v,G)]. An approximate distance oracle is a succinct
data structure capable of quickly reporting an estimation ˜dist(u, v) of the dis-
tance between any two points u,v. A distance oracle has several parameters:
its construction time (the running time of the algorithm to produce the data
structure), its size (the worst case size of the data structure), its query complex-
ity (the running time of the query algorithm, given two points), and its stretch
guarantee. The worst case stretch of a distance oracle (perhaps the most studied
notion) is defined as the least number k such that for all u, v:

dist(u, v) ∈ ˜dist(u, v) ∈ kdist(u, v)

For any k > 1, Thorup and Zwick [TZ05] show how to construct an approx-
imate distance oracle with size O(kn1+1/k) that obtains stretch 2k − 1. Wulff-
Nilsen [WN13] showed that the query time can be reduced to O(log k), while
keeping the rest of the parameters the same. Most recently, Chechik [Che14]
improved the query time to optimal of O(1), namely, a distance oracle of size
O(kn1+1/k), 2k−1 stretch and O(1) query time. Mendel and Naor [MN06,MN07]
show how to construct an approximate distance oracle with size O(n1+1/k) that
obtains stretch 128k and O(1) query time. Wulff-Nilsen [WN13] shows that

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 52–63, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014
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it is possible to improve the 128k stretch of Mendel and Naor’s construction
[MN06,MN07] to (2 + σ)k at the cost of additional k-factor in the size, the query
time of his distance oracle is O(1/σ). For the case of k = O(log n/ log logn) and a
fixed σ, Wulff-Nilsen show that it is possible to reduce the size back to O(n1+1/k).

In this paper we study a more refined local stretch guarantee first suggested
by Abraham, Bartal and Neiman [ABN07]. Informally, we wish to obtain smaller
size distance oracles that guarantee 2k − 1 stretch for nearby pairs.

For each vertex u let <u be a total order on V \ {u} such that dist(u, v) <
dist(u,w) implies v <u w. Let NN(u, τ) be the τ nearest neighbors of u (the first
τ elements of <u). Let M(u, r) be the r’th closest node to u (the r’th element
in <u) and let D(u, r) = dist(u,M(u, r)) be their distance.

We study a notion of local stretch that is applicable to distance labels, that
was first suggested by [ABN07,ABN09]. A distance label is a special type of
distance oracle where the data structure is distributed into a label for each point
and the distance between any two points can be computed by looking at their
labels. The size of a distance label scheme is the maximal size of any label.

Definition 1. We say that a distance label scheme has local stretch k for r
neighborhoods if for any u, v such that v = M(u, r◦) and r◦ ∈ r:

dist(u, v) ∈ ˜dist(u, v) ∈ kdist(u, v)

Note that a distance label with local stretch k for r neighborhoods gives no
distance estimation guarantees when v = M(u, r◦) and r◦ > r. Nevertheless, in
some applications one may have access to a locality filter that can quickly deter-
mine if r◦ ∈ r (and if not then use some other distance estimation technique).
For example, the Transit-Node distance oracle [BFSS07] for road networks uses
such a two-phase approach. A rough distance estimation is obtained via a local-
ity filter (by looking at the geometric coordinates), then hash based approach is
used for long-range distance queries and a local search approach for short-range
distance queries.

The best previous results of [ABN09] obtain the following distance label
scheme with local stretch k for r neighborhoods:

Theorem 1. [ABN09] There exists a labeling scheme with maximum label size
of O(r1/k log2 r) such that given the labels of two nodes s and t, and either
s ⊆ NN(t, r) or t ⊆ NN(s, r) then one can estimate the distance from s to t
with stretch O(k) in O(r1/k log2 r) time.

We significantly improve the query time and the stretch constant:

Theorem 2. There exists a labeling scheme with maximum label size of
O(r1/k ln1−1/k r + ln k) such that given the labels of two nodes s and t, and
either s ⊆ NN(t, r) or t ⊆ NN(s, r) then one can estimate the distance from s
to t with stretch 2k − 1 in O(k) time.

Up to the ln1−1/k r factor and assuming the girth conjecture of Erdős [Erd64]
our result is tight, see the full version for details.
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In particular, when k is constant and r is nσ then the best previous query time
was nε(1) and we improve query time to O(k) (which is a constant). Moreover,
the best previous stretch had a large hidden constant O(k) and we obtain a
tight stretch of 2k − 1. Note that stretch 2k − 1 is the best known stretch for
the standard problem (when r = n), is known to be optimal for some values of
k and is conjectured to be optimal under the girth conjecture (see [TZ05]).

Our tight stretch result is obtained using a non-trivial definition of good events
in order to de-randomize the Thorup-Zwick scheme (using the local lemma)
and by subtly adjusting the query algorithm in an asymmetrical manner to
accommodate these good events. See Section 3 for a more detailed discussion on
the high-level ideas and main challenges.

2 Easy Warm-Up: Distance Oracles with Local Stretch

As an easy warm-up for Theorem 2, we start by showing a simple modification
to Thorup-Zwick distance oracle that gives a distance oracle with local stretch
2k−1 for r neighborhoods with O(nr1/k) size for a given positive integer k. The
non-trivial result is obtaining a distance label scheme with worst case label size
bounds. The construction presented in this section does not give a guarantee on
the label size. We will later show using the Lovász local lemma the existence of
label-based distance oracle with maximum label size of O(r1/k ln1−1/k r). Due
to space limitation the proofs are deferred to the full version.

The construction is as follows. Construct the sets V = A0 ⊂ A1 ⊂ · · · ⊂ Ak−1

similarly to the Thorup-Zwick construction but with sampling every node with
probability 1/r1/k rather than 1/n1/k. Namely, A0 = V and the i-th level Ai

is constructed by sampling the vertices of Ai−1 independently at random with
probability 1/r1/k for 1 ∈ i ∈ k − 1.

For every vertex v, define the bunch Bun(v) of v exactly as the Thorup-Zwick
definition, but with the slight change that the last level contains only nodes in
NN(v, r). More precisely,

Bun(v) =
k−2⋃

i=0

[{u ⊆ Ai \Ai+1 | dist(v, u) < dist(v,Ai+1)}]→(NN(v, r)∧Ak−1).

The pivot pi(v) is also exactly as Thorup-Zwick’s definition, namely pi(v) is the
closest vertex to v in Ai (break ties arbitrarily).

Lemma 1. The expected size of the data structure is O(knr1/k).

Consider two nodes s and t such that t ⊆ NN(s, r). The query algorithm
for s and t is exactly as the Thorup-Zwick query algorithm, with the slight
modification that if the algorithm reaches iteration k and yet pk−1(t) /⊆ Bun(s)
then we simply return D(s, r).

We next analyze the stretch.

Lemma 2. The stretch is 2k − 1.
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3 Distance Labels with Local Stretch and Small
Maximum Label Size

The algorithm of Section 2 gives a distance oracle with a bound on its total size.
This algorithm can be easily transformed into a label based scheme, by assigning
each node v a label containing the bunch Bun(v) and the distances from v to
the nodes in Bun(v). It is not hard to verify that given the labels of two nodes
one can estimate their distance with 2k− 1 stretch. However, this does not give
a bound on the maximum size of the bunches of the nodes and thus on the
labels size. In fact, it is easy to prove that when r is very small (r << logn),
the maximum size of the bunches can be much larger than r1/k. In this section,
we modify the algorithm and use the Lovász local lemma in order to prove the
existence of a distance oracle where all bunches are of size O(r1/k ln1−1/k r).

Let us start by stating tee Lovász local lemma [EL75].

Lemma 3. Let {E1, ..., Ei} be a set of events such that each event Ei′ occurs
with probability at most p and such that each event is independent on all other
events except at most d of them. If 4pd < 1 then there is a nonzero probability
that none of the events occurs.

We next explain the high level overview of our construction in Section 3.1.
We will later describe in Section 3.2 the formal construction and analysis. Due
to space limitation some of the proofs are deferred to the full version.

3.1 Overview and Main Challenges

Consider the sets V = A0 ⊂ A1 ⊂ · · · ⊂ Ak−1 that are defined similarly as in
the Thorup-Zwick construction, but with sampling every node with probability
1/(r1/k ln1/k r). For every vertex v, define the bunch

Bun(v) =

k−2⋃

i=0

[{u ⊆ Ai \Ai+1 | dist(v, u) < dist(v,Ai+1)}]→(NN(v, r)∧Ak−1).

The pivot pi(v) is also exactly as Thorup-Zwick’s definition, namely pi(v) is the
closest vertex to v in Ai (break ties arbitrarily).

Let A(x, i) be the event that the node x belongs to Ai. We will define good
events that depend only on the events {A(x, i)}x√V,1≤i≤k−1. When we say that
an event E depends on a node z, we mean that the outcome of E may depend
on one of the events A(z, i) for 1 ∈ i ∈ k − 1.

Roughly speaking, the good event Egood(v) is when the size of Bun(v) is
small (we will later see that we actually need to further extend Egood(v)). In
order to apply the Lovász local lemma we want that the good events Egood(v)
depend only on a “small” ball around v. In fact, to show that there are small
dependencies between the good events, we need that the event Egood(v) depends
on a ball of radius even smaller than D(v, r) (recall that D(v, r) is the distance
from v to it’s r’th closest node). This would require that the bunch Bun(v)
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contains only nodes in a small radius ball around v. However, we still need to be
able to answer distance queries between v and nodes at distance at most D(v, r)
from it. This raises several complications. For example, it might happen that
a node u ⊆ NN(v, r), but the pivots of u are at a larger distance, namely, it
could be that dist(v, pi(u)) > D(v, r). On the one hand we want that the label
L(v) to contain pi(u) (so that the distance dist(u, v) can be estimated in the
query phase), and on the other hand we want that the good event Egood(v) not
to depend on far away nodes, (which implies that L(v) can not contain far away
nodes). We now highlight the general ideas of our solution.

The following observation is crucial. If dist(v, u) ≥ dres(v) = D(v, r)/(2k−1)
then it is safe to return D(v, r), since the stretch is at most 2k − 1. So we
only need to worry about the case where dist(v, u) < dres(v). Let i be the
minimal index such that either pi(u) ⊆ Bun(v) or pi(v) ⊆ Bun(u). By the
Thorup-Zwick analysis we can show that dist(u, pj(u)) ∈ j · dist(u, v) and
dist(v, pj(v)) ∈ j · dist(u, v) for every j ∈ i. So at the end when i = k − 1, we
get that dist(v, pk−1(u)) ∈ k ·dist(v, u). In the case where dist(v, u) < dres(v),
we have dist(v, pk−1(u)) ∈ kdres(v). This implies that good event of v only
needs to depend on nodes at distance at most kdres(v) from v.

Notice that kdres(v) = kD(v, r)/(2k−1) is slightly larger than D(v, r)/2. The
fact that the good event of a node v may depend on nodes at distance larger
than D(v, r)/2 (rather than smaller than D(v, r)/2) makes the analysis of small
dependence non-trivial (it would be trivial otherwise).

We show that a node z cannot be in too many good events. The following
scenario shows a potential challenge with weighted edges. Assume for simplicity
that D(y, r) is the same for all nodes y ⊆ V . Consider a node z with many
neighbors connecting to it with edges of weight D(z, r)/2 + σ. The node z may
appear in the good events of all of its neighbors and we thus may have a large
overlap between the good events.

We therefore need to define the good events in a subtle manner. Recall again
that our main difficulty is when dist(v, u) ∈ dres(v) and i = k−1 is the smallest
index such that either pi(u) ⊆ Bun(v) or pi(v) ⊆ Bun(u). Recall also that in this
case dist(v, pi(u)) ∈ kdist(u, v) and dist(u, pi(u)) ∈ (k − 1)dist(u, v). Notice
that there is a path between v and pk−1(u) of length at most kdist(u, v) that
uses edges of weight at most (k − 1)dist(u, v) ∈ (k − 1)dres(v). This path can
be obtained by taking the shortest path from v to u followed by the shortest
path from u to pk−1(u). Therefore, in some sense v can ignore long edges and
consider only edges of length at most (k−1)dres(v). So we define the good event
of v to be dependent only on nodes that are at distance at most (k − 1)dres(v)
from some node in B(v, dres(v)). This helps us (as we will see later on) to show
small overlap between the events.

More technical difficulties arise from the fact that D(v, r) and D(u, r) may
be different. The event of u is not familiar with the node v, therefore we cannot
define its event in terms of D(v, r). To overcome this issue, we roll the responsi-
bility from u to v. The good event of the node v is responsible that all nodes u in
B(v, dres(v)) are well behaved, in the sense that u is familiar with the relevant
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pivots of v. More specifically, the label of u stores the τ = c ·r1/k ln1−1/k r closest
nodes to u in Ai for every 1 ∈ i ∈ k − 1, where c is some constant to be fixed
later on. Let NNi(v) be the τ closest nodes in Ai to v.

The good event of the node v is responsible that for all nodes u in B(v, dres(v))
one of the following happens. Either |B(u, (k − 1)dres(v)) ∧ Ai| ∈ τ and then
the label of u contains pi(v) (as pi(v) < (k − 1)dres(v)) or the pivot pi+1(u) is
closer to u than pi(v). In the first case the label L(u) contains pi(v) and we are
done (as we can return dist(v, pi(v)) + dist(pi(v), u)). In the second case, the
analysis is similar to the Thorup-Zwick analysis.

We modify the query algorithm of Thorup-Zwick, instead of checking if pi(v) ⊆
Bun(u), we check if pi(v) ⊆ NNi(u).

The main reason for this change is as follows. Recall that now we define the
bunch of z to contain only nodes at small radius ball B̃(z) around z. In fact,
the radius of the ball B̃(z) is defined according to D(z, r). Since it may happen
that D(u, r) < D(v, r), and since B̃(u) is defined according to D(u, r) and not
according to D(v, r), the ball B̃(u) may be “too small” in v’s perspective. Thus
to overcome this issue, we consider NNi(u) rather than Bun(u).

3.2 Formal Construction

We start by defining a sample space for constructing the sets A0, ..., Ak. We
define a set of good events Egood(v) for every v ⊆ V that depend on the sets
A0, ..., Ak. We then show using the Lovász local lemma that there is a nonzero
probability that all the good events Egood(v) occur. Finally, we show that given
sets A0, ..., Ak that satisfy the events Egood(v) for every v ⊆ V , one can construct
a labeled-based r-NN distance oracle with local stretch 2k − 1 (distance oracle

with local stretch 2k − 1 for r neighborhoods) and labels size O(r1/k ln1−1/k r).
Let us start with defining the sample space for constructing the sets A0, ..., Ak

and the events Egood(v) for every v ⊆ V .
Consider the sets V = A0 ⊂ A1 ⊂ · · · ⊂ Ak−1 that are defined similarly as in

the Thorup-Zwick construction, but with sampling every node with probability
1/(r1/k ln1/k r). Namely, A0 = V and the i-th level Ai is constructed by sampling

the vertices of Ai−1 independently at random with probability 1/(r1/k ln1/k r)
for 1 ∈ i ∈ k − 1.

The pivots pi(v) for 1 ∈ i ∈ k−1 are defined as in the Thorup-Zwick, namely,
pi(v) is the closest node to v in Ai (break ties arbitrarily).

Let G|d be the graph obtaining by deleting all edges from G of weight d or
more. Let dres(v) = D(v, r)/(2k − 1) (recall that D(v, r) is the distance from v
to it’s r’th closest node). Let G̃(v) be the graph G|(k−1)dres(v).

Definition 2. Let B̃(v) be the set of nodes in B(v, k · dres(v), G̃(v)), in other
words all nodes x such that there is a path from v to x of length at most k·dres(v),
where all edges are of weight at most (k − 1)dres(v).
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Definition 3. Define the bunches as described earlier, while storing only nodes
in B̃(v). More precisely,

Bun(v) =
k−2⋃

i=0

[
{u ∈ (Ai \Ai+1) ∩ B̃(v) | dist(v, u) < dist(v,Ai+1)}

]
∪(Ak−1∩ B̃(v)).

We now formally define the events.

Defining the Events:

1. Let τ = 6r1/k ln1−1/k r + ln k.
2. Let NNi(v) be the τ closest nodes in Ai to v.
3. Let Ei(u, d) be the event that either |B(u, d)∧Ai| ∈ τ or NNi(u)∧Ai+1 ⇐= ⇒.
4. Let E(u, d) be the event that for every i, Ei(u, d) occurs.

5. Let Esize(v) be the event that |Bun(v)| ∈ 46r1/k ln1−1/k r.
6. Let Eneighbors(v) be the event that for every node u: if dist(u, v) < dres(v)

and D(u, r) ∈ D(v, r), then E(u, (k − 1)dres(v)) occurs.
7. Let Egood(v) be the intersection of the events Esize(v) and Eneighbors(v).

The Distance labels Scheme:
We now show our distance-labeling scheme assuming the sets A0, ..., Ak satisfy
events Egood(v) for every v ⊆ V .

The label of a node v is as follows. If r ∈ 20, just store NN(v, r), otherwise
do the following. For every 0 ∈ i ∈ k−1, store the set NNi(v) and the distances
from v to the nodes in NNi(v). Store an indication if D(v, τ) ≥ dres(v), and the
distance D(v, r). Store the pivots pi(v) and the bunch Bun(v) and the distances
from v to these nodes. This concludes the construction of the labels.

The query algorithm for given nodes s and t is as follows.

1. Assume w.l.o.g. that D(t, r) ∈ D(s, r) (otherwise switch s and t).
2. The query algorithm is similar to the Thorup-Zwick query algorithm with

the following subtle modifications.
3. First, instead of checking if pi(s) ⊆ Bun(t), check if pi(s) ⊆ NNi(t). We

keep the check pi(t) ⊆ Bun(s) as is.
4. Second, if k is even then the algorithm starts by checking if s ⊆ NN0(t),

otherwise it starts by checking t ⊆ Bun(s). The reason for the second
modification is to make sure that the algorithm finishes with the check
pk−1(t) ⊆ Bun(s), rather than s ⊆ NNk−1(t), for reasons that will become
clearer later on.

5. Third, if the algorithm finishes and yet pk−1(t) /⊆ Bun(s), then return
D(s, r).

See Figure 1 for the pseudo-code.
To ease presentation, let pk(v) = nil.

Lemma 4. If t ⊆ NN(s, r) or s ⊆ NN(t, r) and events Egood(s) and Egood(t)

occur then the distance ˆdist(s, t) returned by the query algorithm satisfies,

dist(s, t) ∈ ˆdist(s, t) ∈ (2k − 1)dist(s, t).
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algorithm dist(s, t)

i ← 0
If D(t, r) > D(s, r) then (s, t) ← (t, s).
If r ≤ 20, return dist(s, t).
While i ≤ k − 1 do:

If k − i is odd then do:
If pi(t) ∈ Bun(s) then return dist(s, pi(t)) + dist(pi(t), t).

Else (k − i is even) do:
If pi(s) ∈ NNi(t) then return dist(s, pi(s)) + dist(pi(s), t).

i ← i+ 1
Return D(s, r).

Fig. 1. Answering a distance query for nodes (s, t)

Proof: Consider s and t such that either t ⊆ NN(s, r) or s ⊆ NN(t, r). Assume
w.l.o.g. that D(t, r) ∈ D(s, r) (otherwise switch s and t). First we note that

if either s ⊆ NN(t, r) or t ⊆ NN(s, r) then the returned distance ˆdist(s, t)

satisfies dist(s, t) ∈ ˆdist(s, t). To see this, notice that the algorithm either
returns dist(s, w) +dist(w, t) for some node w or it returns D(s, r). In the first

case, clearly by triangle inequality, dist(s, t) ∈ ˆdist(s, t). In the second case,
note that if t ⊆ NN(s, r) then by definition of D(s, r), dist(s, t) ∈ D(s, r)
and if s ⊆ NN(t, r) then by definition of D(t, r), dist(s, t) ∈ D(t, r) and since

D(s, r) ≥ D(t, r) then dist(s, t) ∈ D(s, r). We get that dist(s, t) ∈ ˆdist(s, t). We

are left with showing the second direction, that is, ˆdist(s, t) ∈ (2k−1)dist(s, t).
Note that the maximum distance returned by the algorithm is D(s, r) and

thus if dist(s, t) ≥ D(s, r)/(2k − 1) then ˆdist(s, t) ∈ (2k − 1)dist(s, t) and we
are done. So assume dist(s, t) < D(s, r)/(2k − 1).

Let λ = dist(s, t).
Let i◦ be the number of iterations in the while loop of Algorithm dist. We

prove by induction on i for every i ∈ i◦ the following. If (k − i) is odd then
dist(t, pi(t)) ∈ iλ, else dist(s, pi(s)) ∈ iλ. For i = 0, the claim follows from the
fact that dist(t, p0(t)) = dist(s, p0(s)) = 0. Assume the claim holds for every
i◦◦ ∈ i and consider i + 1.

If k−i is odd then the algorithm checks in the i’th iteration if pi(t) ⊆ Bun(s).
we claim that pi(t) ⊆ B̃(s). To see this, note that by induction hypothesis
dist(t, pi(t)) ∈ iλ. Consider the path P that is obtained by concatenating the
path from s to t and the path from t to pi(t). It is not hard to verify that this
path is of length at most (i + 1)λ ∈ kλ/(2k − 1) and in addition all edges on
that path are of weight at most (k − 1)λ/(2k − 1). We get that pi(t) ⊆ B̃(s).

Hence, by definition if pi(t) /⊆ Bun(s) then dist(s, pi+1(s)) ∈ dist(s, pi(t)) ∈
(i + 1)λ, as required.

If (k − i) is even then the algorithm checks in the i’th iteration if pi(s) ⊆
NNi(t). If pi(s) /⊆ NNi(t), then by definition dist(pi(s), t) ≥ max

x√NNi(t)
dist(t, x).

In addition, dist(t, pi(s)) ∈ dist(s, t) +dist(t, pi(s)) ∈ iλ ∈ (k− 1)λ/(2k− 1).
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We assume that the event Egood(s) occurs and hence, by definition event
Eneighbors(s) also occurs. Recall that the event Eneighbors(s) is the event that
for every node u: if dist(u, s) < dres(s) and D(u, r) ∈ D(s, r), then E(u, (k −
1)dres(s)) occurs. Specifically, event E(t, (k − 1)dres(s)) occurs as dist(s, t) <
dres(s) and D(t, r) ∈ D(s, r).

Recall that by definition of event E(t, (k − 1)dres(s)), either |B(t, (k −
1)dres(s)) ∧Ai| ∈ τ or NNi(t) ∧ Ai ⇐= ⇒.

We claim that |B(t, (k − 1)dres(s)) ∧ Ai| > τ. To see this, recall that pi(s) /⊆
NNi(t) and that pi(s) ⊆ (B(t, (k − 1)dres(s)) ∧ Ai). It follows that there must
be τ nodes in Ai closer to t than pi(s). Hence |B(t, (k − 1)dres(s)) ∧ Ai| > τ.

It follows that NNi(u) ∧ Ai+1 ⇐= ⇒. We get that, dist(t, pi+1(t)) ∈
max

x√NNi(t)
dist(t, x) ∈ dist(pi(s), t) ∈ dist(s, t) + dist(pi(s), s) ∈ (i + 1)λ, as

required.

Proving a Non-Zero Probability That All Events Egood(v) Occur Si-
multaneously:
The next Lemma is strongly based on Lemma 3.5 from [TZ05] and is given here
for completeness, the proof is deferred to the full version.

Lemma 5. The probability that Esize(v) does not occur is at most 1/(10r4), for
any node v ⊆ V and r ≥ 20.

Lemma 6. The probability that Eneighbors(v) does not occur is at most 1/(10r4),
for any r ≥ 10.

We now show that every node v belongs to at most r3 sets B̃(u), namely,
|{u ⊆ V | v ⊆ B̃(u)}| ∈ r3. This is the main part of the analysis. This allows us
later to apply the Lovász local lemma.

For nodes z1, z2 and graph H , let P (z1, z2, H) be the shortest path from z1
to z2 in H .

Lemma 7. Every node x̂ satisfies |{u ⊆ V | x̂ ⊆ B̃(u)}| ∈ r3.

Proof: Seeking a contradiction assume that there exists a node x̂ such that
|{u ⊆ V | x̂ ⊆ B̃(u)}| > r3. Let v̂ be the node with the maximal D(v̂, r) such
that x̂ ⊆ B̃(v̂).

Let S = {u ⊆ V | x̂ ⊆ B̃(u)}, namely, all the nodes such that their events may
depend on x̂.

For a node u ⊆ S, let q(u) be the first node (closest to u) in P (u, x̂, G̃(u))
that belongs to NN(v̂, r). Note that such a node must exists as x̂ ⊆ NN(v̂, r).

For a node x ⊆ NN(v̂, r), let S(x) = {u ⊆ S | x = q(u)}. Note that the sets
S(x) for x ⊆ NN(v̂, r) form a partition of S. By simple counting there must be
a node x in NN(v̂, r) such that |S(x)| ≥ r2.

For a node w◦ ⊆ S(x), let q2(w◦) = q2(x,w◦, G̃(w◦)) be the second node of
P (x,w◦, G̃(w◦)). Note that q2(w◦) is a neighbor of x.

Let N(S(x), x) = {q2(w◦) | w◦ ⊆ S(x)}.
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Consider two cases, the first case is when |N(S(x), x)| ≥ r (see Figure 2
for illustration). The second case is when |N(S(x), x)| < r (see Figure 3 for
illustration). Consider the first case, let w ⊆ S(x) be a node with maximal
Π(x, q2(w)), where Π(w1, w2) for pair of nodes (w1, w2) is the weight of the edge
(w1, w2) in the original graph G (or null if no such exists).

Let d2 = Π(x, q2(w)). Let d1 = dist(x̂, x) and let d3 = dist(x,w) − d2.
Notice that x has at least r neighbors at distance at most d2 from it. As

dist(w, x) = d3 + d2, we get that D(w, r) ∈ d3 + 2d2. In addition, recall that
the edge (x, q2(w)) appears in the graph G̃(w). Therefore, by definition of G̃(w),
we have d2 = Π(w, x) < (k − 1)dres(w) ∈ (k − 1)(d3 + 2d2)/(2k − 1). Hence,
d2 < (k − 1)d3.

Since x̂ ⊆ B̃(w), we have dist(w, x̂, G̃(w)) < kdres(w). Note that,
dist(w, x̂, G̃(w)) = d1 + d2 + d3 and that dres(w) ∈ (d3 + 2d2)/(2k − 1).

Hence, d3+d2+d1 < k(d3+2d2)/(2k−1), therefore (k−1)d3+(2k−1)d1 < d2.
It follows that (k − 1)d3 < d2, contradiction.

Consider now the second case where |N(S(x), x)| < r. For a node w let Q(w) =
{z ⊆ S(x) | w ⊆ P (x, z, G̃(z))}. Note that there must be a node w ⊆ N(S(x), x)
such that |Q(w)| ≥ r and w /⊆ NN(v̂, r). Note that dist(w, x̂) ≥ (k − 1)dres(v̂).

Consider a node z ⊆ Q(w) of maximal dist(z, w). Recall that D(z, r) ∈
D(v̂, r). Recall also that w appears on the shortest path P (z, x̂, G̃(z)). In ad-
dition, as x̂ ⊆ B̃(z), we have dist(z, x̂, G̃(z)) ∈ kdres(z). Moreover, note that
as dist(w, x̂) ≥ (k − 1)dres(v̂), we get that dist(z, w) ∈ dist(z, w, G̃(z)) ∈
dist(z, x̂, G̃(z)) − dist(w, x̂, G̃(z)) ∈ kdres(v̂) − (k − 1)dres(v̂) = dres(v̂).

If follows that dist(z, w) ∈ dist(w, x̂). Note that w has at least r nodes at
distance dist(z, w) from it.

We get that D(w, r)∈dist(z, w). In addition, D(z, r) ∈ dist(z, w)+D(w, r) ∈
2dist(z, w).

Since x̂ ⊆ B̃(z), we also have, dist(x̂, z) ∈ kdres(z).
We get, 2dist(z, w) ∈ dist(z, x̂) ∈ kdres(z) ∈ k2dist(z, w)/(2k − 1) <

2dist(z, w), contradiction.

The following lemma shows that each event Egood(v) depends on at most r4

other events.

Lemma 8. The event Egood(v) for some node v ⊆ V is independent on all other
events Egood(u) but at most r4 of them.

Proof: Let A(x, i) for some node x be the event that x belongs to Ai. It is not
hard to see that the events A(x1, i) and A(x2, j) are independent in the case
where x1 ⇐= x2.

First, we claim that the event Egood(z) for some node z is determined by the

set of the events {A(x, i) | x ⊆ B̃(z), 1 ∈ i ∈ k − 1}. To see this, recall that the
event Egood(z) is the intersection of the events Esize(z) and Eneighbors(z). The

event Esize(z) is the event such that Bun(z) is of size at most 46r1/k ln1−1/k r.
Recall that Bun(z) includes only nodes nodes in B̃(z) and it is not hard to
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see that Bun(z) is determined by the events {A(x, i) | x ⊆ B̃(z), 1 ∈ i ∈
k − 1}. The event Eneighbors(z) is the event such that for every node u such
that dist(u, z) < dres(z) and D(u, r) ∈ D(z, r), E(u, (k − 1)dres(z)) occurs. It
is not hard to verify that the event E(u, (k − 1)dres(z)) is determined by the
events {A(x, i) | dist(x, u≤(k − 1)dres(z). Note that the set {x | dist(x, u) ∈
(k − 1)dres(z)} ∪ B̃(z). We get that the event Eneighbors(z) is determined by

the events {A(x, i) | x ⊆ B̃(z), 1 ∈ i ∈ k − 1}. Hence, the event Egood(z) is

determined by the set of the events {A(x, i) | x ⊆ B̃(z), 1 ∈ i ∈ k − 1}.
We conclude that two events Egood(v1) and Egood(v1) are dependent on one

another only if B̃(v1) ∧ B̃(v2) ⇐= ⇒. By Lemma 7 every node in B̃(v) belongs to
at most r3 sets B̃(v◦). The number of nodes in B̃(v) is at most r, therefore there
are at most r4 nodes v◦ such that B̃(v) ∧ B̃(v◦) ⇐= ⇒. The lemma follows.

Let Egood(v) the event that Egood(v) does not occur. For every v, Egood(v)

occurs with probability at most r−4/5. Each event Egood(v) depends on at most

r4 other events Egood(u). We thus have by Lemma 3 that there is a nonzero

probability that node of the events Egood(v) occurs, or in other words, that all
the events Egood(v) occur.

We conclude the following.

Theorem 3. There exists a labeling scheme with maximum label size of
O(r1/k ln1−1/k r + ln k) such that given the labels of two nodes s and t, if ei-
ther s ⊆ NN(t, r) or t ⊆ NN(s, r) then one can estimate the distance from s to
t with stretch 2k − 1 in O(k) time.
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Abstract. We introduce a general model for time-expanded versions of
packing problems with a variety of applications. Our notion for time-
expanded packings, which we introduce in two natural variations, re-
quires elements to be part of the solution for several consecutive time
steps. Despite the fact that the time-expanded counterparts of most com-
binatorial optimization problems become computationally hard to solve,
we present strong approximation algorithms for general dependence sys-
tems and matroids, respectively, depending on the considered variant.
More precisely, for both notions of time-expanded packings that we in-
troduce, the approximation guarantees we obtain are at most a small
constant-factor worse than the best approximation algorithms for the
underlying problem in its non-time-expanded version.

1 Introduction

The need to model the temporal dimension in real-world applications has sprung
the development of several new branches in combinatorial optimization. While
such extensions have been studied in depth in some fields, scheduling and network
flow theory being notable examples, other areas of combinatorial optimization
did not receive a similar attention. This paper presents a new model for extend-
ing combinatorial optimization problems over time with natural applications in
scheduling, packing, and knapsack problems.

Consider the classical setting of combinatorial optimization problems, defined
by a set system (A,X ), where A is a finite ground set and X ∈ 2A describes the
feasible subsets of A. Furthermore, weights wa ⊆ Z�0 are given for a ⊆ A. We
denote by P = (A,X , w) the classical linear optimization problem associated
with the set system (A,X ), which asks to find a feasible set S ⊆ X maximizing
w(S) :=

∑
a∈S wa. We define two natural time-expanded versions of P (A,X , w),

which we call integer time-expanded packings and binary time-expanded packings.
In both versions we are given—in addition to (A,X , w)—a time horizon T ⊆ Z>0

and durations σa ⊆ Z>0 for a ⊆ A that satisfy σa � T . A solution to both of
our time-expanded versions is a collection S = {St ⊆ X : t ⊆ [T ]}, where
[T ] := {1, . . . , T }, such that for each a ⊆ A, we have

– for integer time-expanded packings : {t ⊆ [T ] : a ⊆ St} is either empty, or can
be partitioned into intervals of length σa;
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– for binary time-expanded packings : {t ⊆ [T ] : a ⊆ St} is either empty, or is a
single interval of length σa.

The objective in both variants of the problem is to maximize the total weight
w(S) =

∑
t∈[T ]w(St) of the solution.

A time-expanded solution S can be equivalently represented by the |A| × T
binary matrix (xat) where each column x·t is the incidence vector of St ⊆ S
(see Figure 1 for an example of integer time-expanded packing)1. In this case
the duration property states that in each row xa·, the length of any maximal
consecutive-one sequence is a multiple of σa in the integer case, or precisely σa
in the binary case. An informal phrasing of this condition is that whenever an
element is activated it must remain in the solution for exactly σa time units.

e1

e2 e3

e4

1 2 3 4 5

e1

e2

e3

e4

(xat)

S

τe1 = 3

τe2 = 2

τe3 = 2

τe4 = 2

1 1 1 0 0

1 1 0 1 1

0 0 1 1 0

0 1 1 1 1

Fig. 1. A graph (left) and a corresponding integer time-expanded forest (right) for
T = 5. The matrix elements corresponding to activations are shaded in gray.

Time-expanded variants of classical combinatorial optimization problems are
typically NP-hard. For example, even the trivial optimization problem that asks
to pick at most one element of A—i.e., the feasible sets are independent sets in a
uniform matroid of rank one—transforms into the integer/binary knapsack prob-
lem in its integer/binary time-expanded version. Whereas this only shows weak
NP hardness, time-expanded variants of more complicated problems turn out to
be more difficult. In particular, binary time-expanded matroid optimization is
strongly NP-hard, while integer time-expanded bipartite matching is APX-hard.
We present these results in the full version of the paper. In light of the latter
results, we concentrate our efforts on finding constant-factor approximations.
The following theorems summarize our main contribution. Recall that (A,X ) is
an independence system if X ∈ Y ⊆ X implies X ⊆ X .

Theorem 1. Let P = (A,X , w) be matroid optimization problem. Then, the
binary time-expanded variant of P admits a 4-approximation algorithm.

Theorem 2. Let P = (A,X , w) be a combinatorial optimization problem ad-
mitting a polynomial τ-approximation algorithm for τ = τ(A,X ), with (A,X )

1 We remark that since T is an integer parameter in the input, an explicit description
of a time-expanded solution is in general exponential in the input size. To avoid
confusion with output-polynomial algorithms, we stress here that all algorithms de-
scribed in this paper run in input-polynomial time. In particular, the time-expanded
solutions they provide can be encoded efficiently.
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an independence system. Then, the integer time-expanded variant of P admits
an λτ-approximation algorithm, with λ ⊂ 1.691030.

The exact value of λ in Theorem 2 is λ =
∑√

i=1 1/si, where {si}i∈Z�1
is the

sequence defined recursively by s1 = 1 and sn+1 = sn(sn + 1) for n � 2. The se-
quence {si+1}i∈Z�1

is known as Sylvester’s sequence [19], and the constant λ ap-
pears as the approximation guarantee of several well-known algorithms [12,14,5].
By a matroid optimization problem we mean that the set system (A,X ) is a
matroid. The proofs of Theorems 1 and 2 are presented in Sections 2 and 3, re-
spectively, while some details are deferred to the full version of the paper. In the
remainder of this section we mention a number of applications of time-expanded
packings, together with the implications we can derive from Theorems 1 and 2,
and discuss some further related work.

Applications

Orthogonal rectangle packing. Here, we are given a set of weighted axis-parallel
rectangles in R

2 and a large rectangle Q. The task is to find a maximum weight
packing of the rectangles into Q. A packing is an axis-parallel placement of rect-
angles, so that no two packed rectangles intersect in their interior. It is easy to
see that if one is allowed to pack any arbitrary number of copies of every rect-
angle, then the problem can be modeled as the time-expanded integer knapsack
problem, where the heights and widths of the given rectangles correspond to
item sizes for the knapsack problem and durations of these items, respectively.
The height of Q corresponds to the size of the knapsack, and its width corre-
sponds to the total duration T . By applying Theorem 2 on this instance, we
obtain an (λ + Π)-approximation algorithm for this problem, as the set system
corresponding to solutions of the knapsack problem is an independence system,
and the integer knapsack problem admits an FPTAS (see e.g. [9,13]). Jansen
et al. [10] gave a (2 + Π)-approximation for the harder binary variant of this
problem. Our result improves this approximation for the integer case. In fact,
by applying Theorem 2 recursively d times, we can obtain the following result
for the more general, Box Packing problem, consisting of packing d-dimensional
boxes into a large d-dimensional box.

Corollary 1. The d-dimensional Box Packing problem admits an λd−1(1 + Π)-
approximation algorithm for any Π > 0.

Cooperative scheduling. A second application of Theorem 2, which we call Coop-
erative Scheduling, models the following production problem. Consider a factory
with a set M of machines where a set A of goods can be produced. The produc-
tion of one unit of good a gives a profit wa, but requires the cooperation (or joint
operation) of a specific subset Ma ∈ M of the machines for a certain production
time σa (no preemption is allowed). Goods can be produced in any quantity, and
each machine can work on at most one good at any given time. Assuming that the
factory is rented for T time units, the goal is to find a production schedule that
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maximizes the total profit within the time window, where a production schedule
specifies which goods should be produced and when. By identifying the machine
set M with the vertices of an hypergraph H , and each Ma with an hyperedge,
Cooperative Scheduling can be easily seen to be equivalent to the time-expanded
version of hypergraph matching (also known as set packing). Indeed, a subset of
goods can be simultaneously produced if and only if the corresponding hyper-
edges form a matching in H , and the production times for the goods, together
with the no-preemption assumption, imply the duration property. Theorem 2
alongside the (k+1

2 + Π)-approximation algorithm of Berman [4] for hypergraph
matching with hyperedges with at most k elements, and the polynomiality of
the maximum matching problem in graphs implies the following result.

Corollary 2. Cooperative Scheduling for instances with |Ma| � k for all goods
a ⊆ A admits a (λk+1

2 + Π)-approximation algorithm. If |Ma| � 2 for all goods
the approximation ratio improves to λ.

We note that when each machine i ⊆ M can simultaneously process (at most)
bi ⊆ Z�1 goods and |Ma| � 2 we obtain the time-expanded b-matching problem,
and hence this variant also admits an λ-approximation algorithm.

Machine maintenance. We now mention an application of binary time-expanded
packings. Consider the following Machine Maintenance problem. A factory con-
taining n machines I needs to continuously perform a set of m � n jobs J . Each
machine can process at most one job at any given time. Furthermore, each ma-
chine can process only a subset of the jobs, expressed naturally via a bipartite
graph G = (I→J,E). Next, assume that machines need to undergo maintenance,
during which they must be idle. Profits are assigned to machines to reflect how
important it is to maintain them. For example, profits can reflect the time that
elapsed after the last maintenance of the machine. Assuming that maintenance
of machine i requires σi time units, the goal is to maintain the maximum profit
set of machines within a given working cycle, consisting of T time units, while
maintaining a constant processing of all jobs.

The latter maintenance problem can be cast as the binary time-expanded
matroid optimization problem, with the matroid corresponding to the dual of
the scheduling matroid associated with the graph G. Recall that the scheduling
matroid corresponding to G has as bases all minimal subsets of machines I ≤ ∈ I
with the property that the machines in I ≤ suffice to schedule all jobs in J . Hence,
the dual of this matroid has as independent sets all sets of machines I ≤≤ ∈ I, so
that all jobs can be scheduled only using the machines in I \I ≤≤. It is now evident
that two problems are indeed the same.

We note that the latter problem can have another application, in which ma-
chines a ⊆ I that are not used can be rented for σa consecutive time steps at a
given profit. This variant, denote by Machine Renting, can also be meaningful
in the integer setup, where a machine can be rented in several periods to the
same client. We conclude with the following corollary of Theorems 1 and 2.

Corollary 3. Machine Maintenance and Machine Renting admit approximation
algorithms with approximation guarantees 4 and λ, respectively.
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Further Related Work

We review here some work related to temporal extensions of combinatorial prob-
lems. Flows over time are a well-known temporal extension of network flows. The
field originated from a seminal paper by Ford and Fulkerson [7] which extended
the standard maximum flow problem. For an extensive review of flows over time
we refer to [18]. We refer to [11] for a recent development combining discrete
and continuous flows over time in a unique framework.

In scheduling theory the dimension of time is inherent in most problems. We
refer the reader to the book of Pinedo [16] for a thorough treatment of this
topic. The scheduling problems which are most relevant to this work are profit
maximization scheduling problems [3,2], in which not all given jobs need to be
processed. Instead, each job is associated with a certain profit that is gained in
case it is completed before its deadline.

2 Binary Time-Expanded Packings on Matroids

In this section we will present an algorithm proving Theorem 1. Thus, we
assume that (A,X ) is a matroid. We first give a roadmap of our proof. We
start by defining a relaxation of binary time-expanded packings, which we call
weak binary time-expanded packings, and show that any weak binary time-
expanded packing can be transformed into a binary time-expanded packing by
losing at most a factor of 2. We then design a 2-approximation for finding a
weak binary time-expanded packing. To prove that our algorithm is indeed a
2-approximation for weak binary time-expanded packings, we show that it is ac-
tually a 2-approximation even for a relaxed version of weak binary time-expanded
packings, which we call non-consecutive binary time-expanded packings.

Definition 1 (Weak Binary Time-Expanded Packing). A collection S =
{St ⊆ X : t ⊆ [T ]} is a weak time-expanded packing if for each a ⊆ A, the set
{t ⊆ [T ] : a ⊆ St} is either

(i) the empty set, or
(ii) an interval of size σa, or
(iii) an interval of size < σa that contains T .

Notice that a binary time-expanded packing is the same as a weak binary time-
expanded packing without (iii). Hence, weak binary time-expanded packings can
be considered as a temporal restriction of a bigger binary time-expanded packing
to a smaller horizon T . We say that an element a ⊆ A appears in a weak binary
time-expanded packing Sw if it is contained in at least one Sw

t . An element
a ⊆ A is a partial element of Sw if it appears in the packing for strictly less
than σa time steps, i.e., it fulfills condition (iii) of the definition of a weak binary
time-expanded packing.

Lemma 1. Any weak binary time-expanded packing Sw can be transformed ef-
ficiently into a binary time-expanded packing S with w(S) � 1

2w(Sw).
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Proof. Given a weak binary time-expanded packing Sw = {Sw
t ⊆ X : t ⊆ [T ]},

we define two binary time-expanded packings S1,S2. S1 is obtained from Sw

by removing all partial elements. Furthermore, S2 is a packing containing only
the partial elements a ⊆ A, each from t = 1 to t = σa. Notice that S2 is
indeed a binary time-expanded packing since the set Ap ∈ A of all partial
elements of Sw is a subset of Sw

T , and therefore Ap ⊆ X . It remains to observe
w(S1) + w(S2) � w(Sw). Hence, the better of S1 and S2 is a 2-approximation
of S. ∧≥
We now introduce a 2-approximation for finding a weak binary time-expanded
packing. Algorithm 1 describes our procedure, which starts with an empty pack-
ing and iteratively includes elements in non-increasing order of their weights.
For readability, we use ’+’ and ’−’ to denote the addition and subtraction of a
single element from a set, i.e., S + a1 − a2 = (S → {a1}) \ {a2}).

Algorithm 1. 2-approximation for weak binary time-expanded packings

1. Initialize St := ∅ for t ∈ [T ].
2. For a ∈ A, in order of non-increasing weights:

if ∃t ∈ [T ] with St + a ∈ X :
Let t1 := min{t ∈ [T ] : St + a ∈ X}.
Let t2 := min{t1 + τa − 1, T}.
Update St := St + a for t ∈ {t1, . . . , t2}.

end if
end for

3. Return {St : t ∈ [T ]}.

We start by showing that Algorithm 1 returns a feasible solutions, i.e., a weak
binary time-expanded packing. From the definition of t1 and t2 in each iteration
of the for-loop, it is clear that conditions (i)–(iii) of the definition of a weak
binary time-expanded packing are fulfilled. For feasibility, the only property that
remains to be checked is whether the returned solution {St : t ⊆ [T ]} satisfies
St ⊆ X for t ⊆ [T ]. We prove the following lemma which implies feasibility.

We denote by rank : 2A ⇐ Z�0 the rank function of the matroid (A,X ), and
by span : 2A ⇐ 2A its span function. Recall that the rank and span are defined
by rank(S) := max{|I| : I ⊆ X , I ∈ S} and span(S) := {a ⊆ A : rank(S + a) =
rank(S)}, where S ∈ A.

Lemma 2. At the beginning of any iteration of the for-loop of Algorithm 1, we
have span(St) ⇒ span(St+1) for t ⊆ [T − 1].

Before proving Lemma (2), we notice that it indeed implies that Algorithm 1
returns a feasible solution. Whenever an element a ⊆ A is inserted in time steps
{t1, . . . , t2}, we have that the set St1 before insertion satisfies St1 + a ⊆ X by
choice of t1. In other words a ∪⊆ span(St1). By Lemma 2, a ∪⊆ span(St) for
any t ⊆ {t1, . . . , t2}, and hence, St + a ⊆ X . Thus, the insertion of elements
a ⊆ A during Algorithm 1 preserves independence of the sets St, and hence, the
returned set is feasible.
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Proof (Lemma 2). We prove the lemma by showing that the claimed property
is preserved whenever an element a ⊆ A is added in the for-loop of Algorithm 1.
The lemma clearly holds at the beginning of the algorithm, when all sets St are
empty. Hence, let St for t ⊆ [T ] be the sets before the element a ⊆ A is considered
in the for-loop of the algorithm, and let Gt for t ⊆ [T ], be the sets after the update
step corresponding to a. Thus, Gt = St for t < t1 or t > t2, and Gt = St + a
for t ⊆ {t1, . . . , t2}. Assuming that the lemma holds before considering a, i.e.,
span(St+1) ∈ span(St) for t ⊆ [T ], we have to show span(Gt+1) ∈ span(Gt) for
t ⊆ [T ]. For t ⊆ [t1 − 1], we have

span(Gt) = span(St) = span(St + a) ⇒ span(St+1 + a) ⇒ span(Gt+1), (1)

where the second equality follows by the fact that t < t1 and therefore St+a ∪⊆ X ,
and the first ’⇒’ follows from span(St) ⇒ span(St+1). For the remaining case
t ⊆ {t1, . . . , T }, we have that if Gt+1 = St+1 + a then also Gt = St + a. Hence,
either Gt+1 = St+1, in which case

span(Gt+1) = span(St+1) ∈ span(St) ∈ span(Gt),

or Gt+1 = St+1 + a, and

span(Gt+1) = span(St+1 + a) ∈ span(St + a) = span(Gt). ∧≥
To show that Algorithm 1 is a 2-approximation for finding a weak binary time-
expanded packing, we introduce an even weaker notion of packings, which we
name non-consecutive binary time-expanded packings, and show that Algorithm 1
is even a 2-approximation for this weaker notion.

Definition 2 (Non-Consecutive Binary Time-Expanded Packings). A
family {St ⊆ X : t ⊆ [T ]} is a non-consecutive binary time-expanded packing if
|{t ⊆ [T ] : a ⊆ St}| � σa for all a ⊆ A.

Hence, elements need not appear consecutively in a non-consecutive binary time-
expanded packing. The only remaining relation between the time steps, is that
an element a ⊆ A can not occur in more than σa time steps.

Lemma 3. Algorithm 1 is a 2-approximation for the non-consecutive binary
time-expanded packing problem.

Proof. To prove the lemma, we show that finding a maximum weight non-
consecutive binary time-expanded packing can be formulated as a matroid in-
tersection problem, and Algorithm 1 can be interpreted as the natural greedy
algorithm for this problem. The result then follows by the fact that the greedy
algorithm for matroid intersection problems is a 2-approximation.

For each t ⊆ [T ], let At = {at : a ⊆ A} be an independent copy of A,
and let A = →t∈[T ]A

t. Consider the following two matroids M1 = (A,X1) and
M2 = (A,X2) over the common ground set A. A set W ∈ A is independent
in M1 if for every t ⊆ [T ], we have {a ⊆ A : at ⊆ W ≤ At} ⊆ X . M1 is



Time-Expanded Packings 71

clearly a matroid, since it is the disjoint union of independent copies of the
matroid (A,X ). Furthermore, a set W ∈ A is independent in M2 if for every
a ⊆ A, we have |{t ⊆ [T ] : at ⊆ W}| � σa. Hence, M2 is a partition matroid.
Observe that there is a one-to-one correspondence between common independent
sets W ∈ A of both matroids M1 and M2, and non-consecutive binary time-
expanded packings, where we interpret W as the packing {Wt : t ⊆ [T ]}, where
Wt = {a ⊆ A : at ⊆ W}.

Let A = {a1, . . . , an} be the numbering that corresponds to the order in which
Algorithm 1 considers the elements of A in the for-loop. Hence, w(a1) � . . . �
w(an). Thus, Algorithm 1 can naturally be interpreted as the greedy algorithm
for the matroid intersection problem on A, considering the elements in the order
a11, . . . , a

T
1 , . . . , a

1
n, . . . , a

T
n , where element ati has weight w(ati) = w(ai). Since the

greedy algorithm for matroid intersection is a 2-approximation (see e.g. [17]),
the result follows. ∧≥
Since every weak binary time-expanded packing is as well a non-consecutive
binary time-expanded packing, Lemma 3 implies the following.

Corollary 4. Algorithm 1 is a 2-approximation for the weak binary time-expanded
packing problem.

Finally, combining Lemma 3 with Lemma 1, we obtain a 4-approximation for
the binary time-expanded packing problem, as claimed by Theorem 1. It is an
interesting open question if this analysis can be tightened.

3 Integer Time-Expanded Packing on Independence
Systems

We sketch next the proof of Theorem 2. To state the algorithm that achieves
the claimed approximation guarantee we establish some further notation. For an
item a ⊆ A let Ta := ⇔T/σa∗ and w̄a := waσaTa denote the maximal possible
number of activations of item a in any feasible solution, and the total value
attainable by this many activations, respectively.

Our algorithm, which we call Total Value Greedy, determines first a
τ-approximate solution S⊆ to the static maximization problem with respect to
the weight function w̄. The time expanded solution S returned by the algorithm
is then defined by setting St = {a ⊆ S⊆ : t � Taσa} for every t ⊆ [T ]. Hence,
each element of S⊆ is repeated as often as possible, starting at the first time
step.

Lemma 4. Total Value Greedy is a λτ-approximation for the integer time-
expanded packing problem.

Before proving Lemma 4, which implies Theorem 2, we briefly mention an-
other, very related, greedy approach, which we term Simple Greedy. The Simple
Greedy algorithm first determines a τ-approximation of the maximum-weight
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static solution S⊆ ⊆ X with respect to the weight function w, and then returns
the solution S = {St ⊆ X : t ⊆ [T ]} defined by St = {a ⊆ S⊆ : Taσa � t}, analo-
gously to the Total Value Greedy. It is quite easy to show that Simple Greedy is
a 2τ-approximation, and hence, the challenge in finding strong approximations
for integer time-expanded packings lies in beating the approximation factor of
2τ. This is in contrast to the binary time-expanded packing problem, where even
getting any O(1)-approximation is nontrivial.

We highlight that the Total Value Greedy was already considered by Kohli and
Krishnamurti [12] for the knapsack problem, which—as we already discussed—is
a special case of integer time-expanded packings. More precisely, they showed
that the Total Value Greedy is an λ-approximation for the integer knapsack
problem, thus proving Lemma 4 for the special case when the underlying inde-
pendence system is a uniform matroid of rank one. Furthermore, the analysis
in [12] was shown to be tight, i.e., for any Π > 0, there is an instance of the
integer knapsack problem for which the solution returned by the Total Value
Greedy is not an (λ − Π)-approximation. Since integer time-expanded packings
generalize the integer knapsack problem, our analysis is also tight. We stress
that our analysis differs significantly from that in [12]. The analysis in [12] relies
on the inequality Ta∗σa∗wa∗ � Taσawa for all a ⊆ A, where a⊆ is the optimal
element to repeat. In our setup, the latter inequality can only be obtained for
sums of elements with various duraitions. This results in various new difficulties,
from the derivation of a linear program bounding the approximation guarane-
tee (In [12] an integer program is used), to the analysis of the resulting linear
program. The rest of this section is devoted to the proof of Lemma 4.

Proof of Lemma 4. The proof follows four main steps, which we outline
next. First, we present a combinatorial argument that allows for deducing an
approximation guarantee that depends on a set of problem parameters. For each
horizon T ⊆ Z>0, the worst-case set of parameters can be determined through
a linear program PT , whose optimal value thus represents an approximation
guarantee that Total Value Greedy satisfies for any instance with horizon T .
Next, an infinite linear program P√ is derived, whose optimal value bounds
the optimal value of PT for all T ⊆ Z simultaneously. In the third step, the
linear programming dual D√ of P√ is obtained, and weak duality is established,
implying that any solution of D√ provides an approximation guarantee for Total
Value Greedy. Finally, we explicitly construct a solution with value λτ for D√,
proving the theorem. We give a complete description of the first step only.

Let G be the time-expanded solution returned by Total Value Greedy, which
repeats a solution G ⊆ X . The value of G is Alg := w(G) =

∑
a∈G Taσawa,

and τw̄(G) � w̄(S) for all S ⊆ X . Let also S⊆ = (S1, . . . , ST ) be an optimal

time-expanded solution, with value Opt := w(S⊆), and let β := 1
ε
Opt
Alg . Our

goal is to show that β � λ. If T = 2, one can observe that an optimal solution
S⊆ can be chosen such that S1 = S2, which implies β = 1. For the same reasong
we also have β = 1 for T = 1. Hence, in the following we assume T � 3.
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For each k ⊆ [T ], we define the subset of elements that can be repeated k
times but not k + 1 times by

Ak :=
{
a ⊆ A : σa ⊆ (

T/(k + 1), T/k
]}

.

As the durations σa are integers in [T ], the sets Ak partition A. By construction,
for each k ⊆ [T ] one has Ta = k and σa � Δk for all a ⊆ Ak, where Δk :=
⇔T/(k + 1)∗ + 1. We then similarly partition each solution set St into the sets
Sk
t = St ≤Ak, for k, t ⊆ [T ].
In the following, we create a family of upper bounds for β, parameterized by an

integer q ⊆ [T ]. More precisely, for each q ⊆ [T ], we define sets M1, . . . ,Mq ⊆ X
by choosing Mj = Stj for tj :=

⌈
j T
q+1

⌉
. Now for each fixed q ⊆ [T ] and j ⊆ [q],

τ ·Alg=τ
∑

a∈G

Taσawa �
∑

a∈Mj

Taσawa =

q∑

k=1

∑

a∈Mj≥Ak

Taσawa =

q∑

k=1

∑

a∈Mj≥Ak

kσawa,

so that summing over all sets Mj for j ⊆ [q] we get

qτ ·Alg �
q∑

j=1

q∑

k=1

∑

a∈Mj≥Ak

kσawa =

q∑

k=1

k

q∑

j=1

∑

a∈Mj≥Ak

σawa. (2)

In the last term, when we sum over j ⊆ [q], we are counting the elements a ⊆ Sk
t

for all t with some repetitions.
Consider a fixed k � q and a t ⊆ [T ]. Since elements in Sk

t have duration
at least Δk, and the (fractional) distance in time between two solutions Mj is
T/(q + 1), each element a ⊆ Sk

t will belong to at least ⇔Δk(q + 1)/T − 1/T ∗
different solutions Mj. The term −1/T is needed to correct the counting when
Δk(q + 1)/T is integer, in which case elements a ⊆ Sk

T might belong to Δk(q +
1)/T − 1 different solutions Mj only. Note also that we stop at k = q because,
due to the choice of the solutions Mj, for k > q some (or all) of the elements
in Sk

t might never appear in the sets Mj. Let zk := (
∑

t∈[T ]w(St ≤ Ak))/Opt

be the fraction of Opt due to elements in Ak. Using the counting argument
outlined above, for every k � q we can write

q∑

j=1

∑

a∈Mj≥Ak

σawa �
⌊
Δk

q + 1

T
− 1

T

⌋ T∑

t=1

w(Sk
t ) =

⌊
Δk

q + 1

T
− 1

T

⌋
zkOPT. (3)

Finally, combining (2) and (3) we get the bound

q∑

k=1

1

q

⌊
Δk

q + 1

T
− 1

T

⌋
kzk � 1

β
. (4)

Let T ⊆ Z�0, and consider replacing β by a variable ∂ in (4). The latter
derivation implies that to obtain an upper bound on β one can maximize ∂
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subject to the constraints (4) for all q ⊆ [T ], the constraint
∑T

k=1 zk = 1 and
zk � 0 for k ⊆ [T ]. By substituting yk := kβzk and observing that ∂k > 0 for all
k, one arrives at the following linear program, providing an upper bound on β.

βT = max

T∑

k=1

1

k
yk

(PT ) s.t.

q∑

k=1

1

q

⌊
Δk

q + 1

T
− 1

T

⌋
yk � 1 q ⊆ [T ] (5)

yk � 0 k ⊆ [T ].

Our goal is to create a uniform upper bound of λ for the above family of
linear problems, that holds for all T ⊆ Z�1. A natural approch is to exhibit
for each T ⊆ Z�1 a feasible dual solution to PT of value λ. Finding a strong
dual solution to PT turns out to be a challenging task. One reason for this may
be the somewhat surprising fact that the sequence of optimal values βT of PT

is not monotone in T . We therefore create another, infinite-dimensional, linear
program P√ whose optimal value upper bounds PT for all T � 1, and for which
we can give a relatively simple dual solution of value λ.

β√ = max
∑

k∈Z>0

1

k
yk

(P√) s.t.

q∑

k=1

1

q

⌊
q + 1

k + 1

⌋
yk � 1 q ⊆ Z>0 (6)

∑

k∈Z>0

1

k + 1
yk � 1 (7)

yk � 0 k ⊆ Z>0.

Lemma 5. βT � β√ for every T ⊆ Z>0.

To show β√ � λ, we make use of duality for infinite-dimensional linear pro-
gramming. Let vq be the dual variable to the q-th constraint (6), and let w be the
dual variable corresponding to constraint (7). The standard linear programming
dual of P√ reads as follows.

β≤√ = min w +
∑

q∈Z>0

vq

(D√) s.t.
1

k + 1
w +

∑

q�k

1

q

⌊
q + 1

k + 1

⌋
vq � 1

k
k ⊆ Z>0 (8)

w � 0, vq � 0 q ⊆ Z>0.

In the following lemma we show that weak duality holds for this pair of infinite
linear programs, implying β≤√ � β√. We note that this is not true for any pair
of dual infinite linear programs.
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Lemma 6. β≤√ � β√.

To prove β≤√ � λ, and hence conclude the proof, we now only need to provide
a feasible dual solution of value λ. To this end, recall the sequence {sn}n∈Z>0

used to define λ. Our dual solution (w̃, ṽ) is defined by setting w̃ = 1 and

ṽsj−1 = 1/sj−1 − 1/s2j−1 + 1/s2j

for j � 2, and 0 elsewhere. This solution is nonzero only for variables vq where
q = sj − 1 for some integer j � 2. The following lemma concludes the proof.

Lemma 7. The solution (w̃, ṽ) is feasible for D√, and its objective value is λ.

Finally, we note that, in fact, β√ = β≤√ = λ, since, as we stated before, the
result in [12] for the knapsack problem implies that our analysis is tight.
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Abstract. We revisit a classical problem in computational geometry
that has been studied since the 1980s: in the rectangle enclosure problem
we want to report all k enclosing pairs of n input rectangles in 2D.
We present the first deterministic algorithm that takes O(n log n + k)
worst-case time and O(n) space in the word-RAM model. This improves
previous deterministic algorithms with O((n log n+ k) log log n) running
time. We achieve the result by derandomizing the algorithm of Chan,
Larsen and Pătraşcu [SoCG’11] that attains the same time complexity
but in expectation.

The 2D rectangle enclosure problem is related to the offline dominance
range reporting problem in 4D, and our result leads to the currently
fastest deterministic algorithm for offline dominance reporting in any
constant dimension d ≥ 4.

A key tool behind Chan et al.’s previous randomized algorithm is
shallow cuttings for 3D dominance ranges. Recently, Afshani and Tsaka-
lidis [SODA’14] obtained a deterministic O(n log n)-time algorithm to
construct such cuttings. We first present an improved deterministic con-
struction algorithm that runs in O(n log log n) time in the word-RAM;
this result is of independent interest. Many additional ideas are then
incorporated, including a linear-time algorithm for merging shallow cut-
tings and an algorithm for an offline tree point location problem.

1 Introduction

We study the problem of rectangle enclosure: given a set of n axis-aligned rect-
angles on the plane, report all k pairs (r1, r2) of input rectangles where r1
completely encloses r2. This is a classic problem in the field of computational
geometry [19] with applications to VLSI design, image processing, computer
graphics and databases [21,15,12,6].
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Previous Results. An early paper by Bentley and Wood [3] presented an
O(n log n + k) worst-case time and linear-space algorithm for the related rect-
angle intersection problem (reporting all k pairs (r1, r2) where r1 intersects
r2), raising the question whether the same bound could be achieved for rect-
angle enclosure. Vaishnavi and Wood [21] first addressed the question present-
ing an O(n log2 n + k)-time algorithm that uses O(n log2 n) space. Lee and
Preparata [15] improved the space bound to linear.

Further improvements were discovered in the 1990s. The linear-space algo-
rithm of Gupta, Janardan, Smid and Dasgupta [12] and an alternative im-
plementation by Lagogiannis, Makris and A. Tsakalidis [14] take O((n log n +
k) log logn) worst-case time. Recently, Chan, Larsen and Pătraşcu [6] succeeded
in improving the running time to the desired bound of O(n logn + k) using lin-
ear space. However their algorithm uses randomization and thus the time bound
holds in expectation. All presented algorithms operate in the word-RAM model
with word size w ∈ log n. (In fact, for all time bounds that are σ(n logn), they
hold in the standard RAM model with w = logn, since we can pre-sort and
reduce to rank space.)

It is well-known that the rectangle enclosure problem is reducible to the 4D
version of the offline dominance reporting problem: given n input and query
points in R

d, report the input points that are dominated by each query point
((p1, . . . , pd) is dominated by (q1, . . . , qd) if pi < qi for all i). For the reduc-
tion it suffices to map each input rectangle [x1, x2] × [y1, y2] to a 4D point
(x1, y1,−x2,−y2) and equate the query points with the input points.

Offline dominance reporting is a fundamental problem in the area of orthog-
onal range searching; it has even found applications outside of computational
geometry [4]. Chan, Larsen and Pătraşcu’s result implies an algorithm with
O(n logd−3 n + k) expected time for any constant dimension d ∈ 4, where k
is the total number of reported points. However their algorithm is random-
ized. The best deterministic algorithm known requires O(n logd−2 n + k) or
O((n logd−3 n + k) log logn) time.

Our Contributions. We present the first deterministic algorithm for rectangle
enclosure that takes O(n logn + k) worst-case time and O(n) space in the stan-
dard word-RAM model. Our result thus improves over the previous deterministic
algorithms of Gupta et al. [12] and Lagogiannis et al. [14] and removes random-
ization from the algorithm of Chan et al. [6].

Our approach also gives the currently fastest deterministic algorithm for the
offline dominance reporting problem for any constant dimension d ∈ 4, with
worst-case running time O(n logd−3 n + k).

Our Approach. Our algorithm may be viewed as a derandomization of Chan,
Larsen and Pătraşcu’s [6], but significant new ideas are required.

In Chan et al.’s algorithm, randomization was used to construct combina-
torial objects that have properties similar to those of shallow cuttings for 3D
dominance ranges. Shallow cuttings were introduced by Matoušek [18], and a
complicated randomized O(n logn)-time algorithm was given by Ramos [20] for
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constructing shallow cuttings in the more general setting of 3D halfspace ranges.
In a recent SODA’14 paper, Afshani and K. Tsakalidis [2] presented the first de-
terministic O(n log n)-time algorithm for constructing shallow cuttings for 3D
dominance ranges using linear space in the pointer machine model. In Section 2
we begin by improving their algorithm to run in O(n log logn) worst-case time
on the word-RAM. As an immediate consequence we obtain a deterministic algo-
rithm for offline 3D dominance reporting that takes O(n log logn+k) worst-case
time and linear space in the word-RAM (Section 4); this result is new. Previously
only O(n logn+k) worst-case time could be achieved using linear space [1,17,2].

Much further work is needed to derive our result on offline 4D dominance re-
porting and 2D rectangle enclosure. The crucial new ingredient is an algorithm
that can merge two shallow cuttings for 3D dominance ranges in linear time;
this result is obtained by modifying our shallow cutting construction algorithm
in interesting ways and is described in Section 3. Then in Section 5 we use an
intricate combination of Chan et al.’s approach with the deterministic shallow
cutting construction and merging subroutines to achieve our final result. The
combination requires a re-organization of the previous algorithm. In particular
we isolate a subproblem we call tree point location for which we obtain a deter-
ministic algorithm by incorporating planar separators [16] to ideas from Chan et
al. This problem may be viewed as a new 2D variant of fractional cascading [9]
and is thus of independent interest.

Notation and Definitions. Point p dominates point q if and only if each coordi-
nate of p is greater than or equal to that of q. To avoid ambiguity for points on
the plane we use the term “covers” (instead of “dominates”). Let P be a set of n
points in R

d. The level of any point p ⊆ R
d (with respect to P ) is the number of

points in P that are dominated by p. The region of Rd dominated by p is called
a cell . The conflict list of a cell is the subset of P that lies inside the cell.

A k-shallow cutting for dominance ranges on point set P is a set of vertices
(points) S such that (i) every vertex in S has level at most cmaxk in P for a
constant cmax > 1 and (ii) any point in R

d with level in P at most k is dominated
by some vertex of S. Shallow cutting S is optimal when it contains at most cmax

n
k

vertices. A planar shallow cutting has the shape of an orthogonal staircase curve
c1d1c2 · · · dt−1ct of alternating vertical line segments cidi = [ci(x)]× [ci(y), di(y)]
and horizontal line segments dici+1 = [di(x), ci+1(x)]× [di(y)] (Fig. 1a). We call
points ci, di, the corners of the planar shallow cutting.

2 Construction of 3D Dominance Shallow Cuttings

Theorem 1. An optimal k-shallow cutting for 3D dominance ranges on n input
points and for any integer k can be constructed deterministically in O(n log logn)
worst-case time and O(n) space.

Algorithm Sketch. Following [2] we sort the points and sweep a plane parallel to
the xy-plane considering the points in non-decreasing z-coordinate. This reduces
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Fig. 1

the problem to the problem of maintaining a 2D shallow cutting under only
insertions, specifically the planar shallow cutting of the xy-projection of the
points of P that lie below the sweep plane. When the point with the next highest
z-coordinate is considered (i.e., the next insertion), we update the corresponding
2D shallow cutting. The idea is that we do not need to change the planar shallow
cutting for most insertions. However each insertion can increase the level of the
shallow cutting corners. Thus, once in a while, the planar shallow cutting needs to
be fixed. This is done by removing some consecutive parts of it and then adding
new staircase “patches” that are covered by the parts just removed (details
will follow). Every time a planar shallow cutting cell is removed, a 3D shallow
cutting cell is created using the z-coordinate of the sweep plane (i.e., when a
planar staircase corner with coordinates (x, y) is removed, a 3D vertex (x, y, z)
is created where z is the coordinate of the sweep plane). Finally when the sweep
terminates, the remaining planar shallow cutting cells are turned into 3D shallow
cutting cells using +⊂ as the z-coordinate. It is easily verified that the produced
3D shallow cutting of P is correct and its size is equal to the number of planar
shallow cutting corners removed throughout the algorithm plus the number of
planar shallow cutting corners that remain when the sweep terminates.

Remark. The sketched algorithm is a variant of Afshani and Tsakalidis’ [2, Sec-
tion 3] with the significant difference that it is insertion-only (sweeping upwards)
as opposed to their deletion-only algorithm (sweeping downwards). Their algo-
rithm has the advantage that it can compute O(log n) different shallow cuttings
in total O(n log n) time. However a crucial ingredient of that algorithm is an
auxiliary data structure ([2, Lemma 2]) that needs to be updated at every sweep
point. Unfortunately, we cannot see a way to update the auxiliary data structure
in O(log logn) time in the word RAM model. Fortunately, as we shall see later,
we can achieve the desired O(n log logn) running time without any auxiliary
data structures, by just changing the direction of the sweep.

The Invariant. The planar shallow cutting is maintained in the form of a stair-
case S = c1d1 · · · ct, composed of inner corners d1, . . . , dt−1 and outer cor-
ners c1, . . . , ct. The outer corners c1 and ct are (conceptually) at infinity, i.e.
c1(y) = +⊂ and ct(x) = +⊂ (Fig. 1a). We maintain the invariant that the
inner corners dominate at least k and the outer corners at most 10k points.
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Details. We now discuss the details of the algorithm. Let p = (x, y, z) be the
next point swept by the sweep plane. Remember that we need to insert the point
p◦ = (x, y) into the dynamic planar shallow cutting. To do that we maintain
the following structures: first, we use a dynamic van Emde Boas tree on the x-
coordinates of the staircase, and second, for every outer corner c of the staircase,
we keep track of the number of points it covers, τ(c) (Fig. 1b), as well as a linked
list containing them, L(c) (i.e., the conflict list and its size). Using these we can
now insert the point p◦. The dynamic van Emde Boas tree enables us to find
the inner corner di immediately to the left of the point p◦, helping us decide
whether p◦ lies above or below the staircase (Fig. 1c). In the former case, we
are done. In the latter case, for every outer corner cj that covers p◦, we increase
τ(cj) by one and then append p◦ to L(cj). If for all such corners we still have
τ(cj) → 10k, then the invariant is maintained and thus we are done. However,
it is possible that for some corners this invariant is violated. Below we describe
how to “patch” such violated invariants.

Complexity. Sorting by z-coordinate takes O(n log logn) time in total [13]. Find-
ing di takes O(log logn) time [22] and thus O(n log logn) time in total. It turns
out the rest of the algorithm consumes linear time. If there are m(p◦) corners
that cover p◦, then updating their relevant information takes O(m(p◦)) time.
Note that p◦ is now added to the conflict lists of m(p◦) corners. Notice that since
the size of each conflict list is O(k), the total running time of this step is O(Tk)
where T is size of the shallow cutting. If we can prove that T = O(n/k), then
this running time is linear. Now we describe how to maintain the invariant which
also guarantees the upper bound on T .

Patching. Let ci be the leftmost outer corner whose invariant is violated.
Let a1 and a2 be the largest integers such that all the outer corners
ci−a1 , ci−a1+1, . . . , ci+a2 have levels greater than 3k. To patch the staircase we
begin by finding a new outer corner c◦0 at the same y-coordinate as ci−a1 , such
that it covers 3k points, as depicted in Fig. 1d. c◦0 can be found in O(k) time
using a linear time selection algorithm on the conflict list of ci−a1 . Next, we find
the inner corner d◦0 directly below c◦0 that covers k points. Now, we alternate
between finding new outer and inner corners: at the j-th step, we find the outer
corner c◦j that dominates 2k points, and then the inner corner d◦j that dominates
k points. As before, using the right conflict list, each of these corners can be
found in O(k) time. The patching is terminated at a point c◦r+1 with level 3k
that lies below the outer corner ci+a2 (Fig. 1d). Finally, the new outer and inner
corners (from c◦0 to c◦r+1) are incorporated into the staircase, the old corners
(ci−a1 , . . . , ci+a2) are removed, and the van Emde Boas tree is also updated to
reflect the changes in the staircase.

Analysis of Patching. It easy to see that the overall cost of patching is O(Tk)
since each new inner or outer corner can be found in O(k) time. Moreover, the
facts that the levels of the removed corners differ from the levels of the created
ones by at least k (except for only c◦0 and c◦r+1) and that at least 5 corners are
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created for every patch, suffice to claim that T → C0
n
k for a positive constant

C0. We set cmax := max{C0, 10}. A detailed proof on the symmetric approach
is found in [2, Section 3].

3 Merging Two 3D Dominance Shallow Cuttings

We begin by a naive merging algorithm.

Lemma 1. Consider two point sets P1 and P2 that contain n1 and n2 points
respectively. For i = 1, 2, assume we are given a ki-shallow cutting Ci on Pi of
size mi such that the conflict list of every cell contains at most λiki points of Pi.
A (min {k1, k2})-shallow cutting C on the union point set P = P1 ∧ P2 can be
built in O ((m1 + m2) log log(m1 + m2)) time, such that C contains O(m1 +m2)
cells and the conflict list of every cell in C contains → λ1k1 + λ2k2 input points.

Proof. Let R be the subset of R3 that is dominated by at least one vertex in C1

and at least one vertex in C2. It is easily seen that R is orthogonally convex and in
fact any orthogonal ray to y = −⊂ or x = −⊂ crosses the boundary of R at most
one. Thus, the complexity of the boundary of R is O(|C1|+ |C2|) = O(m1 +m2).
Furthermore, the boundary of R can be computed with a straightforward sweep
plane algorithm in O((m1 + m2) log log(m1 + m2)) time by employing a van
Embe Boas tree as the search structure [22]. The shallow cutting C is defined by
the vertices of the boundary of R. It is clear that every such vertex dominates
either k1 points from P1 or k2 points from P2 and thus it dominates at least
min {k1, k2} points of P . Similarly, each vertex on R can dominate at most λ1k1
points of P1 and λ2k2 points of P2. ≥⇐

While the above merging algorithm is quite fast, it worsens the constants
behind the parameters of the shallow cutting and thus it cannot be applied
more than a constant number of times. In the next theorem, we show how such
a “bad” shallow cutting can be refined into an optimal one. For this purpose we
also use the following lemma.

Lemma 2. [5, Theorem 4.3] Online point location queries on a planar orthog-
onal subdivision of size n can be supported in O(log logn) worst-case time and
O(n) space.

Theorem 2. Let P be a set of n points in R
3 with presorted z-coordinates and

let C be a k-shallow cutting on P of size Πn/k, where the conflict list of every
cell has size at most λk, for arbitrary constants Π, λ > 0. Then C can be refined
into an optimal k◦-shallow cutting C◦ on P in O(n + n

k log logn) time, such

that k◦ = k
cmax

for a universal constant cmax that does not depend on Π and λ.
Furthermore, C◦ contains at most cmax

n
k∈ cells and the conflict list of every cell

in C◦ contains at most cmaxk
◦ points of P .

Proof. We build C◦ using the plane sweep algorithm from the previous section.
To review, the algorithm maintains a planar shallow cutting in the form of a
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staircase S◦. To process the next point p, a predecessor query is used to find one
corner of the staircase that covers the projection p◦ of p. As we noted during the
proof of Theorem 1, other than this predecessor search, the rest of the algorithm
runs in linear time. To remove this bottleneck, we use C to augment each point
of P with a correct pointer to a staircase corner that covers it, thus negating the
need for the predecessor search.

Hence we project the cutting C on the xy-plane and obtain an orthogonal
planar decomposition of disjoint polygonal regions in order to support online
planar orthogonal point location queries, i.e. report the region that any given
query point lies in. Thus, Lemma 2 enables us to perform the following operation
in O(log logn) time: given a point q in the xy-plane, find the shallow cutting
vertex C(q) in C with the largest z-coordinate whose projection covers q.

Observe that the level of every vertex in C◦ is at most cmaxk
◦ = k; thus,

every vertex of C◦ is contained in at least one cell of C. We thus maintain one
additional invariant in our sweep. Consider a staircase corner v ⊆ S◦, the shallow
cutting vertex C(v) ⊆ C and its conflict list τ(C(v)). We maintain the invariant
that if the projection p◦ of a point p ⊆ τ(C(v)) lies below the staircase S◦, then p
is assigned a pointer to a staircase corner that covers p◦. This invariant removes
the need for the predecessor search during the sweep.

By looking at the algorithm in Section 2, it is clear that the invariant can only
be violated when a new staircase corner v is created on S◦ (during the patching
phase). To fix the invariant, by Lemma 2 we can find the vertex C(v) and its
conflict list τ(C(v)). We go through each point in τ(C(v)) and if its projection
is covered by v, then we assign it a pointer to v. This takes O(k) time, which is
proportional to the time required for creating the staircase corner v. Thus, this
incurs only an additive O(log logn) time factor per shallow cutting vertex. ≥⇐
Corollary 1. Given two point sets A,B ⊆ R

3 presorted by z-coordinate and
their respective k-shallow cuttings, for an integer k = σ(log log(|A| + |B|)), an
optimal k

cmax
-shallow cutting on the union point set A ∧ B can be constructed

deterministically in O(|A| + |B|) worst-case time.

4 Offline 3D Dominance Reporting

Theorem 3. Offline 3D dominance reporting on n input points, n query points
and k reported points can be solved deterministically in O(n log logn+ k) worst-
case time and O(n) space.

Proof. We follow the approach of Afshani [1] for online 3D dominance report-
ing queries in internal memory. We presort all coordinates [13] and construct
a single (log n)-shallow cutting for 3D dominance ranges by using the algo-
rithm of Theorem 1 in O(n log logn) worst-case time. We assign every query
point to a cell of the cutting whose vertex dominates it by (offline) point lo-
cation in a planar orthogonal subdivision obtained from the projection of the
cutting. By Lemma 2 this takes O(n log logn) worst-case time [5]. We resolve
all the assigned queries by solving independently for each of the O( n

logn ) cells
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an offline 3D dominance reporting subproblem on the conflict list of the cell.
The 3D dominance reporting algorithm of [17] reports all (at most k) output
points in O( n

logn logn log logn + k) = O(n log logn + k) total worst-case time.

This leaves at most O( k
logn ) queries unresolved, since each unresolved query

reports σ(log n) points. We can also decrease the number of input points to
O( k

logn ) in the same way by repeating the above with the roles of the input and
query points reversed. Finally we solve a single offline 3D dominance reporting
problem on all the remaining input points and unresolved queries by the more
expensive O(n log n+ k)-time algorithm of [17], which now takes O(k) time. ≥⇐

Corollary 2. Offline 3D dominance reporting on n input points, n query points
and k reported points can be solved deterministically in O(n+k) worst-case time
and O(n) space, if n < w̄O(1) and a global look-up table has been constructed in
o(2w̄) worst-case time for a parameter w̄ → w.

Proof. We modify the proof of Theorem 3. In the construction of the (logn)-
shallow cutting we replace van Emde Boas trees [22] with atomic heaps [10],
which decreases the O(log logn) search cost to O(logw̄ n) = O(1). The offline
planar point location queries can be answered in O(logw̄ n) = O(1) time per
query, by a straightforward plane sweep implemented using an atomic heap.
The conflict list of each cell has size O(log n) = O(log(w̄O(1))) = o(w̄). Thus by
table lookup, the subproblem on each conflict list can be solved in O(1) time. ≥⇐

5 Offline 4D Dominance Reporting

A preliminary O(n logn log logn+k) worst-case time and linear-space algorithm
for the rectangle enclosure problem is implied by Theorem 3. We obtain a faster
deterministic algorithm for rectangle enclosure.

Theorem 4. Offline 4D dominance reporting problem on n input points, n
query points and k reported points can be solved deterministically in O(n log n+k)
worst-case time and O(n) space.

Algorithm. We follow the approach of Chan, Larsen and Pătraşcu [6, Section
4.3]. We build a complete binary range tree T over the fourth coordinate of the
input points. For each query point, we consider the path from the root of T
to the leaf that contains its successor input point; we associate the query point
with the left siblings (if they exist) of the nodes along this path. It then suffices
to solve in every node of T an offline 3D dominance reporting problem between
the 3D projections of its input point set and its associated query point set.

To this end, we first equip each node at level i of T with an optimal Ki-shallow
cutting for 3D dominance ranges of its input points for some Ki between log2 n
and log3 n. At each node every associated query point is assigned to a cell of the
equipped cutting whose vertex dominates it. All assigned queries are resolved
by solving independently for each cell in T an offline 3D dominance reporting
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subproblem on the cell’s conflict list. This leaves at most O( k
log2 n

) queries unre-

solved, since each unresolved query reports σ(Ki) ∈ σ(log2 n) points. We can
also decrease the number of input points to O( k

log2 n
) in the same way by re-

peating the above with the roles of the input and query points reversed. Finally
we solve a single offline 4D dominance reporting problem on all the remaining
input points and unresolved queries.

Complexity. There are O( n
Ki

) subproblems of size O(Ki) at each level i of T .
Hence the total cost T4D(n, k) of the algorithm on n input and query points and
k reported points is at most 2 times

TE(n) + TA(n) +

logn∑

i=1

O( n
Ki

)
∑

j=1

T3D(O(Ki), kij) + T4D(O

(
k

log2 n

)
, k)

where (i) TE(n) represents the cost of equipping the nodes with shallow cuttings,
(ii) TA(n) represents the cost of assigning the queries to cells of the cuttings,
(iii) T3D(O(Ki), kij) represents the cost of solving a subproblem on a conflict

list of size O(Ki) with output size kij , and (iv) T4D(O
(

k
log2 n

)
, k) represents

the cost of handling the remaining input points and unresolved queries.
For (i) and (ii), we will show that TE(n), TA(n) = O(n logn). For (iii), we

have T3D(O(Ki), kij) = O(Ki + kij) by applying the algorithm of Corollary 2
with w̄ = logn, since Ki → log3 n → w̄O(1). Summing the cost over all i and
j yields O(

∑logn
i=1

n
Ki

Ki +
∑

i,j kij) = O(n log n + k). For (iv), we can use the

more expensive algorithm of [15] with O(n log2 n+ k) running time, which gives

T4D(O
(

k
log2 n

)
, k) = O(k). The overall running time is thus O(n log n + k).

Equipping Nodes withOptimal Shallow Cuttings. To show thatTE(n)=O(n log n),
we first construct optimal (log3 n)-shallow cuttings for the nodes at every level of
T that is a multiple of β log logn, for a constant β > 0, using the algorithm of
Theorem 1. In total this takes O(n log logn · logn

ε log log n ) = O(n logn) time.
For each j that is not a multiple of β log logn, we equip the nodes at level i of T

with an optimalKi-shallow cutting on its input points in T by merging the optimal
Ki−1-shallow cuttings of its two children nodes with the algorithm of Corollary 1.

Here, Ki = Ki−1

cmax
=⇒ log3 n ∈ Ki ∈ log3 n

(cmax)δ log log n ∈ log2 n as desired, if we

make β sufficiently small. The entire merging process takes O(n) time per level of
T (since Ki = σ(log logn)) and thus O(n logn) total time.

Assigning Queries to Cells. To show that TA(n) = O(n log n) we formulate a
general problem of independent interest.

Problem 1. [Offline 2D Tree Point Location] Given a binary tree where every
node contains a planar orthogonal subdivision with rectangular cells, and given
a set of query points each of which is associated with a root-to-leaf path in the
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tree, locate the cell containing q in the subdivisions at all the nodes along the
path associated with q, for every query point q.

Lemma 3. Offline 2D tree point location on n query points and a tree of subdivi-
sions with total size N and tree height O(logN) can be solved deterministically in
O(N +n logN) worst-case time and O(n) space, assuming pre-sorted coordinates.

Since the output to the problem consists of O(logN) cells per query, the
above result is optimal. Directly answering each of the O(n logN) 2D orthogonal
point location queries by known results (Lemma 2) would yield a slower O(N +
n logN log logN) running time. On the other hand, if the subdivisions in the
tree are one-dimensional, then the problem can be solved by the well known
technique of fractional cascading [9], achieving the same bound as in Lemma 3.
Thus, Lemma 3 may be viewed as a generalization of fractional cascading to 2D;
no such generalizations were known before (although to be fair our lemma works
only in the offline setting).

We will prove Lemma 3 in Section 6, but for now let’s see how the tree point
location is relevant to our original problem. At each node of T , we form a planar
orthogonal subdivision from the projection of the shallow cutting equipped at the
node’s left sibling. Then assigning queries to cells of the shallow cuttings of their
associated nodes is precisely the above tree point location problem. Here, the

total size of the planar subdivisions is N := O
(∑logn

i=1
n
Ki

)
→ O(log n · n

log2 n
) =

o(n). The tree height is logn, thus by Lemma 3 we get TA(n) = O(N+n logN) =
O(n log n).

Remarks. The above algorithm description is actually conceptually cleaner than
Chan, Larsen and Pătraşcu’s [6], which worked with shallow cuttings of two
different ranges of K, namely K ∪ polylogn and K ∪ 2

√
w. We only need the

former, although the expression 2
√
w will appear later in the proof of Lemma 3.

As an immediate corollary to Theorem 4, we can then solve the 2D rectangle en-
closure problem in O(n log n+k) time. Also, we can solve the offline d-dimensional
dominance reporting problem in O(n logd−3 n + k) time by a straightforward
divide-and-conquer, using the new algorithm for d = 4 as the base case.

6 Offline 2D Tree Point Location

To complete the presentation we now prove Lemma 3 and solve the offline 2D tree
point location problem. We adapt key ideas from Chan, Larsen and Pătraşcu [6],
but in addition incorporate planar separators to get a deterministic algorithm.

Preliminaries. An r-separator of a planar graph with n vertices is a subset of
O(

≤
rn) vertices whose removal yields components of O(n/r) size each. Given

d-dimensional input points and query hyper-rectangles (boxes), the offline d-
dimensional orthogonal range reporting problem asks to report the input points
that are contained in every query box. Given an orthogonal subdivision of the
plane into disjoint rectangles and query points, the offline 2D orthogonal point
location problem asks report the rectangle that every query point lies in.
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Lemma 4. [11, Theorem 2.2] An r-separator of a planar graph of size n can be
computed deterministically in O(n) worst-case time and space.

Lemma 5. [6, Lemma 4.2] Offline d-dimensional orthogonal range reporting on
n input points, m query boxes and k reported points can be solved deterministi-
cally in O(n logd−1

b n + bd−1m logd−1
b n + k) worst-case time and O(n) space for

a given parameter b ∈ 2, assuming pre-sorted coordinates.

Lemma 6. [6, Lemma 4.1] Offline planar point location for n query points and
a orthogonal subdivision of size n can be solved deterministically in O(n) worst-
case time and space when n → 2O(

√
w), assuming pre-sorted coordinates.

Lemma 5 follows from a b-ary variant of the standard range tree, while
Lemma 6 requires a bit-packing technique of Chan and Pătraşcu [8].

Proof of Lemma 3. First we compute a sparser subdivision at every node v
of T . Namely, if the subdivision at v has size nv, we compute a

(
nv

A

)
-separator

of the subdivision for a parameter A := 2
√
w with w = logN . This gives

O(
√

nv · nv

A ) = O(nv/
≤
A) separating rectangles; each remaining hole can be

further decomposed into rectangles to yield a subdivision of size O(nv/
≤
A). By

Lemma 4 the computation of the separators takes O(N) time total. (This idea
of using separators for point location has been used before [5,7].)

Now we locate each query point q in the sparser subdivisions at the nodes
along q’s path. The key idea from Chan, Larsen and Pătraşcu [6] is to view all
these 2D point location queries collectively as a single offline orthogonal range
reporting problem in 3D. Namely, we lift each rectangle in the sparser subdivision
at node v to a box in 3D, where the range of the box in the third coordinate
corresponds to the range of v in the binary tree. This 3D problem involves n
points, O( N√

A
) boxes and output size k = O(n logN). By Lemma 5 the problem

can be solved in O(n log2
b N + b2( N√

A
) log2

b N + n logN) time. By choosing the

parameter b := A1/2−ε = 2Ω(
√
logN), we have log2b N = O(logN) and the time

bound becomes O(n logN).
Knowing the cell of the sparser subdivision containing a query point q, we

still need to locate the cell of the original subdivision containing q. This reduces
to point location in a component, but since each component has size O(A) =
O(2

√
w) we can apply the offline point location algorithm of Lemma 6, to finish

in time linear to the size of the subdivisions O(N) and the number of queries
O(n logN). ≥⇐
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Abstract. We introduce an algorithm which solves mean payoff games
in polynomial time on average, assuming the distribution of the games
satisfies a flip invariance property on the set of actions associated with
every state. The algorithm is a tropical analogue of the shadow-vertex
simplex algorithm, which solves mean payoff games via linear feasibility
problems over the tropical semiring (R ⇒ {−≤},max,+). The key in-
gredient in our approach is that the shadow-vertex pivoting rule can be
transferred to tropical polyhedra, and that its computation reduces to
optimal assignment problems through Plücker relations.

1 Introduction

A mean payoff game involves two opponents, “Max” and ”Min”, who alterna-
tively move a pawn over the nodes of a weighted bipartite digraph. The latter
consists of two classes of nodes, represented by squares and circles, and respec-
tively indexed by i ∈ [m] and j ∈ [n] (we use the notation [k] := {1, . . . , k}). The
weight of the arc (i, j) (resp. (j, i)) is a real number denoted by Aij (resp. Bij).
We set Aij := −⊆ (resp. Bij := −⊆) when there is no such arc. An example of
game is given in Figure 1.

When the pawn is placed over a square node i, Player Max selects an outgoing
arc (i, j), and then moves the pawn to circle node j and receives the payment
Aij from Player Min. Conversely, when the pawn is located on a circle node j,
Player Min chooses an arc (j, i∈), moves the pawn to square node i∈, and Player
Max pays her the amount Bi∈j . We assume that A (resp. B) does not have any
identically −⊆ row (resp. column), so that both players have at least one possible
action at every node. The game starts from a circle node j0 = j, and then the
two players make infinitely many moves, visiting a sequence j0, i1, j1, i2, . . . of
nodes. The objective of Player Max is to maximize his mean payoff, defined as
the liminf of the following ratio when p ⊂ +⊆:

(−Bi1j0 + Ai1j1 −Bi2j1 + Ai2j2 + · · · −Bipjp−1 + Aipjp)/p . (1)
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Fig. 1. An example of mean payoff game. Circle node 1 is a winning initial state for
Player Max, while circle node 2 is losing.

Symmetrically, Player Min aims at minimizing her mean loss, defined as the
limsup of (1) when p ⊂ +⊆. Mean payoff games can be defined more generally
over arbitrary (not necessarily bipartite) digraphs. This situation can be reduced
to the present one [1].

Mean payoff games were first studied by Ehrenfeucht and Mycielski in [2],
where they proved that these games have a value and positional optimal strate-
gies. In more detail, for every initial state j ∈ [n], there exists a real σj and
positional strategies τ : [m] ⊂ [n] and λ : [n] ⊂ [m], such that: (i) Player Max
is certain to win a mean payoff greater than or equal to σj with the strategy
τ (i.e. by choosing the arc (i, τ(i)) every time the pawn is on a square node
i ∈ [m]), (ii) Player Min is sure that her mean loss is less than or equal to σj

with the strategy λ .
The decision problem associated with mean payoff games consists in deter-

mining whether the initial state j is winning for Player Max, i.e. σj → 0. The
question of the existence of a polynomial time algorithm solving this problem
was first raised by Gurvich, Karzanov and Khachiyan in [3]. This problem was
shown to be in NP ∧ co-NP by Zwick and Paterson in [1]. While mean payoff
games (and the related class of parity games) received an important attention
over the past years [3,1,4,5,6,7,8,9,10], all the algorithms developed so far are
superpolynomial, and the question raised by Gurvich et al. is still open.

The present work exploits the equivalence between mean payoff games and
linear feasibility problems in tropical algebra. Indeed, it was shown in [11] that
the initial state n is winning for Player Max in the game with payments matrices
A,B if, and only if, there exists a solution x ∈ (R ≥ {−⊆})n−1 to the following
system of inequalities:

⇐i ∈ [m], max(Ai1 + x1, . . . , Ai(n−1) + xn−1, Ain)

→ max(Bi1 + x1, . . . , Bi(n−1) + xn−1, Bin) . (2)

The constraints of the form (2) correspond to affine inequalities over the tropical
(max-plus) semiring T := R ≥ {−⊆} endowed with the operations x ⇒ y :=
max(x, y) as addition, and x ∪ y := x + y as multiplication. The conjunction
of finitely many such inequalities defines a tropical polyhedron. Solving a mean
payoff game consequently amounts to determine whether a tropical polyhedron is
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Fig. 2. A distribution of game satisfying the flip invariance property (with m = 1 and
n = 2), together with the payment matrices. The four configurations are supposed
to be equiprobable. The nodes on which the flip operations have been performed are
depicted in bold.

empty, which can be thought of as the tropical analogue of the feasibility problem
in linear programming. This is among the motivations leading to the development
of a tropical simplex method in [12]. Then, complexity results known for the
classical simplex algorithm can be potentially transferred to the tropical setting.
However, the main obstacle is to “tropicalize” the pivoting rule involved, i.e. to
define a tropical pivoting rule which is both compatible with the classical one,
and computable, if possible, in a reasonable time complexity. So far [13], the
only pivoting rules which have been tropicalized are combinatorial, i.e. they are
defined in terms of the neighborhood of the current basic point in the vertex/edge
graph of the polyhedron.

Contributions. We prove that the shadow-vertex simplex algorithm can be trop-
icalized. Following the average-case analysis of the shadow-vertex algorithm due
to Adler, Karp and Shamir [14], we deduce that the tropical algorithm solves
mean payoff games in polynomial time on average (Section 4). The complexity
bound holds when the distribution of the games satisfies a flip invariance prop-
erty. The latter requires that the distribution of the games is left invariant by
every transformation consisting, for an arbitrary node of the game, in flipping
the orientation of all the arcs incident to this node. Equivalently, the probability
distribution on the set of payment matrices A,B is invariant by every transfor-
mation consisting in swapping the ith row of A with the ith row of B, or the
jth column of A with the jth column of B. Figure 2 provides the illustration of
a discrete distribution of games satisfying the property.

The key difficulty in our approach is to show that the computation of the
tropical shadow-vertex pivoting rule can be done in polynomial time (Section 3).
To this end, we exploit the fact that the shadow-vertex rule is semi-algebraic,
i.e. it is defined in terms of the signs of finitely many polynomials. Under some
genericity conditions, we deduce that the tropical rule reduces to classical linear
programs over some Newton polytopes, which are actually (Minkowski sums of)
bipartite perfect matching polytopes.

Related Work. We are not aware of other works with such average-case com-
plexity results on mean payoff games. In [15], Roth et al. made a probabilistic
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analysis of n× n bi-matrix games with weights chosen independently uniformly
in [0, 1]. Under this assumption, they showed that with high probability (greater
than 1 − f(n), with f(n) = o(1/nc) for all constant c), such games admit a
pure stationary strategy equilibrium parametrized by only 4 actions. The latter
can be consequently found in polynomial time. While this result indicates that
complex instances of games are rare, it does not seem to us that it can be used
to deduce an average-case complexity bound.

2 Preliminaries

2.1 Tropical Arithmetic and Generalized Puiseux Series

As previously discussed, (T,⇒,∪) forms a semiring, and the elements � := −⊆
and � := 0 correspond to the zero and unit respectively. The tropical operations
can be extended to matrices with entries in T in a usual way, by defining A ⇒
B := (Aij ⇒ Bij)ij and A ∪ B := (

⊕
k Aik ∪ Bkj)ij . We also introduce the

exponentiation x√k for any x ∈ T and k ∈ N, which is defined as the product
x∪ x∪ . . .∪ x of k occurrences of x (if k = 0, it is set to �).

Even if the addition ⇒ does not have an inverse, it is convenient to consider
tropical numbers with a negative sign. The sign is encoded in a formal way,
by introducing two copies T+ and T− of T \ {�}, respectively consisting of the
positive and negative elements. The set T± of tropical signed numbers is defined
as T+≥T−≥{�}. The elements of T+ are simply denoted by elements a ∈ T\{�},
while the elements of T− are denoted by ≤a. The modulus of x ∈ T± is defined
as |x| := a if x = a or x = ≤a, and |�| := �. Similarly, we set sign(x) = +1 if
x ∈ T+, sign(x) = −1 if x ∈ T−, and sign(�) = 0.

While the tropical addition of signed elements may not be well defined, we
can extend the multiplication over x, y ∈ T±, by defining x ∪ y as the unique
element of T± with modulus |x| ∪ |y| and sign (sign(x) × sign(y)). For instance,
(≤3) ∪ 4 = ≤7, and (≤2) ∪ (≤4) = 6. The exponentiation x√k is generalized to
the case x ∈ T± as well. For any x ∈ T±, we use the notation ≤x as a shorthand
for the operation (≤�) ∪ x. The positive and negative parts x+ and x− of an
element x ∈ T± are defined by (x+, x−) := (x, �) if x ∈ T+, (�,≤x) if x ∈ T−,
and (�, �) if x = �. We extend this notation to vectors and matrices entrywise.

A matrix M ∈ T
n×n
± is said to be generic if the following maximum

max{|M1σ(1)| ∪ . . .∪ |Mnσ(n)| | τ ∈ Sn}

is not equal to �, and is attained by only one permutation τ in the symmetric
group Sn. A matrix A ∈ T

m×n
± is strongly non-degenerate if all of its submatrices

are generic. In particular, the coefficients of A are not null (tropically).

Generalized Puiseux Series. Tropical arithmetic can be intuitively illustrated by
the arithmetic over asymptotic orders of magnitude. For instance, if we denote
by Π(ta) the equivalence class of real functions of t which belong to some interval
[Kta,K ∈ta] when t ⊂ +⊆ (0 < K ⇔ K ∈), we have Π(ta) +Π(tb) = Π(tmax(a,b)),
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and Π(ta) × Π(tb) = Π(ta+b). We use generalized Puiseux series as a way to
manipulate such orders of magnitude in a formal way.

A (real) generalized Puiseux series (or Puiseux series for short) is a formal
series x in the indeterminate t of the form xα1t

α1 + xα2t
α2 + . . . , where xαi ∈

R\{0}, and the sequence of the βi is decreasing, and either finite or unbounded.
The set of generalized Puiseux series forms a field that we denote K. Given a
Puiseux series x as above, the largest exponent β1 is called the valuation of x,
and is denoted by val(x). By convention, the valuation of the null series x = 0
is defined as � = −⊆. Thus the valuation val(·) maps K to T.

A Puiseux series x is positive, which is denoted by x > 0, if the coefficient
xval(x) of the term with largest exponent in x is positive. We denote by ⇔ the
total order over K defined by x ⇔ y if x = y or y − x > 0. Then, we define
the signed valuation sval(x) of x as the element of T± given by val(x) if x > 0,
≤(val(x)) if x < 0, and � if x = 0. Given x ∈ T±, we also denote by sval−1(x)
the set of Puiseux series x such that sval(x) = x. Valuation, signed valuation
and its inverse are extended to vectors and matrices coordinate-wise.

As discussed above, the arithmetic operations over K and T are related. For
instance, for all x,y → 0, we have val(x + y) = max(val(x), val(y)). Similarly,
if x,y ∈ K, then sval(xy) = sval(x) ∪ sval(y). More generally, the valuation
will be used to transfer “classical” results to the tropical setting. In particular,
convex polyhedra and linear programs over K series essentially behave as over
R (K is a real-closed field, so Tarski’s transfer principle applies). The simplex
algorithm can be defined over K as usual, and the valuation map will allow us
to relate it with the tropical simplex algorithm.

General Notations. Given a matrix A of dimension m × n, and two subsets
I ∗ [m] and J ∗ [n], we denote by AI×J the submatrix formed by the rows and
the columns of A respectively indexed by i ∈ I and j ∈ J . If J = [n], we simply
denote this submatrix by AI . The transpose matrix of A is denoted by Aᵀ, and
the cardinality of a set I by |I|.

2.2 The Tropical Simplex Method

The tropical simplex method, introduced in [12], allows to solve tropical ana-
logues of linear programming problems:

minimize cᵀ ∪ x (x ∈ T
n)

subject to x → �, A+ ∪ x⇒ b+ → A− ∪ x⇒ b− LP(A, b, c)

where A ∈ T
m×n
± , b ∈ T

m
± , and c ∈ T

n
±. We denote by P the tropical polyhedron

defined by the constraints of LP(A, b, c). Note that the inequalities x → � are
trivially satisfied by any x ∈ T

n, hence they are superfluous. However, as we
shall see, they are involved in the definition of tropical basic points, which is
why we need to keep them.

Similarly to the classical simplex method, the principle of the tropical simplex
method is to pivot over the (feasible) tropical basic points, while decreasing the
objective function x ⊥⊂ cᵀ ∪ x. It handles tropical linear programs which satisfy
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a certain non-degeneracy assumption. Here, we will make the following sufficient
assumption:

Assumption 1. The matrices
(
A b

)
and

(
A
c

)
are strongly non-degenerate.

In this setting, a basis is a couple (I, J) where I ∗ [m], J ∗ [n] satisfy |I|+ |J | =
n. It can be shown that the system A+

I ∪ x⇒ b+I = A−
I ∪ x⇒ b−I , xJ = � admits

a unique solution, which is referred to as the basic point associated with (I, J).
When it belongs to P , it is called a feasible basic point, and (I, J) is a feasible
basis. We often manipulate (I, J) through the disjoint union I ↓ J of I and J .

The execution of the tropical simplex method on LP(A, b, c) is related with the
execution of the classical simplex method on a lifting linear program over Puiseux
series. More precisely, a lift of LP(A, b, c) is a linear program over Puiseux series
of the form:

minimize cᵀx (x ∈ K
n)

subject to x → 0, Ax + b → 0
LP(A, b, c)

where A ∈ sval−1(A), b ∈ sval−1(b), and c ∈ sval−1(c). Let us denote by P
the convex polyhedron defined by the inequalities of LP(A, b, c). Then, P and
P have precisely the same (feasible) bases, and the map x ⊥⊂ val(x) induces a
one-to-one correspondence between their basic points [12, Prop. 17]. Besides, if
x̄ ∈ P minimizes the function x ⊥⊂ cᵀx, then val(x̄) ∈ P minimizes x ⊥⊂ cᵀ ∪x.

Moreover, both simplex methods also iterate over basic points in the same
way. Starting from a basic point of basis (I, J), they pivot to an adjacent basic
point associated with a basis (I ∈, J ∈) such that I ∈↓J ∈ = (I↓J)\{kout}≥{kin}, for
some kout ∈ I↓J , kin �∈ I↓J . The element kout is called the leaving variable, and
is provided by the pivoting rule. The integer kin is uniquely determined when
the problem is non-degenerate. As a consequence, the tropical simplex method
traces the image by val(·) of the path followed by the classical simplex method,
provided that they use compatible pivoting rules, i.e. at any feasible basis, both
rules select the same leaving variable. Recall that, given a tropical basic point
with basis (I, J) and a leaving variable kout, the operation of pivoting to the
next tropical basic point can be done in time O(n(m + n)) [12, Theorem 33].

3 Tropicalizing the Shadow-Vertex Simplex Algorithm

3.1 The Classical Shadow-Vertex Pivoting Rule

Given u,v ∈ K
n, the shadow-vertex rule aims at solving the following parametric

family of linear programs for increasing values of λ → 0:

minimize (uᵀ − λvᵀ)x (x ∈ K
n)

subject to x → 0, Ax + b → 0
(3)

The vectors u and v are respectively called objective and co-objective vectors.
The input of (3) is supposed to satisfy a genericity property. Here, we will assume
that no minor of

(
A b

)
and

(
Aᵀ u v

)
is null.
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When λ is continuously increased from 0, the basic points of P minimizing
the function x ⊥⊂ (uᵀ − λvᵀ)x form a sequence x̄0, . . . , x̄p. The shadow-vertex
rule amounts to iterate over this sequence. It relies on the reduced cost vectors
w.r.t. the objective and co-objective vectors. Given a basis (I, J), the reduced
cost vector y(I,J) ∈ K

I≤J w.r.t. the objective vector u is defined as the unique
solution y of the system (A∈

I≤J)ᵀy = u, where A∈ =
(
Id
A

)
, and Id is the identity

matrix. The reduced cost vector z(I,J) w.r.t. the co-objective vector v can be
defined similarly, by replacing u by v. Then, at basis (I, J), the shadow-vertex

rule selects the leaving variable kout ∈ I ↓ J such that y
(I,J)
kout

> 0, z
(I,J)
kout

> 0,
and:

y
(I,J)
kout

/z
(I,J)
kout

= min
{
y
(I,J)
l /z

(I,J)
l | l ∈ I ↓ J, y

(I,J)
l > 0 and z

(I,J)
l > 0

}
. (4)

Note that kout is unique under the non-degeneracy assumptions. We refer to [16,
Chapter 1.3] for a proof of (4). In the following, we will denote by Δsv(A,u,v)
the function which, given a basis (I, J), returns the leaving variable provided by
the shadow-vertex rule with objective and co-objective vectors u and v.

3.2 Semi-algebraic Pivoting Rules and Their Tropical Counterpart

In this section, we focus on the problem of finding a tropical pivoting rule Δtropsv

compatible with the shadow-vertex rule Δsv. More formally, we aim at defin-
ing a function Δtropsv (A, u, v) parametrized by a tropical matrix A ∈ T

m×n
± , and

objective and co-objective vectors u, v ∈ T
n
±, such that:

Δtropsv (A, u, v)(I, J) = Δsv(A,u,v)(I, J) for any basis (I, J) ,

for all A ∈ sval−1(A), u ∈ sval−1(u), and v ∈ sval−1(v). In this case, Δtropsv will
be said to be compatible with Δsv on the instance (A, u, v).

Tropical Polynomials. The connection we use between the classical and tropical
worlds relies on polynomials over generalized Puiseux series.

Let P ∈ K[X1, . . . , Xp] be a multivariate polynomial, and suppose that it
is of the form

∑
α⊆S cαX

α1
1 . . .X

αp
p , where S ∗ N

p, and cα ∈ K \ {0} for all
β ∈ S. The set S is called the support of P . We associate a tropical polynomial
trop(P ) ∈ T±[X1, . . . , Xp] defined as the following formal function:

trop(P ) :=
⊕

α⊆S

cα ∪X√α1
1 ∪ . . .∪X√αp

p ,

with cα := sval(cα) for all β ∈ S. Given x ∈ T
p
±, we say that the polynomial

trop(P ) vanishes on x if the following maximum

max
{|cα| ∪ |x1|√α1 ∪ . . .∪ |xp|√αp | β ∈ S

}
(5)

is reached at least twice, or is equal to �. If P does not vanish on x, we define by

P (x) as cα∗ ∪ x
√α∗

1
1 ∪ . . .∪ x

√α∗
p

p , where β≥ is the unique element of S reaching
the maximum in (5). The following lemma relates the values of P and trop(P ):
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Lemma 2. Let x ∈ T
p
±, and suppose that trop(P ) does not vanish on x. Then,

for any x ∈ sval−1(x), we have sval(P (x)) = trop(P )(x). In particular, the sign
of P (x) is equal to the sign of trop(P )(x).

Following this, we can define determinants of tropical matrices. Let us define
tdetn(X) :=

⊕
σ⊆Sn

tsign(τ) ∪X1σ(1) ∪ . . .∪Xnσ(n), where tsign(τ) := � if the
permutation τ is even, ≤� otherwise. The polynomial tdetn is simply denoted
tdet when there is no ambiguity. If M ∈ T

n×n
± , the tropical determinant of M

is defined as tdet(M) when tdet does not vanish on M . Note that the latter
condition is equivalent to the fact that M is generic. In this case, tdet(M) can
be computed in time complexity O(n3), by solving an assignment problem over
the bipartite graph equipped with the weights |Mij | (see e.g. [13]).

The Shadow-Vertex Rule as a Semi-Algebraic Rule. We claim that the shadow-
vertex rule is a semi-algebraic rule, in the sense that the leaving variable returned
by Δsv(A,u,v)(I, J) only depends on the current basis (I, J) and on the signs

of finitely many polynomials taken on the matrix M :=
(

A
uᵀ
vᵀ

)
. To make the

notations simpler, we fix a basis (I, J), and we respectively denote by y and z
the reduced cost vectors y(I,J) and z(I,J). We also define J := [n] \ J .

Let us denote by PK×L the polynomial given by the (K × L)-minor of the
matrix X = (Xij) of formal variables, for any K ∗ [m + 2] and L ∗ [n] such
that |K| = |L|. For instance, if K = {1, 2} and L = {3, 4}, PK×L is given by the

determinant of the submatrix
(

X1,3 X1,4

X2,3 X2,4

)
, i.e. PK×L = X1,3X2,4 − X2,3X1,4.

For all l ∈ I ↓ J , we define two polynomials Ql and Rl as follows:

Qi := P(I\{i}∪{m+1})×J Ri := P(I\{i}∪{m+2})×J when i ∈ I ,

Qj := P(I∪{m+1})×(J∪{j}) Rj := P(I∪{m+2})×(J∪{j}) when j ∈ J .

With these notations, it can be shown that for all l ∈ I ↓ J ,

yl = sl Ql(M)/PI×J(M) zl = sl Rl(M)/PI×J (M) , (6)

where sl is a constant in {±1} which only depends on the position of l in the or-
dered set I or J . Thus, the properties yl > 0, zl > 0 can be tested by determining
the signs of Ql(M), Rl(M) and PI×J (M).

Moreover, thanks to (6), we have yl/zl = Ql(M)/Rl(M). As a result, the
comparison of two ratios yk/zk and yl/zl involved in the shadow-vertex rule can
be made by evaluating the sign of a polynomial of the form Tkl := QkRl−QlRk

on the matrix M . This completes the proof of our claim.

Tropical Shadow-Vertex Rule. Following the previous discussion, we can ex-
press Δsv(A,u,v) as a function defined in terms of the signs of some minors
det(MK×L), and of the signs of the Tkl(M) (k �= l). Given tropical entries
(A, u, v), we simply define Δtropsv (A, u, v) as the same function, in which the mi-
nors of M have been substituted by the corresponding tropical minors of the

matrix M :=
(

A
uᵀ
vᵀ

)
, and the Tkl(M) have been replaced by trop(Tkl)(M).
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In more details, the function Δtropsv (A, u, v)(I, J) returns the unique element
kout ∈ L such that

sign(trop(Tkoutl(M)) = −skoutsl for all l ∈ L \ {kout} , (7)

where L is the set of the elements l ∈ I ↓ J such that sign(trop(Ql)(M)) =
sign(trop(Rl)(M)) = sl sign(tdet(MI×J)). The latter condition is the tropical
counterpart of the conditions yl, zl > 0 in the definition of Δsv. Equation (7) is
the analog of ykout/zkout < yl/zl for all l ∈ L, l �= kout.

The main result of this section is the following:

Theorem 3. If the matrix
(

A
uᵀ
vᵀ

)
is strongly non-degenerate, then Δtropsv is com-

patible with Δsv on the instance (A, u, v). Moreover, for all bases (I, J), the leav-
ing variable returned by Δtropsv (A, u, v)(I, J) can be computed in time O(n4).

In the rest of the section, we sketch the main arguments which allow to prove
Theorem 3.

By assumption, the matrix M is strongly non-degenerate, so that the sign of
every tropical minor tdet(MK×L) coincides with the sign of the corresponding
minor of M by Lemma 2. As discussed earlier, each tropical minor can be com-
puted in time O(n3), and in total, the set L can be determined in time O(n4).
It now remains to examine the case of the polynomials trop(Tkl), and to show in
particular that they do not vanish on M . Without loss of generality, we restrict
to the case k, l ∈ I.

First observe that the coefficients in Tkl are integers. Hence, as elements of
the field K, they are constant Puiseux series, with valuation 0 = �. Therefore,
the tropical polynomial trop(Tkl) is of the form

⊕
α⊆S cα ∪X√α, where S is the

support of Tkl, and cα ∈ {�,≤�} for all β ∈ S (we use the notation X√α as a

shorthand of
⊙

ij X
√αij

ij ). In particular, as Mij �= � for all (i, j) (thanks to the

strong non-degeneracy of M), we have |cα| ∪ |M |√α =
∑

ij βij |Mij |.
As a consequence, it can be shown that trop(Tkl) does not vanish on M if,

and only if, the following classical linear programming problem admits a unique
solution β≥:

maximize
∑

ij |Mij |βij

subject to β ∈ New(Tkl)
(8)

Here, New(Tkl) ∗ R
(m+2)×n is the Newton polytope of the polynomial Tkl, de-

fined as the convex hull of its support S. In this case, the sign of trop(Tkl)(M)
is given as the sign of the term cα∗ ∪M√α∗

. We claim that (8) can be solved in
time O(n3), and that the optimal solution β≥ is unique.

Indeed, by Plücker quadratic relations (see for instance [17, Chapter 3]), we
know that Tkl = PI×J P(I\{k,l}∪{m+1,m+2})×J . This implies that the Newton
polytope of Tkl consists in the Minkowski sum of the two polytopes ∂1 :=
New(PI×J ) and ∂2 := New(P(I\{k,l}∪{m+1,m+2})×J ). As a result, Problem (8)
can be decomposed into the following two linear programs:

maximize
∑

ij |Mij |βij

subject to β ∈ New(∂i)
for i ∈ {1, 2} (9)
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1: procedure TropPCBC(A, b)
2: u := (Δ, Δ√2, . . . , Δ√n)ᵀ

3: x̄ := (�, . . . ,�)ᵀ

4: for k = 1 to m do
5: Starting from x̄, iterate over the tropical basic points and edges of P(k−1)

using the tropical rule κtropsv (A[k−1], u, (Ak)
ᵀ), until finding a point x̄∗ ∈ P(k−1)

such that A+
k ∪ x̄∗ ← b+k ≥ A−

k ∪ x̄∗ ← b−k .
6: if there is no such point x̄∗ then return “Empty”
7: else x̄ := x̄∗

8: done
9: return “Non-empty”
10: end

Fig. 3. Tropicalization of the PCBC algorithm

The polytopes New(∂i) are bipartite perfect matching polytopes. Consequently,
the two problems in (9) correspond to optimal assignment problems, and can
be solved in O(n3). Besides, they both admit a unique solution thanks to the
genericity condition on M . This easily proves our claim.

To summarize, the compatibility of Δtropsv and Δsv follows from Lemma 2. The
output kout of Δtropsv (A, u, v)(I, J) can be computed by determining the smallest
element of the set L according to the abstract ordering relation ≺ defined by
k ≺ l ⇐⇒ sign(trop(Tkl)(M)) = −sksl. Every comparison has time complexity
O(n3), and so the result can be obtained in time O(n4).

4 Average-Case Complexity of Mean Payoff Games

As an application of the results of Section 3, we deduce an average-case complex-
ity result on mean payoff games. The algorithm involved in this result is given in
Figure 3. It is a straightforward transposition to the tropical setting of the para-
metric constraint-by-constraint algorithm due to Adler, Karp and Shamir [14].

Given A ∈ T
m×n
± , b ∈ T

m
± , we denote by P(k) the tropical polyhedron defined

by the first n + k inequalities of the system x → �, A+ ∪ x⇒ b+ → A− ∪ x⇒ b−.
The principle of the algorithm TropPCBC is to determine by induction on
k = 1, . . . ,m whether P(k) is empty. The inductive step (Line 5) uses the tropical
shadow-vertex simplex algorithm in order to find a feasible basic point x̄∈ of P(k)

(if any), starting from a basic point x̄ of P(k−1). The objective vector is fixed to
u = (φ, φ√2, . . . , φ√n)ᵀ, where φ is small enough1, and at the k-th iteration, the
co-objective vector is Aᵀ

k.
Adler et al. prove that their parametric constraint-by-constraint algorithm

visits O(min(m2, n2)) basic points on average, assuming that the inequalities in
the system x → 0, Ax + b → 0 can be flipped with probability 1/2. By the first
part of Theorem 3, the same result holds in the tropical case. We translate this

1 Even if Δ needs to be small, it can be shown that we can choose it so as its size is
polynomial in the size of the entries Aij , bj .
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result in terms of mean payoff games. The probability distribution is expressed
over the payments matrices A,B, and must satisfy the following requirements:

Assumption 4. (i) for all i ∈ [m] (resp. j ∈ [n]), the distribution of the
matrices A,B is invariant by the exchange of the i-th row (resp. j-th col-
umn) of A and B.

(ii) almost surely, Aij and Bij are distinct and not equal to � for all i ∈ [m],
j ∈ [n]. In this case, we introduce the signed matrix W = (Wij) ∈ T

m×n
± ,

defined by Wij := Aij if Aij > Bij , and ≤Bij if Aij < Bij .
(iii) almost surely, the matrix W is strongly non-degenerate.

Condition (i) handles discrete distributions (see Figure 2) as well as continuous
ones. In particular, if the distribution of the payment matrices admits a density
function f , Condition (i) can be expressed as the invariance of f by flip operations
on its arguments. For instance, if m = 1 and n = 2, the flip invariance holds if,
and only if, for almost all aij , bij , f(a1,1, a1,2, b1,1, b1,2) = f(b1,1, b1,2, a1,1, a1,2) =
f(b1,1, a1,2, a1,1, b1,2) = f(a1,1, b1,2, b1,1, a1,2). The requirements Aij , Bij �= � for
all i, j in Condition (ii) ensure that the flip operations always provide games in
which the two players have at least one action to play from every position. The
matrix W can be intuitively thought of as a tropical subtraction “A≤ B”, and
the conditions Aij �= Bij ensure that W is well defined. Condition (iii) is the
analog of the non-degeneracy assumption used in [14] to establish the average-
case complexity bound. We point out that the set of matrices A,B which do not
satisfy the requirements stated in Conditions (ii) and (iii) has measure zero. As
a consequence, these two conditions do not impose important restrictions on the
distribution of A,B, and they can rather be understood as genericity conditions.

We can show that TropPCBC(W[m]×[n−1],W[m]×{n}) allows to determine
whether the initial state n is winning in the game with matrices A,B. As every
iteration of the tropical shadow-vertex simplex algorithm has a polynomial time
complexity (second part of Theorem 3), and the number of visited basic points
is polynomial on average, this yields the following theorem:

Theorem 5. Under a distribution satisfying Assumption 4, TropPCBC deter-
mines in polynomial time on average whether the initial state j ∈ [n] is winning
for Player Max in the mean payoff game with payment matrices A,B.

5 Conclusion

We have defined a tropical analogue of the shadow-vertex simplex algorithm, and
shown that every iteration has polynomial time complexity. As a corollary, we
have established a polynomial-time average-case result on mean payoff games,
based on the analysis of Adler, Karp and Shamir of the classical shadow-vertex
algorithm. The main restriction of the model is the flip invariance property. It
is an open question whether the tropical approach can be applied with other
probabilistic models. In particular, it would be interesting to transfer smoothed
complexity results, e.g. [18], to the tropical setting. The results of Section 3 also
suggest that there is a general method to tropicalize any semi-algebraic pivoting
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rule, based on the characterization of the Newton polytopes involved. This will
be addressed in a future work.
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Abstract. The sensitivity conjecture of Nisan and Szegedy [12] asks
whether the maximum sensitivity of a Boolean function is polynomi-
ally related to the other major complexity measures of Boolean func-
tions.1 Despite major advances in analysis of Boolean functions in the
past decade, the problem remains wide open with no positive result to-
ward the conjecture since the work of Kenyon and Kutin from 2004 [11].

In this work, we prove tighter upper bounds for various complexitymea-
sures in terms of sensitivity. More precisely, we show that deg(f)1−o(1) =
O(2s(f)) and C(f) ≤ 2s(f)−1s(f); these in turn imply various corollaries
regarding the relation between sensitvity and other complexity measures,
such as block sensitivity, via known results. The gap between sensitivity
and other complexity measures remains exponential but these results are
the first improvement for this difficult problem that has been achieved in
a decade.

1 Introduction

Sensitivity conjecture is a well-known and challenging open problem in the study
of complexity measures of Boolean functions. As explaind in detail in various
works, the conjecture has many equivalent (or morally equivallent) formulations.
Although in this work we shall be mostly concerned with the original formula-
tion of the conjecture in terms of complexity measures of Boolean functions, let
us begin by stating the combinatorial formulations of the problem— as this for-
mulation perhaps has the benefit of being more immediately accessible. In the
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language of extremal combinatorics, the problem is about a certain conjectured
Ramsey-type phenomenon over the Hamming cube as follows: does there exists
a δ > 0 such that any unbalanced two-coloring of vertices of hypercube {0, 1}n
contains a verctex x ∈ {0, 1}n such that x has ⊆ nε neighbors in the same color
class as x?

In the original form of Nisan and Szegedy [12], the conjecture takes the fol-
lowing form:

Conjecture 1 (sensitivity conjecture). There exists a constant d ∈ R
+ such that

for any Boolean function f : {−1, 1}n ⊂ {−1, 1} we have

bs(f) = O(s(f)d),

where s(f) and bs(f) denote the sensitivity and the block sensitivity (defined in
Section 2) of the function f .

We shall note that the equivalence between these two seemingly different
problems, first observed by Gotsman and Linial [8], is not at all that difficult.
Moreover, the equivalence is very direct, and there is almost no cost in parame-
ters for switching from one setting to the other. Thus, one may choose to work in
whichever setting one finds more convenient. As such, we shall work exclusively
in the complexity theoretic framework, though we shall note that our argue-
ments in Section 4 is inspired and is a refinement of an arguement of Chung et
al. from [6] which takes place in the combinatorial setting.

We shall make one final remark about the formulation of the problem before
moving on to the discussion of previous works and our results. In the statement
of the conjecture, we can replace the block sensitivity by several other widely
used complexity measure of Boolean functions (such as deterministic and ran-
domized query complexity, certificate complexity, Fourier degree, etc.) which are
all polynomially related to block sensitivity (and to each other), as shown by
Nisan and Szegedy [12].

Background. As mentioned above, through the work of various researchers by
now many different equivalent forms of the sensitivity conjecture are available.
Fortunately, almost all of these different formulations and various approaches to
the conjecture are discussed in the recent survey of P. Hatami et al. [10] (see
also the blogpost of Aaronson [1] which played an important role in the recent
surge of attention to the problem). We refer to these works for a more detailed
exposition of the background and the prior works. We briefly recall some of the
more immediately relevant facts:

The best known upper bound on block sensitivity is

bs(f) → (
e∧
2π

)es(f)
√
s(f), (1)

given by Kenyon and Kutin [11]. In the other direction, the first progress on the
lower bound was made by Rubinstein [13] who gave the first quadratic separation
for block sensitivity and sensitivity by constructing a Boolean function f with
bs(f) = 1

2s(f)2. Currently, the best lower bound is due to Ambainis and Sun
who in [3] exhibited a function with bs(f) = 2

3s(f)2 − 1
2s(f).
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Results. Our first result in this paper is the following estimate regarding the rela-
tion between the maximum sensitivity and Fourier degree of a Boolean function.

Theorem 1. Let f : {0, 1}n ⊂ {−1, 1} be a Boolean function. Then

deg(f)1−o(1) → s(f)2s(f) ,

where o(1) denotes a term that vanishes as deg(f) ⊂ ≥.

The proof of the above theorem is a mixture of techniques from Fourier analysis
and combinatorics. The argument is partly inspired by the arguments in the
paper of Chung et al. [6] which recently played an important role in solving a
question about the query complexity of restrictions of parity function in [2].

For sensitivity versus certificate complexity, we can prove a somewhat stronger
theorem which has direct consequences for sensitivity versus block sensitivity
problem (which is the original formulation of sensitivity conjecture by Nisan
and Szegedy [12]).

Theorem 2. For any Boolean function f ,

C1(f) → 2s0(f)−1s1(f), C0(f) → 2s1(f)−1s0(f). (2)

Here C0(f) and C1(f) denote the 0-certificate complexity and 1-certificate com-
plexity of f . These notions – along with the rest of the background material on
complexity measures of Boolean functions – are presented in Section 2.

Using the known relations between various complexity measures of Boolean
functions, we can derive several consequences from the above result.

Corollary 1. For any Boolean function f ,

bs(f) → C(f) → 2s(f)−1s(f).

Combining Theorem 2 and some previous results, we can also give another upper
bound for block sensitivity.

Corollary 2. For any Boolean function f ,

bs(f) → min{2s0(f), 2s1(f)}s1(f)s0(f). (3)

Hence, we see that our Theorems 1 and 2 and their corollaries show an improved
exponent in relation between sensitivity and various complexity measures of
Boolean functions compared to the previous best bound shown in equation (1).
Beside being the first positive result toward the sensitivity conjecture since the
work of Kenyon and Kutin from 2004, we believe our results have the merit of
introducing new ideas and techniques which could be valuable elesewhere as well
as in the future works on this fundamental conjecture.

Although the bounds obtained in Theorems 1 and Theorem 2 look quite sim-
ilar, the theorems do not follow one from another by using the known relations
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between certificate complexity and Fourier degree. On the contrary, the two the-
orems are obtained by using rather different techniques. However, we shall note
that despite their differences both proofs of Theorem 1 and 2 crucially rely on the
small set expansion properties of Boolean hypercube. It is plausible that better
analytic estimates along the lines of [7] could be useful to slightly improve our
results— though a significant improvement is likely to require new ideas.

Organization. In Section 2 we recall some basic definitions and concepts relevant
to this work. In Section 3, we prove Theorem 1 and in Section 4, we prove
Theorem 2 and its corollaries. Both Sections 3 and 4 are self-contained and can
be read in any order.

2 Preliminaries

In this paper, we work with total Boolean functions over the hypercube and their
measures of complexity. We assume some basic familiarity with the complexity
measures of Boolean functions (as described in the survey [5]). For completeness,
we briefly recall some basic definitions.

We work with the usual graph structure on the hypercube by connecting
x, y ∈ {0, 1}n if and only if x, y differ in a single coordinate. We always denote
by log(·) the logarithm with the base 2.

Definition 1. The pointwise sensitivity s(f, x) of a function f on input x is
defined as the number of bits on which the function is sensitive, i.e.

s(f, x) =
∣
∣{i ∈ [n]|f(x) ⇐= f(x(i))}∣∣,

where x(i) is obtained by flipping the i-th bit of x. We define the total sensitivity
by

s(f) = max
⎧
s(f, x)|x ∈ {0, 1}n⎨ ,

and the 0-sensitivity and 1-sensitivity by

s0(f) = max
{
s(f, x)|x ∈ {0, 1}n, f(x) = 0

}
, s1(f) = max

{
s(f, x)|x ∈ {0, 1}n, f(x) = 1

}
.

Block sensitivity is another important complexity measure which is obtained by
relaxing the requirement that we have to only flip single coordinates by allowing
flipping disjoint blocks. More formally block sensitivity is defined as follows:

Definition 2. The pointwise block sensitivity bs(f, x) of f on input x is de-
fined as maximum number of pairwise disjoint subsets B1, ..., Bk of [n] such that
f(x) ⇐= f(x(Bi)) for all i ∈ [k]. Here x(Bi) is obtained by flipping all the bits
{xj |j ∈ Bi} of x. Define the block sensitivity of f as

bs(f) = max
⎧
bs(f, x)|x ∈ {0, 1}n⎨,

and the 0-block sensitivity and 1-block sensitivity, analogously to Definition 1,
by

bs0(f)=max
{
bs(f, x)|x ∈ {0, 1}n, f(x) = 0

}
, bs1(f)=max

{
bs(f, x)|x ∈ {0, 1}n, f(x) = 1

}
.
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The certificate complexity is another very useful complexity measure with a more
non-deterministic type of definition. It is defined as follows:

Definition 3. The certificate complexity C(f, x) of f on input x is defined as
the minimum length of a partial assignment of x such that f is constant on this
restriction. Define the certificate complexity of f by

C(f) = max
⎧
C(f, x)|x ∈ {0, 1}n⎨,

and the 0-certificate and 1-certificate by

C0(f) = max
{
C(f, x)|x ∈ {0, 1}n, f(x) = 0

}
, C1(f) = max

{
C(f, x)|x ∈ {0, 1}n, f(x) = 1

}
.

Another important notion for us is Fourier degree. It is also polynomially
related to block-sensitivity and certificate complexity. To define Fourier degree,
recall that any function f : {0, 1}n ⊂ C can be expanded in terms of Fourier
characters as follows

f(x) =
⎩

S◦[n]

f̂(S)χS(x) ,

where χS(x) = (−1)
∑

i∈S xi .

Definition 1. Let f : {−1, 1}n ⊂ R and let f̂(·) denote its Fourier transform.
We define Fourier degree of f by

deg(f) = max
f̂(S) √=0

|S| .

Finally, we mention an important and well-known combinatorial result over the
hypercube, usually attributed to Harper [9].

Lemma 1 (Hamming Cube Isoperimetry [9]). Assume ⇒ ⇐= A ∪ {0, 1}n.
Let d be the average degree of vertices of A with graph structure on A induced
from the natural Hamming graph of {0, 1}n. Then we have

|A| ⊆ 2d .

The above lemma is quite easy to prove by induction. For a detailed proof which
covers the application to combinatorics, we recommend consulting the book by
Bollobás [4].

The above theorem implies that if |A| is small, the average degree d must
also be relatively small. In this case, the ratio between the number of the edges
leaving the set A and the total number of incident edges to A, which is equal to
1−d/n, is relatively large. This justifies the alternative name given to the above
theorem as the “small set expansion” property of the Hamming cube.

In Section 4, we need an equivalent formulation of discrete isoperimetric in-
equality, Lemma 1, which will be a more convenient for our purposes there.

Lemma 2. For any A ∪ {0, 1}n, the edges between A and Ā = {0, 1}n \ A is
lower bounded by

|E(A, Ā)| ⊆ |A|(n− log2 |A|).



106 A. Ambainis et al.

3 Sensitivity versus Degree

In this section, we shall prove Theorem 1. Let f : {0, 1}n ⊂ {−1, 1} be a Boolean
function. To prove Theorem 1, the key idea is to count the following objects.

Definition 4. An (l, r) S-triple consists of a point x ∈ {0, 1}n and two sets
L ∪ R ∪ [n] with |L| = l and |R| = r such that f(x) ⇐= f(xi) for any i ∈ L.

In our application, the two parameters l → r are chosen as follows: l = c log r,
for some c > 0 an appropriately chosen constant, and r will be a slowly growing
function of n which will be asymptotically log logn. The upper bound on the
number of S-triples is easy to establish.

Lemma 3. The number of (l, r) S-triples is bounded by

2n
s(f)

l
nr−l

l!(r − l)!
.

Proof. We can assume s(f) ⊆ l as otherwise the number of S-triples is zero.
Consider any x ∈ {0, 1}n. The number of S-triples involving x is bound by

max1≤q≤s(f)

⎢
q
l

⎣⎢
n−l
r−l

⎣
. This is clearly bounded by s(f)l nr−l

l!(r−l)! which implies the

above lemma. ≤⇔
The main part of proving Theorem 1 is to prove a lower bound on the number

of S-triples which coupled with the above lemma gives the desired lower bound
on s(f). The key idea here is study of restriction of function f to subcubes of
dimension r. To be able to carry out our argument we will need a few definition
regarding restrictions of functions over the discrete cube.

Restrictions of Boolean functions.

Definition 5. Given z ∈ {0, 1, ∗}n and R ∪ [n], we call them a compatible
pair if R = {i ∈ [n] : z(i) = ∗}. Each z ∈ {0, 1, ∗}n naturally corresponds to
|R|-dimensional subcube Qz ∪ {0, 1}n defined as follows:

Qz = {y ∈ {0, 1}n : zi ⇐= ∗ ⊥ yi = zi},

i.e. Qz is constructed by freezing the coordinates of y in [n] \ R according to z,
and letting the rest of coordinates yi for i ∈ R to be free.

Let f : {0, 1}n ⊂ R. Given a compatible pair z ∈ {0, 1, ∗}n and R = {i ∈ [n] :
z(i) = ∗} we obtain a restriction function f |z given by restricting f to Qz

Definition 6. Given z ∈ {0, 1, ∗}n and x ∈ {0, 1}n (here x is not necessarily
in Qz), define y = (x ↓ z) to be projection of x to Qz given by yi = zi for any
i ∈ [n] such that z(i) ⇐= ∗ and yi = xi for all the other i ∈ [n]. We define

f |z(x) = f(x ↓ z) .
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Notice that f |z(x) is a function over whole {0, 1}n though its value only depends
on R the coordinates which z(i) = ∗. Given the above definition one can easily
infer the Fourier expansion of the restriction function f |z(·) from that of f as
follows.

(f |z) (x) =
⎩

S◦R

χS(x)
⎩

U⊆R=S

f̂(U)χU\S(z) .

We need the following lemma regarding the degree of restrictions of a function.

Lemma 4. Let f : {−1, 1}n ⊂ {−1, 1} be function of degree n. Let R ∪ [n].
Then there exist z ∈ {−1, 1, ∗}n compatible with R such that (f |z) is also full-
degree |R|.

Proof. The coefficient of the highest monomial in Fourier expansion of (f |z) is
given by ⎩

R◦U

f̂(U)χU\R(z).

Now we calculate the expectation of the square of this value for a random z
compatible with R.

E
z

⎛

⎝
⎩

R◦U

f̂(U)χU\R(z)

⎞

⎠

2

=
⎩

R◦U

f̂(U)2 ⊆ f̂([n])2 > 0

where for the last inequality we used the fact that f is full-degree. ≤⇔
The importance of the above lemma is that it allows us to use induction:2

Fix some R ∪ [n]. By the lemma above, there exists z ∈ {0, 1, ∗}n compatible
with R such that f |z is full-degree. The importance of existence of z is that Qz

always contain an S-triple which was the object we were interested to count.
More precisely, since f |z is full-degree by induction on the degree in Theorem 1
there exists subset L ∪ R with |L| ⊆ 1

3 log |R| such that there exist x ∈ Qz such
that f |z(x) ⇐= f |z(xi) for every i ∈ L. Taking l = |L| and r = |R| we see that
(x, L,R) constitutes an S-triple. We use the existence of z and Harper’s lemma
1 to prove that for every R there exists not only one such z but in fact many.
This is the key estimate we need to prove our result.

The Main Proof of Sensitivity versus Fourier Degree Estimate

Proof (Theorem 1). Without loss of generality we can assume f is full-degree.

If this is not the case, choose S ∪ [n] with |S| = deg(f) such that f̂(S) ⇐= 0,

2 It is worth noting that for our induction we do not need the full strength of Theorem
1; in fact, a weaker bound of (say) deg(f) ≤ 10s(f), which follows from [11] and the
know relations between Fourier degree and block sensitivity, here suffices. If we were
able to change our methods to exploit the sharper induction hypothesis provided by
Theorem 1, this may be useful for achieving some improved estimate.
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then set the coordinates outside S arbitrary to get a Boolean function on |S|-
dimensional hypercube of full-degree. This reduces the problem to the full-degree
case as restricting a function can only decrease the sensitivity.

Let r = ω(1) be a very slowly growing function of n to be specified later. Fix
a set R ∪ [n] with |R| = r. By Lemma 4 there exist z ∈ {0, 1, ∗}n compatible
with R such that the restricted function (f |z) has degree r. Now by induction
s(f |z) ⊆ l where l = Θ(log r). (we can take l = 1

3 log r for concreteness.) This
means we can find a point x ∈ Qz with l neighbors x1, x2, . . . , xl such that

(f |z)(x1) = (f |z)(x2) = . . . = (f |z)(xl) ⇐= (f |z)(x) .

Let L = {i1, i2, . . . , il} ∪ R be the direction of the edges
(x, x1), (x, x2), . . . , (x, xl) respectively. Then (x, L,R) constitutes a (l, r)
S-triple.

So far for any R ∪ [n] we have shown the existence of one such S-triple.
Now we show there are many such triples. Consider ZR which is the set of all
z ∈ {0, 1, ∗}n compatible with R. Notice that ZR can be naturally associated
with a (n − r)-hypercube with z1, z2 ∈ ZR said to be neighbors in direction
j ∈ [n] \R if z1(i) = z2(i) for i ∈ [n] \ {j} and z1(j) ⇐= z2(j). (Clearly z1(j) ⇐= ∗
and z2(j) ⇐= ∗ as both z1 and z2 are compatible with R. )

We call a z̃ ∈ ZR good if

(f |z̃)(x1) = (f |z̃)(x2) = . . . = (f |z̃)(xl) ⇐= (f |z̃)(x) .

Let A be the set of all good z̃ in ZR. Notice that if z̃ is good, ((x ↓ z̃), L,R)
constitutes an S-triple. We have shown so far that z ∈ A so A is non-empty.
Now we prove all elements of A have high degree when seen as a subset of
(n − r)-hypercube. Indeed, notice that for any z̄ ∈ ZR and any x̄, there are at
most s(f) directions j ∈ [n] \ R such that (f |z̄) (x̄(j)) ⇐= (f |z̄) (x̄). Applying the
same reasoning to all x, x1, x2, . . . , xl, we see that for any z ∈ A there is at least
n−r−s(f)(l+1) neighbors of z in A. Now applying our isoperimetric inequality
(Lemma 1) to A we see that there are at least 2n−r−(l+1)s(f) such special triples
for a fixed R ∪ [n] of sizer.

On the other hand, the number of such special triples is bounded above by
Lemma 3. So we have

(
n

r

)
2n−r−s(f)(l+1) → 2n

s(f)
l
nr−l

l!(r − l)!
.

As r � n we have
⎢
n
r

⎣ ⊆ nr

2rr! . Simplifying we see n
l

l+1 → 4r
⎢
r
l

⎣
s(f)2s(f).

Choosing r log r = logn and l = log r
3 we get

n1−O( 1
log log n) → s(f)2s(f) ,

which is our desired result. ≤⇔
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4 Sensitivity versus Certificate Complexity

In this section we prove Theorem 2. Actually, we prove a slightly stronger result.

Theorem 3. Let f : {0, 1}n ⊂ {0, 1} be a Boolean function, then

C1(f) → 2s0(f)−1s1(f) − (s0(f) − 1), C0(f) → 2s1(f)−1s0(f) − (s1(f) − 1).3

Proof. By symmetry we only need to prove C1(f) → 2s0(f)−1s1(f)− (s0(f)− 1).
Without the loss of generality, we assume C1(f) = C(f, 0n), i.e. the 1-certificate
complexity is achieved on the input 0n. We have f(0n) = 1. We assume that
the minimal certificate of 0n consists of x1 = 0, x2 = 0, . . . , xm = 0, where
m = C(f, 0n) = C1(f).

Let Q0 be the set of inputs x that satisfies x1 = x2 = . . . = xm = 0. Since
x1 = 0, x2 = 0, . . . , xm = 0 is a 1-certificate, we have ≺ x ∈ Q0, f(x) = 1.

For each i ∈ [m], let Qi be the set of inputs x with x1 = . . . = xi−1 =
xi+1 = . . . = xm = 0 and xi = 1. Let S be the total sensitivity of all inputs
x ∈ ⋃m

i=1 Qi. It consists of three parts: sensitivity between Qi and Q0 (denoted
by S1), sensitivity inside Qi (denoted by S2) and sensitivity between Qi and
other input (denoted by S3), i.e.

S =

m⎩

i=1

⎩

x≥Qi

s(f, x) = S1 + S2 + S3. (4)

In the following we estimate S1, S2 and S3 separately. We use A1, . . . , Am to
denote the set of 0-inputs in Q1, . . . , Qm, respectively, i.e. Ai = {x ∈ Qi|f(x) =
0} (i ∈ [m]). Since x1 = . . . = xm = 0 is the minimal certificate, i.e. Q0 is
maximal, thus A1, . . . , Am are all nonempty.

We also need the following lemma which follows from Lemma 2 but can be
also proven without using it [14]:

Lemma 5. For any i ∈ [m],

|Ai| ⊆ 2n−m−s0(f)+1.

The sensitivity between Qi and Q0 is |Ai|. By summing over all possible i we
get:

S1 =

m⎩

i=1

|Ai|. (5)

Sensitivity Inside Q1, . . . , Qm: By Lemma 2, for each i ∈ [m], the number of
edges between Ai and Qi \Ai is bounded by:

|E(Ai, Qi \Ai)| ⊆ |Ai|(log2 |Qi| − log2 |Ai|) = |Ai|(n−m− log2 |Ai|).
3 If s0(f) = 0 or s1(f) = 0, then f is constant, hence s(f) = bs(f) = C(f) = 0.
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Therefore,

S2 = 2

m⎩

i=1

|E(Ai, Qi \Ai)|

⊆ 2
m⎩

i=1

|Ai|(n−m− log2 |Ai|). (6)

Sensitivity between Qi and Other Inputs (i.e. {0, 1}n\⋃m
j=0 Qj): For each

1 → i < j → m, let Qi,j be the set of inputs (not in Q0) that are adjacent to both
Qi and Qj, i.e. Qi,j is the set of inputs x that satisfy x1 = . . . xi−1 = xi+1 =
. . . xj−1 = xj+1 = . . . xm = 0 and xi = xj = 1. The sensitivity between Qi, Qj

and Qi,j is lower bounded by
⎩

x≥Q0

|f(x + ei) − f(x + ej)|.

where ei is the unit vector with the i-th coordinate equal to 1 and all other
coordinates equal to 0. Then, x+ ei, x+ ej are the neighbors of x in Qi and Qj ,
respectively. Summing over all possible pairs of (i, j) we get

S3 ⊆
⎩

1≤i<j≤m

⎩

x≥Q0

|f(x + ei) − f(x + ej)|

=
⎩

x≥Q0

(
m⎩

i=1

f(x + ei)

)(

m−
m⎩

i=1

f(x + ei)

)

=
⎩

x≥Q0

s(f, x)(m − s(f, x)). (7)

If we combine inequalities (5)-(7), we get

S =

m⎩

i=1

⎩

x≥Qi

s(f, x)

⊆
m⎩

i=1

|Ai| + 2

m⎩

i=1

|Ai|(n−m− log2 |Ai|) +
⎩

x≥Q0

s(f, x)(m − s(f, x)). (8)

Since s(f, x) is upper bounded by s0(f) or s1(f) (depending on whether f(x) = 0
or f(x) = 1), we have

⎩

x≥Qi

s(f, x) → |Ai|s0(f) + (|Qi| − |Ai|)s1(f)

= |Ai|s0(f) + (2n−m − |Ai|)s1(f)

Thus,

S =

m⎩

i=1

⎩

x≥Qi

s(f, x) →
m⎩

i=1

(
|Ai|s0(f) + (2n−m − |Ai|)s1(f)

)
. (9)
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We use w to denote the total number of 0-inputs in Q1, . . . , Qm. Then,

w =

m⎩

i=1

|Ai| =
⎩

x≥Q0

s(f, x).

The inequality (9) can be rewritten as

S → w · s0(f) + (m · 2n−m − w)s1(f). (10)

Also, s(f, x) → s1(f) for each x ∈ Q0. Thus, the right-hand side of inequality (8)
is

m⎩

i=1

|Ai| + 2

m⎩

i=1

|Ai|(n−m− log2 |Ai|) +
⎩

x≥Q0

s(f, x)(m− s(f, x))

⊆ w + 2
m⎩

i=1

|Ai|(n−m− log2 |Ai|) + (m− s1(f))
⎩

x≥Q0

s(f, x)

= w + 2w(n−m) − 2

m⎩

i=1

|Ai| log2 |Ai| + (m− s1(f))w

= w(1 + 2n−m− s1(f)) − 2

m⎩

i=1

|Ai| log2 |Ai|. (11)

By combining inequalities (8)-(11) we get

w(1 + 2n−m− s1(f)) − 2
m⎩

i=1

|Ai| log2 |Ai| → w · s0(f) + (m · 2n−m − w)s1(f).

By rearranging the inequality we get

w(1 + 2n−m− s0(f)) → 2
m⎩

i=1

|Ai| log2 |Ai| + m · 2n−ms1(f). (12)

Since the function g(x) = x log2 x is convex and we know that |Ai| → |Qi| =
2n−m, from Lemma 5 |Ai| ⊆ 2n−m−s0(f)+1. Therefore,

g(|Ai|) = g

(
|Ai| − 2n−m−s0(f)+1

2n−m − 2n−m−s0(f)+1
· 2n−m +

2n−m − |Ai|
2n−m − 2n−m−s0(f)+1

· 2n−m−s0(f)+1

)

≤ |Ai| − 2n−m−s0(f)+1

2n−m − 2n−m−s0(f)+1
· g(2n−m) +

2n−m − |Ai|
2n−m − 2n−m−s0(f)+1

· g(2n−m−s0(f)+1)

=
|Ai| − 2n−m−s0(f)+1

2n−m − 2n−m−s0(f)+1
· 2n−m(n − m)

+
2n−m − |Ai|

2n−m − 2n−m−s0(f)+1
· 2n−m−s0(f)+1(n − m − s0(f) + 1)

=
|Ai| − 2n−m−s0(f)+1

2s0(f)−1 − 1
· 2s0(f)−1(n − m) +

2n−m − |Ai|
2s0(f)−1 − 1

(n − m − s0(f) + 1)

=

(
|Ai| − 2n−m−s0(f)+1

2s0(f)−1 − 1
2
s0(f)−1

+
2n−m − |Ai|
2s0(f)−1 − 1

)

(n − m) − 2n−m − |Ai|
2s0(f)−1 − 1

(s0(f) − 1)

= |Ai|(n− m) − 2n−m − |Ai|
2s0(f)−1 − 1

(s0(f)− 1).
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Hence

m⎩

i=1

|Ai| log2 |Ai| =
m⎩

i=1

g(|Ai|)

→
m⎩

i=1

(
|Ai|(n−m) − 2n−m − |Ai|

2s0(f)−1 − 1
(s0(f) − 1)

)

= w(n−m +
s0(f) − 1

2s0(f)−1 − 1
) −m · 2n−m s0(f) − 1

2s0(f)−1 − 1
. (13)

By combining inequalities (12) and (13), we get

w(1 + 2n−m− s0(f))

→ 2

(
w(n−m +

s0(f) − 1

2s0(f)−1 − 1
) −m · 2n−m s0(f) − 1

2s0(f)−1 − 1

)
+ m · 2n−ms1(f).

It implies that

w

(
1 + m− s0(f) − 2(s0(f) − 1)

2s0(f)−1 − 1

)
→ m · 2n−m

(
s1(f) − 2(s0(f) − 1)

2s0(f)−1 − 1

)
,

Substituting w =
∑m

i=1 |Ai| ⊆ m · 2n−m−s0(f)+1, we get

m · 2n−m−s0(f)+1

(
1 +m− s0(f)− 2(s0(f)− 1)

2s0(f)−1 − 1

)
≤m · 2n−m

(
s1(f)− 2(s0(f)− 1)

2s0(f)−1 − 1

)
,

i.e.

1 + m− s0(f) − 2(s0(f) − 1)

2s0(f)−1 − 1
→ 2s0(f)−1

(
s1(f) − 2(s0(f) − 1)

2s0(f)−1 − 1

)
,

which implies
m → 2s0(f)−1s1(f) − s0(f) + 1.

≤⇔

4.1 Proof of Corollary 2

To prove Corollary 2, we need the following Lemma by Kenyon and Kutin.4

Lemma 6. [11] bs0(f) → 2(C1(f) − 1
2 )s0(f), bs1(f) → 2(C0(f) − 1

2 )s1(f).

Proof. (of Corollary 2) From Theorem 2 bs0(f) → C0(f) → 2s1(f)−1s0(f).
From Corollary 6 we have bs0(f) → 2(C1(f) − 1

2 )s0(f), together with The-

orem 2 we get bs0(f) → 2(2s0(f)−1s1(f) − 1
2 )s0(f). Therefore, bs0(f) →

min{2s1(f)s0(f), 2s0(f)s1(f)s0(f)}. Similarly we can show that bs1(f) →
min{2s1(f)s0(f)s1(f), 2s0(f)s1(f)}. ≤⇔
4 In their original paper there is no “− 1

2
” term, but a careful analysis will provide it.
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On Hardness of Jumbled Indexing
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Abstract. Jumbled indexing is the problem of indexing a text T for
queries that ask whether there is a substring of T matching a pattern
represented as a Parikh vector, i.e., the vector of frequency counts for
each character. Jumbled indexing has garnered a lot of interest in the
last four years; for a partial list see [2,6,13,16,17,20,22,24,26,30,35,36].
There is a naive algorithm that preprocesses all answers in O(n2|Δ|) time
allowing quick queries afterwards, and there is another naive algorithm
that requires no preprocessing but has O(n log |Δ|) query time. Despite
a tremendous amount of effort there has been little improvement over
these running times.

In this paper we provide good reason for this. We show that, under
a 3SUM-hardness assumption, jumbled indexing for alphabets of size
κ(1) requires σ(n2−ε) preprocessing time or σ(n1−Γ) query time for any
ε, δ > 0. In fact, under a stronger 3SUM-hardness assumption, for any
constant alphabet size r ≥ 3 there exist describable fixed constant εr and
δr such that jumbled indexing requires σ(n2−εr ) preprocessing time or
σ(n1−Γr ) query time.

1 Introduction

Equal length strings are said to jumble-match if they are commutatively equiv-
alent (sometimes called Abelian equivalent), i.e., if one string can be obtained
from the other by permuting its characters. A jumble match can be described
using Parikh vectors which are vectors maintaining the frequency count of each
alphabet character. Two strings jumble-match if they have the same Parikh vec-
tor. We also say that a string jumble-matches a Parikh vector σ if the string’s
Parikh vector is the same as σ.
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Parikh vectors were introduced in [37] and have been used to analyze gram-
mars [31] and characterize commutative languages [27]. Furthermore, jumbled
pattern matching appears in various applications of computational biology,
such as SNP discovery [10], analysis of similarities among different protein se-
quences [28], and automatic pattern discovery in biosequencing applications [21].
It has also been examined in the streaming model [33].

Jumbled pattern matching on its own can easily be solved by using a sliding
window in linear time for the alphabet {1, . . . , O(n)}, or O(n log |τ|) time for
a general alphabet τ. In contrast, the exact pattern matching problem can
only be solved in linear time via more complex techniques (e.g., see [29,11]).
Jumbled pattern matching has also been studied along with other metrics (e.g.,
see [14,15,1]).

1.1 Jumbled Indexing

Jumbled indexing (JI), currently under very active research, asks whether one
can “index” jumbled matching. The goal is to preprocess a given text S efficiently
so that when given a Parikh vector σ one can quickly check whether there exists
a substring of S that jumble-matches σ.

For classical exact matching, text indexing paradigms of linear size and with
near linear query time (in the query size) exist since the introduction of suffix
trees [40]. Many other efficient text indexing structures have been studied since
then, such as suffix array [34]. Other matching problems have also been success-
fully transformed into efficient indexing paradigms. For example, parameterized
matching allows parametric symbols that are required to map to characters in
a consistent manner. Parameterized matching was introduced by Baker [7,8] for
detection of repetitive similar modules in software and has applications for color
images [3,5,39] and approximate image search [25]. Parameterized matching can
be solved in linear time [4]. In [7] a parameterized suffix tree was introduced.
Both the preprocessing and the query times are near-linear (where the latter is
linear in the query size). Another example is order-preserving matchings, where
two numerical strings match if their order is preserved. Efficient order-preserving
matchings were presented in [32] and recently an order-preserving index was in-
troduced [19] that can also be preprocessed in linear time with linear time queries
(in the query size). Indexing with errors [18] has proven to be somewhat harder.

Given that jumbled matching can be trivially solved in linear time, for the
above-mentioned alphabets, one would expect that jumbled indexing would be
a relatively easy problem. However, jumbled indexing is surprisingly difficult.

There are two naive methods to solve jumbled indexing. One is to use the
sliding window technique mentioned above for every query that arrives. This
can be done in O(n) time if the alphabet is a subset of [n], where n is the
text size. Another method is to preprocess all possible answers in advance by
computing the Parikh vectors of every substring in O(n2|τ|) time. Improving
upon this has proven to be challenging even for constant-sized alphabets.

In an effort to make progress on JI the simplest version of the problem was
considered, that of a binary alphabet. A neat property of a binary alphabet is



116 A. Amir et al.

that a Parikh vector (i, j) appears in text T iff i is between the minimum and
maximum number of 1s over all substrings of length i+j. This was used in [16] to
obtain efficient query time by storing the minimum and maximum values of all
possible lengths, yielding an index of O(n) space and O(1) query time. However,
the preprocessing still took O(n2) time.

Burcsi et al. [13] and, independently, Moosa and Rahman [35] succeeded in

improving the preprocessing time by a log factor to O( n2

logn ). They achieved this

by reducing binary JI to (min,+)-convolution which can be solved in O( n2

logn )

time [12]. Later, Moosa and Rahman [36] improved this to O( n2

log2 n
) by using

the four-Russians trick. Recently, Hermelin et al. [26] reduced the problem to
(min,+)-matrix multiplication or all-pairs shortest paths, but a similar reduction
has already appeared in an earlier paper by Bremner et al. [12]; with the latest
breakthrough by Williams [41] on all-pairs shortest paths, the preprocessing time

for binary JI becomes O( n2

2ε((log n/ log log n)0.5)
). For the binary case there are also

algorithms for run-length encoded strings [6,24] and for an approximate version
of the problem [17]. The binary case was also extended to trees [22].

Lately, there has been some progress also for non-binary alphabets. Koci-
umaka et al. [30] presented a solution for JI for any constant-sized alphabet

τ that uses O(n
2 log2 logn

logn ) preprocessing time and space and answers queries in

O(( logn
log logn )2|ε|−1) time. Amir et al. [2] proposed a solution for constant-sized al-

phabets that preprocesses in O(n1+Ω) time and answers queries in Õ(m
1
λ ) time,

where m is the sum of the Parikh vector elements. In an even newer paper,
Durocher et al. [20] considered alphabet size |τ| = o(( logn

log logn )2) and showed how

to construct an index in O(|τ|( n
log|Σ| n

)2) time and answer queries in O(nΩ + |τ|)
time, where λ > 0 is an arbitrary small constant. This still leaves us in a sad
state of affairs. In all the (exact) solutions mentioned for |τ| ∈ 3 the time com-
plexity of preprocessing or the time complexity of querying is always within
polylogarithmic factors of one of the above two naive algorithms. The question
that has troubled the community in these last few years is whether jumbled in-
dexing could be solved with O(n2−Ω) preprocessing time and O(n1−α) for some
constants λ, Π > 0.

In this paper we show that for alphabets of β(1) size this is impossible under
a 3SUM-hardness assumption. We further show that for any constant alphabet
size r ∈ 3 there exist describable fixed constants λr and Πr such that jumbled
indexing requires Δ(n2−Ωr ) preprocessing time or Δ(n1−αr ) query time under a
stronger 3SUM-hardness assumption.

1.2 3SUM

Numerous algorithmic problems have polynomial time upper bounds that we
suspect are the best obtainable but proving matching lower bounds is difficult
in classical computational models. Recently, a different approach for showing
hardness (e.g. [42]) has been to choose an algorithmic problem that seem harder
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than others, e.g. maximum flow, APSP, edit distance, or 3SUM, and to use them
as a hard primitive and reduce them to other problems that we would like to
show are hard.

In this paper we use the 3SUM problem defined as follows.

– Input: x1, x2, . . . , xn.
– Output: yes, if distinct i, j and k exist such that xi+xj = xk. No, otherwise.

As far back as the mid 90’s there were reductions from 3SUM, especially within
the computational geometry community. Gajentaan and Overmars [23] were the
first to reduce from 3SUM in order to provide evidence for near-quadratic com-
plexity for computational geometry problems such as minimum-area triangle,
finding 3 collinear points, and determining whether n axis-aligned rectangles
cover a given rectangle. Others followed and quite a few problems are now known
to be 3SUM-hard.

Pătraşcu [38] pointed out that most of the reductions transform the condition
xi + xj = xk into some geometric or algebraic condition by common arithmetic,
but it is difficult to use 3SUM for reductions to purely combinatorial problems,
such as those on graphs or strings. To overcome this he defined Convolution-
3SUM, a more restricted 3SUM version, which is just as hard as 3SUM in the
sense that an O(n2−Ω)-time solution for Convolution-3SUM for some λ > 0 would
imply an O(n2−Ω∈)-time solution for 3SUM for some λ◦ > 0 [38].

The Convolution-3SUM problem is defined as follows.

– Input: x1, . . . , xn.
– Output: Yes, if there are distinct i and j such that xi + xj = xi+j . No,

otherwise.

By shuffling and changing indices an alternative equivalent output is:

– Output: Yes, if there are distinct i and j such that xi − xj = xi−j . No,
otherwise.

We consider these problems in the RAM model with the elements belonging
to an integer set {−u, . . . , u} as was assumed by others, e.g. [9,38]. It is possible
to achieve an algorithm of O(u log u) time for the 3SUM problem [9] by Fast
Fourier transform. This can easily be transformed into an O(nu log(nu)) time
algorithm for Convolution-3SUM. Pătraşcu [38] pointed out that the techniques
of Baran et al. [9] yield a (randomized) reduction, for the 3SUM problem, from a
large domain {−u, . . . , u} to the domain of {−n3, . . . , n3}. This reduction can be
adapted for Convolution-3SUM from {−u, . . . , u} to {−n2, . . . , n2}. The reason is
that in 3SUM there are n3 triples to consider when bounding the number of false
positives, but in Convolution-3SUM there are only n2 triples (xi + xj = xi+j)
to consider.

Hence, Convolution-3SUM for input ⊆ {−u, . . . , u} is hard if u ∈ n2 and is
easier than O(n2) for u ⊂ n. Convolution-3SUM for inputs ⊆ {−n, . . . , n} seems
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(though has not proven) to be as hard as the general case. This leads us to state
two hardness assumptions. For both we assume, as in [9,38], the Word RAM
model with words of O(log n) bits.

– 3SUM-hardness Assumption: Any algorithm for Convolution-3SUM re-
quires n2−o(1) time in expectation to determine whether a set {x1, . . . , xn} ⊆
{−n2, . . . , n2} contains a pair xi, xj such that xi − xj = xi−j .

– Strong 3SUM-hardness Assumption: Any algorithm for Convolution-
3SUM requires n2−o(1) time in expectation to determine whether a set
{x1, . . . , xn} ⊆ {−n, . . . , n} contains a pair xi, xj such that xi − xj = xi−j .

1.3 Preliminaries and Definitions

Let S be a string of length n over an alphabet τ = {∂1, ∂2, . . . , ∂|ε|}. An integer
i is a location or a position in S if i → {1, . . . , |S|}. The substring S[i . . j] of S, for
any two positions i ∧ j, is the substring of S that begins at index i and ends at
index j. The string generated by a character a repeated r times is shorthanded
with ar.

The Parikh vector of a string S is σ(S) = (c1(S), c2(S), . . . , c|ε|(S)), where
ci(S) is the count of occurrences of the i-th character of τ. Two strings (of equal
length) S and S◦ are said to jumble-match if they have the same Parikh vector.
For a text T and pattern P we say that P jumble-matches at location i if the
substring T [i . . i+ |P |−1] jumble-matches P . Jumbled pattern matching refers to
the problem where one is given a pattern and text and seeks all locations where
the pattern jumble-matches. For a Parikh vector σ = (c1, . . . , c|ε|), we denote

its length with |σ| which is τ
|ε|
i=1ci.

Jumbled indexing (JI, for short), also known as histogram indexing, Parikh
indexing, or permutation indexing, is defined as follows.

– Preprocess: a text S over alphabet τ.
– Query: Given a vector σ → N

|ε|, decide whether there is a substring S◦ such
that the Parikh vector σ(S◦) is equal to σ.

2 Hardness of Jumbled Indexing

2.1 Outline

We will show that, under the 3SUM-hardness assumption, one cannot improve
the running time over the naive methods mentioned in the introduction by any
polynomial factors for alphabets of super-constant size; and for alphabets of
constant size there are polynomial time lower bounds, dependent on the alphabet
size.

To achieve these results we reduce from 3SUM to JI. Naturally, we use
Convolution-3SUM, which is more appropriate for problems with structure. A
very high-level description of our reduction is as follows. A Convolution-3SUM
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input is transformed to JI by hashing the input values to much smaller sized val-
ues by using mod over a collection of primes. These are then novelly transformed
to a string. The queries on the string simulate testing matchings mod primes
in parallel. Using mod primes causes several problems, which lead to interesting
ideas to overcome these obstacles.

2.2 Setup

Let x1, x2, . . . , xn be the input of the Convolution-3SUM problem such that
each xi → {−n2, . . . , n2}. Under the strong 3SUM-hardness assumption, each
xi → {−n, . . . , n}.

We choose a collection of roughly equal-sized primes p1, . . . , pk (for some
choice of k) with their product p1 · · · pk > n2 (or, under the strong 3SUM-
hardness assumption, with p1 · · · pk > n). It is possible to choose p1, . . . , pk →
φ(n2/k) (or, for the strong assumption, p1, . . . , pk → φ(n1/k)) to satisfy this
requirement for any given k ∧ log n

log logn , because of the density of the primes.
The alphabet of JI in the reduction will consist of a character for each prime

we choose, plus two more special characters we introduce later. Therefore, the
JI alphabet size will be |τ| = k + 2.

The lemma below follows directly from properties of mod and will be instru-
mental in obtaining our result.

Lemma 1. Let p1, . . . , pk be a set of primes such that p1 · · · pk > u (with u = n2

or u = n depending on the hardness assumption). Let i > j. Then xi − xj =
xi−j ≥⇐ ⇒r : (xi − xj) mod pr = xi−j mod pr

≥⇐ ⇒r : (xi mod pr) − (xj mod pr) →
{

(xi−j mod pr)

(xi−j mod pr) − pr

2.3 Reduction

In the reduction to the JI instance we will generate an input string S to be
preprocessed and a set of n queries Q1, . . . , Qn which we now describe.

JI Input String. We generate an input string S based on the Convolution-
3SUM input x1, . . . , xn. For every prime pj we create a character aj and for each
xi we create a substring

Si = a
EXP(i,1)
1 a

EXP(i,2)
2 · · · aEXP(i,k)

k ,

where

EXP(i, j) = (xi+1 mod pj) − (xi mod pj).

We note that, for the sake of simplicity, we are cheating since the exponent
of a character in a string cannot be negative. We will shortly explain how to fix
this.
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Finally, we define

S = $# S1 #$# S2 #$# · · · #$# Sn−1 #$,

where # and $ are separator characters.

The structure of S is such that substrings beginning and ending within sepa-
rators #$# have the property that the number of occurrences of each character
is reminiscent of the requirements of Lemma 1.

Lemma 2. Consider the substring of S, R(j,i) = $# Sj #$# . . . #$# Si−1 #$.
Each character aλ has exactly (xi mod pλ) − (xj mod pλ) occurrences in R(j,i).

Proof. The character aλ has EXP(j, κ) occurrences in Sj, EXP(j + 1, κ)
occurrences in Sj+1, . . ., EXP(i − 1, κ) occurrences in Si−1. Hence, we
have τi−1

d=jEXP(d, κ) occurrences of aλ in R(j,i). Then τi−1
d=jEXP(d, κ) =

τi−1
d=j(xd+1 mod pλ)−(xd mod pλ), which telescopes to (xi mod pλ) − (xj mod pλ).

∪≤

By combining Lemmas 1 and 2 we can deduce the following.

Corollary 1. There is a solution xi − xj = xi−j to the Convolution-3SUM iff
the number of occurrences of each character aλ in R(j,i) is in

{(xi−j mod pλ), (xi−j mod pλ) − pλ}.

To fix the problem of the negative exponent we set D = maxk
i=1 pi and change

EXP(i, j) = (xi+1 mod pj) − (xi mod pj) + D. Now, the exponent is not nega-
tive, but is still of order φ(n2/k) (or φ(n1/k) under the strong 3SUM-hardness
assumption), which is the size of each prime. We leave it as an easy exercise
to verify that Lemma 2 can be modified so that each character aλ has exactly
(xi mod pλ) − (xj mod pλ)+D(i−j) occurrences in R(j,i) and, in turn, that Corol-
lary 1 can be modified so that aλ → {(xi−j mod pλ) + D(i− j), (xi−j mod pλ) −
pλ + D(i− j)}.

JI Queries. We generate n queries σ1, . . . , σn for the jumbled indexing instance
such that each σL represents xL, an element of the Convolution-3SUM input.
The query σL will imitate a query on the Convolution-3SUM data asking whether
there exist i and j such that

(a) xL = xi − xj and

(b) L = i− j.

We will also embed the query with data requiring that

(c) any substring that jumble-matches the query σ must be of the form R(j,i)

from Lemma 2.
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Obviously, answers to all queries σL will be sufficient to derive a solution to
Convolution-3SUM.

To enforce (c) and (b) we use the separators of S, #, and $. For (c) we
require the form of R(j,i) and for (b) we require L = i − j, which means that
each potential substring R(j,i) should contain exactly L parts Sh.

Observation 1. Any substring of S that jumble-matches the query σ, where
σ has L + 1 for $ and 2L for #, must be of the form R(j,i) (of Lemma 2) and
must satisfy L = i− j.

Proof. Let R be a substring of S such that R jumble-matches σ. Then each set
of separators #$# fully contained in R contributes twice as many #’s than $’s.
Since our query asks for L+ 1 $’s but only 2L #’s, it must be that R begins and
ends with a $ and hence is of the form R(j,i). Moreover, since there are L + 1
$’s and R begins and ends with a $, there must be exactly L parts Sh in R,
implying that L = i− j. ∪≤

It remains to show how to adapt the query in order to enforce (a) xL = xi−xj .
Here we will use Corollary 1. It is sufficient to find the substrings R(j,i) such the
number of occurrences of each character aλ is either ((xi − xj) mod pλ) + DL
or ((xi − xj) mod pλ) − pλ + DL. However, checking two options (for each aλ)
cannot be done with one JI query. So, we split the query σL into 2k queries

σ
(1)
L , . . . , σ

(2k)
L for the 2k different equalities that satisfy Corollary 1.

Hence, we have overall 2kn JI queries. These queries provide a full answer to
the Convolution-3SUM problem.

Theorem 2. Consider the jumbled indexing problem with text size s and alpha-
bet size r ∈ 5. Then under the 3SUM-hardness assumption, one of the following
holds for any fixed λ > 0 :

1. the preprocessing time is Δ(s2−
4
r−Ω), or

2. the query time is Δ(s1−
2
r−Ω).

Proof. Without loss of generality, assume that r ∧ log s
log log s (otherwise, s

1
r = φ̃(1)

and we may as well make r equal to log s
log log s ).

Let x1, . . . , xn → {−n2, . . . , n2} be the input of the Convolution-3SUM prob-
lem. We apply the above reduction and generate the string S as described.
Denote its length by s. Recall that the alphabet size is r = |τ| = k + 2, where k
is the number of primes (the 2 is for the separators $ and #). Since each prime
pi → φ(n2/k), we have s = O(kn2/kn) = Õ(n

r
r−2 ) for k + 2 = r → o(logn). In

other words, n = Δ̃(s1−
2
r ).

Applying the preprocessing and subsequently answering all 2kn defined
queries yields a solution to the Convolution-3SUM problem. Letting P (s) and
Q(s) be the preprocessing and query time, we then have P (s) + 2knQ(s) ∈
Δ(n2−Ω).

For k + 2 = r → o(log n) we note that 2k → o(nΩ). We must thus have P (s) ∈
Δ(n2−Ω) = Δ(s2(1−

2
r )−O(Ω)) or Q(s) ∈ Δ(n1−O(Ω)) = Δ(s1−

2
r−O(Ω)). ∪≤
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Note that for r ∧ 4, the bound in the above theorem becomes vacuous. We
can get somewhat better bounds under the strong 3SUM-hardness assumption.

Theorem 3. Consider the jumbled indexing problem with text size s and alpha-
bet size r ∈ 4. Then under the strong 3SUM-hardness assumption, one of the
following holds for any fixed λ > 0 :

1. the preprocessing time is Δ(s2−
2

r−1−Ω), or

2. the query time is Δ(s1−
1

r−1−Ω).

The proof is the same as in the previous theorem, but with pi → φ(n1/k).
By the same proof and further calculations, we can also get a slightly strength-

ened lower bound of Δ(s2/2O(
√
log s)) preprocessing time or Δ(s/2O(

√
log s)) query

time for alphabet size r = φ(
⇔

log s), under the assumption that 3SUM has an

Δ(n2/2O(
√
log n)) lower bound.

2.4 Hardness of JI with Alphabet Size 3

The reduction we have presented contains two separators in the string S. Re-
call that for every prime we also construct a character. We require that the
multiplication of the primes be > n for strong 3SUM-hardness and > n2 for
3SUM-hardness. However, if a prime is of order Δ(n) then the size of the string
S would be Δ(n2), too large to gain anything from the reduction. Hence, we
need at least two primes for strong 3SUM-Hardness and three primes for 3SUM-
hardness. In this section we generate a string which requires only one separator,
and for 2 primes p and q of size φ(

⇔
n) this yields a nontrivial result under the

strong 3SUM-hardness assumption.
While we construct a different string for JI and need to argue a claim similar

to Lemma 2 and Observation 1, the structure of the proof remains the same.
Let a be a character representing prime p, and b be a character that represents

prime q, and # be a separator character. Let D = max{p, q}. Define

Si = (a#)(xi+1 mod p)−(xi mod p)+D(b#)(xi+1 mod q)−(xi mod q)+D and
S=#Da2D#D S1 #Da2D#D S2 #Da2D#D · · · #Da2D#D Sn−1 #Da2D#D,

where #Da2D#D is the separator (a has a double role).

Define R(j,i) = #D Sj #Da2D#D · · · #Da2D#D Si−1 #D.

It is easy to verify, similar to Lemma 2, that a has exactly (xi mod p) −
(xj mod p) + D(i − j) + 2D(i − j − 1) occurrences in R(j,i) and b has exactly
(xi mod q) − (xj mod q) + D(i − j) occurrences in R(j,i). Hence, as in Corol-
lary 1, there is a solution xi − xj = xi−j to Convolution-3SUM iff the number
of occurrences of a in R(j,i) is in {((xi − xj) mod p) + D(3i − 3j − 2), ((xi −
xj) mod p)− p+D(3i− 3j − 2)} and the number of occurrences of b in R(j,i) is
in {((xi − xj) mod p) + D(i− j), ((xi − xj) mod p) − p + D(i− j)}.

The tricky part is to obtain an alternative to Observation 1. The difficulty
stems from the fact that a and # appear both in the separator part and in
the Si’s.
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Observation 4. Say we have a Parikh vector σ = (n1, n2, n1 + n2 + 4D) for
(a, b,#), with L = (n1 div 3D) + 1. Then any substring of S which jumble-
matches σ is of the form R(j,i). Moreover i− j = L.

Proof. Define α = 4D the difference between the number of #’s and the number
of a’s and b’s (put together). Let x be a substring of S which jumble-matches σ.
Any Sl or separator #Da2D#D fully contained in x has a balanced number of
#’s and non-#’s and, hence, does not affect α. So, at either end there is a part of
a separator or an Sl which both together contributes to α. It is straightforward
to confirm that the only way this is possible is having x begin with #D, the
prefix of a separator, and end with #D, the suffix of a separator. Hence, x has
the required form R(j,i).

We show that i− j = L = (n1 div 3D) + 1. We have claimed that the number
of a’s in R(j,i) is (xi mod p) − (xj mod p) +D(3i− 3j − 2). Hence, since R(j,i)

jumble-matches σ, we have n1 = (xi mod p) − (xj mod p) +D+ 3D(i− j− 1).
Since each (xi mod p) − (xj mod p) + D → [0, 2D) it follows that (n1 div
3D) = i− j − 1. ∪≤

Finally, for a given L all of our queries have n1 = (xL mod p) + D(3L − 2)
or n1 = (xL mod p) − p + D(3L− 2) in location a of the Parikh vector. In both
cases, L = (n1 div 3D) + 1, satisfying the requirement of Observation 4. Hence,

Theorem 5. Consider the jumbled indexing problem with text size s and alpha-
bet size 3. Under the strong 3SUM-hardness assumption, one of the following
holds for any fixed λ > 0:

1. the preprocessing time is Δ(s
4
3−Ω), or

2. the query time is Δ(s
2
3−Ω).

Proof. Note that p, q → φ(
⇔
n). Hence, S is of length s = O(n

3
2 ). Following the

same arguments as in Theorem 2 yields the result. ∪≤

Epilogue. In a forthcoming work, the second and third author will present new
improved algorithms for the jumbled indexing problem for any constant alphabet

size r ∈ 2 that achieves truly sublinear query time and O(n2− 2
r+O(1) ) prepro-

cessing time, thus nearly matching the lower bound in Theorem 3.
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38. Pătraşcu, M.: Towards polynomial lower bounds for dynamic problems. In: STOC,

pp. 603–610 (2010)
39. Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer

Vision 7(1), 11–32 (1991)
40. Weiner, P.: Linear pattern matching algorithms. In: SWAT (FOCS), pp. 1–11

(1973)
41. Williams, R.: Faster all-pairs shortest paths via circuit complexity. In: STOC (to

appear, 2014)
42. Williams, V.V., Williams, R.: Subcubic equivalences between path, matrix and

triangle problems. In: FOCS, pp. 645–654 (2010)

http://arxiv.org/abs/1401.2065


Morphing Planar Graph Drawings Optimallyθ

Patrizio Angelini1, Giordano Da Lozzo1, Giuseppe Di Battista1, Fabrizio Frati2,
Maurizio Patrignani1, and Vincenzo Roselli1

1 Dipartimento di Ingegneria, Roma Tre University, Italy
{angelini,dalozzo,gdb,patrigna,roselli}@dia.uniroma3.it

2 School of Information Technologies, The University of Sydney, Australia
fabrizio.frati@sydney.edu.au

Abstract. We provide an algorithm for computing a planar morph between any
two planar straight-line drawings of any n-vertex plane graph in O(n) morphing
steps, thus improving upon the previously best known O(n2) upper bound. Fur-
thermore, we prove that our algorithm is optimal, that is, we show that there exist
two planar straight-line drawings Γs and Γt of an n-vertex plane graph G such
that any planar morph between Γs and Γt requires Ω(n) morphing steps.

1 Introduction

A morph is a continuous transformation between two topologically equivalent geo-
metric objects. The study of morphs is relevant for several areas of computer science,
including computer graphics, animation, and modeling. Many of the geometric shapes
that are of interest in these contexts can be effectively described by two-dimensional
planar graph drawings. Hence, designing algorithms and establishing bounds for mor-
phing planar graph drawings is an important research challenge. We refer the reader
to [7–9, 12, 13] for extensive descriptions of the applications of graph drawing morphs.

It has long been known that there always exists a planar morph (that is, a morph that
preserves planarity at any time instant) transforming any planar straight-line drawing Γs

of a plane graph G into any other planar straight-line drawing Γt of G. The first proof
of such a result, published by Cairns in 1944 [5], was “existential”, i.e., no guarantee
was provided on the complexity of the trajectories of the vertices during the morph.
Almost 40 years later, Thomassen proved in [14] that a morph between Γs and Γt

always exists in which vertices follow trajectories of exponential complexity (in the
number of vertices of G). In other words, adopting a setting defined by Grünbaum and
Shepard [10] which is also the one we consider in this paper, Thomassen proved that a
sequence Γs = Γ1, Γ2, . . . , Γk = Γt of planar straight-line drawings of G exists such
that, for 1 ∈ i ∈ k − 1, the linear morph transforming Γi into Γi+1 is planar, where a
linear morph moves each vertex at constant speed along a straight-line trajectory.

A breakthrough was recently obtained by Alamdari et al. by proving that a planar
morph between any two planar straight-line drawings of the same n-vertex connected
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plane graph exists in which each vertex follows a trajectory of polynomial complex-
ity [1]. That is, Alamdari et al. showed an algorithm to perform the morph in O(n4)
morphing steps, where a morphing step is a linear morph. The O(n4) bound was shortly
afterwards improved to O(n2) by Angelini et al. [3].

In this paper, we provide an algorithm to compute a planar morph with O(n) mor-
phing steps between any two planar straight-line drawings Γs and Γt of any n-vertex
connected plane graph G. Also, we prove that our algorithm is optimal. That is, for
every n, there exist two drawings Γs and Γt of the same n-vertex plane graph (in fact a
path) such that any planar morph between Γs and Γt consists of Ω(n) morphing steps.
To the best of our knowledge, no super-constant lower bound was previously known.

The schema of our algorithm is the same as in [1, 3]. Namely, we morph Γs and
Γt into two drawings Γ x

s and Γ x
t in which a certain vertex v can be contracted onto

a neighbor x. Such contractions generate two straight-line planar drawings Γ ∈
s and Γ ∈

t

of a smaller plane graph G∈. A morph between Γ ∈
s and Γ ∈

t is recursively computed and
suitably modified to produce a morph between Γs and Γt. The main ingredient for
our new bound is a drastically improved algorithm to morph Γs and Γt into Γ x

s and
Γ x
t . In fact, while the task of making v contractible onto x is accomplished with O(n)

morphing steps in [1, 3], we devise and use properties of monotone drawings, level
planar drawings, and hierarchical graphs to perform it with O(1) morphing steps.

The idea behind the lower bound is that linear morphs can poorly simulate rotations,
that is, a morphing step rotates an edge of an angle whose size is O(1). We then consider
two drawings Γs and Γt of an n-vertex path P , where Γs lies on a straight-line, whereas
Γt has a spiral-like shape, and we prove that in any planar morph between Γs and Γt

there is one edge of P whose total rotation describes an angle whose size is Ω(n).
Because of space limitations, some proofs are omitted and can be found in [2].

2 Preliminaries

Drawings and Embeddings. A planar straight-line drawing of a graph maps each
vertex to a distinct point in the plane and each edge to a straight-line segment between
its endpoints so that no two edges cross. A planar drawing partitions the plane into
topologically connected regions, called faces. The bounded faces are internal, while the
unbounded face is the outer face. A planar straight-line drawing is convex if each face
is delimited by a convex polygon. A planar drawing of a graph determines a circular
ordering of the edges incident to each vertex, called rotation system. Two drawings of
a graph are equivalent if they have the same rotation system and the same outer face.
A plane embedding is an equivalence class of planar drawings. A graph with a plane
embedding is called a plane graph. A plane graph is maximal if no edge can be added
to it while maintaining its planarity.

Subgraphs and Connectivity. A subgraph G∈(V ∈, E∈) of a graph G(V,E) is a graph
such that V ∈ ⊆ V and E∈ ⊆ E; G∈ is induced if, for every u, v ⊂ V ∈, (u, v) ⊂ E∈ if and
only if (u, v) ⊂ E. If G is a plane graph, then a subgraph G∈ of G is regarded as a plane
graph whose plane embedding is the one obtained from G by removing all the vertices
and edges not in G∈.
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A graph G is k-connected if removing any k − 1 vertices leaves G connected; a
separating k-set is a set of k vertices whose removal disconnects G. A 3-cycle in a
plane graph G is separating if it contains vertices both in its interior and in its exterior.
Every separating 3-set in a maximal plane graph G induces a separating 3-cycle.

Monotonicity. An arc xy is a line segment directed from a point x to a point y; xy is
monotone with respect to an oriented straight line d if it has a positive projection on d,
i.e., for any two distinct points p and q in this order along xy from x to y, the projection
of p on d precedes the projection of q on d according to the orientation of d. A path
P = (u1, . . . , un) is d-monotone if the straight-line arc uiui+1 is monotone with
respect to d, for i = 1, . . . , n−1; a polygon Q is d-monotone if it contains two vertices
s and t such that the two paths between s and t that delimit Q are both d-monotone. A
path P (a polygon Q) is monotone if there exists an oriented straight line d such that P
(resp. Q) is d-monotone. We show two lemmata about monotone paths and polygons.

Lemma 1. Let Q be any convex polygon and let d be any oriented straight line not
perpendicular to any straight line through two vertices of Q. Then Q is d-monotone.

Lemma 2. Any simple polygon Q with at most 5 vertices is monotone.

Morphing. A linear morph between two straight-line planar drawings Γ1 and Γ2 of
a plane graph G is a continuous transformation from Γ1 to Γ2 such that each vertex
moves at constant speed along a straight line from its position in Γ1 to the one in Γ2. A
linear morph between Γ1 and Γ2 is denoted by →Γ1, Γ2∧. A linear morph is planar if no
crossing or overlap occurs between any two edges or vertices during the transformation.
A planar linear morph is also called a morphing step. In the remainder of the paper, we
will construct unidirectional linear morphs, that were defined in [4] as linear morphs in
which the straight-line trajectories of the vertices are parallel.

A morph →Γs, . . . , Γt∧ between two straight-line planar drawings Γs and Γt of a
plane graph G is a finite sequence of morphing steps that transforms Γs into Γt. A
unidirectional morph is such that each of its morphing steps is unidirectional.

Let Γ be a planar straight-line drawing of a plane graphG. The kernel of a vertex v of
G is the open convex region R such that placing v at any point of R while maintaining
the position of every other vertex unchanged yields a planar straight-line drawing of
G. If a neighbor x of v lies on the boundary of the kernel of v in Γ , we say that v
is x-contractible. The contraction of v onto x in Γ is the operation resulting in: (i) a
simple graph G∈ = G/(v, x) obtained from G by removing v and by replacing each
edge (v, w), where w ≥= x, with an edge (x,w) (if it does not already belong to G);
and (ii) a planar straight-line drawing Γ ∈ of G∈ such that each vertex different from v
is mapped to the same point as in Γ . Also, the uncontraction of v from x into Γ is the
reverse operation of the contraction of v onto x in Γ , i.e., the operation that produces
a planar straight-line drawing Γ of G from a planar straight-line drawing Γ ∈ of G∈. A
vertex v in a plane graph G is quasi-contractible if (i) deg(v) ∈ 5 and (ii) for any two
neighbors u and w of v connected by an edge, cycle (u, v, w) delimits a face of G. We
have the following.

Lemma 3. (Angelini et al. [3]) Every plane graph contains a quasi-contractible vertex.
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In the remainder of the paper, even when not explicitly specified, we will only con-
sider and perform contractions of quasi-contractible vertices.

Let Γ1 and Γ2 be two straight-line planar drawings of the same plane graph G. We
define a pseudo-morph of Γ1 into Γ2 inductively, as follows:
(A) a unidirectional morph with m morphing steps of Γ1 into Γ2 is a pseudo-morph
with m steps of Γ1 into Γ2;
(B) a unidirectional morph with m1 morphing steps of Γ1 into a straight-line planar
drawing Γ x

1 of G, followed by a pseudo-morph with m2 steps of Γ x
1 into a straight-line

planar drawing Γ x
2 of G, followed by a unidirectional morph with m3 morphing steps

of Γ x
2 into Γ2 is a pseudo-morph of Γ1 into Γ2 with m1 +m2 +m3 steps; and

(C) let Γ ∈
1 (Γ ∈

2) be the straight-line planar drawing of the plane graph G∈ obtained by
contracting a quasi-contractible vertex v of G onto x in Γ1 (in Γ2); the contraction of v
onto x, followed by a pseudo-morph with m steps of Γ ∈

1 into Γ ∈
2 and by the uncontrac-

tion of v from x into Γ2 is a pseudo-morph with m+ 2 steps of Γ1 into Γ2.
Pseudo-morphs have two useful and powerful features.
First, it is easy to design an inductive algorithm for constructing a pseudo-morph

between any two planar straight-line drawings Γ1 and Γ2 of the same n-vertex plane
graph G. Namely, consider any quasi-contractible vertex v of G and let x be any neigh-
bor of v. Morph unidirectionally Γ1 and Γ2 into two planar straight-line drawings Γ x

1

and Γ x
2 , respectively, in which v is x-contractible. Now contract v onto x in Γ x

1 and
in Γ x

2 obtaining two planar straight-line drawings Γ ∈
1 and Γ ∈

2, respectively, of the same
(n − 1)-vertex plane graph G∈. Then, the algorithm is completed by inductively com-
puting a pseudo-morph of Γ ∈

1 into Γ ∈
2.

Second, computing a pseudo-morph between Γ1 and Γ2 leads to computing a planar
unidirectional morph between Γ1 and Γ2, as formalized in Lemma 4. We remark that,
although Lemma 4 has never been stated as below, its proof can be directly derived
from the results of [1, 3] and, mainly, of Barrera-Cruz et al. [4].

Lemma 4. Let Γs and Γt be two straight-line planar drawings of a plane graph G. Let
P be a pseudo-morph with m steps transforming Γs into Γt. It is possible to construct
a planar unidirectional morph M with m morphing steps transforming Γs into Γt.

Hierarchical Graphs and Level Planarity. A hierarchical graph is defined as a tuple
(G,d, L, γ) where: (i) G is a graph; (ii) d is an oriented straight line in the plane; (iii) L
is a set of parallel lines (sometimes called layers) that are orthogonal to d; the lines in L
are assumed to be ordered in the same order as they are intersected by d when traversing
such a line according to its orientation; and (iv) γ is a function that maps each vertex of
G to a line in L in such a way that, if an edge (u, v) belongs to G, then γ(u) ≥= γ(v). A
level drawing of (G,d, L, γ) (sometimes also called hierarchical drawing) maps each
vertex v of G to a point on the line γ(v) and each edge (u, v) of G such that line γ(u)
precedes line γ(v) in L to an arc uv monotone with respect to d. A hierarchical plane
graph is a hierarchical graph (G,d, L, γ) such that G is a plane graph and such that a
level planar drawingΓ of (G,d, L, γ) exists that “respects” the embedding of G (that is,
the rotation system and the outer face of G in Γ are the same as in the plane embedding
of G). Given a hierarchical plane graph (G,d, L, γ), an st-face of G is a face delimited
by two paths (s = u1, u2, . . . , uk = t) and (s = v1, v2, . . . , vl = t) such that γ(ui)
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precedes γ(ui+1) in L, for every 1 ∈ i ∈ k − 1, and such that γ(vi) precedes γ(vi+1)
in L, for every 1 ∈ i ∈ l − 1. We say that (G,d, L, γ) is a hierarchical plane st-graph
if every face of G is an st-face. Let Γ be any straight-line level planar drawing of a
hierarchical plane graph (G,d, L, γ) and let f be a face of G; then, it is easy to argue
that f is an st-face if and only if the polygon delimiting f in Γ is d-monotone.

In this paper we will use an algorithm by Hong and Nagamochi that constructs con-
vex straight-line level planar drawings of hierarchical plane st-graphs [11]. Here we
explicitly formulate a weaker version of their main theorem.1

Theorem 1. (Hong and Nagamochi [11]) Every 3-connected hierarchical plane st-
graph (G,d, L, γ) admits a convex straight-line level planar drawing.

Consider any straight-line level planar drawing Γ of a hierarchical plane graph
(G,d, L, γ). Since each edge (u, v) of G is represented in Γ by a d-monotone arc,
the fact that (u, v) intersects a line li ⊂ L does not depend on the actual drawing Γ ,
but only on the fact that li lies between lines γ(u) and γ(v) in L. Assume that each line
li ⊂ L is oriented so that d cuts li from the right to the left of li. We say that an edge
e precedes (follows) a vertex v on a line li in Γ if γ(v) = li, e intersects li in a point
pi(e), and pi(e) precedes (resp. follows) v on li when traversing such a line according
to its orientation. Also, we say that an edge e precedes (follows) an edge e∈ on a line
li in Γ if e and e∈ both intersect li at points pi(e) and pi(e

∈), and pi(e) precedes (resp.
follows) pi(e∈) on li when traversing such a line according to its orientation.

Now consider two straight-line level planar drawings Γ1 and Γ2 of a hierarchical
plane graph (G,d, L, γ). We say that Γ1 and Γ2 are left-to-right equivalent if, for any
line li ⊂ L, for any vertex or edge x of G, and for any vertex or edge y of G, we have
that x precedes (follows) y on li in Γ1 if and only if x precedes (resp. follows) y on li
in Γ2. We are going to make use of the following lemma.

Lemma 5. Let Γ1 and Γ2 be two left-to-right equivalent straight-line level planar
drawings of the same hierarchical plane graph (G,d, L, γ). Then the linear morph
→Γ1, Γ2∧ transforming Γ1 into Γ2 is planar and unidirectional.

3 A Morphing Algorithm

In this section we describe an algorithm to construct a planar unidirectional morph with
O(n) steps between any two straight-line planar drawings Γs and Γt of the same n-
vertex plane graph G. The algorithm relies on two subroutines, called FAST CONVEX-
IFIER and CONTRACTIBILITY CREATOR, which are described in Sections 3.1 and 3.2,
respectively. The algorithm is described in Section 3.3.

1 We make some remarks. First, the main result in [11] proves that a convex straight-line level
planar drawing of (G,d, L, γ) exists even if a convex polygon representing the cycle delim-
iting the outer face of G is arbitrarily prescribed. Second, the result holds for a super-class
of the 3-connected planar graphs, namely for all the graphs that admit a convex straight-line
drawing [6, 15]. Third, the result assumes that the lines in L are horizontal; however, a suitable
rotation of the coordinate axes shows how that assumption is not necessary. Fourth, looking
at the figures in [11] one might get the impression that the lines in L need to be equidistant;
however, this is nowhere used in their proof, hence the result holds for any set of parallel lines.
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Fig. 1. (a) Straight-line planar drawing Γ of G. (b) Straight-line level planar drawing Γ √ of
(G√,d, L√, γ√). (c) Convex straight-line level planar drawing Γ √

M of (G√,d, L√, γ√).

3.1 Fast Convexifier

Consider a straight-line planar drawing Γ of an n-vertex maximal plane graph G, for
some n ⇐ 4. Let v be a quasi-contractible internal vertex of G and let Cv be the cycle
of G induced by the neighbors of v. See Fig. 1(a). In this section we show an algorithm,
that we call FAST CONVEXIFIER, morphing Γ into a straight-line planar drawing ΓM

of G in which Cv is convex with a single unidirectional morphing step.
Let G∈ be the (n − 1)-vertex plane graph obtained by removing v and its incident

edges from G. Also, let Γ ∈ be the straight-line planar drawing of G∈ obtained by remov-
ing v and its incident edges from Γ . As v is quasi-contractible, we have the following.

Lemma 6. Graph G∈ is 3-connected.

Consider the polygon Qv representing Cv in Γ and in Γ ∈. By Lemma 2, Qv is d-
monotone, for some oriented straight line d. Slightly perturb the slope of d so that no
line through two vertices of G in Γ is perpendicular to d. If the perturbation is small
enough, then Qv is still d-monotone. Denote by u1, . . . , un−1 the vertices of G∈ ordered
according to their projection on d. For 1 ∈ i ∈ n − 1, denote by li the line through
ui orthogonal to d. Let L∈ = {l1, . . . , ln−1}; note that the lines in L∈ are parallel and
distinct. Let γ∈ be the function that maps ui to li, for 1 ∈ i ∈ n− 1. See Fig. 1(b).

Lemma 7. (G∈,d, L∈, γ∈) is a hierarchical plane st-graph.

Proof: By construction, Γ ∈ is a straight-line level planar drawing of (G∈,d, L∈, γ∈),
hence (G∈,d, L∈, γ∈) is a hierarchical plane graph. Further, every polygon delimiting a
face of G∈ in Γ ∈ is d-monotone. This is true for Qv by construction and for every other
polygon Qi delimiting a face of G∈ in Γ ∈ by Lemma 1, given that Qi is a triangle and
hence it is convex. Since every polygon delimiting a face of G∈ in Γ ∈ is d-monotone,
every face of G∈ is an st-face, hence (G∈,d, L∈, γ∈) is a hierarchical plane st-graph. �

By Lemmata 6 and 7, (G∈,d, L∈, γ∈) is a 3-connected hierarchical plane st-graph.
By Theorem 1, a convex straight-line level planar drawing Γ ∈

M of (G∈,d, L∈, γ∈) exists.
Denote by QM

v the convex polygon representing Cv in Γ ∈
M . See Fig. 1(c).

Denote by r and s the minimum and the maximum index such that ur and us belong
to Cv , respectively. Denote by l(v) the line through v orthogonal to d in Γ . If l(v)
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Fig. 2. Morphing Γ into a straight-line planar drawing ΓM of G in which the polygon QM
v rep-

resenting Cv is convex. The thick line parallel to li is l(v).

were contained in the half-plane delimited by lr and not containing ls, then v would
not lie inside Qv in Γ , as the projection of every vertex of Qv on d would follow the
projection of v on d. Analogously, l(v) is not contained in the half-plane delimited by
ls and not containing lr. It follows that l(v) is “in-between” lr and ls, that is, l(v) lies
in the strip defined by lr and ls. Construct a straight-line planar drawing ΓM of G from
Γ ∈
M by placing v on any point at the intersection of l(v) and the interior of QM

v . Such an
intersection is always non-empty, given that lr and ls have non-empty intersection with
QM

v , given that l(v) is in-between lr and ls, and given that QM
v is a convex polygon.

Algorithm FAST CONVEXIFIER consists of a single linear morph →Γ, ΓM ∧ transform-
ing Γ into ΓM . See Fig. 2. Note that the polygon QM

v representing Cv in ΓM is convex.
Also, let γ be the function that maps v to l(v) and ui to li, for 1 ∈ i ∈ n − 1. We
have that Γ and ΓM are left-to-right equivalent straight-line level planar drawings of
(G,d, L∈ ⇒ {l(v)}, γ), hence, by Lemma 5, →Γ, ΓM ∧ is unidirectional and planar.

3.2 Contractibility Creator

We now describe algorithm CONTRACTIBILITY CREATOR, which receives a straight-
line planar drawing Γ of a plane graph G, a quasi-contractible vertex v of G, and a
neighbor x of v, and returns a planar unidirectional morph with O(1) morphing steps
transforming Γ into a straight-line planar drawing Γ ∈ of G in which v is x-contractible.

Denote by u1, . . . , uk the clockwise order of the neighbors of v. If k = 1, then v is
x-contractible in Γ , hence algorithm CONTRACTIBILITY CREATOR returns Γ ∈ = Γ .

If k ⇐ 2, consider any pair of consecutive neighbors of v, say ui and ui+1 (where
uk+1 = u1). See Fig. 3(a). If edge (ui, ui+1) belongs to G, then cycle (ui, v, ui+1)
delimits a face of G, given that v is quasi-contractible. Otherwise, we aim at morphing
Γ into a straight-line planar drawing of G where a dummy edge (ui, ui+1) can be intro-
duced while maintaining planarity and while ensuring that cycle (ui, v, ui+1) delimits
a face of the augmented graph G⇒{(ui, ui+1)}. (This insertion might not be performed
directly in Γ , see Fig. 3(b).) The required morphing is constructed as follows:

(Step 1) We add two dummy vertices r and r∈, and six dummy edges (r, v), (r, ui),
(r, ui+1), (r∈, ui), (r∈, ui+1), and (r, r∈) to Γ and G, obtaining a straight-line planar
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Fig. 3. (a) Drawing Γ of G. (b) Drawing (ui, ui+1) in Γ might cause a crossing. (c) Drawing Γ+

of G+. (d) Drawing Γ ∗ of G∗. (e) Drawing Γ ∗
M of G∗. (f) Drawing ΓM of G ⇒ {(ui, ui+1)}.

drawing Γ+ of a plane graph G+, in such a way that Γ+ is planar and cycles (v, r, ui),
(v, r, ui+1), (r∈, r, ui), and (r∈, r, ui+1) delimit faces of G+. See Fig. 3(c). (Step 2)
We add dummy vertices and edges to Γ+ and G+, obtaining a straight-line planar
drawing Γ ◦ of a graph G◦, in such a way that Γ ◦ is planar, that G◦ is a maximal
planar graph, and that edges (ui, ui+1) and (r∈, v) do not belong to G◦. Observe that r
is a quasi-contractible vertex of G◦. See Fig. 3(d). (Step 3) We apply algorithm FAST

CONVEXIFIER to morph Γ ◦ with one unidirectional morphing step into a straight-line
planar drawing Γ ◦

M of G◦ such that the polygon of the neighbors of r is convex. See
Fig. 3(e). (Step 4) We remove from Γ ◦

M all the dummy vertices and edges that belong
to G◦ and do not belong to G, and we add edge (ui, ui+1) to Γ ◦

M and G, obtaining a
straight-line planar drawing ΓM of graph G ⇒ {(ui, ui+1)}. See Fig. 3(f).

If k = 2, then after the above described algorithm is performed, we have that v
is x-contractible in Γ ∈ = ΓM , both if x = u1 or if x = u2, given that (v, u1, u2)
delimits a face of G ⇒ {(u1, u2)}. If 3 ∈ k ∈ 5, then the above described algorithm
is repeated at most k times (namely once for each pair of consecutive neighbors of v
that are not adjacent in G), at each time inserting an edge between a distinct pair of
consecutive neighbors of v. Eventually, we obtain a straight-line planar drawing Φ of
plane graph G ⇒ {(u1, u2), (u2, u3), (u3, u4), (u4, u5), (u5, u1)} in which v is quasi-
contractible. Then we add dummy vertices and edges to Φ, obtaining a straight-line
planar drawing Σ of a graph H , in such a way that H is a maximal planar graph and
that v is quasi-contractible in Σ. We apply algorithm FAST CONVEXIFIER to morph Σ
with one unidirectional morphing step into a straight-line planar drawing Ψ of H such
that the polygon of the neighbors of v is convex. Hence, v is contractible onto any of
its neighbors in Ψ . Then, we remove the edges of H not in G, obtaining a straight-line
planar drawing Γ ∈ of G in which v is contractible onto any of its neighbors; hence, v is
x-contractible in Γ ∈. Finally, observe that Γ ∈ is obtained from Γ in at most k + 1 ∈ 6
unidirectional morphing steps.
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3.3 The Algorithm

We now describe an algorithm to construct a pseudo-morphP with O(n) steps between
any two straight-line planar drawings Γs and Γt of the same n-vertex plane graph G.

The algorithm works by induction on n. If n = 1, then P consists of a single uni-
directional morphing step transforming Γs into Γt. If n ⇐ 2, then let v be a quasi-
contractible vertex of G, which exists by Lemma 3, and let x be any neighbor of v. Let
Ms and Mt be the planar unidirectional morphs with O(1) morphing steps produced
by algorithm CONTRACTIBILITY CREATOR transforming Γs and Γt into straight-line
planar drawings Γ x

s and Γ x
t of G, respectively, such that v is x-contractible both in Γ x

s

and in Γ x
t . Let G∈ be the (n− 1)-vertex plane graph obtained by contracting v onto x in

G, and let Γ ∈
s and Γ ∈

t be the straight-line planar drawings of G∈ obtained from Γ x
s and

Γ x
t , respectively, by contracting v onto x. Further, let P ∈ be the inductively constructed

pseudo-morph between Γ ∈
s and Γ ∈

t . Then, pseudo-morph P is defined as unidirectional
morph Ms transforming Γs into Γ x

s , followed by the contraction of v onto x in Γ x
s ,

followed by the pseudo-morphP ∈ between Γ ∈
s and Γ ∈

t , followed by the uncontraction of
v from x into Γ x

t , followed by the unidirectional morph M−1
t transforming Γ x

t into Γt.
Observe that P has a number of steps which is a constant plus the number of steps of
P ∈. Hence, P consists of O(n) steps. A unidirectional planar morph M between Γs and
Γt can be constructed with a number of morphing steps equal to the number of steps of
P , by Lemma 4. This proves the following:

Theorem 2. Let Γs and Γt be any two straight-line planar drawings of the same n-
vertex plane graph G. There exists an algorithm to construct a planar unidirectional
morph with O(n) morphing steps transforming Γs into Γt.

4 A Lower Bound

In this section we show two straight-line planar drawings Γs and Γt of an n-vertex
path P = (v1, . . . , vn), and we prove that any planar morph M between Γs and Γt

requires Ω(n) morphing steps. In order to simplify the description, we consider each
edge ei = (vi, vi+1) as oriented from vi to vi+1, for i = 1, . . . , n− 1.

Drawing Γs (see Fig. 4(a)) is such that all the vertices of P lie on a horizontal straight
line with vi to the left of vi+1, for each i = 1, . . . , n − 1. Drawing Γt (see Fig. 4(b))
is such that: (a) for each i = 1, . . . , n − 1 with i mod 3 ≤ 1, ei is horizontal with vi
to the left of vi+1; (b) for each i = 1, . . . , n − 1 with i mod 3 ≤ 2, ei is parallel to
line y = tan(2π3 )x with vi to the right of vi+1; and (c) for each i = 1, . . . , n− 1 with
i mod 3 ≤ 0, ei is parallel to line y = tan(− 2π

3 )x with vi to the right of vi+1.
Let M = →Γs = Γ1, . . . , Γx = Γt∧ be any planar morph transforming Γs into Γt.
For i = 1, . . . , n and j = 1, . . . , x, we denote by vji the point where vertex vi is

placed in Γj and by eji the directed straight-line segment representing edge ei in Γj .
For 1 ∈ j ∈ x−1, we define the rotation ρji of ei around vi during the morphing step

→Γj , Γj+1∧ as follows (see Figs. 5(a)–(b)). Translate ei at any time instant of →Γj , Γj+1∧
so that vi stays fixed at a point a during the entire morphing step. After this translation,
the morph between eji and ej+1

i is a rotation of ei around a (where ei might vary its
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Fig. 4. Drawings Γs (a) and Γt (b)
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Fig. 5. (a) Morph between eji and ej+1
i . (b) Translation of the positions of ei during ≤Γj , Γj+1∈,

resulting in ei spanning an angle ρji around vi. (c) Illustration for the proof of Lemma 8.

length during →Γj , Γj+1∧) spanning an angle ρji , where we assume ρji > 0 if the rotation
is counter-clockwise, and ρji < 0 otherwise. We have the following.

Lemma 8. For each j = 1, . . . , x− 1 and i = 1, . . . , n− 1, we have |ρji | < π.

Proof: Assume, for a contradiction, that |ρji | ⇐ π, for some 1 ∈ j ∈ x−1 and 1 ∈ i ∈
n− 1. Also assume, w.l.o.g., that the morphing step →Γj , Γj+1∧ happens between time
instants t = 0 and t = 1. For any 0 ∈ t ∈ 1, denote by vi(t), vi+1(t), ei(t), and ρji (t)
the position of vi, the position of vi+1, the drawing of ei, and the rotation of ei around
vi at time instant t, respectively. Note that vi(0) = vji , vi+1(0) = vji+1, ei(0) = eji ,

ρji (0) = 0, and ρji (1) = ρji . Since a morph is a continuous transformation and since
|ρji | ⇐ π, there exists a time instant tπ with 0 < tπ ∈ 1 such that |ρji (tπ)| = π.

We prove that there exists a time instant tr with 0 < tr ∈ tπ in which vi(t) and
vi+1(t) coincide, thus contradicting the assumption that morph →Γj , Γj+1∧ is planar.

Since |ρji (tπ)| = π, it follows that ei(tπ) is parallel to ei(0) and oriented in the
opposite way. This easily leads to conclude that tr exists if ei(tπ) and ei(0) are aligned.
Otherwise, the straight-line segments vi(0)vi(tπ) and vi+1(0)vi+1(tπ) meet in a point
p. Refer to Fig. 5(c). Let x1 = |pvi(0)|, x2 = |pvi+1(0)|, y1 = |pvi(tπ)|, and y2 =
|pvi+1(tπ)|. By the similarity of triangles (vi(0), p, vi+1(0)) and (vi(tπ), p, vi+1(tπ)),
we have x1

y1
= x2

y2
and hence x1

x1+y1
= x2

x2+y2
. Thus, vi( x1

x1+y1
tπ) and vi+1(

x1

x1+y1
tπ)

are coincident with p. This contradiction proves the lemma. �
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For j = 1, . . . , x− 1, we denote by Mj the subsequence →Γ1, . . . , Γj+1∧ of M ; also,
for i = 1, . . . , n − 1, we define the total rotation ρi(Mj) of edge ei around vi during
morph Mj as ρi(Mj) =

∑j
m=1 ρ

m
i .

We will show in Lemma 10 that there exists an edge ei, for some 1 ∈ i ∈ n − 1,
whose total rotation ρi(Mx−1) = ρi(M) is Ω(n). In order to do that, we first analyze
the relationship between the total rotation of two consecutive edges of P .

Lemma 9. For each j = 1, . . . , x − 1 and for each i = 1, . . . , n − 2, we have that
|ρi+1(Mj)− ρi(Mj)| < π.

Proof: Suppose, for a contradiction, that |ρi+1(Mj)− ρi(Mj)| ⇐ π for some 1 ∈ j ∈
x − 1 and 1 ∈ i ∈ n − 2. Assume that j is minimal under this hypothesis. Since
each vertex moves continuously during Mj , there exists an intermediate drawing Γ ◦ of
P , occurring during morphing step →Γj , Γj+1∧, such that |ρi+1(M

◦) − ρi(M
◦)| = π,

where M◦ = →Γ1, . . . , Γj, Γ
◦∧ is the morph obtained by concatenating Mj−1 with the

morphing step transforming Γj into Γ ◦. Recall that in Γ1 edges ei and ei+1 lie on the
same straight line and have the same orientation. Then, since |ρi+1(M

◦)− ρi(M
◦)| =

π, in Γ ◦ edges ei and ei+1 are parallel and have opposite orientations. Also, since edges
ei and ei+1 share vertex vi+1, they lie on the same line. This implies that such edges
overlap, contradicting the hypothesis that M◦, Mj , and M are planar. �

We now prove the key lemma for the lower bound.

Lemma 10. There exists an index i such that |ρi(M)| ⊂ Ω(n).

Proof: Refer to Fig. 4. For every 1 ∈ i ∈ n − 2, edges ei and ei+1 form an angle
of π radiants in Γs, while they form an angle of π

3 radiants in Γt. Hence, ρi+1(M) =
ρi(M) + 2π

3 + 2ziπ, for some zi ⊂ Z. In order to prove the lemma, it suffices to prove
that zi = 0, for every i = 1, . . . , n − 2. Namely, in this case ρi+1(M) = ρi(M) + 2π

3
for every 1 ∈ i ∈ n − 2, and hence ρn−1(M) = ρ1(M) + 2π

3 (n − 2). This implies
|ρn−1(M) − ρ1(M)| ⊂ Ω(n), and thus |ρ1(M)| ⊂ Ω(n) or |ρn−1(M)| ⊂ Ω(n).
Assume, for a contradiction, that zi ≥= 0, for some 1 ∈ i ∈ n − 2. If zi > 0, then
ρi+1(M) ⇐ ρi(M) + 8π

3 ; further, if zi < 0, then ρi+1(M) ∈ ρi(M)− 4π
3 . Since each

of these inequalities contradicts Lemma 9, the lemma follows. �
We are now ready to state the main theorem of this section.

Theorem 3. There exists two straight-line planar drawings Γs and Γt of an n-vertex
path P such that any planar morph between Γs and Γt requires Ω(n) morphing steps.

Proof: The two drawings Γs and Γt of path P = (v1, . . . , vn) are those illustrated
in Fig. 4. By Lemma 10, there exists an edge ei of P , for some 1 ∈ i ∈ n − 1,
such that |∑x−1

j=1 ρji | ⊂ Ω(n). Since, by Lemma 8, we have that |ρji | < π for each
j = 1, . . . , x− 1, it follows that x ⊂ Ω(n). This concludes the proof of the theorem. �

5 Conclusions

In this paper we presented an algorithm to construct a planar morph between two pla-
nar straight-line drawings of the same n-vertex plane graph in O(n) morphing steps.



Morphing Planar Graph Drawings Optimally 137

We also proved that this bound is tight (note that our lower bound holds for any mor-
phing algorithm in which the vertex trajectories are polynomial functions of constant
degree).

In our opinion, the main challenge in this research area is the one of designing al-
gorithms to construct planar morphs between straight-line planar drawings with good
resolution and within polynomial area (or to prove that no such algorithm exists). In
fact, the algorithm we presented, as well as other algorithms known at the state of the
art [1, 3, 5, 14], construct intermediate drawings in which the ratio between the lengths
of the longest and of the shortest edge is exponential. Guaranteeing good resolution and
small area seems to be vital for making a morphing algorithm of practical utility.

Finally, we would like to mention an original problem that generalizes the one we
solved in this paper and that we repute very interesting. Let Γs and Γt be two straight-
line drawings of the same (possibly non-planar) topological graph G. Does a morphing
algorithm exist that morphs Γs into Γt and that preserves the topology of the draw-
ing at any time instant? A solution to this problem is not known even if we allow the
trajectories followed by the vertices to be of arbitrary complexity.
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Abstract. Depth First Search (DFS) tree is a fundamental data struc-
ture for graphs used in solving various algorithmic problems. However,
very few results are known for maintaining DFS tree in a dynamic en-
vironment - insertion or deletion of edges. The only non-trivial result
for this problem is by Franciosa et al. [4]. They showed that, for a di-
rected acyclic graph on n vertices, a DFS tree can be maintained in O(n)
amortized time per edge insertion. They stated it as an open problem
to maintain a DFS tree dynamically in an undirected graph or general
directed graph.

We present the first algorithm for maintaining a DFS tree for an
undirected graph under insertion of edges. For processing any arbitrary
online sequence of edge insertions, this algorithm takes total O(n2) time.

Keywords: dynamic·incremental·undirected graph·depth first search.

1 Introduction

Depth First Search (DFS) is a well known graph traversal technique. This tech-
nique has been reported to be introduced by Charles Pierre Trémaux, a 19th-
century French mathematician who used it for solving mazes. However, it was
Tarjan, who in his seminal work [9], demonstrated the power of DFS traversal for
solving various fundamental graph problems, namely, topological sorting, con-
nected components, biconnected components, strongly-connected components,
etc.

DFS traversal is a recursive algorithm to traverse a graph. This traversal
produces a rooted spanning tree (or forest), called DFS tree (forest). Let G =
(V,E) be an undirected graph on n = |V | vertices and m = |E| edges. It takes
O(m + n) time to perform a DFS traversal and generate its DFS tree (forest).
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A DFS tree, say T , imposes the following relation on each non-tree edge
(x, y) ∈ E\T .

R(x, y): Either x is an ancestor of y in T or y is an ancestor of x in T .
This elegant relation defined by a DFS tree has played the key role in solving

various graph problems. Similar relations exists for the case of DFS tree in
directed graphs.

Most of the graph applications in real world deal with graphs that keep chang-
ing with time. An algorithmic graph problem is modeled in the dynamic envi-
ronment as an online sequence of insertion and deletion of edges. The aim is to
maintain the solution of the given problem after each edge update using some
clever data structure such that the time taken to update the solution after any
edge update is much smaller than that of the best static algorithm. A dynamic
algorithm is called an incremental algorithm if it supports only insertion of edges.

In spite of the simplicity and elegance of a DFS tree, its parallel and dy-
namic versions have turned out to be quite challenging. In fact, in the dynamic
setting, the ordered DFS problem (where the edges are visited strictly in the
order given by the adjacency list of the graph) is shown to be hard by Reif[6,7].
He showed that ordered DFS problem is a P -Complete problem. Milterson et
al. [5] later proved that if dynamic version of any non-redundant P -Complete
problem is updatable in t(n) time, then every problem in P is updatable in
O(t(n) +polylog(n)) time. So it is highly unlikely that any O(polylog(n)) up-
date time algorithm exists for the ordered DFS problem. Though the ordered
DFS problem is significant from the perspective of complexity theory, none of the
existing algorithmic applications of DFS trees require such restrictions. Hence it
is natural to address the problem of maintenance of any DFS tree in a dynamic
graph.

For the case of directed acyclic graphs, Franciosa et al. [4] presented an incre-
mental algorithm for maintaining DFS tree in O(mn) total time. This is the only
non-trivial result available for the dynamic DFS tree problem. Maintaining DFS
tree incrementally for undirected graph (or general directed graph) was stated
as an open problem by Franciosa et al. [4]. The following short discussion may
help one realize the non-triviality of maintaining a DFS tree incrementally in an
undirected graph.

Consider insertion of an edge (x, y). If R(x, y) holds, then no change in DFS
tree is required. Such an edge is called a back edge. Otherwise, the relation
R(x, y) does not hold for edge (x, y), and we call such an edge a cross edge. See
Figure 1 for a better visual description. Let w be the lowest common ancestor of
x and y. Let u and v be its children such that x ∈ T (u) and y ∈ T (v). Insertion
of (x, y) violates the property of a DFS tree as follows.

Let S be the set of visited vertices when the DFS traversal reached w. Since
T (u) and T (v) are two disjoint subtrees hanging from w, the vertices of T (u)
and T (v) belong to disjoint connected components in the subgraph induced by
V \S. Insertion of edge (x, y) connects these components such that the vertices of
T (u)⊆T (v) have to hang as a single subtree from w. This implies that T (u) will
have to be rerooted at x and hung from y (or T (v) has to be rerooted at y and
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T (u) T (v)

Fig. 1. (x, y) is a cross edge

hung from x). This rerooting will force restructuring of T (u) because, in order to
keep it as a DFS subtree, we need to preserve the relation R for every non-tree
edges in T (u). Observe that it is not obvious to perform this restructuring in an
efficient manner.

We present the first incremental algorithm for maintaining a DFS tree (or DFS
forest if the graph is not connected) in an undirected graph. Our algorithm takes
a total of O(n2) time to process any arbitrary online sequence of edges. Hence
the amortized update time per edge insertion is σ(n2/m), which is O(1) for the
case m = σ(n2). In addition to the O(m + n) space occupied by the graph, our
algorithm uses only O(m+n) extra space. Moreover, excluding the standard data
structures for ancestors in a rooted tree [1,2], our algorithm employs very simple
data structures. These salient features make this algorithm an ideal candidate
for practical applications.

1.1 Related Work

Breadth first search (BFS) is another popular graph traversal algorithm. A BFS
tree can be maintained incrementally in O(mn) time [3], improving which is
shown to be hard [8].

2 Preliminaries

Given an undirected graph G = (V,E) on n = |V | vertices and m = |E| edges,
the following notations will be used throughout the paper.

– T : A DFS tree of G at any particular time.
– r : Root of tree T .
– par(v) : Parent of v in T .
– P (u, v) : Path between u and v in T .
– level(v) : Level of a vertex v in T s.t. level(r) = 0 and level(v) =

level(par(v)) + 1.
– level(e) : Level of an edge e = (x, y) in T s.t. level(e) = min(level(x),

level(y)).
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– T (x) : The subtree of T rooted at a vertex x.
– LCA(u, v) : The Lowest Common Ancestor of u and v in tree T .
– LA(u, k) : The ancestor of u at level k in tree T .

We explicitly maintain the level of each vertex during the algorithm. Since the
tree grows from the root downward, a vertex u is said to be at higher level than
vertex v if level(u) < level(v). Similar notion is used for edges.

The DFS tree T maintains the following data structure at each stage.

– Each vertex v keeps a pointer to par(v) and par(r) = r.
– T is also stored as an adjacency list for traversing T (v) from v.
– Each vertex v keeps a list B(v) which consists of all those back edges that

originate from T (v) and terminate at par(v). This, apparently uncommon
and perhaps unintuitive, way of keeping the back edges leads to efficient
implementation of the rerooting procedure.

Our algorithm uses the following results for the dynamic version of the Lowest
Common Ancestor (LCA) and the Level Ancestors (LA) problems.

Theorem 1 (Cole and Hariharan 2005[2]). There exists a dynamic data
structure for a rooted tree T that uses linear space and can report LCA(x, y) in
O(1) time for any two vertices x, y ∈ T . The data structure supports insertion
or deletion of any leaf node in O(1) time.

Theorem 2 (Alstrup and Holm 2000[1]). There exists a dynamic data
structure for a rooted tree T that uses linear space and can report LA(u, k) in
O(1) time for any vertex u ∈ T . The data structure supports insertion of any
leaf node in O(1) time.

The data structure for Level Ancestor problem can be easily extended to han-
dle deletion of a leaf node in amortized O(1) time using the standard technique
of periodic rebuilding.

If the graph is not connected, the aim would be to maintain a DFS tree for
each connected component. However, our algorithm, at each stage, maintains a
single DFS tree which stores the entire forest of these DFS trees as follows. We
add a dummy vertex s to the graph in the beginning and connect it to all the
vertices. We maintain a DFS tree of this augmented graph rooted at s. It can
be easily seen that the subtrees rooted at children of s correspond to DFS trees
of various connected components of the original graph.

3 Overview of the Algorithm

Our algorithm is based on two principles. The first principle, called monotonic
fall of vertices, ensures that the level of a vertex may only fall or remain same
as the edges are inserted. Consider insertion of a cross edge (x, y) as shown in
Figure 1. In order to ensure monotonic fall, the following strategy is used. If
level(y) ⊂ level(x), then we reroot T (v) at y and hang it through edge (x, y)
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(and vice versa if level(y) > level(x)). This strategy surely leads to fall of
level of x (or y). However, this rerooting has to be followed by transformation of
T (v) into a DFS tree. An obvious, but inefficient way, to do this transformation
is to perform a fresh DFS traversal on T (v) from x (as done by Franciosa et
al. [4]). We are able to avoid this costly step using our second principle called
minimal restructuring. Following this principle, only a path of the subtree T (v)
is reversed and as a result major portion of the original DFS tree remains intact.
Furthermore, this principle also facilitates monotonic fall of all vertices of T (v).
The rerooting procedure based on this principle is described and analyzed in the
following section.

Our algorithm updates DFS tree upon insertion of any cross edge as follows.
Firstly, we carry out rerooting based on the two principles mentioned above. As
a result, many back edges now potentially become cross edges. All these edges
are collected and virtually (re)-inserted back to the graph, and processed as fresh
insertions. This simple iterative algorithm, when analyzed in a straightforward
manner, has a time complexity O(mn). However, using a more careful analysis, it
can be shown that its time complexity is O(n3/2m1/2), which is strictly sub-cubic.
In order to improve the time complexity further, we process the pool of cross
edges in a more structured manner. In particular, we process the highest cross
edge first. This leads to our final algorithm that achieves O(n2) time complexity
for any arbitrary sequence of edge insertions.

4 Rerooting a Subtree

Consider insertion of an edge (x, y) which happens to be a cross edge with respect
to the DFS tree T . Let w be LCA of x and y, and let u and v be the two children
of w such that x ∈ T (u) and y ∈ T (v). See Figure 2 for a visual description. As
discussed before, updating the DFS tree upon insertion of the cross edge (x, y)
entails rerooting of subtree T (v) at y and hanging it from x. We now describe
an efficient rerooting procedure for this task based on minimal restructuring
principle.

The underlying idea of minimal restructuring principle is to preserve the cur-
rent tree structure as much as possible. Consider the path P (y, v) = →z1(=
y), z2, . . . , zk(= v)∧. This path appears from v to y in the rooted tree T . Reroot-
ing reverses this path in T so that it starts at y and terminates at v. In order to
see how this reversal affects the DFS structure, let us carefully examine T (v).

The subtree T (v) can be visualized as a collection of disjoint trees joined
through the path P (v, y) as follows. Let T1 denote the subtree T (y) and let T2

denote the subtree T (z2)\T (z1). In general, Ti denote the subtree T (zi)\T (zi−1).
Upon reversing the path P (v, y), notice that each subtree remains intact but
their ordering gets reversed. Furthermore, level of each subtree Ti surely falls.
(see Figure 2). Let us find the consequence of reversing P (v, y) on all those
back edges whose at least one endpoint belongs to T (v). Observe that the back
edges which originate as well as terminate within the same Ti continue to remain
as back edges since tree Ti remains intact. Likewise, any back edge from these



Incremental DFS for Undirected Graphs 143

v

v uu

y

y

xx

ww

T4

T4

T3

T3

T2

T2

T1

T1

T (u)T (u)

T (v)

Fig. 2. Rerooting the tree T (v) at y and hanging it from x. Notice that some back
edges may become cross edges (shown dotted) due to this rerooting.

subtrees which terminates at any ancestor of v also continue to remain as a
back edge. However, the back edges originating in T (v) and terminating on w,
which were earlier stored in B(v), will now have to be stored in B(u) (recall
the definition of B). Also notice that the tree edge (w, v) now becomes a back
edge and has to be added to B(u). The remaining back edges are only those
which originate from some Ti and terminate at some zj , j > i. All these edges
are present in B(zj−1). Some of these back edges may become cross edges due
to the reversal of P (v, y). Their presence violates the DFS property (relation R)
of the new tree. We just collect and remove these edges temporarily from the
graph. In summary, our rerooting algorithm just does the following: It traverses
the path P (v, y) from y to v, collects B(zj) for each 1 ⊂ j < k, and reverses the
path P (v, y). The pseudo code of the rerooting process is described in Procedure
Reroot.
The following lemma holds based on the above discussion.

Lemma 1. Tree T at the end of Procedure Reroot(v, x, y) is a DFS tree for the
graph (V,E\ER).

We introduce some terminology to facilitate compact and clean reference to
the entities of rerooting procedure. The lower and higher end vertices x and y
of the inserted edge (x, y) are called prime and conjugate vertices respectively.
Notice that the restructured subtree now hangs from the prime vertex. We define
prime path as the path from the prime vertex x to u and conjugate path as the
path from conjugate vertex y to v, where u and v are children of LCA(x, y) s.t.
x ∈ T (u) and y ∈ T (v).

Each vertex of subtree T (v) suffers a fall in its level due to Reroot(v, x, y).
We shall now calculate this fall exactly. Let τ = level(x) − level(y). As a
result of the rerooting, y has become child of x. Hence it has suffered a fall in
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Procedure Reroot(v,x,y): reroots subtree T (v) at vertex y and hangs it
through edge (x, y).

1 ER ⇒ φ;
2 z ⇒ y;
3 p ⇒ x;
4 B(v) ⇒ B(u) ≤ B(v);
5 while z ∈= par(v) do
6 if z ∈= v then ER ⇒ ER ≤ B(z);
7 B(z) ⇒ φ;
8 next ⇒ par(z);
9 par(z) ⇒ p;

10 p ⇒ z;
11 z ⇒ next;

12 end
13 Return ER

its level by τ + 1. Since T1 = T (y) and T1 remains intact, so each vertex of T1

suffers a fall by τ+1 levels. Consider a vertex zi which is the root of Ti for some
i > 1. This vertex was earlier at level i − 1 higher than y(= z1) and now lies at
i − 1 level below y. Hence overall level of zi (and hence that of every vertex of
Ti) has fallen by τ + 2i− 1. This leads us to the following lemma.

Lemma 2. Let τ be the difference in the levels of prime and conjugate vertices
before rerooting. After rerooting, the ith vertex on the conjugate path falls by
τ + 2i− 1 levels.

Let us analyze the time complexity of the Procedure Reroot(v, x, y). It first
adds B(v) to B(u); this step takes O(1) time since we are uniting two lists.
Thereafter, the procedure traverses the conjugate path P (y, v), and collects the
edges B(z) for each z ∈ P (y, v)\{v} in ER.

Lemma 3. The time complexity of the Procedure Reroot(v, x, y) is O(k+ |ER|),
where k is the length of the conjugate path and ER is the set of edges returned
by the procedure.

It follows from the rerooting procedure that any back edge getting converted to
a cross edge is surely collected in ER. However, not all the edges of ER necessarily
become cross edges. In order to understand this subtle point, observe that ER
contains all those edges which originate from some vertex in Ti and terminate
at some zj , i < j < k. Consider any such edge (a, zj), a ∈ Ti. If a ≥= zi (root of
Ti), then surely (a, zj) has become a cross edge after reversal of P (v, y). But if
a = zi, then it still remains a back edge. So we can state the following lemma
which will be crucial in our final algorithm.

Lemma 4. If an edge collected in ER is a back edge with respect the modified
DFS tree, then both its endpoints must belong to the conjugate path.
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5 Algorithm for Incremental DFS

Consider insertion of an edge (t, z). In order to update the DFS tree, our algo-
rithm maintains a set E of edges which is initialized as {(t, z)}. The algorithm
then processes the set E iteratively as follows. In each iteration, an edge (say
(x, y)) is extracted from E using Procedure Choose. If the edge is a back edge,
the edge is inserted in the set of back edges B accordingly and no processing is
required. If (x, y) is a cross edge, it is processed as follows. Let w be LCA of x
and y, and let v be the child of w such that y is present in subtree T (v). Without
loss of generality, let level(x) ⇐ level(y). Procedure Reroot(v, x, y) is invoked
which reroots subtree T (v) at y and returns a set of edges collected during the
procedure. All these edges are extracted from E and added to E . This completes
one iteration of the algorithm. The algorithm finishes when E becomes empty.
The correctness of the algorithm follows directly from the following invariant
which is maintained throughout the algorithm:

Invariant. T is DFS tree for the subgraph (V,E\E).

Algorithm 1. Processing insertion of an edge (t, z)

1 E ⇒ {(t, z)} ; /* E is a set of edges to be inserted. */

2 while E ≥= λ do
3 (x, y) ⇒ Choose(E) ; /* Here level(x) ⇐ level(y). */

4 w ⇒ LCA(x, y);
5 v ⇒ LA(y, level(w) + 1) ; /* v is y’s ancestor & w’s child */

6 if w ≥= y then /* (x, y) is a cross edge. */

7 E ⇒ E⊆ Reroot(v, x, y);
8 end

9 end

Procedure Choose(E): Chooses and returns an edge from E .

Remove an arbitrary edge (x, y) from E .
Return (x, y).

5.1 Analysis

The computation cost of collecting and processing each edge e ∈ E can be asso-
ciated with the rerooting event in which it was collected. Thus the computation
time spent by the incremental algorithm in processing any sequence of edge
insertions is of the order of the time spent in all the rerooting calls invoked.
Furthermore, using Lemma 3 we know that the time complexity of a single re-
rooting call is of the order of the number of edges in ER that were collected
during that rerooting (the cost of the first term mentioned in Lemma 3 can be
associated with the fall of vertices on the conjugate path). Therefore, in order
to calculate the time complexity of the algorithm, it suffices to count all the
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edges collected during various rerooting calls. Note that this count can be much
larger than O(m) because an edge can appear multiple times in E during the
algorithm. It follows from Lemma 2 that whenever an edge is collected during
a rerooting call, the level of at least one of its endpoints falls. Since level can
fall only up to n, it follows that the computation associated with a single edge
during the algorithm is of the order of n. Hence, the O(mn) time complexity
of the algorithm is immediate. However, using a more careful insight into the
rerooting procedure, we shall now show that the time complexity is much better.

Consider any execution of the rerooting procedure. Let ((y =)z1, z2, . . . , zk(=
v)) be the path that gets reversed during the rerooting process. See Figure 2. The
procedure collects the edges B(zi) for each i ⊂ k. We shall now charge each edge
collected to the fall of one of its endpoints. Let Π be a parameter whose value
will be fixed later. Consider any edge (a, zi) that is collected during the rerooting
process. Note that level of each of a and zi has fallen due to the rerooting. If
i ⊂ Π , we charge this edge to the fall of vertex a. In this way, there will be at
most Π edges that get charged to the fall of a. If i > Π , we charge this edge to
the fall of zi. It follows from Lemma 2 that zi falls by at least 2i− 1 > Π levels
in this case.

Consider any vertex s in the graph. Over any sequence of edge insertions, if s
falls by less than Π levels, we call it a small fall; Otherwise we call it a big fall for s.
It follows that s will be charged Π edges for every small fall. The number of small
falls is O(n), so overall cost charged to s due to all its small falls is O(nΠ). On
the other hand, s will be charged O(deg(s)) for every big fall. Notice that there
will be at most n/Π big falls of s throughout any sequence of edge insertions.
So the overall cost charged to all big falls of s will be O(deg(s) · n/Π). Hence
for all vertices, the total computation charged will be O(n2Π + mn/Π). Fixing
Π =

√
m/n, we can conclude that the overall computation performed during

processing of any sequence of m edge insertions by the algorithm is O(n3/2m1/2).

Theorem 3. For an undirected graph G on n vertices, a DFS Tree can be main-
tained under insertion of any arbitrary sequence of edges with total update time
of O(n3/2

∪
m).

It follows from Theorem 3 that even for any sequence of β(n2) edge insertions,
the total update time in maintaining DFS tree is O(n2.5) which is strictly sub-
cubic. In fact, with a more structured way of processing the edges of E , we
can even achieve a bound of O(n2). We provide this improved algorithm in the
following section.

6 Achieving O(n2) Update Time

The time complexity of Algorithm 1 is governed by the number of edges in E
that are processed during the algorithm. In order to get an improved algorithm,
let us examine E carefully. An edge from E can be a cross edge or a back edge.
Processing of a cross edge always triggers a rerooting event which, in turn, leads
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to fall of one or more vertices. Hence, the total number of cross edges processed
during the algorithm is O(n2). All the remaining edges processed in E during
the entire algorithm are back edges. There are two sources of these back edges.

Firstly, some edges added to E by Procedure Reroot are back edges. Let us
analyze their count throughout the algorithm. It follows from Lemma 4 that
both endpoints of each such back edge belong to the conjugate path associated
with the rerooting call. Notice that ith vertex on the conjugate path falls by at
least 2i− 1 levels (see Lemma 2). So, if Δ is the length of the conjugate path, the
total fall in the level of all vertices on the conjugate path is more than Δ(Δ−1)/2
which is an upper bound on the number of edges with both endpoints on the
conjugate path. Since the total fall in the level of vertices cannot be more than
O(n2), the number of such back edges throughout the algorithm is O(n2).

Secondly, some edges added to E by Procedure Reroot are cross edges at the
time of their collection, but become back edges before they are processed. This
may happen due to rerooting initiated by some other cross edge from E . In
order to understand this subtle point, see Figure 3. Here e1, e2, e3, e4, e5 = (x, y)
are cross edges present in E at some stage. While we process (x, y), T (v) gets
rerooted at y and hangs through edge (x, y). As a result e1, e2, e3, e4 become
back edges.

 

u uv
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T (u) T (u)
T (v)
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Fig. 3. Some cross edges in E become back edges due to the rerooting of T (v)

In order to bound these cross edges getting transformed into back edges during
rerooting of T (v), let us carefully examine one such cross edge. Let vh and vl be
respectively the higher and lower endpoints of the resulting back edge. The edge
(vh, vl) was earlier a cross edge, so vh now has a new descendant vl. Similarly
vl now has a new ancestor vh. Note that the descendants of only vertices lying
on prime and conjugate paths are changed during rerooting. Also the ancestors
of only the vertices in T (v) are changed during rerooting. Hence the following
lemma holds true.
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Lemma 5. Cross edges getting converted to back edges as a result of rerooting
T (v) are at most |T (v)| times the sum of lengths of prime and conjugate paths.

Observe that the total sum of fall of vertices of T (v) during the rerooting
event is at least |T (v)| · (τ + 1) (see Figure 3). However, the sum of lengths of
prime and conjugate paths may be much greater than τ+1. Hence, the number
of cross edges getting transformed into back edges is not bounded by the fall
of vertices of T (v). This observation, though discouraging, also gives rise to the
following insight: If there were no cross edges with level higher than level(y),
the number of cross edges converted to back edges will be fewer. This is because
the possible higher endpoints of such edges on the prime or conjugate path will
be limited. This insight suggests that processing higher cross edges from E first
will be more advantageous than lower ones. Our final algorithm is inspired by
this idea.

6.1 The Final Algorithm

Our final algorithm is identical to the first algorithm except that instead of
invoking Procedure Choose we invoke Procedure ChooseHigh. It processes the
edges of set E in non-increasing order of their levels. To extract the highest edge
from E , we may use a binary heap on endpoints of these edges taking O(log n)
time per operation. However, this can be improved to O(1) amortized time using
a much simpler data structure that exploits the following facts. Firstly, level of
a vertex is an integer in [1, n]. Secondly, when a rerooting event occurs upon
insertion of an edge e, all the edges collected are at a level lower than level(e).
Kindly refer to the full version of this paper for details of this data structure.

Procedure ChooseHigh(E): Chooses and returns the highest edge from E .

Remove the highest edge (x, y) from E .
Return (x, y).

6.2 Analysis

In order to establish O(n2) bound on the running time of our final algorithm, it
follows from the preceding discussion that we just need to show that the number
of cross edges getting converted to back edges throughout the algorithm is O(n2).

Consider any rerooting event initiated by cross edge (x, y) (refer to Figure 3).
Since there is no edge in E which is at a higher level than level(y), so it follows
from Lemma 5 that the cross edges getting converted to back edges during the
rerooting event will be of one of the following types only.

– The cross edges with one endpoint in T (v) and another endpoint x or any
of τ ancestors of x.

– The cross edges with y as one endpoint and another endpoint anywhere in
T (v)\T (y).

Hence the following lemma holds for our final algorithm.
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Lemma 6. During the rerooting event the number of cross edges converted to
back edges are at most |T (v)| · (τ + 1) + |T (v)\T (y)|.

According to Lemma 2, level of each vertex of T (v) falls by at least τ + 1.
So the first term in Lemma 6 can be clearly associated with the fall of each
vertex of T (v). Note that each vertex in T (v)\T (y) becomes a descendant of
y and hence falls by at least one extra level (in addition to τ + 1). This fall
by extra one or more levels for vertices of T (v)\T (y) can be associated with
the second term mentioned in Lemma 6. Hence the total number of cross edges
getting transformed to back edges during the algorithm is of the order of O(n2).
We can thus conclude with the following theorem.

Theorem 4. For an undirected graph G on n vertices, a DFS Tree can be main-
tained under insertion of any arbitrary sequence of edges with total update time
of O(n2).

Remark: The O(n2) bound of our algorithm is quite tight even for sparse
graphs. In fact, we can show the following: There exists a sequence of β(n) edge
insertions such that every incremental algorithm for maintaining DFS tree that
follows the principle of monotonic fall will require σ(n2) time. Kindly refer to
the full version of this paper for details.
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Abstract. Suppose two parties who are interested in performing certain
distributed computational tasks are given access to a source of correlated
random bits ρ. This source of correlated randomness could be quite use-
ful to the parties for solving various distributed computational problems
as it enables the parties to act in a correlated manner. In this work, we
initiate the study of power of different sources of shared randomness ρ
in the setting of communication complexity; we shall do so in the model
of simultaneous message passing (SMP) model of communication com-
plexity, and we shall also argue that this model is the appropriate choice
among the commonly studied models of two-party communication com-
plexity for the purpose of studying shared randomness as a resource. As
such, we introduce a natural measure for the strength of the correlation
provided by a bipartite distribution that we call collision complexity.
We demonstrate that the collision complexity colε(n) of a bipartite dis-
tribution ρ tightly characterises the power of ρ as a resource. We also
uncover some surprising phenomenon by showing that even the noisiest
shared randomness increases the power of SMP substantially: the equal-
ity function can be solved very efficiently with virtually any nontrivial
shared randomness— whereas without shared randomness the complex-
ity is known to be Ω(

√
n).

1 Introduction

One of the central aims of complexity theory is to study the power of various
resources of computation. By now, the power of many different types of resource
– such as time, space, randomness, access to powerful provers, etc. – have been
investigated in various models of computation. An important resource in many
distributed settings involving multiple parties is the access to a source of corre-
lated random bits; such a resource allows the parties to act in a correlated way
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enabling them to perform better in various tasks. In this work, we would like
to quantitatively study the utility of a source of shared randomness ρ to parties
interested in solving communication problems.

Having access to correlated bits can allow the parties to reduce the amount
of communication significantly in many cases, and in this work we are interested
to know how the cost of an optimal solution depends on the source of shared
randomness ρ – more specifically, what properties of ρ determine the solution
complexity.

1.1 Shared Randomness and Communication Complexity

The central question in communication complexity is how much communication
is needed to compute a given function on distributed inputs. In the two-party
simultaneous message passing (SMP) model, two parties, conventionally called
Alice and Bob, receive separate inputs x and y, respectively. Each of them en-
codes the input to a message to a third party – the referee, who has to output
the answer. A communication task defines which answer is correct for the given
input, and the goal of the players is to produce a correct answer with probability
at least 2/3 for each possible input. An optimal communication protocol for the
given task satisfies the correctness condition and minimises the total length of
the messages sent by Alice and Bob.

A central fact about this model (which makes it appropriate for our study)
is that whether Alice and Bob share a random source or they only have access
to private randomness can affect significantly the amount of communication
needed to compute certain functions. An archetypal example is the equality
function on n-bit strings: it can be computed with O(1) bits of communication
with public randomness but requires Θ(

∈
n) bits of communication with private

randomness [9,1].

Definition 1 (SMP with Shared Distribution ρ). Let l ⊆ N, and let ρ be a
probability distribution on U × V . In the SMP model with shared distribution ρ,
Alice receives input x and her part of shared randomness (u1, . . . , ul) ⊆ U l, and
Bob receives input y and his part of shared randomness (v1, . . . , vl) ⊆ V l, where
the l pairs (u1, v1), . . . , (ul, vl) are identically and independently distributed ac-
cording to ρ. Alice and Bob use their parts of input and their shares of random-
ness to compute their messages to the referee. Upon receiving the messages from
the players, the referee outputs the answer.

A communication protocol determines the value of l and the actions of all
the participants. A protocol is said to solve a communication problem with error
probability δ if it guarantees correct answer with probability at least 1 − δ for
every allowed input pair. The communication cost of a protocol is the maximum
possible total number of bits sent by the players. The communication complexity
of a given problem is the minimum cost of a protocol that solves f with error
probability 1/3.

It is important to note that SMP is unique among the commonly studied
models of communication for being suitable for investigating shared random-
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ness. Namely, SMP is the only model that does not allow direct communication
between Alice and Bob. When such communication is allowed, the sender of the
first message can locally toss random coins and append the outcomes to the
message, and those values can be used in place of shared randomness. It has
been shown by Newman [8] that O(log n) bits of randomness are sufficient for
a nearly-optimal protocol for any communication problem, and therefore avail-
ability of “free” shared randomness can only save an additive factor of O(log n)
to the communication cost, which is usually viewed as insignificant. On the
other hand, as noted above, there are known communication problems whose
complexity is O(1) in SMP with shared randomness and Ω(

∈
n) without it.

The main subject of this work are the intermediate cases between the “ex-
tremes” of public randomness and private randomness. Namely, we will look at
the situation when Alice and Bob have access to unlimited number of (mutually
independent) pairs of correlated random variables, where each pair is distributed
according to a known bipartite probability distribution ρ. When ρ is uniform
over the set {00, 11}, this corresponds to the usual public randomness, which we
call perfect. If ρ is something different, can Alice and Bob still use it to reduce
communication cost of an optimal protocol, comparing to the case of private
randomness? This is the question we answer in this work.

We will see that different choices of the shared distribution ρ give rise to com-
munication models of different power. It is easy to see that given perfect public
randomness, Alice and Bob can locally simulate any other bipartite distribution
to any precision, which implies that ρ being the uniform distribution over {00, 11}
is the most powerful type of shared randomness (thus call it perfect). We show
that many other choices of ρ give rise to communication models that are strictly
weaker than perfect randomness but stronger than private randomness.

1.2 Our Results

First, we give an example of an SMP protocol which exploits even the weakest
form of correlated randomness. We show that for any bipartite probability dis-
tribution ρ other than a product distribution, there is an SMP protocol for the
equality function on n-bit strings with shared distribution ρ whose communica-
tion cost is a constant independent of n. Since the equality function on n-bits
strings requires Ω(

∈
n) bits without shared randomness, this shows that any

correlation increases the power of SMP significantly.
Second, we prove that different choices of ρ lead to different power of the SMP

model where the players share ρ. That will be done in three steps:

– We will introduce a quantity which we call the collision complexity of ρ at
domain size n and denote colε(n), and study its properties.

– We will show that any SMP communication protocol with public randomness
of cost at least logn can be simulated by a protocol with shared distribution ρ
at the expense of increasing the cost by a factor of O(colε(n)), where n is
the input length.
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– We will prove that the above simulation is tight up to a poly-logarithmic
factor by constructing a partial Boolean function, whose SMP communica-
tion complexity is O(log n) with public randomness but is Ω(colε(n)/ logn)
with any shared distribution ρ.

In other words, we will construct an infinite proper hierarchy of SMP models
with different types of shared randomness.

Finally, we will study the notion of collision complexity more closely, and relate
it to two widely studied measures which quantify how correlated two discrete
random variables are: the maximum correlation and the hypercontractivity.

Related Work. The collision complexity introduced in this work quantifies how
hard it is to simulate public randomness by imperfect shared randomness in an
SMP communication protocol. There are many works which discuss the task of
simulating one kind of randomness by another kind of randomness, and partic-
ularly close to ours is non-interactive correlation distillation (NICD) [6,7,11]. In
the two-party case of NICD, Alice and Bob have an access to an unlimited num-
ber of independent copies of ρ just as in our case, and their task is to produce
a marginally uniform bit each so that the outputs by Alice and Bob agree with
the maximum probability. Although both NICD and the collision complexity are
closely related to the maximum correlation and hypercontractivity, their exact
relationship is unclear.

Gavinsky, Ito, and Wang [3] study a notion of shared randomness different
from the standard perfectly correlated random bits in the multi-party SMP
setting, and our proof of Lemma 7 follows the same overall structure as that
of Theorem 2 there.

2 Preliminaries

Throughout the paper, the base of logarithm is two unless stated otherwise.
For x, y ⊆ R

n, let x · y denote
∑n

i=1 xiyi. For bit strings x, y ⊆ {0, 1}n, let x · y
denote

∑n
i=1 xiyi mod 2.

For a probability distribution ρ on (finite sets) U × V , we write its marginal
distributions on U and V as ρU and ρV , respectively. We denote the uniform
distribution over a set X by UX .

Now we shall discuss the relevant background from communication complex-
ity. We assume some basic familiarity with the subject [5]. For a partial func-
tion f from {0, 1}n×{0, 1}n to E, we denote by SMP(f) the SMP communication
complexity of f without shared randomness with worst-case error probability at
most 1/3.

For n ⊂ 1, let IPn : {0, 1}n × {0, 1}n → {0, 1} be the inner product function
modulo 2. Chor and Goldreich [2] showed that any communication protocol
which answers IPn with error probability 1/3 on average, even in the two-way
communication model, must have communication cost at least n/2 − o(n). The
following is an immediate corollary of this.
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Corollary 1. For n ⊂ 1, the communication complexity of IPn in the SMP
model with public randomness is in Ω(n).

We will use the following fact originally proved by Newman [8] and refined by
Kushilevitz and Nisan [5, Theorem 3.14]. The statement in [5] assumes that the
function takes a Boolean value, but the proof does not use this assumption.

Lemma 1. Let 0 < ε < ε◦ < 1/2 be constants. Any SMP protocol with public
randomness for a partial function from {0, 1}n × {0, 1}n to E with error proba-
bility at most ε can be converted to one which uses only logn + C bits of public
randomness with error probability at most ε◦ without changing the communica-
tion cost, where C > 0 is a constant which depends only on ε and ε◦.

Maximum Correlation of a Bipartite Probability Distribution. We will make use
of the following notion quantifying the amount of correlation between two ran-
dom variables.

Definition 2 (Maximum Correlation). The maximum correlation of a dis-
tribution ρ on U × V , which we denote by Cor(ρ), is defined as Cor(ρ) =
supf,g E(u,v)√ε[f(u)g(v)], where the supremum is over functions f : U →
R and g : V → R that satisfy E(u,v)√ε[f(u)] = E(u,v)√ε[g(v)] = 0
and E(u,v)√ε[f(u)2] = E(u,v)√ε[g(v)2] = 1.

The following is immediate from the definition.

Lemma 2. Let ρ be a distribution on U×V . Let f : U → [0, 1] and g : V → [0, 1],
and let a = E[f(u)] and b = E[g(v)] where (u, v) ∧ ρ. Write the variance of f
and g as Var(f) and Var(g), respectively. Then it holds that E(u,v)√ε[f(u)g(v)] ≥
ab + Cor(ρ)

√
Var(f) Var(g).

Proof. Note that E(u,v)√ε[f(u)g(v)] = ab+E(u,v)√ε[(f(u)−a)(g(v)−b)], and use

the fact that (f−a)/
√

Var(f) and (g−b)/
√

Var(g) have mean 0 and variance 1.

Later we will use an upper bound on the maximum correlation to obtain
a lower bound on the collision complexity. It is sometimes easier to deal with
the maximum correlation than the collision complexity because the maximum
correlation behaves nicely with independent random variables:

Lemma 3 (Witsenhausen [10, Theorem 1]).For i ⊆ [n], let ρi be a probability
distribution on Ui × Vi. Then it holds that Cor(ρ1 ⇐ · · · ⇐ ρn) = maxi≤[n] Cor(ρi).

3 Usefulness of Weak Shared Randomness in Some
Settings

In this section, we show an easy but nontrivial use of imperfect shared random-
ness in an SMP communication protocol for the equality function EQn : {0, 1}n×
{0, 1}n → {0, 1}, defined to be 1 if x = y, and 0 otherwise. It is known that EQn
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has a constant SMP communication complexity with perfect public random-
ness [1] whereas it has SMP communication complexity Θ(

∈
n) without shared

randomness [9,1]. If Alice and Bob share some imperfect randomness, what hap-
pens to this communication complexity? The answer is provided by the following
theorem:

Theorem 1. Let ρ be a probability distribution on U × V . If ρ is not a product
distribution, then it holds that SMPε(EQn) = O(1), where the constant depends
on ρ but not on n.

Proof. Because ρ is not a product distribution, there exist subsets U1 ⇒ U
and V1 ⇒ V such that if (u, v) is distributed according to ρ, it holds that

Pr[u ⊆ U1 ∪ v ⊆ V1] ≤= Pr[u ⊆ U1] Pr[v ⊆ V1]. (1)

A protocol for solving the equality is as follows. Alice and Bob share 2n copies
of shared randomness; label the 2n i.i.d. pairs of registers containing the shared
randomness as (ux, vx) ∧ ρ for x ⊆ {0, 1}n. Alice defines α = 1 if ux ⊆ U1

and α = 0 otherwise, and sends α to the referee. Similarly, Bob defines β = 1
if vy ⊆ V1 and β = 0 otherwise, and sends β to the referee. The referee checks
whether α = β = 1 or not. If x = y, this happens with probability Pr[u ⊆
U1 ∪ v ⊆ V1], and otherwise it happens with probability Pr[u ⊆ U1] Pr[v ⊆ V1].
Because of inequality (1), these probabilities are different. The referee can tell
which is the case with error probability at most 1/3 by repeating this protocol

for t times, where t = O(|Pr[u ⊆ U1 ∪ v ⊆ V1]− Pr[u ⊆ U1] Pr[v ⊆ V1]|−2
), which

is a constant independent of n.

4 Collision Complexity of Bipartite Distributions

We will introduce two ways to quantify the strength of correlation of a bipartite
distribution, and prove that they are in fact equivalent.The first one is collision
complexity:

Definition 3 (Collision Complexity). Let ρ be a probability distribution on
U × V and n ⊆ N. A collision protocol for ρ with domain size n is determined
by an integer l ⊆ N and two (possibly randomised) mappings A : U l → 2[n]

and B : V l → 2[n]. The output size of this collision protocol by

max{max
u≤Ul

|A(u)|,max
v≤V l

|B(v)|},

and the collision probability of this protocol by

min
i≤[n]

Pr[i ⊆ A(u1, . . . , ul) ⇔B(v1, . . . , vl)],

where (uj , vj) ∧ ρ independently for all j ⊆ [l].
The collision complexity of ρ at domain size n and collision probability p,

which we denote by colε(n, p), is the minimum output size of a collision protocol
for ρ with domain size n and collision probability at least p. We write colε(n, 1/n)
also as colε(n).
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It is useful to view this definition operationally. Alice has access to ran-
dom variables u1, . . . , ul and Bob has access to random variables v1, . . . , vl,
where (uj, vj) ∧ ρ independently for all j ⊆ [l]. Alice produces a set A ⇒ [n]
using u1, . . . , ul and her private randomness, and Bob produces a set B ⇒ [n]
using v1, . . . , vl and his private randomness. An adversary who knows Alice and
Bob’s strategy (but does not know the values of random variables) chooses one
value i ⊆ [n]. Alice and Bob are required to produce sets so that this unknown
element i belongs to A⇔B with probability at least p, while minimising the size
of sets A and B. This minimum size is the collision complexity colε(n, p).

Note that without any shared distribution, Alice and Bob can use the birthday
paradox to achieve the collision complexity O(

∈
n) at collision probability 1/n;

accordingly, the collision complexity of any bipartite distribution at collision
probability 1/n is O(

∈
n). On the other hand, U{00,11} has the lowest possible

collision complexity 1 at collision probability 1/n. In the full version, we will
see an example of a bipartite distribution whose collision complexity is strictly
between these two extremal cases.

The second measure of correlation is agreement complexity.

Definition 4 (Agreement Complexity). Let ρ be a probability distribution
on U × V .

An agreement protocol for ρ is determined by l ⊆ N and a pair of func-
tions f : U l → [0, 1] and g : V l → [0, 1]. The cost of this agreement protocol
is E[f(u1, . . . , ul) + g(v1, . . . , vl)], and the success probability of this protocol
is E[f(u1, . . . , ul)g(v1, . . . , vl)], where (ui, vi) ∧ ρ independently for all i ⊆ [l].

The agreement complexity of ρ at success probability p, denoted by agrε(p),
is the infimum of the cost of an agreement protocol for ρ with success probability
at least p.

Here each of Alice and Bob outputs just one bit instead of a subset of [n].
The value f(u1, . . . , ul) is interpreted as the probability that Alice outputs bit 1
given her part of shared randomness, and similarly g(v1, . . . , vl) is the probability
that Bob outputs bit 1 given his part of shared randomness. Their task is to
output 1 simultaneously with probability at least p while minimising the sum
of the probabilities that each party outputs 1. This minimum (infimum to be
precise) is the agreement complexity for ρ with success probability p.

Note the following simple parameter manipulations:

– By repeating a collision protocol m times independently and outputting
the union of the results, we can increase the collision probability from p
to 1 − (1 − p)m. Therefore, it holds that

colε(n, 1 − (1 − p)m) ≥ m colε(n, p). (2)

– Repeat a collision protocol m times independently to obtain A1, . . . , Am ⇒
[n] and B1, . . . , Bm ⇒ [n], and output A = {n(i − 1) + j : i ⊆ [m], j ⊆ Aj}
and B = {n(i− 1) + j : i ⊆ [m], j ⊆ Bj}. This gives a collision protocol with
domain size mn, collision probability p, and output size at most m colε(n, p).
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Therefore, it holds that

colε(mn, p) ≥ m colε(n, p). (3)

Collision protocols and agreement protocols can be converted to each other
in the following sense.

Lemma 4. For a bipartite distribution ρ, n ⊂ 1, and 0 < p < 1, it holds
that colε(n, p) = Θ(max{1, n agrε(p)}), where the constant in the asymptotic
notation does not depend on ρ, n, or p.

A proof is given in the full version.
The following lemma states that any protocol in the SMP model with perfect

shared randomness can be simulated in the SMP model with shared distribu-
tion ρ at the expense of a multiplicative factor which is at most the collision
complexity of ρ. A proof is given in the full version.

Lemma 5. Let ρ be a bipartite distribution, and let f be a partial function
from {0, 1}n × {0, 1}n to E.

(i) If there is an SMP protocol for f with public randomness which uses t
bits of public randomness, has complexity c, and has error probability at
most ε < 1/2, then it holds that SMPε(f) ⊆ O(colε(2t)(c + t)), where the
constant factor in the O-notation depends on ε and nothing else.

(ii) If CCperf = SMPU{00,11}(f) is the communication complexity of f in the SMP
model with perfect public randomness, then it holds that

SMPε(f) = O(colε(n) (CCperf + log n) ) .

5 Different Shared Distributions Can Have Different
Power

In this section, we will prove the following theorem.

Theorem 2. There exists a family of partial functions fn from {0, 1}n×{0, 1}n
to {0, 1} such that for any bipartite distribution ρ, it holds that

SMPε(fn) =

⎧
⎨

⎩

O
⎢

colε

⎢
n

logn

⎣
logn

⎣
(upper bound)

Ω
⎢

max
⎛

logn, colε

⎢
n

logn

⎣⎝⎣
(lower bound)

,

where the constants in the asymptotic notations do not depend on ρ or n.

The family of functions we use in Theorem 2 is defined as follows:

Definition 5 (Gap-Inner-Product). Let n,m ⊆ N and ∗i ⊆ [n] : xi, yi ⊆
{0, 1}m. Define the gap-inner-product function GIPn,m as

GIPn,m((x1, . . . , xn), (y1, . . . , yn)) =

⎧
⎞⎨

⎞⎩

0, |{i ⊆ [n] : xi · yi = 0}| ⊂ 2n/3,

1, |{i ⊆ [n] : xi · yi = 1}| ⊂ 2n/3,

⊥, otherwise.
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We will write GIPn to address GIPn,8 logn, assuming that n is a power of two
in this context.

Proposition 1. For a bipartite distribution ρ, it holds that SMPε(GIPn) =
O(colε(n) logn).

Proof. Note that GIPn has a straightforward SMP protocol with public ran-
domness with cost O(log n) and error probability at most 1/3: Alice and Bob
choose a common index i ⊆ [n] uniformly at random, Alice sends xi to the ref-
eree, and Bob sends yi to the referee. The referee simply answers xi ·yi. Because
this protocol uses logn bits of public randomness, Lemma 5 (i) implies the claim.

Proposition 2. For a bipartite distribution ρ, it holds that SMPε(GIPn) =
Ω(log n).

Proof. Note that IPm can be reduced to GIPn,m by repeating the input vector n
times, and in particular IP8 log n can be reduced to GIPn. By Corollary 1, this
implies the claim.

The remaining task is to prove the following communication lower bound:

Theorem 3. For any bipartite distribution ρ, it holds that SMPε(GIPn) =
Ω(colε(n)), where the constants in the asymptotic notations do not depend on ρ
or n.

Because the input size of GIPn is 8n logn bits, Propositions 1 and 2 and
Theorem 3 imply Theorem 2.

Hardness of Random-Access Inner Product

As before, let ρ be a bipartite distribution. Let us see that SMPε(GIPn) =
Ω(colε(n)).

Note that we need a proof technique of carefully balanced strength: on the
one hand, it has to be strong enough to capture the hardness of GIPn; on the
other hand, it should not be applicable to the equality function (cf. Theorem 1).

Ignoring some technicalities, our proof will go by considering the behaviour of
a hypothetical protocol for GIPn under the uniformly random input distribution
(ignoring the promise on the input of GIPn). First we will argue that if the
protocol has cost o(k), then for most i ⊆ [n] the referee can guess the value of xi·yi
correctly with probability at most 1/2 + 1/Ω(n). That will let us use a “hybrid-
like” argument to conclude that there exists a set L ⇒ [n] of size at least 3n/4,
such that the referee cannot distinguish with enough confidence the case when
xi·yi = 0 for all i ⊆ L from the case when xi·yi = 1 for all i ⊆ L (in both the cases,
xi and yi are uniformly random for i /⊆ L). So, if we define the input distribution
μ to be uniform over {(x, y) : ∗i ⊆ L : xi = yi} ↓ {(x, y) : ∗i ⊆ L : xi ≤= yi},
then each element in the support of μ is a valid input to GIPn, but the protocol
under consideration makes a mistake with respect to μ with high probability.



On the Role of Shared Randomness in Simultaneous Communication 159

In our analysis we will refer to pseudo-SMP model (with or without shared
randomness), by which we mean an analogue of the SMP model with the follow-
ing changes:

– The referee can receive his own portion of input.
– If shared randomness is available, the referee can see both Alice’s and Bob’s

part of the shared distribution.

We consider the following auxiliary communication task for the pseudo-SMP
model, which we call the random-access inner product problem:

Definition 6 (RAIPn,m). Let n,m ⊆ N and ∗i ⊆ [n] : xi, yi ⊆ {0, 1}m. Denote

x = (x1, . . . , xn) and y = (y1, . . . , yn). Then ∗i ⊆ [n]: RAIPn,m(x, y, i)
def
=

xi · yi.
We will write RAIPn to address RAIPn,8 logn, in this context always as-

suming that n is a power of 2.
In the full version, we will prove the following lemma, which states thatRAIPn

is a hard problem.

Lemma 6. There exist constants δ, λ > 0 and a function α(n) = o(1/n) such
that for any n ⊆ N, any finite sets U and V , and any pairwise distribution ρ
on U × V , the following holds. Let P be a pseudo-SMP protocol for RAIPn

that uses shared distribution ρ with cost C. Assume that the input distribution is
uniform over all triples (x, y, i) ⊆ ({0, 1}m)n× ({0, 1}m)n× [n], and let γi be the
probability that P gives the correct answer when I = i. If λ(C +logn) ≥ colε(n),
then there exists i ⊆ [n] such that 2γi − 1 ≥ λ(C + logn)/(n colε(n)) + α(n).

To understand the statement of this lemma, consider the case where colε(n) =
ω(logn). Then the lemma claims that if the cost C of a communication proto-
col P for RAIPn is too small, i.e., C = o(colε(n)), then there is a coordinate i ⊆
[n] such that P answers xi · yi correctly with probability at most 1/2 + o(1/n).
The statement of the lemma is more involved because later we will use this
lemma with varying choices of ρ, where we need the fact that nothing hidden in
the asymptotic notation depends on the choice of ρ.

To prove this lemma, we will consider another auxiliary task, which is the
two-player variant of the bounded-error random access problem considered by
Gavinsky, Kempe, Regev, and de Wolf [4].

Definition 7 (Two-Player Bounded-Error Random Access). For n ⊆ N,
let Alice receive X ⊆ {0, 1}n, Bob receive Y ⊆ {0, 1}n, and the referee receive

I ⊆ [n] and output Z ⊆ {0, 1}2 ↓ {⊥}. We say that the protocol solves RAn,Ω if
for every i, PrX,Y√U [Z = (Xi, Yi) | I = i, Z ≤= ⊥] ⊂ 1 − δ.

In the proof of Lemma 6, we will first prove that RAn,Ω is a hard problem
by interpreting an efficient protocol for RAn,Ω as a collision protocol. To prove
this, consider any protocol P . Let X,Y ⊆ {0, 1}n denote the inputs given to
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Alice and Bob in P , respectively. For each i ⊆ [n], we consider whether the
conditional entropy of Xi after reading the message from Alice to the referee
in P and the shared randomness between Alice and the referee (allowed by the
definition of the pseudo-SMP model) is small or not. If it is small, the referee
“knows” the bit Xi with high probability. Then we can prove that if the cost
of P is small, not many locations out of the 2n locations of X and Y together are
known to the referee, while the bounded-error condition implies that for some i,
Xi and Yi are known to the referee at the same time. Now suppose that Alice
outputs the set of the indices i such that Xi is known to the referee, and Bob
does an analogous thing. Then the properties above imply that this becomes a
good collision protocol.

After proving that RAn,Ω is a hard problem, we will reduce RAn,Ω to RAIPn,
establishing that RAIPn is also a hard problem.

Hardness of Gapped Inner Product. The hardness of RAIPn can be used as an
inductive step in the SMP lower bound of GIPn, in accordance with the idea
outlined before.

Lemma 7. For m ⊂ 1 and b ⊆ {0, 1}, let σm,b be the uniform distribution
over {(u, v) ⊆ {0, 1}m × {0, 1}m : u · v = b}. Let ρ be a bipartite distribution.
Let n be a power of two, and let m = 8 logn. Then it holds that SMPε(GIPn) ⊆
Ω(min{colε⊆αm,0(n), colε⊆αm,1(n)}), where the constant factor in the asymptotic
notation does not depend on n or ρ.

Let us understand why colε⊆αm,b
(n) appears in the lower bound instead of

just colε(n). For simplicity, suppose that no distribution is shared (i.e., we only
want to establish hardness of GIPn for SMP). In that case we can start by
applying the corresponding simplified version of Lemma 6 and conclude that
if the input distribution is uniform then there exists a coordinate i1, such that
for the protocol under consideration the cases “xi1 ·yi1 = 0” and “xi1 ·yi1 = 1” are
almost indistinguishable. Recall that our plan was to fix such i1, then consider
the behaviour of the protocol on the rest of coordinates, conditioned upon the
value of xi1 ·yi1 , saying that for some i2 the value of xi2 ·yi2 is (almost) unknown
to the protocol, and so on until enough coordinates have been selected in order
to satisfy the promise in the definition of GIPn by fixing the values of xi ·yi = 1
for those coordinates.

Starting from the second step, the above induction introduces shared ran-
domness to the protocol, because conditioning on the value of xi1 ·yi1 introduces
correlation between the players. This is why the lower bound is colε⊆αm,b

(n). By
using Lemma 6, we can prove that even in the presence of that kind of shared
randomness many indices i exist, such that the protocol cannot guess the value of
xi · yi with enough confidence. The lemma then follows by the hybrid argument.
A proof of Lemma 7 is given in the full version.
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Removing Additional Shared Randomness Arising from Conditioning. The follow-
ing two lemmas will be proved in the full version. Lemma 8 uses the basic Fourier
analysis of Boolean functions, and Lemma 9 follows from the definitions of the
maximum correlation and the agreement complexity by simple calculations.

Lemma 8. Let m ⊂ 2 and b ⊆ {0, 1}. Let σ be the uniform distribution over
{(u, v) ⊆ {0, 1}m × {0, 1}m : u · v = b}. Then it holds that Cor(σ) ≥ 1/2m/2−1.

Lemma 9. Let ρ be a bipartite distribution on U × V , and σ be a bipartite
distribution on X×Y . Then for p with Cor(σ) < p < 1, it holds that agrε⊆α(p) ⊂
agrε(p− Cor(σ)).

By using these lemmas, we can replace the bound in Lemma 7 by just
Ω(colε(n)).

Lemma 10. Let m ⊂ 2 and b ⊆ {0, 1}. Let σ be the uniform distribution over
{(x, y) ⊆ {0, 1}m × {0, 1}m : x · y = b}. Let n ≥ 2m/2−2. Then for any bipartite
distribution ρ, it holds that colε⊆α(n) = Ω(colε(n)), where the constant factor
does not depend on m, b, n, or ρ.

Proof. Because n ≥ 2m/2−2, Lemma 8 implies that Cor(σ) ≥ 1/(2n). Then by
Lemma 9, it holds that

agrε⊆α

⎠
1

n

)
⊂ agrε

⎠
1

n
− Cor(σ)

)
⊂ agrε

⎠
1

2n

)
⊂ agrε(1/n)

2
.

The lemma follows Lemma 4.

Proof (Theorem 3). Follows from Lemmas 7 and 10.
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Abstract. We construct a PCP for NTIME(2n) with constant sound-
ness, 2npoly(n) proof length, and poly(n) queries where the verifier’s
computation is simple: the queries are a projection of the input ran-
domness, and the computation on the prover’s answers is a 3CNF. The
previous upper bound for these two computations was polynomial-size
circuits. Composing this verifier with a proof oracle increases the circuit-
depth of the latter by 2. Our PCP is a simple variant of the PCP by
Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan (CCC 2005). We
also give a more modular exposition of the latter, separating the combi-
natorial from the algebraic arguments.

If our PCP is taken as a black box, we obtain a more direct proof
of the result by Williams, later with Santhanam (CCC 2013) that de-
randomizing circuits on n bits from a class C in time 2n/nε(1) yields
that NEXP is not in a related circuit class C′. Our proof yields a tighter
connection: C is an And-Or of circuits from C′. Along the way we show
that the same lower bound follows if the satisfiability of the And of any
3 circuits from C′ can be solved in time 2n/nε(1).

1 Introduction

It has long been known that solving satisfiability of circuits, or derandomizing
probabilistic circuits implies new circuit lower bounds (for various exponential-
time classes), see e.g. [KL80,IKW02]. In [Wil10] Williams gives an interesting
instance of this phenomenon, where a non-trivial lower bound against a circuit
class C follows from a satisfiability or derandomization algorithm for circuits of
a related class C∈ that runs in time 2n/nε(1), where n is the number of variables
of circuits in C∈. It is an interesting question whether the approach based on
satisfiability or the one based on derandomization should be pursed to obtain
new circuit lower bounds.

The satisfiability approach – not the derandomization approach – has given
non-trivial lower bounds [Wil11]. Moreover this approach has been tightened,
by making C∈ closer to C, in [SW13,JMV13,Oli13], making it plausible that
more lower bounds will be obtained. In fact, we will tighten it a bit more in
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this work. However, it is not clear how much this approach can be pushed.
Do we believe that the satisfiability of (unrestricted) polynomial-size circuits
can be solved faster than brute-force search? Even for seemingly simple problems
such as MAX3SAT, no satisfiability algorithm better than brute-force search is
known, despite attempts since a decade ago [Wil05]. Note that the MAX3SAT
problem – given a 3CNF and an integer σ, is there an assignment that satisfies
∈ σ clauses? – corresponds to the restricted class of depth-2 circuits known as
MAJ ⊆ AND3: a Majority on And’s on three variables. The lack of progress on
MAX3SAT is an obstacle for obtaining new lower bounds from satisfiability.

A priori, the approach based on derandomization should apply more broadly,
because most researchers indeed believe that derandomization is possible (and a
long line of research has shown that indeed derandomization is possible based on
lower bounds). Also, for several classes we have nontrivial derandomization algo-
rithms but not satisfiability ones. For example, for the class mentioned above of
MAJ ⊆ AND3 circuits a derandomization is given in [LVW93,Vio07]. Even when
both types of algorithms are available, the speed of the derandomization one
often outperforms that of the satisfiability one. For example, the running time
for the derandomization of CNF, see [GMR13] for the latest, vastly outperforms
that of satisfiability algorithms, cf. [Her11]. For another example, consider the
class of poly-size, constant-depth circuits with Or, Not, and Parity gates (AC0

with parity gates). To our knowledge, the best satisfiability algorithm is the one
in [Wil11] which has running time 2n−nε

. By contrast, [FSUV13] derandomize
these circuits in time 2n−n/poly logn (building on available lower bounds).

One advantage of satisfiability over derandomization is that the corresponding
connection to lower bounds is simpler and incurs less overhead. To obtain lower
bounds from derandomization one relies on probabilistically checkable proofs
(PCP), specifically the somewhat intricate work by Ben-Sasson, Goldreich, Har-
sha, Sudan, and Vadhan [BGH+05]. The intricacy of this work reflects on two
aspects of the approach. First, to make it apply to restricted circuit classes such
as ACC0 or TC0, previous to this work one needed a roundabout argument,
provided by Santhanam and Williams [SW13], which actually relies on a subse-
quent PCP by Mie [Mie09] combining [BGH+05] with Dinur’s gap amplification
[Din07]. Second, the indirect aspect of the argument is reflected in the overhead
in the reduction. For example, to obtain a lower bound against circuits of depth
d, one needed a derandomization algorithm for circuits of depth cd for a constant
c > 1.

1.1 Our Results

In this work we provide a variant of the PCP [BGH+05] where the computa-
tion of the verifier is quite modest: Given randomness, the verifier computes
its queries just by taking projections of the randomness, and the computation
on the prover’s answers is a 3CNF. The previous upper bound for these two
computations was polynomial-size circuits.

Theorem 1 (Short PCPs with Projection Queries). Let M be an al-
gorithm running in time T = T (n) ∈ n on inputs of the form (x, y) where
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|x| = n. Given x ⊂ {0, 1}n one can output in time poly(n, log T ) circuits
Query : {0, 1}r → [2r]t for t = poly(r) and Dec : {0, 1}t → {0, 1} such that:

– Proof length. 2r ∧ T · poly logT ,
– Completeness. If there exists y such that M(x, y) accepts then there ex-

ists a map τ : [2r] → {0, 1} such that for any z ⊂ {0, 1}r we have
Dec(τ(q1), . . . , τ(qt)) = 1 where (q1, . . . , qt) = Query(z),

– Soundness. If no y causes M(x, y) to accept, then for every map τ : [2r] →
{0, 1}, at most 1/n10 fraction of the z ⊂ {0, 1}r have Dec(τ(q1), . . . , τ(qt)) =
1 where (q1, . . . , qt) = Query(z),

– Complexity. Query is a projection (a.k.a. 1-local), i.e., each output bit of
Query is one input bit, the negation of an input bit, or a constant; Dec is a
3CNF.

The polynomial in the soundness item in Theorem 1 can be traded with the
number t of queries.

There is a substantial literature that develops PCPs with optimized param-
eters. One focus of this literature has been to optimize the complexity of Dec.
However typically these works do not produce PCPs of length quasilinear in T ,
and the complexity of Query is not optimized. Both these aspects are critical for
our applications.

Remark 1 (Number of queries vs. Query complexity). Relaxing the complexity
of Query to be a poly(r)-computation allows to reduce the number of queries
made to the oracle to a constant, while obtaining constant soundness [Mie09].
It is an interesting open problem to find the lowest complexity obtainable for
Query in a PCP statement with proof length quasilinear in T , polylogarithmic
verifier running time, and where soundness, alphabet, and number of queries are
all constant. In particular, it is not clear to us if it is possible in such a case to
have Query be a projection.

Along the way we give a more accessible presentation of [BGH+05]. Our pre-
sentation is modular and separates the combinatorial steps (given in Theorem
5) from the algebraic ones.

Taking Theorem 1 as a black box, we eliminate the roundabout argument
mentioned before from the result in [SW13] that derandomizing TC0 circuits on
n bits in time 2n/nε(1) implies that NEXP is not in TC0. Also, Theorem 1 is a
small variant on [BGH+05], whereas as we mentioned [SW13] needs Mie’s PCP
[Mie09]. Finally, we also obtain the following alternative argument, which only
uses the PCP result in [BGH+05] as a black-box.

The Alternative Argument. Given as a black-box a PCP such as [BGH+05], i.e.,
with the parameters as in Theorem 1 but where the complexity is replaced by
polynomial-size circuits, we can construct a PCP where the verifier has low-
complexity but makes adaptive queries to the proof. Specifically, we will rely
on the prover to obtain the indices of our queries, and later query the prover at
those indices and also verify the prover’s computation, again with the help of the
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prover. This latter verification, as well as the computation Dec on the prover’s
answers, can be done by a 3CNF via a simple use of the Cook-Levin theorem –
cf. Lemma 1.

Again, this alternative argument is sufficient to recover the TC0 result in
[SW13]. However, with Theorem 1 we obtain better parameters. Indeed, we seek
very tight connections in the hope they will lead to progress on various challenges
in computational lower bounds such as those mapped in [Vio13].

The concurrent work [Wil14] shows that the ability to count the number
of satisfying assignments to circuits faster than brute-force search yields lower
bounds against related circuits. This connection is used to obtain some new
lower bounds. By our work the same lower bounds can be obtained from a
satisfiability algorithm (using Theorem 3) or even a derandomization algorithm
(using Theorem 2).

Next we state the tighter connections we obtain between derandomization
and lower bounds. First we make a definition.

Definition 1. Let Cn be a set of functions from {0, 1}n to {0, 1}. We say that
Cn is efficiently closed under projections if functions in Cn have a poly(n)-
size description and given (the description of) a function f ⊂ Cn, indexes
i, j ∧ n, and a bit b, we can compute in time poly(n) the functions notf ,
f(x1, . . . , xi−1, b XOR xj , xi+1, . . . , xn), and f(x1, . . . , xi−1, b, xi+1, . . . , xn), all
of which are in Cn.

Most of the standard classes have this property. For the theorem, the two oc-
currences of “poly(n)” above can be relaxed. We also use the notation ≥poly(n)⇐3

Cn+O(log n) to indicates the And of poly(n) Or of 3 functions from Cn+O(log n),
all on the same n input bits.

Theorem 2 (Derandomization Implies Lower Bounds, Tightly). Let Cn

be efficiently closed under projections.
If the acceptance probability of functions of the form h = ≥poly(n)⇐3Cn+O(log n)

can be distinguished from being = 1 or ∧ 1/n10 in Time(2n/nε(1)), then there
is a function f in ENP such that fn ⇒⊂ Cn.

One can place f in NEXP if we replace Cn+O(log n) with Cpoly(n) and reason
as in [IKW01,Wil13,Wil11].

The first step of our more modular exposition of [BGH+05] is a reduction
to 3SAT that builds on [JMV13] (cf. [BCGT13a]) but achieves incomparable
guarantees (Theorem 5). Using that, we can obtain the following connection
between satisfiability algorithms and lower bounds.

Theorem 3 (Satisfiability Implies Lower Bounds, Tightly). Let Cn be
efficiently closed under projections.

If the satisfiability of functions h = g1 ≥ g2 ≥ g3, where gi ⊂ Cn+O(log n) is in

Time(2n/nε(1)), then there is a function f in ENP such that fn ⇒⊂ Cn.

The overhead to go from a satisfiability algorithm to a lower bound is ev-
ident from the theorem. The loss in size is a multiplicative factor 3 + o(1).



Short PCPs with Projection Queries 167

Previous losses were polynomial [Wil10], or multiplicative by a larger constant
[JMV13]. The loss in depth is 2 for circuits with fan-in 2. For unbounded fan-in
(or even fan-in 3) circuits with And gates (or threshold) the depth loss is 1.
Previous losses were 2 [JMV13,Oli13].

Recall that the best lower bound for an explicit function on n bits is 3n−o(n)
(non-input) gates [Blu84] (cf. [DK11]). This seems to be the best known even
for functions in ENP (note the number of circuits of size 3n is superlinear, so
one cannot easily diagonalize against them in ENP ). By Theorem 3, to obtain a
function in ENP of circuit complexity 3n one would need to solve satisfiability of
a circuit with 3(3n) non-input gates and n inputs – ignoring lower-order terms.
The Cook-Levin theorem reduces this to a 3SAT instance on 9n + n = 10n
variables. So one would need to solve 3SAT in deterministic time cn for any
c < 21/10 = 1.07 . . . The current record is c = 1.33 . . . [MTY11], cf. [Her11].

1.2 Techniques

Ideas behind the proof of Theorem 1. We start with the PCP in [BGH+05] and
follow its proof closely. There are two computations of the verifier in this PCP
that we need to optimize. The first — Query — is taking the input randomness
to the queries, which we call preprocess. The second — Dec — is the computation
on the prover’s answers, which we call postprocess. We discuss them separately.

Postprocess: It is a common experience in theoretical computer science re-
search, to study at length an intricate proof in the reckless hope of optimizing
parameters, only to be surprised by the late realization that a trivial, sweep-
ing argument takes the complex proof as a black-box and gets a pretty good
parameter optimization, too.

Lemma 1 (Making Dec a 3CNF). Suppose Theorem 1 holds except that Dec
is an unrestricted circuit of size poly(r). Then Theorem 1 holds as stated.

Proof. By the Cook-Levin theorem we reduce Dec to a 3CNF with poly(r) vari-
ables and terms. The verifier will ask the prover for an additional poly(r) queries
to obtain the satisfying assignments for this 3CNF corresponding to the in-
put randomness. On input z, these queries are of the form (z, i), where i is an
O(log r)-bit index to a variable in the 3CNF. The proof contains the values of
the variables in the 3CNF that verify the computation on the outputs of the
queries that are made by the verifier on input z.

This general technique shows that we can always make the postprocess a
3CNF as long as we allow for poly(r) queries. Using it, there is no benefit in
reducing the number of queries to a constant.

Preprocess: This is in turn comprised of two parts, acting in parallel, known as
“algebraic constraint satisfaction” and “low-degree testing”, and in this work we
offer a clear separation between the two. In the first part we reduce the succinct
constraint satisfaction problem (CSP) associated with verifying the M accepts
x in T steps, to an algebraic CSP (ACSP) problem, one stated as a question
about equality of polynomials. We offer a definition of ACSP that is algebraically
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cleaner than [BS08] and following works (e.g., [BGH+05,BCGT13b]). In particu-
lar, previous definitions included degree bounds on the “assignment polynomial”
and involved a “zero-testing” problem. In contrast, we define a satisfying assign-
ment as one that causes a polynomial to vanish, and degree-bounds are dealt
with by the separate low-degree testing part, discussed later. We now elaborate
on how we obtain efficient preprocessing in each of the two parts.

In the ACSP part, our verifier simply selects a random field element λ, gen-
erates poly(r) queries to the prover where the ith query is λ + Πi where Πi is
fixed and independent of λ. Each such query can be verified to be a projection.
To reach this simple form of preprocessing we use a modular reduction from the
combinatorial succinct CSP captured by Theorem 4 to the succinct ACSP. The
mid-point between the combinatorial and algebraic settings is given in Theo-
rem 5. In it we reach a 3CNF formula with ∪ T clauses where each clause (i.e.,
the three variables of the clause and their polarities) can be computed by a simple
XOR operation. Since XOR is addition in fields of characteristic 2, irrespective
of the basis chosen for them, we get a simpler ACSP than [BS08,BGH+05] albeit
one that has a super-constant number of variables.

Turning to the second part, low-degree testing, we use auxiliary information in
form of a PCP of Proximity (PCPP) [BSGH+06,DR06]. This part is essentially
from [BS08] and regrettably remains an intricate step of the proof. The answers
to queries of the verifier in [BS08] can be seen as arranged in the nodes of a
tree. The query at each node is indeed a projection. However, the verifier uses
part of its input randomness to select a path in this tree, reaching a leaf, then
possibly redirects the query to a node higher up in the tree. This computation is
more complicated than just a projection. Here we use the following simple, key
idea. The path from root to leaf is determined by only O(log r) of the verifier’s r
input bits. Additionally, the process of redirecting a query from a leaf to a node
elsewhere in the tree is also determined by only O(log r) input bits. Instead
of following the path, we let the verifier query every possible endpoint. This
multiplies the number of queries by a factor poly(r), which we can afford. We
delegate the task of picking the right query to the postprocess.

One more complication is that each of the two parts needs to be combined with
a randomness-efficient hitter to achieve constant soundness. Using e.g. Cayley
expanders built from small-bias sets, this step is again just a projection.

Ideas Behind the Proof of Theorem 3. A natural idea is to improve the previous
constant-locality result [JMV13] to locality 1. But this may not be possible.
Instead, we show how to reduce arbitrary computation to a polynomial number
of 3CNF formulae, each of which has locality 1. By enumerating over these 3CNF,
and running the satisfiability algorithm on each of them, we get the result. This
idea is similar to the one described above to make [BS08] a projection: after
reading a logarithmic number of bits, the rest of the computation becomes just
a projection.

Open Problems. Improve Theorem 2 to have the same overhead as Theorem 3.
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Organization. In §2 we give a variant of the reduction of non-deterministic time
to 3SAT given in [JMV13]. Using that and Theorem 1 as a black-box, in §3 we
give the proofs of theorems 2 and 3. Due to space restrictions we refer to the full
version for the proof of our main Theorem 1.

2 A Combinatorial Reduction to 3SAT

Our starting point is the following result from [JMV13].

Theorem 4 ([JMV13]). Let M be an algorithm running in time T = T (n) ∈ n
on inputs of the form (x, y) where |x| = n. Given x ⊂ {0, 1}n one can output
a circuit D : {0, 1}Ω → {0, 1}3v+3 in time poly(n, logT ) mapping an index to a
clause of a 3CNF β in v-bit variables, for v = Δ(σ), such that

1. β is satisfiable iff there is y ⊂ {0, 1}T such that M(x, y) accepts, and
2. For any r ∧ n we can have σ = max(logT, n/r) + O(log n) + O(log logT )

and each output bit of D is a decision tree of depth O(log r).

Note that for T = 2n and r = O(1) this gives a 3CNF with Tpoly logT
clauses such that each clause can be computed from its index by a function with
constant locality.

We need an incomparable variant of the latter. We enlarge the locality to
O(log n), but at the same time there are only O(log n) input bits that affect
more than 1 bit. If we fix these bits, the rest of the computation is just a bit-
wise xor.

Theorem 5. Let M be an algorithm running in time T = T (n) ∈ n on inputs
of the form (x, y) where |x| = n. Let σ1 = log T . For some σ2 = O(log logT ) +
O(log n) the following is true. Given x ⊂ {0, 1}n one can output in time
poly(n, logT ) six circuits (of size poly(n, log T )): Si : {0, 1}Ω2 → {0, 1}Ω1+Ω2 , bi :
{0, 1}Ω2 → {0, 1}, for i = 1, 2, 3, such that:

Let βx be the 3CNF with 2Ω1+Ω2 = Tpoly(n, logT ) clauses (and variables)
whose (λ, ∂) ⊂ {0, 1}Ω1 × {0, 1}Ω2 clause contains variables Vi = (λ, ∂) ≤ Si(∂)
and corresponding sign bits bi = bi(∂), where i = 1, 2, 3 and ≤ is bit-wise xor.
Then βx is satisfiable iff there is y ⊂ {0, 1}T such that M(x, y) accepts.

Note that in the case T = 2O(n) each output bit of D depends only on |∂|+1 =
O(log n) bits of the input.

The next proof heavily builds on previous works. We give a sketch that high-
lights the tiny changes from previous proofs, and to work out parameters. The
closest previous proof is [JMV13], to which we also refer for a discussion of other
related works.

Proof (Proof sketch). Without loss of generality the algorithm is implemented
by a random-access Turing machine running in time T ∈ = Tpoly logn and only
using memory cells at indexes ∧ poly(T ) (see e.g. [NEU12] for details).

Consider a circuit-sat instance where the circuit first guesses a computation
trace consisting of T ∈ configurations of size O(log T ) each; and then the circuit
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checks its validity and acceptance. The validity check consists of two separate
checks. The first is the check of the consistency of the transition function of the
machine, assuming that memory reads are correct. The second is the check of
the consistency of the memory reads and writes. The trace is valid if and only
if both checks pass. These two checks are implemented in a similar fashion; we
only describe the second.

Consider a matrix of r × T ∈ configurations, where r = poly logT . We use
λ to index a column in this matrix. (This actually gives |λ| = σ1 = logT ∈ =
logT + O(log logT ), but the low-order summand can be swallowed in σ2.) We
use ∂ to index a row, and the gates within the subcircuits discussed next.

The first row is the computation trace mentioned above that the circuit
guessed. For every t = 1, . . . , T we have a poly(n, log T )-size subcircuit which
checks the pair of configurations (C,C∈) at positions (1, t) and (r, t) in the ma-
trix, i.e., in the same column but at antipodal rows. This subcircuit verifies that
either C∈ accesses the same memory cell of C and has the timestamp of C plus
one, or C∈ accesses a memory cell with index greater than that of the cell accessed
by C, or – the wrap-around condition – it does nothing if C∈ is the configuration
with timestamp 0. If all these checks pass then for every t the configuration at
position (t, r) is the one that comes next the configuration at position (t, 1) in
the order given by memory location accessed breaking ties by timestamp. The
subcircuit then verifies consistency of the memory read and write in C and C∈.
In particular it verifies that cells read for the first time are blank, and that the
cells 1, . . . , n read for the first time contain the input x. Note that the latter is
possible because our circuits have size ∈ n and are built with knowledge of x.

Observe that these subcircuits operate independently on each column, and
are identical across columns. Their connections depend only on the row index
and an index to one of their gates. By including these two indexes inside ∂, these
connections can be computed in the required format.

It remains to discuss connections across columns, which are needed to move
configurations around to put them in the right order. For this we use routing
networks such as Beneš’, which are a simple composition of butterfly networks.
The index of a neighbor in column λ is obtained by xoring λ with a string (of
Hamming weight 1) which only depends on the row, which in turn is part of
∂. This leads to the desired format for Vi. The implementation of the routing
network also needs a simple gadget to swap two configurations depending on a
nondeterministic bit. This gadget is the same for every column and row. From
this it follows that the Vi and bi are in the desired format.

3 Lower Bounds from Fast Algorithms

In this section we prove theorems 2 and 3. First we restate the theorem.

Theorem 3 (Satisfiability Implies Lower Bounds, Tightly). Let Cn be
efficiently closed under projections.

If the satisfiability of functions h = g1 ≥ g2 ≥ g3, where gi ⊂ Cn+O(log n) is in

Time(2n/nε(1)), then there is a function f in ENP such that fn ⇒⊂ Cn.
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For the proof we use Theorem 5, and we enumerate over the ∂ in its statement.
The key observation is that for any fixed ∂, the reduction is only computing xor
which can be hardwired with no loss in resources. This enumeration is feasi-
ble because |∂| = O(log n). To get better constants we also work with unary
languages.

Proof (Proof of Theorem 3). Suppose that every function in ENP belongs to Cn

when restricted to inputs of length n. Let L be a unary language in NTime(2n)\
NTime(o(2n)) [Coo73,SFM78,Zák83]. Consider the ENP algorithm that on input
x∈ ⊂ {0, 1}O(logn) and i ∧ 2npoly(n) computes x = 1x

′
, the 3CNF βx correspond-

ing to L through Theorem 5, computes its first satisfying assignment if one exists,
and outputs its ith bit. By assumption, on inputs of length m = n+O(logn) this
function is in Cm. Also, by assumption, if we hardwire x∈ the resulting function
still belongs to Cm. Call this function gx.

We contradict the assumption onL by showing how to decide it in Ntime(o(2n)).
Let D, Si, λ, ∂, Vi and bi be as in Theorem 5. Consider the algorithm that on input
x = 1n guesses gx. Then it constructs the function g∈x that operates as follows. The
input is that of D. Then it connects three copies of gx to the output variables Vi.
Further, the output of the ith copy is negated and then xored with bi. And finally
an And is taken. Call g∈x this new function (which may not belong to any Cn). Note
that g∈x(i) = 1 iff the ith clause is not satisfied (by satisfying assignment gx). So
by determining the satisfiability of g∈x we can determine if x ⊂ L or not.

The satisfiability algorithm enumerates over all poly(n) choices for ∂. For
each fixed ∂, the bi are determined, and the remaining computation to obtain
the Vi is an xor by Si(∂). All this can be hardwired into g∈x in time poly(m),
because Cm is efficiently closed under projections. For every i this gives a new
function gi ⊂ Cm. There remains to solve the satisfiability of g1 ≥ g2 ≥ g3. The
latter can be done in time 2m/mε(1) by assumption. So overall the running time
is poly(n,m)2m/mε(1) = 2n/nε(1) = o(2n).

Theorem 2 (Derandomization Implies Lower Bounds, Tightly). Let Cn

be efficiently closed under projections.
If the acceptance probability of functions of the form h = ≥poly(n)⇐3Cn+O(log n)

can be distinguished from being = 1 or ∧ 1/n10 in Time(2n/nε(1)), then there
is a function f in ENP such that fn ⇒⊂ Cn.

Proof (Proof Sketch). Proceed as the proof of Theorem 3, but let βx be instead
of the 3CNF produced by Theorem 5 the constraint satisfaction problem corre-
sponding to our main theorem, 1. As before, we obtain a function g∈x that on
input i determines if the ith constraint is satisfied. (To show that the complexity
of this function is as desired, we merge the Not gates of the 3CNF correspond-
ing to Dec with the circuits in Cn+O(log n), using the closure of the class.) Thus,
approximately determining how many constraints are satisfied amounts to ap-
proximately determinining the number of satisfying assignments to g∈x.
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Abstract. The partition of graphs into nice subgraphs is a central al-
gorithmic problem with strong ties to matching theory. We study the
partitioning of undirected graphs into stars, a problem known to be NP-
complete even for the case of stars on three vertices. We perform a thor-
ough computational complexity study of the problem on subclasses of
perfect graphs and identify several polynomial-time solvable cases, for
example, on interval graphs and bipartite permutation graphs, and also
NP-hard cases, for example, on grid graphs and chordal graphs.

1 Introduction

We study the computational complexity (tractable versus intractable cases) of
the following basic graph problem.

Star Partition
Input: An undirected n-vertex graph G = (V,E) and an integer s ∈ N.
Question: Can the vertex set V be partitioned into k := ⊆n/(s+1)⊂ disjoint sub-

sets V1, V2, . . . , Vk, such that each subgraph G[Vi] contains an s-star (a K1,s)?

Two prominent special cases of Star Partition are the case s = 1 (finding
a perfect matching) and the case s = 2 (finding a partition into connected
triples). Perfect matchings (s = 1), of course, can be found in polynomial time.
Partitions into connected triples (the case s = 2), however, are hard to find; this
problem, denoted P3-Partition, was proven to be NP-complete by Kirkpatrick
and Hell [13].
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Fig. 1. Complexity classification of Star Partition. Bold borders indicate results of
this paper. An arrow from a class A to a class B indicates that A contains B. In most
classes, NP-completeness results hold for s = 2 (that is, for P3-Partition). However,
on split graphs, Star Partition is polynomial-time solvable for s ⇒ 2, while it is NP-
complete for s ≤ 3. P3-Partition is solvable on interval graphs in quasilinear time.
We are not aware of any result for permutation graphs, chordal bipartite graphs or
interval graphs when s ≤ 3.

Our goal in this paper is to achieve a better understanding of star partitions
for certain classes of perfect graphs. We provide a fairly complete classification
in terms of polynomial-time solvability versus NP-completeness on the most
prominent subclasses of perfect graphs, leaving a few potentially challenging
cases open; see Figure 1 for an overview of our results.

Motivation. The literature in algorithmic graph theory is full of packing and
partitioning problems. From a more applied point of view, P3-Packing and P3-
Partition find applications in dividing distributed systems into subsystems [14]
as well as in the Test Cover problem arising in bioinformatics [10]. In particu-
lar, the application in distributed systems explicitly motivates the consideration
of very restricted (perfect) graph classes such as grid-like structures. Star Par-
tition on grid graphs naturally occurs in political redistricting problems [4]. We
show that Star Partition remains NP-complete on subcubic grid graphs.

Interval graphs are another famous class of perfect graphs. Here, Star Par-
tition can be considered a team formation problem: Assume that we have a
number of agents, each being active during a certain time interval. Our goal
is to form teams, all of same size, such that each team contains at least one
agent sharing time with every other team member. This specific team member



176 R. van Bevern et al.

becomes the team leader, since he or she can act as an information hub. Forming
such teams is nothing else than solving Star Partition on interval graphs. We
present effcient algorithms for Star Partition on unit interval graphs (that
is, for the case when all agents are active for the same amount of time) and for
P3-Partition on general interval graphs.

Previous Work. Packing and partitioning problems are central problems in al-
gorithmic graph theory with many applications and with close connections to
matching theory [25]. In the case of packing, one wants to maximize the num-
ber of graph vertices that are “covered” by vertex-disjoint copies of some fixed
pattern graph H . In the case of partitioning, one wants to cover all vertices
in the graph. We focus on the partitioning problem, which is also called H-
Factor in the literature. In this work, we always refer to it as H-Partition.
As Kirkpatrick and Hell [13] established the NP-completeness of H-Partition
on general graphs for every connected pattern H with at least three vertices,
one branch of research has turned to the investigation of classes of specially
structured graphs. For instance, on the upside, H-Partition has been shown
to be polynomial-time solvable on trees and series-parallel graphs [22] and on
graphs of maximum degree two [16]. On the downside, Pk-Partition (for fixed
k ∧ 3) remains NP-complete on planar bipartite graphs [11]; this hardness re-
sult generalizes to H-Partition on planar graphs for any outerplanar pattern H
with at least three vertices [2]. For every fixed s ∧ 2, Star Partition is NP-
hard on bipartite graphs [6]. Partitioning into triangles, that is, K3-Partition,
is polynomial-time solvable on chordal graphs [9] and linear-time solvable on
graphs of maximum degree three [17].

Optimization versions of Pk-Partition, called Min Pk-Partition, have also
received considerable interest in the literature. This version asks for a partition
of a given graph into a minimum number of paths of length at most k. Clearly,
all hardness results for Pk-Partition carry over to the minimization version.
If k is part of the input, then Min Pk-Partition is hard for cographs [20] and
chordal bipartite graphs [21]. In fact, Min Pk-Partition is NP-hard even on con-
vex graphs and trivially perfect graphs (also known as quasi-threshold graphs),
and hence on interval and chordal graphs [1]. Min Pk-Partition is solvable in
polynomial time on trees [24], threshold graphs, cographs (for fixed k) [20] and
bipartite permutation graphs [21].

Our Contributions. So far, surprisingly little is known about the complexity of
Star Partition for subclasses of perfect graphs. We provide a detailed picture
of the complexity landscape of perfect graphs; see Figure 1 for an overview. Let
us briefly summarize some of our results.

As a central result, we provide a quasilinear-time algorithm for P3-Partition,
which is Star Partition with s = 2, on interval graphs; the complexity of Star
Partition for s ∧ 3 remains open. Furthermore, we develop a polynomial-
time algorithm for Star Partition on cographs. Most of our polynomial-time
algorithms are simple to describe: they are based on dynamic programming or
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even on greedy approaches, and hence should work well in implementations.
Their correctness proofs, however, are intricate.

On the boundary of NP-hardness, we strengthen a result of Ma�lafiejski and
Żyliński [15] and Monnot and Toulouse [16] by showing that P3-Partition is
NP-complete on grid graphs with maximum degree three. Note that in strong
contrast to this, K3-Partition is linear-time solvable on graphs with maximum
degree three [17]. Furthermore, we show P3-Partition to be NP-complete on
chordal graphs, while K3-Partition is known to be polynomial-time solvable
in this case [9]. We observe that P3-Partition is typically not easier than Star
Partition for s ∧ 3. An exception to this rule is provided by the class of split
graphs, where P3-Partition is polynomial-time solvable but Star Partition
is NP-complete for any constant value s ∧ 3. Due to space constraints, most of
our proofs are deferred to a full version [3].

Preliminaries. We assume basic familiarity with standard graph classes [5, 12].
Definitions of the graph classes are provided when first studied in this paper.
We call the complete bipartite graph K1,s an s-star . For a graph G = (V,E),
an s-star partition is a set of k := |V |/(s + 1) pairwise disjoint vertex sub-
sets V1, V2, . . . , Vk ≥ V with

⋃
1◦i◦k Vi = V such that each subgraph G[Vi]

contains an s-star as a (not necessarily induced) subgraph. We refer to the ver-
tex sets Vi as stars, even though the correct description of a star would be
arbitrary K1,s-subgraph of G[Vi]. P3-Partition is the special case of Star Par-
tition with s = 2. Without loss of generality, we assume throughout the paper
that the input graph G is connected (otherwise, we can solve the partition prob-
lem separately for each connected component of G). We denote by n := |V | the
number of vertices and by m := |E| the number of edges in a graph G = (V,E).

2 Interval Graphs

In this section, we present algorithms that solve Star Partition on unit interval
graphs in linear time and P3-Partition on interval graphs in quasilinear time.

An interval graph is a graph whose vertices one-to-one correspond to intervals
on the real line such that there is an edge between two vertices if and only if
their representing intervals intersect. In a unit interval graph, all representing
intervals are open and have the same length.

Star Partition on Unit Interval Graphs

The restricted structure of unit interval graphs allows us to solve Star Par-
tition using a simple greedy approach: repeatedly select the s + 1 leftmost
intervals to form an s-star and then delete them. If, at some point, the s+ 1 left-
most intervals do not contain an s-star, it can be shown that the graph cannot
be partitioned into s-stars. This algorithm yields the following result.

Theorem 1. Star Partition is O(n+m) time solvable on unit interval graphs.
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Algorithm 1. P3-partition of an interval graph

Input: An interval representation of an interval graph with pairwise distinct
event points in {1, . . . , 2n}.

Output: true if the graph allows for a P3-partition, otherwise false.
1 A0 ∈ empty token list ∪;
2 for t ∈ 1 to 2n do
3 if t = start(x) then At ∈ At−1 ← (x, x) if t = end(x) then
4 if x /∈ At−1 then At ∈ At−1 else if →At−1→ < 3 then return false

else
5 (x, y, z) ∈ lowest three elements of At−1 (intervals ending first);
6 At ∈ At−1 	 (x, y, z);

7 return true ;

P3-Partition on Interval Graphs

While it might not come as a surprise that Star Partition can be solved eff-
ciently on unit interval graphs using a greedy strategy, this is far from obvious
for general interval graphs. The obstacle here is that two intervals arbitrarily far
apart from each other may eventually be required to form a P3 in the solution.
Indeed, the greedy strategy we propose to overcome this obstacle is naive in the
sense of allowing wrong choices that can be corrected later. Note that, while
we can solve the more general Star Partition in polynomial time on sub-
classes of interval graphs like unit interval graphs and trivially perfect graphs
(see Figure 1), we are not aware of a polynomial-time algorithm for Star Par-
tition with s ∧ 3 on interval graphs.

Overview of the Algorithm. The algorithm is based on the following analysis of
a P3-partition of an interval graph. Each P3 contains a center and two leaves
connected to the center via edges called links. We associate with each interval two
so-called tokens. We require that the link between a leaf and a center consumes
both of the leaf’s tokens (such that a leaf can have only one link) and one token
of the center (which can thus be linked to two leaves).

The algorithm examines the event points (start and end points of intervals) of
an interval representation in increasing order. We consider that a link {x, y} con-
sumes the tokens of x and y as soon as one of the two intervals ends. Intuitively,
a graph is a no-instance if, at some point, an interval with one or two remaining
tokens ends, but there are not enough tokens of other adjacent intervals to create
a link. Note that a link consumes three tokens. A graph is a yes-instance if the
number of tokens is always suffcient.

The algorithm works according to the following two rules: when an interval
starts, its two tokens are added to a list; when an interval with remaining tokens
ends, then three tokens are deleted from this list. Only tokens of the earliest-
ending intervals will be deleted (this choice may not directly translate into a
“sane” solution, with each link consuming tokens from only two intervals, but it
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Fig. 2. Left: An interval graph with six vertices and a P3-partition P (bold). Right:
Interval representation of this graph and successive token lists A0, . . . , A12 computed
by Algorithm 1 (additions and deletions are marked with ← and 	).

turns out not to be problem). The algorithm is sketched in Algorithm 1. Figure 2
shows an example instance and the list of tokens maintained by the algorithm.
Note that a token of an interval x is simply represented by a copy of interval x
itself. We now introduce the necessary formal definitions.

Definitions. We consider a fixed interval graph G = (V,E). We assume that any
vertex u ∈ V represents a right-open interval u = [start(u), end(u)[ with integer
endpoints start(u) < end(u). Moreover, without loss of generality, each position
in (1, . . . , 2n) corresponds to exactly one event.

Let P be a P3-partition and P = {x, y, z} ∈ P with end(x) < end(y) < end(z),
we write rankP(x) = 1, rankP(y) = 2, and rankP(z) = 3 (we omit the subscript
when there is no ambiguity). Moreover, we call the element among {y, z} having
the earliest start point the center of P . The other two elements of P are called
leaves. Note that the center of P intersects both leaves.

A token list Q is a list of intervals (q1, . . . , qk) sorted in decreasing order of
their end points (end(qi) ∧ end(qj) for 1 → i → j → k). To avoid confusion
with the left-to-right sequence of event points, we consider the list to be written
vertically, with the latest-ending interval on top. We write ∪Q∪ for the length
of Q, ≤ for the empty token list, and x ∈ Q if interval x appears in Q. We now
define insertion ⇐, deletion ⇒, and comparison � of token lists: Q⇐ (x1, . . . , xl)
is the token list obtained from Q by inserting intervals x1 . . . , xl so that the list
remains sorted. For x ∈ Q, the list Q ⇒ x is obtained by deleting one copy of x
from Q (otherwise, Q ⇒ x = Q); and Q ⇒ (x1, . . . , xl) = Q ⇒ x1 ⇒ . . . ⇒ xl. We
write (q1, . . . , qk) � (q√1, . . . , q

√
k′ ) if k → k√ and ⇔i ∈ {1, . . . k}, end(qi) → end(q√i).

Let P be a P3-partition. We define tokens(P) as a tuple of 2n + 1 token lists
(T0, T1, . . . , T2n) such that T0 := ≤ and for t > 0,

– if t = start(x), then Tt := Tt−1 ⇐ (x, x),
– if t = end(x), then let P := {x, y, z} be the P3 in P containing x and

• if rank(x) = 1, then Tt := Tt−1 ⇒ (x, x, c) where c is the center of P ,
• if rank(x) = 2, then Tt := Tt−1 ⇒ (x, x, y, y, z, z),
• if rank(x) = 3, then Tt := Tt−1.
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Note that in Figure 2, each token list Tt for P is equal to the respective At,
except for T6 = (d, d) and T7 = (e, e, d, d).

The following lemmas state that, on the one hand, if there is a P3-partition,
then each token list created by Algorithm 1 is comparable with the correspond-
ing Tt, hence it always contains enough tokens to create the next list, up to
A2n, and answer “true” in the end. On the other hand, if the algorithm returns
“true”, then it is indeed possible to construct a P3-partition using (indirectly)
the triples of intervals removed from the token list to create the links.

Lemma 1. If an interval graph G has a P3-partition P, then for all 0 → t → 2n,
Algorithm 1 defines set At with Tt � At and ∪Tt∪ − ∪At∪ ∗ 0 (mod 3), where
tokens(P) = (T0, T1, . . . , T2n).

Lemma 2. Let G be an interval graph such that Algorithm 1 returns true on G.
Then G admits a P3-partition.

The above lemmas allow us to conclude the correctness of Algorithm 1.

Theorem 2. P3-Partition on interval graphs is solvable in O(n log n+m) time.

3 Grid Graphs

In this section, we show that P3-Partition is NP-hard even on grid graphs
with maximum degree three, thus strengthening a result of Ma�lafiejski and
Żyliński [15] and Monnot and Toulouse [16], who showed that P3-Partition
is NP-complete on planar bipartite graphs of maximum degree three.

A grid graph is a graph with a vertex set V ≥ N × N and edge set {{u, v} |
u = (i, j) ∈ V, v = (k, σ) ∈ V, |i − k| + |j − σ| = 1}. That is, its vertices can be
given integer coordinates such that every pair of vertices is joined by an edge if
and only if their coordinates diffier by 1 in exactly one dimension.

To show NP-hardness of P3-Partition on grid graphs, we exploit the above
mentioned result of Ma�lafiejski and Żyliński [15] and Monnot and Toulouse [16]
and find a suitable embedding of planar graphs into grid graphs while maintain-
ing the property of a graph having a P3-partition. This allows us to prove the
following.

Theorem 3. P3-Partition is NP-hard on grid graphs of maximum degree three.

The following observation helps us embed planar graphs into grid graphs, as it
allows us to replace edges by paths on 3i new vertices for any i ∈ N.

Observation 1. Let G be a graph, e = {v, w} be an edge of G, and G√ be the
graph obtained by removing the edge e from G and by connecting v and w using
a path on three new vertices. Then, G has a P3-partition if and only if G√ has.

We can now prove Theorem 3 by showing that G has a P3-partition if and only G√

has, where G√ is the graph obtained from a planar graph G of maximum degree
three using the following construction.
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Construction 1. Let G be a planar graph of maximum degree three. Using a
polynomial-time algorithm of Rosenstiehl and Tarjan [18] we obtain a crossing-
free rectilinear embedding of G into the plane such that:

1. Each vertex is represented by a horizontal line.
2. Each edge is represented by a vertical line.
3. All lines end at integer coordinates with integers in O(n).
4. If two vertices are joined by an edge, then the vertical line representing this

edge ends on the horizontal lines representing the vertices.

a b

cd

(a) A planar graph G

a

b

d

c

(b) A rectilinear embed-
ding of G

a√

c√

d√

b√

(c) The grid graph G√

obtained from G

Fig. 3. Various embeddings of a planar graph. In the rectilinear embedding in
Figure 3b, horizontal lines represent vertices of G, while vertical lines represent its
edges. In Figure 3c, every intersection of a line with a grid point is a vertex, but only
the vertices corresponding to vertices in Figure 3a are shown.

Figure 3b illustrates such an embedding. Without loss of generality, every end
point of a line lies on another line. Now, in polynomial time, we obtain a grid
graph G√ from the rectilinear embedding, as follows:

1. We multiply all coordinates by six (see Figure 3c).
2. Every point in the grid touched by a horizontal line that represents a ver-

tex v of G becomes a vertex in G√. The horizontal path resulting from this
horizontal line we denote by P (v).

3. For each vertical line, all its grid points become vertices in G√, except for
one point that we bypass by adding a bend of five vertices to the vertical
line (see Figure 3c).

4. With each vertex v in G, we associate the vertex v√ of G√ that lies on P (v)
and has degree three. There is at most one such vertex. If no such vertex
exists, then we arbitrarily associate with v one of the end points of P (v).

4 Bipartite Permutation Graphs

In this section, we show that Star Partition can be solved in O(n2) time on
bipartite permutation graphs. The class of bipartite permutation graphs can be
characterized using strong orderings of the vertices of a bipartite graph:
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Definition 1 (Spinrad et al. [19]). A strong ordering ⊥ of the vertices of a
bipartite graph G = (U,W,E) is the union of a total order ⊥U of U and a total
order ⊥W of W , such that for all {u,w}, {u√, w√} in E, where u, u√ ∈ U and
w,w√ ∈ W , u ⊥ u√ and w√ ⊥ w implies that {u,w√} and {u√, w} are in E.

A graph is a bipartite permutation graph if and only if it is bipartite and there
is a strong ordering of its vertices, which can be computed in linear time [19].

Our key to obtain star partitions on bipartite permutation graphs is a struc-
tural result that only a certain “normal form” of star partitions has to be
searched for. This paves the way to developing a dynamic programming solu-
tion exploiting these normal forms. We sketch these structural properties of an
s-star partition of bipartite permutation graphs in the following.

Definition 2. Let (G, s) be a Star Partition instance, where G = (U,W,E)
is a bipartite permutation graph, ⊥ is a strong ordering of the vertices, and � is
the reflexive closure of ⊥. Assume that G admits an s-star partition P.

Let X ∈ P form a star. By lm(X) (resp. rm(X)), we denote the leftmost
(that is, the smallest), resp. the rightmost (that is, the largest) leaf of X with
respect to ⊥. The scope of star X is the set scope(X) := {v | xl � v � xr}
containing all vertices from xl = lm(X) to xr = rm(X). The width of star X
is the cardinality of its scope, that is, width(X) := | scope(X)| = r − l + 1. The
width of P, width(P), is the sum of width(X) over all X ∈ P.

Let e = {u,w} and e√ = {u√, w√} be two edges. We say that e and e√ cross
each other if either (u ⊥ u√ and w√ ⊥ w) or (u√ ⊥ u and w ⊥ w√). The
edge-crossing number of two stars X,Y ∈ P is the number of pairs of cross-
ing edges e, e√ where e is an edge of X and e√ is an edge of Y . The edge-crossing
number #edge-crossings(P) of P is the sum of the edge-crossing numbers over
all pairs of stars X ↓= Y ∈ P.

We identify the possible configurations of two stars, depending on the relative
positions of their leaves and centers, see Figure 4. Among those, the following
two configurations are favorable: Given X,Y ∈ P, we say that X and Y are

– non-crossing if their edge-crossing number is zero;
– interleaving if center(X) ∈ scope(Y ) and center(Y ) ∈ scope(X);

We say that P is good if any two stars X ↓= Y ∈ P are either non-crossing or in-
terleaving. We define the score of P as the tuple (width(P),#edge-crossings(P)).
We use the lexicographical order to compare scores.

This definition allows us to show a normal form of star partitions in bipartite
permutation graphs.

Lemma 3. Any s-star partition of a bipartite permutation graph G with mini-
mum score is a good s-star partition.

Corollary 1. Let P be an s-star partition of a bipartite permutation graph G
with minimum score. Then, for every star X ∈ P, there is at most one Y ∈ P
such that X and Y are interleaving, and for all Z ∈ P \ {X,Y }, X and Z are
non-crossing.
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Non-crossing

Interleaving

Configuration I

Configuration III

Configuration II

Configuration IV

Fig. 4. Possible interactions between two stars of a partition. Centers are marked with
circled nodes. The four possible configurations of star centers and scopes that are
neither non-crossing nor interleaving are labeled I to IV. By Lemma 3, any partition
containing one of the configurations I to IV can be edited to reduce the score (see the
thick light-color edges).

We now informally describe a dynamic programming algorithm for deciding
whether there is a good s-star partition. It builds up a solution following the
strong ordering of the graph from left to right. A partial solution can be ex-
tended in three ways only: either (i) a star is added with the center in U , or (ii)
a star is added with the center in W , or (iii) two interleaving stars are added.
The algorithm can thus compute, for any given number of centers in U and in
W , whether it is possible to partition the leftmost vertices of U and W in one
of the three ways (i)–(iii). This algorithm leads to the following result.

Theorem 4. Star Partition can be solved in O(n2) time on bipartite permu-
tation graphs.

5 Further Results

This section briefly summarizes our hardness and tractability results for cographs,
split graphs, and chordal graphs.

Cographs. A cograph is a graph that does not contain a P4 (path on four vertices)
as an induced subgraph. Cographs allow for a so-called cotree to be computed
in linear time [7]. Using a dynamic programming approach on the cotree repre-
sentation of the cograph, we can solve Star Partition in polynomial time.

Theorem 5. Star Partition can be solved in O(kn2) time on cographs.
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Split Graphs. A split graph is a graph whose vertices can be partitioned into
a clique and an independent set. Remarkably, split graphs are the only graph
class where we could show that P3-Partition is solvable in polynomial time,
but Star Partition for k ∧ 3 is NP-hard.

More precisely, we solve P3-Partition on split graphs by reducing it to find-
ing a restricted form of factor in an auxiliary graph; herein, a factor of a graph
G is a spanning subgraph of G (that is, a subgraph containing all vertices). This
graph factor problem then can be solved in polynomial time [8].

In contrast, we can show that Star Partition is NP-hard for each s ∧ 3 by
a reduction from Exact Cover by s-Sets.

Theorem 6. Star Partition on split graphs is solvable in O(m2.5) time for
s = 2, but is NP-hard for each s ∧ 3.

Chordal graphs. A graph is chordal if every induced subgraph containing a cycle
of length at least four also contains a triangle, that is, a cycle of length three. We
show that P3-Partition restricted to chordal graphs is NP-hard by reduction
from 3-Dimensional Matching.

Theorem 7. P3-Partition restricted to chordal graphs is NP-hard.

For the reduction, we use the construction that Dyer and Frieze [11] provided to
show that P3-Partition is NP-complete and observe that we can triangulate
the resulting graph while maintaining the correctness of the reduction.

6 Conclusion

We close with three open questions for future research. What is the complexity
of Star Partition for s ∧ 2 on permutation graphs? What is the complexity of
Star Partition for s ∧ 3 on interval graphs? Are there other important graph
classes (not necessarily perfect ones) where Star Partition is polynomial-time
solvable?

Acknowledgments. We are indebted to three anonymous ICALP reviewers
whose constructive feedback helped to significantly improve our presentation.
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Abstract. While selfish routing has been studied extensively, the problem of de-
signing better coordination mechanisms for routing over time in general graphs
has remained an open problem. In this paper, we focus on tree networks (single
source multiple destinations) with the goal of minimizing (weighted) average so-
journ time of jobs, and provide the first coordination mechanisms with provable
price of anarchy for this problem. Interestingly, we achieve our price of anarchy
results using simple and strongly local policies such as Shortest Job First and the
Smith’s Rule (also called HDF). In particular, for the case of unweighted jobs,
we design a coordination mechanism with polylogarithmic price of anarchy. For
weighted jobs, on the other hand, we show that price of anarchy is a function of
the depth of the tree and accompany this result by a lower bound for the price of
anarchy for the Smith Rule policy and other common strongly local scheduling
policies.

Our price of anarchy results also imply improved approximation algorithms
for the underlying optimization problem of routing over a tree. This problem is
well motivated from applications of routing in supercomputers and data center
networks where average sojourn time is an important metric.

1 Introduction

As a central topic in algorithmic game theory, selfish routing problems have been stud-
ied extensively in the context of congestion games [20,26,27]. Being a representative
class of potential games, network congestion games have served as a foundation for
proving price of anarchy results. However they lack an important aspect of real network
routing which is the fact that routing happens over time, and any realistic model should
take this into account. To address this issue, several new models have been proposed
to capture the nature of realistic routing over time [10,11,21,19,24,13,12,4]. Amongst
these models, the concept of coordination mechanisms, first introduced in an influential
paper by Christodoulou, Koutsoupias, and Nanavati [10], have been proposed to cap-
ture the queueing nature of routing. Coordination mechanisms model the decentralized
nature of routing decisions made by machines and the selfish behavior of jobs: they
do so by seeking local policies that achieve a good price of anarchy in the resulting
equilibria in a corresponding game. While these subjects have attracted a great amount
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J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 186–197, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Coordination Mechanisms for Selfish Routing over Time on a Tree 187

of research, the problem of designing better coordination mechanisms for routing over
time has remained a wide open problem, and results have been developed only for very
special classes of networks such as parallel edges (corresponding to a multi-processor
scheduling problem [10,17,12,4]). In this paper, we focus on tree networks, and provide
the first coordination mechanisms with provable price of anarchy.

The significance of our results are two-fold: other than providing approximately op-
timal coordination mechanisms, our price of anarchy results also imply improved ap-
proximation algorithms for the underlying optimization problem of routing over a tree.
This problem is well motivated from applications of routing in supercomputers and data
centers where average sojourn time is an important QoS metric. Before elaborating the
model, we describe the significance of the optimization problem over trees in various
applications.

Applications of Optimizing Routing over a Tree: In 1985, Leiserson discovered that
a variant of tree topology called fat tree network is a universal network for efficient
network connections [23]. In a typical fat tree topology, each tree edge has a capacity
(or bandwidth or processing power) and the edges closer to the root node have higher
capacities than those to the leaves. The fat tree topology quickly became the de facto
standard for connecting processors within supercomputers. Recently, the efficiency of
tree topologies is being rediscovered in the context of data center architectures as data
center sizes grow exponentially with the explosion of the cloud-based services. A typ-
ical server farm in a data center consists of a set of web severs interconnected by a fat
tree topology. See, for example, an important paper on this topic by Al-Fares, Loukissas
and Vahdat [1]. Despite such important applications of optimal routing tasks over tree
topologies, very little is known from a theoretical standpoint about scheduling jobs over
a tree network to minimize their average sojourn time which is a fundamental quality
of service metric for evaluating the performance of such a system. The sojourn time
of a job is defined as the total time the job spends in the network. On the other hand,
minimizing the makespan of a schedule, defined as the maximum sojourn time over all
the jobs, has a vast literature in these settings [14,25,24], including the celebrated result
of Leighton, Maggs and Rao [22].

1.1 The Model

We are given a tree T = (V,E) rooted at node r ∈ V . Each edge e ∈ E in the tree
is a machine1 with speed s(e). For the rest of the paper, we use the terms “edge” and
“machine” interchangeably. There is a set of jobs J with unique identifiers, which will
be used by our policies for breaking ties consistently. Each job j ∈ J has weight wj and
length pj , and its processing time on edge e is pje = pj/s(e). Each edge can process at
most one unit of the jobs during a unit time-step, and a job j requires pje time-units of
processing on an edge e. At time t = 0, all the jobs are located at the root.

A job j can be served by only the nodes in the subset Lj ⊆ V . This models, for
example, the fact that some servers in a data center may not have the necessary content
to satisfy a request. The job j starts at the root and wants to exit the tree through any

1 The reason that we use the term ”machine” to refer to the ”edges” is to cope with the scheduling
literature. One should think about these machines as a communication link.
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Fig. 1. In our model, each edge e has a speed s(e). Each job j starts at the root and needs to
travel to one of the nodes in Lj , shown in dashed circles. To the right, we show how our model
generalizes the related machines (top right) and the restricted assignment setting (bottom right).

one of the nodes in Lj , which are called the destination-nodes of j. Accordingly, the
job j selects a path i = (e1, . . . , el) that begins at the root of the tree and terminates at
some node in Lj . Here, e1 is the first edge on the path (adjacent to the root), and el is
the last edge. The job can start getting processed on an edge ek, k ∈ {2, . . . , l}, only
after it is processed completely by the preceding edge ek−1. The job exits the tree when
it gets completely processed on the last edge el, and the time at which this event takes
place is called the sojourn time of the job. The weighted sojourn time of j is equal to its
weight wj times its sojourn time. Note that since all the jobs are at the root node at time
t = 0, the average sojourn time is equivalent to the average flow-time in our context. A
reader familiar with the scheduling literature can see that our model is a generalization
of the related machine and the restricted assignment settings (see Figure 1).

The underlying optimization problem asks us to route every job j through a root-to-
destination path terminating in Lj , and provide a scheduling policy on each edge so as
to minimize the sum of their weighted sojourn times. We allow preemption of jobs on
an edge. The jobs, however, are selfish agents who cannot be forced to obey the dictate
of a centralized authority. Thus, in our model, the machines declare their scheduling
policies in advance, and this induces a simultaneous-move game between the jobs. We
require that the scheduling policies be strongly local, in the sense that the scheduling
decision by an edge at any time-instant depends only on the current set of jobs waiting
to be processed on that edge, and is independent of the global state of the system.
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In this game, the strategy of each job j consists of selecting a path from the root
to any one of the destination-nodes in Lj . The vector θ = (θ1, . . . , θ|J|) denotes an
outcome (strategy-profile) of the game, where θj is the path selected by the job j. The
symbol (i, θ−j) denotes an outcome where the job j selects the path i, and every job
j∈ ⊂= j selects the path θj∈ . The symbol Costj(θ) denotes the cost incurred by the job
j under the outcome θ, which is equal to its weighted sojourn time. An outcome θ is
in a (pure) Nash equilibrium iff no job can reduce its cost by unilaterally deviating to
another path, i.e., iff Costj(θ) → Costj(i, θ−j) for all jobs j and root-to-destination
paths i terminating at a node in Lj .

The price of anarchy (PoA) of the game is the worst (maximum) possible ratio be-
tween the total cost of the agents in a Nash equilibrium and the optimal objective of the
underlying optimization problem. Intuitively, it is a measure of the degradation in the
overall system-performance due to the strategic interactions between the jobs.

We want to solve the following problem: Find a set of scheduling policies for the
machines so as to minimize the PoA of the resulting game.

1.2 Our Contributions and Techniques

We analyze the PoA of the game induced among the jobs when the machines follow a
natural and easy to implement scheduling policy known as Smith’s Rule [28] or “High-
est Density First” (HDF). Under this policy, at every time-step a machine works on a
job j that is available for processing and has maximum “density” wj/pj . When all jobs
have the same weight, this reduces to the “Shortest Job First” (SJF) scheduling policy.
If multiple jobs happen to have the same density, then all the machines use the same
tie-breaking rule to decide which one of these jobs to consider first. Hence, without
loss generality, we will assume throughout the rest of the paper that no two jobs have
exactly the same density.

Unweighted Jobs. When the jobs are unweighted and the machines follow SJF policy,
we prove that the PoA of the induced game is O(log2(smax/smin)) (Theorem 3). Here,
smax (resp. smin) denotes the speed of the fastest (resp. slowest) machine. Note that this
implies constant PoA when all the machines are identical; even in the general case, the
PoA is independent of the number of jobs or nodes in the network.

Weighted Jobs. When different jobs have different weights and all the edges follow
the Smith Rule (HDF) policy, we prove that the PoA is O(d2), where d is the depth of
the tree (Theorem 5). We complement this result by showing that the PoA must depend
polynomially on d (Theorems 4).

Approximation Algorithms. It is known that Smith’s Rule (HDF) induces a game
with a pure NE [15] which can be computed in polynomial time by greedily adding
jobs in the decreasing order of their densities. This implies that our PoA results also
lead to approximation algorithms for the underlying optimization problems (both for
the weighted and unweighted jobs), the approximation ratio being the same as the PoA
of the game.
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Our Technique: Both of the PoA upper-bounds in this paper are obtained using the fol-
lowing simple technique: First, we find an LP relaxation for the underlying optimization
problem and write down its dual. Next, we consider any arbitrary Nash equilibrium out-
come θ, and based on this outcome assign values to the dual variables in such a way
that satisfies all the dual constraints, thereby getting a feasible solution to the dual LP.
Finally, we show that the objective of this feasible dual solution is at least 1/α times the
total cost incurred by the jobs under θ. Weak duality implies that the PoA of the game
is at most α. Our overall approach is inspired by papers [2,6]. This technique is very
powerful and can potentially be applied to bound the PoA in several other settings. Bilò
et al. [7] give another application of this technique to analyze PoA.

Apart from the overall idea of using the dual fitting technique to analyze the PoA
of the game, writing a linear programming relaxation with small integrality gap turns
be a significant challenge for our problem. A direct extension of the time-indexed LP
[2] has a huge integrality gap in our setting. We circumvent this difficulty for the case
of unweighted jobs by first finding a set of critical edges which play a crucial role
in how the jobs delay each other. Then, we write a time-indexed LP relaxation taking
into account only these edges which brings the integrality gap down. See Section 2 for
details.

Related Work. Following the landmark paper of Christodoulou et al. [10] who initi-
ated the study of coordination mechanisms, several papers have been written on the
topic for various problems. However, most of these results are for machine scheduling
problems, either proving PoA results on the makespan objective function [17,8,4] or
recently for the weighted completion times [12,6]. In the context of selfish routing, the
multi-machine scheduling problem corresponds to a network of parallel edges and re-
lated machine scheduling is a special case of our model where the tree is a star, i.e, a tree
of depth one (Figure 1). The only two results that go beyond the scheduling problem are
by Hoefer et al [15] and by Christodoulou et al. [11]. The first paper only studies exis-
tence and computation of equilibria for various coordination mechanisms and leaves the
PoA question as an open problem. The second paper discusses a quite different setting
with non-atomic players.

Our work is also related to the literature on the PoA of selfish routing [20,27], and
more specifically unsplittable selfish routing [26]. Here we extend the selfish routing
model by incorporating a temporal component into the problem formulation. Other at-
tempts to address this issue include [21,19,13,24], but none of these results discuss
coordination mechanisms using strongly local (decentralized) policies.

We have recently learned through personal communication that scheduling over tree
and line networks are also being considered in the online (and resource augmentation)
setting in a recent (ongoing) work by Im et al. [16] and Antoniadis et al. [3]. Finally,
our work is related to approximation algorithms of classical optimization problems for
minimizing the weighted sum of completion times and flow times [18,9,2,5], none of
which present an approximation algorithm for the problem minimizing average com-
pletion time in routing over a tree.
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2 O(log2(smax/smin)) PoA for Unweighted Jobs

In this section, we assume that all the jobs have unit weights, and bound the PoA of
the game where every edge follows the Shortest Job First (SJF) scheduling policy (The-
orem 3). We start with a high-level overview of our approach. We say that a job j is
delayed by another job j∈ on an edge e at time t iff two conditions are satisfied at the
same time: (a) the job j is available for processing on edge e, and (b) instead of j, the
edge is processing the job j∈. A machine following the SJF policy never sits idle when
one or more jobs are waiting in its queue. This ensures that the sojourn time of a job j
is exactly equal to the total amount of processing done on j by all the edges, plus the
total delay it encounters due to all other jobs. The former quantity is given by

∑
e◦i pje,

where i is the path selected by the job. It is the latter quantity for which it is difficult
to get a closed-form expression. We overcome this difficulty by showing that there is
a small subset of critical edges on any path (Definition 1), and that one job can delay
another only on one of these edges. This line of reasoning culminates in a key struc-
tural result (Theorem 2) that gives an upper bound on the maximum delay a job j can
experience due to any single job j∈ ⊂= j.

As alluded in Section 1.2, we now confront the task of designing a suitable LP re-
laxation for the underlying optimization problem. A straightforward extension of the
time-indexed LP considered in [2] to our setting leads to a large integrality gap. On the
positive side, the time-indexed LP has one nice property: Its dual has variables that can
be interpreted as decomposing the total delay incurred by a job across the edges on its
path. The duals of other “natural” LP relaxations for our problem do not seem to be
amenable to such a nice interpretation. Accordingly, we modify the time-indexed LP
relaxation by only taking into account the critical edges of the tree. As the number of
critical edges is small, this brings down the integrality gap of the LP. We then manage
to fit its dual using Theorem 2.

To proceed with the technical details, let smax (resp. smin) denote the speed of the
fastest (resp. slowest) of a machine, and let K = ∧log(smax/smin)≥. For ease of expo-
sition, we assume that the speeds of the machines are discretized in powers of two. By
standard time stretching arguments, it is easy to show that this assumption can lead to
at most a factor two loss in the PoA of our coordination mechanism.

Assumption 1. For all e ∈ E, we have s(e) = 2k · smin for some k ∈ {1, 2, . . . ,K}.

Definition 1. Let ei,k denote the edge of minimum depth on path i that has speed
2ksmin. We refer to such an edge as a critical edge on that path. We defineEi = ⇐k{eik}
to be the set of all critical edges on path i.

Below, we describe our LP relaxation for the underlying optimization problem. For
rest of the paper, we overload the notation i ∈ Lj to denote a path i that starts at the
root and terminates at a node in Lj .

Minimize
∑

j

∑

i◦Lj

∑

e◦Ei

∑

t

xijet ·
⎧

t

pje

⎨
+
∑

j

∑

i◦Lj

∑

e

∑

t

xijet (1)
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∑

i◦Lj

xij ⇒ 1 ∪ jobs j (2)

∑

t

xijet

pje
⇒ xij ∪ jobs j, paths i ∈ Lj , edges e ∈ i (3)

∑

j

∑

i◦Lj :e◦i

xijet → 1 ∪ edges e, times t (4)

xijet, xij ⇒ 0 ∪j, i ∈ Lj , e ∈ i, t (5)

In an integral feasible solution of the above linear program, the variable xij ∈ {0, 1}
indicates if the job j takes the path i ∈ Lj . The variable xijet ∈ {0, 1} indicates if the
job j takes the path i ∈ Lj and is being processed on the edge e ∈ i at time-step t.

Constraint 2 states that every job has to take some path. Constraint 3 states that if a
job j takes a path i ∈ Lj , then it has to get completely processed on all the edges on
this path. Finally, constraint 4 states that every edge can process at most one unit of the
jobs during one time-step.

The second summation in the LP objective gives the total amount of processing done
on all the jobs, which clearly is a lower bound on the sum of their sojourn-times. Now,
fix any job j which takes a path i ∈ Lj , and consider an edge e ∈ i on this path. The
term

∑
t xijet ·(t/pje) is known as the fractional completion time [2] of the job j on the

edge e. This is at most the time at which the edge e finishes processing the job, which,
in turn, is at most the sojourn-time of j. We sum this quantity over all the critical edges
Ei on path i, and the number of such critical edges is O(K). Thus, the summation∑

i◦Lj

∑
e◦Ei

∑
t(t/pje) · xijet is O(K) times the sojourn-time of j. Summing over

all the jobs, we see that the overall LP objective is O(K) times the objective of the
underlying optimization problem.

We now get a new LP by replacing the 1 in the right hand side of constraint 4 with
1/(4K). This imposes the condition that a machine can process at most 1/(4K) units
of the jobs during one time-step, and, by standard scaling arguments, it is easy to show
that this increases the LP objective by a factor of 4K . The dual of this new LP is given
by LP (6). By weak duality, we get Lemma 1.

Max
∑

j

yj − 1

4K

∑

e,t

zet (6)

yj →
∑

e◦i

uije ∪ jobs j, paths i ∈ Lj (7)

uije

pje
− zet → 1 ∪ jobs j, i ∈ Lj , e ∈ i \ Ei, times t (8)

uije

pje
− zet → t

pje
+ 1 ∪ jobs j, i ∈ Lj , e ∈ Ei, times t (9)

yj , uije, zet ⇒ 0 ∪j, t, i ∈ Lj , e ∈ i (10)

Lemma 1. The objective of any feasible solution to LP (6) is O(K2) times the optimal
objective of the underlying optimization problem, where K = ∧log(smax/smin)≥.
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For the rest of this section, we will assume that every edge follows SJF scheduling
policy, and we will analyze the PoA of the resulting game. The theorem below bounds
the maximum delay a job can encounter due to any other job.

Theorem 2. Suppose that every machine runs SJF scheduling policy. Consider any two
jobs j√, j√1 , and fix any outcome θ (not necessarily a Nash Equilibrium) of the induced
game. Let e ∈ θj∗≤θj∗1 be an edge with slowest speed that is common to the paths taken
by the jobs. Then the total delay of the job j√ due to the job j√1 is at most 2pj∗/s(e).

Proof (Sketch). Consider the path θj∗ = (e1, . . . , el), where e1 (resp. el) is the edge
adjacent to (resp. farthest away from) the root. We decompose this path in w segments,
for some natural number w, in the following manner. Consider a function f : [1, w +
1] ⇔ [1, l + 1] such that 1 = f(1) < f(2) < · · · < f(w + 1) = l + 1. Segment
k ∈ [1, w] corresponds to the sequence of edges ef(k), ef(k)+1, . . . , ef(k+1)−1. The
decomposition satisfies two properties.

– The speeds of the first edges of these segments form a strictly decreasing sequence.
Hence, Assumption 1 implies that s(ef(1)) > s(ef(2))/2 > · · · > s(ef(w))/2

w−1.
– Within each segment, the speed of the first edge is at most the speed of any other

edge. Thus, s(ef(k)) → s(e) for all k ∈ [1, w] and e ∈ {ef(k), . . . , ef(k+1)−1}.

Note that the first edge ef(k) of every segment k ∈ [1, w] is a critical edge on the path
θj∗ . We show that the job j√ can get delayed by other jobs only on this set of edges
{ef(k) : k ∈ [1, w]}. Now, under SJF policy, the job j√ can get delayed by another
job j√1 only if pj∗1 → pj∗ , and, in this case, the delay experienced by j√ due to j√1 on
any edge ef(k) is at most pj∗1 /s(ef(k)) → pj∗/s(ef(k)). Thus, the total delay incurred

by j√ due to j√1 is upper bounded by the sum
∑1

k=k∗ pj∗/s(ef(k)), where k√ is the
segment with the largest index whose first edge also belongs to θj∗1 . This sum is part of
a geometric series with common ratio 1/2, and is at most 2pj∗/s(eef(k∗)

). The theorem
follows from the fact that the edge ef(k∗) has the slowest speed among all the edges that
are common to the paths θj∗ and θj∗1 .

In Figure 2, we give an algorithm that takes any Nash equilibrium of the game (under
SJF policy), and, depending on this input, sets the variables in LP (6).

Lemma 2. If the dual variables are assigned values as in Figure 2, then for all jobs j
and root-to-leaf paths i ∈ Lj , we have Costj(i, θ−j) =

∑
e◦i uije.

Proof. Fix the outcome (i, θ−j). Now, the sojourn-time of j equals the amount of time
j is processed, plus the amount of time it is delayed due to the other jobs. The former
quantity is equal to

∑
e◦i pje, the latter quantity being

∑
j∈ ≤=j δij(j

∈). Thus, we get:

Costj(i, θ−j) =
∑

e◦i

pje +
∑

j∈ ≤=j

δij(j
∈) =

∑

e◦i

pje +
∑

e◦Ei

∑

j∈◦εije

δij(j
∈) (11)

=
∑

e◦i\Ei

pje +
∑

e◦Ei

⎩

⎢pje +
∑

j∈◦εije

δij(j
∈)

⎣

⎛

=
∑

e◦i\Ei

uije +
∑

e◦Ei

uije =
∑

e◦i

uije
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INPUT: Any outcome θ of the game (under SJF policy) that is in a Nash equilibrium.

1. Set yj ⇒ Costj(θ).
2. Consider an indicator variable λjet ≤ {0, 1} that is set to 1 iff

(a) the path θj contains the edge e as a critical edge, i.e., e ≤ Eθj and
(b) the sojourn-time of job j is at least t under the outcome θ.

Set zet ⇒ ∑
j 2 · λjet.

3. Set the variable uije as follows.
(a) If e ∈= Ei, then uije ⇒ pje.
(b) Else if e ≤ Ei, then let Γije denote the set of all jobs j√ ∈= j such that e is

the slowest edge in i ∪ θj∈ . Let δij(j√) be the total delay experienced by j due to
the job j√ under the outcome (i, θ−j). Set uije ⇒ pje +

∑
j∈∗Γije

δij(j
√).

Fig. 2. Setting the dual variables in LP (6) for unweighted jobs

To see why equation 11 holds, define J+ to be the set of jobs which make positive
contributions towards the sum

∑
j∈ ≤=j δij(j

∈), i.e., J+ = {j∈ ⊂= j : δij(j
∈) > 0}. Each

job j∈ ∈ J+ has i ≤ θj∈ ⊂= ∗, and there is a unique critical edge on path i that is also
the slowest edge in i ≤ θj∈ . So each job j∈ ∈ J+ is part of exactly one of the sets in
{Γije : e ∈ Ei}. In other words, {Γije : e ∈ Ei} induces a partition of the jobs in J+.

Lemma 3. If the dual variables are assigned values as in Figure 2, then they satisfy the
constraints 7 and 8 of LP (6).

Proof. The right hand side of constraint 7, by Lemma 2, is equal to Costj(i, θ−j). The
left hand side, by Figure 2, is equal to Costj(θ). The constraint is satisfied as the Nash
equilibrium condition dictates that Costj(θ) ⇒ Costj(i, θ−j).

In constraint 8, the edge e is not a critical edge on the path i. Hence, by Figure 2, the
quantity zet is zero at all times t. Furthermore, the quantity uije is set to pje, so that the
left hand side of the constraint is 1, which is equal to its right hand side.

Lemma 4. Fix any job j, any path i ∈ Lj , any critical edge e ∈ Ei, and any job
j∈ ∈ Γije. Let δij(j∈, t) be the total delay experienced by j due to the job j∈ (anywhere in
the tree) on or after time t, under the outcome (i, θ−j). We have δij(j∈, t) → 2λj∈et ·pje.

Proof. The main difficulty in proving the lemma is that δij(j∈, t) refers to the outcome
(i, θ−j), whereas λj∈et refers to the outcome θ. So we introduce the quantity λ√

j∈et,
which is the exact analogue of λj∈et under the outcome (i, θ−j). Note that the edge
e already belongs to θj∈ and is a critical edge. Hence, we drop condition (a) used in
defining λj∈et in Figure 2. We then consider two possible cases.

λ√
j∈et =

⎝
1 if the sojourn-time of j∈ under (i, θ−j) is at least t;

0 otherwise.

By our assumption in the first paragraph of Section 1.2, either pj < pj∈ or pj > pj∈ .

Case 1. Either λ√
j∈et = 0 or pj < pj∈ . Here, if λ√

j∈et = 1, then the job j∈ is already out of
the system by time t under the outcome (i, θ−j). Naturally, we have δij(j

∈, t) = 0, and
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the lemma holds. On the other hand, if pj < pj∈ , then SJF scheduling policy ensures
that the job j never gets delayed by the job j∈, and we again have δij(j∈, t) = 0.

Case 2. λ√
j∈et = 1 and pj > pj∈ . In this case, first note that by Theorem 2, δij(j∈, t) →

2pje. Since λ√
j∈et = 1, we get:

δij(j
∈, t) → 2λ√

j∈et · pje (12)

Since pj > pj∈ , SJF scheduling policy ensures that the processing of j∈ is not affected
if j switches its path. Specifically, the time-steps at which j∈ is processed by edge e
remains unchanged under the two outcomes (i, θ−j) and θ. Thus, we have λj∈et =
λ√
j∈et, and equation 12 implies that the lemma holds.

Lemma 5. If the dual variables are assigned values as in Figure 2, then they satisfy all
the constraints of LP (6).

Proof. By Lemma 3, the constraints 7, 8 are already satisfied. We focus on the remain-
ing constraint 9. Fix any job j, any path i ∈ Lj , and any edge e ∈ Ei. By Lemma 4:

∑

j∈◦εje

δij(j
∈, t) → pje ·

∑

j∈◦εje

2λj∈et → pje · zet (13)

Under the outcome (i, θ−j), the total delay experienced by j due to the jobs in Γje till
time-step t is, by definition, at most t. This leads to the following inequality.

∑

j∈◦εje

(δij(j
∈)− δij(j

∈, t)) → t (14)

From Figure 2, equation 14 and equation 13, we see that constraint 9 is satisfied.

uije = pje +
∑

j∈◦εje

δij(j
∈) → pje + t+

∑

j∈◦εje

δij(j
∈, t) → pje + t+ pje · zet.

Lemma 6. If the dual variables are set as in Figure 2, then the objective of LP (6) is at
least (1/2) ·∑j Costj(θ).

Proof. Fix the outcome θ, and focus on any job j with sojourn-time Costj(θ).

(Case 1) t → Costj(θ). In this case, Figure 2 implies that the job j contributes 2 to
each of the zet’s corresponding to the critical edges in the path θj , and it makes zero
contribution to the remaining zet’s. Since θj has at most K critical edges, the total
contribution of the job to the sum

∑
e zet is at most 2K .

(Case 2) t > Costj(θ). Here, by Figure 2, the job j contributes 0 to the sum
∑

e zet.

Summing over all time-steps, the contribution of any single job j to the sum
∑

e,t zet
is at most 2K · Costj(θ). Next, summing over the contributions from all the jobs, we
infer that

∑
et zet → (2K) ·∑j Costj(θ). Since yj = Costj(θ) for all jobs j, we get:

LP-objective =
∑

j

yj − (1/(4K)) ·
∑

e,t

zet ⇒ (1/2) ·
∑

j

Costj(θ).
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Theorem 3 now follows from Lemma 1, Lemma 5, and Lemma 6.

Theorem 3. If every machine follows Shortest Job First (SJF) policy and every job
has unit weight, then the price of anarchy of the induced game is O(log2(smax/smin)),
where smax (resp. smin) is the maximum (resp. minimum) speed among all the machines.

Interestingly, we get super-constant upper bound on the PoA because the speeds of
the edges may keep on decreasing as we traverse farther along a path starting from the
root-node. This is precisely the situation in the real-world fat-tree networks. In contrast,
consider an instance where the edges adjacent to the root-node have the slowest speeds.
In this instance, the proof of Theorem 2 implies that a job can get delayed by other jobs
only on the first edge on its path. Thus, we can write a new time-indexed LP where
we take into account the fractional completion times of the jobs only on these edges at
depth one. This LP will give a constant approximation to the underlying optimization
problem, as a path starting from the root contains exactly one edge of depth one. We
can then execute the same analysis as outlined in this section to get constant PoA.

3 O(d2) PoA for Weighted Jobs

In this section we observe that when jobs can have arbitrarily different weights, the PoA
of the game depends polynomially on the depth of the tree.

Theorem 4. There is an instance of the problem where if every edge follows HDF
scheduling policy, then the game induced between the jobs has PoA = Ω(

⊥
d).

On the positive side, we can extend our dual-fitting framework to derive the following
upper bound on the PoA.

Theorem 5. If every machine follows HDF scheduling policy, then the PoA of the game
induced between the jobs is at most 8d2, where d is the depth of the tree.

Ackowledgements. The authors thank Sungjin Im and Kamesh Munagala for several
helpful discussions.
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Abstract. One of the first algorithmic results in graph drawing was
how to find a planar straight-line drawing such that vertices are at grid-
points with polynomial coordinates. But not until 2007 was it proved
that finding such a grid-drawing with optimal area is NP-hard, and the
result was only for disconnected graphs.

In this paper, we show that for graphs with bounded treewidth, we can
find area-optimal planar straight-line drawings in one of the following two
scenarios: (1) when faces have bounded degree and the planar embedding
is fixed, or (2) when we want all faces to be drawn convex. We also
give NP-hardness results to show that none of these restrictions can be
dropped. In particular, finding area-minimal drawings is NP-hard for
triangulated graphs minus one edge.

1 Introduction

A planar graph is a graph that can be drawn without crossing in the plane.
Naturally one wonders whether such a drawing must use curves, or whether
there exists a planar straight-line drawing, i.e., a drawing such that vertices
are at points, edges are straight-line segments between their endpoints, no edge
overlaps a non-incident vertex, and no two edges cross. It was proved multiple
times independently that every planar graph has such a drawing [4][12][14].

To increase readability of such a drawing, vertices should be not too close
to each other, but the drawing should fit on a small paper or screen. The first
objective can be achieved by demanding a grid drawing, where all vertices are
placed at points with integer coordinates. The second objective can be achieved
by minimizing the area of the smallest enclosing box of such a grid-drawing.
In 1990, it was shown independently by de Fraysseix, Pach and Pollack [6] and
Schnyder [11] that every planar graph has a grid-drawing of area O(n2).

Numerous papers have since worked on improving the constant factor in this
O(n2)-bound; see e.g. [2] and the references therein. However, very few attempts
have been made to find drawings with the optimal area. Indeed, it was not even
shown until 2007 that finding a grid-drawing with optimal area is NP-hard [8].
One of the very few algorithms that achieves optimal area is by Mondal et al. [9]
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for triangulated graphs of treewidth 3. The current paper arose out of an attempt
to generalize this results to graphs of larger (but bounded) treewidth. We show:

Minimizing the area of planar grid-drawings is polynomial-time solv-
able for any planar graph of bounded treewidth and bounded face degrees
for which the planar embedding is fixed.

We also prove NP-hardness as soon as any of the three conditions (bounded
treewidth, bounded face degree, fixed planar embedding) is dropped. We then
turn to convex drawings, where we additionally demand that every face (includ-
ing the outer-face) is drawn as a convex polygon, and show:

Minimizing the area of convex planar grid-drawings is polynomial-
time solvable for any planar graph of bounded treewidth.

We also prove NP-hardness of finding area-optimal convex drawings for graphs
where the treewidth is not constant. Due to space restrictions, many details
(especially for the NP-hardness reductions) have been omitted.

2 Background

We assume that G = (V,E) is a planar graph, i.e., it can be drawn in the
plane without crossing. Any planar drawing of G defines a rotation system, i.e.,
a clockwise order of edges around each vertex. This defines facial circuits, which
are boundary cycles of the maximal connected regions (faces) of the drawing.
The outer-face is the unbounded face. The drawing also assigns each angle (set
of two consecutive edges at a vertex) to a face. A planar embedding is a rotation
system, an angle-face assignment, and one angle fixed as being on the outer-face;
this determines a drawing of G up to deformations of the plane.

A graph is connected if there exists a path between any two vertices. For
a connected graph every face is bounded by one circuit and hence the angle-
face-assignment is unique. A graph is k-connected if it remains connected after
removing any k−1 vertices. Any 3-connected planar graph has a unique rotation
system (up to reversal of all orders). A planar graph is called triangulated if all
faces, including the outer-face, are triangles. Such a graph is always 3-connected.

A planar straight-line grid-drawing is a mapping σ of the vertices of G to
distinct points with integer coordinates such that if we draw every edge as a
straight-line segment, then no edge overlaps a non-incident vertex, and no two
edges cross. The drawing is convex if all faces, including the outer-face, are drawn
as convex polygons. Angles of 180◦ are allowed (though the results of the paper
can easily be generalized to strictly convex drawings). The width, height and
area of σ is the corresponding measure of the minimum axis-aligned box that
encloses all points that σ maps to.

Definition 1. AreaMinimization is the following problem: Given a graph G
and an integer A, does G have a planar straight-line grid-drawing of area ∈ A?

PointSetEmbeddability is the following problem: Given a graph G and
a set S of points in R

2, is there a planar straight-line drawing of G where all
vertices are on points of S?



200 T. Biedl

For both problems, we also consider the Convex variant, where we require
the planar drawing to be convex.

Treewidth and Sc-decompositions: We will not define the treewidth tw(G)
of a graph G, since we do not use it directly. The pathwidth pw(G) of a graph
G is the smallest k such that G has a vertex order v1, . . . , vn where, for any
1 ∈ i < n, at most k vertices in v1, . . . , vi have a neighbour in vi+1, . . . , vn. Since
tw(G) ∈ pw(G), it suffices to prove NP-hardness for bounded pathwidth graphs.
A branch decomposition of a graph G is a rooted binary tree T with edges of G
in 1-1 correspondence with the leaves of T . It will be convenient to assume that
the root has only one child. For any arc a of T , the subgraph Ga rooted at a is
the graph formed by all edges at leaves that are below a in T . The separator τa

at a is the set of vertices with incident edges in both Ga and G−Ga. The width
of a branch decomposition is maxa√T |τa|, and the branchwidth bw(G) of G is
the smallest width of a branch decomposition of G. Since tw(G) ⊆ λ(bw(G))
[10], it suffices to give algorithms for bounded branchwidth graphs.

Let G be a planar graph with a fixed rotation system. A noose is a sequence
v0, f0, v1, . . . , vk−1, fk−1 such that for any 0 ∈ i < k, vertices vi and vi+1 both
belong to face fi (addition modulo k), and no vertex repeats. (Faces may repeat.)
An sc-decomposition is a branch decomposition of G such that for any arc a of
the tree T , there exists a noose Na whose vertices are exactly the separator τa.
We can picture Na as a simple closed curve that intersects a planar drawing of
G only at vertices in τa, contains Ga on one side and G−Ga on the other side.
See Fig. 1. Any 2-connected planar graph G with a fixed planar embedding has
an sc-decomposition of width bw(G), and it can be found in polynomial time [3].

v
f

f ⊂

anchor-edge
of v at f

vl−1

vl

fl = outer-face

two segments along
anchor-edges at fl

Fig. 1. A noose (dashed) meets the separator vertices (white). Illustrating some con-
cepts for Section 3: Anchor-edges are thick, pole-edges are thick dotted, the noose-
polygon is thick dashed.

3 Area-Optimal Drawings

AreaMinimization is NP-hard even for graphs with a fixed planar embed-
ding and constant treewidth [8]. But it becomes polynomial if additionally face-
degrees are bounded:
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Theorem 1. Let G be a planar graph with a fixed planar embedding. If G has
bounded treewidth and bounded face-degrees, then AreaMinimization can be
solved in polynomial time.

Proof. It was shown in [1] that PointSetEmbeddability is polynomial-time
solvable for these graphs. For W = 1, . . . , →∧A≥ and H = ⇐A/W ⇒, solve Point-
SetEmbeddability for G, using the points of a W ×H-grid as S. There exists
a drawing of area at most A if and only if we succeed for some S. Clearly this
yields a polynomial-time algorithm since A ∈ n2.1

For convex drawings, the results for ConvexPointSetEmbeddability in
[1] are more restrictive than we need them to be. We show in the rest of this sec-
tion that ConvexPointSetEmbeddability is polynomial-time solvable for a
planar graph G of bounded treewidth. This was previously only known for graphs
with bounded treewidth, bounded vertex degrees, and where the planar embed-
ding is fixed [1]. So assume that we are given a set S of at least n points in the
plane. Fix an arbitrary planar embedding of G (we will later explore all possible
ones). The main idea is to do dynamic programming in an sc-decomposition of
width bw(G), where the dynamic programming function fixes the position of
separator-vertices, as well as their neighbours at the noose.

Formally, let a be an arc of the sc-decomposition tree T , and let v be a vertex of
τa. By assumption the noose Na contains f, v, f ≤ as subsequence, for some faces
f, f ≤. By definition of separator, v has incident edges in both Ga and G − Ga.
Since Na contains v only once, the incident edges of v hence form two intervals
(in the clockwise order around v): one with edges in Ga and one with edges in
G − Ga. We call the first and last edge of v in Ga the anchor-edges of v, and
the first and last edge of v in G−Ga the pole-edges of v. (Both terms are “with
respect to arc a”, but arc a will be clear from the context.) Each anchor-edge
and pole-edge belongs to either f or f ≤. See also Fig. 1. An anchor/pole of arc
a is a vertex x such that (x, v) is an anchor-edge/pole-edge at some vertex v
in τa. Let Aa be the set of anchors and poles of a, and let G+

a be the graph
obtained from Ga by adding to it all pole-edges at vertices in τa. The dynamic
programming function searches for a drawing of G+

a , subject to a fixed mapping
σa of the vertices of τa ∪ Aa to points in S.

From the locations of τa ∪ Aa, we can read a polygon that serves as curve
for the noose; we call this the noose-polygon Pa. Namely, consider the polygon
σa(v0), . . . , σa(vk−1), where v0, f0, v1, . . . , vk−1, fk−1 are the vertices and faces
of the noose Na. If Na does not include the outer-face, then Pa is this poly-
gon. If Na does include the outer-face, say at fl, then replace line segment
σa(vl), σa(vl+1) by two segments along the supporting lines of the anchor-edge
of vl and vl+1 at fl. See Fig. 1(right). In any convex drawing of G, the noose-
polygon Pa does not cross itself, since every edge of it either resides in an interior
face (a convex polygon) or is drawn along two supporting lines of edges on the

1 The precise run-time is O(n3Δ(t + 1) log(Δ(t + 1)) · |S|1.5Γ(t+1)), where Δ is the
maximum degree of a face and t is the treewidth.
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outer-face (a convex polygon). If all vertices of τa are collinear (e.g. if |τa| = 2),
then Pa may overlap itself; we do not consider this a crossing.

One final notation. In what follows, we consider a drawing σ of a subgraph
G+

a of G. We say that an angle is drawn properly in σ if either this angle is not
a facial angle of G, or if it belongs to an interior face of G and is drawn with at
most 180◦, or it belongs to the outer-face of G and is drawn with at least 180◦.
The function to be computed via dynamic programming is now as follows:

Definition 2. Let a be an arc of the rooted sc-decomposition. Let σa be a map-
ping from τa ∪Aa to S. Define M(a, σa) to be true if and only if:

1. The noose-polygon Pa defined by σa has no crossings.
2. For any anchor Π and any pole β of a, any curve from σa(Π) to σa(β)

contains points of Pa. Put differently, the noose-polygon Pa forms a boundary
between the anchors and the poles.

3. There exists a planar drawing σ of G+
a on S such that all angles are drawn

properly and σ coincides with σa on τa ∪ Aa.

Observe that computing M(a, σa) for all values of a and σa is sufficient to solve
ConvexPointSetEmbeddability for a graph with a fixed planar embedding.
For Gr = G at the unique arc r below the root, and so

∨
σr

M(r, σr) is true if
and only if G has a drawing on S for which all angles are drawn properly, i.e.,
G has a convex drawing on S. We explain how to compute M(a, σa) by going
bottom-up in the tree T of the sc-decomposition.

M(a, σa) at a leaf-arc: Assume first that a is an arc incident to a leaf, say
the leaf stores edge (v, w). Then G+

a consists of (v, w) as well as up to four
pole-edges. (The anchor-edges all coincide with (v, w).) Hence all vertices of G+

a

belong to τa ∪ Aa, so the mapping σa determines the drawing of G+
a . Testing

whether M(a, σa) is true hence reduces to checking whether the angles are drawn
properly or not. Further, to respect the given planar embedding, the clockwise
order of pole-edges and (v, w) must be as induced by the rotation scheme. This
can all be tested in constant time for one fixed arc a and mapping σa.

M(a, σa) at a non-leaf arc: So assume now that arc a is not incident to a
leaf. Then the lower end of a is in turn incident to two other arcs a1 and a2. We
now show how to extract the value for M(a, σa) from those of M(a1, σa1) and
M(a2, σa2) for some suitably chosen mappings σa1 and σa2 .

Recall that σa determines the positions for all points in τa ∪ Aa. With this,
we can test the first two conditions of Definition 2 directly, and assume from
now on that they are satisfied. In particular, the noose-polygon Pa then has an
anchor-side, which is the connected component of R

2 − Pa that contains the
anchors, and the pole-side, which is the connected component that contains the
poles. Define τ× := (τa1 ∪ τa2) − τa and A× := (Aa1 ∪Aa2) −Aa. If we fix any
mapping of τa ∪ τ× ∪Aa ∪A× to points in S, then this fixes (for i = 1, 2) also a
mapping of τai ∪Aai to points in S. One can easily show the following formula:

Lemma 1. M(a, σa) is true if and only if the first two conditions of Definition 2
are true, and there exists a mapping σ× from τ× ∪ A× to S such that
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– M(a1, σa1) and M(a2, σa2) are true, and
– the interior of the anchor-side of Pa1 has no points in common with the

interior of the anchor-side of Pa2 ,

where σai is the mapping from τai ∪ Aai to S induced by σa and σ×.

The algorithm for computing M(a, σa) is now the obvious: For any choice σ×
of mapping τ×∪A× to points of S, compute the induced mappings σai and look
up whether M(ai, σai) is true, for i = 1, 2. Also compute Pai , and check whether
the anchor-sides are interior-disjoint. Set M(a, σa) to be true if and only if we
succeed for some choice of σ×.

Putting it All Together. So to solve ConvexPointSetEmbeddability for
a fixed planar embedding, we go bottom-up in the tree T of the sc-decomposition,
and at each arc a and each possible mapping σa compute M(a, σa) as explained
above. It remains to analyze the run-time. Computing M(a, σa) for an arc a
incident to a leaf and a fixed σa takes constant time. Doing so for all σa takes
O(|S|5) time since there are five vertices to which we must assign points. To
compute M(a, σa) for an arc a not incident to a leaf and a fixed assignment σa,
we must try all possible mappings σ× of points to τ× ∪ A×. For each of them,
we must compute the induced assignments σa1 and σa2 , look up M(a1, σa1) and
M(a2, σa1), and test whether the noose-polygons are interior-disjoint. This can
all be done in O(n log n) time with suitable data structures. Thus the time to
compute M(a, ·), for all possible choices of σa and σ× is

O
(
|S||εa⊆Aa⊆ε×⊆A×|n logn

)
.

Because any separator-vertex contributes at most two anchors and two poles,
and any separator-vertex appears in at least two of τa, τa1 , τa2 , one can argue
that |τa ∪ Aa ∪ τ× ∪ A×| ∈ 15

2 bw(G). Hence the time to compute M(a, ·) is

O(|S|7.5bw(G)n logn), and doing so for all O(n) arcs of the sc-decomposition
adds another O(n)-factor. So we have:

Theorem 2. For any planar graph G and any set S of points in R
2, if the planar

embedding of G is fixed then we can solve ConvexPointSetEmbeddability
in O((|S|7.5bw(G)n2 logn) time.

Now we consider the case when the planar embedding is not fixed. If G is
3-connected, then simply try all possible outer-faces for an additional O(n) run-
time overhead. So assume from now on that G has cutting pairs.

A graph may have Δ(2n) rotation systems that all lead to a convex drawing,
so we cannot explore all of them explicitly. Tutte’s characterization [13] states
that if G has a convex drawing, then any cutting pair must be on the outer-face
and have exactly two cut-components (not counting a possible edge between
the cutting pair). Therefore rotation systems of convex drawings can differ only
by “flipping” (reversing the rotation sub-systems) of a leaf-component, i.e., a
3-connected component that is a leaf in the tree of 3-connected components. We
use a special branch-decomposition:
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Lemma 2. For any 2-connected graph G, there exists a branch decomposition
T of G of width bw(G) such that

– for any leaf-component C there exists an arc aC in T with GaC = C,
– for any planar embedding of G and any arc a in T , there exists a noose that

contains Ga on one side and G−Ga on the other. Furthermore, the (clockwise
or counter-clockwise) order of the vertices of the noose is the same regardless
of the planar embedding.

Previously, anchors and poles were vertices defined by the planar embedding.
Now we only know which two vertices vΩ and vΩ+1 are consecutive in the noose
at an arc a, but this is sufficient. Change the definition of σa as follows: let σ ≤

a

be a mapping that assigns five points to each vertex vΩ ⊆ τa. These five points
belong to vΩ, the (unknown) anchor at vΩ “towards” vΩ+1 (i.e., at the (unknown)
face which vΩ shares with vΩ+1,), the pole at vΩ twoards vΩ+1, and the anchor and
pole at vΩ “towards” vΩ−1. We allow σ ≤

a to repeat points, which avoids having
to explore explicitly whether these poles/anchors are distinct vertices. Notice
that σ ≤

a is sufficient to compute the noose-polygon, as long as we pass along
the information which consecutive vertices (if any) of the noose belong to the
outer-face. Also, σ ≤

a determines a drawing of G+
a , given one of Ga. Hence define

M ≤(a, σ ≤
a) to be verbatim the same as M(a, σa), except that we use σ ≤

a and allow
all possible planar embeddings in (3).

The computation of M ≤(a, σ ≤
a) is nearly the same as the one of M(a, σa),

except that in the base case we do not check whether the rotation system is
respected, and that at any arc of a leaf component we test both possible choices
of which face of the noose is the outer-face. Hence M ≤(a, σ ≤

a) explores all possible
ways of flipping leaf components, and hence implicitly all planar embeddings
that could lead to a convex drawing. Thus the run-time is the same as for
the fixed planar embedding, except that we need an additional O(n) factor for
trying all possible outer-faces (this is needed only if the graph is 3-connected.)
Summarizing, we get:

Theorem 3. For any planar graph G and any set S of points in R
2, we can

solve ConvexPointSetEmbeddability in O((|S|7.5bw(G)n3 logn) time.

With the same approach as in Theorem 1 (try all choices of S as a W×H-grid
for W ·H ∈ A) we hence have:

Corollary 1. Let G be a planar graph. If G has bounded treewidth, then
ConvexAreaMinimization can be solved in polynomial time.

We can use this to give subexponental exact algorithms for area-optimal con-
vex drawings. We are not familiar with any previous results in this area. The
obvious brute-force approach (try for any assignment of grid points to the ver-
tices whether it works) yields an algorithm with run-time O≥((n2)n), where the
O≥(·) notation hides polynomial terms.

Corollary 2. There exists an algorithm to find a minimum-area convex grid-
drawing of a planar graph in O≥(2O(

∪
n logn)) time.
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Proof. Any planar graph has branchwidth O(
∧
n). By solving ConvexArea-

Minimization for values A = 1, 2, . . . , n2 we can hence find the minimum-area
convex grid-drawing in time O≥((n2)O(

∪
n)) = O≥(2O(

∪
n log n)) time.

4 NP-Hardness Results

We now give NP-hardness proofs that show that none of the conditions needed
for Theorem 1 and Corollary 1 can be dropped. Our reductions borrow many
ideas from [8] and [1].

4.1 Small Treewidth, Small Face-Degrees, Flexible Embedding

Recall that AreaMinimization is polynomial-time solvable if the treewidth and
the face-degrees are bounded, and the planar embedding is fixed. We now show
that if we allow to choose the planar embedding, the problem becomes NP-hard.

The reduction is from the 3-Partition problem defined as follows: Given 3n
positive integers a1, . . . , a3n, where

∑3n
i=1 ai = n · B and 1

4B < ai <
1
2B for all

i, is there a partition of a1, . . . , a3n into n groups of 3 numbers each such that
each group sums to B? It is well-known that 3-Partition is strongly NP-hard [7].
Given an instance of 3-Partition, we first define a frame, shown for n = 3 and
B = 6 in Fig. 2. It consists of a W × 4-grid (for W ≤ n(B + 1) + 2 odd) with
n repetitions of a pattern that leaves a face with B + 3 points not used by the
frame. Above and below this strip are (W + 1)/2 stacked cycles (not shown fully
in Fig. 2); all except the outer-most one are 4-cycles. Set A := W (2W + 4).

B points

3 points

Fig. 2. The frame of the NP-hardness construction. Shaded areas are triangulated; we
omit drawing edges in these areas for clarity.
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The frame is 3-connected (recall that shaded areas are triangulated) and has
a unique rotation system. Any k stacked cycles require a 2k × 2k-grid in any
planar drawing. Since the frame has two sets of (W + 1)/2 stacked cycles and a
2× 2-grid (shown bold) that are vertex-disjoint, one can argue that any drawing
of area A must have the outer-face shown in the figure and the drawing must be
(up to rotation) in a W × (2W + 4)-grid.

The graph in the middle strip has (once we add the gadgets for the ai’s)
exactly as many vertices as we can make grid points available to it. So not a
single grid point may be “wasted” by not having a vertex on it. One can argue
(details are omitted) that this forces the frame to be drawn exactly as shown.

“fat” vertex

xi

ai-path

Fig. 3. Encoding
a1=1, a2=4, a3=1

For each i = 1, . . . , 3n, define a path of length ai. Each
vertex on this path is connected to the “fat” vertex of the
frame; this is the unique vertex in the graph where the
rotation system can be changed. Also add one vertex xi

per index i, which is adjacent to all vertices of the ai-path.
See Fig. 3.

The frame left n faces with B + 3 points each. If the
3-partition instance has a solution, then for each group
ai1 , ai2 , ai3 that sums to B, we pick one of these faces, place
the ai-paths in the row with B points, and xi1 , xi2 , xi3 in
the row below. All edges can be drawn without crossing, and the face that results
has degree 17 (12 edges from the three gadgets, and 5 edges from the frame.)
Vice versa, if the graph can be drawn in area A, then the frame must be drawn
as shown, and so the ai-gadgets must be split up among the n faces with B + 3
points each. This gives a partition of the ai’s as desired.

Observe that the middle strip, including the ai-gadgets, could always be drawn
on 5 rows if we allowed an increase in width. It follows that the middle strip has
pathwidth at most 5 [5]. Each set of stacked cycles has pathwidth at most 4. By
combining their vertex orders, one can hence show that the graph has pathwidth
at most 7.

Theorem 4. AreaMinimization is NP-hard, even for a connected planar
graph with pathwidth at most 7, and even if we demand a planar drawing where
every face has at most degree 17.

4.2 3-Connected, and Convex Faces or Small Treewidth

Recall that AreaMinimization is polynomial-time solvable if the treewidth and
the face-degrees are bounded, and the rotation system is fixed. We now show
NP-hardnes if the condition on treewidth is dropped. The same construction
also works for NP-hardness of ConvexAreaMinimization.

Let a1, . . . , a3n be an instance of 3-partition. Define ∂ := max{12n2 + 3n,
→(B − 1)/2≥}. We construct a graph that is 3-connected, hence has a unique
rotation system. All faces are triangles except one face of degree 4. Fig. 4 shows
the frame of the graph. The width and height of this drawing is W := 6∂+2n+6,
and we set A := W 2. The frame has three connected components, the outer frame
as well as two blobs that consist of ∂ stacked cycles with one vertex in the middle.
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3∂ + 1 columnscolumns

∂ rows

3∂ + 1 columns

∂ rows

2n + 1

2∂ + 1 columns

2∂ + 1
rows

2∂ rows

B rows
∂ columns

Fig. 4. The NP-hardness reduction for inner triangulated graphs. The frame for n = 2
and B = 6. The picture uses κ = 6 (while κ = 56 would be correct). Shaded areas are
triangulated; we omit showing these edges for clarity.

Any drawing of area ∈ A = W 2 has at most (W − 1)2 grid points that are
not on the four extreme grid lines. G will have (W − 1)2 + 4 vertices, so in any
drawing with outer-face f it has (W − 1)2 + 4 − deg(f) vertices that are not on
the outer-face, hence cannot be placed on extreme grid lines. It follows that if
there exists a drawing of G of area ∈ A, then it must be on a W ×W -grid, and
the outer-face of G must be the (unique) face that has degree 4. Furthermore,
in such a drawing not a single grid point not on an extreme grid-line may be
wasted. Using this, one can argue that the outer frame is drawn exactly as in
Fig. 4, up to reflection and rotation. In particular, we have n + 1 “teeth” that
stick into the middle region, each column of a tooth has 2∂ grid points left (i.e.,
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not used by the outer frame), and each column between two teeth has 2∂ + B
grid points left. The two blobs are too big to fit into the columns at the teeth,
and too big to both fit left of the teeth, so one must be left of the teeth and the
other right of the teeth.

Between the outer frame and the blobs we add ∂ stacked cycles called layers;
the two blobs are inside all these cycles. Each layer must start in the far left
(to surround the left blob), go past all teeth to the right (to surround the right
blob), and then go back. The length of each layer is set so that it exactly fills
the grid points encountered along this path. The ∂ layers hence use up all grid
points except for B grid points in each column between two teeth.

There are ∂ ≤ 12n2 + 3n = (3n) · (4n + 1) layers. For i = 1, . . . , 3n, insert a
path of length ai in the face between layer i(4n) and layer i(4n)+1. These paths
can only be placed in the columns between teeth, so a drawing of area A gives
an assignments of the ai’s into groups that sum to B each, as desired.

Fig. 5. Triangulating between layers (red, dashed), and how to attach the ai-path

To make the graph inner triangulated, we connect two consecutive layers with
a zig-zag line, except for “collector-points” (thick and red in Fig. 5) that have
three or four neighbours on the previous layer, including the previous collector-
points. There are two ways to draw these connections; in one way the collector-
points are aligned vertically/horizontally, while in the other they are shifted
clockwise by one unit. We use this for 2n pairs of layers, and then for the next
2n pairs of layers use a symmetric construction that allows collector-points to be
aligned or to be shifted counter-clockwise by one unit. Finally, when adding the
ai-path, we attach it at the vertex diametrically opposite to the top collector-
point, and connect all vertices on the path to the two vertices before/after that
attachment-point. Over the course of the 4n layers between paths, we can shift
collector-points by up to ±2n units clockwise or counter-clockwise. With this, we
can bring the attachment-point of the ai-path to any of the n columns between
teeth, regardless of where the ai−1-path was. Hence for any solution of 3-partition



On Area-Optimal Planar Graph Drawings 209

we can draw G in a W × W -grid, and since faces are triangles or squares, the
drawing is convex. We conclude:

Theorem 5. AreaMinimization and ConvexAreaMinimization are NP-
hard, even for an internally triangulated 3-connected planar graph for which the
outer-face is a 4-cycle.

By omitting the triangulation edges in shaded areas of Fig. 4, and (roughly
speaking) replacing the triangulation between any second pair of layers by three
edges only, we can create a variant of this graph that has pathwidth at most 7
and for which any drawing of area A implies a solution to 3-partition.

Theorem 6. AreaMinimization is NP-hard, even for a 3-connected planar
graph of bounded pathwidth.

5 Conclusion

This paper revisited the problem of drawing planar graphs with optimal area.
We showed that finding a convex planar drawing with optimal area is possible in
polynomial time for all graphs with bounded treewidth, even if the planar em-
bedding is not fixed. Based on results for point-set embeddability, we also showed
that finding an area-optimal planar drawing is polynomial-time solvable if the
graph has bounded treewidth, bounded face-degrees, and the planar embedding
is fixed.

As for open problems, can one approximate the optimal area, or is the opti-
mization version of AreaMinimization APX-hard? For many other problems,
finding a poly-time algorithm for bounded-treewidth graphs was a first step to-
wards approximation algorithms. To do so, it would be helpful to find algorithms
that are fixed-parameter tractable in the treewidth, but ours is not. Is Convex-
AreaMinimization W [1]-hard with respect to the parameter treewidth?
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4. Fáry, I.: On straight line representation of planar graphs. Acta Scientiarum
Mathematicarum (Szeged) 11(4), 229–233 (1948)

5. Felsner, S., Liotta, G., Wismath, S.: Straight-line drawings on restricted integer
grids in two and three dimensions. Journal of Graph Algorithms and Applications
7(4), 335–362 (2003)

6. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10, 41–51 (1990)



210 T. Biedl

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman (1979)

8. Krug, M., Wagner, D.: Minimizing the area for planar straight-line grid
drawings. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS,
vol. 4875, pp. 207–212. Springer, Heidelberg (2008)

9. Mondal, D., Nishat, R.I.: Md. S. Rahman, and Md. J. Alam. Minimum-area
drawings of plane 3-trees. J. Graph Algorithms Appl. 15(2), 177–204 (2011)

10. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions in tree-
decompositions. J. Combin. Theory Ser. B 52, 153–190 (1991)

11. Schnyder, W.: Embedding planar graphs on the grid. In: ACM-SIAM Symposium
on Discrete Algorithms (SODA 1990), pp. 138–148 (1990)

12. Stein, S.: Convex maps, vol. 2, pp. 464–466. American Mathematical Society (1951)
13. Tutte, W.T.: Convex representations of graphs. Proc. London Math. Soc. 10(3),

304–320 (1960)
14. Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen

Mathematiker-Vereinigung 46, 26–32 (1936)



Shortest Two Disjoint Paths in Polynomial Time
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Abstract. Given an undirected graph and two pairs of vertices (si, ti)
for i ∈ {1, 2} we show that there is a polynomial time Monte Carlo
algorithm that finds disjoint paths of smallest total length joining si
and ti for i ∈ {1, 2} respectively, or concludes that there most likely
are no such paths at all. Our algorithm applies to both the vertex- and
edge-disjoint versions of the problem.

Our algorithm is algebraic and uses permanents over the quotient
ring Z4[X]/(Xm) in combination with Mulmuley, Vazirani and Vazirani’s
isolation lemma to detect a solution. We develop a fast algorithm for
permanents over said ring by modifying Valiant’s 1979 algorithm for the
permanent over Z2l .

1 Introduction

How fast can we find the shortest two vertex-disjoint paths joining two given
pairs of vertices in a graph? Figure 1 shows an example instance with an optimal
solution of total length 6 + 6 = 12, where length is the number of edges on the
two paths. Note that neither path is a shortest path.

This problem is sometimes called min-sum two disjoint paths. We solve it
in polynomial time. One would expect an algorithmic graph problem of this
type to have been understood a generation ago, but to our best knowledge, no
subexponential time algorithm was known [5,7].

By a simple reduction, our algorithm also applies to the edge-disjoint version
of the problem, where the two paths may not share an edge (but may share
vertices). The complexity of this problem was also open for many decades [6].

s1 t1

s2 t2

P1

P2

Fig. 1. Two shortest disjoint paths joining the red and blue vertex pairs

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 211–222, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014
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Our algorithm is algebraic and follows recent activity in algebraic algorithms
for some fundamental graph problems developed in the frameworks of fixed-
parameter and exponential time algorithms [1,2,8,18,19]. One ingredient is to
express a graph problem in terms of a matrix of indeterminates, an idea that
goes back to Tutte [16] and Edmonds [4]. The matrix function we compute is
a permanent, and we use ideas of Valiant [17] to compute this in a ring of
characteristic 4. To work in full generality, our algorithm is randomized, using
Mulmuley, Vazirani, and Vazirani’s isolation lemma [10].

Related problems. For planar graphs, polynomial-time algorithms for shortest
two disjoint paths have been found by Colin de Verdière and Schrijver [3] and
Kobayachi and Sommer [7], under certain conditions on the placement of termi-
nals. Our algorithm works for all planar cases, but is much slower.

The problem’s decision version—decide if two disjoint paths joining given
vertex pairs exist, no matter their length—was shown to be polynomial-time
computable by Ohtsuki [11], Seymour [12], Shiloah [13], and Thomassen [14];
all published independently in 1980. More recent papers reduce the running
time for that problem to near-linear, see Tholey [15] and the references therein.
However, no algorithms for finding the shortest two disjoint paths seem to follow
from these constructions.

It is worth mentioning a different problem that might as well have the same
name: Find two disjoint paths of minimal total length from the start nodes
{s1, s2} to the end nodes {t1, t2}. That problem also allows s1 to be joined with
t2 and s2 with t1. It has a solution of total length 10 in the example. That
problem is algorithmically much simpler, well understood, and can be solved by
standard flow techniques in linear time.

Another nominally related problem, two disjoint shortest paths, is to decide
if the given endpoints can be joined using two disjoint paths, each of which is a
shortest path. (In Figure 1, the answer is “no.”) That problem can be solved in
polynomial time, as shown by Eilam–Tzoreff [5].

Li, McCormick, and D. Simchi-Levi [9] have shown that the problem of min-
imizing the maximum of both path lengths (sometimes called min-max two
disjoint paths) is NP-hard, both in the vertex- and edge-disjoint versions. Also,
the problem of finding two disjoint paths, one of which is a shortest path, is
NP-hard [5].

1.1 Result

We are given an undirected, loopless, unweighted, and simple input graph G
with n vertices and m edges, as well as two pairs {s1, t1} and {s2, t2} of terminal
vertices. We will show how to find two vertex-disjoint paths P1 and P2, such
that Pi joins si and ti for i ∈ {1, 2} and |P1| + |P2| is minimal. We assume that
neither edge s1t1 or s2t2 exists in G; otherwise the problem is solved by finding
a shortest path between the other terminal pair using breadth-first search. We
consider first the case where there is a unique optimal solution, in which case
our algorithm is deterministic and slightly simpler to explain.
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Unique solution. We define three matrices over 0, 1, and a formal indeterminate
x. First, construct the n × n matrix A by identifying the vertex set of G with
{1, . . . , n} and setting

auv =


⎧

⎨

x , if uv ∈ E ;

1 , if u = v ;

0 , otherwise .

(1)

Note that because G is undirected, the matrix is symmetric. It can be viewed as
a univariate Tutte matrix.

Then, for given vertices v, w, v◦, and w◦ specified below, construct the matrix
A[vw, v◦w◦] from a A by putting 0s in the rows corresponding to v and v◦, then
putting 1s in the two entries corresponding to vw and v◦w◦:

A[vw, v◦w◦] =

⎩

⎢
⎢
⎣

⎛

⎝
⎝
⎞

v

v◦
w w◦

0 010 0

0 010 0

. (2)

We then define the univariate polynomial

f = perA[t1s1, t2s2] + perA[t1s1, s2t2] − perA[s1s2, t1t2] .

Here, the (symbolic) permanent of an n× n matrix A = (aij) is defined as

perA =
⎠

σ

∏

i

aiσ(i) , (3)

where the summation ranges over all permutations σ of {1, . . . , n}. Note that
the matrix entries aij , the permanent perA, and f itself are polynomials in x.

Theorem 1. The graph G contains a unique pair of disjoint paths of shortest
total length k if and only if the lowest-order term in f is 2xk.

This does not seem algorithmically useful, because the definition of f involves
several permanents, which usually are hard to compute. Our main algorithmic
insight is the following: Because the coefficient we are looking for is 2, it suffices
to perform the computation of f in a ring of characteristic larger than 2. We pick
the polynomial ring Z4[x]/(xM ) of characteristic 4, where M = ⊆2n4⊂. We show
in Section 3 that the permanent in this ring can be computed in polynomial
time.

We can summarize our algorithm as follows:

Algorithm U. (Unique shortest two disjoint paths) Finds the minimum length
of a unique pair of disjoint paths in G joining s1 and t1 and joining s2 and t2,
respectively.

U1. [Setup.] Construct A as given by (1).

U2. [Compute f .] Construct A[t1s1, t2s2], A[t1s1, s2t2], and A[s1s2, t1t2]. Com-
pute f over Z4[x]/(xM ) using Algorithm P for the three permanents.

U3. Return the minimum j such that xj has nonzero coefficient in f .
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Non-unique solutions. Theorem 1 does not help us in the general case: If G
contains an even number of optimal solutions of total length k, then each con-
tributes 2xk to f , so the coefficient vanishes modulo 4. However, we can use the
standard remedy for this type of situation by equipping the edges with random
weights and looking for a unique weighted solution.

To be concrete, let

W = {2nm, . . . , 2nm + 2m− 1} . (4)

For each e ∈ E, choose a random integer w(e) ∈ W . Now define A by

auv =


⎧

⎨

xw(uv) , if uv ∈ E ;

1 , if u = v ;

0 , otherwise .

(5)

(Note that A is still symmetric.) From here, the construction of the three ma-
trices A[t1s1, t2s2], A[t1s1, s2t2], A[s1s2, t1t2], and the polynomial f is the same
as the unique case of Section 1.1.

Theorem 2. If G contains a unique pair of disjoint paths of shortest total length
k, then with probability 1

2 , the lowest-order term in f is 2xj for some j with
k minW → j → k maxW .

The algorithm differs from Algorithm U only in the first and last steps:

Algorithm S. (Shortest two disjoint paths) With probability 1
2 , finds the mini-

mum length of two disjoint paths in G joining s1 and t1 and joining s2 and t2,
respectively.

S1. [Setup] For each e ∈ E, choose integer weight w(e) ∈ W uniformly at
random. Construct A as given by (5).

S2. [Compute f .] (Identical to Step U2.)

S3. Find the minimum j such that xj has nonzero coefficient in f . Return
∧ j/minW ≥.

As presented here, Algorithm S runs in time O(n11). Our main concern is to
communicate the existence of a polynomial-time algorithm, so we do not discuss
how to reduce the exponent. A witness for an optimal solution can be found
using self-reduction, increasing the running time by another linear factor. The
error probability can be reduced to 2−r by repeating the algorithm r times. For
the edge-disjoint version of the problem, add an edge to each terminal vertex
and apply Algorithm S to the line graph of the resulting graph.

1.2 Conclusion

We still have no deterministic polynomial-time algorithm for the two disjoint
shortest paths problem, nor do we know how to significantly improve the running
time of our algorithm, say to subseptic. For higher k > 2, the complexity of the
k disjoint shortest paths problem remains unresolved.
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2 Proof of Theorems 1 and 2

We will give a combinatorial understanding of f . We subsume the construction
of A in the case of unique solutions under the general case by setting w(e) = 1
for each edge e.

Construct a weighted directed graph D from G as follows. For each nonter-
minal vertex v insert the self-loop vv with weight 1. For each edge vw insert the
arcs vw and wv, each with weight w(vw) = w(wv). Given two arcs vw and v◦w◦

we define the directed graph D[vw, v◦w◦] as follows: Remove all arcs outgoing
from v and v◦. Then add the arcs vw and v◦w◦ of weight 1. We call these arcs
forced ; they are the only way to leave v and v◦.

Now we can can interpret the matrix A[vw, v◦w◦] from (2) as a weighted ad-
jacency matrix of D[vw, v◦w◦]. Each permutation contributing to the permanent
corresponds to a directed cycle cover. Recall that a (directed) cycle cover is a
collection of vertex-disjoint directed cycles that visit every vertex in the graph.

Lemma 1

f =
⎠

P1,P2

2xw(P1)+w(P2) perAP1P2 .

where the sum is over all undirected disjoint paths Pi joining si and ti for
i ∈ {1, 2}. Here, AP1P2 denotes the matrix A with all rows and columns cor-
responding to vertices on P1 and P2 removed.

Proof. We consider the contribution of each directed cycle cover to f . Consider
a permutation σ. It can be checked that there are 6 cases for how a permutation
can pass the 4 terminal vertices in any of the three forced graphs, shown in
Fig. 2. (There are many other ways of permuting {s1, t1, s2, t2}, but none of the
forced graphs contains the necessary arcs.)

Consider first the permutation of Type 1 in the first row, going from s1 to t1
and from s2 to t2. This corresponds to two disjoint paths in the original graph,
so these permutations are what we want to count, and indeed they contribute
positively to perA[t1s1, t2s2].

However, that term also picks up a positive contribution from permuta-
tions of Type 2, which we do not want to count. We remedy this problem
with the other terms. Each Type 2 permutation also contributes negatively to
the third row. To be precise, we can associate each Type 2 permutation con-
tributing to perA[t1s1, t2s2] to another permutation contributing negatively to
− perA[s1s2, t1t2] by changing the forced edges and reverting the path from s1
to t2. Since forced edges have weight 1 and all other arcs have the same weight
as their reversal, the two permutations contribute the same term with different
signs and therefore cancel.
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Contribution to f Type 1 Type 2 Type 3

+perA[t1s1, t2s2]
s1 t1

s2 t2

s1 t1

s2 t2

+perA[t1s1, s2t2]
s1 t1

s2 t2

s1 t1

s2 t2

− perA[s1s2, t1t2]
s1 t1

s2 t2

s1 t1

s2 t2

Fig. 2. Cycles contributing to f . Gray: directed paths, solid: forced arcs.

The Type 3 permutations cancel in a similar fashion.
The contribution of a permutation of Type 1 consists of the contributions of

the edges along the paths Pi joining si and ti, where i ∈ {1, 2}. These edges
contribute the factor xw(P1)+w(P2). The remaining edges avoid the terminal ver-
tices, so their total contribution can be given in terms of the permanent of an
induced subgraph of D. Then the total contribution of all permutations in the
first and second case is 2xw(P1)+w(P2) perAP1P2 . ⇐⇒
Proof (of Theorem 1). Consider perAP1P2 . The contribution of the identity per-
mutation is exactly 1 because all self-loops are labelled 1. Any other permutation
contributes at least the factor x2. Thus, the term with the smallest exponent is
2xw(P1)+w(P2) = 2x|P1|+|P2|, for the shortest two disjoint paths P1 and P2. ⇐⇒

For the second theorem, we need the isolation lemma [10]:

Lemma 2. Let m be a positive integer, W a set of consecutive positive inte-
gers, and let F be a nonempty family of subsets of {1, . . . ,m}. Suppose each
element x ∈ {1, . . . ,m} receives weight w(x) ∈ W independently and uniformly
at random. Define the weight of a set S in F as w(S) =

∑
x√S w(x) . Then, with

probability at least 1 −m/|W |, there is a unique set in F of minimum weight.

(The lemma is normally stated for weights of the form W = {1, . . . , |W |}, but
as observed in [10], the above generalization holds as well.)

Proof (of Theorem 2). Let W be as in (4), and k be the total length of two
shortest disjoint paths. Let F denote the family of edge subsets belonging to P1

or P2, for each pair (P1, P2) of two shortest disjoint paths.
By Lemma 2, with probability at least 1−m/2m = 1

2 , there is a unique set of
edges in F of minimal weight, corresponding to a pair (P1, P2) of paths. Their
total weight is at least k minW and at most k maxW = k(2mn + 2m − 1) <
(k + 1)2mn = (k + 1) minW . In particular, all nonoptimal solutions have even
larger weight. As in the proof of Theorem 1, the smallest exponent in f is of the
form 2xw(P1)+w(P2). ⇐⇒
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3 Computing the Permanent

We begin with some elementary properties of the permanent in rings. For a ring
R we let Mn(R) denote the set of n × n matrices over R. Sometimes we write
M(R) =

⋃
n Mn(R). For A ∈ Mn(R) let Aij denote the matrix in Mn−1(R) that

results from deleting the ith row and jth column of A.

Elementary row operations. If A◦ is constructed from A by exchanging two rows,
then perA = perA◦. If A◦ is constructed from A by multiplying all entries in a
single row by c ∈ R, then perA◦ = c perA. The third elementary row operation,
however, is more complicated:

Lemma 3. Consider a matrix A ∈ M(R), ring element c ∈ R and integers i
and j. Let A◦ be the matrix constructed by adding the cth multiple of row j to
row i. Let D be the matrix constructed by replacing row i with row j. Then

perA◦ = perA + c perD .

Proof. From the definition,

perA◦ =
⎠

σ

∏

k

a◦kσ(k) =
⎠

σ

a◦iσ(i)
∏

k ≤=i

akσ(k) =
⎠

σ

(aiσ(i) + cajσ(j))
∏

k ≤=i

akσ(k)

=
⎠

σ

aiσ(i)
∏

k ≤=i

akσ(k) +
⎠

σ

cajσ(j)
∏

k ≤=i

akσ(k) = perA + c perD . ⇐⇒

In other words, we can get from A to A◦ at the cost of computing perD.
(The good news is that because D has duplicate rows, perD turns out to be
algorithmically inexpensive ‘dross’ in our algebraic structure.)

Quotient rings. Computation takes place in the two rings El = Zl[x]/(xM ) for
l ∈ {2, 4}, where h = xM and M = ⊆2n4⊂ > nmaxW is chosen larger than the
degree of the polynomial f . Every element in El can be uniquely represented as
[g]h, where g ∈ Zl[x] is a polynomial of degree at most M −1 with coefficients in
Zl. We have, e.g., [2x+ 3x2]h + [x + x2]h = [3x]h and [x + xM−1]h · [x]h = [x2]h
in E4. Note that the ring elements are formal polynomials, not functions; two
polynomials are equal if and only if all their coefficients agree. For instance,
[x]h and [x2]h are not equal in E2. For a ring element a ∈ El and integer
j ∈ {0, . . . ,M − 1}, we let [xj ]a denote the jth coefficient of the representation

of a. Formally, if a = [g]h and g =
∑M−1

j=0 cjx
j then [xj ]a = cj ∈ Zl. We will

ignore the distinction between a ring element [g]h and the polynomial g and
regard the elements of El as polynomials ‘with higher powers chopped off.’

In E4 we introduce a ‘permanent with all coefficients replaced by their parity.’
To be precise, define the parity permanent per2 : M(E4) ∪ E4 for A ∈ M(E4)
for each coefficient by

[xj ] per2 A = ([xj ] perA) mod 2 .

We will see in Section 3.4 that the parity permanent E4 is analogous to the
(standard) permanent in E2, which we can compute in polynomial time.
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Even and odd polynomials. A polynomial a is even if [xj ]a = 0 (mod 2) for each
j ∈ {0, . . . ,M − 1}. Otherwise it is odd. In E2, the zero polynomial is the only
even polynomial. Note that the sum of two even polynomials is even, but the
sum of two odd polynomials need not be even. A product ab is even if one of
its factors is. Let m(a) = min{ j : [xj ]a = 1 (mod 2) } denote the index of its
lowest-order odd coefficient of a.

In a product in E4 with one even factor, the parity permanent can replace
the permanent:

Lemma 4. For A ∈ M(E4) and even a ∈ E4, we have a perA = a per2 A .

Proof. We show that the polynomials on both sides have the same coefficients
in Z4. By the definition of polynomial multiplication,

[xj ]a perA =

j⎠

k=0

[xk]a · [xj−k] perA

=

j⎠

k=0

[xk]a · [xj−k] per2 A (mod 4) = [xj ]a per2 A ,

where the second equality uses 2x = 2(x mod 2) (mod 4). ⇐⇒

Laplace expansion. We consider the Laplace expansion of the permanent over
E4 in the special case where the first column has only a single odd element.

Lemma 5. Let A ∈ Mn(E4). Assume ai1 is even for all i > 1. Then,

perA = a11 perA11 +

n⎠

i=2

ai1 per2 Ai1 (in E4) .

Proof. In any commutative ring, the permanent satisfies the Laplace expansion,

perA =

n⎠

i=1

ai1 perA1j .

By Lemma 4, we can use the parity permanent in all terms except for i = 1. ⇐⇒

3.1 Overview of Algorithm

Algorithm P. (Permanent over E4) Given A ∈ Mn(E4) computes perA in
polynomial time in n and M .

It transforms A successively such that a21, . . . , an1 are all even. This leads to
a single recursive call with argument A11, following Lemma 5. For each trans-
formation, a matrix D with duplicate rows is produced, according to Lemma 3.
Their contributions are collected in a list L, and subtracted at the end.
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P1. [Base case.] If n = 1 return a11.

P2. [Initialize.] Let L be the empty list.

P3. [Easy case.] If ai1 is even for every i ∈ {1, . . . , n}, go to P8.

P4. [Find pivot.] Choose i ∈ {1, . . . , n} such that ai1 is odd and m(ai1) is
minimal. Ties are broken arbitrarily. Exchange rows 1 and i. [Now a11 is
odd and m(a11) minimal.] Set i = 2.

P5. [Column done?] If i = n + 1 go to P8.

P6. [Make ai1 even.] Use Algorithm E to find c ∈ E4 such that ai1 + ca11 is
even. Let A◦ and D be as in Lemma 3. Compute c perD using Lemma 7
and add it to L. Set A = A◦.

P7. [Next entry in column.] Increment i and return to P5.

P8. [Compute subpermanent.] Compute p = perA11 recursively.

P9. [Return.] Return a11p +
∑

i>1 ai1 per2(Ai1) −∑
d√L d, using Algorithm Y

for the parity permanents.

3.2 Making Odd Polynomials Even

In Step P6 we need to turn an odd polynomial into an even one, which can be
done by a simple iterative process. Consider for instance the odd polynomials
a = aij = x3 + 2x5 + 3x6 and b = ajj = x + x3 in E4. If we choose c = x2 then
bc = (x + x3)x2 = x3 + x5, so a + bc = 2x3 + 3x5 + 3x6 . At least [x3](a + bc) is
now even, even though we introduced a new, higher-order, odd coefficient. We
add the corresponding higher-order term to c, arriving at c = x2 + x4. Now we
have a + bc = 2x3 + 3x6 + x7 . Repeating this process, the coefficient of xj for
each j ∈ {0, . . . ,M − 1} is eventually made even.

Algorithm E. (Even polynomial) Given l ∈ {2, 4} and odd polynomials a, b ∈ El

with m(a) ≤ m(b), finds a polynomial c ∈ El such that a + bc is even.

E1. [Initialize] Set r = 1. Set cr = 0, the zero polynomial in El.

E2. [Done?] If a + bcr is even, output cr and terminate.

E3. Set cr+1 = cr + xm(a+bcr)−m(b). Increment r. Return to Step E2.

Lemma 6. Algorithm E runs in polynomial time in M .

Proof. To see that Step E3 makes progress, set c = cr, c
◦ = cr+1 and let j =

m(a+ bc) denote the index of the lowest-order odd coefficient in a+ bc. Consider
the next polynomial,

a + bc◦ = a + b(c + xj−m(b)) = a + bc + bxj−m(b) .

By the definition of polynomial multiplication, its jth coefficient

[xj ](bxj−m(b)) = [xm(b)]b · [xj−m(b)]xj−m(b) = [xm(b)]b · 1

is odd. Since [xj ](a + bc) is also odd, [xj ](a + bc◦) is even.
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Moreover, for j◦ < j, we can likewise compute

[xj′ ](bxj−m(b)) = [xj′−j+m(b)]b ,

which is even by minimality of m(b). Thus, bxj−m(b) introduces no new odd
terms to a + bc◦ of index smaller than j.

In particular, m(a+ bc1) < m(a+ bc2) < · · · , so Algorithm E terminates after
at most M iterations. ⇐⇒

3.3 Duplicate Rows

The elementary row operation in Step P6 produces dross in the form of a matrix
with duplicate rows.

Lemma 7. Let A ∈ Mn(E4) have its first two rows equal. Then

perA = 2
⎠

1⊆j<k⊆n

a1ja2k per2 A{1,j},{2,k} .

Proof. Given a permutation σ with j = σ(1) and k = σ(2), construct the per-
mutation σ◦ by exchanging these two points: set σ◦(1) = k, σ◦(2) = j, and
σ◦(i) = σ(i) for i ∈ {3, . . . , n}. We have a1σ(1) = a1j = a2j = a2σ′(2) and,
similarly, a2σ(2) = a1σ′(1). Thus,

∏

i

aiσ(i) +
∏

i

aiσ′(i) = (a1σ(1)a2σ(2) + a1σ′(1)a2σ′(2))
∏

i>2

aiσ(i)

= 2a1σ(1)a2σ(2)
∏

i>2

aiσ(i) = 2
∏

i

aiσ(i) .

In other words,

perA =
⎠

σ : σ(1)<σ(2)

2a1σ(1)a2σ(2)
∏

i>2

aiσ(i) =
⎠

1⊆j<k⊆n

a1ja2k2 perA{1,j},{2,k} ,

where AP,Q is A without the rows in P and columns in Q. Finally, we replace
the permanent with the parity permanent using Lemma 4 with a = 2. ⇐⇒

3.4 Computing the Parity Permanent

First we observe that the permanent in E2 can be computed in polynomial time.
We are tempted to argue that since Z2 is a field, the ring Z2[x] is a Euclidean
domain, where Gaussian elimination computes the determinant in polynomially
many ring operations. Moreover, since the characteristic is 2, the determinant
and the permanent are identical. The problem with this argument is that we
have little control over the size of the polynomials produced during this process.
Instead, we choose to give an explicit algorithm for the permanent in E2 by
simplifying Algorithm P.

First, a matrix with duplicate rows in any ring of characteristic 2 has zero
permanent. Thus, we need no analogues of Lemma 3, Algorithm D, or list L. We
can remove Step P2 and replace Step P6 by
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P◦6. [Make ai1 = 0.] Use algorithm E to find c ∈ E2 such that ai1 + ca11 = 0.
Add the cth multiple of row 1 to row i in A.

Furthermore, since the even polynomials in E2 are all 0, the only term surviving
in the Laplace expansion is a11 perA. Thus, Step P9 becomes simply:

P◦9. [Return.] Return a11p.

It remains to connect the parity permanent in E4 to the permanent in E2.
Define the map φ : E4 ∪ E2 replacing each coefficient by its parity,

[xj ]φ(a) = [xj ]a mod 2 .

Lemma 8. The map φ is a ring homomorphism.

Proof. The unit in both E4 and E2 is the constant polynomial 1, and indeed
φ(1) = 1. To see that φ(a) + φ(b) = φ(a + b), we consider the jth coefficient on
both sides: [xj ](φ(a) +φ(b)) = [xj ]φ(a) + [xj ]φ(b) = [xj ]a mod 2 + [xj ]b mod 2 =
([xj ]a + [xj ]b) mod 2 = ([xj ](a + b)) mod 2 = [xj ](φ(a) + φ(b)) . Similarly, to see
that φ(a)φ(b) = φ(ab), we expand

[xj ](φ(a)φ(b)) =

j⎠

k=0

[xk]φ(a)[xj−k ]φ(b) =

j⎠

k=0

([xk]a mod 2)([xj−k]b mod 2)

=

j⎠

k=0

([xk]a)([xj−k ]b) mod 2 = [xj ]ab mod 2 = [xj ]φ(ab) . ⇐⇒

We extend φ to matrices by defining the map Φ : Mn(E4) ∪ Mn(E2), where
the ijth entry of the matrix Φ(A) is φ(aij). Then the following holds in E2:

Lemma 9. φ(per2 A) = perΦ(A).

Proof. From the definition (3) and Lemma 8,

perΦ(A) =
⎠

σ

∏

i

φ(aiσ(i)) = φ

(⎠

σ

∏

i

aiσ(i)

)
= φ(perA) .

Thus, for each j ∈ {0, . . . ,M − 1}, we have

[xj ] perΦ(A) = [xj ]φ(perA) = ([xj ] perA) mod 2 = [xj ] per2 A ,

so the two polynomials have the same coefficients in Z2. ⇐⇒
Thus we have the following algorithm:

Algorithm Y. (Parity permanent) Given A ∈ Mn(E4), compute per2 A in time
polynomial in n and M .

Y1. [Let P = Φ(A)] Construct P ∈ Mn(E2) such that [xj ]pij = [xj ]aij mod 2.

Y2. [Permanent] Compute p = perP in E2 using algorithm P◦.
Y3. [Return result] Return the polynomial in E4 whose jth coefficient is [xj ]p.

Thus, in order to compute the expression in Lemma 7 for Step P6, Algo-
rithm Y is called O(n2) times, once for every per2 A{1,j},{2,k}. It is also called in
total O(n2) times in Step P9.
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Abstract. We present new algorithms for listing triangles in dense and
sparse graphs. The running time of our algorithm for dense graphs is
Õ(nε + n3(ε−1)/(5−ε)t2(3−ε)/(5−ε)), and the running time of the algo-
rithm for sparse graphs is Õ(m2ε/(ε+1) + m3(ε−1)/(ε+1)t(3−ε)/(ε+1)),
where n is the number of vertices, m is the number of edges, t is the
number of triangles to be listed, and ω < 2.373 is the exponent of fast
matrix multiplication. With the current bound on ω, the running times of
our algorithms are Õ(n2.373 +n1.568 t0.478) and Õ(m1.408+m1.222 t0.186),
respectively. We first obtain randomized algorithms with the desired run-
ning times and then derandomize them using sparse recovery techniques.

If ω = 2, the running times of the algorithms become Õ(n2 + nt2/3)
and Õ(m4/3+mt1/3), respectively. In particular, if ω = 2, our algorithm
lists m triangles in Õ(m4/3) time. Pǎtraşcu (STOC 2010) showed that
Ω(m4/3−o(1)) time is required for listing m triangles, unless there exist
subquadratic algorithms for 3SUM. We show that unless one can solve
quadratic equation systems over a finite field significantly faster than
the brute force algorithm, our triangle listing runtime bounds are tight
assuming ω = 2, also for graphs with more triangles.

1 Introduction

Algorithmic problems concerning the set of triangles in a graph have recently
received much attention, due to applications in various kinds of graph analysis
such as the study of social processes [8], community detection [5], and dense
subgraph mining [25]. Many of these problems require the listing of all triangles
in a graph — see [24,6,4] for a number of examples.
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We consider simple, directed or undirected graphs with n vertices and m edges.
A dense graph may contain σ(n3) triangles, so in terms of n the worst-case
complexity of the trivial cubic time algorithm is optimal. However, most graphs
of interest are not dense. In 1978 Itai and Rodeh [13] obtained an algorithm
for listing all triangles in O (

m3/2
)
, which is always an improvement over the

näıve O (
n3

)
algorithm. Their algorithm is optimal as a graph with m edges may

contain τ
(
m3/2

)
triangles.

In this paper we consider output sensitive algorithms for triangle listing, which
run asymptotically faster when the number t of triangles is small, with no addi-
tional assumptions on the input graph. (For example, we do not consider running
time bounds in terms of graph parameters such as arboricity.) Our approach is
to combine known techniques for counting the number of triangles, using fast
matrix multiplication, with algebraic and combinatorial techniques that allow
us to compute the actual triangles. We initially obtain randomized algorithms
which we then derandomize using sparse recovery techniques.

Since our focus is on constants in the exponents of running time, we use Õ (·)
notation to suppress multiplicative factors of size no(1). For dense graphs, our
algorithm runs in Õ (

nε + n3(ε−1)/(5−ε)t2(3−ε)/(5−ε)
)

time, where λ < 2.373
is the exponent of square matrix multiplication [26,18]. For sparse graphs, our
algorithm runs in Õ (

m2ε/(ε+1) + m3(ε−1)/(ε+1)t(3−ε)/(ε+1)
)

time. Under the

assumption λ = 2 algorithms run in Õ (
n3

)
and Õ (

m3/2
)

algorithms for every
possible value of t. Our dense and sparse algorithms are inter-dependent. The
dense algorithm performs a sparsifying steps and calls the dense algorithm, while
the sparse algorithm performs a densifying step and calls the dense algorithm.

Pǎtraşcu [23] has shown that listing m triangles in a graph with m edges
requires time τ

(
m4/3−Ω

)
, for every Π > 0, unless there exists an algorithm for

3SUM running in O (
n2−α

)
time, for some β > 0. Our algorithm lists m trian-

gles in Õ (
m2ε/(ε+1)

)
time. With the current bound λ < 2.373, our algorithm

lists m triangles in O (
m1.408

)
. Interestingly, if λ = 2, the running time becomes

Õ (
m4/3

)
, essentially matching the conditional lower bound of Pǎtraşcu [23].

Significant improvements of the exponents in our results are therefore unlikely.
The best previously available algorithms for triangle listing that we are aware

of are the O (
m3/2

)
algorithm of Itai and Rodeh [13], from which it is also easy

to obtain an Õ (
nε + min(n3, nt, t3/2)

)
algorithm, and an O (

t1−ε/3nε
)
-time

algorithm that follows from a reduction by Williams and Williams [27, Corollary
G.1] from triangle listing to triangle detection. The running times obtained by
our algorithms improve upon both of the aforementioned prior results for all
values of t.

1.1 Related Work

Figure 1 compares the results described above, focusing on worst-case time com-
plexity. For completeness we now describe some other related work that is not
directly comparable to our results.



Listing Triangles 225

Reference Time bounds If ω = 2

Itai and Rodeh [13]
Õ

(
nε +min(n3, nt, t3/2)

)

O
(
m3/2

) Õ
(
n2 +min(nt, t3/2)

)

Williams and Williams [27] Õ
(
nεt1−ε/3

)
Õ

(
n2t1/3

)

Pǎtraşcu [23] Ω̃(min(m4/3, n2, t4/3)) ∗

This paper
Õ

(
nε + n

3(ε−1)
5−ε t

2(3−ε)
5−ε

)

Õ
(
m

2ε
ε+1 +m

3(ε−1)
ε+1 t

3−ε
ε+1

)
Õ

(
n2 + nt2/3

)

Õ
(
m4/3 +mt1/3

)

Fig. 1. Upper and (conditional) lower bounds for listing t triangles in a graph of n
vertices and m edges. The results are stated in terms of the exponent ω of square
matrix multiplication, which is known to be below 2.373 [26]. All bounds hold are
for worst-case graphs and hold for every choice of n,m, t ≥ 1. The rightmost column
highlights the upper bounds that would result if ω = 2. The lower bound by Pǎtraşcu
marked by ∗ relies on the assumption that 3SUM requires Ω̃(n2) time.

Quite a bit of work has been done on triangle listing algorithms that perform
well on real-life graphs. The paper of Schank and Wagner [24] contains a good
overview of various algorithms with O (

m3/2
)

worst-case running time, and in-
vestigates how well these algorithms perform on graphs from various application
areas, often running much faster than the worst-case analysis would suggest.
One algorithm that is often able to beat the worst-case bound is based on enu-
merating a set of 2-paths where the degree of the middle vertex is no larger than
the degrees of the start and end vertices (this is a simplified version of node-
iterator-core from [24]). Recently, Berry et al. [4] gave a theoretical explanation
why triangle listing is fast for most graphs, even for graphs with a skewed degree
distribution, by studying a class of random graphs.

Recently many authors have studied triangle counting and listing algorithms
for massive graphs, using either external memory [10,20] or the MapReduce
framework for distributed computation [1]. However, for worst-case graphs these
algorithms all use τ(m3/2) time, even when the number of triangles is zero.

As mentioned above, Pǎtraşcu [23] showed a link between triangle listing and
the time complexity of 3SUM. Jafargholi and Viola [14] further investigated
this connection, showing that surprising algorithms for 3SUM would lead to
surprising algorithms for triangle listing.

Alon, Yuster, and Zwick [2] show how to efficiently detect the presence of
small subgraphs in sparse graphs. For triangles they achieve a time bound of
O (

m2ε/(ε+1)
)
, and the algorithm even allows counting the number of trian-

gles. The algorithm consists of a densification step that enumerates all 2-paths
(i.e., paths with two edges) through vertices with degree at most Δ, for a param-
eter Δ. In this way all triangles that contain a vertex of degree at most Δ are
found. The number of triangles within the set of vertices of degree larger than
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Δ is found by squaring the adjacency matrix, which for every pair of vertices
gives the number of 2-paths that connect them. Summing over all edges we get
the number of triangles multiplied by 3.

Many authors have given efficient algorithms for approximately counting the
number of triangles in a graph, see e.g. [16] and its references. Most of these
derive an estimator by some kind of sampling followed by an exact triangle
counting algorithm.

1.2 Our Contributions

Our central contribution is a randomized algorithm that lists (with high proba-
bility) all triangles in a graph by alternating two procedures:

– Densifying: Eliminate vertices of low degrees by enumerating all 2-paths
going through them, and

– Sparsifiying: Eliminate edges that are part of few triangles by reporting all
such triangles using sparse signal recovery techniques.

We can derandomize the algorithm at a cost of a factor no(1) in the running
time by using known explicit constructions from the sparse signal recovery lit-
erature. Let λ denote the exponent of square matrix multiplication. In section 3
we show:

Theorem 1. There exists a deterministic algorithm that lists all t triangles in
a graph of n vertices in time Õ (

nε + n3(ε−1)/(5−ε)t2(3−ε)/(5−ε)
)
.

With the bound λ < 2.373 [26] we get a time bound of O (
n2.373 + n1.568 t0.478

)
.

In section 3 we also derive the following theorem:

Theorem 2. There exists a deterministic algorithm that lists all t triangles in
a graph of m edges in time Õ (

m2ε/(ε+1) + m3(ε−1)/(ε+1)t(3−ε)/(ε+1)
)
.

Using the bound on λ as above we get: O (
m1.408 + m1.222 t0.186

)
. In particular,

listing m triangles in a graph of m edges can be done in time O (
m1.408

)
.

We note that if λ = 2 the time complexity for listing m triangles reduces
to Õ (

m4/3
)
, meeting the conditional lower bound of [23] based on hardness of

3SUM. In section 6 we show that unless another seemingly difficult problem
has faster algorithms, namely quadratic systems of equations (QES), our two
runtime bounds are tight also for graphs with more triangles.

QES is defined as follows. Let F be a finite field and |F | its number of elements.
A quadratic equation system over F l is a set of k quadratic equations in l
variables over F . It is easy to see that QES is NP-complete, as for instance
NAESAT easily reduces to it with one equation per clause already over F =
GF (2), and it is a polynomial time task to verify a purported solution.

QES is a well-studied problem. The assumption that QES is intractable even
on average has been used to design several important cryptosystems (e.g. [17,21]).
A faster algorithm for QES would help attack these. Some algorithms that work
well in practice have been designed (see e.g. [15,7]), though in the worst case,
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these do not improve over the exhaustive search |F |l poly(l, k) time algorithm.
It is a big open problem whether one can obtain a substantial improvement (of
the form |F |(1−Ω)l for some Π > 0) over exhaustive search for QES. We show that
if one could improve upon our triangle listing algorithms (and λ = 2), then QES
does indeed have faster algorithms over any F .

Theorem 3. Suppose that for some ∂1 ∈ 0, ∂2 ∈ 0 with ∂1 + ∂2 > 0, there exists
an algorithm that lists all t triangles in an m-edge graph in O(m1−λ1t(1−λ2)/3)
time or in an n-vertex graph in O(n1−λ1t(1−λ2)2/3) time. Then, for any finite
field F , there exists an |F |(1−α)l poly(l, k) time algorithm for β > 0 that solves
l-variate quadratic equation systems with k equations over F l.

2 Listing Light Triangles

Let φ be a parameter. We say that an edge is φ-light, or just light, if it par-
ticipates in at most φ triangles, otherwise, it is said to be φ-heavy. A triangle
is φ-light if at least one of the edges participating in it is light, otherwise it is
φ-heavy. In this section we describe a simple randomized algorithm for listing
all φ-light triangles with high probability. This algorithm is used as a building
block by our algorithms for listing all triangles in dense and sparse graphs.

We include this simple randomized algorithm for completeness. The ideas be-
hind it have been used before, for instance by Gasieniec et al. [9] who, building
upon work of Aumann et al. [3] showed how to find k witnesses for Boolean
matrix multiplication in Õ (

n2k + nεk(3−ε−Δ)/(1−Δ)
)

time. In Section 4 we de-
scribe a novel deterministic version of the algorithm described in this section
using sparse recovery techniques.

Theorem 4. Let G = (V,E) be a graph on n vertices and let 1 ⊆ φ ⊆ n. Then,
all φ-light triangles in G can be found in Õ (

nεφ3−ε
)
time, with high probability.

Proof. We assume, without loss of generality, that V = [n] = {1, 2, . . . , n}. Let A
be the adjacency matrix of the graph. Let Ā be the matrix A in which all the
1s in the k-th column of A are replaced by k, for k ⊂ [n]. Let S → V , let A[∧, S]
denote the matrix obtained from A by selecting the columns whose indices belong
to S. Similarly, let A[S, ∧] denote the matrix obtained by selecting the rows of A
whose indices belong to S. The rectangular Boolean product A[∧, S]A[S, ∧] tells
us, for every i, j ⊂ [n], whether there is a path of length 2 from i to j that passes
through a vertex of S. If there is only one such 2-path, then the (i, j)-th entry
of the product Ā[∧, S]A[S, ∧] identifies the k for which (i, k), (k, j) ⊂ E.

Suppose now that (i, j) ⊂ E is a φ-light edge, and let Ti,j = {k ⊂ V |
(i, k), (k, j) ⊂ E} be the set of ‘mid-points’ of the triangles passing through the
edge (i, j). Note that |Ti,j | ⊆ φ. Let S be a random subset of V of size n/φ.
Let k ⊂ Ti,j. The probability that |S ≥ Ti,j | = 1 is at least 1

Λ (1 − 1
Λ )Λ−1 ∈ 1

eΛ .
Thus, if we choose O (φ logn) random subsets of size n/φ, we can, with high
probability, identify all light triangles.

As each product A[∧, S]A[S, ∧] and Ā[∧, S]A[S, ∧], where |S| = n/φ, can be
computed in Õ(n2(n/φ)ε−2) (by decomposing each rectangular matrix product



228 A. Björklund et al.

into square matrix products), the O (φ logn) products could all be computed in
Õ(nεφ3−ε) time. ⇐⇒

It is not difficult to convert the algorithm into a Las Vegas algorithm whose
expected running time is Õ(nεφ3−ε). The idea is to check that each reported
triangle exists, and check for each edge that the number of triangles reported
is correct (by comparing to the number of 2-paths connecting its end points).
As pointed out by [9], using fast rectangular matrix multiplication [11,19], one
can improve the running time of Theorem 4 to Õ (

nεφ(3−Δ−ε)/(1−Δ) + φn2
) ⊆

Õ (
φn2 + n2.373φ0.464

)
. Here κ > 0.303 is the largest constant such that n ×

nΔ by nΔ × n matrices can be multiplied in Õ (
n2

)
time. This implies slight

improvements of the time bounds in Theorems 1 and 2.

3 Listing All Triangles

We next describe two algorithms for listing all triangles in dense and sparse
graphs that use each other as subroutines. We let Dense (n, t) be the algorithm
for listing all triangles in a graph on n vertices containing at most t triangles,
and use D(n, t) to denote the running time of Dense (n, t). Similarly, we let
Sparse (m, t) be the algorithm for listing all triangles in a graph with m edges
(we assume that the graph has no isolated vertices to make m a proper bound
on the size of the graph) containing at most t triangles, and let S(m, t) denote
the running time of Sparse (m, t). We assume that these algorithms receive an
upper bound t on the number of triangles in the input graph. This upper bound
can be computed before calling our algorithms, either in Õ (nε) time, or in
O (

m2ε/(ε+1)
)

time [2].

Sparse (m, t) works as follows. It chooses a parameter Δ depending on m
and t. Vertices of degree at most Δ are said to be low degree vertices. Vertices
of degree greater than Δ are said to be high degree. The algorithm starts by
finding all triangles that contain a low degree vertex. This can be easily done
in O (mΔ) time by examining for every edge incident on a low degree vertex x,
the length 2-paths formed by taking another edge out of x. Once this is done
we can remove all edges incident to low degree vertices. If no edges remain we
stop — otherwise, all remaining triangles, i.e., triangles that only include high
degree vertices can now be found by a call to Dense (2m/Δ, t), as there are at
most 2m/Δ high degree vertices. Thus, ignoring constant factors,

S(m, t) ⊆ mΔ + D(2m/Δ, t) . (1)

Dense (n, t) works as follows. If n < 3, it returns no triangles. Otherwise, it
chooses a parameter φ depending on n and t. It then finds all φ-light triangles
in Õ (

nεφ3−ε
)

time by Theorem 4 (or its deterministic version from Section 4).
Once this is done we can remove all φ-light edges. If no edges remain we stop
— otherwise, as there can be at most 3t/φ φ-heavy edges, all φ-heavy triangles
can be found by a call to Sparse (3t/φ, t). Thus, ignoring no(1) factors,

D(n, t) ⊆ nεφ3−ε + S(3t/φ, t) . (2)
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To analyze the running times of the two algorithms we set

φ = ∪max(3, 6n−(ε+1)/(5−ε)t2/(5−ε))≤, and

Δ = ∪2 max(m(ε−1)/(ε+1), m2(ε−2)/(ε+1)t(3−ε)/(ε+1))≤.
Suppose first that t ∈ m. Notice that since we never change t and the number

of edges never increases over the recursive calls, if we ever have t ∈ m, we have
t ∈ m in all subsequent calls. We get

Δ = 2m2(ε−2)/(ε+1)t(3−ε)/(ε+1), mΔ = 2m3(ε−1)/(ε+1)t(3−ε)/(ε+1).

Consider the first recursive call to the dense algorithm, and suppose that it was
called on n nodes, where we know that n ⊆ 2m/Δ. We get the following:

n ⊆ 2m/Δ = m(5−ε)/(ε+1)t−(3−ε)/(ε+1).

n(ε+1)/2 ⊆ (2m/Δ)(ε+1)/2 =

⎧
m(5−ε)/(ε+1)

t(3−ε)/(ε+1)

⎨(ε+1)/2

= t · (m/t)(5−ε)/2.

Thus, t/n(ε+1)/2 ∈ (t/m)(5−ε)/2 which is ∈ 1 when t ∈ m, and since φ =
max{3, 6(t/n(ε+1)/2)2/(5−ε)}, we get that

φ = 6(t/n(ε+1)/2)2/(5−ε) ∈ 6t/m.

We now get:

nεφ3−ε = 63−εn3(ε−1)/(5−ε)t2(3−ε)/(5−ε)

⊆ 63−ε(2m/Δ)3(ε−1)/(5−ε)t2(3−ε)/(5−ε)

= 63−εm3(ε−1)/(ε+1)t(3−ε)/(ε+1).

(3)

Since φ ∈ 6t/m, we get that 3t/φ ⊆ m/2, and hence S(3t/φ, t) ⊆ S(m/2, t).
By Eq. 1 and Eq. 2 we have

S(m, t) ⊆ mΔ + nεφ3−ε + S(3t/φ, t)

⊆ (2 + 63−ε)m3(ε−1)/(ε+1)t(3−ε)/(ε+1) + S(m/2, t)

⊆
◦logm√⎩

i=1

(2 + 63−ε)(m/2i)3(ε−1)/(ε+1)t(3−ε)/(ε+1)

⊂ O
⎢
m3(ε−1)/(ε+1)t(3−ε)/(ε+1)

⎣
.

Next assume t < m. We get Δ = 2m(ε−1)/(ε+1). By the above analysis we
get that φ ⊆ 6(t/m)(5−ε)/2, and so when t < m, we have 3 ⊆ φ ⊆ 6. We also
have n ⊆ 2m/Δ = m2/(ε+1). By Eq. 1 and Eq. 2 we have

S(m, t) ⊆ mΔ + nεφ3−ε + S(3t/φ, t)

⊆ (2 + 63−ε)m2ε/(ε+1) + S(t, t)

⊆ (2 + 63−ε)m2ε/(ε+1) + O
⎢
t2ε/(ε+1)

⎣

⊂ O
⎢
m2ε/(ε+1)

⎣
.
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Once we have established the complexity of Sparse (m, t), it is also easy to es-
tablish the complexity of Dense (n, t). There are again two cases. If t ⊆ n(ε+1)/2,
then 3 ⊆ φ ⊆ 6 and the running time is

D(n, t) = O (nε + S(t, t)) = O (nε) .

If t > n(ε+1)/2, then φ = 6n−(ε+1)/(5−ε)t2/(5−ε) and then

D(n, t) ⊆ n3(ε−1)/(5−ε)t2(3−ε)/(5−ε) + S(3t/φ, t)

⊆ (n3(ε−1)t2(3−ε))1/(5−ε) + S((t(3−ε)n(ε+1))1/(5−ε), t)

⊆ (n3(ε−1)t2(3−ε))1/(5−ε) + (t3−εnε+1)3(ε−1)/((ε+1)(5−ε))t(3−ε)/(ε+1)

= O
⎢
n3(ε−1)/(5−ε)t2(3−ε)/(5−ε)

⎣
,

as required.

4 Deterministic Algorithm

Randomization was only used by the algorithm for listing light triangles.
We now proceed to show how to list all φ-light triangles. This is achieved

by computing, for every light edge, the list of at most φ 2-paths connecting its
vertices. Each such list can be thought of as a vector x ⊂ {0, 1}n with at most φ
1s, corresponding to the connecting nodes. Let PΛ denote the set of such vectors
that we would like to compute.

To this end we make use of a sparse recovery matrix T with the following
properties, for some function f(n) = no(1):

– T has d = σ(φf(n)) rows.
– The number of non-zero entries in T is at most nf(n).
– For every x ⊂ PΛ, we can compute x from Tx in time O (φf(n)).

Random sparse 0-1 matrices are known to have these properties with high prob-
ability for f(n) = (logn)O(1) (see e.g. [22] for an overview of such constructions),
and there also exist explicit, deterministic constructions with f(n) = no(1) [12].
Let Di denote the diagonal matrix where the jth entry along the diagonal is
equal to Ti,j .

Let A denote the adjacency matrix of the graph. To find all light triangles
we compute, for i = 1, . . . , d, the matrix product ADiA. If Di has ni non-zero
entries, this reduces to an n-by-ni times ni-by-n matrix product. For every x ⊂
PΛ this gives us the vector Tx. Specifically, if x is the set of vertices connecting
vertices a and b, (Tx)i = (ADiA)a,b. This means that we can recover each x ⊂ PΛ

in time O (φf(n)).
The matrix product ADiA can be decomposed into O (

(n/ni)
2
)

square matrix
products, each taking time O (nε

i ). By choice of T we have
⎛

i ni ⊆ df(n). So
the time for computing all d matrix products is bounded by a constant times

d⎩

i=1

n2nε−2
i ⊆ dn2

⎝
d⎩

i=1

ni/d

⎞ε−2

⊆ dn2(nf(n)/d)ε−2 = nεφ3−εf(n)ε−1 .
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The first inequality uses Jensen’s inequality and the fact that nε−2
i is concave

(since λ − 2 ⊂ [0; 1]). The second inequality uses our bounds on d and
⎛

i ni.
Similarly to our randomized algorithm, the deterministic algorithm can be im-
proved to have runtime Õ (

nεφ(3−Δ−ε)/(1−Δ) + φn2
)

using rectangular matrix
multiplication.

5 Listing Some Triangles

If a graph contains T triangles and we are only required to list t of them, then an
improved running time can be obtained as follows. First assume that the given
graph is tripartite by creating three copies of each vertex v, vI in partition I, vJ
in partition J and vK in partition K. Then each edge (u, v) appears 6 times, once
for each pair of copies of u and v in different partitions. Each triangle appears 6
times as well, so it suffices to list 6t triangles in this new graph. Suppose now that
we want to list t triangles in a tripartite graph with T > t triangles. We design
a recursive algorithm as follows. Split I, J,K into 2 parts of n/2 nodes each,
I1, I2, J1, J2,K1,K2. Count the triangles in each of the 8 subgraphs induced by
Ii⇔Jj ⇔Kk, and recurse on the part that has the most triangles. At some point,
the number of triangles in the part Ii ⇔ Jj ⇔Kk with most triangles will be < t,
and at this point we no longer recurse, but use our triangle listing algorithm on
the current subgraph G≤. We know that when we recursed on G≤, it had at least t
triangles, but since each of the 8 triples of subgraphs of G≤ have < t, then G≤

has < 8t triangles. Consider now the number of nodes of G≤. Suppose that it is
3n/2j for some j, and we have done j recursive steps to find G≤. In each step
the number of triangles goes down by at most a factor of 8, so G≤ has at least
T/8j triangles. Yet, G≤ has < 8t triangles, and hence 8j+1 > T/t, and hence the
number of nodes in G≤ is O(n/(T/t)1/3). We thus get a running time of

Õ
⎠

nε +

⎝⎧
t

T

⎨1/3

n

⎞3(ε−1)/(5−ε)

t2(3−ε)/(5−ε)



 .

Using a similar idea, combined with an approach from [14], we can also get an
improvement for sparse graphs (in terms of m).

6 Consequences of Faster Triangle Listing

In this section we prove Theorem 3. We show that if one could improve upon
our triangle listing algorithms (and λ = 2), then QES does indeed have faster
algorithms over any F .

Let F be a finite field and q = |F | its number of elements. Assume that
there is no q(1−λ3)l poly(l, k) time algorithm for any ∂3 > 0 that solves l-variate
QES on k equations. Given an instance to QES on l variables with k equations
x≤Qix + Eix + Si = 0 over F , where Qi are l × l matrices, Ei are 1 × l vectors,
and Si are scalars, we will show how one can use triangle listing to solve it.
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Much as Pǎtraşcu [23] did for 3SUM, we use hashing as a filter to find the
solutions to QES. We construct h hashed projections of the equations x≤Aix +
Bix + Ci = 0 for i = 1, 2, . . . , h where

Ai =
k⎩

j=1

Ri(j)Qj , Bi =
k⎩

j=1

Ri(j)Ej , Ci =
k⎩

j=1

Ri(j)Sj

for a random Ri ⊂ F k (for a vector R we write R(j) to address its jth element).
The hashed QES (A,B,C) has the following relations to the original QES:

– Every solution to (Q,E, S) is a solution also to (A,B,C).
– Every non-solution to (Q,E, S) is a solution to (A,B,C) with prob. q−h.

This means that if (Q,E, S) has s solutions, (A,B,C) has at most 2 · ql−h +
s solutions with probability at least 1/2 by the linearity of expectation and
Markov’s inequality. We can assume that s < qλ3l since if not we can use another
algorithm in parallel that simply guesses an assignment and verifies it, which runs
in expected time O(ql/s).

We next construct a graph G that has a triangle for each solution to (A,B,C).
Let a be a parameter to be fixed later. The vertex set is the union of three sets:

– V1 has one vertex labeled (α1) for each assignment α1 to the first l − 2a
variables, in total ql−2a vertices.

– V2 has one vertex labeled (α2, H2) for each combination of an assignment
α2 to the next a variables xl−2a+1, . . . , xl−a and a vector H2 in Fh, in total
qa+h vertices.

– V3 has one vertex labeled (α3, H3) for each combination of an assignment α3

to the last a variables xl−a+1, . . . , xl and a vector H3 in Fh, in total qa+h

vertices.

We let 0k denote the assignment of k variables to the value 0. The edges are:

– (α1) and (α2, H2) has an edge iff the assignments x = α1α20l−a and y =
α102a to the variables give x≤Aix + Biy + Ci = −H2(i), i.e. we consider the
contribution where we use all quadratic terms associated with the vertices
and the linear term associated with the first one. There are ql−a edges.

– (α2, H2) and (α3, H3) has an edge iff the assignments x = 0l−2aα2α3 and
y = 0n−2aα20a to the variables give x≤Aix+Biy+Ci = H2(i)−H3(i). There
are q2a+h edges.

– (α3, H3) and (α1) has an edge iff the assignments x = α10aα3 and y = 0n−aα3

to the variables give x≤Aix + Biy + Ci = H3(i). There are q2a+h edges.

A triangle in the graph corresponds to a solution to (A,B,C) since on the
left side we count each term exactly once, and on the right hand side H2 and H3

are counted twice with opposite signs and cancel.
We can use our triangle listing algorithm on G to solve (Q,E, S): for each

found triangle (α1), (α2, H2), (α3, H3) we verify if x = α1α2α3 is also a solution
to (Q,E, S). To arrive at the lower bound, we note that the graph G has
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– ql−2a + 2 · qa+h vertices.
– ql−a + 2 · q2a+h edges.
– 2 · ql−h + s < 2 · ql−h + qλ3l < 2 · ql−h+λ3l triangles with probability 1/2.

We set a = (l − h)/3 to get m = 3 · q2l/3+h/3and n = 3ql/3+2h/3. By varying h
we can control the number of triangles w.r.t. m and n.

Now assume there is a O(m1−λ1t(1−λ2)/3) time algorithm for triangle listing
for some t ∈ m. With our bounds on m and t we get

O
⎢
ql−λ1(2l/3+h/3)−λ2(l/3−h/3+λ3l)+λ3l

⎣

time. For small enough constant ∂3 we get a contradiction of the assumption
of non-existence of any O(q(1−λ3)l) time algorithm for QES. If we instead as-
sume a n1−λ1t(1−λ2)2/3 time algorithm for triangle listing for some t, we get
O (

ql−λ1(l/3+2h/3)−λ2(2l/3−2h/3+λ3l)+λ3l
)

time, also a contradiction.

Acknowledgement. We send our thanks to Mihai Pǎtraşcu with whom we
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Abstract. We study the complexity of approximating monotone
Boolean functions with disjunctive normal form (DNF) formulas, ex-
ploring two main directions. First, we construct DNF approximators for
arbitrary monotone functions achieving one-sided error: we show that
every monotone f can be ε-approximated by a DNF g of size 2n−εε(

√
n)

satisfying g(x) ≤ f(x) for all x ∈ {0, 1}n. This is the first non-trivial
universal upper bound even for DNF approximators incurring two-sided
error.

Next, we study the power of negations in DNF approximators for
monotone functions. We exhibit monotone functions for which non-
monotone DNFs perform better than monotone ones, giving separations
with respect to both DNF size and width. Our results, when taken
together with a classical theorem of Quine [1], highlight an interest-
ing contrast between approximation and exact computation in the DNF
complexity of monotone functions, and they add to a line of work on the
surprising role of negations in monotone complexity [2,3,4].

1 Introduction

Monotone Boolean functions constitute a rich and complex class of functions,
and their structural and combinatorial properties have been intensively studied
for decades; see e.g. the monograph [5] for an in-depth survey. In complexity
theory monotone functions play an especially important role in circuit com-
plexity, where Razborov’s celebrated result [2] has led to a significant body
of work centered around monotone functions and the circuits that compute
them [6,4,7,8,9,10,11,12,13,14,15,16,17].

In this paper we study the circuit complexity of approximating monotone func-
tions, focusing on DNF formulas, one of the simplest and most basic types of
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circuits. We say that a DNF σ-approximates a function f : {0, 1}n ∈ {0, 1} if the
function g computed by the DNF satisfies f(x) = g(x) on at least a 1−σ fraction
of inputs x in {0, 1}n. Recent works [18,19] have highlighted interesting qualita-
tive and quantitative differences in the landscape of DNF complexity when the
formula is only required to approximate f rather than compute it exactly, and
while the DNF complexity of exact computation is fairly well-understood, these
papers have also pointed to significant gaps in our understanding of seemingly
basic questions regarding the DNF complexity of approximate computation.

We continue this study and explore two main directions. In the first direction
we seek a non-trivial upper bound on the DNF complexity of approximating an
arbitrary monotone function to high accuracy, in the spirit of the positive results
of [19]. In the second direction, in the spirit of Razborov’s theorem [2] we seek
a separation between the relative powers of monotone and non-monotone DNF
that approximate monotone functions. As we describe below, our results further
illustrate how different DNF complexity can be in the settings of exact versus
approximate computation.

Universal bounds on approximability. Recent work of [19] established the first
non-trivial universal upper bound on the DNF complexity of approximating an
arbitrary Boolean function, achieving logarithmic savings over the worst-case
cost of τ(2n) necessary for exact computation:

Theorem 1 of [BT13]. Every Boolean function can be σ-approximated by a
DNF of size Oε(2

n/ logn).

We begin with the simple observation that this result does not say anything
meaningful about the approximation of monotone functions. Since the minimal
satisfying assignments of a monotone function form a Sperner family, Sperner’s
classical theorem readily translates into an upper bound on the DNF complexity
of exactly computing monotone functions that is polynomially stronger:

Fact 1. Every monotone function can be computed exactly by a DNF of size(
n

◦n/2√
)

= λ(2n/
⊆
n).

This bound is exactly tight by considering the n-variable majority function,
and in fact an elementary combinatorial argument establishes that a 1 − on(1)
fraction of monotone functions do actually require DNFs of size τ(2n/

⊆
n) to

compute. Fact 1, taken together with the result of [19], raises a basic qualitative
question: are there monotone functions that require DNFs of size τ(2n/

⊆
n) to

approximate, or can every monotone function be approximated by a DNF of
size o(2n/

⊆
n)? Despite the vast literature on monotone functions and Sperner

families, this question does not appear to have been explicitly studied before.
We answer this question in the first half of the paper, constructing DNF approx-
imators for arbitrary monotone functions that achieve exponential savings over
the size necessary for exact computation. Our DNF approximators only make
one-sided error, and our construction is based on a new structural decomposition
of monotone functions.
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Power of negations in approximating monotone functions. In the second half
of the paper we turn our attention to the role of negations in the DNF com-
plexity of approximating monotone functions. Recall that a circuit is said to be
monotone if it does not contain any NOT gates, and non-monotone otherwise.
While every monotone function can be computed by a monotone circuit, there
is a body of results showing the remarkable fact that for various circuit classes,
the optimal circuit computing a monotone function must be non-monotone. The
most prominent example is perhaps Razborov’s celebrated lower bound [2]:

Razborov’s Theorem. There is a polynomial-time computable monotone func-
tion that requires monotone circuits of quasi-polynomial size.

This separation of monotone NP from monotone P/poly was subsequently im-
proved from quasi-polynomial to exponential by E. Tardos [8]. An analogue of
Razborov’s result in the setting of bounded-depth circuits was established by
Okol’nishnikova, Ajtai, and Gurevich [3,4]:

Okol’nishnikova–Ajtai–Gurevich Theorem. There is a monotone function
in AC0 that is not in monotone AC0.

For the class of DNFs, however, it is well-known (and straightforward to
verify) that the analogue these separations does not hold [1]:

Quine’s Theorem. The optimal DNF, with respect to both size and width, com-
puting a monotone function is monotone as well.

In the second half of this paper we investigate the question: does Quine’s
theorem hold for approximation by DNFs? In other words, is the optimal DNF
approximator for a monotone function monotone as well, or do negations buy
us power in the setting of approximation? We show that the answer is the lat-
ter, giving separations with respect to both DNF size and width. Our results,
taken in contrast with Quine’s theorem, highlight an interesting qualitative dif-
ference between the DNF complexity of exact and approximate computation.
More broadly, we believe that the role of negations in the circuit complexity of
approximating monotone functions is a topic of intrinsic interest, and we view
our separations as the first steps in its systematic study.

1.1 Our Results

Universal bounds on approximability. Our first result is the construction of DNF
approximators for arbitrary monotone Boolean functions that achieve one-sided
error:

Theorem 1. Every monotone function f : {0, 1}n ∈ {0, 1} can be σ-
approximated by a monotone function g of DNF size 2n−Ωε(

≤
n), satisfying

g(x) ⊂ f(x) for all x → {0, 1}n.
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Prior to our work the only known universal upper bound, even for approx-
imators incurring two-sided error, was the trivial one of

(
n

◦n/2√
)

= λ(2n/
⊆
n),

the size sufficient for exact computation. A standard information-theoretic argu-
ment (see [19] for proof) shows that any σ-approximator for a random Boolean
function has DNF size τε(2

n/n); Theorem 1 therefore shows that the structure
of monotonicity can be leveraged to obtain DNF approximators with complex-
ity exponentially smaller than that required for almost all other functions. Our
construction relies on a new structural fact about monotone functions which we
believe may be of independent interest:

Lemma 1. Let f : {0, 1}n ∈ {0, 1} be a monotone function and σ > 0. There
is a function g = g1 ∧ · · · ∧ gt that σ-approximates f , where t = Oε(1) and each
gi is a monotone DNF with terms of width exactly ki and size at least (σ/2)

(
n
ki

)
.

Furthermore, g(x) ⊂ f(x) for all x → {0, 1}n.

Since g(x) ⊂ f(x) for all x → {0, 1}n, we say that g is a lower σ-approximator
for f . We prove Lemma 1 in Section 2, and with this structural fact in hand,
the task of constructing lower approximators for an arbitrary monotone function
reduces to that of constructing lower approximators for the gi’s. Since g com-
prises only a constant number of these gi’s, taking a naive union bound incurs
no more than a constant factor in terms of error and DNF size of the overall
approximator. Our lower approximators for the gi’s, presented in Section 3, are
obtained via a randomized algorithm that constructs an approximating DNF.
We complement our positive result with a lower bound showing that Theorem 1
is essentially optimal:

Theorem 2. Let g : {0, 1}n ∈ {0, 1} be a 1
10 -approximator for the majority

function MAJn satisfying g(x) ⊂ MAJn(x) for all x → {0, 1}n. Then g has DNF
size 2n−O(

≤
n logn).

Power of negations in approximating monotone functions. The proof of Quine’s
classical theorem mentioned in the introduction is simple: given a DNF g that
computes a monotone function f , if g contains a term T with a negated variable
x̄i, it is easy to check that g still computes the same monotone function f if x̄i

is removed from T . Therefore, by removing all occurrences of negated variables
in g, we obtain a monotone DNF h computing the same function f , where the
size and width of h are at most those of g.

It is natural to suspect that the same would be true for DNF approximators,
that the optimal DNF approximator for a monotone function is always monotone
as well; indeed, we note that the universal DNF approximators we construct
in Theorem 1 are in fact monotone. To be precise, we consider the following
question:

Question 1. Let f be a monotone function that is σ-approximated by a DNF
g of size s (resp. width w). Can f be σ-approximated by a monotone DNF h of
size s (resp. width w)?
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The simple proof of Quine’s theorem does not extend to answer this question
in the affirmative. In fact, for all three natural ways of “locally monotonizing”
the DNF approximator g — removing x̄i in T (as is done in the proof of Quine’s
theorem); replacing x̄i with xi in T ; and removing T from f entirely — it is pos-
sible to construct examples showing that these operations increase the distance
of g from f (i.e. worsens the quality of approximation).

In the second half of the paper we resolve Question 1 by showing, perhaps
somewhat surprisingly, that the answer is “No” for both complexity measures of
DNF size and DNF width. In Section 4 we prove the following two theorems:

Theorem 3 (Separation for DNF Size). For all sufficiently large n, there
exists an n-variable monotone function f and a value σ = σ(n) > 0 such that f
can be σ-approximated by a DNF of size O(n), but any monotone function that
σ-approximates f has DNF size τ(n2).

Theorem 4 (Separation for DNF Width). For all sufficiently large n, and
for all k = o(n), there exists an n-variable monotone function f and a value σ =
σ(n) > 0 such that f can be σ-approximated by a DNF of width k+log k, but any
monotone function that σ-approximates f has DNF width at least 2k−1−on(1).

We view these separations as the first steps in quantifying just how powerful
negations can be in the approximation of monotone functions, a question that
does not appear to have been explicitly studied before (despite a significant body
of results on the power of negations in the computation of monotone functions,
as discussed above). We conclude the paper by listing a few interesting questions
for future work in this direction.

1.2 Previous Work

The explicit study of the DNF complexity of approximating Boolean functions
was initiated by O’Donnell and Wimmer [18]. They showed that DNF size
2Oε(

≤
n) is both necessary and sufficient for σ-approximating the n-variable ma-

jority function, and constructed an explicit n-variable monotone function for
which any 0.01-approximating DNF must have size 2Ω(n/ logn). As mentioned
above, Blais and Tan [19] gave universal upper bounds on DNF size for ap-
proximating arbitrary Boolean functions, but [19] does not consider monotone
functions.

We also note that the earlier work of Bshouty and Tamon [20], which es-
tablished Fourier concentration bounds for monotone Boolean functions, implies
that every n-variable monotone function is σ-close to a depth-2 circuit of size
2O(

≤
n log(n)/ε) in which the bottom-level gates are parity gates and the top gate is

a threshold gate (with unbounded weights). Recall that while threshold-of-parity
circuits can simulate DNF formulas with only a polynomial size increase [21,22],
the converse is not true (indeed, even a single parity gate requires exponential
DNF size). Thus the results of [20] do not imply the existence of nontrivial DNF
approximators for monotone functions.
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1.3 Preliminaries

Throughout this paper all probabilities and expectations are with respect to the
uniform distribution unless otherwise stated; we will use boldface (e.g. x and X)
to denote random variables. For strings x, y → {0, 1}n we write ≥x≥ to denote
the Hamming weight #{i → [n] : xi = 1} of x, and x ⇐ y if xi ⊂ yi for all i → [n],

and x ⇒ y if x ⇐ y and x ∪= y. For 0 ⊂ k ⊂ n, we write Vol(n, k) :=
∑k

i=0

(
n
i

)
to

denote the volume of the n-dimensional Hamming ball of radius k.
A monotone Boolean function f : {0, 1}n ∈ {0, 1} is one that satisfies f(x) ⊂

f(y) whenever x ⇐ y. A DNF formula is the logical OR of logical ANDs, where
we refer to each AND as a term. The size of a DNF is the number of terms
it contains, and the width of a DNF is the maximum width of any term. For a
term T , we write |T | to denote the width of T , the number of literals occurring
in it. For any x → {0, 1}n, we write Tx to denote the monotone conjunction that
accepts all and only those y → {0, 1}n such that y ≤ x. That is, Tx(y) = 1 iff
yi = 1 for all i → [n] such that xi = 1. We say that x defines a minterm in
a monotone function f if Tx is a minterm in the canonical DNF computing f ,
and we write minterm(x, f) to denote the indicator for this event. The canonical
DNF for f is the unique monotone DNF whose terms correspond precisely to
the minterms of f .

Let f, g : {0, 1}n ∈ {0, 1} be Boolean functions and σ → [0, 1]. We say that g
is an σ-approximator for f , or that f and g are σ-close, if Pr[f(x) ∪= g(x)] ⊂ σ.
We say that g is a lower approximator for f if g(x) ⊂ f(x) for all x → {0, 1}n,
and an upper approximator for f if f(x) ⊂ g(x) for all x → {0, 1}n.

Definition 1 (Density). Let f : {0, 1}n ∈ {0, 1} and k → {0, 1, . . . , n}. The
density of f at level k is defined to be μk(f) := Pr⊆x⊆=k[f(x) = 1].

Fact 2. Let f be a monotone function. Then μk(f) ⇔ μk−1(f) for all k → [n].

Fact 3 (Chernoff Bound). Let X ∗ Binomial(n, 1/2). Then for any 0 ⊂ t ⊂⊆
n, we have Pr

[
X ⇔ n

2 + t
≤
n
2

]
⊂ e−t2/2 and Pr

[
X ⊂ n

2 − t
≤
n
2

]
⊂ e−t2/2.

Fact 4 (Anti-concentration of the Binomial). For every σ ⇔ 1/
⊆
n and

interval I ⊥ [0, n] of width at most σ
⊆
n, we have Prx≥{0,1}n [≥x≥ → I] ⊂ 2σ.

2 A Regularity Lemma for Monotone DNFs

We begin with a new structural fact about monotone functions, which states that
every monotone DNF f is lower approximated by the disjunction g of a constant
number of monotone DNFs that are “dense” and “regular.” Here a “regular”
DNF is one in which all terms have the same width k, and a “dense” regular
DNF is one that contains a constant fraction of the

(
n
k

)
many possible terms of

width k. This structural decomposition is useful as it reduces the task of (lower)
approximating an arbitrary monotone DNF f to that of (lower) approximating a
dense regular one. Since g is the disjunction of only a constant number of dense
regular DNFs, taking a naive union bound incurs only a constant factor in terms
of error and DNF size of the overall approximator.
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Definition 2 (Regular and Dense DNFs). Let k → [n]. We say that a mono-
tone DNF f is k-regular if all its terms have width exactly k, and regular if it
is k-regular for some k. Additionally, we say that f is (σ, k)-regular if it is a
k-regular DNF with at least σ

(
n
k

)
many terms.

Our structural result (the proof of which is deferred to the full version due to
space considerations) says that every monotone function is lower σ-approximated
by the disjunction of Oε(1) many (σ/2, ki)-regular DNFs, where each ki =
(n/2) ±O(

⊆
n). More precisely:

Lemma 1. For any σ > 0,every monotone function f is σ-close to the disjunc-
tion g of monotone DNFs, g(x) = g1(x) ∧ · · · ∧ gt(x), where t ⊂ 2/σ, each gi

is ki-regular for some ki →
[
(n/2) −√

n ln(4/σ)/2, (n/2) +
√
n ln(4/σ)/2

]
, the

DNF size of gi is at least (σ/2)
(
n
ki

)
(i.e., μki(gi) ⇔ σ/2), and g(x) ⊂ f(x) for all

x → {0, 1}n.

3 Lower Approximators for Regular DNFs

Given Lemma 1 it suffices to construct lower approximators for regular DNFs:

Proposition 1. Let f be a regular monotone function. For every σ > 0 there
exists a monotone DNF g of size 2n−Ω(ε

≤
n−log(n)) that is a lower σ-approximator

for f .

Proof (of Theorem 1 assuming Proposition 1). By Lemma 1 every monotone f
has a lower (σ/2)-approximator g(x) = g1(x) ∧ · · · ∧ gt(x) where t ⊂ 4/σ and
each gi(x) is a regular monotone function. Next, by Proposition 1 each regular
gi(x) has a lower (σ/2t)-approximator hi(x) of size 2n−Ω((ε

≤
n/t)−log(n)). Finally,

by the union bound and the triangle inequality, we conclude that h(x) = h1(x)∧
· · ·∧ht(x) is a lower σ-approximator for f of size at most t·2n−Ω((ε

≤
n/t)−log(n)) =

2n−Ωε(
≤
n). ↓�

Proof (of Proposition 1). We may assume that σ ⇔ (C logn)/
⊆
n (for some con-

stant C > 0 which we will specify below), since otherwise the claimed bound on
monotone DNF size is trivial. Let f be a k-regular monotone function for some
k → [n]. The minterms of our monotone approximator g will be conjunctions of
the form Ty where y → f−1(1), which guarantees that g will be a lower approxi-

mator for f . Furthermore, since Prx≥{0,1}n

[
≥x≥ ⇔ (n/2) +

√
n ln(3/σ)/2

]
⊂ ε

3 ,

and Prx≥{0,1}n [≥x≥ → [k, k + σ
⊆
n/6]] ⊂ ε

3 , by the Chernoff bound and Fact 4
respectively, it suffices to ensure that the monotone DNF g we construct addi-
tionally satisfies:

Pr
x≥A

[g(x) ∪= f(x)]] ⊂ σ

3
,

A :=
{
x → {0, 1}n : ≥x≥ →

[
k + σ

⊆
n/6, (n/2) +

√
n ln(3/σ)/2

]}
. (1)
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Note that if k + σ
⊆
n/6 > (n/2) +

√
n ln(3/σ)/2 (i.e. the interval in the defi-

nition of A is empty) then f is (2σ/3)-close to the constant 0 function and the
proposition is trivially true.

For every Π → {0, 1, . . . , n− k}, we write Sα to denote the 1-inputs of f with
Hamming weight exactly k + Π; that is, Sα := {x → {0, 1}n : f(x) = 1 and ≥x≥ =
k + Π}. The remainder of this proof will be devoted to showing that for each
Π ⇔ σ

⊆
n/6, there exists a monotone DNF gα satisfying:

i. The minterms of gα are of the form Ty for some y → Sα/2 (and hence gα ⊂ f),

ii. DNF-size[gα] = O(2n−α/2) ⊂ 2n−Ω(ε
≤
n),

iii. Prx≥Sλ
[gα(x) = 0] ⊂ σ/3.

Indeed, taking g to be the disjunction of all gα where

k + Π →
[
k + σ

⊆
n/3, (n/2) +

√
n ln(3/σ)/2

]
,

we obtain a monotone DNF of size at most n · 2n−Ω(ε
≤
n) ⊂ 2n−Ω(ε

≤
n−log(n))

satisfying (1), which completes the proof.
Consider a random monotone DNF gα sampled according to the following

distribution D: for each y → Sα/2, independently include Ty as a minterm of

gα with probability p := 2−α/2. By definition, every DNF in the support of
this distribution satisfies (i), and so it remains to argue that with positive
probability, both (ii) and (iii) are satisfied as well. For (ii), we observe that
ED [DNF-size[gα]] = p · |Sα| < p · 2n = 2n−α/2, and so by Markov’s inequality,

Pr
D

[
DNF-size[gα] ⊂ 3 · 2n−α/2

]
⇔ 2

3
. (2)

For (iii), consider any fixed x → Sα. Since f is k-regular, there must exist some
z → S0 such that z ⇒ x, and therefore

(
α

α/2

)
= λ(2α/

⊆
Π) many y → Sα/2 such that

z ⇒ y ⇒ x. By the definition of D, for each such y the term Ty is independently
included as a minterm of gα with probability p = 2−α/2, and so

Pr
D

[gα(x) = 0] ⊂ (1 − p)λ(2λ/
≤
α) = exp

(
−τ(2α/2/

⊆
Π)
)

< exp
(
−τ(2ε

≤
n/12)/

⊆
n
)

<
σ

9
,

where we have used σ ⇔ (C logn)/
⊆
n for the final inequality. Therefore

E
D

[
Pr
x≥Sλ

[gα(x) = 0]

]
⊂ σ

9
, and Pr

D

[
Pr
x≥Sλ

[gα(x) = 0] ⊂ σ

3

]
⇔ 2

3
. (3)

Applying a union bound to the failure probabilities of (2) and (3), we conclude
that there is indeed a positive probability that gα ∗ D satisfies all three proper-
ties (i), (ii), and (iii), and this completes the proof. ↓�

Our next result, the proof of which we defer to the full version due to space
considerations, shows that our upper bound in Theorem 1 is essentially tight.

Theorem 2. Let σ ⊂ 1
10 and g be an s-term DNF that is a lower σ-approximator

for the majority function MAJn. Then s ⇔ 2n−O(
≤
n logn).
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4 Power of Negations in Monotone Approximation

In this section we present our constructions showing that non-monotone DNFs
can asympototically outperform monotone ones in the approximation of mono-
tone functions. Due to space considerations we only prove our separation for
DNF size (Theorem 3) in this section; the proof of our separation for DNF
width (Theorem 4) is deferred to the full version.

Upper bounds. Given these separations between monotone and non-monotone
DNFs, it is natural to explore bounds in the other direction which show that
the existence of (non-monotone) DNF approximators implies the existence of
monotone DNF approximators of related size, width, and accuracy. We present
two results in this direction in the full version.

Theorem 3 (Separation for DNF Size). Let f : {0, 1}n × {0, 1}5n ∈ {0, 1}
be the monotone function:

f(x, y) = (x1 ∧ . . . ∧ xn) ≺ (y1 ∧ . . . ∧ y5n) =
∨

i≥[n]

j≥[5n]

(xi ≺ yj),

and σ = (2n−1−1) ·2−6n. There exists a DNF of size 6n−1 that σ-approximates
f , but any monotone function that σ-approximates f has DNF size at least n2.

Proof. Consider the function g = g(x, y) defined as

g = (x1 ≺ (y1 ∧ . . . ∧ y5n)) ∧ (x1 ≺ (x2 ∧ . . . ∧ xn)) (4)

This is a non-monotone DNF with 6n − 1 terms that σ-approximates f , since
g(x, y) differs from f(x, y) exactly on the 2n−1 − 1 inputs satisfying x1 = 0,
y = 0, and x2 ∧ . . . ∧ xn = 1.

The rest of the proof will be devoted to showing that any monotone function
that σ-approximates f has to have more than n2 terms, asymptotically as many
as the canonical DNF for f which has 5n2 terms. We will prove the contraposi-
tive: any monotone DNF h with at most n2 terms differs from f on strictly more
than an σ-fraction of inputs.

We group the terms of h into three types: terms with only x-variables, which
we call “pure-x”; terms with only y-variables, which we call “pure-y”; and
terms with both x- and y-variables, which we call “mixed”. We first observe
that we may assume that all mixed terms have width exactly two, comprising
one x-variable and one y-variable. Indeed, replacing a mixed term

(∧
i≥S1

xi

) ≺(∧
j≥S2

yj
)
, S1 ⊥ [n] and S2 ⊥ [5n], in h with (xi ≺ yj) for any i → S1 and

j → S2 yields a DNF h∪ such that h∪(x, y) ∪= h(x, y) only on inputs (x, y) such
that h(x, y) = 0 and f(x, y) = 1.

Furthermore, we claim that we may assume all pure-y terms have width
greater than 2n. Indeed, if h contains a term T (y) =

∧
i≥S yi for some S ⊥ [5n]

where |S| ⊂ 2n, then f(x, y) = 0 and h(x, y) = 1 on at least 23n > σ · 26n inputs
(x, y) satisfying x = 0 and T (y) = 1.
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We proceed by considering two cases, depending on the number of xi’s that
occur as a singleton term in h. First suppose at least half of the xi’s occur as
a singleton term in h, so there is some S ⊥ [n] where |S| ⇔ n/2 such that if
ORS(x) =

∨
i≥S xi = 1 then h(x, y) = 1. In this case f(x, y) = 0 and h(x, y) = 1

on at least 2n − 2n/2 > σ · 26n inputs satisfying y = 0 and ORS(x) = 1. Finally,
suppose less than half of the xi’s occur as singleton terms in h. By our first
assumption that all mixed terms have width two (in particular, no mixed term
contains more than one x-variable), there must be an xi that does not occur as
a singleton term and participates in at most 2n mixed terms (since otherwise h
would have more than n2 terms); without loss of generality suppose x1 is one
such variable. Let S ⊥ [5n] be the set of all j → [5n] such that (x1 ≺ yj) is a
mixed term in h, and consider the set of inputs

E={(x, y) : x1 =1, xi = 0 for all i ⇔ 2, yj = 0 for all j → S, and ≥y≥ = (3n)/2}.
Note that f(x, y) = 1 for all (x, y) → E, and we claim that h(x, y) = 0 on
these inputs. To see this, consider the restriction h∗ of h obtained by setting
x1 ← 1, xi ← 0 for all i ⇔ 2, and yj ← 0 for all j → S. Since x1 does not
occur as a singleton term in h, this partial assignment does not satisfy any
terms and the canonical DNF for h∗ comprises only of pure-y terms. Since the
pure-y terms of h have width greater than 2n (by our second assumption), the
same is true for h∗ and so h∗ cannot be satisfied by any assignment of weight
(3n)/2; hence h(x, y) = h∗(y) = 0 for all (x, y) → E. Lastly, we check that
|E| ⇔ (

3n
(3n)/2

)
= λ

(
23n/

⊆
3n

)
> σ · 26n and this completes the proof. ↓�

Remark 5. We note that the non-monotone approximator g in (4) is actually
computed by a O(n)-size decision tree. Recall that every size-s decision tree is
a size-s DNF, but not vice versa: there are polynomial-size DNFs that require
exponential-size decision trees. Therefore the proof of Theorem 3 in fact estab-
lishes a stronger statement: f is a monotone function that can be σ-approximated
by a O(n)-size decision tree, and yet any monotone function that σ-approximates
f has DNF size τ(n2).

5 Conclusion

Having obtained near-matching upper and lower bounds on the size of universal
lower approximators in this paper, the natural next step is to consider upper
approximators and approximators incurring error on both sides. The task of
constructing universal upper approximators appears to be qualitatively differ-
ent from that of lower approximators, and we are not aware of any construction
achieving size better than the trivial one of O(2n/

⊆
n) sufficient for exact compu-

tation. For approximators incurring two-sided error, our universal lower approx-
imators of size 2n−Ωε(

≤
n) represent the current best upper bound. The strongest

known lower bound for two-sided approximators is the 2Ω(n/ logn) lower bound
of [18]; it would be interesting to find out whether this or the current 2n−Ωε(

≤
n)

upper bound is closer to the truth.



On DNF Approximators for Monotone Boolean Functions 245

As for the power of negations in the approximation of monotone functions,
we believe that our results in Section 4 suggest a number of interesting avenues
for further exploration. We suspect that the separations we presented can be
improved, perhaps even to super-polynomial for DNF size and super-constant for
DNF width. We remark that in addition to the complexity measures of DNF size
and width, the quantitative difference between the accuracy of monotone versus
general DNFs is also an aspect in which our separations can be strengthened.
In other words, we may view our separations as instantiations of the following
general template:

There exists a monotone function f and a value σ = σ(n) > 0 such
that f can be σ-approximated by a DNF of size s (resp. width w), but
any monotone function that β(σ)-approximates f requires DNF size Δ(s)
(resp. width Δ(w)).

In Theorems 3 and 4, β is simply the identity function, but one can consider the
possibility of stronger statements where β(σ) � σ.

Beyond DNFs, one may ask quantitatively just how powerful negations can be
in the approximation of monotone functions for many other classes of circuits.
We conclude by restating an open problem, due to Kalai, on the possibility of
strengthening the Okol’nishnikova–Ajtai–Gurevich theorem:

Open Problem 1 ([26]). Is there a monotone function in AC0 that cannot be
approximated by monotone AC0?
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Abstract. The internal diffusion limited aggregation (IDLA) process
places n particles on the two dimensional integer grid. The first particle
is placed on the origin; every subsequent particle starts at the origin
and performs an unbiased random walk until it reaches an unoccupied
position.

In this work we study the computational complexity of determining
the subset that is generated after n particles have been placed. We de-
velop the first algorithm that provably outperforms the naive step-by-
step simulation of all particles. Particularly, our algorithm has a running
time of O(n log2 n) and a sublinear space requirement of O(n1/2 log n),
both in expectation and with high probability. In contrast to some
speedups proposed for similar models in the physics community, our
algorithm samples from the exact distribution.

To simulate a single particle fast we have to develop techniques for
combining multiple steps of a random walk to large jumps without hitting
a forbidden set of grid points. These techniques might be of independent
interest for speeding up other problems based on random walks.

1 Introduction

Internal diffusion limited aggregation (IDLA) is a random process that places n
particles on the two-dimensional integer grid Z

2. Let A(i) ∈ Z
2 denote the set

of occupied grid points after placing i particles. The first particle is placed on
the origin, i.e., A(1) = {(0, 0)}. From there on, A(i+ 1) is constructed from A(i)
by adding the first grid point in Z

2 \A(i) that is reached by a random walk on
Z
2 starting at the origin.
Particle diffusion processes are of considerable significance in various branches

of science. In fact, the IDLA process was introduced by Meakin and Deutch [8],
who used it as a model to describe the dynamics of certain chemical and phys-
ical processes like corrosion or the melting of a solid around a source of heat.
Since then, the study of the typical properties of A(n), and most prominently
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its “shape,” has been the topic of many works. In particular, numerical simula-
tions in [8] indicated that the surface of A(n) is typically extremely smooth such
that the fluctuations from a perfect circle are only of logarithmic order. Proving
this rigorously turned out to be a difficult and challenging mathematical prob-
lem, which was resolved only recently, after many attempts by several different
authors (see e.g. [3,7,2,1]), by Jerison, Levine and Sheffield [6].

In the present paper, we try to understand IDLA from a computational per-
spective by giving an efficient algorithm for determining the set A(n). This line
of research is driven by the pursuit to get efficient algorithmic tools for coping
with random walks and by the wish to speed up models from physics, so that one
may perform larger experiments. Moreover, understanding such models from a
computational perspective might add to their understanding in general.

Using the aforementioned results it is easy to see that a direct simulation
of every individual step for determining A(n) is likely to require a total time
of σ(n2), i.e., time σ(n) per particle. Indeed, since A(n) typically resembles a
perfect circle, it has a radius of order n1/2. Moreover, the random walk of a
particle can be viewed as a combination of two independent one-dimensional
random walks, one along the horizontal and one along the vertical axis. Thus,
if a particle is placed initially at the origin, one of these two random walks has
to travel a distance of order n1/2 in some direction in order to escape A(n). A
quadratic running time then follows immediately from the well-known fact that
a one-dimensional random walk of length τ in expectation only deviates λ(τ1/2)
hops from its initial position.

The computational complexity of determining A(n) was studied by Moore and
Machta [9]. Among other results they showed that the simulation of IDLA (given
a string of random bits) is complete for the class CC (even in the case of one
particle), which is the subset of P characterized by circuits that are composed of
comparator gates only. Moreover in [4], Friedrich and Levine give an algorithm
that samples A(n). They do not provide an analysis of the complexity (and it
seems a quite difficult task to do so), but their experiments indicate that it scales
like O(n3/2), while they inherently use space σ(n).

In this paper we develop a time and space-efficient algorithm for determining
the set A(n). We present the first algorithm that provably improves upon the
“naive” step-by-step simulation of the particles.

Theorem 1. IDLA can be simulated in O(n log2 n) time and O(n1/2 logn)
space, both in expectation and with high probability1.

Our algorithm simulates all particles consecutively. It crucially uses that the
shape of A(n) is almost a perfect circle, as discussed above. Let the in-circle be
the largest circle centred at the origin that contains only occupied grid points. As
long as the current particle n+1 is within the in-circle of A(n), the random walk
will typically stay in A(n) for many steps. Specifically, if the current distance of
the particle to the in-circle of A(n) is d, then typically in the next λ(d2) random
walk steps the particle will stay in A(n). We want to utilize this fact by combining

1 With probability 1−O(n−c) for a constant c > 0 that can be made arbitrary large.
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many steps to a single jump of the particle, without simulating all of these steps
explicitly. Building on this, we use drift analysis to show that typically O(log n)
such jumps are sufficient to simulate one particle. Intuitively, such a combination
of steps to a jump simply amounts to sampling the position of the particle after
T ⊆ d2 steps, which can be done by sampling two binomial random variables
Bin(T, 12 ). However, there is an obstacle to this simple intuition: Within λ(d2)
steps we leave A(n) with positive probability, so simply jumping to the outcome
of λ(d2) steps necessarily introduces an error. As we want to design an exact
sampling algorithm, we have to overcome this hurdle.

We present a general framework that utilizes jumps to efficiently simulate
IDLA in Section 3. A particular jump procedure is discussed in Section 4.

2 Preliminaries

2.1 Notation

We denote by Bin(n, p) a binomial distribution with parameters n and p and by
logn the natural logarithm of n. For z = (x, y) ⊂ Z

2 we let |z| = (x2 + y2)1/2 be
its 2-norm. For z ⊂ Z

2 and r > 0 we define the ball with radius r around z as
Bz(r) :=

{
w ⊂ Z

2 | |z − w| → r
}

. We write Π (z) for the set of grid neighbors of
z ⊂ Z

2, and for an arbitrary set S ∧ Z
2 we write βS for the set of all position

that can be reached from S, i.e.

βS :=
{
z ⊂ Z

2 \ S | Π (z) ≥ S ⇐= ⇒} and S̄ := S ∪ βS.

Whenever it is clear from the context, which particle we are simulating, we
will write A for A(i). For an IDLA shape A let rI = rI(A) and rO = rO(A) be
its in- and outradius (rounded for technical reasons), i.e.,

rI :=
⌊

min
x◦Z2\A

|x|
⌋

and rO :=
⌊

max
x◦A

|x|
⌋

+ 1.

Moreover, we say that B0(rI) is the in- and B0(rO) the out-circle of A.

2.2 The Shape of IDLA

Recently, Jerison, Levine and Sheffield proved a long open conjecture which
stated that A(n) = B0(

√
n/Δ) ±O(log n) with high probability.

Theorem 2 (Theorem 1 in [6]). For every ∂ > 0 exists a constant φ =
φ(∂) < ≤ such that for sufficiently large r

Pr
[
B0(r − φ log r) ∈ A(⇔Δr2∗) ∈ B0(r + φ log r)

] ⊥ 1 − r−γ . (1)

Additionally using rO → n, this theorem implies that rO − rI = O(log n), both
in expectation and with high probability.
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2.3 Random Walks on Z and Z
2

Let z = z0, z1, z2, . . . be a random walk starting in z ⊂ Z
2. Here we always

consider the standard random walk on Z
2 that chooses each adjacent grid point

with probability 1/4. We write RWT (z) = zT for the outcome of a random
walk of length T starting in z and abbreviate RWT (0) = RWT . Note that
RWT (z) ↓ z + RWT .

We also reach each adjacent grid point with probability 1/4 by flipping two
coins c1, c2 ⊂ {1,−1} and choosing the next position to be

z + c1 · (1/2, 1/2) + c2 · (−1/2, 1/2).

This yields the following reformulation of a 2-dimensional random walk as a lin-
ear combination of two independent 1-dimensional random walks. In particular,
the following lemma allows us to quickly sample from RWT (if one can sample
binomial random variables quickly, we refer to the full version of this paper for
a thorough discussion of this assumption).

Lemma 1. Let z ⊂ Z
2 and T ⊂ N. Let ST be the sum of T independent uniform

{1,−1} random variables, ST ↓ 2Bin(T, 1/2)− T , and let X,Y be independent
copies of ST . Then

RWT (z) ↓ z + X · (1/2, 1/2) + Y · (1/2,−1/2).

Note that our random walks are “bipartite” in the sense that in even timesteps
one can reach only the “even” positions of the grid {(x, y) ⊂ Z

2 | x + y ≡
0 (mod 2)}, and similarly for odd timesteps. We write z≡T x if z can be reached
from x by a walk of length τ ⊂ N with τ ≡ T (mod 2).

The outcome of a one-dimensional random walk of length T has standard
deviation λ(

≺
T ). Intuitively, this implies that with at least constant probability

the two-dimensional random walk RWT is further than
≺
T away from the origin.

Moreover, in any direction κ the expected jump length is large.

Lemma 2. For any T ⊂ N we have Pr[|RWT | ⊥
≺
T ] ⊥ σ(1).

Moreover, let α be a symmetric stopping time, i.e., for all z ⊂ Z
2 we have

Pr[RWτ = z] = Pr[RWτ = z√] where z√ is obtained from z by rotating it by 90≤.
Then for any κ ⊂ R

2 with |κ| = 1 we have

E[|κ ·RWτ |] = σ(Pr[|RWτ | ⊥
≺
T ] ·

≺
T ).

2.4 Drift Analysis

Let σ be some state space, Yk ⊂ σ (k ⊂ N) a stochastic process and g : σ → R⊆0

a function on Yk. Let the hitting time α be the smallest k such that g(Yk) = 0.
We say that g(Yk) has an additive drift of at least χ if for all 0 → k < α

E [g(Yk+1) − g(Yk) | Yk] < −χ. (2)

The following theorem bounds the expected hitting time by the inverse of the
additive drift.

Theorem 3 ([5]). In the situation of this section we have E[α ] → g(Y0)
ε .
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3 A General Framework

The main idea of our algorithms is to combine many steps of a particle’s random
walk to a jump as long as the current particle n+1 is in the in-circle of A = A(n).
In this section, we first formalize the notion of a jump. After that we provide a
framework that yields an IDLA simulation algorithm for any given jump proce-
dure. Throughout this paper a step refers to a single step in a particle’s random
walk and a jump refers to several steps at once.

3.1 The Concept of a Jump

Ideally, a jump does multiple steps of a random walk at once to save the effort
of simulating every single step. Jumps should be concatenable to form longer
portions of a random walk. More formally, let z = z0, z1, . . . be a random walk
starting in z and α = α(A, z) a stopping time of this random walk. Then z �→ zτ
defines a jump procedure, and the concatenation of two such jumps is again the
outcome of a random walk at a certain stopping time. This concatenation prop-
erty allows us to add up jumps until we finally hit the boundary βA. A jump
should make at least one single step of the random walk in order to have guaran-
teed progress, i.e., we require α ⊥ 1 (with probability 1). Moreover, in order to
have a correct simulation of IDLA, jumps must stop at the latest when the ran-
dom walk leaves A, since then the particle’s simulation is complete. Additionally,
all jump procedures considered in this paper are symmetric around z.

There are two important goals for the design of a jump procedure. First,
the (expected) runtime to compute the outcome of a jump should be as small
as possible. In particular, it should be faster than simulating the random walk
step-by-step. Second, intuitively a jump should be the combination of as many
single steps as possible. This can be formalized by requiring the expected jumping
distance to be large. The following definition captures this concept of a jump.

Definition 1. A jump procedure is a randomized algorithm J with input (an
IDLA structure) A ∈ Z

2 and a point z ⊂ A and output J(A, z) = zτ , where
z = z0, z1, . . . is a random walk and α = αJ (A, z) is any stopping time. We
require the jump to make at least one single step of a random walk and to stop
at the latest when leaving A for the first time, i.e., Pr[1 → α → α∂A] = 1,where
α∂A = min{t | zt ⊂ βA} is the hitting time of βA. Additionally, J shall be
symmetric around z, i.e., Pr[J(A, z) = z + w] = Pr[J(A, z) = z − w] for all
w ⊂ Z

2.
We say that J has runtime bound tJ = tJ(n) if J(A, z) can be computed in

time tJ in expectation and with high probability (over the randomness of A =
A(n) and {z} = A(n + 1) \A(n) and the internal randomness of J). Moreover,
we define the expected jumping distance as

ζJ(A, z) := min
|ξ|=1

E[|κ · (J(A, z) − z)|].

When A is clear from the context we also write J(z) for J(A, z).
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3.2 From Jumps to IDLA

Any jump procedure can be iterated to find the point where the random walk
first leaves the IDLA structure A. Let z0 := (0, 0) and zi+1 := J(A, zi), for
every i = 0, 1, 2, . . . as long as zi is still in A. Moreover, let α≥ = α≥(J,A) :=
min{i | zi ⊂ βA} and J≥ = J≥(A) := zτ∗. Note that since J is a randomized
algorithm, J≥ and α≥ are random variables. Clearly, J≥ is distributed exactly as
the endpoint of an IDLA particle. This way, any jump procedure gives rise to a
simulation algorithm for IDLA.

The following theorem gives an upper bound on the running time of an IDLA
simulation with jump procedure J .

Theorem 4. Let J be a jump procedure with runtime bound tJ . Let ζJ be its
expected jumping distance, cJ > 0 some constant, BI := B0(rI − cJ logn), set

δJ(A) := max
z◦BI

rO − |z|
ζJ (A, z)

and assume that for some δ̄J = δ̄J(n) we have δJ(A) → δ̄J in expectation and
with high probability (over the randomness of A = A(n)). Then we can construct
an algorithm for simulating IDLA with runtime

O(n · tJ · logn · (δ̄2J + logn))

and space usage2 O(n1/2 logn), both in expectation and with high probability.

To see that O(n1/2 logn) bits are sufficient (in expectation) to store A(n),
note that by Theorem 2 we have with high probability B0(

≺
n − O(log n)) ∧

A(n) ∧ B0(
≺
n+O(logn)), and B0(

≺
n+O(logn))\B0(

≺
n−O(log n)) contains

O(n1/2 logn) grid cells, for each of which we can store whether it is occupied in
1 bit.

In Section 4 we present a jump procedure with tJ = O(1) and δ̄2J = O(log n),
and thereby provide a proof for Theorem 1.

In order to run efficient IDLA simulations, we need a data structure that has
the following properties.

Lemma 3. We can construct a data structure for A that allows us to
– query rI and rO in O(1) time,
– check z ⊂ A in O(1) time, and
– add z ⊂ Z

2 to A.
Adding the n particles of an IDLA simulation one-by-one to this data structure
overall needs O(n) time and O(n1/2 logn) space, both in expectation and with
high probability.

In this extended abstract we omit the description of the data structure and the
proof of Lemma 3. In the following section, we analyse the expected number of
jumps that we need to simulate. Then, Theorem 4 is merely a consequence of
Theorem 2, Lemma 3 and Lemma 4 below, and we therefore omit its proof.

2 Not including the space used by the jump function.
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3.3 Number of Jumps

To bound the expected runtime of the simulation of a particle using a jump
procedure J , we only have to bound the hitting time α≥ of βA. The following
lemma provides such a bound.

Lemma 4. With the notation of Section 3.2 for any IDLA structure A and
k > 0 we have Pr[α≥ ⊥ k (δ2J(A) log n + (rO − rI + logn)2)] → exp(−σ(k)).

In particular, we have E[α≥] → O
(
δ2J(A) log n + (rO − rI + logn)2

)
.

Proof. Consider again the stochastic process z0 = (0, 0), and zk+1 = J(A, zk)
for k > 0. Set σ :=

≺
2(rO − rI + cJ log n). We analyze this process in phases.

The process starts in phase 1 and changes to phase 2 the first time it reaches
a position zk ⇐⊂ BI . For the next σ2 jumps the process stays in phase 2. After
that it returns to phase 1, except if we are again outside BI , then we directly
start another phase 2. This repeats until we hit βA. For these phases we prove
the following.

(1) Starting phase 1 anywhere in BI , we stay in this phase for at most
O(δ2J (A) log n) jumps in expectation.

(2) Starting phase 2 anywhere outside BI , the probability of hitting βA before
the end of the phase is σ(1).

Using Markov’s inequality, (1) implies that after at most O(δ2J (A) logn) jumps
we leave phase 1 with probability σ(1). Together with (2) we obtain that, wher-
ever we start, within O(δ2J (A) log n + σ2) jumps we hit βA with probability
σ(1). Hence, within O(k(δ2J (A) log n + σ2)) jumps we hit βA with probability
1−exp(−σ(k)), yielding both expectation and concentration of the hitting time.

The proof of (2) follows by Lemma 2 and standard calculations and we there-
fore omit it in this extended abstract.

To show (1) we apply additive drift analysis to prove that the stochastic
process z0, z1, . . . , zτ (for z0 ⊂ BI and α := min {k | zk /⊂ BI}) has an expected
hitting time as claimed. In order to apply Theorem 3 we need a suitable distance
function g : Z2 → R⊆0. We let

g(z) :=

{
log(rO + 2 − |z|), z ⊂ BI

0, z ⊂ Z
2 \BI

.

In the following we will show that g has an additive drift of minz◦BI

(ΔJ (A,z))2

2(rO+2−|z|)2
for all 0 → k < α , i.e., for any zk ⊂ BI

E [g(zk+1) − g(zk) | zk] → − min
z◦BI

(ζJ (A, z))2

2(rO + 2 − |z|)2 . (3)

Applying Theorem 3 together with g(z) → O(log n) then yields an expected
hitting time of Z2 \BI of O(δ2J (A) log n).

Whenever zk ⊂ A we know that zk+1 ⊂ Ā ∧ B0(rO + 1). In this case we can
bound g(zk+1) → log(rO+2−|zk+1|). To shorten notation we let L(x) := log(rO+
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2 − x) for any x ⊂ R in the remainder of this proof. Hence, the expectation of
g(zk+1) conditioned on zk, zk ⊂ BI , is at most3

∑

x◦Z2

Pr [zk+1 = x | zk] · L(|x|) →
∑

x◦Z2

Pr [zk+1 = x | zk] · L
(
x
zk
|zk|

)
,

since the length of the projection of x is bounded by |x| in any direction. Using
the transformation yx := x − zk and the symmetry of jump procedures we can
rewrite this as

∑

x◦Z2

Pr [zk+1 = x|zk] · L
(
|zk| − yx

zk
|zk|

)

=
1

2

∑

x◦Z2

Pr [zk+1 = x|zk] ·
(
L

(
|zk| − yx

zk
|zz|

)
+ L

(
|zk| + yx

zk
|zk|

))
, (4)

where |yx zk
|zk| | → rO + 1 − |zk| for all x with Pr [zk+1 = x|zk] > 0.

Now we use the following estimate that holds for any a, b ⊂ R with a > 0 and
|b| → a:

log(a + b) + log(a− b) → 2 log(a) − b2

a2
. (5)

Combining (4) and (5) yields

E [g(zk+1)|zk] → 1

2

∑

x◦Z2

Pr [zk+1 = x|zk] ·
(

2L(|zk|) − (yx · zk/|zk|)2
(rO + 2 − |zk|)2

)

= g(zk) − E
[
(yzk+1

· zk/|zk|)2
∣∣zk

]

2(rO + 2 − |zk|)2 = g(zk) −
E

[
|(zk+1 − zk) zk

|zk| |2
∣
∣∣zk

]

2(rO + 2 − |zk|)2

→ g(zk) −
E

[
|(zk+1 − zk) zk

|zk| |
∣∣
∣zk

]2

2(rO + 2 − |zk|)2 (6)

where the last inequality follows from Jensen’s inequality. Considering the def-
inition of the expected jumping distance ζJ (Definition 1) with κ = zk

|zk| we

obtain

E [g(zk+1)|zk] → g(zk) − (ζJ (A, zk))2

2(rO + 2 − |zk|)2
which proves the drift inequality (3) and, thus, the lemma. ��

4 Long Jumps

Consider a particle at position z ⊂ BI = B0(rI − cJ log n) (for some sufficiently
large constant cJ > 0) and consider the ball S := Bz(σ) with midpoint z and

3 Here we define the corresponding summand to be 0 whenever the log is undefined.
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radius σ := rI − |z|, so that S is contained in B0(rI) ∧ A. Let z0, z1, . . . be a
random walk starting in z0 = z, let α∂S := min{i | zi ⊂ βS} be its hitting time
of the boundary of S, and similarly let α∂A := min{i | zi ⊂ βA}. Our procedure
will directly jump to Jlong(z) := zτ with

α := min{α∂S , T } and T :=
⌊ σ2

cJ ln(n/e)

⌋
.

Whenever z ⇐⊂ BI , we simply make one step of the random walk, i.e., α := 1.
This way we make sure that α ⊥ 1 (for all z ⊂ A). Note that here we use α∂S
to ensure α → α∂S → α∂A, meaning that we stop at the latest when leaving A.
Since α is a stopping time and Jlong is symmetric, this is a valid jump procedure
according to Definition 1. It is not clear at first sight that Jlong can be sampled
efficiently for all z ⊂ BI . However, we present an algorithm in the next section
and prove in Section 4.2 that its expected runtime is constant. Finally, we deter-
mine the expected jumping distance of Jlong in Section 4.3. Overall, we obtain
the following result, which together with Theorem 4 proves our main result.

Lemma 5. The jump procedure Jlong has runtime bound tJlong
= O(1) and

for any z ⊂ BI an expected jumping distance of ζJlong
(A, z) = σ(

≺
T ) =

σ
(

rI(A)−|z|∪
log n

)
. Furthermore, it has a space usage of O(1) memory cells (in ex-

pectation and with high probability).

4.1 An Algorithm for Sampling Long Jumps

Observe that with high probability a random walk of length T starting in z does
not leave S. Hence, the minimum of α∂S and T is typically obtained at T . We
will design an algorithm that samples the position of zT (restricted to a certain
subset) very efficiently. Additionally, we have to patch this approximate algo-
rithm by a second (slow) algorithm that is executed only with small probability
and that compensates for any mistakes we might make by sampling only zT .

First consider Algorithm 1, which does not yet correctly sample a jump ac-
cording to the distribution of Jlong(z). It simply draws a point z√ = RWT (z) (by
sampling from a binomial random variable, see Lemma 1) and rejects as long as
z√ ⇐⊂ 1

2S (where 1
2S is the ball with midpoint z and radius 1

2σ).

Algorithm 1. Algorithm Long-Jump-Incomplete
repeat

z√ := RWT (z)
until z√ ∈ 1

2
S

return z√.

For w ⊂ Z
2 let PJ (w) := Pr[Jlong(z) = w] and denote the probability of

Algorithm 1 to return w by PAlg1(w). To patch Algorithm 1 we choose a fail-
ure probability pfail (to be fixed later). Then, with probability 1 − pfail we run
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Algorithm 1, but with probability pfail we patch the algorithm by exhaustively
computing the probabilities PJ(w) and PAlg1(w) for all w ⊂ S̄ and returning

w ⊂ S̄ with probability Prest(w), where

(1 − pfail) · PAlg1(w) + pfail · Prest(w) = PJ(w). (7)

The above equation ensures that overall we draw w ⊂ Z
2 according to the right

probability distribution PJ . The approach is summarized in Algorithm 2.

Algorithm 2. Algorithm Long-Jump-Complete

choose p uniformly at random from [0, 1].
if p < pfail then

calculate PJ (w) and PAlg1(w) for all w ∈ S̄
compute Prest(w) according to equation (7)
return w ∈ S̄ drawn according to the distribution Prest(w)

else
run Algorithm 1

end if

This algorithm is correct if pfail can be chosen in such a way that Prest is a
probability distribution. The following lemma states for which values of pfail this
is the case.

Lemma 6. The values Prest(w) for w ⊂ S̄ form a probability distribution if we
choose pfail ⊥ 28ecJ/2n−min{cJ/8,5cJ/16−1}.

In this extended abstract we omit the technical proof of Lemma 6. In the re-
mainder of this section we analyze the runtime of our algorithm and prove a
lower bound on the expected jump length.

4.2 Runtime of the Algorithm

In the fail compensation part of our algorithm we have to compute PAlg1 and
PJ exactly. In this section we discuss how to do this efficiently, which yields a
bound on the runtime of our algorithm.

Observe that for PRW(w) := Pr[RWT (z) = w] we have for all w ⊂ 1
2S that

PAlg1(w) = PRW(w)/
∑

w◦ 1
2S

PRW(w).

This reduces the calculation of PAlg1 to the calculation of PRW(w) for all w ⊂
1
2S. For w ⇐≡T z we have PRW(w) = 0, so let w ≡T z. Then we can write
w = x · (1/2, 1/2) + y · (1/2,−1/2) with x, y ⊂ Z. With the notation of Lemma 1
we have

PRW(w) = Pr[X = x] · Pr[Y = y] = 2−T

(
T

T+x
2

)
· 2−T

(
T

T+y
2

)
.
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Note that this probability has denominator 4T , so it can be stored using O(T )
bits. Moreover, as

(
T
i

)
can be computed in O(T ) multiplications and divisions

of a O(T ) bit number by a O(log T ) bit number, we can calculate PRW(W )
in time O(T 2 logT ). The total running time for calculating PAlg1 is therefore

O(σ2T 2 logT ) and the occupied space is O(σ2T ).
For computing PJ we use a simple iterative scheme. We recursively define Xt

w

for 0 → t → T and w ⊂ S̄. For t = 0 we set

X0
w =

{
1 if w = z,

0 otherwise,

while for t > 0 we set

Xt
w =

{∑
v◦Γ (w)∩S

1
4X

t−1
v if w ⊂ S,

Xt−1
w +

∑
v◦Γ (w)∩S

1
4X

t−1
v if w ⊂ βS.

Observe that XT
w is equal to PJ (w) for every w ⊂ S̄, and each probability Xt

w can
be stored using O(T ) bits. The total running time to calculate PJ is therefore
O(σ2T 2) and the space usage is O(σ2T ) bits.

As the ball S is completely filled with particles, we have n ⊥ σ2. Using
T = λ(σ2/ logn) we get a runtime of O(n3) and a space usage of O(n2) for
computing PJ and PAlg1.

Clearly, Algorithm 1 runs in expected constant time. Moreover, as the proba-
bility of RWT ⇐⊂ 1

2S is small (smaller than pfail, as chosen in the last section), it
even runs in O(1) time with high probability. In total, the expected runtime of
our algorithm for sampling long jumps is O(1 + pfail · n3), and the probability of
having runtime larger than O(1) is at most O(pfail). Hence, for sufficiently large
constant cJ , so that Lemma 6 allows us to choose pfail sufficiently small, we ob-
tain a runtime of tJlong

= O(1), both in expectation and with high probability.
This proves the first part of Lemma 5.

4.3 Expected Jumping Distance

In this section we analyze the expected jumping distance ζJlong
(z) of long jumps,

proving the second part of Lemma 5. Recall that the expected jumping distance
at z ⊂ BI is defined as

ζJlong
(A, z) = min

|ξ|=1
E[|κT (Jlong(A, z) − z)|].

Since the stopping time α of Jlong is symmetric, we can use the second part of

Lemma 2 to obtain ζJlong
(A, z) = σ(Pr[|Jlong(A, z) − z| ⊥ ≺

T ] · ≺T ). Observe

that we have Pr[|Jlong(A, z)−z| ⊥ ≺
T ] ⊥ Pr[|RWT | ⊥

≺
T ], where the inequality

comes from some walks in RWmin{τ∂S,T}(z) ending prematurely (if α∂S → T ).

Together with the first part of Lemma 2, this shows ζJlong
(A, z) ⊥ σ(

≺
T ) =

σ((rI(A) − |z|)/≺logn).
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Abstract. We study an approximate version of q-query LDCs (Locally
Decodable Codes) over the real numbers and prove lower bounds on the
encoding length of such codes. A q-query (α, δ)-approximate LDC is a
set V of n points in R

d so that, for each i ∈ [d] there are Ω(δn) disjoint
q-tuples (u1, . . . ,uq) in V so that span(u1, . . . ,uq) contains a unit vector
whose i’th coordinate is at least α. We prove exponential lower bounds

of the form n ≥ 2ε(Γγ
√

d) for the case q = 2 and, in some cases, stronger
bounds (exponential in d).

1 Introduction

Error Correcting Codes (ECCs) have always played an important part in the
development of theoretical computer science. In particular, many of the foun-
dational results of computational complexity rely in some way or another on
constructions and analysis of ECCs (e.g., hardness of approximation, hardness-
randomness tradeoffs). The study of ECCs from the perspective of complexity
theorists sometimes has different a focus than the traditional information theory
viewpoint. One such difference is the study of special kinds of codes that are
useful for theory (i.e., for proving theorems such as the PCP theorem) but were
not studied previously.

One such example are Locally-Decodable-Codes (LDCs) which were formally
defined in the seminal work of Katz and Trevisan [KT00] (but were implicit
in several prior works [BK95, Lip90, BF90]). These are codes that allow the
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receiver of a (possibly corrupted) encoding y = C(x) ∈ {0, 1}n of a message
x ∈ {0, 1}d to probabilistically decode w.h.p a single message bit xi by reading
only q positions in y (which might contain at most σn errors). We usually think
of q as either a small constant or a very slow growing function of n and of σ as
a constant.

The only case of LDCs which is mostly well understood is that of 2-query
codes (it is easy to see that 1-query codes do not exist). The Hadamard code
C(x) = (⊆x, a⊂)a◦{0,1}d is a 2-query code with exponential encoding length. In
[GKST06, KdW04] it was shown that this is tight, that is, we always have
n → 2ε(Ωd) for 2-query codes. For q > 2 there are huge gaps between the known
lower and upper bounds. The best known lower bound is n = τ̃(d1+1/(√q/2≤−1))
for q > 4 [Woo07] and n = τ(d2) for k = 3, 4 [KdW04, Woo12]. The best
constructions for q > 2 are given by Matching-Vector codes, which were intro-
duced by Yekhanin in [Yek08] and further developed in [Efr09, Rag07, KY09,
IS10, CFL+10, DGY11, BET10]. These codes have block-length of roughly n ∧
exp exp

(
(log d)O(log log q/ log q)(log log d)

)
.

One important sub-case of LDCs is that of linear codes (most known construc-
tions are linear as far as we know). That is, the encoding is a linear mapping
C : F

d ≥⇐ F
n over some field F. In this case, one can show that w.l.o.g. the

decoding is linear as well. More formally, if we let v1, . . . ,vn ∈ F
d be the rows

of the generating matrix of C (so that C(x)i = ⊆x,vi⊂) then we have that, for
each i ∈ [d] there must exist a matching Mi of at least τ(σn) disjoint pairs
vj1 ,vj2 that span ei (the i’th standard basis vector). To locally decode xi one
can simply pick a random pair in the matching Mi and calculate:

xi = ⊆x, ei⊂ = a⊆x,vj1⊂ + b⊆x,vj2⊂

for some field elements a, b satisfying avj1 + bvj2 = ei. In [DS05] it was shown
that the lower bound of [GKST06] for binary linear codes can be extended to
linear codes over any field and so, we know that the Hadamard code cannot be
beaten even if we allow for a large alphabet.

In this work we consider a new notion of linear LDCs in which the underlying
field is the real numbers and the decoding is ‘approximate’. Building on the
above characterization of linear codes, we will consider arrangements of points
v1, . . . ,vn ∈ R

d in which, for every i ∈ [d] there are many disjoint pairs that
‘almost span’ ei in some concrete way (we give exact definitions below). Overall,
our results are negative and show that, even if we allow a very loose notion of
approximation, the encoding length is still exponential (either in

⇒
d or in d,

depending on the model). We prove several theorems for various settings of the
parameters, using a wide variety of techniques.

Motivation and related works: Our motivation for studying this problem comes
from several directions. Firstly, one could hope to use approximate codes in
practice (if these had sufficiently good parameters). As long as the approximation
parameter is not too large we could hope to recover some approximation of xi

using the two queries to the code (assuming xi is some quantity we are interested
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in and we don’t mind some small error). Another motivation comes from trying
to understand 3-query codes. Here, even if we restrict our attention to real codes
over R, there is still an exponential gap between lower and upper bounds. In
a recent work, [DSW14a], a subset of the current authors and Avi Wigderson
proved an n > d2+α lower bound (for some positive λ) for a closely related
notion of 2-query Locally Correctable Codes (LCCs) over R, improving upon the
known quadratic bound. Originally, the proof of [DSW14a] used a reduction from
(exact) 3-LCCs over R to 2-query approximate LDCs (later, a different proof was
found). This raises the possibility that, in the future, perhaps approximate codes
will find more applications. We are also motivated by connections to well studied
questions in combinatorial geometry. In [BDWY12, DSW14b] it was shown that
proving lower bounds on LCCs is closely related to questions in the spirit of
the Sylvester-Gallai theorem. Here, one tries to take local information about a
point configuration (say, many collinear triples) and convert this information to
a global bound on the dimension spanned by the points. We can view some of
the theorems in this work in this spirit. Approximate versions of Sylveter-Gallai
type theorems and LCCs were recently explored in [ADSW14].

1.1 Definitions and Results

We begin with some notations. A q-matching M in [n] is defined to be a set of
disjoint unordered q-tuples (i.e. disjoint subsets of size q) of [n]. We denote by ei
the i’th standard basis vector in R

d. The standard inner product of two vectors
x,y ∈ R

d is given by ⊆x,y⊂ and the Π2 norm of x ∈ R
d is ∪x∪2 =

⎧⊆x,x⊂.

Definition 1 (weighti). For a vector u ∈ R
d we define weighti(u) =

|⊆u, ei⊂|/∪u∪2 (i.e., the absolute value of the i’th coordinate of the normalized
vector u/∪u∪2). Clearly we have

⎨
i◦[d] weighti(u)2 = 1.

We now state our definition of approximate LDC.

Definition 2 (Approximate LDC). Let d, n, q be positive integers and β, σ ∈
[0, 1] real numbers. A q-query (β, σ)-approximate LDC is a pair (V,M) with

1. V = {v1,v2, . . . ,vn} a multiset of vectors in R
d. The parameter n is the

size (or block length) of the code and the parameter d is the dimension (or
message length) of the code.

2. M = (M1, . . . ,Md) with each Mi being a q-matching in [n] so that, if
{j1, . . . , jq} ∈ Mi, then there exists u ∈ span{vj1 , . . . ,vjq} with weighti(u) →
β.

The sizes of the matchings Mi must satisfy |M1| + |M2| + · · · + |Md| → σdn and
the parameter σ is called the density of the code1.

1 The traditional definition would ask for each Mi to be of size at least δn but our
definition is more general, which makes our (negative) results stronger.
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Our first theorem gives an exponential bound on the block length of approx-
imate 2-LDCs for any β > 0. Notice that the bound gets worse as β approaches
1/

⇒
d, at which point we cannot expect any lower bound to hold (since a single

vector u can have weighti(u) → 1/
⇒
d for all i ∈ [d]).

Theorem 1. [General lower bound] A 2-query (β, σ)-approximate LDC of size n

and dimension d must satisfy n → 2ε(λΩ
⊆
d).

We could hope to replace the exponential dependence on
⇒
d with an exponen-

tial dependence on d (as is the case with exact 2-LDCs). In fact, we conjecture
that a general bound of the form n → exp(σβ2d) should hold (the quadratic
dependence on β is necessary to avoid hitting the β = 1/

⇒
d barrier). Currently,

we are only able to prove this conjecture when β is sufficiently close to 1. This
is stated in the next theorem.

Theorem 2. [Lower bound for large β] Let β0 =
⎧

1 − 1/(4Δ2) ≤ 0.987. A 2-
query (β, σ)-approximate LDC of size n, dimension d and β > β0 must satisfy
n → 2ε(Ωd), where the hidden constant in the τ(·) depends on β− β0.

There is another special case where we can get an exponential dependence on
d instead of

⇒
d. It is a natural restriction of the general definition but it requires

two new notions (that will be useful in their own right down the road). The first
is that of a simple code (we will only care about 2-query codes).

Definition 3 (Simple Code). Let (V,M) be a 2-query (β, σ)-approximate
LDC. We say that (V,M) is a simple code if, for every i ∈ [d] and {j1, j2} ∈ Mi

we have weighti(vj2 − vj1) → β.

In other words, a simple code is an arrangement of points in R
d so that, for

any i ∈ [d] there are ≤ σn (on average) disjoint pairs of points that ‘point’ in a
direction that has projection at least β on the i’th axis. An example of such an
arrangement is the boolean cube {0, 1}d ⇔ R

d (all zero/one vectors), where Mi

consists of all n/2 pairs that differ only in the i’th entry (so β = 1).
Another feature of the hypercube is that all the distances between pairs in

M1, . . . ,Md are equal (they all equal one), motivating the following definition.

Definition 4 (c-bounded). Let c → 1 and let (V,M) be a 2-query (β, σ)-
approximate LDC. We say that (V,M) is c-bounded if, for every i ∈ [d] and
{j1, j2} ∈ Mi we have ∪vj2 − vj1∪ ∈ [1, c].

The fact that the hypercube is both c-bounded (with c = 1) and simple mo-
tivates the study of structures that satisfy these two conditions. In particular,
we ask whether there exists a point arrangement in R

d which is ‘roughly’ like
the hypercube but has far fewer than 2d points. Here, the notion of ‘roughly’
is captured by allowing pairwise distance to be ‘close’ to 1 and the differences
between adjacent vertices to be only somewhat axis parallel. The following the-
orem shows that such configurations do not exist (that is, you cannot beat the
hypercube by much).
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Theorem 3. [Lower bound for simple c-bounded LDCs] A 2-query c-bounded
simple (β, σ)-approximate LDC of size n and dimension d must satisfy n →
2ε(λ2Ω2d/(log c)2).

Finally, we consider arbitrary q-query approximate codes and observe that the
lower bound proof of [KT00] can be made to work also for approximate LDCs
(with some additional work). This gives the following theorem.

Theorem 4. Let q → 1 be an integer constant. A q-query (β, σ)-approximate

LDC of size n and dimension d must satisfy n → τ((β2σ1/qd)
q

q−1 ).

1.2 Techniques

We briefly outline the techniques that appear in the proofs of our theorems.

Simple codes: An important ingredient in the proofs of Theorem 1 and 2 is a
general reduction from any approximate 2-LDC to a simple code. The reduction
follows by first normalizing the lengths of all vectors and then observing that
if some linear combination avj1 + bvj2 has large weighti then either one of the
vectors vj1 ,vj2 has large weighti or the coefficients a, b are close to 1,−1. We
can thus throw away all pairs in the matching Mi in which one of the vectors
has large weighti and get a simple code (we do not throw away too many pairs
since each vector has only a few large coordinates). Since this reduction does not
preserve c-boundedness, we can unfortunately not use it to argue that Theorem 3
works for non-simple c-bounded codes.

Proof of general bound: The proof of Theorem 1 (for simple codes w.l.o.g.) is
via a recursive partitioning argument. In each step we pick a random i ∈ [d]
and partition V into two sets using a random shift of a hyperplane orthogonal
to ei. We analyze the expected number of edges (pairs in some Mi) cut in this
process and show that this is bounded by O(

⇒
d/β) · min{|S|, |S̄|} with S, S̄

representing the two parts of the cut. The same inequality holds also when
partitioning any subset V ≥ ⇔ V and so we can proceed recursively and obtain a
bound of O((

⇒
d/β)n log2 n) on the total number of edges. Since this number is

at least σdn the theorem follows. This proof is inspired by the one appearing in
[GKST06] for exact (simple) 2-LDCs.

Proof of bound for large β: Here we rely on a recent work of [KROW12] which
gives a (randomized) tiling of Rd with cells that have volume 1 and surface area
O(

⇒
d) (same as a sphere up to a constant). This result gives a randomized

rounding algorithm that we can leverage towards ‘rounding’ our approximate
code to an exact code (very roughly speaking) when β is large. This step is then
combined with a random partitioning argument as in the proof of Theorem 1.



264 J. Briët et al.

Proof for simple c-bounded codes: For this setting we use the LDC to con-
struct a function F from R

d to the space of complex n × n matrices given by:
F (x) =

(
e−i∪x,vs−vt〉)n

s,t=1
. The crux of the proof applies an inequality relating

the trace norms of the first level (matrix) Fourier-coefficients of a matrix-valued
function to its average trace norm. The crucial observation is that the norms of
the first level Fourier coefficients of the above defined F can be lower bounded
using the LDC property. The result then follows by combining this with the
trivial upper bound on the average norm of F . This proof loosely follows an
argument of [BARdW08] used for binary (non linear) LDCs and is inspired by
work of [BNR12] linking LDCs to geometry of Banach spaces.

Organization. We describe our reduction from general to simple 2-query codes
in Section 2. In Section 3 we prove the bound for general codes (Theorem 1). In
Section 4 we prove the bound for β close to 1 (Theorem 2). The proofs of the
lower bound for c-bounded codes (Theorem 3) and the lower bound for general
q-query approximate codes (Theorem 4) are available in the full version of this
paper.

2 Simple Codes

In this section we prove the following theorem showing that any 2-query approx-
imate LDC can be transformed into a simple code with similar parameters.

Theorem 5. If there exists a 2-query (β, σ)-approximate LDC of size n and
dimension d, then, for any integer k > 1/β2, there exists a simple 2-query
(β≥, σ≥)-approximate LDC of size n≥ and dimension d, where β≥ → ⎧

β2 − 1/k,
σ≥ → σ − k/d and n≥ ∧ 2n.

The complete proof is given in the full version of this paper. We now give
a short sketch of the main idea. Suppose that we have a pair of unit vectors
u,w ∈ R

d with weighti(au+bw) → β. It will be convenient to think of β as being
close to one (the proof will work for any β). So, after normalizing the coefficients
a, b we have that the unit vector v = au + bw is close to ei. We separate into
two cases. In the first case, both u and w are almost orthogonal to ei. In this
case, we must have that u − w ‘points’ in the direction of ei (see diagrams in
the complete proof) and so we don’t really need the coefficients a, b. In the other
case, at least one of u,w have significant inner product with ei. Notice, however,
that, for each fixed u, this can only happen with a small number of ei’s when
i ∈ [n]. These ‘bad’ pairs can be removed from the matchings without causing a
big decrease in their average size.

It will be convenient to use the following corollary of Theorem 5 in which we
set k = ∗2/β2⊥.
Corollary 1. Suppose d → 6/β2σ. If there exists a 2-query (β, σ)-approximate
LDC of size n and dimension d, then there exists a simple 2-query (β≥, σ≥)-
approximate LDC of size n≥ and dimension d, where β≥ → β/

⇒
2, σ≥ → σ/2 and

n≥ ∧ 2n.
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3 Lower Bound for General Simple Codes

We associate with a simple code C = (V,M) a labeled graph GC on vertex set V
with edges given by all pairs in M1, . . . ,Md. We label each edge in Mi with the
label i and allow for parallel edges (with different labels). We refer to the label
of an edge e as the direction of the edge and denote it by dir(e) ∈ [d]. The proof
will follow by analyzing cuts in the graph GC , which we assume contains at least
σdn edges.

For S ↓ V , let Edge(S) be the set of edges of GC with both end points in S.
We say that (S1, S2) is a cut if S1∪S2 = S and S1≺S2 = ∅. The cut is non-trivial
if S1, S2 �= ∅. We use Edge(S1, S2) to denote the set of edges with one endpoint
in S1 and the other in S2.

The next lemma of [GKST06, Appendix] relates the sizes of cuts in the graph
with the total number of edges (the lemma holds for any graph). We include its
proof in the Appendix for completeness.

Lemma 1. Suppose that for every S ↓ V with |S| → 2, there exists a non-trivial
cut (S1, S2) satisfying |Edge(S1, S2)| ∧ c · min{|S1|, |S2|}, then GC has at most
c
2 |V | log2 |V | edges.

We now proceed to prove Theorem 1. We will show n = 2λΩ
⊆
d for any (β, σ)

simple code (the general case will follow using Corollary 1). This will follow by
combining the following lemma and Lemma 1.

Lemma 2. Let C = (V,M) be an (β, σ) simple code and let GC be the associated
graph described above. Then, for any S ↓ V with |S| → 2, there exists a non-
trivial cut (S1, S2) such that

|Edge(S1, S2)| ∧ 2
⇒
d

β
· min{|S1|, |S2|}.

Proof. If S contains no edges, an arbitrary cut will satisfy the requirement. We
thus assume that S contains at least one edge. We now analyze the size of a
random cut chosen in a specific way.

Assume all points in V are in a (d-dimensional) box of edge length L. We
pick a random direction i ∈ [d] and then pick a plane perpendicular to ei at a
random position intersecting the box. The plane cuts the box into two parts. We
define S1 to be the set of points in one part and S2 to be the set of points in
the other part (the probability of having a point on the hyperplane is zero). We
analyze the edges in this cut (S1, S2). We say that an edge e ∈ Edge(S1, S2) is
cut in the right direction if the plane is perpendicular to the direction of e, i.e.
dir(e) = i.

We consider a specific edge. Let e0 = {vj1 ,vj2} with {j1, j2} ∈ Mi0 be an
edge in direction dir(e0) = i0 and denote vj1 − vj2 = (u1, u2, . . . , ud). For each
i≥ ∈ [d] the probability that e0 is cut by a plane perpendicular to ei∈ is

Pr[i = i≥] · Pr[the plane falls between vj1i∈ and vj2i∈ ] = |ui∈ |/(dL).



266 J. Briët et al.

Therefore, by the definition of an approximate code (|ui0 | → β∪vj1 − vj2∪2)
and the Cauchy-Schwarz inequality, edge e0 is cut in the right direction with
probability

|ui0 |/(dL) → β
⎩

u2
1 + u2

2 + · · · + u2
d

⎢
(dL) → β⇒

d

(|u1| + |u2| + · · · + |ud|
)
/(dL)

=
β⇒
d

Pr[e0 ∈ Edge(S1, S2)].

Since vj1 − vj2 has at least one non-zero coordinate, Pr[e0 ∈ Edge(S1, S2)]
must be strictly positive. It follows that edge e0 is cut in the right direction
with probability strictly greater than βPr[e0 ∈ Edge(S1, S2)]/(2

⇒
d). Hence, the

expected number of edges that are cut in the right direction is strictly greater
than βE

⎣|Edge(S1, S2)|⎛/(2
⇒
d). There must therefore exist an i ∈ [d], a plane

perpendicular to ei and a corresponding cut (S1, S2) which cuts strictly more
than β|Edge(S1, S2)|/(2

⇒
d) in the right direction. Since this number is non-

negative, there must be at least one edge cut in the right direction. This implies
that S1 and S2 are not empty.

All edges cut in the right direction must have the same direction i. Hence,
these edges are disjoint (they form a matching in V ), implying that the total
number of cut edges is at most min{|S1|, |S2|}. It follows immediately that

|Edge(S1, S2)| ∧ 2
⇒
d

β
min{|S1|, |S2|}.

Therefore the cut (S1, S2) satisfies the requirement. ��
Now using Lemma 1 we can conclude that σdn ∧ (2

⇒
d/β)n · log2 n, which

gives n → 2λΩ
⊆
d as required. This completes the proof of Theorem 1. ��

4 Lower Bound for Simple Codes with Large λ

In this section we prove Theorem 3. By Theorem 5 it is enough to consider simple
codes (the general case will follow by applying Theorem 5 with k a sufficiently
large constant). We will use the definition and terminology of the graph GC

defined in the last section for simple codes. Hence, we think of pairs in Mi as
edges in ‘direction’ dir(e) = i. We define the length of an edge e = {vj1 ,vj2} to
be ∪vj1 − vj2∪2.

We will use a recent result of [KROW12] concerning a partitioning (or tiling)
of Rd. Let G = {gz | z ∈ Z

d} be the set of grid points with grid distance g ∈ R
+.

Suppose we have a cell containing the origin and no other points of G. We can
attempt to tile the space by taking all the shifts of this cell by all vectors in G.
Clearly, one can do this using square tiles. However, it was an open problem to
find the ‘most efficient’ way of tiling R

d (in some well defined geometric sense
of ‘efficient’). [KROW12] gives a randomized algorithm outputting the shape of
the cell so that the entire space is fully covered and no two cells overlap (thus, it
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is a tiling) and each cell corresponds to one grid point. Let C(x) ∈ G (x ∈ R
d)

denote the grid point in the cell containing x (so we can think of C(x) as a
‘rounding’ of x). [KROW12] proved the following2:

Theorem 6 ([KROW12]). There is a randomized algorithm partitioning the
whole space R

d into cells such that

1. For every x ∈ R
d and s ∈ G, C(x + s) = C(x) + s.

2. For every two points x,y ∈ R
d, Pr[C(x) �= C(y)] ∧ 2Δ∪y − x∪2/g.

Let λ ∈ (0, 1) and t ∈ Z
+ be two parameters to be determined later. We

partition R
+ into sets R

+ = I0 ∪ I1 ∪ · · · ∪ It−1, where

Ij =
⎝

k◦Z

⎣
(1 + λ)kt+j , (1 + λ)kt+j+1

)
.

For I ↓ R
+, we say an edge is contained in I if its length falls in I. Without loss

of generality we assume I0 is the one among {I0, I1, . . . , It−1} that contains the
most edges. We remove all edges not contained in I0. The density σ is decreased
by a factor of at most t.

Recall that I0 =
⎞

k◦Z

⎣
(1 + λ)kt, (1 + λ)kt+1

)
. We say that the level of an edge

is k if it is contained in
⎣
(1 + λ)kt, (1 + λ)kt+1

)
. For an edge e, we use lev(e) to

denote its level. Let kmin and kmax to be the minimum level and the maximum
level of all edges respectively.

For every integer k ∈ [kmin, kmax] we use Theorem 6 to generate an (indepen-
dent) random partition with grid distance

gk =
(1 + λ)kt + (1 + λ)kt+1

2β
=

(2 + λ)(1 + λ)kt

2β
,

and use Ck(x) to denote the corresponding rounding function.
Consider an edge e = {vj1 ,vj2} and say dir(e) = i0. We assume ⊆vj2 −

vj1 , ei0⊂ > 0. (Otherwise we switch the order of vj1 and vj2 .) We say the edge
is good if the following properties are satisfied:

1. For k = lev(e), Ck(vj1 +gkei0) = Ck(vj2). Since Ck(vj1 +gkei0) = Ck(vj1)+
gkei0 , this means that the two cells containing vj1 and vj2 are adjacent along
the direction ei0 .

2. For k > lev(e), Ck(vj1) = Ck(vj2). In other words, the two ends are in the
same cell.

vj1 + gkei0

vj2

vj1

ei0

Claim. Every edge is good with probability at least

1 −
⎠

2Δ

√

1 − β2 +

(
βλ

2 + λ

)2

+
4Δβ(1 + λ)

(2 + λ) ((1 + λ)t − 1)



 .

2 [KROW12] only considered g = 1 but the general result follows by simple scaling.
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Proof. We consider the edge e = {vj1 ,vj2} with direction i0, and assume ⊆vj2 −
vj1 , ei0⊂ > 0. Then ⊆vj2 − vj1 , ei0⊂ → β∪vj2 − vj1∪2 and

∪vj2 − vj1∪2
glev(e)

∈
[ 2β

2 + λ
,

2β(1 + λ)

2 + λ

)
=

[
β− βλ

2 + λ
, β +

βλ

2 + λ

)
,

We consider the probability that e is not a good edge.

1. For k = lev(e), we have

Pr [Ck(vj1 + gkei0) �= Ck(vj2)] ∧ 2Δ∪vj2 − (vj1 + gkei0)∪2/gk
∧ 2Δ/gk ·

⎩
∪vj2 − vj1∪22 + g2k − 2βgk∪vj2 − vj1∪2

= 2Δ

⎩
(∪vj2 − vj1∪2/gk − β)

2
+ 1 − β2

∧ 2Δ

√

1 − β2 +

(
βλ

2 + λ

)2

.

2. For k > lev(e), we have

Pr [Ck(vj1) �= Ck(vj2)] ∧ 2Δ∪vj2 − vj1∪2/gk
∧ 2Δ · 2β(1 + λ)

2 + λ
· glev(e)

gk

=
4Δβ(1 + λ)

2 + λ
· 1

(1 + λ)(k−lev(e))t
.

By union bound, the probability that e is not a good edge is at most

2Δ

√

1 − β2 +

(
βλ

2 + λ

)2

+

kmax∑

k=lev(e)+1

(
4Δβ(1 + λ)

2 + λ
· 1

(1 + λ)(k−lev(e))t

)

< 2Δ

√

1 − β2 +

(
βλ

2 + λ

)2

+
4Δβ(1 + λ)

(2 + λ) ((1 + λ)t − 1)
.

Thus the claim is proved. ��
For any β >

⎧
1 − 1/(4Δ2), we can always pick λ sufficiently small and t

sufficiently large so that each edge is good with positive probability. For example,
if β = 0.99, we can take λ = 0.01 and t = 500, in which case each edge is good
with probability at least 0.069. For simplicity, we use O(·) and τ(·) to suppress
the exact values of constants β, λ and t. The above claim tells us every edge
is good with probability τ(1). By a simple expectation argument, there exists
a series of space partitions (for every k ∈ [kmin, kmax]) such that τ(1) fraction
of all edges are good. We fix these partitions and remove all edges that are not
good. In the remaining code the density is τ(σ).

Next, we prove the lower bound n = 2ε(Ωd). This follows immediately from
the following lemma and Lemma 1.
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Lemma 3. For any S ↓ V with |S| → 2, there exists a non-trivial cut (S1, S2)
such that |Edge(S1, S2)| ∧ min{|S1|, |S2|}.
Proof. If S contains no edges, an arbitrary partition will satisfy the requirement.
Otherwise, we consider the edges in S and pick an edge with the maximum
level. Say this edge is e = {vj1 ,vj2}, and dir(e) = i0, lev(e) = k. We assume
⊆vj2 − vj1 , ei0⊂ > 0. Then since this edge is good, Ck(vj1) and Ck(vj2) are
adjacent grid points,

Ck(vj1) + gkei0 = Ck(vj1 + gkei0) = Ck(vj2).

For any point v ∈ R
d and i ∈ [d], we use Ck(v)i to denote the i’th coordinate of

Ck(v). Let h = [Ck(vj1)i0 + Ck(vj2)i0 ] /2. We define S1 and S2 as follows.

S1 = {v ∈ S | Ck(v)i0 < h},
S2 = {v ∈ S | Ck(v)i0 > h}.

We can see that S1 and S2 are not empty because vj1 ∈ S1 and vj2 ∈ S2. There
is no point v satisfying Ck(v)i0 = h, because Ck(v) is a grid point and h is not
a multiple of gk. Hence (S1, S2) is a non-trivial cut of S.

We consider the edges in Edge(S1, S2), and show that every edge in
Edge(S1, S2) must have direction i0. Assume this is not true, and let e≥ =
{v≥

j1
,v≥

j2
} be such an edge. Say dir(e≥) = i≥ (i≥ �= i0). There are two cases.

1. lev(e≥) = k. By the first requirement in the definition of good edges,

Ck(v≥
j1) + gkei∈ = Ck(v≥

j1 + gkei∈) = Ck(v≥
j2).

2. lev(e≥) < k. By the second requirement in the definition of good edges,

Ck(v≥
j1) = Ck(v≥

j2).

In both cases we have Ck(v≥
j1

)i0 = Ck(v≥
j2

)i0 . Hence the edge e≥ /∈ Edge(S1, S2).
Therefore all edges in Edge(S1, S2) have direction i0. Since the edges of the

same direction are disjoint, we have |Edge(S1, S2)| ∧ min{|S1|, |S2|}. ��
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Abstract. Holographic algorithms based on matchgates were
introduced by Valiant. These algorithms run in polynomial-time and are
intrinsically for planar problems. We introduce two new families of holo-
graphic algorithms, which work over general, i.e., not necessarily planar,
graphs. The two underlying families of constraint functions are of the
affine and product types. These play the role of Kasteleyn’s algorithm
for counting planar perfect matchings. The new algorithms are obtained
by transforming a problem to one of these two families by holographic
reductions. We present a polynomial-time algorithm to decide if a given
counting problem has a holographic algorithm using these constraint
families. When the constraints are symmetric, we give a polynomial-time
decision procedure in the size of the succinct presentation of symmetric
constraint functions. This procedure shows that the recent dichotomy
theorem for Holant problems with symmetric constraints is polynomial-
time decidable.

1 Introduction

Recently a number of complexity dichotomy theorems have been obtained for
counting problems. Typically, such dichotomy theorems assert that a vast ma-
jority of problems expressible within the framework are #P-hard, however an
intricate subset manages to escape this fate. They exhibit a great deal of math-
ematical structure, which leads to a polynomial time algorithm. In recent di-
chotomy theorems, a pattern has emerged [14,19,21,15,34,23,11,32]. Some of the
tractable cases are expressible as “those problems for which there exists a holo-
graphic algorithm.” However, this understanding has been largely restricted to
problems where the local constraint functions are symmetric over the Boolean
domain. In order to gain a better understanding, we must determine the full
extent of holographic algorithms, beyond the symmetric constraints.

Holographic algorithms were first introduced by Valiant [44,43]. They are
applicable for any problem that can be expressed as the contraction of a tensor
network. Valiant’s algorithms have two main ingredients. The first ingredient is
to encode computation in planar graphs using matchgates [42,41,9,17,10]. The
result of the computation is then obtained by counting the number of perfect
matchings in a related planar graph, which can be done in polynomial time by
Kasteleyn’s (a.k.a. the FKT) algorithm [35,40,36]. The second ingredient is a

ε Full version with proofs available at [12].

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 271–282, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014
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holographic reduction, which is achieved by a choice of linear basis vectors. The
computation can be carried out in any basis since the output of the computation
is independent of the basis.

In this paper, we introduce two new families of holographic algorithms. These
algorithms holographically reduce to problems expressible by either the affine
type or the product type of constraint functions. Both types of problems are
tractable over general (i.e. not necessarily planar) graphs [25], so the holographic
algorithms are all polynomial time algorithms and work over general graphs. We
present a polynomial time algorithm to decide if a given counting problem has
a holographic algorithm over general graphs using the affine or product-type
constraint functions. Our algorithm also finds a holographic algorithm when one
exists. To formally state this result, we briefly introduce some notation.

The counting problems we consider are those expressible as a Holant prob-
lem [24,22,20,25]. A Holant problem is defined by a set F of constraint functions,
which we call signatures, and is denoted by Holant(F). An instance to Holant(F)
is a tuple Ω = (G,F , π) called a signature grid, where G = (V,E) is a graph and
π labels each vertex v ∈ V and its incident edges with some fv ∈ F and its input
variables. Here fv maps {0, 1}deg(v) to C. We consider all possible 0-1 edge as-
signments. An assignment σ to the edges E gives an evaluation

∏
v◦V fv(σ|E(v)),

where E(v) denotes the incident edges of v and σ|E(v) denotes the restriction of
σ to E(v). The counting problem on the instance Ω is to compute

HolantΩ =
∑

σ:E√{0,1}

∏

v◦V

fv
(
σ|E(v)

)
. (1)

For example, consider the problem of counting Perfect Matching on G. This
problem corresponds to attaching the Exact-One function at every vertex of
G. The Exact-One function is an example of a symmetric signature, which are
functions that only depend on the Hamming weight of the input. We denote a
symmetric signature by f = [f0, f1, . . . , fn] where fw is the value of f on inputs
of Hamming weight w. For example, [0, 1, 0, 0] is the Exact-One function on
three bits. The output is 1 if and only if the input is 001, 010, or 100, and the
output is 0 otherwise.

Holant problems contain both counting constraint satisfaction problems and
counting graph homomorphisms as special cases. All three classes of problems
have received considerable attention, which has resulted in a number of di-
chotomy theorems (see [38,33,28,2,27,5,30,8] and [4,3,26,1,25,7,13,29,31,14,6]).
Despite this success with #CSP and graph homomorphisms, the case with
Holant problems is more difficult. A recent dichotomy theorem for Holant prob-
lems with symmetric signatures was obtained in [11]. But the general (i.e. not
necessarily symmetric) case has a richer and more intricate structure. The same
dichotomy for general signatures remains open. Our first main result makes a
solid step forward in understanding holographic algorithms based on affine and
product-type signatures in this more difficult setting.
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Theorem 1. There is a polynomial time algorithm to decide, given a finite set
of signatures F , whether Holant(F) admits a holographic algorithm based on
affine or product-type signatures.

These holographic algorithms for Holant(F) are all polynomial time in the size
of the problem input Ω. The polynomial time decision algorithm of Theorem 1
is on another level; it decides based on any specific set of signatures F whether
the counting problem Holant(F) defined by F has such a holographic algorithm.

However, symmetric signatures are an important special case. Because sym-
metric signatures can be presented exponentially more succinctly, we would like
the decision algorithm to be efficient when measured in terms of this succinct
presentation. An algorithm for this case needs to be exponentially faster than
the one in Theorem 1. In Theorem 2, we present a polynomial time algorithm
for the case of symmetric signatures. The increased efficiency is based on several
signature invariants under orthogonal transformations.

Theorem 2. There is a polynomial time algorithm to decide, given a finite set
of symmetric signatures F expressed in the succinct notation, whether Holant(F)
admits a holographic algorithm based on affine or product-type signatures.

A dichotomy theorem classifies every set of signatures as defining either a
tractable problem or an intractable problem (e.g. #P-hard). Yet it would be
more useful if given a specific set of signatures, one could decide to which case
it belongs. This is the decidability problem of a dichotomy theorem. In [11], a
dichotomy regarding symmetric complex-weighted signatures for Holant prob-
lem was proved. However, the decidability problem was left open. Of the five
tractable cases in this dichotomy theorem, three of them are easy to decide, but
the remaining two cases are more challenging, which are (1) holographic algo-
rithms using affine signatures and (2) holographic algorithms using product-type
signatures. As a consequence of Theorem 2, this decidability is now proved.

Corollary 3. The dichotomy theorem for symmetric complex-weighted Holant
problems in [11] is decidable in polynomial time.

Previous work on holographic algorithms focused almost exclusively on those
with matchgates [44,43,16,19,17,18,32]. (This has led to a misconception in the
community that holographic algorithms are always based on matchgates.) The
first example of a holographic algorithm using something other than matchgates
came in [24]. These holographic algorithms use generalized Fibonacci gates. A
symmetric signature f = [f0, f1, . . . , fn] is a generalized Fibonacci gate of type
λ ∈ C if fk+2 = λfk+1 + fk holds for all k ∈ {0, 1, . . . , n − 2}. The standard
Fibonacci gates are of type λ = 1, in which case, the entries of the signature sat-
isfy the recurrence relation of the Fibonacci numbers. The generalized Fibonacci
gates were immediately put to use in a dichotomy theorem [22]. As it turned
out, for nearly all values of λ, the generalized Fibonacci gates are holographically
equivalent to product-type signatures. However, generalized Fibonacci gates are
symmetric by definition. A main contribution of this paper is to extend the reach
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of holographic algorithms, other than those based on matchgates, beyond the
symmetric case.

The constraint functions we call signatures are essentially tensors. Our central
object of study can be rephrased as the orbits of affine and product-type tensors
when acted upon by the orthogonal group (and related groups). We show that
one can efficiently decide if any such orbit of a given tensor intersects the set
of affine or product-type tensors. This result also generalizes to a set of tensors
as stated in Theorems 1 and 2. In contrast, this orbit problem with the general
linear group acting on two arbitrary tensors is NP-hard [37]. The so-called orbit
closure problem has a fundamental importance in the foundation of geometric
complexity theory [39].

Our techniques are mainly algebraic. A particularly important insight is that
an orthogonal transformation in the standard basis is equivalent to a diagonal
transformation in the

[
1 1
i −i

]
basis, a type of correspondence as in Fourier trans-

form. Since diagonal transformations are much easier to understand, this gives
us a great advantage in understanding orbits under orthogonal transformations.
Also, the groups of transformations that stabilize the affine and product-type
signatures play an important role in our proofs.

2 Preliminaries

The framework of Holant problems is defined for functions mapping any [q]k ⊆ F

for a finite q and some field F. In this paper, we investigate some of the tractable
complex-weighted Boolean Holant problems, that is, all functions are [2]k ⊆ C.
Strictly speaking, for consideration of models of computation, functions take
complex algebraic numbers.

A signature grid Ω = (G,F , π) consists of a graph G = (V,E), where each
vertex is labeled by a function fv ∈ F , and π : V ⊆ F is the labeling. The
Holant problem on instance Ω is to evaluate HolantΩ =

∑
σ

∏
v◦V fv(σ |E(v)), a

sum over all edge assignments σ : E ⊆ {0, 1}. A function fv can be represented
by listing its values in lexicographical order as in a truth table, which is a vector

in C
2deg(v) , or as a tensor in (C2)≤ deg(v). We also use fx to denote the value

f(x), where x is a binary string. A function f ∈ F is also called a signature. A
symmetric signature f on k Boolean variables can be expressed as [f0, f1, . . . , fk],
where fw is the value of f on inputs of Hamming weight w. A signature f of
arity n is degenerate if there exist unary signatures uj ∈ C

2 (1 ⊂ j ⊂ n) such
that f = u1 → · · · → un. A symmetric degenerate signature has the form u≤n.

A Holant problem is parametrized by a set of signatures.

Definition 4. Given a set of signatures F , we define Holant(F) as:
Input: A signature grid Ω = (G,F , π);
Output: HolantΩ.

To introduce the idea of holographic reductions, it is convenient to consider
bipartite graphs. For a general graph, we can always transform it into a bipartite
graph while preserving the Holant value, as follows. For each edge in the graph,
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we replace it by a path of length two. (This operation is called the 2-stretch of the
graph and yields the edge-vertex incidence graph.) Each new vertex is assigned
the binary Equality signature (=2) = [1, 0, 1]. We use Holant (F | G) to denote
the Holant problem on bipartite graphs H = (U, V,E), where each vertex in U
or V is assigned a signature in F or G, respectively. An instance for this bipartite
Holant problem is a bipartite signature grid denoted by Ω = (H ; F | G; π).
Signatures in F are considered as row vectors (or covariant tensors); signatures
in G are considered as column vectors (or contravariant tensors).

For a 2-by-2 matrix T and a signature set F , define TF = {g | ∧f ∈ F of
arity n, g = T≤nf}, similarly for FT . Whenever we write T≤nf or TF , we view
the signatures as column vectors; similarly for fT≤n or FT as row vectors. Let
T be an element of GL2(C), the group of invertible 2-by-2 complex matrices.
The holographic transformation defined by T is the following operation: given
a signature grid Ω = (H ; F | G; π), for the same graph H , we get a new
grid Ω⊆ = (H ; FT | T−1G; π⊆) by replacing each signature in F or G with the
corresponding signature in FT or T−1G.

Theorem 5 (Valiant’s Holant Theorem [44]). If there is a holographic
transformation mapping signature grid Ω to Ω⊆, then HolantΩ = HolantΩ′ .

Therefore, an invertible holographic transformation does not change the com-
plexity of the Holant problem in the bipartite setting. Furthermore, there is a
particular kind of holographic transformation, the orthogonal transformation,
that preserves the binary equality and thus can be used freely in the standard
setting. Let O2(C) be the group of 2-by-2 complex matrices that are orthogonal.
Recall that a matrix T is orthogonal if TT T = I. We also use SO2(C) to de-
note the group of special orthogonal matrices, i.e. the subgroup of O2(C) with
determinant 1.

The following two signature sets are tractable without a holographic trans-
formation [25].

Definition 6. A k-ary function f(x1, . . . , xk) is affine if it has the form λ ·
χAx=0 · i

∑n
j=1≥vj ,x∪, where λ ∈ C, x = (x1, x2, . . . , xk, 1)T, A is a matrix over

F2, vj is a vector over F2, and χ is a 0-1 indicator function such that χAx=0

is 1 iff Ax = 0. Note that the dot product ≥vj , x⇐ is calculated over F2, while the
summation

∑n
j=1 on the exponent of i =

⇒−1 is evaluated as a sum mod 4 of
0-1 terms. We use A to denote the set of all affine functions.

An equivalent way to express the exponent of i is as a quadratic polynomial
where all cross terms have an even coefficient.

Definition 7. A function is of product type if it can be expressed as a product
of unary functions, binary equality functions ([1, 0, 1]), and binary disequality
functions ([0, 1, 0]). We use P to denote the set of product-type functions.

The tractable sets A and P are still tractable under a suitable holographic
transformation. This is captured by the following definition.
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Definition 8. A set F of signatures is A -transformable (resp. P-
transformable) if there exists a holographic transformation T such that F ∪ TA
(resp. F ∪ TP) and [1, 0, 1]T≤2 ∈ A (resp. [1, 0, 1]T≤2 ∈ P).

To refine the above definition, we consider the stabilizer group of A , which is
Stab(A ) = {T ∈ GL2(C) | TA ∪ A }. Technically this set is the left stabilizer
group of A , but it turns out that the left and right stabilizer groups of A coincide.
Let D = [ 1 0

0 i ] and H2 = 1√
2

[
1 1
1 −1

]
. Also let X = [ 0 1

1 0 ] and Z = 1√
2

[
1 1
i −i

]
. Note

that Z = DH2 and that D2Z = 1√
2

[
1 1
−i i

]
= ZX , hence X = Z−1D2Z. It is easy

to verify that D,H2, X, Z ∈ Stab(A ). In fact, Stab(A ) = C
∗ · ≥D,H2⇐, i.e. all

nonzero scalar multiples of the group generated by D and H2. Throughout the
paper, we use α to denote 1+i√

2
=

⇒
i = e

πi
4 .

Definition 9. A symmetric signature f of arity n is in, respectively, A1, or
A2, or A3 if there exist an H ∈ O2(C) and c ∈ C − {0} such that f has

the form, respectively, cH≤n([ 11 ]
≤n

+ β
[

1−1

]≤n
), cH≤n([ 1i ]

≤n
+

[
1
−i

]≤n
), or

cH≤n([ 1α ]
≤n

+ ir
[

1−α

]≤n
) with β = αtn+2r, r ∈ {0, 1, 2, 3}, and t ∈ {0, 1}.

The three sets A1, A2, and A3 capture all symmetric A -transformable signa-
tures. For i ∈ {1, 2, 3}, when such an orthogonal H exists, we say that f ∈ Ai

with transformation H .

Lemma 10 (Lemma 8.10 in full version of [11]). Let f be a non-degenerate
symmetric signature. Then f is A -transformable iff f ∈ A1 ≤A2 ≤A3.

We have a similar characterization for P-transformable signatures using the
stabilizer group of P, Stab(P) = {T ∈ GL2(C) | TP ∪ P}. The group
Stab(P) is generated by matrices of the form [ 1 0

0 ν ] for any ν ∈ C and X = [ 0 1
1 0 ].

Definition 11. A symmetric signature f of arity n is in P1 if there exist an

H ∈ O2(C) and a nonzero c ∈ C such that f = cH≤n
(

[ 11 ]
≤n

+ β
[

1−1

]≤n
)
,

where β ⇔= 0.

It is easy to check that A1 ∗ P1. We define P2 = A2. Similarly, for i ∈ {1, 2},
when such an H exists, we say that f ∈ Pi with transformation H . The following
lemma is similar to Lemma 10.

Lemma 12 (Lemma 8.13 in full version of [11]). Let f be a non-degenerate
symmetric signature. Then f is P-transformable iff f ∈ P1 ≤P2.

3 General Signatures

In this section we consider general (i.e. not necessarily symmetric) signatures.
Let f be a signature of arity n. It is given as a column vector in C

2n with bit
length N = O(2n). We denote its entries by fx = f(x) indexed by x ∈ {0, 1}n.
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The entries are from a fixed degree algebraic extension of Q and we may assume
arithmetic operations take unit time.

We begin with A -transformable signatures. Let f be a signature and H =[
a b
−b a

] ∈ SO2(C) where a2 + b2 = 1. Notice that v0 = (1, i) and v1 = (1,−i) are
row eigenvectors of H with eigenvalues a− bi and a + bi respectively.

For a vector u = (u1, . . . , un) ∈ {0, 1}n of length n, let vu = vu1 → vu2 →
. . . → vun , and let w(u) be the Hamming weight of u. Then for the 2n-by-2n

matrix H≤n, vu is a row eigenvector with eigenvalue (a−bi)n−w(u)(a+bi)w(u) =
(a−bi)n−2w(u) = (a+bi)2w(u)−n as (a+bi)(a−bi) = a2+b2 = 1. Let Z ⊆ =

[
1 i
1 −i

]

and f̂ = Z ⊆≤nf . Then f̂u = ≥vu, f⇐, as a dot product. The following lemma
summarizes the above discussion and is a very important ingredient of this paper.
It states that proper orthogonal transformations are diagonal transformations
in the

[
1 i
1 −i

]
basis.

Lemma 13. Suppose f and g are signatures of arity n and let H =
[

a b
−b a

]
and

T =
[
a−bi 0
0 a+bi

]
. Then g = H≤nf iff ĝ = T≤nf̂ .

With Lemma 13, we characterize signatures that are invariant under SO2(C)
transformations.

Lemma 14. Let f be a signature. Then f is invariant under transformations
in SO2(C) (up to a nonzero constant) iff the support of f̂ contains at most one
Hamming weight.

With Lemma 13 and Lemma 14, we are able to give the algorithm for A -
transformable signatures.

Theorem 15. There is a polynomial time algorithm to decide, for any finite set
of signatures F , whether F is A -transformable. If so, at least one transformation
can be found.

The algorithm for P is also based on Lemma 13. The difference here is that
we need to first factor the signatures. We show a unique factorization lemma for
signatures in general.

Definition 16. We call a function f of arity n on variable set x reducible if
there exist f1 and f2 of arities n1 and n2 on variable sets x1 and x2, respectively,
such that 1 ⊂ n1, n2 ⊂ n−1, x1≤x2 = x, x1⊥x2 = ↓, and f(x) = f1(x1)f2(x2).
Otherwise we call f irreducible.

If a function f is reducible, then we can factor it into functions of smaller arity.
This procedure can be applied recursively and terminates when all components
are irreducible. Therefore any function has at least one irreducible factorization.
We show that such a factorization is unique for functions that are not identically
zero. Furthermore, it can be computed in polynomial time.

Lemma 17. Let f be a function of arity n on variables x that is not identically
zero. Assume there exist irreducible functions fi and gj, and two partitions {xi}
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and {yj} of x for 1 ⊂ i ⊂ k and 1 ⊂ j ⊂ k⊆, such that f(x) =
∏k

i=1 fi(xi) =
∏k′

j=1 gj(yj). Then k = k⊆, the partitions are the same, and {fi} and {gj} are
the same up to a permutation.

The factorization algorithm leads to a decision algorithm for membership in
P . Combined with Lemma 13, we can obtain the algorithm for P-transformable
signatures.

Theorem 18. There is a polynomial time algorithm to decide, for any finite set
of signatures F , whether F is P-transformable. If so, at least one transformation
can be found.

4 Symmetric Signatures

In this section, we consider the case when the signatures are symmetric. The
significant difference is that a symmetric signature of arity n is given by n + 1
values, instead of 2n values. This exponentially more succinct representation
requires us to find a more efficient algorithm. To begin, we provide efficient
algorithms to decide membership each of A1, A2, and A3 for a single signature.
If the signature is in one of the sets, then the algorithm also finds at least one
corresponding orthogonal transformation. By Lemma 10, this is enough to check
if a signature is A -transformable.

We say a signature f satisfies a second order recurrence relation, if for all
0 ⊂ k ⊂ n−2, there exist a, b, c ∈ C not all zero, such that afk+bfk+1+cfk+2 = 0.
In fact, satisfying a second order recurrence relation with b2 − 4ac ⇔= 0 is a
necessary condition for a signature to be A - or P-transformable. This also
implies a tensor decomposition of f . The following definition of the θ function
is crucial.

Definition 19. For a pair of linearly independent vectors v0 =
[ a0

b0

]
and v1 =

[ a1

b1

]
, we define θ(v0, v1) =

(
a0a1+b0b1
a1b0−a0b1

)2

. Furthermore, suppose that a signature

f of arity n ≥ 3 can be expressed as f = v≤n
0 +v≤n

1 , where v0 and v1 are linearly
independent. Then we define θ(f) = θ(v0, v1).

Intuitively, this formula is the square of the cotangent of the angle from v0
to v1. This notion of cotangent is properly extended to the complex domain.
By insisting that v0 and v1 be linearly independent, we ensure θ(v0, v1) is well-
defined. The expression is squared so that θ(v0, v1) = θ(v1, v0). Let f = v≤n

0 +v≤n
1

be a non-degenerate signature of arity n ≥ 3. Since f is non-degenerate, v0 and
v1 are linearly independent. This expression for f via v0 and v1 is unique to
up a root of unity. In particular, θ(f) from Definition 19 is well-defined since
every possible expression gives the same value for θ. It is easy to verify that θ is
invariant under an orthogonal transformation. Formally, we have the following
lemma, which is proved by simple algebra.



Holographic Algorithms Beyond Matchgates 279

Lemma 20. For two linearly independent vectors v0, v1 ∈ C
2 and H ∈ O2(C),

let v̂0 = Hv0 and v̂1 = Hv1. Then θ(v0, v1) = θ(v̂0, v̂1).

Now we have some necessary conditions for a signature f to be in A1≤A2≤A3.
First f must satisfy a second order recurrence relation with b2 − 4ac ⇔= 0. Then
θ(f) is well defined. It is easy to observe θ(f) = 0,−1,− 1

2 for f in P1, A2, A3

respectively. Recall that A1 ∪ P1 and A2 = P2.
This condition via θ(f) is not sufficient for f to be A -transformable. For

example, if f = v≤n
0 + v≤n

1 with v0 = [1, i] and v1 is not a multiple of [1,−i],
then θ(f) = −1 but f is not in A2 = P2. Nevertheless, this is essentially the
only exceptional case. The other cases are handled with some extra conditions
on the coefficients, as follows.

Lemma 21. Let f = v≤n
0 + v≤n

1 be a symmetric signature of arity n ≥ 3, where
v0 =

[ a0

b0

]
and v1 =

[ a1

b1

]
are linearly independent. Then f ∈ A1 iff θ(f) = 0

and there exist an r ∈ {0, 1, 2, 3} and t ∈ {0, 1} such that an1 = αtn+2rbn0 ⇔= 0 or
bn1 = αtn+2ran0 ⇔= 0.

Lemma 22. Let f = v≤n
0 + v≤n

1 be a symmetric signature of arity n ≥ 3, where
v0 =

[ a0

b0

]
and v1 =

[ a1

b1

]
are linearly independent. Then f ∈ A3 iff there exist an

ε ∈ {1,−1} and r ∈ {0, 1, 2, 3} such that a1
(⇒

2a0 + εib0
)

= b1
(
εia0 −

⇒
2b0

)
,

an1 = ir
(
εia0 −

⇒
2b0

)n
, and bn1 = ir

(⇒
2a0 + εib0

)n
.

For A2 = P2, we require a stronger condition.

Lemma 23 (Lemma 8.8 in full version of [11]). Let f be a non-degenerate

symmetric signature. Then f ∈ A2 iff f is of the form c
(

[ 1i ]
≤n

+ β
[

1
−i

]≤n
)
for

some c, β ⇔= 0.

To summarize, we have the following lemma.

Lemma 24. Given a non-degenerate symmetric signature f of arity at least 3,
there is a polynomial time algorithm to decide whether f ∈ Ak for each k ∈
{1, 2, 3}. If so, k is unique and at least one corresponding orthogonal transfor-
mation can be found in polynomial time.

Next we show that if a non-degenerate signature f of arity n ≥ 3 is in A1, A2,
or A3, then for any set F containing f , there are only O(n) many transformations
to be checked to decide whether F is A -transformable.

Lemma 25. Let F be a set of symmetric signatures and suppose F contains a
non-degenerate signature f ∈ A1 of arity n ≥ 3 with H ∈ O2(C). Then F is
A -transformable iff F is a subset of HA , or H

[
1 1
1 −1

]
A , or H

[
1 1
1 −1

]
[ 1 0
0 α ]A .

Lemma 26. Let F be a set of symmetric signatures and suppose F contains
a non-degenerate signature f ∈ A2 of arity n ≥ 3. Then there exists a set
H ∪ O2(C) of size O(n) such that F is A -transformable iff there exists an
H ∈ H such that F ∪ HA . Moreover H can be computed in polynomial time in
the input length of the symmetric signature f .
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Lemma 27. Let F be a set of symmetric signatures and suppose F contains a
non-degenerate signature f ∈ A3 of arity n ≥ 3 with H ∈ O2(C). Then F is
A -transformable iff F ∪ H [ 1 0

0 α ]A .

Now we can decide if a finite set of signatures is A -transformable. To avoid
trivialities, we assume F contains a non-degenerate signature of arity at least 3.

Theorem 28. There is a polynomial time algorithm to decide, for any finite
input set F of symmetric signatures containing a non-degenerate signature f of
arity n ≥ 3, whether F is A -transformable.

Now we consider P-transformable signatures. To decide if a single signa-
ture is P-transformable, it is equivalent to decide membership in P1 ≤P2 by
Lemma 12. The following lemma tells how to decide the membership of P1.

Lemma 29. Let f = v≤n
0 + v≤n

1 be a symmetric signature of arity n ≥ 3, where
v0 and v1 are linearly independent. Then f ∈ P1 iff θ(f) = 0.

Since A2 = P2, deciding membership in P2 is handled by Lemma 23. Using
Lemma 29 and Lemma 23, we can efficiently decide membership in P1 ≤P2.

Lemma 30. Given a non-degenerate symmetric signature f of arity at least 3,
there is a polynomial time algorithm to decide whether f ∈ Pk for some k ∈
{1, 2}. If so, k is unique and at least one corresponding orthogonal transformation
can be found in polynomial time.

With a signature in P1 ≤P2, we can decide if a set of symmetric signatures
is P-transformable.

Lemma 31. Let F be a set of symmetric signatures and suppose F contains a
non-degenerate signature f ∈ P1 of arity n ≥ 3 with H ∈ O2(C). Then F is
P-transformable iff F ∪ H

[
1 1
1 −1

]
P.

Lemma 32. Let F be a set of symmetric signatures and suppose F contains a
non-degenerate signature f ∈ P2 of arity n ≥ 3. Then F is P-transformable iff
all non-degenerate signatures in F are contained in P2 ≤ {=2}.

With all these results, we show how to decide if a finite set of signatures is
P-transformable. To avoid trivialities, we assume F contains a non-degenerate
signature of arity at least 3.

Theorem 33. There is a polynomial time algorithm to decide, for any finite
input set F of symmetric signatures containing a non-degenerate signature f of
arity n ≥ 3, whether F is P-transformable.
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Abstract. In this paper, we analyze and study a hybrid model for test-
ing and learning probability distributions. Here, in addition to samples,
the testing algorithm is provided with one of two different types of ora-
cles to the unknown distribution D over [n]. More precisely, we consider
both the dual and cumulative dual access models, in which the algorithm
A can both sample from D and respectively, for any i ∈ [n],
– query the probability mass D(i) (query access); or
– get the total mass of {1, . . . , i}, i.e.

∑i

j=1 D(j) (cumulative access)
In these two models, we bypass the strong lower bounds established in
both of the previously studied sampling and query oracle settings for a
number of problems, giving constant-query algorithms for most of them.
Finally, we show that while the testing algorithms can be in most cases
strictly more efficient, some tasks remain hard even with this additional
power.

1 Introduction

Given data sampled from a population or an experiment, understanding the
distribution from which it has been drawn is a fundamental problem in statistics,
and one which has been extensively studied for decades. However, it is only rather
recently that these questions have been considered when the distribution is over
a very large domain (see for instance [3,18,21]). In this case, the usual techniques
in statistics and learning theory become impractical, motivating the search for
better algorithms, in particular by relaxing the goals so that learning is not
required. This is useful in many real-world applications where only a particular
aspect of the distribution is investigated, such as estimating the entropy or the
distance between two distributions. In these examples, as well as many others,
one can achieve sublinear sample complexity. However, strong lower bounds show
that the complexity of these tasks is still daunting, as it has polynomial, and
often nearly linear, dependence on the size of the support of the distribution.
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To address this difficulty, new lines of research have emerged. One approach
is to obtain more efficient algorithms for special classes of distributions. For in-
stance, improved algorithms whose sample complexity is exponentially smaller
can be achieved for many tasks, assuming the distribution is monotone, uni-
modal, or a “k-histogram” [5,20,14]. A different approach applies to general dis-
tributions, but gives the algorithm more power in the form of more flexible access
to the distribution: as in many applications the data has already been collected
and aggregated, it may be reasonable to assume that the testing algorithm can
make other limited queries to the probability density function. For example, the
algorithm may be provided with query access to the probability density function
of the distribution [24], or samples from conditional distributions induced by the
original distribution [12,9,10].

1.1 Our Model: Dual and Cumulative Dual Oracles

In this work, we consider the power of two natural oracles. The first is a dual
oracle, which combines the standard model for distributions and the familiar one
commonly assumed for testing Boolean and real-valued functions. In more detail,
the testing algorithm is granted access to the unknown distribution D through
two independent oracles, one providing samples of the distribution, while the
other, on query i in the domain of the distribution, provides the value of the
probability density function at i.1

Definition 1 (Dual Access Model). Let D be a fixed distribution over [n] =
{1, . . . , n}. A dual oracle for D is a pair of oracles (SAMPD,EVALD) defined as
follows: when queried, the sampling oracle SAMPD returns an element i ∈ [n],
where the probability that i is returned is D(i) independently of all previous calls
to any oracle; while the evaluation oracle EVALD takes as input a query element
j ∈ [n], and returns the probability weight D(j) that the distribution puts on j.

It is worth noting that this type of dual access to a distribution has been con-
sidered (under the name combined oracle) in [6] and [19], where they address
the task of estimating (multiplicatively) the entropy of the distribution, or the
f -divergence between two of them (see Sect. 4 for a discussion of their results).

The second oracle that we consider provides samples of the distribution as
well as queries to the cumulative distribution function (cdf) at any point in the
domain2.

Definition 2 (Cumulative Dual Access Model). Let D be a fixed dis-
tribution over [n]. A cumulative dual oracle for D is a pair of oracles
1 Note that in both definitions, one can decide to disregard the corresponding evalua-

tion oracle, which in effect amounts to falling back to the standard sampling model;
moreover, for our domain [n], any EVALD query can be simulated by (at most) two
queries to a CEVALD oracle – in other terms, the cumulative dual model is at least
as powerful as the dual one.

2 We observe that such a cumulative evaluation oracle CEVAL appears in [5] (Sect. 8).
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(SAMPD,CEVALD) defined as follows: the sampling oracle SAMPD behaves as
before, while the evaluation oracle CEVALD takes as input a query element
j ∈ [n], and returns the probability weight that the distribution puts on [j], that
is D([j]) =

∑j
i=1 D(i).

1.2 Motivation and Discussion

As a first motivation to this hybrid model, consider the following scenario: There
is a huge and freely available dataset, which a computationally-limited party –
call it Arthur – needs to process. Albeit all the data is public and Arthur can
view any element of his choosing, extracting further information from the dataset
(such as the number of occurrences of a particular element) takes too much time.
However, a third-party, Merlin, has already spent resources in preprocessing this
dataset and is willing to disclose such information – yet at a price. This leaves
Arthur with the following question: how can he get his work done as quickly
as possible, while paying as little as possible? This type of question is captured
by our new model, and can be analyzed in this framework. For instance, if
the samples are stored in sorted order, implementing either of our oracles be-
comes possible with only a logarithmic overhead per query. It is worth noting
that Google has published their N -gram models, which describe their distribu-
tion model on 5-word sequences in the English language. In addition, they have
made available the texts on which their model was constructed. Thus, samples
of the distribution in addition to query access to probabilities of specific domain
elements may be extracted from the Google model.

A second and entirely theoretical motivation for studying distribution testing
in these two dual oracle settings arises from attempting to understand the lim-
itations and underlying difficulties of the standard sampling model. Indeed, by
circumventing the lower bound, one may get a better grasp on the core issues
whence the hardness stemmed in the first place.

A third motivation arises from data privacy, when a curator administers a
database of highly sensitive records (e.g, healthcare information, or financial
records). Differential privacy [15,17,16] studies mechanisms which allow the cu-
rator to release relevant information about its database without without jeopar-
dizing the privacy of the individual records. In particular, mechanisms have been
considered that enable the curator to release a sanitized approximation D̃ of its
database D, which “behaves” essentially the same for all queries of a certain
type – such as counting or interval queries3 [8]. Specifically, if the user needs
to test a property of a database, it is sufficient to test whether the sanitized
database has the property, using now both samples and interval (i.e., CEVAL)
or counting (EVAL) queries. As long as the tester has some tolerance (in that it
accepts databases that are close to having the property), it is then possible to
decide whether the true database itself is close to having the property of interest.
3 A counting query is of the form “how many records in the database satisfy predicate

χ?” – or, equivalently, “what is the probability that a random record drawn from
the database satisfies χ?”.
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Finally, a further motivation is the tight connection between the dual access
model and the data-stream model, as shown by Guha et al. ([19], Theorem 25):
more precisely, they prove that any (multiplicative) approximation algorithm
for a large class of functions of the distribution (functions that are invariant by
relabeling of any two elements of the support) in the dual access model yields a
space-efficient, O(1)-pass approximation algorithm for the same function in the
data-stream model.

1.3 Our Results and Techniques

We focus here on four fundamental and pervasive problems in distribution test-
ing, which are testing uniformity, identity to a known distribution D∗, closeness
between two (unknown) distributions D1, D2, and finally entropy and support
size. As usual in the distribution testing literature, the notion of distance we
use is the total variation distance (or statistical distance), which is essentially
the ν1 distance between the probability distributions (see Sect. 2 for the formal
definition). Testing closeness is thus the problem of deciding if two distributions
are equal or far from each other in total variation distance; while tolerant testing
aims at deciding whether they are sufficiently close versus far from each other.

As shown in Table 1, which summarizes our results and compares them to
the corresponding bounds for the standard sampling-only (SAMP), evaluation-
only (EVAL) and conditional sampling (COND) models, we indeed manage to
bypass the aforementioned limitations of the sampling model, and give (often
tight) algorithms with sample complexity either constant (with relation to n)
or logarithmic, where a polynomial dependence was required in the standard
setting. A similar observation holds for the evaluation-only model, where some
natural problems require Ω(n) queries4 – yet admit constant-query testers in
our setting.

Our main finding overall is that both dual models allow testing algorithms to
significantly outperform both SAMP and COND algorithms, either with relation
to the dependence on n or, for the latter, in 1/ε. Examples of such improvements
were previously known for the COND model [12,9]. In the models considered in
this work, we extend these improvements to further problems and get strenght-
ened bounds. Further, these new testing algorithms are significantly simpler,
both conceptually and in their analysis, and can often be made robust to some
multiplicative noise in the evaluation oracle. Another key observation is that this
new flexibility not only allows us to tell whether two distributions are close or
far, but also to efficiently estimate their distance5.

In more detail, we show that for the problem of testing equivalence between
distributions, both models allow one to get rid of any dependence on n, with a

4 Consider two point distributions D1, D2, each of them putting mass 1 on a single
random element of [n]; with EVAL access only, testing whether D1 = D2 amounts
to finding these points, which requires linearly many queries.

5 For details on the equivalence between tolerant testing and distance estimation, the
reader is referred to [23].
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(tight) sample complexity of Θ(1/ε). The upper bound is achieved by adapting
an EVAL-only algorithm of [24] (for identity testing) to our setting, while the
lower bound is obtained by designing a far-from-uniform instance which “defeats”
simultaneously both oracles of our models. Turning to tolerant testing of equiv-
alence, we describe algorithms whose sample complexity is again independent
of n, in sharp contrast with the n1−o(1) lower bound of the standard sampling
model. Moreover, we are able to show that, at least in the Dual access model, our
quadratic dependence on ε is optimal. The same notable improvements apply to
the query complexity of estimating the support size of the distribution, which
becomes constant (with relation to n) in both of our access models – versus
quasilinear if one only allows sampling.

As for the task of (additively) estimating the entropy of an arbitrary distri-
bution, we give an algorithm whose sample complexity is only polylogarithmic
in n, and show that this is tight in the Dual access model, up to the exponent
of the logarithm. Once more, this is to be compared to the n1−o(1) lower bound
for the sampling model.

Table 1. Summary of results (last two columns) and comparison with previous work.
The bounds with an asterisk are those which, in spite of being for different models,
derive from the results of the last two columns.

Problem SAMP6 COND[9,10] EVAL Dual Cumulative

Testing
uniformity Θ

( √
n

ε2

) Õ
(

1
ε2

)
,

Ω
(

1
ε2

) O
(

1
ε

)
[24],

Ω
(

1
ε

)∗
Θ

(
1
ε

)
Θ

(
1
ε

)

Testing ≡ D∗ Θ̃
( √

n

ε2

)
Õ

(
1

ε4

)

Testing
D1 ≡ D2

Θ

(
N2/3

ε4/3

)
Õ

(
log5 n

ε4

)
Ω(n)

Tolerant
uniformity

O
(

1
(ε2−ε1)2

n
log n

)

Ω
(

n
log n

) Õ
(

1
(ε2−ε1)20

)

Ω
(

1
(ε2−ε1)2

)∗
Θ

(
1

(ε2−ε1)2

)
O

(
1

(ε2−ε1)2

)

Tolerant D∗
Ω

(
n

log n

)
Tolerant
D1, D2

Estimating
entropy to

±Δ
Θ

(
n

log n

) O

(
log2 n

Δ
Δ2

)
,

Ω(log n)
O

(
log2 n

Δ
Δ2

)

Estimating
support size

to ±εn
Θ

(
n

log n

)
Θ

(
1

ε2

)
O

(
1

ε2

)

While it is not clear, looking at these problems, whether the additional flex-
ibility that the Cumulative Dual access grants over the Dual one can uncon-
ditionally yield strictly more sample-efficient testing algorithms, we do provide
a separation between the two models in Sect. 4.2 by showing an exponential
improvement in the query complexity for estimating the entropy of a distribu-
tion given the promise that the latter is (close to) monotone. This leads us to
6 Results from [18,4,22,2,28,13,27,26,25].
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suspect that for the task of testing monotonicity, under a structural assumption
on the distribution, or more generally for properties intrinsically related to the
underlying total order of the domain, such a speedup holds. Moreover, we stress
the fact that our Ω

(
1/(ε2 − ε1)2)

lower bound for tolerant identity testing does
not apply to the Cumulative Dual setting.

One of the main techniques we use for algorithms in the dual model is a general
approach for estimating very efficiently any quantity of the formEi∼D [Φ(i, D(i))],
for any bounded function Φ (we note that a similar method was utilized in [6], albeit
in a less systematic way). In particular, in light of our lower bounds, this technique
is both an intrinsic and defining feature of the Dual model, as it gives essentially
tight upper bounds for the problems we consider.

On the other hand, for the task of proving lower bounds, we no longer can
take advantage of the systematic characterizations known for the sampling model
(see e.g. [1], Sect. 2.4.1). For this reason, we have to rely on reductions from
known-to-be-hard problems (such as estimating the bias of a coin), or prove
indistinguishability in a customized fashion.

1.4 Organization

After the relevant definitions and preliminaries in Sect. 2, we pursue by consid-
ering the first three problems of testing equivalence of distributions in Sect. 3,
where we describe our testing upper and lower bounds. We then turn to the
harder problem of tolerant testing. Finally, we tackle in Sect. 4 the task of per-
forming entropy, estimation, and give for the latter matching upper and lower
bounds. Due to space constraints, proofs of the theorems and details of the con-
structions have been omitted from this extended abstract; for the full version,
the reader is referred to [11].

2 Preliminaries

We consider discrete probability distributions over the subset of integers [n] =
{1, . . . , n}. As aforementioned, the notion of distance we use between distribu-
tions D1, D2 is their total variation distance, defined as

dTV(D1, D2) def= max
S⊆[n]

(D1(S) − D2(S)) = 1
2

∑

i∈[n]

|D1(i) − D2(i)| .

Recall that any property P can equivalently be seen as the subset of distributions
that satisfy it; in particular, the distance dTV(D, P) from some D to P is the
minimum distance to any distribution in this subset, minD′∈P dTV(D, D′).
Testing algorithms for distributions over [n] are defined as follows:7

7 Note that, as standard in property testing, the threshold 2/3 is arbitrary: any 1 − δ
confidence can be achieved at the cost of a multiplicative factor log(1/δ) in the query
complexity.
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Definition 3. Fix any property P of distributions, and let ORACLED be an
oracle providing some type of access to D. A q-query testing algorithm for P is
a randomized algorithm T which takes as input n, ε ∈ (0, 1], as well as access
to ORACLED. After making at most q(ε, n) calls to the oracle, T outputs either
ACCEPT or REJECT, such that the following holds:

– if D ∈ P, T outputs ACCEPT with probability at least 2/3;
– if dTV(D, P) ≥ ε, T outputs REJECT with probability at least 2/3.

We shall also be interested in tolerant testers – roughly, algorithms robust to a
relaxation of the first item above:

Definition 4. Fix property P and ORACLED as above. A q-query tolerant test-
ing algorithm for P is a randomized algorithm T which takes as input n, 0 ≤
ε1 < ε2 ≤ 1, as well as access to ORACLED. After making at most q(ε1, ε2, n)
calls to the oracle, T outputs either ACCEPT or REJECT, such that the following
holds:

– if dTV(D, P) ≤ ε1, T outputs ACCEPT with probability at least 2/3;
– if dTV(D, P) ≥ ε2, T outputs REJECT with probability at least 2/3.

Observe in particular that if dTV(D, P) ∈ (0, ε) (resp. dTV(D, P) ∈ (ε1, ε2)),
the tester’s output can be arbitrary. Furthermore, we stress that the two defi-
nitions above only deal with the query complexity, and not the running time.
However, it is worth noting that while our lower bounds hold even for such
computationally unbounded algorithms, all of our upper bounds are achieved by
testing algorithms whose running time is polynomial in the number of queries
they make.

3 Uniformity and Identity of Distributions

3.1 Testing

In this section, we consider the three following testing problems, each of them a
generalization of the previous:

Uniformity testing: given oracle access to D, decide whether D = U (the
uniform distribution on [n]) or is ε-far from it;

Identity testing: given oracle access to D and the full description of a fixed
D∗, decide whether D = D∗ or is ε-far from it;

Closeness testing: given independent oracle accesses to D1, D2 (both un-
known), decide whether D1 = D2 or D1, D2 are ε-far from each other.

We begin by stating here two results from the literature that transpose straigh-
forwardly in our setting. Observe that since the problem of testing closeness
between two unknown distributions D1, D2 in particular encompasses the prob-
lem of identity testing to a known D∗ (and a fortiori the problem of uniformity
testing), this upper bound automatically applies to these as well.
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Theorem 1 (Theorem 24 from [24]). In the query access model, there exists
a tester for identity to a known distribution D∗ with query complexity O

( 1
ε

)
.

Note that the tester given in [24] is neither tolerant nor robust; however, it only
uses query access. [9] later adapt this algorithm to give a tester for closeness
between two unknown distributions, in a setting which can be seen as a “relaxed”
dual access model8:

Theorem 2 (Theorem 12 from [9]). In the dual access model, there exists
a tester for closeness between two unknown distributions D1, D2 with sample
complexity O

( 1
ε

)
.

It is worth noting that the algorithm in question is conceptually very simple –
namely, it consists in drawing samples from both distributions and then querying
the respective probability mass both distributions put on them, hoping to detect
a violation.

Lower bound. Getting more efficient testing seems unlikely – the dependence on
1/ε being “as good as it gets”. The following result formalizes this, showing that
indeed both Theorems 1 and 2 are tight, even for the least challenging task of
testing uniformity:

Theorem 3 (Lower bound for cumulative dual and dual testers). Both
in the dual and cumulative dual access model, any tester for uniformity must
have query complexity Ω

( 1
ε

)
.

3.2 Tolerant Testing

In this section, we describe tolerant testing algorithms for the three problems of
uniformity, identity and closeness; note that by a standard reduction (see Parnas
et al. ([23], Sec. 3.1), this is equivalent to estimating the distance between the
corresponding distributions. As hinted in the introduction, our algorithm relies
on a general estimation approach that will be illustrated further in Section 4, and
which constitutes a fundamental feature of the dual oracle: namely, the ability
to estimate cheaply quantities of the form Ei∼D [Φ(i, D(i))] for any bounded
function Φ.

Theorem 4. In the dual access model, there exists a tolerant tester for unifor-
mity with query complexity O

( 1
(ε2−ε1)2

)
.

This hinges on observing that the distance to uniformity can be rewritten as

dTV(D, U) = 1
2

∑

i∈[n]

∣
∣
∣
∣D(i) − 1

n

∣
∣
∣
∣ =

∑

i : D(i)> 1
n

(
1− 1

nD(i)

)
·D(i) = Ei∼D [Φ(i, D(i))]

8 In the sense that the evaluation oracle, being simulated via another type of oracle,
is not only noisy but also allowed to err on a small set of points.
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for Φ(i, D(i)) def= (1 − 1
nD(i) )1{D(i)> 1

n }. Moreover, by massaging further this
equality, the result above can be easily extended to other distributions than
uniform, and even to the case of two unknown distributions:

Corollary 1. In the dual access model, there exists a tolerant tester for identity
to a known distribution with query complexity O

( 1
(ε2−ε1)2

)
.

Corollary 2. In the dual access model, there exists a tolerant tester for close-
ness between two unknown distributions with query complexity O

( 1
(ε2−ε1)2

)
. As

noted in the next subsection, this is optimal (up to constant factors).

Interestingly, this tester can be made robust to multiplicative noise, i.e. can be
shown to work even when the answers to the EVAL queries are only accurate up
to a factor (1 + γ) for γ > 0.

Lower Bound. In this subsection, we show that the upper bounds of Lemma 4,
Corollaries 1 and 2 are tight.

Theorem 5. In the dual access model, performing (ε1, ε2)-testing for uniformity
requires sample complexity Ω

( 1
(ε2−ε1)2

)
(the bound holds even when only asking

ε1 to be Ω(1)).

4 Entropy and Support Size

4.1 Additive and Multiplicative Estimations of Entropy

In this section, we describe simple algorithms to perform both additive and
multiplicative estimation (which in turns directly implies tolerant testing) of the
entropy H(D) of the unknown distribution D, defined as

H(D) def= −
∑

i∈[n]

D(i) log D(i) ∈ [0, log n]

We remark that Batu et al. ([6], Theorem 14) gives a similar algorithm, based on
essentially the same approach but relying on a Chebyshev bound, yielding a (1+
γ)-multiplicative approximation algorithm for entropy with sample complexity
O

(
(1 + γ)2 log2 n/γ2h2)

, given a lower bound h > 0 on H(D).
Guha et al. ([19], Theorem 5.2) then refined their result, using as above

a threshold for the estimation along with a multiplicative Chernoff bound
to get the sample complexity down to O

(
log n/γ2h

)
– thus matching the

Ω(log n/γ(2 + γ)h) lower bound of [6] (Theorem 18); we recall their results for
multiplicative estimation of the entropy below9.
9 In particular, note that translating their lower bound for additive estimation implies

that the dependence on n of our algorithm is tight.



292 C. Canonne and R. Rubinfeld

Theorem 6 (Upper bound [[19], Theorem 5.2]). Fix γ > 0. In the dual
access model, there exists an algorithm that, given a parameter h > 0 and the
promise that H(D) ≥ h, estimates the entropy within a multiplicative (1 + γ)
factor, with sample complexity Θ

(
log n
γ2h

)
.

Theorem 7 (Lower bound [[6], Theorem 18]). Fix γ > 0. In the dual
access model, any algorithm that, given a parameter h > 0 and the promise that
H(D) = Ω(h), estimates the entropy within a multiplicative (1 + γ) factor must
have sample complexity Ω

(
log n

γ(2+γ)h

)
.

Observe that the additive bound we give (based on a different cutoff threshold),
however, still performs better in many cases, e.g. Δ = γh > 1 and h > 1; and does
not require any a priori knowledge on a lower bound h > 0. Moreover, we believe
that this constitutes a good illustration of the more general technique used, and a
good example of what the dual model allows: approximation of quantities of the
form Ei∼D [Φ(i, D(i))], where Φ is any bounded function of both an element of the
domain and its probability mass under the distribution D.

Additive Estimate. The key idea is to observe that for a distribution D, the
entropy H(D) can be rewritten as

H(D) =
∑

x∈[n]

D(x) log 1
D(x)

= Ex∼D

[

log 1
D(x)

]

(1)

Carefully estimating this expectation (in particular, making sure to handle ap-
propriately the elements x for which D(x) is very small, as for them the random
variable log 1

D(x) cannot be bounded) leads to the following theorem:

Theorem 8. In the dual access model, there exists an algorithm estimating the
entropy up to an additive Δ, with sample complexity Θ

(
log2 n

Δ

Δ2

)
.

or, in terms of tolerant testing (i.e., distinguishing distributions with entropy at
most Δ1 from those with entropy at least Δ2):

Corollary 3. In the dual access model, there exists an (Δ1, Δ2)-tolerant tester
for entropy with sample complexity Θ̃

(
log2 n

(Δ1−Δ2)2

)
.

4.2 Additive Estimation of Entropy for Monotone Distributions

In the previous section, we saw how to obtain an additive estimate of the entropy
of the unknown distribution, using essentially O

(
log2 n

)
sampling and evaluation

queries; moreover, this dependence on n is optimal. However, one may wonder
if, by taking advantage of cumulative queries, it becomes possible to obtain
a better query complexity. We partially answer this question, focusing on a
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particular class of distributions for which the cumulative dual query access seems
particularly well-suited: namely the class of monotone distributions10.

Before describing how this assumption can be leveraged to obtain an exponen-
tial improvement in the sample complexity for cumulative dual query algorithms,
we first show that given only dual access to a distribution promised to be o(1)-
close to monotone, no such speedup can hold. By establishing (see Remark 1)
that the savings obtained for (close to) monotone distributions are only possible
with cumulative dual access, this will yield a separation between the two oracles,
proving the latter is strictly more powerful.

Theorem 9. In the dual access model, any algorithm that estimates the entropy
of distributions O(1/ log n)-close to monotone to an additive constant must make
Ω(log n) queries to the oracle.

Upper Bound: Exponential Speedup for Cumulative Dual Oracles.
We now establish the positive result in the case of algorithms given cumulative
dual query access. Note that Batu et al. [6] already consider the problem of
getting a (multiplicative) estimate of the entropy of D, under the assumption
that the distribution is monotone; and describe (both in the evaluation-only and
sample-only models) polylog(n)-query algorithms for this task, which work by
recursively splitting the domain in a suitable fashion to get a partition into near
uniform and negligible intervals.

The main insight here (in addition to the mere fact that we allow ourself
a stronger type of access to D) is to use, instead of an ad hoc partition of
the domain, a specific one tailored for monotone distributions, introduced by
Birgé [7] – and which crucially does not depend on the distribution itself. By
using this oblivious decomposition of the domain into ν = o(n) intervals, we can
set out to approximate the entropy of the induced flat distribution (that we can
efficiently simulate from the cumulative dual oracles). This roughly reduces the
complexity parameter from n to ν; it only remains to use our previous approach,
slightly adapted, on this flat distribution. Of course, we have to be careful not
to incur too much a loss at each step, when first approximating H(D) by H(D̄),
and then specifying our cutoff threshold to only keep significant contributions
to H(D̄).

Theorem 10. In the cumulative dual access model, there exists an algorithm for
monotone distributions estimating the entropy up to an additive Δ, with sample
complexity Õ

(
log2 log n

Δ /Δ2
)
.

Remark 1. We remark that the above result still applies if D is only guaranteed
to be O(1/ log n)-close to monotone; indeed, as the “Birgé decomposition” is
(crucially) robust, D̄ will still be O(ε)-close to D.

10 Recall that a distribution D over a totally ordered domain is said to be monotone if
x ⊆ y implies D(x) ≥ D(y).
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Abstract. In a two-player game, two cooperating but non communi-
cating players, Alice and Bob, receive inputs taken from a probability
distribution. Each of them produces an output and they win the game if
they satisfy some predicate on their inputs/outputs. The entangled value
ω∗(G) of a game G is the maximum probability that Alice and Bob can
win the game if they are allowed to share an entangled state prior to
receiving their inputs.

The n-fold parallel repetition Gn of G consists of n instances of G
where the players receive all the inputs at the same time and produce all
the outputs at the same time. They win Gn if they win each instance of
G.

In this paper we show that for any game G such that ω∗(G) = 1−ε <
1, ω∗(Gn) decreases exponentially in n. First, for any game G on the uni-

form distribution, we show that ω∗(Gn) = (1− ε2)
Ω
(

n
log(|I||O|) −| log(ε)|

)

,
where |I | and |O| are the sizes of the input and output sets. From
this result, we show that for any entangled game G, ω∗(Gn) = (1 −
ε2)

Ω( n
Q4 log(Q·|O|) −| log(ε/Q)|)

where p is the input distribution of G and
Q = max(⇒ 1

minxy:pxy ∈=0{√pxy}≤, |I |).
To prove this parallel repetition, we introduce the concept of Super-

posed Information Cost for entangled games which is inspired from the
information cost used in communication complexity.

1 Introduction

A two-player (nonlocal) game is played between two cooperating parties Alice
and Bob which are not allowed to communicate. This game G is characterized by
an input set I, an output set O, a probability distribution p on I2 and a result
function V : O2 × I2 ∈ {0, 1}. The game proceeds as follows: Alice receives
x ⊆ I, Bob receives y ⊆ I where (x, y) is taken according to p. Alice outputs
a ⊆ O and Bob outputs b ⊆ O. They win the game if V (a, b|x, y) = 1. The value
of the game ω(G) is the maximum probability, over all strategies, with which
Alice and Bob can win the game.

The n-fold parallel repetition Gn of G consists of the following. Alice and
Bob get inputs x1, . . . , xn and y1, . . . , yn, respectively. Each (xi, yi) is taken in-
dependently according to p. They output a1, . . . , an and b1, . . . , bn, respectively.

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 296–307, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014
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They win the game if and only if ⊂i, V (ai, bi|xi, yi) = 1. In order to win the
n-fold repetition, Alice and Bob can just take the best strategy for G and use it
n times. If they do so, they will win Gn with probability (ω(G))n which shows
that ω(Gn) → (ω(G))n.

Parallel repetition of games studies how the quantity ω(Gn) behaves. For ex-
ample, if ω(Gn) = (ω(G))n for each n then we say that G admits perfect parallel
repetition. However, there are some games for which this does not hold, for exam-
ple the CHSH game [8] repeated two times. It was a long-standing open question
to determine whether the value of ω(Gn) decreases exponentially in n. This was
first shown by Raz [20]. Afterwards, a series of works showed improved results
for specific types of games [13,19,1]. Parallel repetition for games has many ap-
plications, from direct product theorems in communication complexity [18] to
hardness of approximation results [3,11,12].

In the quantum setting, it is natural to consider games where Alice and Bob
are allowed to share some entangled state at the beginning of the game. In this
case we talk about entangled strategies. The maximum probability that Alice and
Bob can win a game G, over all the entangled strategies, is the entangled value
ω◦(G). Some entangled games are witnesses for the phenomenon of quantum non-
locality, as they are special cases of the so-called Bell inequality violations. (We
have a Bell inequality violation whenever ω◦(G) > ω(G).) The study of entangled
games is also greatly related to our understanding of quantum entanglement.

Perfect parallel repetition has been shown for entangled XOR games [9]. It
was also shown that entangled unique games [15] admit parallel repetition with
exponential decay. Finally, it was shown that any entangled game admits (a
variant of) parallel repetition [16]. However, this last parallel repetition only
shows a polynomial decay of ω◦(Gn). It was unknown for a large class of games
whether this decay is exponential or not. Very recently two more works have
been presented: a parallel repetition result with exponential decay for entangled
projection games [10] and an independent work [14] similar to this one.

1.1 Contribution

The main contribution of this paper is the following theorem.

Theorem 1. For any game G on the uniform distribution with ω◦(G) ∧ 1 − ε,
we have:

ω◦(Gn) = (1 − ε2)Ω( n
log(|I||O|)−| log(ε)|).

where |I| and |O| are respectively the size of the input and the output sets.

The class of entangled games with a uniform distribution is a large class of
entangled games for which such parallel repetition was unknown. We can extend
this result to any entangled game.

Corollary 1. For any game G such that ω◦(G) ∧ 1 − ε, we have that

ω◦(Gn) = (1 − ε2)
Ω( n

Q4 log(Q·|O|)−| log(ε/Q)|)
,

where |O| is the size of the output set of G and Q = max(≥ 1
minxy:pxy ∈=0{√pxy}⇐, |I|).
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This corollary can be obtained directly from the previous theorem. The above
corollary is the first general parallel repetition theorem for any entangled game
with exponential decay. It is not as strong as usual parallel repetition theorems
with exponential decay because of this dependency on Q. Notice however that
Q depends only on the game G and not on n.

In order to prove this theorem, we introduce the concept of Superposed Infor-
mation Cost of a game, an insightful concept and the cornerstone of our proof.

1.2 Superposed Information Cost

This concept is derived from the notion of information cost widely used in com-
munication complexity [7,2,4,17]. In the setting of communication complexity,
we consider a function f(x, y) and suppose that Alice has some input x and Bob
some input y. They want to determine the outcome of f(x, y) for a certain func-
tion f with the minimal amount of communication. The interactive information
cost IC of f describes the least amount of information that Alice and Bob need
to have about each other’s inputs in order to compute f(x, y).

We want to follow a similar approach for entangled games. In entangled games,
the quantum state Alice and Bob share is independent of the inputs x, y. We now
give extra resources to Alice and Bob: advice states. Alice and Bob are given
an advice state |φxy⇒ that can depend on their inputs. This can greatly increase
their winning probability. For example, Alice could have perfect knowledge of
Bob’s input y, and vice-versa.

We define (informally) the information cost of a game as follows:

Information Cost for entangled games
Alice and Bob are given advice states |φxy⇒ to share that can depend
on their inputs. What is the minimal amount of information that these
states have to give Alice and Bob about each other’s input, in order to
allow them to win the game with probability 1?

This is a natural extension of the information cost to entangled games. How-
ever, it is a limited notion since we cannot relate it to the entangled value of
the game. (A simple counterexample can be obtained from the CHSH game.)
Therefore, we extended this notion to the case where we allow the players to be
in a superposition of their inputs.

Superposed Information Cost (SIC) for entangled games
We extend the notion of information cost by allowing the players to have a
superposition of their inputs. We then consider the amount of information
that advice states have to give Alice and Bob about each other’s input, in
order to allow them to win with probability 1.

These notions are defined precisely in Section 3.1.
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Lower Bounding the Value of Entangled Games Using the Superposed
Information Cost. The reason we introduce the superposed information cost
for entangled games is that we want to have an information theoretic character-
ization of the value of entangled games. The next theorem states that the value
of any entangled game on the uniform distribution can be lower bounded by the
superposed information cost (this does not hold for the non-superposed one).

Theorem 2. For any game G with a uniform input distribution, we have

SIC(G) → 1−ω∗(G)
32 ln(2) or equivalently ω◦(G) → 1 − 32 ln(2) · SIC(G).

The Superposed information cost is additive under parallel repetition:

Proposition 1. SIC(Gn) = nSIC(G).

Putting these two results together, we have SIC(Gn) → n(1−ω∗(G))
32 ln(2) . This

result shows that SIC(Gn) is large when n increases and can be seen as evidence
that the game Gn is hard to win and that ω◦(Gn) decreases fast.

Using SIC to Show our Parallel Repetition Theorem. We fix a game G
with ω◦(G) = 1−ε and ω◦(Gn) = 2−t for some t. In order to prove our theorem,
we consider a quantity S which is strongly related to SIC(Gn). We show that

Ω(nε) ∧ S ∧ O

(
t log(|I||O|)

ε

)
. (1)

The lower bound is a natural extension of the above argument about the addi-
tivity of SIC. The ingredient we need to show the upper bound is the following
communication task :

– The players use an optimal strategy for Gn and win with probability
ω◦(Gn) = 2−t.

– Alice sends m = O( t log(|I||O|)
ε ) bits to Bob.

– Using this message, Bob’s goal is to determine with high probability whether
they won most of the games or not.

Switching to a communication task and to a related quantity S seems much
weaker than showing directly an upper bound on SIC(Gn), but it will be enough

for us. Combining these two results, we conclude that t = Ω( nε2

log(|I||O|)) or equiv-

alently, for ε close to 0, ω◦(Gn) = (1 − ε2)Ω( n
log(|I||O|) ).

1.3 Organization of the Paper

In this extended abstract we give the main arguments and proof sketches. We
refer to the full paper [6] for the complete proofs. Section 2 contains prelimi-
naries about entangled games. In Section 3, we define the key concept of the
superposed information cost for a game and show that this quantity is additive
when repeating games in parallel. In Section 4, we provide a brief organization
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of the main proof. In Section 5, we show Theorem 2 and some generalizations.
In Section 6 we derive the upper bound of (1) (the lower bound is proven in the
main paper). Finally, in Section 7 we prove our main theorem.

2 Entangled Games

The Value of an Entangled Game

Definition 1. An entangled game G = (I, O, V, p) is defined by finite input and
output sets I and O as well as an accepting function V : O2 × I2 ∈ {0, 1} and
a probability distribution p : I2 ∈ [0, 1].

A strategy for the game proceeds as follows. Alice and Bob can share any
quantum state. Then, Alice receives an input x ⊆ I and Bob receives an input
y ⊆ I where these inputs are sampled according to p. They can perform any
quantum operation but are not allowed to communicate. Alice outputs a ⊆ O
and Bob outputs b ⊆ O. They win the game if V (a, b|x, y) = 1.

The entangled value of a game G is the maximal probability with which Alice
and Bob can win the game. From standard purification techniques, we have
that w.l.o.g., Alice and Bob share a pure state |φ⇒ and their optimal strategy
consists of projective measurements Ax = {Ax

a}a≤O and By = {By
b }b≤O on |φ⇒.

This means that after receiving their inputs, they share a state of the form
ρ =

∑
x,y≤I pxy|x⇒∪x| ≤ |φ⇒∪φ| ≤ |y⇒∪y|, for some state |φ⇒.

Definition 2. The entangled value of a game G is
ω◦(G) = sup|φ⊆,Ax,By

∑
x,y,a,b pxyV (a, b|x, y)∪φ|Ax

a ≤By
b |φ⇒.

Definition 3. A game G = (I, O, V, p) is on the uniform distribution if I = [k]
for some k and ⊂x, y ⊆ [k], pxy = 1

k2 . We write p = Unif. when this is the case.

Value of a Game with Advice States. Consider a game G = (I, O, V, p).
We are interested in the value of the game when the two players share an advice
state |φxy⇒ additionally to their inputs x, y. This means that Alice and Bob share
a state of the form ρ =

∑
x,y,a,b pxy|x⇒∪x| ≤ |φxy⇒∪φxy| ≤ |y⇒∪y|.

Definition 4. The entangled value of G, given that Alice and Bob share the
above state ρ is ω◦(G|ρ) = maxAx,By

∑
x,y pxyV (a, b|x, y)∪φxy |Ax

a ≤By
b |φxy⇒.

Repetition of Entangled Games. In the n-fold parallel repetition of a game
G, each player gets n inputs from I and must produce n outputs from O. Each
instance of the game will be evaluated as usual by the function V . The players
win the parallel repetition game if they win all the instances. More formally,
for a game G = (I, O, V, p) we define Gn = (I ≥, O≥, V ≥, q), where I ≥ = I×n, O≥ =
O×n, qxy = Πi≤[n]pxi,yi and V ≥(a, b|x, y) = Πi≤[n]V (ai, bi|xi, yi). While playing
Gn, we say that Alice and Bob win game i if V (ai, bi|xi, yi) = 1.
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Majority Game. For a game G = (I, O, V, p) and a real number α ⊆ [0, 1] we
define Gn

α = (I ≥, O≥, V ≥, p≥) as follows: I ≥ = I×n, O≥ = O×n, p≥xy = Πi≤[n]pxi,yi as
in Gn. We define V ≥(a, b|x, y) = 1 ⇔ #{i : V (ai, bi|xi, yi) = 1} → αn.

3 Advice States, Superposed Players and Information
Cost

The notion of information cost has been very useful for communication complex-
ity. Here we derive a similar notion for entangled games.

Consider a game with advice state as defined in Section 2. The advice state
can potentially greatly help the players. For example, Alice could know y and
Bob could know x. We ask ourselves the following question:
For a game G = (I = [k], O, V, p) such that ω◦(G) = 1 − ε < 1 and a state ρ =∑

x,y≤[k] pxy|x⇒∪x|X ≤ |φxy⇒∪φxy |AB ≤ |y⇒∪y|Y , what is the minimum dependency

that the states {|φxy⇒}xy must have on x, y to have ω◦(G|ρ) = 1?
There are different ways of characterizing this dependency on x, y. A first pos-

sibility would be to consider the information that Alice has about y and Bob has
about x while sharing ρ. However, there are cases where Alice and Bob can win
a game with probability 1 using an advice state while still not learning anything
about each other’s input. For example, take the CHSH game [8] and consider
the states |φ00⇒ = |φ01⇒ = |φ10⇒ = 1√

2
(|00⇒+ |11⇒)AB and |φ11⇒ = 1√

2
(|01⇒+ |10⇒).

If the two players share the state ρ =
∑

x,y≤{0,1} 1/4|x⇒∪x|X ≤ |φxy⇒∪φxy |AB ≤
|y⇒∪y|Y , Alice has no information about y and Bob has no information about
x. On the other hand, if both players measure their registers A and B in the
computational basis and output the results, they will win the CHSH game with
probability 1 hence ω◦(CHSH |ρ) = 1 while ω◦(CHSH) = cos2(π/8).

We must consider a slightly different scenario so that Alice or Bob can learn
something about the other player’s input. When considering the amount of in-
formation that Alice has about Bob’s input y, we allow Alice to have a coherent
superposition of her inputs. Similarly, we will be interested in the amount of in-
formation Bob has about x when he has a coherent superposition of his inputs.

This scenario is motivated as follows: if Alice and Bob have a common pro-
cedure to create |φxy⇒ from their respective inputs x and y, Alice can create
a superposition of her inputs and they can perform the same procedure. This
scenario has for example been in order to show optimal bounds for quantum bit
commitment [5].

This approach leads to the definition of the superposed information cost of a
game. In the next section, we give formal definitions of this notion.

3.1 The Superposed Information Cost

Consider a family of states {|φxy⇒}xy and a probability distribution {pxy}xy. Let
px· =

∑
y pxy and p·y =

∑
x pxy.



302 A. Chailloux and G. Scarpa

Let |LB
x ⇒ = 1√

px·

∑
y
∗
pxy|φxy⇒|y⇒ and |LA

y ⇒ = 1√
p·y

∑
x
∗
pxy|x⇒|φxy⇒. Con-

sider the two superposed states:

σA =
∑

y≤[k]

p·y|LA
y ⇒∪LA

y |XAB ≤ |y⇒∪y|Y

σB =
∑

x≤[k]

px·|x⇒∪x|X ≤ |LB
x ⇒∪LB

x |ABY .

Here σA (resp. σB) corresponds to ρ where Alice’s input (resp. Bob’s input)
is put in a coherent superposition. We first define the superposed information
cost of a family of states with a probability distribution.

Definition 5. The superposed information cost SIC({|φxy⇒, pxy}xy) is defined
as SIC({|φxy⇒, pxy}xy) = I(Y : XA)σA + I(X : BY )σB .

Remark: This definition has good properties when the input distribution is a
product distribution or close to a product distribution. One may want to consider
a more general definition when considering any distribution.

We also define the superposed information cost of a shared state ρ of the form
ρ =

∑
xy≤[k] pxy|x⇒∪x| ≤ |φxy⇒∪φxy | ≤ |y⇒∪y|.

Definition 6. SIC(ρ) = inf{SIC({|φxy⇒, pxy}xy)} where the infimum is taken
over all families {|φxy⇒, pxy}xy s.t. ρ =

∑
xy≤[k] pxy|x⇒∪x| ≤ |φxy⇒∪φxy | ≤ |y⇒∪y|.

Remark: notice that a state ρ doesn’t uniquely define states {|φxy⇒, pxy}xy
because it doesn’t capture the phases in the states |φxy⇒. We now define the
superposed information cost of an entangled game.

Definition 7. For any entangled game G = (I, O, V, p), we define
SIC(G) = inf{SIC({|φxy⇒}xy, {pxy}xy)} where the infimum is taken over
all ({|φxy⇒}xy, {pxy}xy) such that the associated state ρ =

∑
xy pxy|x⇒∪x| ≤

|φxy⇒∪φxy | ≤ |y⇒∪y| satisfies ω◦(G|ρ) = 1.

The superposed information cost behaves nicely under parallel repetition. In
the full paper, we show

Proposition 2. For any game G, we have SIC(Gn) = n · SIC(G).

4 Organisation of the Proof of Theorem 1

In Section 5, we show how to use the Superposed Information Cost of a game G
to bound its entangled value ω◦(G). We first show:

Theorem 2. For any game G on the uniform distribution, SIC(G) → 1−ω∗(G)
32 ln(2) .

We also extend this theorem as follows:

Theorem 3. There exists a small constant c0 such that for any game G = (I =
[k], O, V,Unif.) satisfying ω◦(G) = 1 − ε, for any game G≥ = (I = [k], O, V, p)
satisfying 1

2

∑
x,y |pxy− 1

k2 | ∧ c0ε and any state ρ =
∑

xy pxy|x⇒∪x|≤|φxy⇒∪φxy |≤
|y⇒∪y| such that ω◦(G≥|ρ) → 1 − ε

4 , we have that SIC(ρ) = Ω(ε).
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If ω◦(G) = 1−ε, Theorem 2 claims that SIC(G) → ε
32 ln(2) which gives by ad-

ditivity of the superposed information cost that SIC(Gn) → nε
32 ln(2) . Ideally, we

would like to upper bound SIC(Gn) with a function of ω◦(Gn). Unfortunately,
we are not able to do this directly. In Section 6, we show the following weaker
statement:

Theorem 4. Consider a game G = (I, O, V,Unif.) such that ω◦(G) = 1−ε and
ω◦(Gn) = 2−t. Let Gn

1−ε/32 = (In, On, V ≥,Unif.) as defined in Section 2. There

exists a game G≥ = (In, On, V ≥, p) and a state ξ =
∑

xy pxy|x⇒∪x| ≤ |φxy⇒∪φxy | ≤
|y⇒∪y| satisfying the following properties:

1. H(XY )ξ → 2n log(k) − t− 1
2. ω◦(G≥|ξ) → 1 − ε/32

3. SIC(ξ) ∧ 32 log(|I||O|)
ε ((t + 1) + | log(ε)| + 5) + 2t + 2.

The first condition states that p is in some sense close to the uniform distribu-
tion hence G≥ is close to Gn

1−ε/32. This theorem is weaker than an upper bound

on SIC(G≥) which itself is weaker than an upper bound on SIC(Gn), but this
kind of upper bound will be enough.

In the full paper, we prove a matching lower bound.

Theorem 5. Consider a game G = (I = [k], O, V,Unif.) such that ω◦(G) = 1−ε
and ω◦(Gn) = 2−t with t = o(nε). Let also Gn

1−ε/32 = (In = [kn], On, V ≥,Unif.)
as defined in Section 2. For any game G≥ = (I ≥ = [kn], O≥, V ≥, p) and any state
ρ =

∑
x,y≤[kn] pxy|x⇒∪x|X ≤ |φxy⇒∪φxy|AB ≤ |y⇒∪y|Y , satisfying

1. H(XY )ρ → 2n log(k) − t− 1
2. ω◦(G≥|ρ) → 1 − ε/32

we have SIC(ρ) → Ω(nε).

In Section 7, we show how to use the two above theorems to conclude:

Theorem 1. For any game G = (I, O, V,Unif.) with ω◦(G) ∧ 1 − ε, we have

ω◦(Gn) = (1 − ε2)Ω( n
log(|I||O|)−| log(ε)|).

5 Overview of Theorem 2

Theorem 2. For any game G on the uniform distribution, SIC(G) → 1−ω∗(G)
32 ln(2) .

We sketch the proof as follows. We fix a game G = (I = [k], O, V,Unif.) and
a state ρ =

∑
x,y

1
k2 |x⇒∪x|X ≤ |φxy⇒∪φxy|AB ≤ |y⇒∪y|Y such that ω◦(G|ρ) = 1. As

in Section 3.1, we define |LA
y ⇒, |LB

x ⇒, σA, σB . Let ρAy = TrB|LA
y ⇒∪LA

y | and ρBx =

TrA|LB
x ⇒∪LB

x |. Intuitively, ρAy (resp. ρBx ) corresponds to the input-superposed
state that Alice (resp. Bob) has, conditioned on Bob getting y (resp. Alice getting
x). Let F denote the fidelity of quantum states. We prove the following three
inequalities.
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1. First we show that SIC(ρ) → 1
4 ln(2) (1 − 1

k2

∑
y,y≤ F 2(ρAy , ρ

A
y≤) + 1 − 1

k2

∑
x,x≤

F 2(ρBx , ρ
B
x≤))

2. Then we show that

1 − 1

k2

∑

y,y≤
F 2(ρA

y , ρA
y≤ ) + 1 − 1

k2

∑

x,x≤
F 2(ρB

x , ρB
x≤ ) ∪ 1

8
(1 − max

|Ω〉

∑

x,y∈[k]

1

k2
|〈Ω|Ux ⊗ Vy|φxy⊆|2)

for some (sets of) unitaries {Ux}x, {Vy}y.
3. Finally, we show that (1−max|Ω⊆

∑
x,y≤[k]

1
k2 |∪Ω|Ux ≤ Vy|φxy⇒|2) → 1−ω◦(G).

Putting the three inequalities together, we get

SIC(ρ) → 1

4 ln(2)
(1 − 1

k2

∑

y,y

F 2(ρAy , ρ
A
y≤) + 1 − 1

k2

∑

x,x≤
F 2(ρBx , ρ

B
x≤))

→ 1

32 ln(2)
(1 − max

|Ω⊆

∑

x,y≤[k]

1

k2
|∪Ω|Ux ≤ Vy |φxy⇒|2) for some {Ux}x{Vy}y

→ 1 − ω◦(G)

32 ln(2)
.

Since this holds for any ρ satisfying ω◦(G|ρ) = 1, we have SIC(G) → 1−ω∗(G)
32 ln(2) .

6 Overview of Theorem 4

In this section we sketch the proof of Theorem 4. The construction of the state
ξ will directly be inspired by a communication task that we now present.

The Communication Task. Fix a game G = (I, O, V,Unif.) satisfying
ω◦(G) = 1 − ε. Let Gn = (In, On, Vn,Unif.) such that ω◦(Gn) = 2−t for some t.
We now consider the following task H(p,m).

Task H(p,m)

– Alice and Bob are allowed to share any quantum state |φ⇒.
– Alice and Bob get inputs x = x1, . . . , xn and y = y1, . . . , yn, with

x, y ⊆ In, following the uniform distribution.
– Alice is allowed to send m bits to Bob
– Then Alice outputs some value a ⊆ On and Bob outputs some value

b ⊆ On or ’Abort’.

For each index i, we say that Alice and Bob win game i if Bob does not
abort and V (ai, bi|xi, yi) = 1. We require the following

1. Pr[Bob does not abort] → p
2. Pr[Alice and Bob win → (1 − ε/32)n games | Bob does not abort] →

(1 − ε/32).
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Showing how to perform this task with a small amount of communication is
a first step towards the construction of ξ. We consider the following protocol P
that efficiently performs this task.

Protocol P for the task H(p,m)

1. Let v ∧ n be an integer, to be determined at the end of this section.
Alice and Bob have shared randomness that correspond to v random
(not necessarily different) indices i1, . . . , iv ⊆ [n] as well as a state |φ⇒
that allows them to win Gn with probability at least ω∗(Gn)

2 = 2−(t+1).
2. Alice and Bob receive uniform inputs x, y. They perform a strategy

that wins all n games with probability 2−(t+1) and have some outputs
a = a1, . . . , an and b = b1, . . . , bn.

3. For each index i ⊆ {i1, . . . , iv}, Alice sends xi and ai to Bob.
4. For each of these indices i, Bob looks at xi, yi, ai, bi and checks whether

they win on all of these v games, i.e. , he checks that for all these
indices, V (ai, bi|xi, yi) = 1.

5. If they do win on all of these games, Bob outputs b. Otherwise, Bob
outputs ’Abort’.

Proposition 3. The above protocol performs the task H(p,m) with p → 2−(t+1)

and m = 32 log(|I||O|)
ε ((t + 1) + | log(ε)| + 5).

The proof is in the full paper.

Using the Communication Task to Prove Theorem 4

The idea is the following: Alice and Bob perform protocol P for the task H(p,m)
performing everything in superposition, including the messages and their shared
randomness. The advice state we consider is the state ρNA Alice and Bob share
conditionned on Bob not aborting. This state ρNA can be written as

ρNA =
∑

xy

qxy|x⇒∪x|X ≤ |φxy⇒∪φxy | ≤ |y⇒∪y|Y

To prove the theorem, we must show the following properties for ρNA.

1. H(XY )ρNA → 2n log(k) − t− 1.
2. ω◦(G≥|ρNA) → 1 − ε/32 where Gn

1−ε/32 = (I ≥, O≥, V ≥,Unif.) and G≥ =

(I ≥, O≥, V ≥, q).

3. SIC(ρNA) ∧ 32 log(|I||O|)
ε ((t + 1) + | log(ε)| + 5) + 2t + 2.
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The ideas behind the proofs of these three properties are as follows:

1. In task H(p,m), Pr[Bob does not abort] → p = 2−t, when conditionning on
Bob winning, we remove at most t bits of entropy from the (uniform) inputs
in X,Y , the 1 in the inequality is there for technical reasons.

2. In the task H(p,m), Pr[Alice and Bob win → (1 − ε/32)n games | Bob
does not abort] → (1 − ε/32). This directly implies the second property

3. In protocol P, before Alice sends her message, Bob has no information about
x. Alice sends a message of size m, which gives m bits of information about
Alice’s input. Conditionning on Bob winning gives him an extra 2t bits of

information. Since m = 32 log(|I||O|)
ε ((t + 1) + | log(ε)|+ 5) from the previous

Proposition, we can conclude.

7 Final Theorem

Theorem 1. For any game G = (I, O, V,Unif.) with ω◦(G) ∧ 1 − ε, we have:

ω◦(Gn) = (1 − ε2)Ω( n
log(|I||O|)−| log(ε)|).

Proof. Let Gn
1−ε/32 = (In = [kn], On, Vn,Unif.) as defined in Section 2. Using

Theorem 4, we know there exists a state ξ =
∑

xy pxy|x⇒∪x| ≤ |φxy⇒∪φxy | ≤ |y⇒∪y|
and a game G≥ = (In, On, Vn, p) satisfying

1. H(XY )ξ → 2n log(k) − t− 1
2. ω◦(G≥|ξ) → 1 − ε/32

3. SIC(ξ) ∧ 32 log(|I||O|)
ε ((t + 1) + | log(ε)| + 5),

where 2−t = ω◦(Gn). We now distinguish two cases

– If t = Ω(εn) then ω◦(Gn) = (1 − ε)Ω(n) and the theorem holds directly.
– If t = o(εn), we need the following argument. The state ξ satisfies all the

properties of Theorem 5 which implies that SIC(ξ) = Ω(nε). We combine
the two inequalities and obtain

Ω(nε) ∧ SIC(ξ) ∧ 32 log(|I||O|)
ε

((t + 1) + | log(ε)| + 5).

It follows that t = Ω
(

nε2

log(|I||O|) − | log(ε)|
)

, which allows us to conclude

ω◦(Gn) = 2−t ∧ (1 − ε2)O( n
log(|I||O|)−| log(ε)|).

Finally, in the full paper we extend this result to general games.

Corollary 1. For any game G = (I, O, V, p) such that ω◦(G) ∧ 1 − ε, we have

ω◦(Gn) = (1 − ε2)
Ω( n

Q4 log(Q·|O|)−| log(ε/Q)|)
,

where |O| is the dimension of the output space of G and Q =
max(≥ 1

minxy:pxy ∈=0(
∗

pxy)
⇐, |I|).
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The Bose-Hubbard Model is QMA-complete�
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Abstract. The Bose-Hubbard model is a system of interacting bosons
that live on the vertices of a graph. The particles can move between adja-
cent vertices and experience a repulsive on-site interaction. The Hamil-
tonian is determined by a choice of graph that specifies the geometry
in which the particles move and interact. We prove that approximating
the ground energy of the Bose-Hubbard model on a graph at fixed par-
ticle number is QMA-complete. In our QMA-hardness proof, we encode
the history of an n-qubit computation in the subspace with at most one
particle per site (i.e., hard-core bosons). This feature, along with the
well-known mapping between hard-core bosons and spin systems, lets
us prove a related result for a class of 2-local Hamiltonians defined by
graphs that generalizes the XY model. By avoiding the use of perturba-
tion theory in our analysis, we circumvent the need to multiply terms in
the Hamiltonian by large coefficients.

1 Introduction

The problem of approximating the ground energy of a given Hamiltonian is a
natural quantum analog of classical constraint satisfaction. Many authors have
considered the computational complexity of such quantum ground state prob-
lems. For a variety of classes of Hamiltonians and a suitable notion of approxima-
tion, this task is complete for the complexity class QMA, the quantum version of
NP with two-sided error (see reference [2] for a recent review). These results pro-
vide evidence that approximating the ground energy of such quantum systems
is intractable.

The first such example is the Local Hamiltonian problem introduced by Kitaev
[3]. A k-local Hamiltonian acts on a system of n qubits and can be written as
a sum of terms, each acting nontrivially on k qubits. The k-Local Hamiltonian
problem is a promise problem related to the task of approximating the ground
energy of a k-local Hamiltonian. Given such a Hamiltonian and two thresholds
a and b, one is asked to determine if the ground energy is below a or above
b (promised that one of these conditions holds). Kitaev’s original work showed
that 5-local Hamiltonian is QMA-complete [3]; subsequent works proved QMA-
completeness of the 3-local Hamiltonian problem [4], the 2-local Hamiltonian

� Reference [1] is a detailed technical version of this extended abstract.

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 308–319, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014
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problem [5], and the 2-local Hamiltonian problem with interactions between
qubits restricted to a two-dimensional lattice [6].

The complexity of similar computational problems related to other classes of
Hamiltonians has also been considered. These include Hamiltonians in one di-
mension [7, 8], frustration-free Hamiltonians [9, 10], and stoquastic Hamiltonians
(Hamiltonians with no “sign problem”) [11, 12], among others.

The QMA-hardness of ground energy problems for local Hamiltonians acting
on qubits has implications for Hamiltonians acting on indistinguishable parti-
cles (bosons or fermions) due to formal mappings between these systems. By
applying such mappings to the Local Hamiltonian problem, one can show that
certain bosonic [13] and fermionic [14] Hamiltonian problems are QMA-hard.
A more restrictive class of QMA-complete fermionic Hamiltonians was consid-
ered by Schuch and Verstraete, who showed that the Hubbard model with a
site-dependent magnetic field is QMA-complete [15]. This is a specific model of
interacting electrons (i.e., spin- 12 fermions) on a two-dimensional lattice, with a
magnetic field that may take different values and point in different directions (in
three dimensions) at distinct sites of the lattice.

Many of the QMA-complete problems considered previously have the property
that the form of the terms in the Hamiltonian is part of the specification of the
instance. For example, a 2-local Hamiltonian is specified by a graph, indicating
pairs of qubits where terms in the Hamiltonian act, along with a 2-local Hermi-
tian operator for each edge. In the Hubbard model considered in reference [15],
there is a similar freedom in the choice of magnetic field at each site. A recent
classification of local Hamiltonian problems [16] likewise applies only to models
with adjustable coefficients. In fact, these results typically require coefficients
that grow with the problem size.

In contrast, here we consider a system of interacting bosons with fixed move-
ment and interaction terms. Specifically, we consider the Bose-Hubbard model,
which has one of the simplest interactions between particles that conserves total
particle number. Although the Bose-Hubbard model is traditionally defined on
a lattice and with negative hopping strength [17], here we consider its extension
to a general graph, with positive hopping strength.

We consider undirected graphs without multiple edges and with at most one
self loop per vertex. Any such graph G (with vertex set V ) can be specified by
its adjacency matrix, a symmetric 0-1 matrix denoted A(G). The Bose-Hubbard
model on G with hopping strength thop and interaction strength Jint has the
Hamiltonian

HG = thop
∑

i◦V

∑

j◦V

A(G)ij a
†
iaj + Jint

∑

k◦V

nk(nk − 1) (1.1)

where a†i creates a boson at vertex i and ni = a†iai counts the number of bosons
at vertex i. Our results apply to the Bose-Hubbard model for any fixed positive
hopping strength thop > 0 and any fixed positive (i.e., repulsive) interaction
strength Jint > 0. Unlike other QMA-hardness results, in our work the coeffi-
cients thop, Jint are not inputs to the problem; rather, each fixed choice defines
a computational problem and we prove QMA-completeness for each of them.
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Observe that the Bose-Hubbard Hamiltonian (1.1) conserves the total number
of particles N =

∑
k◦V nk. We focus on the space of N -particle states, which

can be identified with the symmetric subspace of (C|V |)√N (as we discuss in
more detail in Section 3). The first term in (1.1) allows particles to move be-
tween vertices; the second term is an interaction between particles that assigns
an energy penalty for each vertex that is occupied by more than one particle.
The Bose-Hubbard model is an example of a multi-particle quantum walk, a
generalization of quantum walk to systems with more than one walker.

Recently we showed that the Bose-Hubbard model on a graph can perform
efficient universal quantum computation [18]. Sometimes universality goes hand-
in-hand with QMA-completeness, e.g., for local Hamiltonians, whose dynamics
are BQP-complete [19] and whose ground energy problem is QMA-complete [3].
However, not all classes of Hamiltonians with universal dynamics have QMA-
complete ground energy problems. For example, the dynamics of stoquastic local
Hamiltonians are BQP-complete (as follows from [20] and time reversal), whereas
the corresponding ground energy problem is in AM [11] and hence unlikely to
be QMA-hard. Similarly, the ground energy problem for a Bose-Hubbard model
with thop < 0 is also in AM [11], whereas the dynamics of such Hamiltonians
are universal [18]. The ferromagnetic Heisenberg model on a graph provides an
even starker contrast: its dynamics are BQP-complete (as can be inferred from
[18] using a correspondence between spins and hard-core bosons) but its ground
energy problem is trivial since the ground space is the symmetric subspace.

2 Overview of Results and Techniques

In this paper we define the Bose-Hubbard Hamiltonian problem and characterize
its complexity. In this problem one is given a graph G and a number of particles N
and asked to approximate the ground energy of the Bose-Hubbard Hamiltonian
(1.1) in the N -particle sector (in a precise sense described in Section 3). We
prove that this problem is QMA-complete.

To prove QMA-hardness of the Bose-Hubbard Hamiltonian problem, we show
that in fact a notable special case of this problem, called Frustration-Free Bose
Hubbard Hamiltonian, is QMA-hard. In this problem one is asked (roughly) to
determine if the ground energy of the Bose-Hubbard Hamiltonian (1.1) in the
N -particle sector is close to N times its single-particle ground energy (i.e., N
times the smallest eigenvalue of the adjacency matrix A(G)). This is always a
lower bound on the N -particle energy, and when it is achieved we say the N -
particle ground states are frustration free. A frustration-free state has the special
property that it has minimal energy for both terms in (1.1), and in particular
it is annihilated by the interaction term. Frustration-free states therefore live in
the subspace of hard-core bosons, with at most one boson per vertex.

Furthermore, we prove a reduction from Frustration-Free Bose-Hubbard
Hamiltonian to an eigenvalue problem for a class of 2-local Hamiltonians de-
fined by graphs. The two problems are related by a well-known mapping between
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hard-core bosons and spin systems. Specifically, given a graph G (with vertex
set V ) we consider the Hamiltonian

OG =
∑

A(G)ij=1
i≤=j

σi
xσ

j
x + σi

yσ
j
y

2
+

∑

A(G)ii=1

1 − σi
z

2
(2.1)

where σx, σy , σz are the Pauli matrices. Note that this Hamiltonian commutes

with the magnetization operator Mz =
∑|V |

i=1
1−σi

z

2 and has a sector for each of
its eigenvalues Mz ∈ {0, 1, . . . , |V |}. We reduce Frustration-Free Bose-Hubbard
Hamiltonian (with N particles on a graph G) to the problem of approximating
the smallest eigenvalue of (2.1) within the sector with magnetization Mz = N .
We call this the XY Hamiltonian problem because of its connection to the XY
model from condensed matter physics. Since this problem is contained in QMA,
our reduction shows it to be QMA-complete.

We also obtain another result that may be of independent interest. In
Appendix A of [1] we give a self-contained proof that computing the small-
est eigenvalue of a sparse, efficiently row-computable [21] symmetric 0-1 matrix
(the adjacency matrix of a graph) is QMA-complete. This can alternatively be
viewed as a result about the QMA-completeness of a single-particle quantum
walk on a graph with at most one self-loop per vertex. To prove this, we use
a mapping from circuits to graphs that is also used in our main result. Note
that Janzing and Wocjan used a similar construction to design a BQP-complete
problem [20].

Proof Techniques

We prove our main result by direct reduction from quantum circuit satisfiability.
We introduce several new techniques in order to do this using the Bose-Hubbard
model on an unweighted graph.

Kitaev’s original proof of QMA-hardness of the Local Hamiltonian problem
encodes a QMA verification circuit using ideas from a computationally universal
Hamiltonian proposed by Feynman [19]. This Hamiltonian uses a “clock reg-
ister” to record the progress of the computation; in an appropriate basis, the
Hamiltonian is a quantum walk on a path whose vertices represent the steps
of the computation. Other proofs of QMA-hardness have used other encodings
of the temporal structure of a verification circuit into a quantum state. In our
construction, we encode the history of an n-qubit verification circuit in the state
of n interacting particles on a graph, where each particle encodes a single qubit.

Our construction uses a class of graphs we define called gate graphs. Gate
graphs are built from a basic subgraph whose single-particle ground states encode
the history of a simple single-qubit computation. By combining copies of this
basic unit, we define gadgets with other functionality. (Note that these gadgets
realize some desired behavior exactly; they are not “perturbative gadgets” in the
sense of [5, 22].) In particular, we design gadgets for two-qubit gates such that
each ground state of the two-particle Bose-Hubbard model encodes a two-qubit
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3

1

4

2
1,2,3,4
overlap

(a) (b)

Fig. 2.1. We design graphs for two-qubit gates with overlapping regions as in (a).
Regions 1 and 2 are associated with the first encoded qubit and regions 3 and 4 with
the second encoded qubit. One could imagine designing a graph for a circuit with two-
qubit gates U1 followed by U2 by connecting the corresponding gadgets as in (b). In
the text we describe a challenge with this approach.

computation. We now give a high-level description of how these gadgets work
and how we use them to construct a graph for a QMA verification circuit.

For each two-qubit gate U from a fixed universal set, we design a graph GU

that can be divided into four overlapping regions as shown schematically in
Figure 2.1(a). (The specific graphs we use for two-qubit gates each have 4096
vertices and are described using the gate graph formalism.) The two-particle
Bose-Hubbard model on this graph has ground states that encode the two-qubit
computation. To describe them it is helpful to first consider the single-particle
ground states, i.e., the ground states of the adjacency matrix A(GU ). This matrix
has 16 orthonormal single-particle ground states |τi,Uz,a⊆. Each index i ∈ {1, 2, 3, 4}
is associated with the corresponding region in the graph, as |τi,Uz,a⊆ is supported
entirely within region i. The index z ∈ {0, 1} corresponds to the computational
basis states of a single encoded qubit. Note that, since A(GU ) is a real matrix,
the complex conjugate of any eigenstate is also an eigenstate with the same
eigenvalue. The index a ∈ {0, 1} is associated with this freedom, i.e., |τi,Uz,1 ⊆ =

|τi,Uz,0 ⊆⊆. The ground space of the two-particle Bose-Hubbard model on GU is
spanned by 16 states, indexed by two choices z1, z2 ∈ {0, 1} of computational
basis states for the encoded qubits and two bits a1, a2 ∈ {0, 1} associated with
complex conjugation. These states can be represented as symmetric states in the
Hilbert space C

4096 ⊂ C
4096; they are

1

2
(|τ1,Uz1,a1

⊆|τ3,Uz2,a2
⊆ + |τ3,Uz2,a2

⊆|τ1,Uz1,a1
⊆)

+
1

2

∑

x1,x2◦0,1

U(a1)x1,x2,z1,z2(|τ1,Ux1,a1
⊆|τ3,Ux2,a2

⊆ + |τ3,Ux2,a2
⊆|τ1,Ux1,a1

⊆)

where U(0) = U is the two-qubit gate of interest and U(1) = U⊆ is its elemen-
twise complex conjugate. Observe that each of these states is a superposition
of a term where both particles are on the left-hand side of the graph, encoding
a two-qubit input state |z1⊆|z2⊆, and a term where both particles are on the
right-hand side of the graph, encoding the two-qubit output state U(a1)|z1⊆|z2⊆
where either U or its complex conjugate has been applied. While we might prefer
the ground states to only encode the computation corresponding to U , we must
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include the possibility of U⊆ because the Hamiltonian is real. The same issue
arises for n-qubit verification circuits. Fortunately, the complex conjugate of a
circuit is equally useful for QMA verification.

It is natural to attempt to construct a graph for an n-qubit verification cir-
cuit by combining gadgets for each of the two-qubit gates. However, there is an
obstacle to this approach, as illustrated by the example of a two-qubit circuit
consisting of only two gates U1 and U2. One could construct a graph for such
a circuit as shown schematically in Figure 2.1(b), where the two-qubit gadgets
for U1 and U2 are connected in some unspecified way in the middle. However,
not every ground state of the two-particle Bose-Hubbard model on such a graph
encodes a computation. For example, there could be a ground state where one
of the particles is in the single-particle state |τ1,U1

z,a ⊆ localized on the left side of

the graph and the other particle is in the state |τ2,U2
z,a ⊆ with support on a disjoint

region of the graph on the right-hand side. To eliminate such spurious ground
states, we develop a method to enforce occupancy constraints on the locations
of particles in gate graphs using the Bose-Hubbard interaction. Although this
interaction only directly penalizes simultaneous occupation of the same vertex,
we show how to simulate terms that penalize simultaneous occupation of differ-
ent regions of the graph. We formalize this method by proving an “Occupancy
Constraints Lemma” for gate graphs.

In summary, our construction of the graph for an n-qubit verification circuit
proceeds in two steps. We first construct a graph G by connecting two-qubit
gadgets for each of the gates in the circuit. As discussed above, the ground space
of the n-particle Bose-Hubbard model on G includes a subspace of states that
encode computations and a subspace of states that do not. We construct a set of
occupancy constraints that are only satisfied by states in the former subspace.
We then apply the Occupancy Constraints Lemma to obtain another gate graph
where each N -particle ground state encodes a computation.

Unlike many previous works, we do not use perturbation theory in our analy-
sis. Instead, we use a “Nullspace Projection Lemma”(used implicitly in [23]) that
characterizes the smallest nonzero eigenvalue of a sum of two positive semidefi-
nite matrices HA+HB in terms of the smallest nonzero eigenvalue of HA and the
smallest nonzero eigenvalue of HB restricted to the nullspace of HA. This Lemma
allows us to establish an eigenvalue promise gap (i.e., to bound the ground ener-
gies of yes instances away from those of no instances) without having to multiply
terms in the Hamiltonian by large coefficients, something that is not allowed in
the setting of the Bose-Hubbard model on a graph. Whereas QMA-hardness
proofs such as those of [4, 5, 6, 15, 16] require multiplying terms in the Hamil-
tonian by unphysical, problem-size dependent coefficients, our approach avoids
this. To the best of our knowledge, our proof would not be much simpler if we
only demanded constant-size coefficients; the further restriction that the model
is defined entirely by a graph is an extra benefit with little additional cost.
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3 Definitions and Results

In this Section we introduce the Bose-Hubbard model and a related spin model,
and formally state our results.

3.1 The Bose-Hubbard Model on a Graph

We consider the Bose-Hubbard model on a graph G, where the Hamiltonian
is given by (1.1). While our complexity-theoretic results apply to the Bose-
Hubbard model for any strictly positive hopping and interaction strengths, we
set thop = Jint = 1 for convenience.

In the second-quantized formulation of the Bose-Hubbard model used in (1.1),
the Hamiltonian HG acts on the Fock space with orthonormal basis vectors
specified by the number of bosons at each vertex. For our purposes, it will be
more convenient to work in an equivalent (first-quantized) basis.

Consider the Hilbert space (C|V |)√N where each basis state |i1⊆ . . . |iN ⊆ cor-
responds to an N -tuple of vertices (i1, ..., iN ) ∈ V N . Define the linear operator
Sym that symmetrizes over all N ! permutations of the N particles:

Sym(|i1⊆ . . . |iN ⊆) =
1→
N !

∑

π◦SN

|iπ(1)⊆ . . . |iπ(N)⊆.

Every state in the Fock space can be uniquely paired with a state in

ZN (G) = span{Sym(|i1, . . . , iN ⊆) : i1, . . . , iN ∈ V }
since the two spaces have the same dimension. A natural bijection sends a basis
state Sym(|i1⊆ . . . |iN ⊆) to the Fock state with |{j : ij = v}| bosons at each vertex
v.

If we restrict our attention to the N -particle sector, then the Bose-Hubbard
Hamiltonian (with thop = Jint = 1) acts as the operator

HN
G =

N∑

w=1

A(G)(w) +
∑

k◦V

n̂k (n̂k − 1) (3.1)

on the space ZN (G), where the number operator is n̂i =
∑N

w=1 |i⊆∧i|(w) (see
for example [24, §64]). Here a superscript (w) indicates that an operator acts
nontrivially on subsystem w.

While HN
G is defined as a |V |N × |V |N matrix in the space (C|V |)√N , we

consider its restriction
H̄N

G = HN
G

∣
∣
∣
ZN (G)

to the bosonic N -particle subspace ZN (G). It is convenient to add a term pro-
portional to the identity to obtain a positive semidefinite operator. Letting μ(G)
denote the smallest eigenvalue of the adjacency matrix A(G), we consider

H(G,N) = H̄N
G −Nμ(G)
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and we write λ1
N (G) for the smallest eigenvalue of H(G,N). Clearly λ1

N (G) ≥ 0
since the interaction term is positive semidefinite. Also note that, given the
graph G, the smallest eigenvalue μ(G) of its adjacency matrix can be efficiently
approximated using a classical polynomial-time algorithm, so the complexity
of approximating λ1

N (G) is equivalent to the complexity of approximating the
ground energy of H̄N

G . (Note that here the graph is specified explicitly by its
adjacency matrix. In other contexts one might consider a graph specified com-
pactly, e.g., by a circuit that computes rows of its adjacency matrix. Then the
situation is more complex since the input size can be much smaller than the
number of vertices in the graph. Indeed, we prove in Appendix A of [1] that
approximating the smallest eigenvalue of such a graph is QMA-complete.)

When λ1
N (G) = 0, the ground energy of the N -particle Bose-Hubbard model

H̄N
G is equal to N times the one-particle energy μ(G). Then we say that the

N -particle Bose-Hubbard model is frustration free.

3.2 Complexity of the Bose-Hubbard Model

Given a K-vertex graph G and a number of particles N , how hard is it to
approximate the ground energy of the N -particle Bose-Hubbard model H̄N

G on
G? We consider the following decision version of this computational problem.

Problem 1 (Bose-Hubbard Hamiltonian). We are given a K-vertex graph
G, a number of particles N , a real number c, and a precision parameter
Π = 1

T . The positive integers N and T are provided in unary; the graph is
specified by its adjacency matrix, which can be any K ×K symmetric 0-1
matrix. We are promised that either the smallest eigenvalue of H̄N

G is at
most c (yes instance) or is at least c + Π (no instance) and we are asked to
decide which is the case.

In this problem c is provided in a straightforward manner, with enough pre-
cision to resolve Π, i.e., using O(log |c| + logT ) bits. The input size is therefore
β(K2 +T +N +log |c|) bits. We prove that this problem is QMA-complete, pro-
viding evidence that approximating the ground energy of the N -particle Bose-
Hubbard model on a graph G is intractable.

Theorem 1. Bose-Hubbard Hamiltonian is QMA-complete.

The proof of this Theorem has two parts.
The easy part is to show that Bose-Hubbard Hamiltonian is contained in

QMA. The basic strategy of Arthur’s verification protocol is to measure the
energy of the Bose-Hubbard Hamiltonian in the state given to him by Merlin,
using phase estimation and Hamiltonian simulation. Arthur accepts if the energy
is small enough and rejects otherwise. We give a more detailed description of the
verification procedure in Section 3 of [1].

The more involved part is to show that Bose-Hubbard Hamiltonian is QMA-
hard. For this we show that any instance of a QMA problem can be converted



316 A.M. Childs, D, Gosset, and Z. Webb

(in deterministic polynomial time on a classical computer) into an equivalent
instance of Bose-Hubbard Hamiltonian. In fact, our reduction proves a slightly
stronger result, namely that a notable extremal case of Bose-Hubbard Hamilto-
nian is already QMA-hard. We now discuss this special case.

Recall from the previous section that the ground energy of the N -particle
Bose-Hubbard model is at least N times the single-particle ground energy μ(G),
i.e., λ1

N (G) ≥ 0. We can ask if this inequality is close to equality, i.e., is the
N -particle Bose-Hubbard model close to being frustration free?

Problem 2 (Frustration-Free Bose-Hubbard Hamiltonian). We are
given a K-vertex graph G, a number of particles N ⇐ K, and a precision
parameter Π = 1

T . The integer T ≥ 4K is provided in unary; the graph
is specified by its adjacency matrix, which can be any K × K symmetric
0-1 matrix. We are promised that either λ1

N (G) ⇐ Π3 (yes instance) or
λ1
N (G) ≥ Π + Π3 (no instance) and we are asked to decide which is the case.

For concreteness, we have made some specific choices in defining this problem.
Our proof that it is QMA-hard also applies, for example, to variants of the
problem where Π3 is replaced (in both places it appears) by Πα for any constant
Δ ∈ {1, 2, 3, . . .}. We use the version with Δ = 3 as stated above to facilitate a
reduction to the XY Hamiltonian problem.

The requirement T ≥ 4K ensures that Π is small so that, for a yes instance, the
system is very close to being frustration free. We choose the specific threshold
4K for concreteness.

The restriction N ⇐ K is without loss of generality since the problem is
trivial otherwise. To see this, note that any state with more than K particles is
orthogonal to the nullspace of the interaction term since there are always two or
more particles located at one vertex; hence λ1

N (G) ≥ 2 whenever N ≥ K + 1.
Frustration-Free Bose-Hubbard Hamiltonian is a special case of Bose-Hubbard

Hamiltonian with c = Nμ(G) + Π3. To prove that Bose-Hubbard Hamiltonian
is QMA-hard, it therefore suffices to prove that Frustration-Free Bose-Hubbard
Hamiltonian is QMA-hard. The bulk of our technical work [1] is concerned with
the proof of this fact, following the strategy outlined in Section 2.

3.3 Complexity of the XY Hamiltonian Problem

We reduce Frustration-Free Bose-Hubbard Hamiltonian to an eigenvalue problem
for a class of 2-local Hamiltonians defined by graphs. The reduction is based on
a well-known mapping between hard-core bosons and spin systems.

We define the subspace WN (G) ⇒ ZN (G) of N hard-core bosons on a graph
G to consist of the states where each vertex of G is occupied by either 0 or 1
particle, i.e.,

WN (G) = span{Sym(|i1, . . . , iN⊆) : ij ∈ V, ij ∪= ik for distinct j, k ∈ [N ]}.
A basis for WN (G) is the subset of Fock states with at most one particle per
vertex, which can be labeled by bit strings with Hamming weight N . The space
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WN (G) can thus be identified with the weight-N subspace

WtN (G) = span{|z⊆ : z ∈ {0, 1}|V |,
∑

izi = N}
of a |V |-qubit Hilbert space. We consider the restriction of HN

G to the space
WN (G), which can equivalently be written as the |V |-qubit Hamiltonian OG

from equation (2.1) restricted to the space WtN (G).
Note that the Hamiltonian OG conserves the total magnetization (Hamming

weight) Mz =
∑|V |

i=1
1−σi

z

2 along the z axis. We define ∂N (G) to be the ground
energy of OG in the sector with magnetization N . We show that approximating
this quantity is QMA-complete.

Problem 3 (XY Hamiltonian). We are given a K-vertex graph G, an in-
teger N ⇐ K, a real number c, and a precision parameter Π = 1

T . The
positive integer T is provided in unary; the graph is specified by its ad-
jacency matrix, which can be any K × K symmetric 0-1 matrix. We are
promised that either ∂N (G) ⇐ c (yes instance) or else ∂N (G) ≥ c + Π (no
instance) and we are asked to decide which is the case.

Theorem 2. XY Hamiltonian is QMA-complete.

We prove QMA-hardness of XY Hamiltonian by reduction from Frustration-
Free Bose-Hubbard Hamiltonian. The proof of Theorem 2 appears in Appendix
B of [1].

4 Extensions and Open Questions

Our result shows that approximating the ground energy of the Bose-Hubbard
model on a graph at fixed particle number is likely intractable. In showing this,
we introduce techniques that we expect will be useful in other contexts. Here we
briefly discuss some related questions for future work.

One might consider the complexity of variants of the Bose-Hubbard Hamil-
tonian problem. For example, one could consider the problem with negative
hopping (i.e., thop < 0), with attractive interactions (i.e., Jint < 0), or both. For
negative hopping, the results of [11] show that the problem is in AM; we do not
know if it is AM-hard. For attractive interactions, the problem is clearly in QMA
(the verification procedure described in Section 3 of [1] applies independent of
the signs of thop, Jint), but again we do not know the true complexity.

One can define other variants of the Bose-Hubbard Hamiltonian problem by
lifting the restriction to fixed particle number.

One could also consider other classes of graphs. The graphs we consider in this
paper are described by symmetric 0-1 matrices and have at most one self-loop
per vertex. We do not know if the model remains QMA-hard on simple graphs,
i.e., without any self-loops.

There are many open questions concerning the complexity of the ground
energy problem for other quantum systems defined by graphs. For example,
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one could consider fermions or bosons on a graph with nearest-neighbor interac-
tions. One could also consider quantum spin models defined on graphs such as the
XY model or the antiferromagnetic Heisenberg model. Both of these examples
correspond to Hamiltonians that conserve magnetization, so one could consider
the ground energy problem with or without a restriction to a fixed-magnetization
sector. This would complement existing results about the complexity of comput-
ing the lowest-energy configuration of classical spin models defined by graphs
(for example, the antiferromagnetic Ising model on a graph is NP-complete, as
it is equivalent to max cut).

As emphasized previously, the Hamiltonians we consider are determined en-
tirely by a choice of graph, with the same type of movement and interaction
terms applied throughout the graph. It might be interesting to find other QMA-
complete problems with similar features, such as a version of Local Hamiltonian
with only one type of local term. Analogous classical constraint satisfaction prob-
lems with a fixed type of constraint are well known (e.g., Exact Cover and Not-
All-Equal SAT) and have been widely studied. Along similar lines, it might be
interesting to understand when local Hamiltonian problems remain QMA-hard
with constant-size coefficients. Nagaj and Mozes have shown that the 3-local
Hamiltonian problem has this property [25], but whether the same holds for the
2-local Hamiltonian problem remains open.
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Abstract. We investigate a simple class of multi-prover interactive proof
systems (classical non-local games), called binary constraint system (BCS)
games, and characterize those that admit a perfect entangled strategy (i.e.,
a strategy with value 1 when the provers can use shared entanglement).
Our characterization is in terms of a system of matrix equations. One ap-
plication of this characterization is that, combined with a recent result
of Arkhipov, it leads to a simple algorithm for determining whether cer-
tain restricted BCS games have a perfect entangled strategy, and, for the
instances that do not, for bounding their value strictly below 1. An open
question is whether, for the case of general BCS games, making this deter-
mination is computationally decidable. Our characterization might play a
useful role in the resolution of this question.

Keywords: Quantum information, entanglement, binary constraint
systems.

1 Introduction

Constraint systems and various two-player non-local games associated with them
have played an important role in computational complexity theory (probabilistic
interactive proof systems [7,5,12,4] and the hardness of approximation [12]) as
well as quantum information (pertaining to the power of entanglement [6,8,18,9]).

We investigate the computational complexity of determining the value of a
game given its description. Quantumly (when the players are allowed to pos-
sess any entangled state at the beginning), it is not even currently known that
the problem is computable. This is the current state of affairs even for gapped
versions of the problem, where ε > 0 and the goal is to distinguish between
these cases: (a) the existence of a perfect strategy (i.e., with value 1); and (b)
all strategies have value ∈ 1 − ε. We refer to [9] for a detailed introduction to
quantum non-local games and quantum strategies.

For a very special class of non-local games, called XOR games, a charac-
terization in terms of semidefinite programs exists that makes the problem of

ε Full version is available at http://arxiv.org/abs/1209.2729

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 320–331, 2014.
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approximating their value tractable (see [9] and references therein). Also, an
XOR game has a perfect quantum strategy if and only if it has a perfect classi-
cal strategy—which can be characterized by a linear system of equations. Thus,
it is easy to determine whether or not an XOR game has a perfect entangled
strategy.

We consider a generalization of XOR games known as binary constraint system
(BCS) games. For such games, even determining the existence of a perfect strat-
egy is not currently known to be computable. We characterize perfect strategies
for BCS games in terms of solutions to certain systems of equations in which
the variables are binary observables (involutory matrices). The known entangled
strategies for BCS games have been based on such binary observables, and our
main result is to shows that any perfect strategy for any BCS game must be
based on such binary observables.

A parity BCS game is a BCS game where the constraints can be expressed
as parities of variables. Recently, Arkhipov [3] gave an elegant algorithm for de-
termining if a certain restricted type of parity BCS game (where every variable
appears in at most two constraints) has a perfect entangled strategy. Arkhipov’s
methodology uses our characterization in that it assumes that any perfect entan-
gled strategy is based on binary observables. The methodology in [3] apparently
does not generalize to unrestricted parity BCS games (without the above re-
striction). The problem determining whether a parity BCS game has a perfect
entangled strategy is not currently known to be computable.

We also give a method that upper bounds the value of BCS games strictly
below 1 in certain cases of interest (but we do not know how to do this in
general).

1.1 Binary Constraint System Games

A binary constraint system (BCS) consists of n binary variables, v1, v2, . . . , vn,
and m constraints, c1, c2, . . . , cm, where each cj is a binary-valued function of a
subset of the variables. For convenience, we may write the constraints as equa-
tions. An example of a BCS (with n = 9 and m = 6) is

v1 ⊆ v2 ⊆ v3 = 0 v1 ⊆ v4 ⊆ v7 = 0

v4 ⊆ v5 ⊆ v6 = 0 v2 ⊆ v5 ⊆ v8 = 0 (1)

v7 ⊆ v8 ⊆ v9 = 0 v3 ⊆ v6 ⊆ v9 = 1

(this BCS is related to the version of Bell’s theorem introduced by Mermin
[14], that is discussed further in the next section). If, as in this example, all
the constraints are functions of the parity of a subset of variables we call the
system a parity BCS. A BCS is satisfiable if there exists a truth assignment to
the variables that satisfies every constraint. The above example is easily seen to
be unsatisfiable (since summing all the equations modulo 2 yields 0 = 1).

We can associate a two-player non-local game with each BCS that proceeds
as follows. There are two cooperating players, Alice and Bob, who cannot com-
municate with each other once the protocol starts, and a verifier. The verifier
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randomly (uniformly) selects one constraint cs and one variable xt from cs. The
verifier sends s to Alice and t to Bob. Alice returns a truth assignment to all
variables in cs and Bob returns a truth assignment to variable xt. The verifier
accepts the answer if and only if:

1. Alice’s truth assignment satisfies the constraint cs;
2. Bob’s truth assignment for xt is consistent with Alice’s.

Strategies where Alice and Bob employ no entanglement are called classical.
Strategies where they employ entanglement are called quantum (or entangled).
A strategy is perfect if it always succeeds.

It is not too hard to see that there exists a perfect classical strategy for a BCS
game if and only if the underlying BCS is satisfiable. It is interesting that there
exist perfect entangled strategies for BCS games for some unsatisfiable BCSs.

1.2 Mermin’s Quantum Strategies

Mermin [14,15] made a remarkable discovery about sets of observables with cer-
tain properties that has consequences for quantum strategies for BCS games1

that are unsatisfiable—in particular the following two games. The left side of
Fig. 1 summarizes the BCS specified by the aforementioned system of equa-
tions (1). We refer to this BCS as the magic square. Similarly, the right side of
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Fig. 1. Structure of two BCSs: (a) magic square (left) and (b) magic pentagram (right).
Each straight line indicates a parity constraint on its variables of 0 for single lines, and
1 for double lines.

Fig. 1 summarizes another BCS consisting of ten variables and five constraints,
where each constraint is related to the parity of four variables. We refer to this
BCS as the magic pentagram.

1 Mermin’s original paper was written in the language of no-hidden-variables theorems,
along the lines of the Kochen Specker Theorem; however, it discusses implications
regarding Bell inequality violations, and these can be interpreted as non-local games
where quantum strategies exist that outperform classical strategies. The connection
is made more explicit by Aravind [1,2].
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To understand Mermin’s strategies, we first define a quantum satisfying as-
signment of a BCS as a relaxation of a classical satisfying assignment, in the
following manner. First translate each {0, 1}-variable vj into a {+1,−1}-variable
Vj = (−1)vj . Then the parity of any sequence of variables is their product—and,
in fact, every boolean function can be uniquely represented as a multilinear
polynomial over R (e.g., for the binary OR-function (in {+1,−1} domain), the
polynomial is (V1V2 + V1 + V2 − 1)/2). Now we can define a quantum satis-
fying assignment as an assignment of finite-dimensional Hermitian operators
A1, A2, . . . , An to the variables V1, V2, . . . , Vn (respectively) such that:

(a) Each Aj is a binary observable in that its eigenvalues are in {+1,−1} (i.e.,
A2

j = I).
(b) All pairs of observables, Ai, Aj , that appear within the same constraint are

commuting (i.e., they satisfy AiAj = AjAi).
(c) The observables satisfy each constraint cs : {+1,−1}k ⊂ {+1,−1} that

acts on variables Vi1 , . . . , Vik , in the sense that the multilinear polynomial
equation cs(Ai1 , . . . , Aik) = −I is satisfied (since cs is arbitrary, we can
assume right hand side of the polynomial to be −1).

This is a relaxation of the standard “classical” notion of a satisfying assign-
ment (which corresponds to the case of one-dimensional observables). Quantum
satisfying assignments for the two BCSs in Figure 1 are shown in Figure 2.
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XXZ ZXX ZZZ XZX

IXI IZI

XII

IIX IIZ

Fig. 2. Quantum satisfying assignments for: (a) magic square (left) and (b) magic
pentagram (right). (X, Y , and Z are the usual 2×2 Pauli matrices, and juxtaposition
means tensor product.)

There is a construction (implicit in [14] and explicit in [2] for the magic square)
that converts these quantum satisfying assignments into perfect strategies—and
this is easily extendable to any quantum satisfying assignment of a BCS. For
completeness, we summarize the known construction. The entanglement is of
the form |ψ→ = 1◦

d

∑d
j=1 |j→|j→, where d is the dimension of the observables.

Alice associates observables A1, A2, . . . , An with the variables and Bob associates
their transposes AT

1 , A
T
2 , . . . , A

T
n (with respect to the computational basis) with

the variables. On input s, Alice measures her observables that correspond to
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the variables in constraint cs. At this point, it should be noted that this is
a well-defined measurement since condition (b) implies that these observables
are mutually commuting. Also, on input t, Bob measures his observable AT

t .
Condition (c) implies that Alice’s output satisfies the constraint. Finally, Alice
and Bob give consistent values for variable vt because ∧ψ|At ≥ AT

t |ψ→ = ∧ψ|At ·
At ≥ I|ψ→ = ∧ψ|ψ→ = 1. The first equality follows from the fact that for the
maximally entangled |ψ→, B ≥AT |ψ→ = B ·A≥ I|ψ→.

1.3 General BCS Games

A natural computational problem is: given a description of a BCS as input, deter-
mine whether or not it has a perfect entangled strategy. A more general problem
is to compute the maximum (or supremum) value of all entangled strategies.

For classical strategies, the problem of determining whether or not a perfect
strategy exists is the same as finding out whether the underlying constraint
system is feasible or not. It is NP-hard for general BCS games and in polynomial
time for parity BCS games (where the problem reduces to solving a system
of linear equations in modulo 2 arithmetic). For quantum strategies, we are
currently not aware of any algorithm that determines whether or not an arbitrary
parity BCS game has a perfect strategy (i.e., presently we do not even know that
the problem is decidable).

In Section 2, we prove a converse to the construction of entangled strategies
from quantum satisfying assignments in Section 1.2. Namely, we show that any
perfect quantum strategy that uses countable-dimensional entanglement implies
the existence of a quantum satisfying assignment.

It can be easily seen that not all BCS games have perfect quantum strategies,
by this example

v1 ⊆ v2 = 0 v1 ⊆ v2 = 1. (2)

First note that no generality is lost if we assume that Alice returns only a value
for v1 (since the value of v2 is then uniquely determined by the constraint).
The only case when they need to output different bits is when Alice is asked the
second constraint and Bob is asked the second variable. Labelling the constraints
as {0, 1} for Alice and variables as {0, 1} for Bob, it is not hard to see that such
a game is equivalent to the so-called CHSH game [8], which is known to admit
no perfect quantum strategy [18] (even though the quantum success probability
is higher than the classical success probability [8]). In Section 3, we show how
to derive upper bounds strictly below 1 on the entangled value of many parity
BCSs.

2 Characterization of Perfect Strategies by Observables

Theorem 1. For any binary constraint system, if there exists a perfect quantum
strategy for the corresponding BCS game that uses finite or countably-infinite
dimensional entanglement, then it has a quantum satisfying assignment.
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Proof. We start with an arbitrary binary constraint system that has variables
v1, v2, . . . , vn and constraints c1, c2, . . . , cm. Assume that there is a perfect en-
tangled protocol for this system that uses entanglement

|ψ→ =

l∑

i=1

αi|φi→|ψi→, (3)

where {|φ1→, . . . , |φl→} and {|ψ1→, . . . , |ψl→} are orthonormal sets, α1, . . . , αl > 0,

and
∑l

i=1 |αi|2 = 1. Here l is the Schmidt rank of the shared state—which can
be set to ⇐ to indicate a countably infinite set.

We consider two separate cases for Alice’s strategy. In the first case, she applies
an arbitrary projective measurement to the first register of |ψ→. In the second
case, Alice can apply an arbitrary POVM measurement to the first register of
|ψ→. For the definition and differences between these two measurements, we refer
the reader to [16].

We will prove that quantum satisfying assignment exists in the first case. Then
we will show that the second case can be reduced to first one, hence proving the
theorem.

Case 1: Projective Measurements for Alice. For each s ⇒ {1, 2, . . . ,m},
let cs be a constraint consisting of rs variables. Therefore, the set of outcomes
for Alice is {0, 1}rs. These can be associated with orthogonal projectors Πs

a

(a ⇒ {0, 1}rs). From these projectors, we can define the rs individual bits of the
outcome as the binary observables

A(j)
s =

∑

a√{0,1}rs

(−1)ajΠs
a, (4)

for j ⇒ {1, . . . , rs} (Here we adopt the notation that observable A
(j)
s corresponds

to the variable in position j of constraint s). It is easy to check that {A(j)
s :

j ⇒ {1, . . . , rs}} is a set of commuting binary observables. We have defined a
binary observable for Alice for each variable in the context of each constraint
that includes it. For example, in the case of the magic square (Eqns. (1)), there

is a binary observable A
(1)
3 for v7 in the context of the third constraint and a

binary observable A
(3)
4 for v7 in the context of the fourth constraint. We have

not yet shown that A
(1)
3 = A

(3)
4 (constraint independent).

The measurements for Bob are (without loss of generality) binary observables
Bt for each variable vt (t ⇒ {1, 2, . . . , n}).

We need to show that the observables for Alice are the same, regardless of
the constraint that they arise from (for example, for the magic square game,

A
(1)
3 = A

(3)
4 ). We shall use the following lemma.

Lemma 1. Let −I ∪ C1, C2, B ∪ I be Hermitian matrices on some Hilbert
space H. Let |ψ→ ⇒ H ≥H be of the form

|ψ→ =

l∑

i=1

αi|φi→|ψi→, (5)
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where {|φ1→, |φ2→, . . . , |φl→} and {|ψ1→, |ψ2→, . . . , |ψl→} are orthonormal bases for

H, α1, α2, . . . , αl > 0, and
∑l

i=1 |αi|2 = 1. Then, for the Hermitian matrices
{B,C1, C2}, if ∧ψ|B ≥ C1|ψ→ = ∧ψ|B ≥ C2|ψ→ = 1 then C1 = C2.

Proof (Lemma 1). Consider the vectors w = B ≥ I|ψ→, u1 = I ≥ C1|ψ→, and
u2 = I ≥ C2|ψ→. These are vectors with length at most 1 and we have w · u1 =
w · u2 = 1, which implies that u1 = w = u2. Therefore,

0 = I ≥ C1|ψ→ − I ≥ C2|ψ→ (6)

= (I ≥ (C1 − C2))

⎧
l∑

i=1

αi|φi→|ψi→
⎨

(7)

=

l∑

i=1

αi|φi→(C1 − C2)|ψi→, (8)

which implies that (C1 − C2)|φi→ = 0, for all i ⇒ {1, 2, . . .}. This implies that
C1 = C2, which completes the proof of the lemma. ≤⇔

Returning to the proof of Theorem 1, let t ⇒ {1, 2, . . . , n} and A
(j)
s and A

(j′)
s′

be any two observables of Alice corresponding to the same variable vt. Since
Alice’s binary observables associated with constraint cs are commuting, we can

assume that Alice begins her measurement process by measuring A
(j)
s , while Bob

measures Bt. Since these two measurements must yield the same outcome, we

have ∧ψ|A(j)
s ≥ Bt|ψ→ = 1. Similarly, ∧ψ|A(j′)

s′ ≥ Bt|ψ→ = 1. Therefore, applying

Lemma 1, we have A
(j)
s = A

(j′)
s′ , which establishes that Alice’s observables are

constraint independent.
In addition to consistency between Alice and Bob, Alice’s output bits must

satisfy the constraint cs (recall that cs can be expressed as a multilinear poly-
nomial over R). That is,

∧ψ|cs(A(1)
s , . . . , A(rs)

s ) ≥ I|ψ→ = −1. (9)

By invoking Lemma 1 again, with C1 = −cs(A
(1)
s , . . . , A

(rs)
s ), C2 = I, B = I, we

can deduce that cs(A
(1)
s , . . . , A

(rs)
s ) = −I.

At this point, it is convenient to rename Alice’s observables to At, for each
t ⇒ {1, 2, . . . , n} (which we can do because we proved they are constraint inde-
pendent). The observables associated with each constraint commute and their
product has the required parity.

We will finally prove that a finite-dimensional set of observables must exist.
If l is finite then there is nothing to prove, so assume it is countably infinite.
Since, for all t ⇒ {1, 2, . . . , n}, ∧ψ|At ≥ Bt|ψ→ = ∧ψ (At ≥ I) | (I ≥Bt)ψ→ = 1, we
have At ≥ I|ψ→ = I ≥Bt|ψ→, so

≤∑

i=1

αi (At|φi→) |ψi→ =

≤∑

i=1

αi|φi→ (Bt|ψi→) . (10)
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Both sides of Eq. (10) are Schmidt decompositions of the same quantum state.
Now we can use the fact that the Schmidt decomposition is unique up to a
change of basis for the subspace associated with each distinct Schmidt co-
efficient. Consider any Schmidt coefficient with multiplicity d (each Schmidt
coefficient appears with finite multiplicity because

∑≤
i=1 |αi|2 = 1). Suppose,

without loss of generality, that α1 = α2 = · · · = αd = α. Then the span of
{At|φi→ : i ⇒ {1, 2, . . . , d}} equals the span of {|φi→ : i ⇒ {1, 2, . . . , d}}. In other
words, At leaves the subspace spanned by {|φi→ : i ⇒ {1, 2, . . . , d}} fixed. By sim-
ilar reasoning, Bt leaves the subspace spanned by {|ψi→ : i ⇒ {1, 2, . . . , d}} fixed.
Therefore, there exist bases in which At and Bt have block decompositions of
the form

At =

⎩

⎢
⎢
⎢
⎣

A⊆
t 0 0 . . .

0 A⊆⊆
t 0 . . .

0 0 A⊆⊆⊆
t . . .

...
...

...
. . .

⎛

⎝
⎝
⎝
⎞

Bt =

⎩

⎢
⎢
⎢
⎣

B⊆
t 0 0 . . .

0 B⊆⊆
t 0 . . .

0 0 B⊆⊆⊆
t . . .

...
...

...
. . .

⎛

⎝
⎝
⎝
⎞

(11)

with one block for the subspace of each Schmidt coefficient. We can take, say,
the d-dimensional observables from the first block {A⊆

t : t ⇒ {1, 2, . . . , n}} as a
quantum satisfying assignment (which changes the effective entanglement to a
d-dimensional maximally entangled state).

Case 2: POVM Measurements for Alice. A POVM measurement can be
expressed as a projective measurement in a larger Hilbert space that includes
ancillary qubits, as shown in Figure 3. Again we can define binary observables
for jth variable in a constraint s as in Case 1.

A
(1)
s A

(2)
s

· · ·

A
(rs)
s

input
state

· · ·
· · ·

|0⇒ · · ·
|0⇒ · · ·
|0⇒ · · ·

Fig. 3. Alice’s POVM measurement on receiving input s expressed in Stinespring form
(Case 2)

A(j)
s =

∑

a√{0,1}rs

(−1)ajΠa, (12)

these observables act on the larger Hilbert space Hs ≥ Hp. Here Hs (Hp) rep-
resents the Hilbert space for the entangled (private) qubits. Like before, the
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{A(j)
s : j ⇒ {1, . . . , rs}} is a set of commuting binary observables. Since these ob-

servables commute, without loss of generality, any of the corresponding variables
can be measured first by Alice.

We will focus on the first measurement done by Alice given some constraint.
Let us suppress the superscript and subscript for brevity of notation. Say, Alice
uses observable A for the first measurement corresponding to variable t. This
defines a projective measurement (Π0 = A+I

2 , Π1 = I−A
2 ) on Hs ≥Hp.

Suppose that the reduced entangled state on Alice’s side is ρ. Then Alice’s
strategy is to apply the channel which adds the ancilla qubits to ρ and then
applies the measurement (Π0, Π1). Using the Kraus operators of this channel,
we can come up with equivalent POVM elements E0, E1 acting on the Hilbert
space Hs. Here equivalent means, for all i ⇒ {0, 1} and |φ→ ⇒ Hs,

∧φ, 00 . . . 0|Πi|φ, 00 . . . 0→ = ∧φ|Ei|φ→. (13)

Similarly, Bob has POVM elements (F0, F1) to measure variable t. Since their
strategy is perfect, they always answer with same bit when asked for the variable
t, which implies

∧ψ|E0 ≥ F0|ψ→ + ∧ψ|E1 ≥ F1|ψ→ = 1. (14)

This can be simplified to

∧ψ|(E0 − E1) ≥ (F0 − F1)|ψ→ = 1. (15)

Now we use the following lemma to prove that (E0, E1) is actually a projective
measurement (similarly (F0, F1) is projective).

Lemma 2. Let |ψ→ ⇒ HA ≥ HB be such that |ψ→ =
∑n

i=1 αi|φi→|ψi→, where
α1, α2, . . . , αn > 0. If we have two POVM measurements, (E0, E1) on HA and
(F0, F1) on HB, such that

∧ψ|(E0 − E1) ≥ (F0 − F1)|ψ→ = 1 (16)

then (E0, E1) and (F0, F1) are projective measurements.

Proof (Lemma 2). We will prove that (E0, E1) is a projective measurement. The
proof for (F0, F1) is the same.

Notice that E0 and E1 are simultaneously diagonalizable (they are both Her-
mitian and E0 + E1 = I). The dimension of the system is n which can be
set to ⇐ to indicate that it is countably infinite. In the basis which diagonalizes
them,

E0 =

⎩

⎢
⎢
⎢
⎣

λ1

λ2

. . .

λn

⎛

⎝
⎝
⎝
⎞

and E1 =

⎩

⎢
⎢
⎢
⎣

1 − λ1

1 − λ2

. . .

1 − λn

⎛

⎝
⎝
⎝
⎞

.

This implies that E0 and E1 can be thought of as a probability distribution on
2n projective measurements in the following way. For each S ∗ [n], define the
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projectors ΠS
0 =

∑
i√S |i→∧i| and ΠS

1 = I−ΠS
0 , and pS =

⎠

i√S

λi

⎠

i/√S

(1−λi). Note

that
∑

S≥[n]

pS = 1. It is straightforward to verify that

E0 =
∑

S≥[n]

pSΠ
S
0 and E1 =

∑

S≥[n]

pSΠ
S
1 . (17)

By Eqns. (16), (17), and linearity,

∑

S≥[n]

pS ∧ψ|(ΠS
0 −ΠS

1 ) ≥ (F0 − F1)|ψ→ = 1. (18)

In the above equation, pS ’s sum up to 1, and the term multiplied to them is
at most 1. By an averaging argument, for all S with pS > 0,

∧ψ|(ΠS
0 −ΠS

1 ) ≥ (F0 − F1)|ψ→ = 1. (19)

Using Lemma 1, the (ΠS
0 − ΠS

1 ) have to be same for all S with pS > 0.
Hence, there can be at most one pS with non-zero probability. Hence (E0, E1)
is a projective measurement.

≤⇔

Now we know that (E0, E1) is a projective measurement. Also, using Eq. (13),
any eigenvector |φ→ of Ei can be converted into an eigenvector |φ, 00 · · · 0→ for
Πi with same eigenvalue. Then, in the basis where eigenvectors of the form
|φ, 00 · · · 0→ are listed first,

Π0 =

⎩

⎢
⎢
⎢
⎣

E0 0 · · · 0
0
...
0

M0

⎛

⎝
⎝
⎝
⎞

and Π1 =

⎩

⎢
⎢
⎢
⎣

E1 0 · · · 0
0
...
0

M1

⎛

⎝
⎝
⎝
⎞

. (20)

It is given that the observables Π0−Π1 corresponding to different variables in
the same context commute. It follows that the observables E0−E1 corresponding
to different variables in the same context also commute. Hence the proof for
Case 2 follows from Case 1.

≤⇔

From the argument at the end of the first case, it follows that if we have a
perfect strategy using countably infinite entanglement then it can be converted
into a strategy having finite entanglement. The generic conversion (Sec. 1.2) of
quantum satisfying assignments to a quantum strategy uses maximally entangled
state. Hence Theorem 1 shows that if there is a perfect strategy for a BCS game
then there exist a perfect strategy which uses maximally entangled state.
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3 Proving Gaps on the Maximum Success Probability

Due to space constraints, the content of this section is omitted; however, it
is available in the full version of this paper [10], which can be accessed at
http://arxiv.org/abs/1209.2729.

The main result in this section is an upper bound below 1 on the entangled
value of some BCS games of interest, under the assumption that the entangle-
ment is a maximally mixed state (of arbitrarily high dimension).

4 Related Work

After the results of this article were made public, Arkhipov [3] studied the re-
stricted case of parity BCS games where every variable appears in at most two
constraints. He showed that these games have a perfect entangled strategy if and
only if a related dual graph of the game is non-planar. The result combines ele-
gant techniques with Kuratowski’s theorem and our characterization of perfect
strategies (in the sense that [3] makes use of our characterization).

More recently, Ji [13] showed that interesting examples like quantum chro-
matic number and Kochen-Specker sets can be described in the BCS game frame-
work. He used special gadgets, called commutativity gadgets, to show reductions
between various BCS’s which preserve satisfiability using quantum assignments.
Also, he showed that, for all k, there exists a parity BCS game which requires
at least k entangled qubits to play perfectly.

5 Open Questions

There are many questions left open by this work. We have a characterization
of perfect strategies for BCS games. It shows that there always exists a perfect
strategy using maximal entanglement if a perfect entangled strategy exist. Still,
given a game, deciding whether it has a perfect strategy is open.

There are questions pertaining to the optimal values of BCS games (the maxi-
mum success probability achievable), such as problem of computing these values,
or approximations of them. Another question is whether there always exists an
optimal strategy for a BCS game which uses maximally entangled states.

All of the above questions can be asked for general non-local games too. For the
case of XOR games, the optimal value is given by a semidefinite program [9,18].
This shows how to compute the optimal value of the game and that there always
exist an optimal strategy which uses maximally entangled states [9]. It is also
known for graph coloring games (like BCS games) that there always exists a
perfect strategy using maximal entanglement (if a perfect entangled strategy
exist) [11]. But whether this is true for general games that have perfect strategies
remains open.
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Entropy Summary Trees�
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Abstract. Karloff and Shirley recently proposed “summary trees” as
a new way to visualize large rooted trees (Eurovis 2013) and gave al-
gorithms for generating a maximum-entropy k-node summary tree of
an input n-node rooted tree. However, the algorithm generating optimal
summary trees was only pseudo-polynomial (and worked only for integral
weights); the authors left open existence of a polynomial-time algorithm.
In addition, the authors provided an additive approximation algorithm
and a greedy heuristic, both working on real weights.

This paper shows how to construct maximum entropy k-node sum-
mary trees in time O(k2n + n log n) for real weights (indeed, as small
as the time bound for the greedy heuristic given previously); how to
speed up the approximation algorithm so that it runs in time O(n +
(k4/Δ) log(k/Δ)), and how to speed up the greedy algorithm so as to run
in time O(kn+n log n). Altogether, these results make summary trees a
much more practical tool than before.

1 Introduction

How should one draw a large n-node rooted tree on a small sheet of paper or
computer screen? Recently, in Eurovis 2013, Karloff and Shirley [4] proposed
a new way to visualize large trees. While the best introduction to summary
trees appears in [4], here we give a necessarily short description. A user has
an n-node node-weighted tree T and wants to draw a k-node summary S of T
on a small screen or sheet of paper, k being user-specified. We begin with an
informal, bottom-up, operational description. Two type of contraction are per-
formed: subtrees are contracted to single nodes that represent the corresponding
subtrees; similarly multiple sibling subtrees (subtrees whose roots are siblings)
are contracted to single nodes representing them. The node resulting from the
latter contraction is called a group node. The one constraint is that each node
in the summary tree have at most one child that is a group node. An example
is shown in Figure 1 (based on a figure in [4]).

Next, we give a more formal description. Let Tv denote the subtree of T
rooted at v. We name each node of S by the set of nodes of T that it represents.

ε A full version of the paper is available at http://arxiv.org/abs/1404.5660
εε Richard Cole’s work was supported in part by NSF grant CCF-1217989.

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 332–343, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014
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Fig. 1.On the left, a 9-node tree with node weights, and to the right, a 6-node summary
tree of the original 9-node tree

The following comprise the possible summary trees for Tv: If Tv has just one
node, the only summary tree is the one node {v}. Otherwise, a summary tree
for Tv is one of:

1. a one-node tree V (Tv) (the set of nodes in Tv); or
2. a singleton node {v} and summary trees for the subtrees rooted at the chil-

dren of v (and edges from {v} to the roots of these summary trees); or
3. a singleton node {v}, a node otherv representing a non-empty subset Uv of

v’s children and all the descendants of the nodes x ∈ Uv, and for each of v’s
children x ⊆∈ Uv a summary tree for Tx (and edges from {v} to otherv and
to the roots of the summary trees for each Tx).1 Sometimes we will overload
the term otherv by using it to denote the subset Uv.

We allow arbitrary nonnegative real weights wv on the nodes v of the input
tree T . The weight of a node in a summary tree is defined to be the sum of
the weights of the corresponding nodes in T . Paper [4] defined the entropy of a

k-node summary tree with nodes of weights W1,W2, ...,Wk to be −∑k
i=1 pi lg pi,

where pi = Wi/W and W is the sum of all node weights, the usual information-
theoretic entropy. Paper [4] then proposed that the most informative summary
trees are those of maximum entropy. As noted in [4], this is a natural way to think
about the information contained in a node-weighted tree. For given a bound on
the number of nodes available in a summary tree, it seems plausible that a best
summary tree is one of maximum entropy, because it is theoretically the most
informative. This provided a principled way to identify the best k-node summary
tree, in contrast to more heuristic and operational rules in prior work.

The fact that otherv is an arbitrary non-empty subset of v’s potentially large
set of children is what makes finding maximum entropy summary trees difficult.
Indeed, [4] resorted to using a dynamic program over the node weights (which
worked provided that the weights were integral) and which led to a final running
time of O(K2nW ), where W is the sum of the node weights and K is the
maximum k for which one is interested in finding a k-node summary tree. Given
K, the dynamic program finds maximum entropy k-node summary trees for
k = 1, 2, . . . ,K; from now on we assume that the user specifies K and k-node

1 otherv sets of size 1 are covered by Cases 2 and 3, but this redundancy is convenient
for the algorithm description.
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Table 1. Running times of the algorithms; W0 = O((K/Δ) log(K/Δ))

Optimal Entropy Greedy Δ-Approximate

Known results O(K2nW ) [4] O(K2n+ n log n) [4] O(K2nW0) [4]

New results O(K2n+ n log n) O(Kn+ n log n) O(n+K3W0 +W0 logW0)

summary trees are found for all k ⊂ K. The algorithm worked well when W was
small, but failed to terminate on two of the five data sets used in [4].

The key to obtaining a running time independent of W is to develop a fuller
understanding of the structure of maximum entropy summary trees. Our new
understanding readily yields a truly polynomial-time algorithm. The main re-
maining challenge is to create and analyze an effective implementation. We give
an algorithm running in time O(K2n+n logn) 2; it generates maximum entropy
summary trees even for real weights, assuming, of course, a real-arithmetic model
of computation, which is necessary (even for integral weights) because of the com-
putation of logarithms. This result is based on a structural theorem which shows
that the other sets, while allowed to be arbitrary, can be assumed, without loss
of generality, to have a simple structure.

To deal with the case of real weights or exceedingly large integral weights,
[4] gave an algorithm based on scaling, rounding, and algorithmic discrepancy
theory which builds a summary tree whose entropy is within σ additively of the
maximum, in time O(K2nW0), where W0 is O((K/σ) log(K/σ)). Keep in mind
here that K is meant to be small, e.g., 100 or 500, while n is meant to go to
infinity, and also that W0 is a function only of K and σ (and neither of n nor
W ). The key here was to show that scaling the real input weights to have sum
W0, rounding them using algorithmic discrepancy theory, and then running the
exact dynamic program previously mentioned on the rounded weights caused a
loss of only σ in the final entropy.

This paper shows that the same algorithm can be implemented in time O(n+
K3W0 + W0 logW0); this is linear time if n is larger than the other terms. The
key here is to notice that if the sum of integral weights is W0, which is small,
and n → W0, then most nodes have rounded weight 0. Surely one shouldn’t have
to devote a lot of time to nodes of weight 0, and our algorithm, by effectively
replacing n by O(W0), exploits this intuition.

Last, [4] proposed a fast greedy algorithm to generate summary trees. Running
in time O(K2n + n logn) (though [4] overlooked the n logn time needed for
sorting), the algorithm never took longer than six seconds to run on the data
sets of [4]. This paper shows that a simple modification to the greedy code,
neither suggested in [4] nor implemented in the associated C code, specifically,
not computing a k-node summary tree of a tree rooted at a node having fewer
than k descendants, decreases the running time bound of the greedy algorithm

2 Actually, this can be reduced to O(K2n) time by using a combination of fast selection
and sorting instead of sorting alone in various places.
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from O(K2n+ n logn) to O(Kn + n logn). While the modification is trivial, its
analysis is not.

Taken together, these new results show that maximum entropy summary trees
are a much more practical tool than was previously known.

A number of the proofs are omitted for lack of space. They can be found in
the full version of the paper (see http://arxiv.org/abs/1404.5660).

Previous Work. Traditionally tree visualization involved either visualizing the
entire tree or allowing the user to interactively specify tree parts of interest. Ap-
proaches taken include “Degree-of-interest trees” [2,3], “hyperbolic browsers”
[5], and the “accordion drawing technique” [1,7]. “Space-filling” layouts, e.g.,
treemaps [9], are another popular method. Paper [6] is a recent survey on tech-
niques for drawing large graphs. Also see [4] for other relevant previous work.

2 Structural Theorem

This section proves a structural theorem which implies that maximum entropy
summary trees can be computed in polynomial time, in a real-arithmetic model
of computation. We begin by relating our approach to the greedy algorithm
from [4]. Let v be a node of an input tree and suppose that {v} appears in the
summary tree. Recall that otherv denotes the group child of v, if any.

Definition 1. 1. The size sv of a node v in T is the sum of the weights of its
descendants.

2. nv denotes the number of descendants of v (including v).
3. dv denotes the degree of v, the number of children it has.
4. ∧v1, v2, ..., vdv ≥ denotes the children of v when sorted into nondecreasing order

by size. (Fix one sorted order for each v, breaking ties arbitrarily.)
5. The prefixes of ∧v1, v2, ..., vdv ≥ are the sequences ∧v1, v2, ..., vi≥ and sets

{v1, v2, ..., vi} for i ⇐ 0.

The greedy algorithm in [4] sorted and then processed the children of each
node in nondecreasing order by size; more about this later. It finds a maximum
entropy summary tree among those in which for each v, either otherv does not
exist or is a nonempty prefix of ∧v1, v2, ..., vdv≥, but this need not be the optimal
summary tree. In fact, [4] gives a 7-node tree T for which the uniquely optimal
4-node summary tree has an otherv node which is not a prefix of v’s children.
In their example, the greedy algorithm achieves approximately 1 bit of entropy,
but the optimal summary tree achieves approximately 1.5 bits. This example
proves that restricting otherv to be a prefix of the list of v’s children can lead
to summary trees of suboptimal entropy. Consequently, [4] resorted to a pseudo-
polynomial-time dynamic program in order to find the optimal other sets.

The definition of summary trees allows otherv to represent an arbitrary
nonempty subset of v’s children (and all their descendants). However, in this
paper we prove the surprising fact that, without loss of generality, in every sum-
mary tree of maximum entropy, otherv can be assumed to have a special form,
a simple extension of the “prefix” form used in the greedy algorithm from [4].
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Definition 2. The near-prefixes of ∧v1, v2, . . . , vdv≥ are the sequences
∧v1, v2, . . . , vi; vj≥ and the sets {v1, v2, . . . , vi; vj} where i ⇐ 0, j ⇐ i + 2,
and j ⊂ dv. vj is called the non-prefix element. This terminology is also applied
to the sequence ∧Tv1 , Tv2 , . . . , Tvdv ≥ of trees rooted at v1, v2, . . . , vdv , respectively.

We prove the following structural theorem:

Theorem 1. For each k, 1 ⊂ k ⊂ n, there is a maximum entropy k-node sum-
mary tree S in which, for every node v, otherv, when present, is either a prefix
or a near-prefix of ∧Tv1 , Tv2 , . . . , Tvdv ≥.
Proof. For any summary tree R of an n-node tree T , let M = 2n+ 1 and define
τ(R) =

∑
v:otherv exists M

n−dR(v)
∑

j:vj◦otherv
j, where dR(v) denotes the depth

in R of the node otherv. Among all maximum entropy summary trees for T , let S
be one for which τ(S) is minimum. (The role of τ will be to enable tie-breaking
among equal-weight summary trees.)

Lemma 1. Let v be a node of T such that otherv exists in S. If vi /∈ otherv and
vj ∈ otherv, where i < j, then Tvi is represented by two or more nodes in S.

Proof. Suppose, for a contradiction, that Tvi is represented by a single node.
Consider the following alternate summary tree S√: S√ is obtained from S by
replacing vj in otherv by vi, and by representing Tvj by a single node. The
number of nodes in the summary tree remains k.

Let s0 denote the sum of the sizes of all the children of v in otherv − {vj}.
(Here “otherv” refers to otherv before the change.) Then W times the increase
in entropy in going from S to S√ is given by

I = (s0 + svi) lg
W

s0 + svi
+ svj lg

W

svj
− (s0 + svj ) lg

W

s0 + svj
− svi lg

W

svi
.

The derivative of this term with respect to svi is lg
svi

s0+svi
⊂ 0. As i < j,

svi ⊂ svj , and thus I is necessarily nonnegative (for it declines to 0 at svi = svj );
consequently, there is a nonnegative increase in entropy, and hence S√ is also a
maximum entropy summary tree. Furthermore, if d is the depth of otherv in S,
then τ(S√) −τ(S) ⊂ −(j − i)Mn−d < 0, which contradicts the assumption that
S is a maximum entropy summary tree of minimum τ(S).

Lemma 2. Let v be a node in T such that otherv exists in S. If vi /∈ otherv
and vi+1 ∈ otherv, then vj /∈ otherv for all j > i + 1.

Proof. Suppose, for a contradiction, that vj ∈ otherv, for some j > i + 1.
By Lemma 1, Tvi is represented by two or more nodes in S. Hence {vi} appears

as a node in the summary tree, and {vi} has one or more children in S. In S, let
x be a descendant of {vi} of maximum depth in S. Node x is a proper descendant
of {vi}.

We will show now that combining node x with another node in a specified
way yields a summary tree of Tvi with one fewer node and having entropy at
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most svi smaller. Node x is not {vi}. Let y be x’s parent in S. Node y = {u}
for some node u in T (since every nonleaf in a summary tree represents a single
node of T ). There are four cases to analyze, but before turning to them, we state
the following simple lemma which we will need; it can be proven by calculus.

Lemma 3. If a, b ⇐ 0, −a lg a− b lg b + (a + b) lg(a + b) ⊂ a + b.

Let sx, for a node x in summary tree S, denote the sum of the weights of all
the nodes of T represented by x. (For a node of the form otherv, we mean the
sum of the sizes of all the children of v in otherv, or equivalently, the sum of the
weights of all their descendants.)

Now we begin the case analysis. Let d be the depth in S of node {vi}.

1. y’s only child in S is x.
We combine nodes x and y = {u} into a node z representing Tu. Recall that
wu denotes u’s weight. Then W times the entropy decrease equals

sx lg(W/sx) + wu lg(W/wu) − (sx + wu) lg(W/(sx + wu))

= − sx lg sx − wu lgwu + (sx + wu) lg(sx + wu)

⊂ sx + wu (by Lemma 3) = sz ⊂ svi .

This change leaves τ unchanged.
2. x has a sibling in S and otheru does not exist.

Hence x is either {λ} or Tε for some node λ ∈ T .
We create a new otheru node by combining x with an arbitrary sibling x√ of
x. Because x is of maximum depth in S, x√ is either of the form {Π} (node Π
in T has no children) or TΩ, for some Π in T . The resulting entropy decrease
equals

sx lg(W/sx) + sx′ lg(W/sx′) − (sx + sx′) lg(W/(sx + sx′))

= − sx lg sx − sx′ lg sx′ + (sx + sx′) lg(sx + sx′)

⊂ sx + sx′ (by Lemma 3) ⊂ svi .

This change can increase τ by at most 2n ·Mn−(d+1), because the depth of
the new otheru node is at least d + 1.

3. x has a sibling in S and {x} = otheru.
We choose an arbitrary sibling x√ of x and add it to otheru. The entropy
calculation is the same as for Case 2. This change can increase τ by at most
n ·Mn−(d+1), where d is the depth of {vi} in S.

4. x has a sibling in S, otheru exists, and and {x} ⊆= otheru.
We add x to otheru. Let x√ be the node otheru. The calculations are exactly
the same as in Case 3.

In all four cases, the decrease in entropy is at most svi and the increase in τ
is at most 2nMn−d−1.

Now we show how to generate a new maximum entropy summary tree S√. To
get S√, combine x as above with either its parent or a sibling, thereby decreasing
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the number of summary tree nodes by one, and then split off vi+1 from otherv
and create a node to represent Tvi+1 , thereby increasing the number of summary
tree nodes back to k. Now, let s0 denote the sum of the sizes of all the children
of v in otherv − {vi+1, vj}. W times the increase in entropy from this two-part
change to S is at least

[
(s0 + svj ) lg

1

s0 + svj
+ svi+1 lg

1

svi+1

− (s0 + svi+1 + svj ) lg
1

s0 + svi+1 + svj

]
− svi

= (s0 + svj ) lg
s0 + svi+1 + svj

s0 + svj
+ svi+1 lg

s0 + svi+1 + svj
svi+1

− svi ≥ svi+1 − svi ≥ 0.

(The first inequality follows because svj ⇐ svi+1 , which implies that (s0 +svi+1 +
svj )/svi+1 ⇐ 2.) But this is a nonnegative increase in entropy, proving that S√ is
a maximum entropy summary tree.

Splitting off vi+1 from otherv decreases τ by at least Mn−d, because the depth
of the otherv node equals the depth of node vi, which is d. Hence the total βτ
is at most −Mn−d + 2n ·Mn−d−1 = −Mn−d(1− 2n/M) < 0, a contradiction to
the fact that S is a maximum entropy summary tree of minimum τ.

This completes the proof of Theorem 1.

Theorem 2. For all v, if otherv exists, then |otherv| ⇐ dv −K + 2.

Proof. Each child of v not in otherv contributes at least one node to the final
summary tree, which has order k ⊂ K, and hence the number of children not in
otherv cannot exceed K − 2 (for one node is needed to represent {v}).

3 The Exact Algorithm

Relabel the nodes as 1, 2, ..., n, with the root being node 1, the nodes at depth
d getting consecutive labels, and the children of a node being labeled with in-
creasing consecutive labels in nondecreasing size order. (This can be done by
processing the nodes in nondecreasing order by depth, with all the children of
node v processed consecutively in nondecreasing order by size.) This relabeling
costs O(n logn) time,3 because

∑
v(dv log dv) ⊂ ∑

v(dv logn) ⊂ n logn.
The description and the implementation of the algorithm are simplified if we

compute what we call the“pseudo-entropy,” of summary trees for Tv rather than
their entropy. The pseudo-entropy p-ent(Sv) of a tree Sv with nodes of weights
W1,W2, . . . ,Wk is simply −∑

pi log pi, where pi = Wi/W and W is the weight
of T (and not of Tv). Clearly, if Sv is part of a summary tree S for T , then Sv

3 In fact, the relative order, at node v, of its dv −K + 1 smallest-sized children does
not matter since they must all be included in otherv. This allows us to perform
just a partial sort at each node, in which the dv −K + 1 smallest-size children are
identified by selection and then the remaining at most K − 1 children are sorted.
This improves the O(n log n) term to O(n logK) which is dominated by O(nK).
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contributes −∑
pi log pi to the entropy of S. Let ent(Sv) denote the entropy of

tree Sv. Then

ent(Sv) = −
∑

i

Wi

Wv
log

Wi

Wv
= −

[
W

Wv

∑

i

Wi

W
log

Wi

W
+
∑

i

WiW log
W

Wv

]

= − W

Wv
p-ent(Sv) − log

W

Wv
.

Thus the same tree optimizes the entropy and the pseudo-entropy.
We will be using a dynamic programming algorithm. To simplify the presen-

tation we will only describe how to compute the maximum pseudo-entropy for a
k-node summary tree for Tv, for each node v and for all k, 1 ⊂ k ⊂ min{K,nv}.

The algorithm will first seek to find the value of the pseudo-entropy for optimal
k-node summary trees when otherv is restricted to being a prefix set, and then
when otherv is restricted to being a near-prefix set containing vj as its non-prefix
element, for each possible vj in turn, i.e., for max{3, dv−K + 3} ⊂ j ⊂ dv. Thus
the algorithm will consider min{dv−1,K−1} min{dv,K−1} classes of candidate
otherv sets.

To describe the algorithm it will be helpful to introduce the notion of a sum-
mary forest. A k-node summary forest for Tv is a (k + 1)-node summary tree
for Tv from which v has been excised (leaving a forest). We will also call this a
summary forest for Tv1 , Tv2 , . . . , Tvdv . A summary forest for Tv1 , Tv2 , . . . , Tvl is
defined analogously, for 1 ⊂ l ⊂ dv.

To find the pseudo-entropy-optimal k-node summary trees for Tv, for 1 ⊂
k ⊂ K, we first find the pseudo-entropy of optimal k-node summary forests for
Tv1 , Tv2 , . . . , Tvl , for max{1, dv−K +2} ⊂ l ⊂ dv. The optimal k-node summary
trees for Tv are then obtained by attaching {v} as a root node to the trees in
the optimal (k − 1)-node summary forests for Tv1 , Tv2 , . . . , Tvdv .

Now we explain how to find these optimal summary forests. In turn, we con-
sider each of the up-to-max{1,K−1} possible classes of otherv nodes: the prefix
otherv nodes, and for each j with max{3, dv − K + 3} ⊂ j ⊂ dv, the class of
near-prefix otherv nodes including vj as the non-prefix element.

First, we describe the handling of the candidate prefix otherv nodes. We start
with optimal k-node summary trees for Tv1 , for 1 ⊂ k ⊂ K − 1. Inductively,
suppose that we have computed (the entropy of) optimal k-node summary forests
for Tv1 , . . . , Tvl . We find optimal k-node summary forests for Tv1 , . . . , Tvl , Tvl+1

as follows. For k = 1, the forest comprises a single otherv node. For each k > 1,
we choose the highest entropy among the following options: an optimal h-node
summary forest for Tv1 , . . . , Tvl plus an optimal (k − h)-node summary tree for
Tvl+1

, for 1 ⊂ h < k.
The correctness of this procedure is immediate: for k = 1 clearly the only

summary forest is a one-node forest. For k > 1, Tvl+1
cannot be represented by

the otherv node (since we are discussing the handling of the prefix otherv nodes)
and so it must be represented by one tree in the summary forest; this implies
that Tv1 , Tv2 , . . . , Tvl must also be represented by one or more trees in the sum-
mary forest. Of course, the representation of each of the parts must be optimal.
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Our algorithm considers all possible ways of partitioning the nodes in the sum-
mary forest among these two parts; consequently it finds an optimal forest.

The process when vj is the non-prefix node in otherv is essentially identical.
There are two changes: (i) otherv is initialized to contain Tvj (rather than .eing
the empty set) and (ii) the incremental sweep skips tree Tvj . The correctness
argument is as in the previous paragraph.

Finally, to obtain optimal k-node summary forests for Tv1 , Tv2 , . . . , Tvdv one
simply takes the best among the k-node forests computed for the different classes
of candidate otherv nodes. Again, correctness is immediate.

Theorem 3. The running time of the algorithm is O(K2n + n logn).

Note. Our time bound is O(K2n+ n logn) to build K maximum-entropy sum-
mary trees, or O(Kn+(n log n)/K) amortized time for each. There is an obvious
lower bound of Δ(n + K2) to build all K trees, since one has to read an n-node
tree and produce trees having 1, 2, 3, . . . ,K nodes. Hence there cannot be a
O(n)-time algorithm that generates all K trees, since it would violate the lower
bound when K is ∂(

⇒
n). Of course, conceivably there is a linear-time algorithm

to build a maximum-entropy k-node summary tree for a single value of k.

Proof. The running time is the sum of three terms:
(1) O(n logn), for sorting the children of all nodes by size.
(2) O(Kn) for initializations. In fact, the initializations for node v take time
O(K · min{dv,K − 1}), which is O(Kn) time in total.
(3) For each node v, the cost of processing node vl when processing each of
the classes of candidate otherv nodes. Let ∧va, va+1, . . . , vvd≥ be the sequence
of nodes processed when considering the candidate prefix otherv sets (nodes
v1, . . . , va−1 are the nodes guaranteed to be in otherv). When processing the
near-prefix candidate otherv sets with non-prefix element vj , the same sequence
will be processed except that vj will be omitted. For the class of prefix candidate
sets, the cost for processing vl+1, for a ⊂ l < vd, is min{K − 1, nva + nva+1 +
· · · + nvl} · min{K − 1, nvl+1

} ⊂ min{K − 1, nv1 + nv2 + · · · + nvl} · min{K −
1, nvl+1

}, for we are seeking k-node summary forests for 1 ⊂ k ⊂ K − 1, and
the number of nodes in a summary tree cannot be more than the number of
nodes available in the relevant subtrees of T . The same bound applies for each
of the remaining classes of candidate otherv sets and there are at most K − 1 of
these classes. Since the number of child nodes being processed when computing
at node v is dv − a + 1 ⊂ dv, the obvious upper bound here is O(K3 · dv).
Summed over all v, this totals O(K3 ·n). However, Corollary 1 below shows that∑

non-leaf v

∑
l min{nv1 + nv2 + · · · + nvl ,K} · min{nvl+1

,K} ⊂ 2Kn, giving an
overall time of O(n log n + K2n).

4 A Lemma for Running Time Analysis

In this section we state a lemma underlying the running time analysis of both
the greedy algorithm and the exact algorithm. Let n be a positive integer and
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let T be a rooted, n-node tree, and for this section only, let v1, v2, ..., vdv be v’s
children in any order.

Definition 3. Relative to T , let cost(v) be defined for all v ∈ T as follows.

If v is a leaf, cost(v) = 0. If v is not a leaf, cost(v) = [
∑dv

i=1 cost(vi)] +

[
∑dv−1

i=1 min{nv1 + nv2 + · · · + nvi ,K} · min{nvi+1 ,K}].

Lemma 4. [Proof omitted.] For all v, cost(v) ⊂ n2
v if nv ⊂ K, and cost(v) ⊂

2Knv −K2, if nv > K.

Corollary 1. [Proof omitted.] For K ⇐ 1,
∑

non-leaf v[
∑dv−1

i=1 min{nv1 + nv2 +
· · · + nvi ,K} · min{nvi+1 ,K}] ⊂ 2Kn.

5 Greedy Algorithm

The greedy algorithm proposed in [4] is precisely the algorithm proposed herein
for the exact solution but with the other sets restricted to being prefix sets.
In [4] Greedy was shown to run in time O(K2n + n logn). Here, we shave off a
factor of K from the first term.

Corollary 2. (of Lemma 4). [Proof omitted.] The time needed by the greedy
algorithm to generate summary trees of orders k = 1, 2, . . . ,K is O(Kn+n logn).

6 Improved Approximation Algorithm

In this section we describe an algorithm that computes an approximately
entropy-optimal k-node summary tree. Our algorithm relies on the following
outline from [4]:

1. One can rescale the weights in a tree to make them sum up to any positive
integral value W0, while leaving the entropy of any summary tree unchanged.
(This is obvious.)

2. One can use algorithmic discrepancy theory to round each resulting real node
weight wv to value w√

v equal to either ∪wv≤ or 1 + ∪wv≤ such that for each
node v ∈ T , |∑u◦Tv

w√
u −∑

u◦Tv
wu| ⊂ 1 for all v simultaneously, without

changing the overall sum.
3. Using Naudts’s theorem [8] that almost identical probability distributions

have almost identical entropy, one can prove, for some integer W0 which
is O((K/σ) log(K/σ)), that if one finds a maximum entropy summary tree
T ≤ for the modified weights (w√

v), then T ≤ has entropy (measured according
to the original weights wv) at most σ less than that of the truly maximum
entropy summary tree.

Suppose that the weights on T are integral and sum to W0. Clearly the number
of nodes of positive weight cannot exceed W0; however, the 0-weight nodes could
far outnumber the positive-weight nodes. Indeed, that is exactly what happens
if n → W0.
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Our algorithm exploits the fact that little processing is needed for most of
the 0-weight nodes. In fact, we will need to compute summary trees for only the
non-zero weight nodes and for at most 2(W0 − 1) 0-weight nodes.

The algorithm works with a tree T √, a reduced version of T in which some 0-
weight nodes have been removed. The following notation will be helpful. FT (v, k)
denotes the maximum pseudo-entropy of a k-node summary tree of Tv, where Tv

is a subtree of tree T ; similarly, FT ′(v, k) denotes the maximum pseudo-entropy
of a k-node summary tree of T √

v, where T √
v is a subtree of tree T √.

T √ is obtained from T as follows: for each positively-sized node v in T , if v
has one or more size-0 children, remove them and their descendants and replace
them all by a single 0-weight child. Clearly optimal summary trees in T √ form
optimal summary trees in T (for the only difference in summarizing T is that we
could add 0-weight nodes no longer present in T √, and these would contribute 0
to the entropy). Note that if v is a 0-weight non-leaf node in T √ then it must have
non-zero size (assuming T has at least one positive-weight node). The following
result is immediate.

Lemma 5. Let T have n nodes and T √ have n√ nodes. Let v be a node in T √ with
n(v) descendants in T and n√(v) descendants in T √. Then FT (v, k) = FT ′(v, k)
for 1 ⊂ k ⊂ n√(v). For n√(v) + 1 ⊂ k ⊂ n, FT (v, k) = FT ′(v, n√(v)).

Note that FT ′(v, n√(v)) is attained by a partition of the set of v’s children in T √

into singletons.
(Now of course we have changed the problem, since T √ might have fewer than

K nodes. However, if this happens, then optimal summary trees of T having
more than |T √| nodes have no more entropy than optimal summary trees of T
having exactly |T √| nodes.)

Even after the reduction it may be the case that |T √| → W0, for T √ might still
contain long paths of 0-weight nodes in which each node has only one positively-
sized child. However, the following lemmas show that they add little to the cost
of computing optimal summary trees.

Lemma 6. Let v be a 0-weight node in T √ with a single child u. Then for 2 ⊂
k ⊂ |T √

v|, FT ′(v, k + 1) = FT ′(u, k); also FT ′(v, 1) = FT ′(u, 1).

Proof. For k ⇐ 2, the (k+ 1)-node summary tree for T √
v adds a zero-weight node

{v} to the k-node summary tree for T √
u. For k = 1 both trees have a single node

of weight wu.

Lemma 7. Let v be a 0-weight node in T √ with exactly two children, a 0-weight
leaf v1 and a child u of positive size. Then for 3 ⊂ k ⊂ |T √

v|, FT ′(v, k + 2) =
FT ′(u, k); also FT ′(v, 2) = FT ′(v, 1) = FT ′(u, 1).

The proof of this lemma is essentially the same as that of Lemma 6. The following
corollary is immediate.

Corollary 3. Let v1, v2, . . . , vl, for l > 1, be a descending path of 0-weight nodes
in T √ such that each vi, 1 ⊂ i ⊂ l either has one child, or has exactly two children
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one of which is a 0-weight leaf. Further suppose that l√ of these nodes are in the
second category. Node vl must have a child of positive size (as otherwise v1 ⊆= vl
would be a size-0 non-leaf). Let u be the child of vl of positive size. Then for
1 ⊂ k ⊂ |T √

v1 | − (l + l√), FT ′(v1, k + l + l√) = FT ′(u, k); and for j ⊂ l + l√,
FT ′(v1, j) = FT ′(u, 1).

This corollary implies that given the entropies of optimal entropy summary
trees at a node u at the bottom of a maximal path of 0-weight nodes one can
obtain the entropies of the optimal entropy summary trees at node v1 at the top
of the path in time O(K).

At the remaining nodes in T √ we perform the same computation as in the
exact algorithm. As we can show, there are O(W0) such nodes, which leads to
the following running time bound.

Theorem 4. [Proof omitted.] The approximation algorithm to obtain a sum-
mary tree that has entropy within an additive σ of the optimal summary runs in
time O(n + W0 ·K3), where W0 = O((K/σ) log(K/σ)).

Acknowledgments. We thank the referees for their helpful suggestions.
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Abstract. Thorp shuffle is a simple model for a random riffle shuffle that for
many years has eluded good analysis. In Thorp shuffle, one first cuts a deck of
cards in half, and then starts dropping the cards from the left or right hand as with
an ordinary shuffle, so that at each time, one chooses the left or right card with
probability 1

2
and drops it, and then drops the card from the opposite hand. Then

one continues this inductively until all cards have been dropped. The question is
how many times one has to repeat this process to randomly shuffle a deck of n
cards. Despite its rather simple description and wide interest in understanding its
behavior, Thorp shuffle has been very difficult to analyze and only very recently,
Morris showed that Thorp shuffle mixes in a polylogarithmic number of rounds.

In our main result, we show that if Thorp shuffle mixes sequences consisting of
n− k distinct elements together with k identical elements (so-called k-partial n-
permutations) with k = Θ(n), then O(log2 n) rounds are sufficient to randomly
mix the input elements. In other words, O(log2 n) Thorp shuffles with n input
elements randomly permutes any set of cn elements with any c < 1, or, equiv-
alently, is almost cn-wise independent. The key technical part of our proof is a
novel analysis of the shuffling process that uses non-Markovian coupling. While
non-Markovian coupling is known to be more powerful than the Markovian cou-
pling, our treatment is one of only a few examples where strictly non-Markovian
coupling can be used to formally prove a strong mixing time. Our non-Markovian
coupling is used to reduce the problem to the analysis of some random process
in networks (in particular, when n is a power of two then this is in a butterfly
network), which we solve using combinatorial and probabilistic arguments.

Our result can be used to randomly permute any number of elements using
Thorp shuffle: If the input deck has N cards, then add another set of 0.01N
“empty” cards and run O(log2 N) Thorp shuffles. Then, if we remove the empty
cards, the obtained deck will have the original N cards randomly permuted.

We also analyze a related shuffling process that we call Perfect shuffle. We cut
a deck of n cards into two halves, randomly permute each half, and then perform
one step of Thorp shuffle. Apart from being interesting on its own, our motivation
to study this process is that a single Perfect shuffle is very similar to O(log n)
Thorp shuffles, and thus understanding of Perfect shuffle can shed some light on
the performance of Thorp shuffle. We apply coupling to show that Perfect shuffle
mixes in O(log log n) steps, which we conjecture to be asymptotically tight.
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1 Introduction

Let n be an even number. Thorp [21] proposed the following card shuffling process:

Thorp shuffle:

– Cut the deck of n card into exactly two halves.
– Repeat until both halves are empty:

⇒ drop the top card from the left half or the right half, using a fair random coin flip;
⇒ then drop the card from the other half.

In 1973, Thorp [21] asked about the number of times Thorp shuffle has to be re-
peated to (almost) randomly shuffle (mix) a deck of n cards. (The original motivation
of Thorp to study Thorp shuffle was to understand the ways of taking advantage of
poor shuffling in casino games.) Despite its rather simple description and also interest
in understanding its behavior, Thorp shuffle has proven to be very difficult to analyze.
It has been conjectured (see, e.g., [2]) that after σ(log2 n) shuffles the obtained permu-
tation of cards will be almost random1, but despite many attempts, for a long time no
proof of o(n) mixing time bounds has been found. Only recently Morris [15,16], using
the method of evolving sets proved that the mixing time of Thorp shuffle on n = 2d

cards is polylogarithmic in n, i.e., it is logO(1) n. The precise bound for the mixing time
proved by Morris [16] was O(log44 n) (though the preliminary version of [16], which
appeared in [15], claimed a stronger bound which has been later retracted). This has
been later improved to O(log29 n) by Montenegro and Tetali [14, Theorem 6.15], who
used spectral profile techniques as well as the method of evolving sets. Very recently,
Morris improved the analysis and showed the mixing time of O(log4 n) [17], without
the assumption that n is a power of two, and then again, Morris [18] improved that
bound to O(log3 n) for n being a power of 2. While this is a polylogarithmic mixing
time, it is still off from the conjectured mixing time of O(log2 n) [2, Example 12].

Thorp Shuffle and Butterfly Networks. When n is a power of 2, then the Thorp shuffle
(more precisely, its log2 n repetitions) can be modeled by a random process of passing
the cards through a butterfly network, where at each stage of the butterfly, the neigh-
boring cards are interchanged with probability 1

2 . Butterfly networks have been used in
computer science in various setting, and here our use has flavor similar to that used for
sorting (comparator) networks [13].

A butterfly network with n = 2d inputs is a layered network with d+1 levels 0, . . . , d
consisting of nodes and switches. There are n nodes at each level, each node corre-
sponding to a distinct binary number of d bits, which is called the label of that node.
The nodes are connected by switches, with n

2 switches connecting the nodes between
any two consecutive levels. A switch between levels τ and τ + 1 connects two nodes

1 Even though we would like to generate a uniformly random permutation, this is impossible for
the processes considered in this paper and we will settle with almost random permutations. By
that we mean that the total variation distance (the L1-distance) between the distribution of the
obtained permutation and the uniformly random permutation is o(1). In view of that, we will
abuse the notation and refer to such almost random permutations as random permutations.
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Fig. 1. A switch and its two possible outcomes (depending on the outcome of coin toss)

from level τ to two nodes with identical labels from level τ + 1. For each node x with
label ∈xd−1, xd−2, . . . , x0⊆ that is at level τ, 0 ⊂ τ ⊂ d− 1, x is connected to a switch
between levels τ and τ + 1 together with a node x̄ that has label ∈x∈

d−1, x
∈
d−2, . . . , x

∈
0⊆,

where x∈
i = 1− xi if i = τ, and x∈

i = xi otherwise.
While in sorting networks (cf. [13]) the role of a switch (called there a comparator)

is to sort the numbers from the two incoming inputs, in our case, the switch performs
a uniformly random choice of which incoming element from level τ will go to which
outgoing node at level τ + 1. In view of this, in this paper a switch (Figure 1) will be
a gate with two inputs and two outputs that takes two inputs and return them as the
outputs in a random order. We define a butterfly shuffle (Figure 2) to be the process that
takes as the input n elements and run them through the butterfly network with switches
making random selections of the outputs. With this, the following lemma is known.

Lemma 1. Let n be a power of two. Then, applying log2 n Thorp shuffles is equivalent
to a butterfly shuffle. →∧
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Fig. 2. A butterfly shuffle for n = 8

Because of Lemma 1, our goal is to analyze the random butterfly process which is the
process of repeatedly applying butterfly shuffle to the input permutation. (See Theorem
4 for a claim extending this analysis to arbitrary values of n.)

Random Switching Networks. A construction similar to that given above can be gener-
alized to arbitrary switching networks (see, e.g., [5,20]). A switching network N with
n inputs is a layered network with n nodes in each layer. The connection between the
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nodes is only between the nodes in two consecutive layers. Every node at layer τ is
either (directly) connected to a unique node at layer τ + 1, or is connected as the input
to a switch with two inputs and two outputs. Every node at layer τ + 1 has either a
connection from a unique node at layer τ or is connected as the output of a switch with
two inputs and two outputs.

A random switching network takes as its input an arbitrary set of elements and move
them along network N from the first layer to the last layer. If an element λ is located
in a node x at layer τ in N that is connected directly to a node y at layer τ + 1, then
λ moves from x to y. If x is connected to a switch between layers τ and τ + 1, then a
coin is tossed at random for that switch, and depending on the outcome, λ moves to one
of the outputs of the switch (and the element from the other input moves to the other
output).

1.1 New Contributions

A k-partial n-permutation is any sequence ∈x0, . . . , xn−1⊆ consisting of k 0s and n−
k distinct elements from {1, . . . , n − k}. The set of all k-partial n-permutations is
denoted by Sn,k; Sn,k = {(x0, . . . , xn−1) : |{j ≥ {0, 1, . . . , n − 1} : xj = 0}| =
k and ⇐r◦{1,...,n−k}⇒j◦{0,1,...,n−1} xj = r}. Observe that |Sn,k| = n!

k! .
We consider the problem of generating a uniformly random element from Sn,k: a

random k-partial n-permutation. Our main technical result, Theorem 4, is a formal
proof that O(log2 n) Thorp shuffles will suffice to obtain an almost random k-partial
n-permutation, assuming k = Π(n).2 Observe that this implies that O(log2 n) Thorp
shuffles will generate an (n − k)-wise (almost) independent permutation. While this
does not settle the conjecture of Aldous, it shows that O(log2 n) Thorp shuffles ran-
domly permute almost all (but a constant fraction of) input elements. Furthermore, this
can be easily used to randomly permute any number of elements using Thorp shuffle:
if the input deck has N cards, then add another set of 0.01N “empty” cards and run
O(log2 N) Thorp shuffles. Then, the obtained deck will have the original N cards ran-
domly permuted, with the empty cards at some arbitrary positions. Therefore, if we re-
move the empty cards, then we obtain a random permutation of the original N elements.

A direct implication of this result is that O(log2 n) Thorp shuffles will randomly
permute any sequence of 0s and 1s (Theorem 3); see [16] for earlier, weaker results.

Our analysis of the Thorp shuffle uses a novel method of analyzing convergence
times of Markov chains, which we believe is the most important contribution of this
paper. The proof of our main lemma uses coupling. Coupling has been used in the
analysis of convergence rates of Markov chains frequently before, but in this paper we
apply coupling in an interesting, non-Markovian way. While non-Markovian coupling
is known to be more powerful than the Markovian coupling (cf. [9]), our treatment
is one of only a few examples where strictly non-Markovian coupling can be used to
formally prove a strong mixing time (see [3,6,11] for several other examples). Our
non-Markovian coupling is used to reduce the problem to the analysis of some random
process in networks, which we solve using combinatorial and probabilistic arguments.

2 A similar result has been announced in [15], however in the journal version [16] of that paper,
only the bound of O(log6 n) (which is O(d5) in the notation from [16]) is proven (see the
discussion in [16, Section 3] and after Theorem 1 in [16]).
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It is easy to extend our result about Thorp shuffle to construct a random switching
network of depth O(log3 n) that randomly permutes any set of n elements. We first
apply O(log2 n) Thorp shuffles to partition the n element into two sets of size ∪n

2 ≤ and
⇔n
2 ∗, respectively, at random (almost random), and then we recursively apply Thorp

shuffles to each of the two sets. To ensure that the error is small in all recursive calls,
for any set of elements we will perform O(log2 n) Thorp shuffles to make the partition
(and so, the number of Thorp shuffles is independent of the actual size of the instance of
the recursive call). This leads to a simple construction of a random switching network
of depth O(log3 n) randomly permuting n elements.

Theorem 1. There is an explicitly given random switching network of depth O(log3 n)
that randomly permute any set of n elements. →∧

We also consider a related random process (which we call a Perfect shuffle) which
can be seen as a process “perfectly” simulating O(logn) steps of Thorp shuffle: first
randomly permute the first n/2 elements, then randomly permute the other n/2 ele-
ments, and then randomly swap elements with indices i and n

2 + i for all i, 1 ⊂ i ⊂ n
2 .

Our motivation to study this process is that a single Perfect shuffle mimics O(log n)
Thorp shuffles, and thus understanding of Perfect shuffle can shed some light on the
performance of Thorp shuffle. We apply coupling to show in Theorem 5 that Perfect
shuffle mixes in O(log log n) steps, which we conjecture to be asymptotically tight.

We also notice that Thorp shuffle has been used in the past in some cryptographical
applications (see [5,19] for a selection). And so, for example, recently Morris et al [19]
used their results about randomly permuting partial permutations in Thorp shuffle to
analyze and obtain new results for provably secure blockcipher-based schemes. The
key technical result of Morris et al [19, Theorem 1] is that if n − k ⊥ r(4 log2 n(n −
k)/n)−r, then 2r log2 n Thorp shuffles will randomly permute any k-partial n-permu-
tation; observe that this result is interesting only when n− k ⊥ n/ log2 n, and hence it
is weaker than the result shown in this paper.

Note. This extended abstract presents only the results and main ideas behind the anal-
ysis. Detailed proofs are available in the full version of the paper.

2 Preliminaries

We consider the problem of generating a uniformly random element from Sn,k, or
equivalently, a random k-partial n-permutation. Our goal is to show that for n being
a power of 2, O(log2 n) Thorp shuffles will suffice to obtain a random k-partial n-
permutation, assuming k = Π(n). Theorem 4 will state the result for arbitrary n.

2.1 Markov Chains, Coupling, and Non-markovian Coupling

To analyze Thorp shuffle for partial permutations, we model the process by a Markov
chain over the state Sn,k. If the starting state of the shuffle is β0 ≥ Sn,k, then the Markov
chain (βt)t◦N is defined such that βt+1 ≥ Sn,k is obtained by applying Thorp shuffle
to βt. It is known that the stationary distribution of such Markov chain is uniform and
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our goal is to estimate the convergence rate of this Markov chain to the uniform dis-
tribution. To analyze the convergence rate we use the coupling approach (for a survey
on the coupling approach we refer the reader to [12]; cf. also [1,4,8,14]). While typi-
cally Markovian couplings are used to analyze mixing times of Markov chains, in our
analysis we heavily use non-Markovian features of coupling.

Let M = (Mt)t◦N be a discrete-time Markov chain with a finite state space Π and
a unique stationary distribution μM. For any random variable X , let L(X) denote the
probability distribution of X , and let L(Mt | M0 = Δ) denote the probability dis-
tribution of Mt given that M0 = Δ. We are interested in studying Markov chains
for which the statistical distance between L(Mt | M0 = Δ) and μM tends quickly
to zero, independently of Δ ≥ Π. To quantify this, we will use the standard mea-
sure of the distance between two distributions: the total variation distance between
two probability distributions X and Y over the same finite domain Π is defined as
dTV (X ,Y) = maxS√σ |PrX [S]−PrY [S]|. To study behavior of a Markov chain M
with stationary distribution μM, we define the total variation distance after t steps of
M with respect to the initial state Δ ≥ Π as ∂M

ε (t) = dTV (L(Mt | M0 = Δ), μM).
Then, the standard measure of the convergence of a Markov chain M to its stationary
distribution μM is the mixing time, denoted by φM(κ), which is defined as φM(κ) =
min{T ≥ N : ∂M

ε (t) ⊂ κ for each Δ ≥ Π and each t ↓ T }. In this paper our main
focus is on the case κ = o(1), and in the case of studying (partial) permutations of n
numbers, we aim at having κ = n−c for some constant c ↓ 1.

A coupling (see, e.g., [1,4,7,8,12]) for a Markov chain M = (Mt)t◦N on state space
Π is a stochastic process (Xt,Yt)t◦N on Π × Π such that each of (Xt)t◦N, (Yt)t◦N,
considered independently, is a faithful copy of M (i.e., Lε(Mt) = Lε(Xt) = Lε(Yt)
for each Δ ≥ Π). The key result on coupling, the Coupling Inequality (see, e.g., [1,
Lemma 3.6]), states that the total variation distance between L(Mt | M0 = Δ) and
its stationary distribution μM is bounded above by the probability that Xt �= Yt for
the worst choice of initial states X0 and Y0. One difficulty in applying coupling lies
in the requirement to analyze process (Xt,Yt)t◦N on the whole space Π × Π. The
path coupling method of Bubley and Dyer [4] allows to consider a coupling only for
a subset of Π × Π. Further refinement is coming from an extension of path coupling
method called delayed path coupling [3,5,6]. Comparing to standard coupling, delayed
path coupling considers coupling (Xt,Yt)t◦N with X0 and Y0 being similar (like in
path coupling [4]), and the goal is to design the coupling by observing the Markov
chain in several steps to ensure that for some small t the value of Pr[Xt �= Yt] is very
small (traditionally path coupling considers only Pr[Xt �= Yt] conditioned on Xt−1

and Yt−1, whereas delayed path coupling considers Pr[Xt �= Yt] conditioned on X0

and Y0 only, and thus considers the coupling for multiple steps). We will analyze the
convergence of Markov chains using the following lemma.

Lemma 2 (Delayed Path Coupling Lemma [3,5,6]). Let M = (Xt)t◦N be a discrete-
time Markov chain with a finite state space Π. Let α be any subset of Π ×Π. Suppose
that there is an integer D such that for every (X ,Y) ≥ Π × Π there exists a sequence
X = χ0, χ1, . . . , χr = Y , where (χi, χi+1) ≥ α for 0 ⊂ i < r, and r ⊂ D. If there
exists a coupling (Xt,Yt)t◦N for M such that for some T ≥ N, for all (X ,Y) ≥ α , it
holds that Pr[XT �= YT | (X0,Y0) = (X ,Y)] ⊂ Ω

D , then φM(κ) ⊂ T .
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Let us briefly discuss how the Delayed Path Coupling Lemma can be used. Our
Markov chain will have the state space Sn,k of all k-partialn-permutations. We defineα
to be the set of all pairs of k-partial n-permutations β1, β2 ≥ Sn,k that differ on exactly
two elements: for some τ and r, β1(i) = β2(τ) if i = r, β1(i) = β2(r) if i = τ, and
β1(i) = β2(i) otherwise. Then, for any two k-partial n-permutations β≤, β≤≤ ≥ Sn,k,
we can easily find a sequence β≤ = β0, β1, . . . , βr = β≤≤ with r ⊂ n, such that each
pair βi, βi+1 differs on exactly two elements (that is, (βi, βi+1) ≥ α ).

With this, for any β1 and β2 that differ on exactly two elements, we define a coupling
(Xt,Yt)t◦N with X0 = β1 and Y0 = β2, such that each Xt+1 and Yt+1 is obtained from
Xt and Yt, respectively, by applying a single Thorp shuffle or a butterfly shuffle. Our
goal is to ensure that the designed coupling for the random butterfly process will have
Pr[Xt �= Yt] ⊂ n−2 for some t = O(logn) (t = O(log2 n) for Thorp shuffle). By
Lemma 2, this will ensure that φM(1/n) = O(logn) for the random butterfly process.

3 Analyzing Partial Permutations

In this section we will analyze the random butterfly process for generating random
k-partial n-permutations. (Let us recall that t steps of the random butterfly process
correspond to t log2 n Thorp shuffles assuming n is a power of 2. Our analysis can be
extended to arbitrary n, see Theorem 4.) Our analysis uses Delayed Path Coupling.

Let k = Π(n). Let β1 and β2 be two arbitrary k-partial n-permutations from Sn,k

which differ on exactly two elements. Let ζ and β be the two elements which have
distinct positions in β1 and β2. Let � = ⇔log2(n/k)∗ and hence n

2� ⊂ k < n
2�−1 . Let

Z (like zeroes) be the set of the 0 elements except possibly for the elements ζ and β (if
either ζ or β is a 0). Observe that |Z| ↓ n

2� − 1. Let Z≤ = Z ≺ {ζ, β}.
Our goal is to define a coupling (Xt,Yt)t◦N that satisfies the following conditions:

Initial state: (X0,Y0) = (β1, β2);
Coupling: each sequence (Xt)t◦N and (Yt)t◦N in isolation is a faithful copy of the

random butterfly process;
Convergence: for certain T = O(logn), with high probability: Xt = Yt for all t ↓ T .

By Lemma 2, these three conditions would imply that the mixing time of the random
butterfly process for generating random k-partial n-permutations is O(log n).

We will define the coupling by first allowing the process (Xt)t◦N to be run arbitrarily
and then we will set the sequence (Yt)t◦N in a non-Markovian way to ensure the second
and the third properties above. By non-Markovian we mean that the sequence (Yt)t◦N

will be defined only once the entire sequence (Xt)t⊆T is known, and eachYt with t ⊂ T
depends on the entire (Xt)t⊆T . (Markovian coupling, which has been more commonly
used in the past, would mean that Yt+1 depends only on Yt, Xt, and Xt+1.)

Our analysis splits the process into two phases, each phase corresponding to O(logn)
runs of the butterfly shuffles, and the final coupling will be done after seeing all random
choices for (Xt)t◦N in these two phases.

Notation. When we consider the process as one of moving the input elements from
left to right, that is, by applying one butterfly shuffle another another, then we use term
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element to denote the current status of a given input element, and position to denote
its current position in the switching network. If we run the random butterfly process,
then each time we have two elements that are connected by a switch (to be swapped at
random), then we say that these two elements are a match at a given moment. There are
exactly 1

2n log2 n matches in a single butterfly shuffle, n
2 matches in each of the log2 n

layers of the butterfly.

3.1 Overview of the Analysis for k-Partial n-Permutations

We consider the random butterfly process starting at the state X0 = β1. We will look at
the sequence (Xt)t◦N and we will analyze its properties to define the sequence (Yt)t◦N.
We will follow the elements fromZ

≤ and those from outside Z≤, and every time we have
a match not involving two elements from Z

≤ in (Xt)t◦N, we will make at once the same
choices (outcomes of the matches) for both (Xt)t◦N and (Yt)t◦N. Furthermore, for a
large part of the outcomes of the matches between two elements from Z

≤ in (Xt)t◦N we
will also set it identically in both copies, in (Xt)t◦N and (Yt)t◦N. However, our main
focus is on a small number of appropriately selected matches between pairs of elements
from Z

≤ in (Xt)t◦N. Our analysis is in two stages.

First Stage. In the first stage, we will construct two disjoint full binary trees, that we
call fundamental trees, that are obtained using the following branching process:

Initially create two trees whose roots are the two elements ζ and β (the elements
where X0 and Y0 differ).

Suppose that we have built two trees for X0,X1, . . . ,Xt. Let � = n
2�+2 . Let v be

any element corresponding to a leaf v̂ in one of the trees at depth strictly smaller than
log2 �. If v is to be matched after one step of the random butterfly process to an element
u from Z

≤ and u was not used in the construction of any of the trees so far, then we
branch at v̂. In that case, we branch at v̂ and v̂ has two new children: one corresponding
to the element v and one corresponding to the element u. We perform this operation for
all such leaves v̂ at the same time, to build two trees for X0,X1, . . . ,Xt+1.

We continue this process for increasing t to build two trees until all leaves of both
trees are at the same level and each tree has exactly � = n

2�+2 leaves (which is why
we branched only leaves at depth smaller than log2 �); such trees will be called the
fundamental trees. We can prove the following key lemma.

Lemma 3. There is a constant c such that if we run the random butterfly process for
c log2 n steps with all switches set at random then the probability that two fundamental
trees will be built is at least 1− n−3.

Let us discuss the intuitions behind this phase and state central properties of our con-
struction. We observe that each fundamental tree has only one element from outside Z:
either ζ or β. Therefore, since all but one elements from each fundamental tree are in Z,
the process of setting the outcomes of the matches in each of the fundamental trees will
correspond to the random selection of the position for ζ (or β) in the tree; since all ele-
ments in Z are identical (are zeros), we can arbitrary permute them without affecting the
outcome of the process. Next, we observe that the trees do not dependent on the random
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outcomes of the matches during the branching. In other words, if we have two instances
of the random butterfly process such that the second instance differs from the first one
only in the (outcome of the) switches defining the branching for the fundamental trees
in the first instance, then the second instance have the same fundamental trees (we may
only have permuted elements in each of the fundamental trees). Finally, (and this is the
central property of our construction) conditioned on the final positions of the leaves in
the fundamental trees, the choice of the final positions of ζ and β is uniformly random.
That is, if the tree containing ζ has the leaves at positions p1, . . . , pα, pi < pi+1, then if
we randomly decide the outcomes of the matches during the branching, then for every
i, the probability that ζ will end up at position pi is 1

α . The same property holds for β.

Second Stage. In the second stage, we fix the leaves of the two fundamental trees
built in the first stage. Our goal is to show that if we run O(log n) steps of the random
butterfly process defining (Xt)t◦N then we can find a set M of � matches which forms a
perfect matching between the leaves of the two fundamental trees. That is, M is a set of
� matches in the random butterfly process, such that for every match (v, u) ≥ M, v is a
leaf from the first tree, u is a leaf from the second tree, and there is no other pair in M

which contains either v or u. Once we have such a matching, then the lexicographically
first perfect matching between the leaves of the two fundamental trees will be called the
fundamental matching M

≤. (That is, if we number the shuffles in the way how they are
generated by the Thorp shuffle, then for every other matching M between the leaves of
the two fundamental trees there is an index τ, such that after having the same matches
in M

≤ and M in the first τ− 1 shuffles, the τth shuffle has a match in M
≤ and no match

in M.) We can prove the following key lemma about fundamental matchings.

Lemma 4. Let us fix any two sets of � disjoint positions for the leaves of the funda-
mental trees. There is a constant c such that if we run the random butterfly process
for c log2 n steps with all switches set at random then the probability that there is a
fundamental matching is at least 1− n−3.

Coupling. Now, we are ready to define the coupling. We run the first stage with
O(log n) random butterflies and construct two fundamental trees T1 and T2 with � leafs
each. Then, we run the second stage with O(log n) random butterflies and construct the
fundamental matching M between the leaves of T1 and T2.3

Now, for both (Xt)t◦N and (Yt)t◦N, we will use identical outcomes for all the ran-
dom choices in the switches that are not involved in the (branching) matches inside the
trees T1 and T2, and are not among the matches in M. Let P1 be the set of positions that
the leaves of T1 reach at the end of the first stage and P2 be the set of positions that the
leaves of T2 reach at the end of the first stage. For simplicity of notation, we assume
that every match in M is of the form (p, q), where p is an element that reaches a position
in P1 at the end of the first stage and q is an element that reaches a position in P2 at the
end of the first stage; in this case, we use the notation M(p) = q and M(q) = p.

3 This process is conditioned on the fact that the two fundamental trees T1 and T2 and that the
fundamental matching M have been found. If we failed to construct T1, T2, and M, which
by Lemmas 3 and 4 is very unlikely, then the coupling for (Xt)t∈N and (Yt)t∈N will be the
identity coupling, i.e., all switches will be set in the same way for both (Xt)t∈N and (Yt)t∈N.
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We observe that since T1 and T2 are complete binary trees, if all the choices inside
the trees T1 and T2 have been done at random, then ζ reaches the position at the end
of the first stage that is uniform in P1, β reaches the position at the end of the first
stage that is uniform in P2, and these positions are independent. With this, we define
the coupling for (Xt)t◦N and (Yt)t◦N in the first stage such that if ζ reaches position
p at the end of the first stage and β reaches position q at the end of the first stage for
the sequence (Xt)t◦N, then we set the random outcomes for the sequence (Yt)t◦N in
the first stage such that ζ (which in (Yt)t◦N is traversing through the tree T2) reaches
position M(p) at the end of the first stage, and β (which in (Yt)t◦N is traversing through
T1) reaches position M(q) at the end of the first stage for the sequence (Yt)t◦N.

Next we define the coupling for the second stage. We first perform random choices
for the outcomes of the matches in M for (Xt)t◦N, and then reverse choices for the
matches in M for (Yt)t◦N.

Lemma 5. The process defining (Xt)t◦N and (Yt)t◦N is a proper coupling.

Next, we want to consider when Xt �= Yt. We first observe that without revealing the
outcome of the matches in T1, T2, and M, the final positions of the elements outside P1

and P2 are fixed. Furthermore, since in P1 and P2, all elements other than ζ and β are
from Z (and hence all are 0s and thus indistinguishable), we only have to consider the
final positions of ζ and β. Consider first the chain (Xt)t◦N and suppose that ζ finished
the first stage at position p and β finished the first stage at position q. In (Yt)t◦N, the
coupling ensures that in the first stage ζ finishes at position q and β at position p.
Then, the only change in the performance of (Xt)t◦N and (Yt)t◦N is at the two matches
(p,M(p)) and (q,M(q)). The key property of our coupling is that since the outcomes
of the matches in M for (Xt)t◦N are reverse with respect to the choices for the matches
in M for (Yt)t◦N, we will have that XT = YT at the end of the second stage.

We can now summarize properties of our coupling for the random butterfly process:

• If T1, T2, and M have been successfully constructed then our coupling (Xt,Yt)t◦N

ensures that XT = YT for all T ↓ T0, where T0 = O(log n), and
• T1, T2, and M have been successfully constructed with probability at least 1−2n−3.

We can combine our analysis with the Delayed Path Coupling Lemma to conclude:

Theorem 2. Let n be a power of two and let k ↓ cn for some positive constant c. The
mixing time of the Thorp shuffle for k-partial n-permutations is O(log2 n).

It is not difficult to see that this result yields also the result for permuting 0s and 1s.

Theorem 3. Mixing time of the Thorp shuffle for any sequence of n 0s and 1s is
O(log2 n).

While our analysis focused solely on the case when n is a power of two, our proof of
Theorem 2 can be easily extended (with essentially no change in the analysis) to hold
for all values n (including odd n).

Theorem 4. Let n be any positive number and let k ↓ cn for some positive constant c.
The mixing time of the Thorp shuffle for k-partial n-permutations is O(log2 n).
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4 Perfect Shuffle: A “better” Thorp Shuffle

In our pursuit to understand the behavior of Thorp shuffle, we also consider a related
shuffling process that captures some features of Thorp shuffle. We assume n is even.

Perfect shuffle:

– Cut the deck of n card into two halves.
– Permute each half independently and uniformly at random.
– Drop the first card from the left half or the right half according to the outcome of a fair

coin flip; then drop from the other half. Continue this way until both halves are empty.

Observe that Perfect shuffle mimics the behavior of Thorp shuffle with one addition
feature: before the halves are shuffled, they are first randomly permuted. Therefore
one can see Perfect shuffle as a process that simulates logn steps of Thorp shuffle, or
perhaps rather improves logn steps of Thorp shuffle. Indeed, if n is a power of 2 then
Perfect shuffle can be seen as the process of replacing the first logn− 1 Thorp shuffles
by a single step of randomly permuting two halves of the elements, and then applying
one Thorp shuffle. Intuitively, this change should only help and speed up the shuffling
process. Therefore, again, intuitively, a lower bound for the number of steps of Perfect
shuffle needed to randomly shuffle a deck of n = 2d cards should lead to a lower bound
for the number of steps of Thorp shuffle needed to randomly shuffle a deck of n cards,
where the latter bound should be logn times the number of steps needed for Perfect
shuffle. Using the coupling approach we can prove the following theorem:

Theorem 5. The mixing time of Perfect shuffle is O(log logn).

We conjecture that this bound is asymptotically optimal.
The Perfect shuffle process is similar to the square lattice shuffle studied by Håstad

[10], who considers the operations of randomly permuting columns and rows of a
square matrix. Håstad [10] proved that it is sufficient to repeat the square lattice shuffle
a constant number of times to generate a random permutation. Our process can be seen
as the process of randomly permuting columns and rows of a 2×N matrix.

5 Final Comments

Thorp Shuffling for Arbitrary Permutations. It is tempting to argue that Theorem 4
implies that the mixing time for Thorp shuffle for all permutations is O(log2 n). Unfor-
tunately, we do not know of any straightforward reduction from randomly permuting
k-partial n-permutations for k ↓ 0.01n to randomly permuting permutations. The fol-
lowing simple example shows that this task is not straightforward. Suppose that one has
a process P that takes any permutation β ≥ Sn and outputs a randomly chosen permuta-
tion β≤ ≥ Sn among all permutations in Sn that has the same parity as β. (The parity of
permutation β ≥ Sn is either even or odd, depending on whether the minimum number
of adjacent transpositions needed to obtain the identity permutation from β is even or
odd, respectively.) It is easy to see that P randomly permutes 2-partial n-permutations,
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and hence, also all k-partial n-permutations for k ↓ 0.01n. However, even if we repeat
P an arbitrary number of times, this process will never generate a random permutation,
because this process is invariant to the parity of the original permutation β.

Acknowledgements. We thank Martin Dyer, Uri Feige, and Peter Winkler for helpful
discussions and comments.
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Abstract. We report progress on dynamic complexity of well-known
graph problems such as reachability and matching. In this model, edges
are dynamically added and deleted and we measure the complexity of
each update/query. We propose polynomial-size data structures for such
updates for several related problems. The updates are in very low level
complexity classes such as quantifier-free first order formulas, AC0[2],
TC0. In particular, we show the following problems are in the indicated
classes:

(a) maximum matching in non-uniform DynTC0;
(b) digraph reachability in non-uniform DynAC0[2];
(c) embedded planar digraph reachability in DynFO(= uniform DynAC0).

Notably, the part (c) of our results yields the first non-trivial class of
graphs where reachability can be maintained by first-order updates; it is
a long-standing open question whether the same holds for general graphs.
For (a) we show that the technique in [7] can in fact be generalized using
[9] and [8] to maintain the determinant of a matrix in DynTC0. For (b)
we extend this technique with the help of two more ingredients namely
isolation [1,13] and truncated approximation using rational polynomials.
In fact, our proof yields DynAC0[p] bound for any prime p > 1. For (c) we
exploit the duality between cuts and cycles in planar graphs to maintain
the number of crossings between carefully chosen primal and dual paths,
using several new structural lemmas.

1 Introduction

Conventional complexity assumes that the entire input is available initially and
it does not change with time. An alternative to this static view is the dynamic
model, where the input evolves with time, such as where edges are added or
deleted to a graph. We can measure the efficiency of an algorithm in such a model
in terms of the (static) complexity of its updates. The particular complexity
classes we focus upon in this paper are some of the simplest ones possible: classes
of Boolean functions computable by bounded depth circuits. Yet polynomial-size
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data structures with updates in these classes are powerful enough to solve fairly
complex problems, as we see in this work. We start with a brief description of
this model.

1.1 The Model of Dynamic Complexity

In the dynamic (graph) model we start with an empty graph on a fixed-size
set of vertices. The graph evolves by the addition/deletion of a single edge in
every time step and an algorithm maintains the graph and polynomially many
bits of auxiliary data, which allow a property such as reachablity to be queried
efficiently. The dynamic complexity of the algorithm is the static complexity
of each update step. If a polynomial-size data structure can be updated in a
static class C, the dynamic problem is said to belong to DynC. In this paper, C is
often a complexity class defined in terms of bounded depth circuits1 such as AC0,
AC0[2], TC0, where AC0is the class of polynomial size constant depth circuits with
AND and OR gates of unbounded fan-in; AC0[2]circuits may additionally have
PARITY (sum modulo 2) gates; TC0circuits may additionally have MAJORITY
gates. We encourage the reader to refer to any textbook (e.g. Vollmer [17]) for
precise definitions of the standard circuit complexity classes. The archetypal
example of a dynamic problem is maintaining reachability (“is there a directed
path from s to t”), in a digraph. This problem is known to be maintainable in
the class DynTC0- a class where edge insertions and deletions can be maintained
using TC0circuits.

1.2 Historical Background

Dynamic complexity was introduced by Immerman-Patnaik [14] who defined the
class DynFO(where the static update class is Dlogtime-uniform AC0) and proved
that problems such as undirected connectivity and minimum spanning tree are
in DynFO. DAG reachability was known to be in this class even before it was
formally defined [4]. Hesse proved that directed reachability is in the slightly
larger (uniform) class DynTC0. Recently it has been shown that distance com-
putation in undirected graphs can be maintained in DynFO[5] (see also [10] where
3-connected planar isomorphism is also shown to be maintainable in DynFO+, a
closely related class). The big open question in the area is whether it is possible
to maintain directed reachability in DynFO. For surveys on dynamic complexity
please see [6,16].

1.3 Our Results and Techniques

We summarize our results below:

Theorem 1. The determinant of a matrix can be maintained in DynTC0.

1 We will have occasion to refer to both the non-uniform and (dlogtime-)uniform ver-
sions of these circuit classes and we adopt the convention that, whenever unspecified,
we mean the uniform version.
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Applying the reduction from rank to determinant by Mulmuley [12] and fur-
ther applying the Isolation Lemma [13,1], we obtain:

Corollary 1. (a) The rank of a matrix can be maintained in DynTC0.
(b) Maximum Matching in a graph is in non-uniform DynTC0.

The complete proof will be presented in the full version of the paper. Next we
show the following on reachability.

Theorem 2. Reachability in directed graphs is in non-uniform DynAC0[2].

A generalization to the weighted case with possibly negative weights yields:

Corollary 2. (a) Maintaining walks of weight at most W is in DynAC0[2]; (b)
Shortest Path in a graph without negative cycle or detecting if the negative cycle
exists can be maintained in DynAC0[2]; (c) Perfect Matching in grid graphs is in
uniform DynAC0[2].

Again, we postpone the proof to the full version of the paper.

Theorem 3. Reachability in directed embedded planar graphs is in DynFO.

The main building block for Theorem 1 and Theorem 2 is a technique in-
troduced by Hesse [7] for maintaining the reachability in directed graphs. This
technique relies on a result of Hesse, Allender, and Barrington [8] showing that
multiplying univariate polynomials is in TC0. We show that this reahcability
technique can in fact be generalized using the result of Mahajan and Vinay [9]
on clow-sequences to maintain the determinant of a matrix in DynTC0. This
suffices for Theorem 1. For Theorem 2 we extend this technique further with
the help of two more ingredients namely the Isolation Lemma (more specifically
its usage in Allender, Reinhardt and Zhou [1]) and a simple but subtle use of
rational polynomials in truncated form to achieve DynAC0[2]bound. In fact, our
proof yields DynAC0[p]bound for the same for any prime p > 1, putting it in the
intersection of these AC0[p]classes. We note that no total function outside AC0is
known to lie in the intersection of these classes. Thus our result gets tantalizingly
close to the non-uniform AC0bound. The uniform AC0bound would resolve the
long-standing conjecture that directed reachability is in DynFO.

For Theorem 3 we exploit the duality between cuts and cycles in planar graphs
to maintain information about all oriented cycles in the dual graph, giving cut
sets in the original graph. There are interesting technical complexities to over-
come, requiring some extra bookkeeping in our data structures. There seem to be
no fundamental problems with extending the algorithm from embedded planar
graphs to planar graphs. This generates hope for placing general reachability in
DynFO.

1.4 Organization

The organization of this paper is as follows: Section 2 contains the preliminar-
ies. Section 3 contains the proof of Theorem 1. Section 4 contains the proof of
Theorem 2. Section 5 contains the proof of Theorem 3.
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2 Preliminaries

2.1 Non-uniform Version of Isolation

Mulmuley, Vazirani, and Vazirani [13] introduced this simple but powerful
lemma:

Lemma 1 (Isolation Lemma). Given a non-empty F ⊆ 2[m], if one assigns
for each i ∈ [m], wi ∈ [2m] uniformly at random then with probability at least
half, the minimum weight subset of F is unique; where the weight of a subset S
is

∑
i◦S wi.

A surprising part of the above lemma is that no structure is assumed on
F . Allender, Reinhardt, and Zhou observe that the above lemma can be de-
randomized with the help of non-uniformity.

Lemma 2 (Non-uniform Version of Isolation Lemma). There exist m2

weight assignments W (i) = (w
(i)
1 , . . . , w

(i)
m ) (for i ∈ [m2]) such that: for any

non-empty F ⊆ 2[m] there exists an i ∈ [m2] such that the minimum weight
subset of F with respect to W (i) is unique.

2.2 Clow-sequences and Determinant

Mahajan-Vinay [9] introduced the concept of a clow-sequence for an adjacency
matrix which extends the notion of a cycle-cover.

Definition 1. A clow is a closed walk starting and ending at the same vertex.
The smallest vertex in a clow is called in its head. A clow sequence, W, is a se-
quence of clows with some constraints: (a) the heads of the clows in the sequence
are in strictly increasing order, and, (b) the number of edges (with multiplicity)
in a clow-sequence is exactly n, the size of the matrix. Define sgn(W) to be

(−1)n + #clows in W and weight w(W) to be the product of its edge weights.

Armed with the above definition we approach the main theorem of [9]:

Theorem 4 (Mahajan-Vinay[9]).

det(M) =
∑

W: clow sequence in M

sgn(W)w(W)

This nice result is based on the observation that all clow-sequences which are
not cycle-covers cancel out in pairs in the signed sum above, leaving behind the
signed sum of cycle covers which is the determinant.

2.3 Polynomial Arithmetic and Hesse’s Approach

Hesse [7] showed that:

Theorem 5 (Hesse[7]). Reachability in directed graphs can be maintained in
DynTC0.
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The main idea is to maintain the counts of all s, t-walks parameterized on their
lengths for each pair of vertices s, t. These are maintained as integer polynomials
and [7] showed that updating them only requires addition and multiplication of
polynomials, and finding powers of polynomials. For this the following theorem
from Hesse, Allender and Barrington [8] is crucial:

Theorem 6 (Hesse-Allender-Barrington[8]). Iterated product of integer
polynomials is in uniform TC0.

We also note that the above theorem easily extends to polynomials in two
(more generally any constant number of) variables. Arithmetic on polynomials
over the finite field Fp can be done with even simpler circuits using modulo p
gates:

Fact 1 (Folklore). Iterated polynomial addition and multiplication of two poly-
nomials over Fp is in AC0[p] for prime p > 1.

2.4 Planarity, Uniform Isolation, Flows and Cycles

The non-uniform edge weights of Lemma 2 can be replaced by a uniformly com-
puted set of weights on certain families of planar graphs. In particular Bourke,
Tiwari, and Vinodchandran show that for subgraphs of a planar grid, one can
find weights so that minimum weight paths and perfect matchings are unique.
This can be extended to perfect matchings in bipartite grid graphs [3].

Lemma 3 (Deterministic Isolation in Grid Graphs, [2,3]). One can as-
sign O(log n)-bit long weights in uniform AC0 to the edges of n × n grid such
that in any subgraph of the grid (a) the minimum weight s-t path is unique; (b)
minimum weight perfect matching is unique.

We use this fact to obtain uniform circuits for dynamic updates in grid graphs.
Further we use planarity in the context of flows. Miller and Naor [11] relate

the existence of flow in a planar graph with multiple sources and multiple sinks
to the non-existence of negative weight cycle in the dual graph with appropriate
edge weights. If the dual graph does not have a negative cycle then the distance
between two nodes of the dual graph is well defined. Using this distance com-
putation as a subroutine, Miller and Naor give an algorithm to compute the
flow in the primal graph. As a special case of the flow problem they solve the
perfect matching question in bipartite planar graphs. In this paper we use their
reduction in the dynamic setting.

2.5 Maintaining the Determinant

In this paper, the “determinant-maintenance-problem” corresponds to queries
for the value of the determinant of a dynamic n × n matrix. Any one entry of
the matrix can be changed from zero to a poly(n)-bit integer, or vice-versa, in
one update.
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3 Proof of Theorem 1: Determinant in DynTC0

We combine ideas from the dynamic reachability algorithm of Hesse [7], parallel
computation of the determinant (Mahajan-Vinay [9]) and the TC0 algorithm for
computing the iterated product of polynomials by Hesse-Allender-Barrington
[8], to yield the claimed result.

Reinterpreting the Mahajan-Vinay [9] result in terms of generating functions
we observe that we just need to compute a particular coefficient of the product
of a bunch of “signed” and weighted Hesse polynomials to compute the deter-
minant. Use of [8] enables us to perform this computation in TC0 every time a
value of the determinant is queried for.

Let gu(x) be the generating function of the clows with u as a head. The
polynomial gu is similar to the the Hesse polynnomial counting the number of
u, u (closed) walks. To make this correspondence precise we notice that the basic
difference between the two polynomials is that unlike in an arbitrary closed walk:

1. the vertex u occurs exactly once in a clow, and,
2. no vertex smaller than u is contained in the clow with head u.

Let Gu be the subgraph of G from which all vertices smaller than u, including
u iself, have been deleted. Consider the sum of the Hesse polynomials hGu(v, w)
for each pair of vertices v, w such that (w, u), (u, v) are edges in the graph (along
with a 1 for the 0-length walk). This is because along with the path w, u, v a v, w
walk forms a u, u closed walk satisfying the two properties above and vice-versa.

In other words we have shown that:

gu(x) =
∑

w,v:(w,u),(u,v)◦E(G)

x2hGu(v, w)

Proposition 1. The generating function for clow sequences is:
∏

u◦V

(gu(x) − 1)

The −1 term arises because of the sign (−1)n+k = (−1)n−k of a clow sequence.
Notice that maintaining Gu is easy - we just update an edge in Gu iff both its

endpoints are larger than u. Now we can maintain the h(x) for the Gu s, which
follow the following update rule (on update of edge (i, j)):

hs,t(x) := hs,t(x) + b · x · hs,i(x)
√∑

k=0

(b · x · hj,i(x))khj,t(x), (1)

where b is 1 for addition update and −1 for deletion update. Moreover it suffices
to maintain the summation up to only first polynomially many terms. Further,
Hesse-Allender-Barrington [8] show in Corollary 6.5 that iterated sum and mul-
tiplication of polynomials is in DLogtime-uniform TC0. Thus we do not explicitly
need to maintain the product of the terms but only compute the product when
the determinant is queried. This completes the proof of the 0-1 case. In case
of arbitrary weights the same proof goes through with a modified update rule
replacing b by b · w(i, j). This completes the proof of Theorem 1. �
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4 Proof of Theorem 2: Reachability in DynAC0[2]

The basic idea is to maintain the number of s, t walks modulo 2 (as usual,
parameterised on the length) instead of the exact number. Thus if the graph
can be made min-unique by appropriate weighting with polynomially bounded
weights i.e. if there is a unique minimum weight path between every pair of
connected vertices, then it suffices to check the number of paths modulo 2 for
a given pair s, t for every weight from up to n because we are guaranteed that
the coefficient of the min weight path will be 1. But Reinhardt-Allender [15]
provides such a weighting scheme although a non-uniform one.

We have to be a bit careful in maintaining the Hesse polynomials fs,t modulo
2. In Hesse’s paper he reduces the problem of maintaining the polynomials to
iterated integer product and integer division which are in TC0 by [8]. However,
this reduction does not work for small rings like Z2.

We will of course maintain hs,t(x) mod 2 therefore in (1) the update will be
identical for addition and deletion (since b = 1 ≡ −1 mod 2). We will also need to
deal with gi,j(x) =

∑√
k=0 (hj,i(x)x)k, where and henceforth in the section, arith-

metic is modulo 2 unless explicitly mentioned otherwise. We cannot compute
this on the fly because we no longer have the power of TC0at our disposal. We
will side-step the issue of computing g versus maintaining it by just considering
an implicit representation of it as described below.

Observe that gi,j(x) = (1 − xhj,i(x))−1 by just summing up the geometric
series representing it. Thus gi,j(x) ∈ Z2(x) We will maintain each hs,t(x) as a
rational polynomial i.e. the ratio of two polynomials rather than expand it as an
infinite series/truncation of infinite series. If we do it näıvely the degrees of the
numerator and denominator will start to grow as more and more updates occur.
A simple observation takes care of this:

Observation 7. Let α(x) = β(x)
γ(x) ∈ Z2(x) be a rational function such that the

constant term γ(0) of γ(x) is 1. Further, let β̃(x), γ̃(x) be the truncations of

β(x), γ(x) after the degree d terms. Let α̃(x) = β̃(x)
γ̃(x) . Then α̃(x) is well defined

and in the power series expansion of α̃(x) all the terms of degree at most d have
the same coefficients as the corresponding terms in the expansion of α(x).

Thus we maintain polynomials β̃s,t(x), γ̃s,t(x) with the intention that f̃s,t(x)
will be the ratio of these two polynomials. Thus the update rule Equation (1) is
converted to the following equations:

β′
s,t(x)= β̃s,t(x)

(
γ̃j,i(x)− xβ̃j,i(x)

)
γ̃s,i(x)γ̃j,t(x) + γ̃s,t(x)β̃s,i(x)xγ̃j,i(x)β̃j,t(x) (2)

γ′
s,t(x)= γ̃s,t(x)γ̃s,i(x)

(
γ̃j,i(x)− xβ̃j,i(x)

)
γ̃j,t(x) (3)

We can do this in AC0[2] because of Fact 1.
Next we truncate the two polynomials above at degree d (where d is the sum

of all weights in the graph = O(n4)), to obtain the new values β̃≤
s,t(x), γ̃≤

s,t(x).
This is also doable in AC0[2].
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To answer a query about whether there exists an s, t-path in the graph,
we need to check the polynomials β̃s,t(x) for the various weighting functions
promised by [15] and if any of them is non-zero we know that indeed there exists
such a path. Conversely, because we have shown that in a weighting under which
there exists a unique min-weight path (of some weight, say w ≤ d = O(n4)) be-
tween s, t, it must be the case that the coefficient of xw in the power series

expansion of
β̃s,t(x)
γ̃s,t(x)

is non-zero hence β̃s,t(x) must also be non-zero. This com-

pletes the proof of Theorem 2. �

5 Proof of Theorem 3: Planar Reachability in DynFO

In this section we show that reachability in an embedded directed planar graph
can be maintained in DynFO when adding or removing edges. Maintaining the
transitive closure of a directed graph when adding an edge is easy, and we handle
the deletion of edges by maintaining a type of dual to the directed graph, so
that removing an edge from the original graph corresponds to adding an edge
to the dual, and vice versa. To complete the proof, we show that an extended
reachability relation on the dual graph is first-order definable in terms of the
relation on the original graph, and vice versa.

We present the proof first in the context of a changing directed graph G which
is a directed subgraph of a fixed, embedded planar graph H . Maintaining our
data structures when planar edges are added to or removed from H presents no
serious difficulties, and the details of this are left to the full version of the paper.

Let H be an embedded planar multigraph, and H ≤ be its planar dual, with
self-loops allowed in both graphs. Observe that a cycle in H gives a cut set in
H ≤: If all edges in H ≤ dual to (crossing) the edges of a cycle in H are removed,
then the remaining graph is not connected. This will be the basic idea of our
proof, but our data structures become more complex to handle directed edges
and to keep track of what is inside of a cycle and what is outside of a cycle.

The directed graph G is a directed subgraph of H , with up to two oppositely
directed edges of G corresponding to each edge of H . We will define a directed
dual complement graph Gddc that is similarly a directed subgraph of H ≤, and
with the property that an edge is in Gddc iff its corresponding dual edge is
missing from G, where dual edge is as defined below.

To determine whether directed paths in G and Gddc cross each other, we
associate a crossing number with each pair of directed paths, (p, q) where p is
a path in G, and q a path in Gddc. This is the net number of times p crosses
q, where a crossing is positive if q crosses p in a right to left direction, when
oriented in the direction that p is going. If q crosses in the opposite direction,
the crossing is a negative crossing. If the pair of paths is a pair of edges (e, e≤),
the crossing number is 0 if they do not cross, and is 1 or −1 if the two edges
cross. The crossing number of paths is just the bilinear extension of this map to
sets of edges, denoted p⊗ q.

We can now define the dual directed complement of G, Gddc, as the directed
subgraph of H ≤ that contains only the edges whose crossing number with every
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edge of G is 0 or −1. In other words, for each edge e of G, we remove from the
graph Gddc the unique edge whose crossing number with e is +1. By construction,
then, all paths in G have a negative or zero net crossing number with all paths
in Gddc.

Fig. 1. Directed Dual Complement

In Figure 1, the graph G is shown with circles and solid arrows, and the
graph Gddc is shown with dashed arrows for directed edges, and without its
nodes drawn. A cycle in Gddc separates two points in G. For example, in Figure
X, there is a clockwise cycle of dashed edges in Gddc surrounding point p, and
there is therefore no path in G connecting p to a point outside this cycle. If
there was a path like that, it would have a crossing number of 1 with the cycle
in Gddc, which is impossible, because we excluded all edges with positive crossing
numbers from Gddc. It remains, now, to construct a data structure that will tell
us about all cycles in G and Gddc, and which points are inside and outside them.

5.1 Canonical Paths and Possible Crossing Numbers

If s and t are both inside or both outside a simple cycle in Gddc, then all paths
from s to t will have a net crossing number of 0 with the cycle. If the cycle
separates s and t, the net crossing number will be 1 or −1. So we can pick any
path from s to t to compute the net crossing number with the cycle. Therefore,
we will maintain a spanning tree T of H , and a spanning tree T ≤ of H ≤, and
will only compute the net crossing numbers of paths in Gddc with paths in the
spanning tree T , and vice versa.

Given a fixed path from s to t, such as the canonical spanning tree path, then
if there are two paths from u to v in Gddc with net crossing numbers i and j
with that path from s to t, then for any k between i and j ,there is a path from
u to v with crossing number k. The proof is left to the full version of the paper.
This fact allows us to store only two numbers in our data structure for every
such quadruple (s, t, u, v): the lowest number and highest number in the set of
possible crossing numbers, if these bounds exist.
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5.2 The Paths in G are First-Order Definable from the Paths in
Gddc

It should be clear that the bilinearity of net crossing number makes it easy
to compute the new sets of possible crossing numbers when an edge is added
to Gddc. Let the set of possible net crossing numbers of a path from u to v
in Gddc with the canonical spanning tree path from s to t in H be denoted
Crossings((u, v), (s, t)). If we denote the dual concept, of possible crossing num-
bers of paths from s to t in G with canonical paths in H ≤ by Crossings≤, then
we can easily update Crossings when deleting an edge from G, because this is
just adding an edge to Gddc. We can also update Crossings≤ when adding an
edge to G. If we can compute Crossings≤ easily from Crossings, then we can
maintain both of them when adding or deleting edges.

The first part of the formulas relating the two is relatively easy.

Theorem 8. If the net crossing number of the canonical paths from s to t and
u to v is k0, then if i ∈ Crossings((u, v), (s, t)), and j > k0 − i, then j /∈
Crossings≤((s, t), (u, v))

Proof. This follows nicely from the bilinearity of ⊗ and the fact that the net
crossing number of two cycles is zero (on a genus 0 surface, like the plane or a
sphere). Let c be the canonical path from s to t in H and c≤ be the canonical
path from u to v. Then if p is the path with crossing number i from u to v in
Gddc and q is any path from s to t in G, then q − c is a cycle and p − c≤ is a
cycle. We will show that the crossing number of q and c≤ must be less than or
equal to k0 − i.

0 = (p− c≤) ⊗ (q − c)

= p⊗ q − c≤ ⊗ q − p⊗ c + c≤ ⊗ c

= p⊗ q − c≤ ⊗ q − i + k0.

But since p is a path in G and q is a path in Gddc, we know that p⊗ q ≤ 0. So

0 ≤ −c≤ ⊗ q − i + k0

c≤ ⊗ q ≤ k0 − i.

The opposite direction, that if j /∈ Crossings≤((s, t), (u, v)), then certain paths
must exist, is more complex. The path that must exist is not necessarily a single
path from u to v in Gddc, but a path from a cycle in Gddc containing u to a cycle
containing v. The configuration of two cycles connected by a path looks like a
pair of eyeglasses, so we call this the ”Eyeglass Lemma”, and prove it in the
full version of the paper. The proof constructs these paths from the boundaries
between regions reachable from s with crossing number i, and those not reachable
from s with that crossing number. Any edge in this boundary must be in Gddc or
in the canonical spanning path from s to t, since otherwise the edge crossing the
boundary would be in G and the path could be extended by this edge without
changing the crossing number. Querying whether such an eyeglass configuration
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exists is a first-order query, since we can check all possible pairs of endpoints of
the path between the two cycles, for the existence of the cycles at those points
and the path between them.

The final lemmas, whose proofs are left to the full version of the paper, are
that these quantities can be updated when the planar graph H is changed by
adding or removing an edge, and that all of these quantities can be updated by
first order formulas, putting the data structure in the dynamic complexity class
DynFO.

6 Open Ends

A promising direction for future work on planar directed reachability is extending
our proof from fixed embedded planar graphs to planar graphs whose embedding
may change dramatically when adding and removing edges. It appears that a
data structure maintaining the decomposition of the planar graph into 3-vertex-
connected components (the SPQR-decomposition) would be necessary to keep
track of this. Further directions include reducing the complexity of the update
computations of this paper’s algorithm from AC0 circuits to quantifier-free first-
order formulas, which use function terms but no quantifiers. These correspond
to constant-depth circuits with selection gates (multiplexers), but only Boolean
gates with constant fan-in. The technique of cut-cycle duality does not seem
to extend much beyond the family of planar graphs. However, the techniques
imported in this paper such as the Isolation Lemma and its de-randomization,
might be useful to further reduce the dynamic complexity of reachability in
general directed graphs. As a step towards the long-standing conjecture that
reachability in arbitrary directed graphs is in DynFO, one may first want to
improve our ∩pAC

0[p] bound for updates, to AC0. We note again that with the
current knowledge ∩pAC

0[p] may in fact be equal to AC0.
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1 Introduction

This paper shows that many copies of a single rotatable polygonal tile type
suffices to simulate any square tile assembly system.

Winfree [15] introduced the abstract Tile Assembly Model (aTAM) as a clean
theoretical model for nanoscale self-assembling systems. In several experiments
of increasing complexity and reliability [16,2,5,13,3], this model has been shown
to be physically practical, with tiles composed of DNA strands. As a result,
the aTAM has become the standard in theoretical work on self-assembly, with
previous work exploring its abilities and limitations in terms of its ability to use
computation to assemble shapes and patterns [12,1,14,6], as well comparing its
computational power and simulation abilities [7,10,18].

In the aTAM, we start with a single specific tile, or a connected assembly
of tiles, (called the seed) and repeatedly add any tile to the assembly that has
enough matching glues (colored edges) to “stick” to the rest of the assembly.
Each glue type (color class) has a natural number strength, which represents the
affinity for matching glues of that type, and a global temperature (typically 2) of
the system specifies the total required strength for a tile to attach to the assem-
bly. Unlike Wang tiling, in the aTAM we can never throw away partially formed
assemblies; in fact, the aTAM can be seen as a special kind of asynchronous, and
nondeterministic, cellular automaton. See Section 2 for more details.

1.1 Our Results I: Universal Self-Assembly with One Tile

We prove in Section 5 that any aTAM system can be simulated by just a single
tile, in a generalization of the aTAM model called the polygonal free-body Tile
Assembly Model (pfbTAM). More precisely, we show that any temperature-τ
aTAM system can be converted into a temperature-τ pfbTAM system with a
single tile type tU such that the two systems have exactly the same producible
assemblies, modulo isometry. This construction is self-seeding in the sense that
it starts from a single copy of the very same tile t; it is even a challenge to get
the next copy of t to attach without uncontrolled infinite growth.

Another contribution of this paper is in our proof technique: we use a chain of
four simulations. Such long chains of simulations, or reductions, are commonplace
throughout the theory of computation, but not seen (so far) in self-assembly. Our
single tile simulates an arbitrary square tile assembly system T as follows. We
begin with the fact that the aTAM is intrinsically universal [7], which means that
there is a single set of square tiles U that can simulate any square tile assembly
system T . Via the construction in [7], the tile assembly system T that we wish
to simulate is first encoded as a seed assembly using tiles from the intrinsically
universal tile set U to give a tile assembly system UT . Next, the system UT
is simulated by a “low-strength” hexagonal tile assembly system, as described
below. The main result of this paper is that the resulting hexagonal assembly
system can be simulated by a pfbTAM system consisting of only a single tile
tU . And, of course, our single tile tU works for any such system T we wish to
simulate. In particular, both the geometry and the dynamics of the simulated
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system are, modulo rescaling, precisely simulated: for every sequence of tile place-
ment in the simulated system there is a sequence of blocks of tile placements of
tU in the simulator system, and vice-versa. Hence, when appropriately seeded,
tU assembles scaled-up versions of what is assembled by T , and in the same way
that T does it.

It is worth noting that the notion of intrinsic universality, with its strict no-
tion of simulation, gives a framework to compare the power of tile assembly
models that at first sight seem very different and perhaps difficult to compare.
For example, in this paper we study rotatable and fliapable polygons, and trans-
latable polyominos, yet simulation gives a way to directly compare the power of
this model with the well-known square (aTAM) model. Intrinsic universality is
giving rise to a kind of complexity theory for self-assembly systems allowing us
to tease apart the power of different models [18].

Our universal tile tU is a kind of geometric analog to a universal Turing
machine, simultaneously simulating the shape construction and computational
ability of an arbitrary tile assembly system (although our definition of simula-
tion is in fact stronger—we care about dynamics, not merely input to output
mappings). The existence of a system with just a single tile demonstrates that
geometry alone (as opposed to, say, a large, although constant, number of square
tile types [7]) suffices to bootstrap a system of self-assembly in even the most
restrictive case where the system may only utilize copies of a single shape.

The pfbTAM model differs from aTAM in two ways: tiles consist of general
simple polygons rather than squares and tiles are (possibly) permitted to rotate.
Both are physically realistic aspects of self-assembling systems. For example,
DNA origami [11] is a rapidly evolving technology that has been used to suc-
cessfully build numerous complex shapes using strands of DNA. The technology
has evolved to the point where free software automatically designs DNA to fold
into essentially arbitrary desired shapes. Polyomino generalizations of square
aTAM tiles have already been developed in practice [17] and studied in the-
ory [8]. Rotation is clearly a natural attribute of all physical systems – prior
work in the aTAM used a simple trick to eliminate rotation. Although our single
polygonal tile tU has such a large number of sides that its fabrication would be
extremely challenging, our work here demonstrates that rotation can be used as
an encoding mechanism to design systems that reuse a single tile at various ro-
tations to achieve universal tile assembly systems. It would not be inconceivable
to build a single tile with a more modest number of sides that simulates a simple
square tile system.

The full version of this paper also shows the existence of a single tile that
simulates any square tile system in the Wang model of plane tiling.

1.2 Our Results II: Hexagonal Tile Assembly Systems

As noted above, part of our proof involves the use hexagonal tiles: Section 4
describes aTAM systems with unit-sized hexagonal tiles on a hexagonal grid. The
only previous paper considering this model [9] simply showed differences between
squares and hexagons with respect to infinite constructions. Here we show that
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any temperature-2 square aTAM system can be simulated by a temperature-
2 hexagonal aTAM system in which all glues have strength at most 1. The
construction works at a scale factor of only 3: each square tile is simulated by a
3× 3 block of hexagonal tiles. The main reason we use hexagons is that no such
system is possible for square systems: any temperature-2 square aTAM system
in which all glues have strength at most 1 cannot grow outside its bounding box
(and so it cannot simulate arbitrary square-tile systems).

This result is a key step to proving our main positive result (aTAM simula-
tion allowing translation and rotation). Specifically, we show in Section 5 how
to simulate any temperature-2 hexagonal aTAM system that uses exclusively
strength-1 glues with a rotatable polygon tU that encodes different tile types by
attaching at different rotation angles. Independent of their use in our construc-
tions, hexagonal systems without strength-2 glues could be significantly easier
to implement in the laboratory than square systems using both strength-1 and
strength-2 glues in arbitrary arrangements on the tiles.

1.3 Our Results III: Linear-Time Computation with a Single
Translation-Only Tile

In Section 6, we prove both a positive and a negative result on single-tile systems
where the tile is forbidden from rotating. On the positive side, we prove that
single-tile translation-only systems have non-trivial power: they are capable of
time-bounded simulation of computationally universal 1D cellular automaton.
Any 1D cellular automata that runs for n steps can be simulated starting with
a seed assembly of O(n) tiles. This is proved by first showing that single-tile
translation-only systems can simulate a restricted class of multi-tile systems,
which have previously been shown to simulate computationally universal 1D
cellular automata.

On the negative side, we prove that translation-only single-tile systems need
a seed assembly consisting of at least four tiles to carry out any non-trivial
assembly. More formally, we prove that any single-tile translation-only system
with a seed tile consisting of one, two, or three tiles either produces an infinite
assembly, or only the seed assembly. More generally, we conjecture that no finite
seed suffices for unbounded computational power with single-tile, translation-
only systems, in stark contrast to our result that general single-tile pfbTAM
systems have this power starting with a single-tile seed.

2 Model Definitions

The polygonal free-body Tile Assembly Model or pfbTAM generalizes self-assembly
models such as the aTAM by using tiles with arbitrary polygonal shapes that may
be translated and rotated. In our positive results, we only utilize tiles whose shapes
are convex regular n-gons with small surface geometries. Our negative results are
valid for arbitrary polygons, as discussed in Section 6.

A pfbTAM system Γ is defined as Γ = (T,Σ, τ, σ), where T is a tile set of
polygonal tiles, Σ is a collection of glue types, τ ∈ N is the temperature of the
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system, and σ is a seed assembly consisting of an arrangement of tiles from T and
their locations. Each tile in T has a shape defined by a simple polygon (a polygon
without holes), and each side of the tile has is assigned a glue from the collection
of glue types Σ of Γ . Each glue type g ∈ Σ is assigned a positive integer value
called a strength with the exception of special null glue whose strength is 0.

If a pair of tiles of Γ are arranged in the plane such that their interiors do
not overlap, and a pair of their edges are coincident, then these edges are said to
form a bond. The strength of this bond is determined by the glues of both sides,
with the strength equal to the strength of the glue if both sides have the same
glue type, and zero otherwise.

A collection of tiles arranged in the plane whose interiors are pairwise disjoint
is an assembly. The bond graph of an assembly is the (planar) multigraph con-
sisting of labeled nodes for each tile, and an edge between a pair of nodes for each
positive-strength bond the tiles share. An assembly is τ-stable if any edge-cut of
the bond graph of the assembly has cut edges whose total corresponding bond
strength meets or exceeds τ , the temperature of the system.

The seed assembly σ of Γ is a τ -stable assembly consisting of the tiles in T .
The assembly process consists of attaching single tiles of T to a growing τ -
stable assembly, beginning with σ, the seed assembly of the system. Because
each single-tile attachment must yield a τ -stable assembly, a tile can attach to
the growing assembly if and only if it is able to form bonds with assembly whose
total strength is at least τ . Any assembly A that can be formed by this process
is a producible assembly of Γ and is said to be produced by Γ . If no tile can
attach to A, then A is also a terminal assembly of Γ . In some cases we consider
pfbTAM systems in which tiles are not permitted to rotate, but instead merely
translate. We call these system translation-only pfbTAM systems.

The well-studied aTAM and hTAM models (reviewed in Section 1) are both
special cases of translation-only pfbTAM systems. An abstract Tile Assembly
Model (aTAM) system is a translation-only pfbTAM system Γ = (T,Σ, τ, σ)
where the tiles in T are unit squares, while a hexagonal Tile Assembly Model
(hTAM) system is a system where the tiles in T are unit hexagons.

In Section 6 we also consider a restricted class of aTAM systems (rotated by
45◦) called pyramid aTAM systems, proving that single-tile, translation-only pfb-
TAM systems are capable of simulating them. An aTAM system Γ = (T,Σ, 2, σ)
is said to be a pyramid aTAM system if three conditions hold. First, σ contains n
tiles configured in the format described in Figure 1, with the property that all
coincident tile edges have matching glues. Second, all glues in T have strength 1.
Third, the tile set T and seed σ are such that no tiles can attach to the southern
face of the seed. In addition, a pyramid aTAM system is said to be double-
checkerboarded if every tile attaching to the seed assembly has distinct tile types
at the locations to the southwest, south, and southeast of the tile’s attachment
location. An example of a coloring scheme that denotes which tiles must be of
differing type is shown in Figure 1.
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Fig. 1. Pyramid aTAM systems start with a seed assembly (gray) and grow up-
wards with cooperative temperature-2 bonding, yielding an assembly that is maximally
pyramid-shaped. They can be used to simulate the light cone of a cellular automaton.

3 Simulation Definitions

En route to proving that pfbTAM systems with a single tile type are powerful,
we prove that pfbTAM and hTAM systems can capture the behavior of, or
simulate, aTAM systems. Below we define what it means for a pfbTAM system
to simulate hTAM and aTAM systems, and for an hTAM system to simulate an
aTAM system.

Loosely defined, a system simulates another if there is a mapping between the
producible assemblies of both systems, such that a producible assembly A yields
another producible assembly A√ via a single-tile addition in one system if and
only if, in the other system, the analogous assembly to A yields an analogous
assembly to A√ via a single-tile addition. In Sections 3.2 and 3.3 the simulating
systems use a block of tiles to represent a single tile in the simulated system,
and each single-tile addition in the simulated system is equivalent to a short
sequence of single-tile additions in the simulated system, where the final addition
completes the simulation of the single-tile addition in the simulated system.

3.1 Simulating hTAM Systems with pfbTAM Systems

A pfbTAM system Γp = (Tp, Σp, τp, σp) simulates an hTAM system Γh =
(Th, Σh, τh, σh) if there exists a mapping φ : Tp × [0, 2π) → Th of orientations
(specified by an angle in [0, 2π)) of tile in Tp to tiles in Th such that there exists
a bond graph GAp generated by a producible assembly Ap of Γp if and only if
mapping the label of each node v of GAp to φ(p) yields a bond graph GAh

of a
producible assembly Ah of Γh.

Also, for each producible assembly A√
p produced by Γp via a single-tile addition

to assembly Ap, an assembly A√
h in Γh equivalent to A√

p via φ can be produced
by Γh via a single-tile addition to assembly Ah equivalent to Af via φ and vice
versa. In other words, equivalent assemblies are producible in both systems by
equivalent sequences of tile additions.
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3.2 Simulating aTAM Systems with hTAM Systems

Our definition of pfbTAM systems simulating hTAM systems uses a strict one-to-
one-correspondence between tiles in the simulated and simulating systems. Here
and in Section 3.3, our definition of hTAM systems simulating aTAM systems
has a slightly weaker correspondence called a c-block representation where each
tile in the simulated aTAM system corresponds to a c × c grid of tiles in the
simulating hTAM system.

Let Ah be an assembly of an hTAM system Γh = (Th, Σh, τh, σh) and Aa

be an assembly of an aTAM system Γa = (Ta, Σa, τa, σa). Then Ah is a valid
c-block representation of Aa for an odd, positive integer c and partial function
φ : Th → Ta if two conditions hold. First, that Ah is evenly divisible in c × c
blocks of tiles, as shown in Figure 2. Second, that x is in the domain of φ if and
only if x is at the center of a c× c block.

Given a valid c-block representation Ah, define the c-bond graph of Ah to be a
graph with a labeled node for each center tile x of a c× c block with label φ(x).
The c-bond graph of Ah has an edge between two nodes corresponding to tiles x
and x√ if the bond graph of Ah has a length-c path between x and x√ consisting
of edges between tiles exclusively at angles 90◦ and −90◦, or 120◦ and −30◦.

Now we are ready to define simulation. We say that Γh simulates Γa at scale
c, if there exists a partial function φ : Th → Ta such that three conditions hold.
First, every tile in any producible assembly of Γh of size greater than c2 − 1 is
within distance at most c from a tile x for which φ(x) is defined. Second, there
exists a producible assembly Ah of Γh that is a valid c-block representation for
function φ(x), if and only if mapping the label of each node v in the c-block
bond graph of Ah yields a bond graph of a producible assembly of Γa. Third, for
each producible assembly A√

a of Γa produced by Γa via a single-tile addition to
assembly Aa, there are equivalent c-block representation assemblies A√

h and Ah

of Γh, such that A√
h is producible from Ah via a sequence of tile additions, for

which each producible assembly created during this sequence of tile additions,
the thing in Γh is Ah.

3.3 Simulating aTAM Systems with pfbTAM Systems

We define a c-scaled simulation of an aTAM system by a pfbTAM system by
mapping c × c blocks within pfbTAM assemblies to aTAM tiles, where this
mapping reads rotations of pfbTAM tiles in the blocks. A pfbTAM system Γp =
(Tp, Σp, τp, σp) simulates an aTAM system Γa = (Ta, Σa, τa, σa) at scale c ∈ N

if the following conditions hold, based on the more formal definition of [7].

First, there exists a mapping φ : ((Tp ∪ {∅})× [0, 2π))c
2 → Ta ∪ {∅} of c× c

blocks of tiles from Tp (with the output of φ depends on the orientations of those
tiles, specified by a rotation angle in [0, 2π)) and empty locations (denoted ∅)
to tiles in Ta and empty locations such that for every producible assembly Ap

of Γp there is a producible assembly Aa in Γa, where Aa = φ≤(Ap) and for every
producible assembly Aa of Γa there exists a producible assembly Ap in Γp, where
Ap = φ≤(Aa) (here φ≤ denotes the function φ applied to an entire assembly, in
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the most obvious block-wise way). We also require that Ap maps cleanly to Aa

under φ≤, that is, for all non-empty c×c blocks b in Ap it is the case that at least
one neighbor of φ(b) in φ≤(Ap) is non-empty, or else Ap has at most one non-
empty c× c block. In other words, π may have tiles in c× c blocks representing
empty space in α, but only if that position is adjacent to a tile in α.

Second, there exist producible assemblies Aa and A√
a of Γa such that Aa →1 A√

a

(growth by single tile addition), then for every producible assembly Ap of Γf ,
where Aa = φ≤(Ap) it is the case that there exists A√

p such that Ap →≤ A√
p

(growth by one or more tile additions) in Γf , where A√
a = φ≤(A√

a). Furthermore,
for every pair of producible assemblies Ap, A√

p of Γf , if Ap →≤ A√
p, and Aa =

φ≤(Ap) and A√
p = φ≤(A√

p), then Aa →≤ A√
a for assemblies Aa, A√

a of Γa.

3.4 Simulating Pyramid aTAM Systems with Single-Tile
Translation-Only pfbTAM Systems

In Section 6 we simulate pyramid aTAM systems (defined in Section 2), a special
class of aTAM systems that have significant computational power but limited
enough to permit simulation by translation-only, single-tile pfbTAM systems.
Recall that a pyramid aTAM system is a restricted aTAM system in which
each tile must attach to the growing assembly using exactly the southwest and
southeast sides. The key idea of the simulation is to place an imaginary grid of
boxes over a given assembly in the simulating translation-only system to define
the position each tile (and specifically the tile’s north/south position) and thus
the tile of the aTAM system this tile is simulating; see Figure 3 for the idea.

We now define the mapping of an assembly in a single-tile, translation-only
pfbTAM system Γp = (Tp, Σp, 3, σp) to an assembly in the simulated pyramid
aTAM system Γa = (Ta, Σa, 2, σa). Consider a 2-stable assembly A consisting of
translations of tiles of type p. Now consider the westmost, southmost tile in A.
Assume this tile sits at coordinate position (0,−x1). Define a partial mapping
f : Z × Z → Z × Z × T that maps tile coordinate locations within an assembly
to both a 2D coordinate position and a tile type in T .

Given the partial mapping f , for an assembly A produced by Γp, we say A
simulates the assembly A√ in Γa if A√ is the assembly obtained by including each
tile of type t at position (w, y), such that f(x, y) = (w, u, t) for some tile in A at
position (x, y). If any tile in A is at a position at which f is not defined, then A
does not have a defined mapping to a square aTAM tile assembly over T .

We say that Γp terminally simulates, or simply simulates, Γa if the set of
terminal assemblies of Γp maps exactly to the set of terminal assemblies of Γa. 1

4 Low-Strength hTAM Systems Simulate aTAM Systems

In this section we prove that any temperature-τ aTAM system can be simulated
by a temperature-τ hTAM system that uses only glues of strength less than

1 This is a weaker definition of simulation than what is defined for the other pairs of
models. While our construction actually satisfies an equivalent stronger definition,
we omit the more involved simulation definition for simplicity.
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τ (called low-strength glues). We call these hTAM systems low-strength hTAM
systems. This is used later in Section 5 to simulate temperature-τ aTAM systems
with single-tile pfbTAM systems (Lemma 2). See Figure 2 for an example.

Fig. 2. Simulating a non-deterministic attachment in the aTAM via a low-strength
hTAM system. The center location in the 3×3 block is a location of contention; multiple
blocks compete and/or cooperate to claim it.

Lemma 1. For any aTAM system Γa = (Ta, Σa, τ, σa) with |σa| = 1 and τ ≥ 2,
there exists an hTAM system Γh = (Th, Σh, τ, σh) that simulates Γa at scale 3
and has the property that all glues in Σh are of strength less than τ . Also, |Th| =
O(|Ta|2) and |σh| = 3.

Furthermore, it is straightforward to see from the above construction that
an aTAM system with seed σa and |σa| ≥ 1, i.e. a seed assembly consisting of
multiple tiles, can be simulated by an hTAM system, where the 9|σa| hexagonal
tiles simulating the aTAM seed assembly are appropriately placed to represent
that seed assembly. This gives the following corollary:

Corollary 1. For any aTAM system Γa = (Ta, Σa, τ, σa) with |σa| ≥ 1 and τ ≥
2, there exists a low-strength hTAM system Γh = (Th, Σh, τ, σh) that simulates
Γa at scale 3. Also, |Th| = O(|Ta|2) and |σh| = 9|σa|.

5 Single-Tile pfbTAM Systems Simulate Low-Strength
hTAM Systems

In this section we show that pfbTAM systems with a single tile type can simulate
low-strength hTAM systems. Combining this result with Lemma 1 proves that
single-tile pfbTAM systems can simulate all aTAM systems. Two-step simulation
enables independent resolution of two main difficulties: using rotation as an
encoding mechanism and eliminating uncontrolled growth of a single tile type
with strength-τ glues.
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Lemma 2. For any low-strength hTAM system Γh = (Th, Σh, τ, σh) with |σh| =
3, there is a pfbTAM system Γp = (Tp, Σp, τ, σp) with |Tp| = 1 and |σp| = 3 that
simulates Γh at scale 1.

Theorem 1. (Universal Single-Tile Simulation) There exists a polygonal tile tU
such that for any aTAM system Γa = (Ta, Σa, τa, σa) with |σa| = 1 and τa ≥ 2,
there exists a pfbTAM system Γp = ({tU}, Σp, 2, σp) simulating Γa.

Here U denotes the intrinsically universal tile set [7]. As U is a fixed tile set,
tU is a tile with a constant number of sides. By adapting ideas from [4], we can
eliminate the need for a multi-tile seed assembly, making the system self-seeding.

Theorem 2. (Self-Seeding Single-Tile Simulation) For any aTAM system Γa =
(Ta, Σa, τ, σa) with |σa| = 1 and τ ≥ 2, there exists a pfbTAM system Γp =
(Tp, Σp, τ, σp) with |Tp| = 1 and |σp| = 1 that simulates Γa.

6 Single-Tile Translation-Only pfbTAM Systems
Simulate Cellular Automata

First we prove that single-tile pfbTAM systems where rotation is forbidden,
called translation-only systems, are capable of arbitrary computation given an
appropriately large seed. See Figure 3 for an example.

Theorem 3. For any double-checkerboarded pyramid aTAM system Γa = (Ta,
Σa, 2, σa), there exists a translation-only pfbTAM Γp = ({tp}, Σp, 3, σ2) that
simulates Γa. Furthermore, tp has O(|Ta|5) sides.

Next, we prove that any single-tile, translation-only pfbTAM system with a
seed assembly consisting of fewer than four tiles either produces only the seed
assembly, or produces an infinite assembly.

Lemma 3. Let S be a two-dimensional, bounded, connected, regular closed set
S and v be a two-dimensional vector. Define S + v = {p + v : p ∈ S}. If
S + v ∩ S = ∅, then S + c · v ∩ S = ∅ for any non-zero integer c.

Theorem 4. For any translation-only pfbTAM system Γ = (T,Σ, τ, σ) with
|T | = 1 and |σ| = 1, the set of producible assemblies of Γ is either {σ} or
contains assemblies of unbounded size.

Corollary 2. There are aTAM systems that cannot be simulated by any single-
tile, translation-only pfbTAM system.

Theorem 4 utilizes Lemma 3 and a simple observation about self-seeding sys-
tems: to form a two-tile assembly requires a strength-τ attachment between two
individual tiles.

Theorem 5. For any translation-only pfbTAM system Γ = (T,Σ, τ, σ) with
|T | = 1 and |σ| = 3, the set of producible assemblies of Γ is either {σ} or
contains assemblies of unbounded size.



378 E.D. Demaine et al.

Fig. 3. An assembly of sliders (right) is mapped to a corresponding square tile assembly
(left) by placing an imaginary grid (light blue)

A detailed proof is in the full paper. Matters get more involved with arbitrary
seeds, and we conjecture polynomially large seeds are needed in general.

Conjecture 1. Let Γ = (T,Σ, τ, σ) be a translation-only pfbTAM system with
|T | = 1 and |σ| = n. If |σ| = n, then the set of producible assemblies of Γ either
contains exclusively assemblies of size O(n2) or contains assemblies of unbounded
size.
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Abstract. We study online algorithms for the Canadian Traveller
Problem (CTP) introduced by Papadimitriou and Yannakakis in 1991.
In this problem, a traveller knows the entire road network in advance,
and wishes to travel as quickly as possible from a source vertex s to a
destination vertex t, but discovers online that some roads are blocked
(e.g., by snow) once reaching them. It is PSPACE-complete to achieve
a bounded competitive ratio for this problem. Furthermore, if at most k
roads can be blocked, then the optimal competitive ratio for a determin-
istic online algorithm is 2k + 1, while the only randomized result known
is a lower bound of k + 1.

In this paper, we show for the first time that a polynomial time
randomized algorithm can beat the best deterministic algorithms, sur-
passing the 2k + 1 lower bound by an o(1) factor. Moreover, we prove

the randomized algorithm achieving a competitive ratio of
(
1+

√
2

2

)
k+1

in pseudo-polynomial time. The proposed techniques can also be applied
to implicitly represent multiple near-shortest s-t paths.

1 Introduction

Imagine attempting to drive across your favorite northern country in the dead
of winter. Snow is falling in unpredictable patterns, effectively blocking certain
roads from passage (either from lack of plowing or accident pile-ups). You have
purchased a complete road map, modeled as a weighted graph G = (V,E) whose
edges represent roads and whose edge weights represent the time to traverse
the edge. But you have no knowledge of which roads are blocked by weather or
accidents, until you reach a vertex incident to such a road, in which case you can
directly observe the blockage before attempting traversal. This problem, called
the Canadian Traveller Problem (CTP), was defined by Papadimitriou
and Yannakakis [14] in 1991. The objective is to design an efficient route from a
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source to a destination under this condition of uncertainty. The major difficulty
in developing a good strategy based on partial information is to make decisions
without being able to predict blockages.

Prior Work on CTP. Papadimitriou and Yannakakis [14] proved that it is
PSPACE-complete to devise a CTP strategy that guarantees a bounded com-
petitive ratio. They also proved that the stochastic model of this problem, in
which a probability that each edge is blocked, independent of all others, is given
in advance, is #P-hard when minimizing the expected competitive ratio to the
offline optimum [14]. Bar-Noy and Schieber [1] investigated several variations of
the CTP from the worst-case perspective, where the objective is to find a static
(offline) algorithm that minimizes the maximum travel cost [2]. They considered
the k-CTP in which the number of blockages is bounded by k. Note that for an
arbitrary k, the problem of designing a strategy that guarantees a given travel
time remains PSPACE-complete, as has been shown in [1,14].

During recent decades, no significant progress has been made in the develop-
ment of online approximation algorithms for solving the k-CTP. Basically, two
simple deterministic strategies for solving this problem are available [16,17]. The
greedy algorithm (GA) starts at a vertex v and finds the shortest v-t path using
Dijkstra’s algorithm [5] in a greedy manner based on the current blockage infor-
mation. The other strategy, called the reposition algorithm (RA), proposed by
Westphal [16], requires the traveller to begin at the source s, follow the shortest
s-t path until she learns about a blockage on the path to t, and then returns to
s and takes a new shortest s-t path based on the updated blockage information.
Westphal [16] proved that no deterministic online algorithm within a (2k + 1)-
competitive ratio exists for the problem, and the simple reposition algorithm
achieves the lower bound. Westphal also proved a lower bound of k + 1 on the
competitive ratios of all randomized online algorithms. Xu et al. [17] developed
a similar deterministic adaptive comparison strategy that incorporates the con-
cept of reposition; the approach achieves the tight deterministic lower bound as
well. They also showed that the competitive ratio of the GA algorithm is expo-
nential in k in the worst case. Huang and Liao [9] considered a generalization of
the k-CTP, called the Double-valued Graph, in which each edge is associated
with two possible distances. They proposed lower bounds and a simple algorithm
that meets the deterministic lower bound. They also extended the k-CTP to the
design of a tour through a set of vertices, in which the traveller visits each vertex
and returns to the origin under the same uncertainty.

Our Results. We develop improved randomized strategies for solving the k-
CTP. Whereas deterministic algorithms have been extensively studied, research
on randomized approaches for solving the problem is lacking.1 In this paper, we
propose a polynomial time randomized algorithm that surpasses the determinis-
tic lower bound of 2k+ 1 by an o(1) factor. In addition, the competitive ratio of

1 Recently, Bender and Westphal proposed a randomized algorithm using the RA
strategy for special graphs in which all s-t paths are vertex-disjoint [3].
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this algorithm can be improved to
(
1 +

◦
2
2

)
k + 1 in pseudo-polynomial running

time. This result is the first demonstration that randomization strictly helps in
the k-CTP for arbitrary graphs.

The rationale behind the proposed randomized algorithm is summarized as
follows. Given a connected graph G = (V,E) with a source s and a destination
t in V and a distance function d : E ∈ R+, the algorithm first selects a set S of
near-shortest s-t paths whose distance cost does not exceed the product of that
of the shortest s-t path and a threshold factor. Precisely, this set comprises all
s-t paths of cost (1+σ)d(s, t), where d(s, t) denotes the shortest travel cost from
s to t and σ is a small constant. Let the set of all such paths be represented by
an apex tree T , which is a tree-like graph that becomes a tree by removal of a
vertex. Then, the traveller traverses T rather than the original graph G using
an online randomized strategy under the same uncertainty until all possible s-t
paths in S are blocked. We repeat the argument until she arrives at t.

Near-Shortest Paths. In order to conduct the randomized algorithm in poly-
nomial time, we need to find all near-shortest s-t paths efficiently, which is of
independent interest. There has been a considerable amount of research inves-
tigating the problem. Eppstein’s well-known approach for finding τ shortest s-t
paths or all s-t paths shorter than a given distance cost, in a directed graph
G = (V,A), spends constant time for each of the τ paths, after a fast prepro-
cessing step that runs in O(|V | log |V | + |A|) time [6]. That is, the τ shortest
paths can be obtained in O(τ) time. Note that τ may be exponential in |V |,
even if all the τ paths have the same distance. In Eppstein’s study, cycles of
repeated vertices were allowed. Recently, Hershberger et al. [8] and Frieder and
Roditty [7] studied finding the τ shortest simple (i.e., loopless) paths in directed
graphs. In undirected graphs, Katoh et al. [11] investigated finding τ shortest
simple paths in an undirected graph G = (V,E), and their algorithm, which
takes O(τ(|V | log |V | + |E|)) time, is the best known-to-date result.

In this paper, we propose an implicit representation, constructed in O(μ2|E|2)
time and O(μ|E|) space, of all strictly jth-shortest s-t paths, 1 ⊆ j ⊆ μ,
where μ is at most the summation of distances of all edges. That is, assume
d1(s, t), d2(s, t), d3(s, t), . . . denotes the strictly increasing sequence of all possible
distinct s-t path distances, where d1(s, t) = d(s, t); our technique can represent
all strictly jth-shortest paths of cost dj(s, t), 1 ⊆ j ⊆ μ. Note that a strictly jth-
shortest s-t path can be obtained by finding τ shortest s-t paths for a sufficiently
large value of τ; however, the worst-case number of such near-shortest s-t paths
can be exponential in the order of G. The proposed implicit representation can
guarantee the pseudo-polynomial running time of the randomized strategy.

2 Preliminaries

Given a connected graph G = (V,E) with a source s and a destination t, let an
s-t path p of length m be p : s = v1 − v2 − · · · − vm − vm+1 = t. We denote the
subset of blockages in E identified by an online algorithm A during the trip as



Canadians Should Travel Randomly 383

EA
i = {e1, e2, . . . , ei} ⊂ E, 1 ⊆ i ⊆ k, where ei is the ith blockage identified, and

let E0 = → and Ek be the set of all blocked edges. Let dEA
i

(s, t) denote the travel
cost from s to t, derived by an adaptive algorithm A that learns about blockage
information Ei during the trip; and let dEk

(s, t) be the offline optimum from s to
t under complete information Ek. For convenience, we denote by dEi(s, t)-path
a route along which the traveller spends at most dEi(s, t). For all instances, the
following property is immediately obtained, where E1 ⊂ E2 ⊂ · · · ⊂ Ek.

d(s, t) = dE0(s, t) ⊆ dE1(s, t) ⊆ · · · ⊆ dEk
(s, t). (1)

We refer to [4,15] and formally define the competitive ratio as follows. An
online randomized algorithm A is cA-competitive against an oblivious adversary
for the k-CTP if

E[dEA
i

(s, t)] ⊆ cA · dEk
(s, t) + λ, 1 ⊆ i ⊆ k,

where E[dEA
i

(s, t)] is the expected travel cost of the randomized strategy A and

cA and λ are constants. To analyze the performance of online algorithms for the
k-CTP, we make two basic assumptions [1,17]: one is that once a blocked edge is
discovered by the traveller, the edge remains blocked forever. The other is that
the given graph G remains connected even if all the blockages are eliminated.

3 Main Algorithm

Given a connected graph G = (V,E) with a source s and a destination t, we
require a set S of all (1+σ)dEi(s, t)-paths from s to t under blockage information
Ei, where σ is a constant, 0 < σ < 1. In contrast to the previous studies, we
find strictly jth-shortest paths, 1 ⊆ j ⊆ μ, for a sufficiently large μ, to derive
the set S of the s-t paths. The technique for so doing will be presented later.

Algorithm 1. Greedy & Reposition Randomized Algorithm (GRR)

Input : A graph G = (V,E) with a source s and a sink t, and constants k and Δ;
Output : A random route from s to t;
1: Let i = 0; κ no blockage found
2: while the traveller does not arrive at t do
3: Find a set S of all (1 + Δ)dEi(s, t)-paths from s to t;
4: Randomly select an s-t path from S to traverse with the following probabilities;

k−i
k−i+1

: she leaves for t along any dEi(s, t)-path until a blockage is found;
1

k−i+1
: she follows Traverse-Tree on the remaining s-t paths in S;

5: if the traveller learns about the jth blockage on the way to t, j < k then
6: the traveller returns to s and i ⇒ j;
7: else if the traveller learns about the last blockage then κ finding all blockages
8: the traveller returns to s and follows a dEk(s, t)-path to t;
9: end if
10: end while
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The main algorithm (Algorithm 1) is described as follows. First, we select a
set S of all (1 + σ)dEi(s, t)-paths from s to t under blockage information Ei,
0 ⊆ i ⊆ k, for a small σ. Then, the traveller uses the reposition RA strategy,
and when restarting at s, she either selects an arbitrary dEi(s, t)-path from S
and traverses the path with probability k−i

k−i+1 , or she chooses the remaining s-t
paths in S and traverses them using the Traverse-Tree procedure with probability

1
k−i+1 . The algorithm repeats until the traveller arrives at t.

To analyze the competitive ratio of the entire GRR algorithm, the traveller is
supposed to be able to efficiently traverse the remaining s-t paths in S following
the Traverse-Tree procedure, whose details will be introduced in the next section.
More precisely, if the extra travel cost of the procedure is bounded within an
acceptable range for every blockage discovered, then the ratio can be improved
over the deterministic lower bound of 2k + 1. The correctness of the claim will
be proved in the next section.

Claim 1: If the traveller uses the Traverse-Tree procedure on the (1+σ)dEi(s, t)-
paths from s to t in S and arrives at t, 0 ⊆ i < k, each blockage increases the
total travel cost of the algorithm by at most (1 + σ)dEk

(s, t) on average.

Theorem 1. The k-Canadian Traveller Problem can be approximated

within a competitive ratio
(
1 +

◦
2
2

)
k + 1, when the number of blockages is up to

a given constant k.

Proof. In each iteration, r, of the while loop, let the cost of conducting the
Traverse-Tree procedure be c(r) for blockages discovered. When the traveller
arrives at t using the GRR algorithm, consider the case whether she learns
about all the blockages or not.

Case 1: The traveller does not learn about every blockage when she arrives at t;
i.e. at least one (1 + σ)dEk−1

(s, t)-path from s to t is unblocked during the trip.
In the worst case analysis, assume the traveller learns about only one blockage

in each iteration of the while loop. Based on Claim 1, c(r) ⊆ (k − r + 1)(1 +
σ)dEk

(s, t) for every iteration r of the loop, where the number of remaining
blockages undiscovered is k − r + 1 in iteration r. Consequently, the expected
travel cost of the GRR algorithm is formulated as follows:

E[dEGRR
k

(s, t)]≤
[

k

k + 1
· 2d(s, t) + 1

k + 1
· c(1)

]
+

k

k + 1

[
k − 1

k
· 2dE1(s, t) +

1

k
· c(2)

]

+
k

k + 1
· k − 1

k
·
[
k − 2

k − 1
· 2dE2(s, t) +

1

k − 1
· c(3)

]
+ · · · · · ·

+

[
1

k + 1
· 2dEk−1(s, t) +

1

k + 1
· c(k)

]
+ dEk(s, t)

≤
(

k

k + 1
+

k − 1

k + 1
+ · · ·+ 1

k + 1

)
· 2dEk−1(s, t)

+

(
k

k + 1
+

k − 1

k + 1
+ · · ·+ 1

k + 1

)
· (1 + Δ)dEk(s, t) + dEk(s, t)

≤
[
k +

1

2
(1 + Δ)k + 1

]
· dEk(s, t).
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Thus, in Case 1, the competitive ratio of the GRR algorithm is at most

[
k + 1

2 (1 + σ) · k + 1
] · dEk

(s, t)

dEk
(s, t)

=
3 + σ

2
· k + 1.

Case 2: The traveller learns about all the k blockages before she arrives at t; that
is, each (1 + σ)dEk−1

(s, t)-path is blocked during the trip. Thus, she eventually
restarts at s and follows a dEk

(s, t)-path to t, as indicated in Line 8 of the GRR
algorithm.

The condition implies that the distance of an offline optimal s-t path is
dEk

(s, t) > (1 +σ)dEk−1
(s, t). Moreover, Claim 1 cannot be applied because the

traveller cannot reach t while conducting the Traverse-Tree procedure. Thus, an
upper bound on the travel cost c(r) in iteration r is derived by exploiting the
RA strategy [16]. In the worst case analysis, c(r) ⊆ 2(k−r+1)(1+ σ)dEk−1

(s, t)
for every iteration r, where the number of remaining blockages undiscovered is
k − r + 1 in iteration r. The expected total travel cost of the GRR algorithm is
formulated in a similar manner:

E[dEGRR
k

(s, t)] ⊆ k(2 + σ) · dEk−1
(s, t) + dEk

(s, t).

Hence, in Case 2, the competitive ratio of the GRR algorithm is at most

k(2 + σ) · dEk−1
(s, t) + dEk

(s, t)

dEk
(s, t)

⊆ k(2 + σ) · dEk−1
(s, t)

(1 + σ) · dEk−1
(s, t)

+ 1 =
2 + σ

1 + σ
· k + 1.

By simple algebra, the competitive ratio of the GRR algorithm can be min-
imized in the two cases by letting the constant σ be

∧
2 − 1. So the expected

competitive ratio is at most
(
1 +

◦
2
2

)
k + 1. Note that for any small constant σ√,

0 < σ√ ⊆ σ =
∧

2 − 1, the competitive ratio is still strictly smaller than the
deterministic lower bound of 2k + 1. �

4 Apex Tree

In this section, we consider the Traverse-Tree procedure conducted in a tree-like
graph, called an apex tree, which can represent all (1 + σ)dEi(s, t)-paths from s
to t, 0 ⊆ i < k, in a given graph G, for a small constant σ.

A graph T = (V,E) is an apex tree if T comprises a source vertex s, a rooted
tree that consists of a destination vertex t (as root) and all other vertices in V ,
and edges that connect s to each leaf and some internal vertices of the tree. That
is, T \ {s} is actually a tree that is rooted at t.

Subsequently, we claim that the Traverse-Tree procedure (see Algorithm 2)
is an optimal randomized strategy for solving the k-CTP in an apex tree T , if
the distance cost of every s-t path in T is assumed to be identical. Note that
the worst-case instance that was reported in [16] to establish the lower bound
of k + 1 is in fact also an apex tree where all s-t paths have the same cost.



386 E.D. Demaine et al.

Algorithm 2. Traverse-Tree

Input : An apex tree T that represents all (1 + Δ)dEi(s, t)-paths from s to t;
Output : A random route from s to t;
1: Assign equal probabilities to every child of the root t, and sequentially repeat the

process for each descendant of t in the order of breadth-first search;
2: The traveller begins at s, and randomly selects an s-t path according to the assigned

probability and leaves for t following that path;
3: while the traveller does not arrive at t do
4: Let the blocked edge discovered by the traveller be e = (vi, vi+1) along a path

p : s = v1 − v2 − · · · − vh = t;
5: The traveller returns to s and eliminates the blocked s-vi path;
6: while every s-t path through the vertex vi+1 is currently blocked do
7: i ⇒ i+ 1; κ depth-first search order of the path p
8: end while
9: Reassign probabilities only to the subtree rooted at vi+1 in a similar way;
10: The traveller randomly selects an s-t path through vi+1 according to the

assigned probability and leaves for t following that path;
11: end while

Thus, the competitive ratio of the algorithm can achieve the lower bound and it
follows that the algorithm is optimal.

The main concept of the Traverse-Tree procedure is to incorporate random-
ized operations into the reposition RA strategy and then to explore subtrees of
an apex tree T in the order of depth-first search. Precisely, we initially distribute
probabilities of path selection equally among every child of the root t. We se-
quentially distribute the probabilities equally to each descendant in the order
of breadth-first search. When the traveller starts at the source s, she randomly
selects an s-t path according to the assigned probability and follows the path
to t. While finding a blockage on the way to t, the traveller uses the RA strategy
and returns to s. We eliminate the blocked path, and reassign probabilities to
the unblocked subtrees similarly. The traveller traverses the remaining routes
in T by exploring the subtrees in the order of depth-first search. The argument
repeats until the traveller arrives at the destination t.

For the k-CTP in an apex tree T , there is at least one s-t path without a
blockage. Let this offline optimal s-t path be p : s = v≤1 − v≤2 − · · · − v≤m = t and
the number of children of a vertex v≤j be cj in the apex tree T , such that v≤j has
children vj,1, vj,2, . . . , vj,cj . Assume the last child of each v≤j , vj,cj , 2 ⊆ j ⊆ m,
lies on the path p; i.e. vj,cj = v≤j−1. Moreover, suppose each subtree rooted at
vj,σ, 1 ⊆ τ ⊆ cj−1, has bj,σ blockages. Consider the expected total cost when the
traveller traverses the paths other than the offline optimal path. Note that the
malicious adversary does not block any edge (s, v) ≥ E. So

∑m
j=3

∑cj−1
σ=1 bj,σ = k.

Lemma 1. For the k-CTP in an apex tree T in which the distance costs of all
s-t paths are equal, there is an optimal (k+1)-competitive randomized algorithm.

Proof. Let E(s, v≤i ) be the expected total travel cost from s to v≤i . For t = v≤m, we
evaluate the cost. If cm = 1, we obtain E(s, v≤m) ⊆ E(s, v≤m−1) + dEk

(v≤m−1, v
≤
m).
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If cm > 1, with probability 1
cm

, the traveller finds v≤m−1 as a predecessor of
v≤m in the first trial. Then the expected travel cost is at most E(s, v≤m−1) +
dEk

(v≤m−1, v
≤
m). If the traveller cannot find v≤m−1 in the first trial, with probability(

1 − 1
cm

)
1

cm−1 , she finds v≤m−1 in the second trial. Without loss of generality,
suppose the traveller selects vm,σ from τ = 1 to τ = cm − 1, when finding
v≤m−1 = vm,cm . In this case the expected travel cost is

{
2bm,1dEbm,1

(s, vm,1) +

E(s, v≤m−1) + dEk
(v≤m−1, v

≤
m)

}
because the reposition algorithm may return to s

bm,1 times and find the way to v≤m−1 with E(s, v≤m−1) expected cost and finally
go to v≤m with cost dEk

(v≤m−1, v
≤
m). Therefore we obtain

E(s, v≤m) ⊆ 1
cm

{
E(s, v≤m−1) + dEk

(v≤m−1, v
≤
m)

}

+ (1 − 1
cm

) 1
cm−1

{
2bm,1dEbm,1

(s, vm,1) + E(s, v≤m−1) + dEk
(v≤m−1, v

≤
m)

}

+ (1 − 1
cm

)(1 − 1
cm−1 ) 1

cm−2

{
2bm,1dEbm,1

(s, vm,1) + 2bm,2dEbm,2
(s, vm,2)

+ E(s, v≤m−1) + dEk
(v≤m−1, v

≤
m)

}
+ · · ·

⊆ 1
cm

{2(bm,1 + bm,2 + · · · + bm,cm−1)dEk
(s, t)} + E(s, v≤m−1)

+ dEk
(v≤m−1, v

≤
m)

⊆
cm−1∑

σ=1

bm,σdEk
(s, t) + E(s, v≤m−1) + dEk

(v≤m−1, v
≤
m)

Therefore either cm = 1 or not, we obtain E(s, v≤m) ⊆ ∑cm−1
σ=1 bm,σdEk

(s, t) +

E(s, v≤m−1) + dEk
(v≤m−1, v

≤
m). Similarly, E(s, v≤m−1) ⊆ ∑cm−1−1

σ=1 bm−1,σdEk
(s, t) +

E(s, v≤m−2) + dEk
(v≤m−2, v

≤
m−1). Therefore, E(s, v≤m) ⊆ ∑m

j=2

∑cj−1
σ=1 bj,σdEk

(s, t)+dEk
(v≤1 , v≤2)+ . . .+dEk

(v≤m−1, v
≤
m) = (k+1)dEk

(s, t), because
∑c2−1

σ=1 b2,σ =
0. The expected total cost of the algorithm, including the distance cost of the
offline optimal path, is (k+ 1)dEk

(s, t). The competitive ratio achieves the lower
bound for any randomized online algorithms in apex trees. �

Based on the above proof, if the distance cost of each s-t path in T is at most
(1+ σ)dEi(s, t), 0 ⊆ i < k, then the upper bound on the expected total travel cost

of the algorithm is
∑m

j=3

∑cj−1
σ=1 bj,σ(1+σ)dEk

(s, t) = k(1+σ)dEk
(s, t), excluding

the cost of the offline optimal path. The next theorem follows immediately and
proves the claim made in Section 3, i.e., each blockage increases the total travel
cost by at most (1 + σ)dEk

(s, t) on average.

Theorem 2. For the k-CTP in an apex tree T in which each s-t path is a
(1 + σ)dEi(s, t)-path, 0 ⊆ i < k, the competitive ratio of the Traverse-Tree
procedure is at most (1 + σ)k + 1.

5 Implicit Representation of Near-Shortest Paths

Given a connected undirected graph G = (V,E) with a source s and a destination
t, we give two simple data structures for storing all shortest to strictly μth-
shortest s-t paths, for a large value of μ. The first representation is for storing
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shortest to strictly jth-shortest simple s-t paths, provided that dj(s, t) is given,
1 ⊆ j ⊆ μ, and the second one is for representing possibly non-simple paths
whose distances are from the cost d(s, t) to dμ(s, t).

5.1 Strictly Second-Shortest Paths

For each vertex v ⇐= s, let Sj(v) be the vertex set that comprises all v’s prede-
cessors, each of which is v’s preceding neighbor lying in a strictly ith-shortest
s-v path, 1 ⊆ i ⊆ j. To represent all shortest to strictly jth-shortest s-t paths,
we define the jth-shortest path digraph, denoted by Dj(G) = (V j , Aj) of G,

where an arc
−−−∈
(u, v) ≥ Aj if and only if there exists a strictly ith-shortest s-t

path p in G, 1 ⊆ i ⊆ j, such that (u, v) ≥ p; all isolated vertices are eliminated
in V j . The previous studies [10,12,13] investigated the strictly second-shortest
path problem (i.e., next-to-shortest path) based on the shortest path digraph, i.e.,
D1(G) = (V 1, A1). Notably, D1(G) is acyclic and can be constructed in O(|V |2)
time [10,12]. Moreover, for every vertex v ⇐= s, d1(s, v) and S1(v) can also be ob-
tained. Kao et al.’s algorithm [10] can derive the cost of a strictly second-shortest
s-t path, d2(s, t) in O(|V |2) time, given the shortest path digraph D1(G).

1: procedure Find-2nd-Shortest(G, s, t,D1(G)) κ find each d2(s, v) and S2(v)
2: Use Kao et al.’s algorithm to compute d2(s, t) based on D1(G);
3: Initialize a queue Q = {t}, D2(G) = (V 1, ∈), and S2(v) = ∈, ∪v ← V ;
4: while the queue Q �= ∈ do
5: u ⇒ Dequeue(Q);

6: for each neighbor w adjacent to u and
−−−→
(u,w) /← A2 do κ breath-first search

7: if d2(s, u)− d(w, u) ≥ d1(s, w) then

8: A2 ⇒ A2 ∪ −−−→
(w, u) and S2(u) ⇒ S2(u) ∪ {w};

9: if d2(s, u)− d(w, u) > d1(s,w) or
d2(s, u)− d(w, u) = d1(s, w) and w ← V \ V 1 then

10: d2(s, w) ⇒ d2(s, u) − d(w, u) and V 2 ⇒ V 2 ∪ {w};
11: end if
12: Enqueue(Q,w) if w is not in the queue Q;
13: end if
14: end for
15: end while
16: end procedure

We present the Find-2nd-Shortest procedure to search for all strictly second-
shortest simple s-t paths and to construct the representation D2(G) = (V 2, A2).
The main step of this procedure is just a breadth-first search. We start at t and
traverse backward all other vertices until s, and to determine whether each vertex
lies on a strictly second-shortest s-t path. The correctness of the procedure
follows from the optimal substructure property; moreover, the resulting graph
D2(G), which is a directed acyclic graph from s to t, can represent an apex tree.
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Note that in an apex tree, there is a unique path from each vertex to t, while
in D2(G) there may exist multiple paths to t. However, this is not an obstacle
to use of our algorithm in D2(G) if we obtain a random path from t to s. The
traveller randomly selects one of incoming edges (or outgoing edges) to a vertex,
and traverses the edge. The traveller excludes already visited vertices when she
randomly selects a path.

In addition, the procedure can be generalized to finding all strictly third-
shortest to μth-shortest simple s-t paths, provided that the cost dj(s, t) is given,
3 ⊆ j ⊆ μ; note that the property holds between every strictly (j−1)th-shortest
and jth-shortest paths. However, Kao et al.’s method cannot be straightfor-
wardly extended to compute dj(s, t), j ⇒ 3. We leave it as an open problem to
find an efficient way to derive dj(s, t), j ⇒ 3.

Clearly, the data structure D2(G) can be constructed in polynomial time and
linear space. In each iteration of the loop in the GRR algorithm, we find all
shortest to strictly second-shortest s-t paths whose cost is assumed to be at
most d2(s, t) = (1 + σ√)d(s, t), for some σ√ > 0. The competitive ratio would

be (2+ε∈
1+ε∈ )k + 1 < 2k + 1, and therefore, the GRR algorithm can surpass the

deterministic lower bound for the k-CTP in polynomial time.

1: procedure Find-Multiple-Shortest(G, s, t, μ)
2: Duplicate each edge in the input graph G = (V,E) to make G directed;

3: Let S0 = {t}, DV (t) = {0}; DE(
−−−→
(u, v)) = {∞} −−−→

(u, v) ← E; DV (v) = {∞} v ← V ;
4: for i = 0 to μ|E| do
5: Let Si+1 = ∈;
6: for each v ← Si do

7: for each e =
−−−→
(u, v) ← E do

8: Si+1 ⇒ Si+1 ∪ {u};
9: Let L = {d(u, v) + σ | σ ← DV (v)};
10: Let DE(

−−−→
(u, v)) be the set of the smallest μ values in DE(

−−−→
(u, v)) ∪ L;

11: end for
12: end for
13: for each u ← V do
14: for each e =

−−−→
(u, v) ← E do

15: Let DV (u) be the set of the smallest μ values in DV (u)∪DE(
−−−→
(u, v));

16: end for
17: end for
18: end for
19: end procedure

5.2 Strictly μth-Shortest Paths

We compute the sets of possibly non-simple strictly jth-shortest paths for j =
1, 2, . . . , μ using the Find-Multiple-Shortest procedure. This is again a breadth-
first search traversing from t backward to s. We have some notation. In the ith
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iteration, we keep a set Si of vertices which are reached from t using exactly
i edges, and initially, S0 = {t}. Let a set DV (u) store shortest to strictly μth-
shortest distances from u to t; that is, DV (s) = {d1(s, t), d2(s, t), . . . , dμ(s, t)}.

Let two sets DE(
−−−∈
(u, v)) and DE(

−−−∈
(v, u)) for an edge e = (u, v) store distances

from u to t and distances from v to t, respectively, using the edge e. Precisely,

τ ≥ DE(
−−−∈
(u, v)) for an edge e = (u, v) if and only if there is a u-t path of distance

τ ≥ DV (u) through the edge e. Note that the breadth-first search traverses a
vertex multiple times. It is enough to repeat μ|E| times the iteration because a
strictly μth-shortest s-t path uses at most μ|E| edges.

1: procedure Implicit-Representation(G, s, t, L)
2: Let i = 0, Si = {s}, V ∗ = {s}, E∗ = ∈, L(v) = ∈ ∪v ← V , and L(s) = DV (s)∩L;
3: while Si �= ∈ do
4: Let Si+1 = ∈;
5: for each u ← Si do

6: for each e =
−−−→
(u, v) ← E do

7: Let L = {σ − d(u, v) | σ ← L(u)};
8: L(v) ⇒ L(v) ∪ (DV (v) ∩ L);
9: if L(v) �= ∈ then
10: Si+1 ⇒ Si+1 ∪ {v}, V ∗ ⇒ V ∗ ∪ {v}, and E∗ ⇒ E∗ ∪ {e};
11: end if
12: end for
13: end for
14: i ⇒ i+ 1;
15: end while
16: end procedure

Based on this data structure, we can construct a graph G√ = (V √, E√) which
represents all (possibly non-simple) s-t paths whose distances are in a given set
L ⊂ {d1(s, t), . . . , dμ(s, t)} using the Implicit-Representation procedure. Starting

from s, we traverse an edge e = (u, v) only if the set DE(
−−−∈
(u, v)) or DE(

−−−∈
(v, u)) of

distances to t contains the given set of distances. Similarly, in the ith iteration,
we keep a set Si of vertices which are reached from s using exactly i edges, and
initially, S0 = {s}. Let L(v) be the set of distances from v to t for each vertex
v ≥ V √. Precisely, if τ ≥ L(v), then τ ≥ DV (v) and there is a v-t path of cost τ.
The number of iterations of the procedure is also at most μ|E|.

The resulting graph G√ is a directed graph from s to t. However because there
may exist non-simple paths, the graph may have cycles. We can convert G√ into
a directed acyclic graph G√√ as follows. For each τ ≥ L(v), we create a vertex
vσ, and for each pair of vertices vσ and wσ∈ , we create an edge from vσ to wσ∈ if
and only if (v, w) ≥ E√ and τ − d(v, w) = τ√. The graph G√ is converted so that
vertices can be duplicated to eliminate multiple edges. Each vertex is identified
with the name of the vertex in the original graph and the unique distance to t.
Then the new graph containing those newly inserted vertices and edges becomes
a directed acyclic graph. Therefore, the graph G√√ can represent an apex tree.
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In summary, the simple implicit representation has at most μ|V | vertices and
at most μ|E| edges, and it can be constructed in O(μ2|E|2) time. Hence, we
can obtain a set of paths whose distances are at most (1 + σ)d(s, t) by setting
μ to be the summation of distances of all edges. The number of iterations of
the loop in the GRR algorithm is at most k and thus the whole process takes

O(kμ2|E|2) time in the worst case; that is, the proposed
(
1+

◦
2
2

)
k+1-competitive

randomized algorithm runs in pseudo-polynomial time.
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Abstract. In settings where players have limited access to liquidity,
represented in the form of budget constraints, efficiency maximization
has proven to be a challenging goal. In particular, the social welfare
cannot be approximated by a better factor than the number of players.
Therefore, the literature has mainly resorted to Pareto-efficiency as a
way to achieve efficiency in such settings. While successful in some im-
portant scenarios, in many settings it is known that either exactly one
truthful auction that always outputs a Pareto-efficient solution, or that
no truthful mechanism always outputs a Pareto-efficient outcome. More-
over, since Pareto-efficiency is a binary property (is either satisfied or
not), it cannot be circumvented as usual by considering approximations.
To overcome impossibilities in important setting such as multi-unit auc-
tions with decreasing marginal values and private budgets, we propose
a new notion of efficiency, which we call liquid welfare. This is the max-
imum amount of revenue an omniscient seller would be able to extract
from a certain instance. For the aforementioned setting, we give a deter-
ministic O(log n)-approximation for the liquid welfare in this setting.

We also study the liquid welfare in the traditional setting of additive
values and public budgets. We present two different auctions that achieve
a 2-approximation to the new objective. Moreover, we show that no
truthful algorithm can guarantee an approximation factor better than
4/3 with respect to the liquid welfare.

1 Introduction

Auctions started being regularly held in Europe around the middle of the 18th
century - originally being used to sell antiques and artwork in English auction
houses and agricultural produce such as flowers in the Netherlands [21]. In the
last decades of the 20th century, however, auctions started being deployed in an
incredibly larger scale: privatization auctions in Eastern Europe, sale of spectrum
in the US, auctions for rights to explore natural resources, among others. The
new scale brought various new challenges – among them, how to deal with the
disconnect between players willingness to pay (value) and ability to pay (budget).
Studying the FCC auctions, Bulow, Levin and Milgrom [7] observe the following:

“According to our theory, it is bidders budgets, as opposed to their
license values, that determine average prices in a spectrum auction.”

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 392–404, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014
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In fact, in any setting where the magnitude of the financial transactions is very
large, budgets play a major role in the auction. One of the prime examples in
internet advertisement – the choice of budget to spend is the first question asked
to advertisers in the interface of Google Adwords, even before they are asked
bids or keywords. Much work has been devoted to understanding the impact of
budget constraints in sponsored search auctions [1,15,10]. For a more extensive
discussion on the source of financial constraints, we refer to Che and Gale [9].

Despite being widely relevant in practice, it is not clear how to design efficient
auctions in the presence of budget constraints. When efficiency means social
welfare maximization, a folklore result states that, when n is the number of
players, no incentive-compatible auction can do better than an n-approximation.
Even weaker notions such as Pareto efficiency, are impossible to be achieved
through incentive compatible mechanisms in important settings such as private
budgets and decreasing marginal values. Our main goal in this paper is to search
for alternative notions of efficiency that are more suitable for budgeted settings.

Due to its practical relevance, many theoretical investigations have been de-
voted to analyzing auctions for budget constrained agents. The impact of budgets
on the revenue of standard auctions was analyzed in Che and Gale [9] and Benoit
and Krishna [4], and mechanisms that optimize (exactly or approximately) rev-
enue were designed by Laffont and Robert [17], Malakhov and Vohra [19], Pai
and Vohra [23], Borgs et al [6] and Chawla et al [8].

When the objective is welfare efficiency rather then revenue, the literature
has early stumbled upon impossibility results. The traditional social welfare
measure, the sum of player’s values for their outcomes, is known to be very
poorly approximable under budget constraints, even when budgets are known to
the auctioneer. This motivates the search for truthful auctions satisfying weaker
notions of efficiency. Dobzinski, Lavi and Nisan [12] suggest studying Pareto-
efficient auctions: the outcome of an auction is Pareto-efficient if there is no other
outcome (allocation and payments) where no agent (bidders or auctioneer) is
worse-off and at least one agent is better off. When budgets are public, they give
a truthful and Pareto-efficient multi-unit auction based on Ausubel’s clinching
framework [2]. Furthermore, they show that this auction is the unique truthful
auction that always produces Pareto-efficient solution. A sequence of follow-ups
designed Pareto-efficient auctions for budget to different settings: Bhattacharya
et al [5], Fiat et al [14], Colini-Baldeschi et al [10] and Goel et al [15,16].

Beyond Pareto Efficiency? Pareto efficiency has therefore emerged as the
de-facto standard for measuring efficiency when bidders are budget constrained.
Indeed, most of the aforementioned papers provide positive results by offering
new auctions. Yet, this is far from being a complete solution from both theoretical
and practical point of views. We now elaborate on this issue.

In a sense, the uniqueness result of Dobzinski et al [12] for public budgets –
that shows that the clinching auction is the only Pareto efficient, truthful auc-
tion – may be viewed negatively. Rare are the cases in practice in which the
designer sole goal is to obtain a Pareto efficient allocation. A more realistic view
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is that theory provides the designer a toolbox of complementary methods and
techniques designed to obtain various different goals (efficiency, revenue max-
imization, fairness, computational efficiency, etc.) and balance between them.
The composition of these tools as well as their adaptation to the specifics of the
setting and fine tuning is the designer’s task. A uniqueness result – although
extremely appealing from a pure theoretical perspective – implies that the de-
signer’s toolbox contains only one tool, obviously an undesirable scenario.

Furthermore, although from a technical point of view the analysis of the exist-
ing algorithms is very challenging and the proof techniques are quite unique to
each setting, the auctions themselves are all variants of the same basic clinching
idea of Ausubel [2]. Again, it is obviously preferable to have more than just one
bunny in the hat that will help us design auctions for these important settings.

The situation is obviously even more severe in more complicated settings,
where even this lonely bunny is not available. For example, for private budgets
and additive multi-unit auctions, an impossibility was given by Dobzinski et
al [12], for heterogenous items and public budgets by Fiat, Leonardi, Saia and
Sankowski [14] and Dütting, Henzinger and Starnberger [13] and for as multi-
unit auctions with subadditive valuations and public budgets by Goel, Mirrokni
and Paes Leme [15] and Lavi and May [18].

Alternatives to Pareto Efficiency. Our main goal is to research alternatives
to Pareto efficiency for budget constrained agents. We start by observing that
a Pareto efficiency is a binary notion: an allocation is either Pareto efficient or
not, and there is no sense of one allocation being “more Pareto efficient” than
the other. This is in contrast with efficiency in quasi linear environments where
the traditional welfare objective induces a total order on the allocations.

The main goal of this paper is to suggest a new measure of efficiency for
budgeted settings. The desiderata for this measure are: (i) it is quantifiable, i.e.,
attaches a value to each outcome; (ii) is achievable, i.e., can be approximated by
truthful mechanisms and (iii) allows different designs that approximate welfare.

The measure we propose is called the liquid welfare. Before defining it, we give
a revenue-motivated definition of the traditional social welfare in unbudgeted
settings and show how it naturally generalizes to budgeted settings. One can
view the traditional welfare of a certain outcome as the maximum revenue an
omniscient seller can obtain from that outcome. If each agent i has value vi(xi)
for a certain outcome xi, the omniscient seller can extract revenue arbitrarily
close to

∑
i vi(xi) by offering this outcome to each player i for price vi(xi) − σ.

This definition generalizes naturally to budgeted settings. Given an outcome, xi,
the willingness-to-pay of agent i is vi(xi), which is the maximum he would give
for this outcome in case he had unlimited resources. His ability-to-pay, however,
is Bi, which is the maximum amount of money available to him. We define
his admissibility-to-pay as the maximum value he would admit to pay for this
outcome, which is the minimum between his willingness-to-pay and his ability-to-
pay. The liquid welfare of a certain outcome is defined as the total admissibility-
to-pay. Formally W̄(x) =

∑
i min(vi(xi), Bi).
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An alternative view is as follows: efficiency should be measured only with
respect to the funds available to the bidder at the time of the auction, and not
the additional liquidity he might gain after receiving the goods he won. The
liquid welfare objective frees the auctioneer from considering the hypothetical
use the bidders will make of the items they win in the auction, and thus can
focus only on the resources available to them at the time of the auction.

This objective satisfies our first requirement: it associates each outcome with
an objective measure. Also, it is achievable. In fact, the clinching auction [12],
which is the base for all auction achieving Pareto-efficient outcomes for budgeted
settings, provide a 2-approximation for the liquid welfare objective. To show that
this allows flexibility in the design, we show a different auction that also provides
a 2-approximation and reveals a connection between our liquid welfare objective
and the notion of market equilibrium.

It is appropriate to discuss the applicability and limitations of the liquid
welfare objective. We start by illustrating a setting for which it is not applicable.
If one were to auction hospital beds or access to doctors, it would be morally
repugnant to privilege players based on their ability-to-pay. Therefore, we are not
interested in claiming that the liquid welfare objective is the only alternative to
Pareto efficiency, but rather argue that in some settings it produces reasonable
results. Developing other notions of efficiency is an important future direction.

Yet, in many settings capping the welfare of the agents by their budgets makes
perfect sense. Consider designing a market like internet advertising which aims
at a good mix of good efficiency and revenue. In practice, players that bring
more money to the market provide health to the market and improve efficiency.
In real markets, there are practices to encourage wealthier players to enter the
market. Therefore, privileging such players in the objective is somewhat natural.

An interesting question is whether one can have a truthful mechanism for
additive valuations with public budgets that provides an approximation ratio
better than 2. We show a lower bound of 4

3 . Closing the gap remains an open
question, but we do show that for the special case of 2 players with identical
public budgets there is a truthful auction that provides a matching upper bound.

We then move on to consider a setting in which truthful auction that always
output Pareto-efficient solution do not exist: multi-unit auctions with decreasing
marginal valuations and private budgets. For this setting we borrow ideas from
Bartal, Gonen and Nisan [3] and provide a deterministic O(log n) approximation
to the liquid welfare. This can be adapted to the case of subadditive valuations
with an approximation of O(log2 n) and to indivisible goods with O(logm)-
approximation where m is the number of goods.

Related Work. We have already surveyed results designing mechanisms for
budget-constrained agents. We now focus on surveying results directly related
to our efficiency measure and to our philosophical approach to efficiency maxi-
mization. As far as we know, the liquid welfare was first appeared in Chawla et
al. [8] as an implicit upper bound on the revenue that a mechanism can extract.
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Independently and simultaneously, two other approaches were proposed to
provide quantitative guarantees for budgeted settings. Devanur, Ha and Hartline
[11] show that the welfare of the clinching auction is a 2-approximation to the
welfare of the best envy-free equilibrium. Their approach, however, is restricted
to settings with common budgets, i.e., all agents have the same budget.

Syrgkanis and Tardos [24] leave the realm of truthful mechanisms and study
the set of Nash and Bayes-Nash equilibria of simple mechanisms. For a wide
class of mechanisms they show that the traditional welfare in equilibrium of
such mechanism is a constant fraction of the optimal liquid welfare objective
(which they call effective welfare). Their approach differs from ours in two ways:
first they study auctions in equilibrium while we focus on incentive compatible
auctions. Second, the guarantee in their mechanism is that the welfare of the
allocation obtained is always greater than some fraction of the liquid welfare.
The guarantee of our mechanisms is stronger: we construct mechanisms in which
the liquid welfare is always greater than some fraction of the liquid welfare, which
implies in particular that the welfare is greater than some fraction of the liquid
welfare (since the welfare of an allocation is at least its liquid welfare).

Summary of Our Results. In this paper we have proposed to study the liquid
welfare. We provided two truthful algorithms that guarante a 2 approximation
to this objective for the setting of multi-unit auctions with public budgets. For
the harder setting of multi-unit auctions with subadditive valuations and private
budgets we provided a truthful O(log2 n)-approximation algorithm. For submod-
ular bidders, the same mechanism provides an O(log n) approximation.

The main problem that we leave open is to determine whether there is a
constant-approximation mechanism for multi unit auctions with private budgets.
This is even open if all valuations are additive. More generally, are there truthful
algorithms that provides a good approximation for combinatorial auctions? On
top of that, notice that computational issues might come into play: while all of
the constructions that we present in this paper happen to be computationally
efficient, there might be a gap between the power of truthful algorithms in general
and the power of computationally efficient truthful algorithms.

2 Preliminaries

2.1 Environments of Interest and Auction Basics

We consider n players and a set X of outcomes (also called environment). For
each player, let vi : X ∈ R+ be the valuation function for player i. We consider
that agents are budgeted quasi-linear, i.e., each agent i has a budget Bi and for an
outcome x and for payments τ1, . . . , τn, the utility of agent i is: ui = vi(xi)−τi

if τi ⊆ Bi and −⊂ o.w. Below, we list a set of environments we are interested:

1. Divisible-multi-unit auctions and additive bidders: X = {(x1, . . . , xn);
∑

i

xi = s} for some constant s and vi(xi) = vi · xi, so we can represent the
valuation function of each agent by a single real number vi → 0.
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2. Divisible-multi-unit auctions with decreasing marginal bidders: X =
{(x1, . . . , xn);

∑
i xi = s} for some constant s and vi : R+ ∈ R+ is a

monotone non-decreasing concave function. A generalization of decreasing
marginal valuations is subadditive valuations, i.e., vi(x1 + x2) ⊆ vi(x1) +
vi(x2) for every x1, x2.

3. 0/1 environments: X ∧ {0, 1}n and vi(xi) = vi if xi = 1 and vi(xi) = 0
otherwise. Again the valuation is represented by a single vi → 0.

An auction for a particular setting elicits the valuations of the players and
budgets B1, . . . , Bn and outputs an outcome x ≥ X and payments τ1, . . . , τn

for each agents respecting budgets, i.e., such that τi ⊆ Bi for each agent. We
will distinguish between public budgets and private budgets mechanisms. In the
former, the auctioneer has access to the true budget of each agent1. In the later
case, agents need to be incentivized to report their true budget. In either case,
the valuations of each agent are private. We will focus on designing mechanisms
that are incentive compatible (a.k.a. truthful), i.e., are such that agents utilities
are maximized once they report their true value in the public budget case and
their true value and budget in the private budget case. We will also require
mechanisms to be individually rational, i.e., agents always derive non-negative
utility upon bidding their true value.

In the case of divisible multi-unit auctions and additive bidders, the valuations
can be represented by real numbers, So we can see the auctions as a pair of
functions x : Rn

+×R
n
+ ∈ R

n
+ and τ : Rn

+×R
n
+ ∈ R

n
+ that map (v,B) to a vector

of allocations x(v,B) ≥ R
n
+ and a vector of payments τ(v,B) ≥ R

n
+. The set

of functions that induce incentive compatible and individually rational auctions
are characterized by Myerson’s Lemma:

Lemma 1 (Myerson [22]). A pair of functions (x, τ) define an incentive-
compatible and individually rational auction iff (i) for each v−i, xi(vi, v−i) is
monotone non-decreasing in vi and (ii) the payments are such that: τi(vi, v−i) =
vi · xi(vi, v−i) −

∫ vi
0

xi(u, v−i)du.

2.2 Efficiency Measures

The traditional efficiency measure in mechanism design is the social welfare
which associates for each outcome x, the objective: W(x) =

∑
i vi(x). It is known

that one cannot even approximate the optimal welfare in budgeted settings in an
incentive-compatible way, even if the budgets are known and equal. The result
is folklore. We sketch the proof in the full version for completeness.

Lemma 2 (Folklore). Consider the divisible-multi-unit auctions and additive
bidders. There is no λ-approximate, incentive compatible and individually ratio-
nal mechanism x(v), τ(v) with λ < n. For λ = n there is the mechanism that
allocates the item at random to one player and charges nothing.

1 Most of the literature on auctions for budgeted settings [12,14,15,10,16] falls in this
category, including classical references (Laffont and Robert [17] and Maskin [20]).
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Due to impossibility results of this flavor, efficiency was mainly achieved in
the literature through Pareto efficiency. We say that an outcome (x, τ) with
x ≥ X and τi ⊆ Bi is Pareto-efficient if there is no alternative outcome where
the utility of all the agents involved (including the auctioneer, being his utility
the revenue

∑
i τi) does not decrease and at least one agent improves. Formally,

(x, τ) is Pareto optimal iff there is no (x◦, τ◦), x◦ ≥ X , τ◦
i ⊆ Bi such that:

u◦
i = vi ·x◦

i−τ◦
i → ui = vi ·xi−τi, ⇐i and

∑
i τ

◦
i →

∑
i τi and

∑
i vix

◦
i >

∑
i vixi

In particular, if the budgets are infinity (or simply very large), the only Pareto-
optimal outcomes are those maximizing social welfare. For divisible-multi-unit
auctions with additive bidders, this is achieved by the Adaptive Clinching Auc-
tion of Dobzinski, Lavi and Nisan [12]. Moreover, the authors show that this is the
only incentive-compatible, individually-rational auction that achieves Pareto-
optimal outcomes. The auction is further analyzed in Bhattacharya et al [5] and
Goel et al [16]. In this paper we propose the liquid welfare objective:

Definition 1 (Liquid Welfare). In a budgeted setting, we define the liquid
welfare associated with outcome x ≥ X by W̄(x) =

∑
i min{vi(x), Bi}.

We will refer to the optimal liquid welfare as W̄√ = maxx≤X W̄(x). It is
instructive yet straightforward to see that:

Lemma 3. For divisible-multi-unit auctions and additive bidders, the optimal

liquid welfare W̄√ occurs for x̄√
i = min

⎧
Bi

vi
, [1 −∑

j<i x̄
√
j ]+

⎨
where players are

sorted in non-increasing order of value, i.e., v1 → v2 → . . . → vn.

An easy observation is that the optimal allocation for W̄√ is not monotone in
vi, and hence cannot be implemented truthfully. For example, consider 3 agents
with values v1 = v, v2 = 1, v3 = 2 and budgets B1 = 1, B2 = 1

4 , B3 = 1. Now,
notice that x̄√

1(v1) is not monotone in v1 as depicted in Figure 1.

1 2

1/4

1/2

v1

x̄√
1

x̄√
1(v1, v−1) =

⎩
⎢⎣

⎢⎛

1/4, 0 ⊆ v1 ⊆ 1

1/2, 1 ⊆ v1 ⊆ 2

1/v1, 2 ⊆ v1

Fig. 1. Depiction of the first component of x̄∗ = argmaxxW̄(x) for a 3 agent instance
with v = (v1, 1, 2) and B = (1, 1/4, 1). The figure highlights the non-monotonicity of
the optimal solution x̄∗(v).
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2.3 VCG and the Liquid Welfare Objective

The reader might suspect, however, that a modification of VCG might take care
of optimizing the liquid welfare benchmark. This is indeed true for a couple of
very simple settings. For example, for selling one indivisible item, a simple Vick-
rey auction on modified values: v̄i = min{vi, Bi} provides a truthful mechanism
that exactly optimizes the liquid welfare objective. More generally:

Theorem 2 (0/1 Environments). Given a 0/1-environment X ∧ {0, 1}n
with valuations vi(x) = vi if xi = 1 and zero otherwise. Then running VCG on
modified values v̄i = min{vi, Bi} is incentive compatible and exactly optimized
the liquid welfare objective W̄√.

The proof is trivial. This slightly generalizes to other simple environments
of interest, for example, matching markets, where there are n agents and n
indivible items and each agent i has a value vij for item j and possible outcomes
are perfect matchings. Running VCG on v̄ij = min{vij , Bi} provides an incentive
compatible mechanism that also exactly approximated W̄√.

This technique, however, does not generalize past those few special cases as
we show in the full version.

3 A First 2-Approximation: The Clinching Auction

In the previous section we defined our proposal for an efficiency measure in bud-
geted settings: the liquid welfare objective W̄. The second item in the desiderata
for a new efficiency measure is that it is achievable, i.e., it could be optimized
or well-approximated by an incentive compatible mechanism. In this section we
show, for the setting of divisible multi-unit auctions with additive bidders, a
mechanism that provides a 2-approximation for the liquid welfare, while still
producing Pareto-efficient outcomes. The mechanism we use is the Adaptive
Clinching Auction [12,5,16]. In the next section we provide a different truthful
auction that is also a 2-approximation, and show that with respect to the liquid
welfare the new auction is better on an instance-by-instance basis.

The clinching auction can be described by means of an ascending price clock
procedure. The auction starts with the good unallocated and for every price p
(considered in increasing order and in σ increments), the demand of each agent
is computed, i.e., the maximum amount of the good an agent would like to be
allocated at any given price. The amount an agent can clinch at price p is the
amount leftover of the good minus the amount demanded by all other agents. At
any given price, an agent is allocated his clinched amount at the current price.

In the full version we formally describe the clinching auction and introduce
the concept of the clinching interval – which correspond to the price interval in
which agents actively acquire goods. Finally. we prove our main result:

Theorem 3. The clinching auction is a 2-approximation to the liquid welfare
objective. That is, given n agents with values per unit vi and budgets Bi, let x, τ
be the outcome of the clinching auction for such input. Then, W̄(x) → 1

2W̄
√.
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In the full version we show that the bound proved in Theorem 3 is tight. Also,
the following corollary about the revenue of the clinching auction follows from
our proof:

Corollary 1 (Revenue). If the clinching auction allocates items to more than
one player, then its revenue is at least 1

2 · W̄√.

4 A 2-Approximation via Market Equilibrium

We defined a quantifiable measure of efficiency (Section 2) and showed it can be
approximated by an incentive-compatible mechanism (Section 3). The remaining
item in the list of desiderata was to show that our efficiency measure allows for
different designs. Here we show that we have “an extra bunny in the hat”, an
auction that also achieves a 2-approximation to the liquid welfare objective and
is not based on Ausubel’s clinching technique. Instead, it is based on the concept
of Market Equilibrium.

Borrowing inspiration from general equilibrium theory, consider a market with
n buyers each endowed with Bi dollars and willing to pay vi per unit for a certain
divisible good. This is the special case where there is only one product in the
market. In this case, a price p is called a market clearing price if each buyer can
be assigned an optimal basket of goods (in the particular of a single product, an
optimal amount of the good) such that there is no surplus or deficiency of any
good. Observe that there is one such price and that allocations can be computed
once the price is found. Our Uniform Price Auction simply computes the market
clearing price and allocates according to it. This defines the allocation. The
payments are computed using the Myerson’s formula for this allocation and
happen to be different than the clearing price.

Definition 4 (Uniform Price Auction). Consider n agents with values v1 →
. . . → vn (i.e., ordered without loss of generality) and budgets Bi. Consider the
auction that allocates one unit of a divisible good in the following way: let k be
the maximum integer such that

∑k
j=1 Bj ⊆ vk, then:

– Case I: if
∑k

j=1 Bj > vk+1 allocate xi = Bi∑k
j=1 Bj

for i = 1, . . . , k and nothing

for the remaining players.
– Case II: if

∑k
j=1 Bj ⊆ vk+1 allocate xi = Bi

vk+1
for i = 1, . . . , k, xk+1 =

1 −∑k
j=1 xj and nothing for the remaining players.

Payments are defined through Myerson’s integral (Lemma 1).

Case I corresponds to the case where the market clearing price of the Fisher
Market instance is p =

∑k
j=1 Bj . Case II coresponds to the case where the

Market clearing price is p = vk+1. First we show that this auction induces an
incentive-compatible auction that does not exceed the budgets of the agents
– and thus is a valid auction for this setting. Then we show that it is a 2-
approximation to the liquid welfare benchmark. Proofs are in the full version.
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Lemma 4 (Monotonicity). The allocation function of the Uniform Price Auc-
tion is monotone, i.e., vi ⇒∈ xi(vi, v−i) is non-decreasing.

Lemma 5 (Budget Feasibility). The payments that make this auction
incentive-compatible do not exceed the budgets.

Theorem 5. The Uniform Price Auction is an incentive compatible
2-approximation to the liquid welfare objective.

The same example used for showing that the analysis for the Clinching Auc-
tion was tight can be used for showing that the analysis for the Uniform Price
Auction is tight. We discuss it in detail in the full version.

One of the advantages in having a quantifiable measure of efficiency is that
we can compare two different outcomes and decide which one is “better”. In this
section we show that although the worst-case guarantees of the clinching auction
and of the uniform-price auction are identical, the liquid welfare of the uniform-
price auction is always (weakly) dominates that of the clinching auction. We
refer to the full version for a proof.

Theorem 6. Consider n players with valuations v1 → . . . → vn and budgets
B1, . . . , Bn. Let x

c and xu be the outcomes of the Clinching and Uniform Price
Auctions respectively. Then: W̄(xu) → W̄(xc).

5 A Lower Bound and Some Matching Upper Bounds

In the previous sections, we showed two different auctions that are incentive
compatible 2-approximations to the optimal liquid welfare for the setting of
multi-unit auctions with additive valuations. Inthe full version we investigate the
limits of the approximability of the liquid welfare. By the observation depicted
in Figure 1, it is clear that an exact incentive compatible mechanism is not
possible for this setting. First, we present a 4

3 lower bound and show matching
upper bounds for some special cases. We refer to the appendix for the full details.

6 Subadditive Bidders with Private Budgets

Finally, we consider the setting where players have subadditive valuations and
private budgets. This is a notoriously hard setting for Pareto-optimality. In fact,
considering either subadditive valuations or privated budgets alone already pro-
duces an impossibility result for achieving Pareto-efficient outcomes.

We will have one divisible good and each player has a subadditive valuation vi :
[0, 1] ∈ R+ and a budget Bi. This setting differs from the previously considered
in the sense that budgets Bi are private information of the players.
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The auction we propose is inspired in a technique by Bartal, Gonen and Nisan
[3]. To describe it, we use the following notation: v̄(xi) = min{vi(xi), Bi}. Now,
consider the following selling procedure:

Definition 7 (Sell-Without-r). Let r be a player. Consider the following
mechanism to sell half the good, to players i ∪= r using the information about
v̄r(12 ).

Divide the segment [0, 1
2 ] into k = 8 log(n) parts, each of size 1

2k . Associate

part i = 1, . . . , k with price per unit pi = 2i

8 v̄r(12 ). Order arbitrarily all players
but player r. Each player different than r, in his turn, takes his most profitable
(unallocated) subset of [0, 12 ] under the specified prices. Players are not allowed
to pay more than their budget.

More precisely, let p : [0, 12 ] ∈ R+ be such that for x ≥ [ 1
2k (i − 1), 1

2k i],

p(x) = pi = 2i

8 v̄r(12 ). Now, for i = 1, . . . , r − 1, r + 1, . . . , n, let xi maximize

vi(xi) − ∫ zi+xi

zi
p(t)dt where zi =

∑
j<i xj , conditioned on the payment being

below the budget, i.e.,
∫ zi+xi

zi
p(t)dt ⊆ Bi. Set the payment as: τi =

∫ zi+xi

zi
p(t)dt.

Sell-Without-r is used in our main construction for this section:

Definition 8 (Estimate-and-Price). Given one divisible good and n players
with valuations vi(·) and budgets Bi, consider the following auction: let r1 =
arg maxi v̄i(

1
2 ) and r2 = arg maxi⊆=r1 v̄i(

1
2 ). We say that r1 is the pivot player.

Let (x, τ) be the outcome of Sell-Without-r1 for players [n] \ r1 and let (x◦, τ◦)
be the outcome of Sell-Without-r2 for players [n] \ r2.

For players i ∪= r1, allocate xi and charge τi. For r1 if vr1(x◦
r1) − τ◦

r1 →
vr1(12 ) − 2 · v̄r2(12 ) allocate him x◦

r1 and charge τ◦
r1 and if not, allocate 1

2 and
charge 2 · v̄r2(12 ).

First, notice that the auction defined above is feasible, since r1 is allocated
at most half of the good and the players in [n] \ r1 get allocated at most half of
the good. Then we argue that this auction is incentive compatible (in the full
version).

Lemma 6. The Estimate-and-Price auction is incentive compatible for players
with private budgets.

This leads to our main result for submodular and subadditive bidders: we
show that the Estimate and Price Auction is a logarithmic approximation for
the liquid welfare objective. The details as well as a discussion of extensions of
this result can be found in the full version.

Theorem 9. For submodular bidders, the Estimate-and-Price auction is a truth-
ful O(log n)-approximation to the liquid welfare objective. For subadditive bidders,
the same auction is an O(log2 n)-approximation to the liquid welfare.
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Parameterized Complexity of Bandwidth on Trees

Markus Sortland Dregi and Daniel Lokshtanov

Department of Informatics, University of Bergen, Norway

Abstract. The bandwidth of a n-vertex graph G is the smallest integer b such
that there exists a bijective function f : V (G) → {1, ..., n}, called a layout of
G, such that for every edge uv ∈ E(G), |f(u)− f(v)| ≤ b. In the BANDWIDTH

problem we are given as input a graph G and integer b, and asked whether the
bandwidth of G is at most b. We present two results concerning the parameterized
complexity of the BANDWIDTH problem on trees.

First we show that an algorithm for BANDWIDTH with running time f(b)no(b)

would violate the Exponential Time Hypothesis, even if the input graphs are re-
stricted to be trees of pathwidth at most two. Our lower bound shows that the
classical 2O(b)nb+1 time algorithm by Saxe [SIAM Journal on Algebraic and
Discrete Methods, 1980] is essentially optimal.

Our second result is a polynomial time algorithm that given a tree T and inte-
ger b, either correctly concludes that the bandwidth of T is more than b or finds
a layout of T of bandwidth at most bO(b). This is the first parameterized approxi-
mation algorithm for the bandwidth of trees.

1 Introduction

A layout for a graph G is a bijective function α : V (G) ∈ {1, . . . , |V (G)|}, and the
bandwidth of the layoutα is the maximum over all edges uv ⊆ E(G) of |α(u)−α(v)| ⊂
b. The bandwidth of G is the smallest integer b such that G has a layout of bandwidth
b. In the BANDWIDTH problem we are given as input a graph G and an integer b and
the goal is to determine whether the bandwidth of G is at most b. In the optimization
variant we are given G and the task is to find a layout with smallest possible bandwidth.

The problem arises in sparse matrix computations, where given an n × n matrix A
and an integer k, the goal is to decide whether there is a permutation matrix P such that
PAPT is a matrix whose all non-zero entries lie within the k diagonals on either side
of the main diagonal. Standard matrix operations such as inversion and multiplication
as well as Gaussian elimination can be sped up considerably if the input matrix A can
be transformed into a matrix PAPT of small bandwidth [1].

BANDWIDTH is one of the most well-studied NP-complete [2, 3] problems. The
problem remains NP-complete even on very restricted subclasses of trees, such as cater-
pillars of hair length at most 3 [4]. Furthermore, it is NP-hard to approximate the band-
width within any constant factor, even on trees [5]. The best approximation algorithm
for BANDWIDTH on general graphs is by Dungan and Vempala [6], this algorithm has
approximation ratio (log n)3. For trees Gupta [7] gave a slightly better approximation
algorithm with ratio (logn)9/4, while for caterpillars a O( logn

log log n )-approximation [8]
can be achieved.

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 405–416, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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One could argue that the BANDWIDTH problem is most interesting when the band-
width of the graph is very small compared to the size of the graph. Indeed, when the
bandwidth of G is constant the matrix operations discussed above can be implemented
in linear time. For each b → 1 it is possible to recognize the graphs with bandwidth at
most b in time 2O(b)nb+1 using the classical algorithm of Saxe [9]. At this point it is
very natural to ask how much Saxe’s algorithm can be improved. Our first main result is
that assuming the Exponential Time Hypothesis of Impagliazzo, Paturi and Zane [10],
no sigificant improvement is possible, even on very restricted subclasses of trees. In
particular we show the following theorem.

Theorem 1. Assuming the Exponential Time Hypothesis there is no f(b)no(b) time al-
gorithm for BANDWIDTH of trees of pathwidth at most 2.

The proof of Theorem 1 also implies that BANDWIDTH is W [1]-hard on trees of path-
width at most 2 (see [11–13] for an introduction to parameterized complexity).

As a counterweight to the bad news of Theorem 1 we give the first approximation
algorithm for BANDWIDTH of trees whose approximation ratio depends only on the
bandwidth b, and not on the size of the graph. Specifically we give a polynomial time
algorithm that given as input a tree T and integer b either correctly concludes that the
bandwidth of T is greater than b or outputs a layout of width at most bO(b). A key
subroutine of our algorithm for trees is an approximation algorithm for the bandwidth
of caterpillars with ratio O(b3). Our algorithm for trees outperforms the (logn)9/4-
approximation algorithm of Gupta [7] whenever b = o( log logn

log log logn ). Our algorithm is
the first parameterized approximation algorithm for the BANDIWTH problem on trees,
that is an algorithm with approximation ratio g(b) and running time f(b)nO(1). A param-
eterized approximation algorithm for the closely related TOPOLOGICAL BANDWIDTH

problem has been known for a while [14], while the existence of a parameterized ap-
proximation algorithm for BANDWIDTH, even on trees was unknown prior to this work.

An interestng aspect of our approximation algorithm is the way we lower bound the
bandwidth of the input tree T . It is well known that the bandwidth of a graph G is lower
bounded by its pathwidth, and by its local density1. One might wonder how far these
lower bounds could be from the true bandwidth of G. It was conjectured that the answer
to this question is “not too far”, in particular that any graph with pathwidth c1 and local
density c2 would have bandwidth at most c3 where c3 is a constant depending only on
c1 and c2. Chung and Seymour [15] gave a counterexample to this conjecture by con-
structing a special kind of trees, called cantor combs, with pathwidth 2, local density
at most 10, and bandwidth approximately logn

log logn . Our approximation algorithm essen-
tially shows that the only structures driving up the bandwidth of a tree are pathwidth,
local density and cantor comb-like subgraphs.

Related Work. There is a vast literature on the BANDWIDTH problem. For an example
the problem has been extensively studied from the perspective of approximation algo-
ritms [5–8, 16], parameterized complexity [9, 17, 18], polynomial time algorithms on
restricted classes of graphs [19–22], and graph theory [15, 23]. We focus here on the
study of algorithms for BANDWIDTH for small values of b.

1 A definition of these notions can be found in the preliminaries.
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Following the 2O(b)nb+1 time algorithm of Saxe [9], published in 1980, there was
no progress on algorithms for the recognition of graphs of constant bandwidth. With
the advent of parameterized complexity in the late 80’s and early 90’s [11] it became an
intriguing open problem whether one could improve the algorithm of Saxe to remove
the dependency on b in the exponent of n, and obtain a f(b)nO(1) time algorithm.

In a seminal paper from 1994, Bodlaender, Fellows, and Hallet [17] proved that a
number of layout problems do not admit fixed parameter tractable algorithms unless
FPT=W[t] for every t → 1, a collapse considered by many to be almost as unlikely
as P=NP. In the same paper Bodlaender, Fellows, and Hallet [17] claim that their tech-
niques can be used to show that a f(b)nO(1) time algorithm for BANDWIDTH would
also imply FPT=W[t] for every t → 1. Downey and Fellows ([11], page 468) further
claim that the techniques of [17] imply that even fixed parameter algorithm for BAND-
WIDTH on trees would yield the same collapse. Unfortunately a full version of [17]
substantiating these claims is yet to appear.

Outline. In Section 2 we define notations and give the necessary background. In Sec-
tion 3 we give an outline of the proof our algorithmic results and in Section 4 we give
some concluding remarks and open problems. The proof of Theorem 1 is omitted due
to its technical nature and space constraints. For the proof of Theorem 1 we refer to the
full version of the paper [24].

2 Preliminaries

All graphs in this paper are undirected and unweighted and we will mostly use standard
notation. We mention that for a graph G and a vertex v by deg(v) we refer to the degree
of v and by deg(G) we refer to the maximum degree in G. Furthermore, diam(G) is
the diameter of G. When removing a set of vertices X from a graph G we will use the
notation G−X .

If a function f is defined on a set X and Y ∧ X we will use the notation f(Y ) for
≥y∈Y f(y). When it is clear from the context that we are referring to a vertex set of
a graph, we will refer to just the graph. Furthermore, when a function f is defined on
the vertex set of a graph, we will sometimes use the sloppy notation f(G) instead of
f(V (G)).

For intervals of natural numbers we will use the notation [n] for the interval [1, . . . , n].
A k-coloring of a graphG is a function from V (G) to [k] such that two adjacent vertices
are given different values. The chromatic number of G, denoted χ(G) is the minimum
k such that there is a k-coloring of G.

A tree is a connected graph without any cycles. A caterpillar is a tree T with a path
B as a subgraph, such that all vertices of degree 3 or more lie on B. We then say that
B is a backbone of T and every connected component of T − B referred as a stray,
or sometimes as a hair. We say that a caterpillar is of stray length s if there exists a
backbone such that all strays are of size at most s. An interval graph is a graph such
that there exists a function from V (G) into intervals of N such that the images of two
vertices have a non-empty intersection if and only if the two vertices are adjacent.

A tree decomposition T of a graph G is a pair (T,X) with T = (I,M) being a
tree and X = {Xi | i ⊆ I} a collection of subsets of V such that: (I)

⋃
i∈I Xi = V ,
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(II) for every edge uv there is a bag Xi such that both u and v are contained in Xi and
(III) for every vertex v ⊆ V the set {i ⊆ I | v ⊆ Xi} induces a tree in T . The treewidth
of a tree decomposition T , denoted tw(G, T ) = maxi∈I |Xi| − 1 and the treewidth of
a graph G is defined as tw(G) = min{tw(G, T ) | T is a tree decomposition of G}.
A path decomposition P of a graph is a tree decomposition such that T is a path.
And the pathwidth of a graph G, denoted pw(G) is the minimum width over all path
decompositions.

A linear ordering α of a set S is a bijection between S and [|S|]. Given a graph
G = (V,E) and a linear ordering α over V , the bandwidth of α denoted bw(G,α) =
maxuv∈E |α(u) − α(v)|. And furthermore, the bandwidth of G denoted bw(G) =
min{bw(G,α) | α is a linear ordering over V }. We say that α is a k-bandwidth or-
dering of some graph G if bw(G,α) ⊂ k. And we say that a bandwidth ordering α of
G is optimal if bw(G,α) = bw(G).

Let u and v be a pair of vertices of a graph G and α an ordering of V (G). We then
say that u is left of v in α if α(u) < α(v) and that u is right of v if α(v) < α(u).
A sparse ordering β of a graph G is an injective function from V (G) to Z. And the
bandwidth of a sparse ordering β of G, denoted bw(G, β) = maxuv∈E |β(u) − β(v)|.
We say that a linear ordering α of G is a compression of a sparse ordering β of G if for
every pair of vertices u, v in G it holds that β(u) < β(v) if and only if α(u) < α(v).

Definition 2. For a graph G we define the local density of G as

D(G) = max
G′◦G

|V (G√)| − 1

diam(G√)
.

The following proposition will be used repeatedly in our arguments.

Proposition 3 (Folklore). For every graph G, D(G) ⊂ bw(G) and pw(G) ⊂ bw(G).

For a graph T , an integer b and a b-bandwidth ordering α we provide the following
definitions. Given a set of vertices Y ∧ V (T ) we define the inclusion interval of Y ,
denoted I(Y ) as [minα(Y ),maxα(Y )] and for two vertices u and v we define I(u, v)
as I({u, v}) or equivalently [min{α(u), α(v)},max{α(u), α(v)}]. Given a subgraph
H of T we define I(H) as I(V (H)). Whenever necessary, we will use subscript to
avoid confusion about which ordering is considered.

We will differentiate the parametrized version of a problem (parameterized by the
natural parameter) from the classical one by putting a p in front of the name, i.e. p-
BANDWIDTH is the parameterized version of BANDWIDTH. We will face two other
problems in this paper. The first one is CLIQUE, where given a graph G and an integer
k, one is asked whether there is a clique of size k in G. The second one is EVEN

CLIQUE, which is an instance of CLIQUE where you are promised that k is an even
number. Both of the problems will be discussed in their parametrized form.

3 Approximation Algorithms

In this section we will provide FPT-approximation algorithms for p-BANDWIDTH on
trees and caterpillars. Given a caterpillar T and a positive integer b, CatAlg either re-
turns a 48b3-bandwidth ordering of T or correctly concludes that bw(T ) > b. To obtain
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this we define an obstruction for bandwidth on caterpillars inspired by Chung & Sey-
mour [25] and search for these objects. Based on the appearance of these objects in
T we construct an interval graph such that either the interval graph has low chromatic
number or the bandwidth of T is large. If the interval graph has low chromatic number
we use a coloring of this graph to give a low bandwidth layout of T .

Given a tree T and positive integers b and p such that pw(T ) ⊂ p, TreeAlg either
returns a (768b3)p-bandwidth ordering of T or correctly concludes that bw(T ) > b.
The high level outline of the algorithm is as follows. The algorithm first decomposes
the tree into several connected components of smaller pathwidth and recurses on these.
Then it builds a host graph for T that is a caterpillar, applies CatAlg on the host graph.
Finally it combines the result of CatAlg with the results from the recursive calls, to
give a (768b3)p-bandwidth ordering of T . Since the pathwidth of a graph is known to
be bounded above by its bandwidth, it follows that TreeAlg is an FPT-approximation.

3.1 An FPT-Approximation for the Bandwidth of Trees

The aim of this section is to give a FPT-approximation for p-BANDWIDTH on
trees, namely an (768b3)b-approximation. This algorithm crucially uses a 48b3-
approximation of p-BANDWIDTH on caterpillars as a subroutine. We provide such an
algorithm, namely the algorithm CatAlg, in Section 3.2. In the remainder of this sec-
tion we give a (768b3)b-approximation for trees under the assumption that CatAlg is
a 48b3-approximation of p-BANDWIDTH on caterpillars with running time O(bn3).

Recursive Path Decompositions and Other Simplifications. In this section we will
present some decomposition results crucial for our algorithm. First we define recursive
path decompositions, which will allow us to partition our graph into several components
of slightly lower complexity. The recursive decomposition is used to call the algorithm
recursively on easier instances, and then combine the layouts of these instances to a low
bandwidth layout of the input tree.

Definition 4. Let T be a tree and P, T 1, . . . , T t induced subgraphs of T such that
V (T ) = V (P ) ≥ ⋃

V (T i). Then we say that P, T 1, . . . , T t is a p-recursive path de-
composition of T if P is a path in T and for every i it holds that T i is a connected
component of T − P and pw(T i) < p.

Lemma 5 (*). Given a tree T of pathwidth at most p, a p-recursive path decomposition
P, T 1, . . . , T t of T can be found in O(n) time.

Whenever a result is marked by a star, we refer to the full version of the paper [24] for
the proof.

Definition 6. Let T be a tree and P, T 1, . . . , T t a p-recursive path decomposition of T .
We construct the simplified instance TS of T with respect to P, T 1, . . . , T t as follows.
First we add P to TS . Then, for every T i we first add a path P i such that |V (P i)| =
|V (T i)| and then we add an edge from one endpoint of P i to N(T i).

Observe that the simplified instance TS is a caterpillar with backbone P .
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Lemma 7 (*). Let T be a tree, P, T 1, . . . , T T be a p-recursive path decomposition
of T and TS the corresponding simplified instance, then bw(TS) ⊂ 2bw(T )

Let T be a graph, v a vertex of T and α a b-bandwidth ordering of T . Let β√ be a
sparse ordering such that for every u ⊆ T

β√(u) =

{
2[α(v) − α(u)] if α(u) ⊂ α(v) and

2[α(u)− α(v)] − 1 otherwise.

and let β be the bandwidth ordering obtained by compressing β√. We then say that β is
α right folded around v. Observe that bw(T, β) ⊂ 2bw(T, α).

Algorithm and Correctness. We are now ready to describe algorithm TreeAlg and
prove its correctness. Pseudocode for TreeAlg is given in Algorithm 1.

Input: A tree T and positive integers integers p and b such that pw(T ) ≤ p.
Output: A (768b3)p-bandwidth ordering of T or conclusion that bw(T ) > b.

if p = 1 then
return CatAlg(T, b)

end
Find a p-recursive path decomposition P, T 1, . . . , T t of T .
Let α1 = TreeAlg(T 1, p− 1, b), . . . , αt = TreeAlg(T t, p− 1, b).
if there is an αi = ⊥ then

return ⊥
end
Let Ts be the simplified instance of T with respect to P, T 1, . . . , T t.
Let αs = CatAlg(Ts, 2b).
if αs = ⊥ then

return ⊥
end
For every i, let βi be αi right folded around N(P ) ∩ T i.
For every v ∈ P , let α(v) = αs(v).
For every Pi of Ts and every v ∈ Pi of distance d from P in Ts, let α(β−1

i (d)) = αs(v).
return α

Algorithm 1. TreeAlg

Lemma 8 (*). Given a tree T and two integers p an b such that pw(T ) ⊂ p, TreeAlg
terminates in O(pbn3) time.

Lemma 9. Given a tree T and positive integers b and p such that pw(T ) ⊂ p,
TreeAlg either returns a O((768b3)p)-bandwidth ordering of T or correctly con-
cludes that bw(T ) > b in time O(pbn3).

Proof. The running time follows directly from Lemma 8 and hence it remains to prove
the correctness of the algorithm. This we will do by induction on p. For p = 1 the
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correctness follows directly from the correctness of CatAlg and hence it remains to
prove the induction step. First we consider the case when the algorithm concluded that
bw(T ) > b. Either there is an αi such that αi = ⇐ or αs = ⇐. If αi = ⇐ it follows
by the induction hypothesis and the fact that bandwidth is preserved on subgraphs that
the algorithm concluded correctly. Now we consider the case when αs = ⇐. It follows
from the correctness of CatAlg that bw(Ts) > 2b and hence by Lemma 7 it follows
that bw(T ) > b.

It remains to consider the case when the algorithm returns a bandwidth ordering α.
Then, by the induction hypothesis αi is a (768b3)p−1-bandwidth ordering of T i for
every i. Furthermore, αs is a 384b3-bandwidth ordering for Ts, since 48(2b)3 = 384b3.
Let u and v be two neighbouring vertices of T . If u and v are vertices in P it follows
from bw(Ts, αs) ⊂ 384b3 that |α(u) − α(v)| ⊂ 384b3. Next, we consider the case
when either u or v is a vertex in P . Assume without loss of generality that u ⊆ P
and let T j be such that v ⊆ T j . By the definition of βj it follows that βj(v) = 1. It
follows that |α(u)− α(v)| = |αs(u)− αs(w)| where dist(u,w) = 1, and hence u and
w are neighbours in Ts and it follows directly that |α(u)−α(v)| ⊂ 384b3. We will now
consider the case when u and v are vertices of T j for some j. Let u√ be the vertex in
P j of distance β(u) from P and v√ the vertex in P j of distance β(v) from P . It follows
that |α(u)−α(v)| = |αs(u

√)−αs(v
√)| ⊂ dist(u√, v√)384b3 = |βj(u)−βj(v)|384b3 ⊂

|αj(u)− αj(v)|768b3 ⊂ (768b3)p, which completes the proof.

Note that one in the case of p = 1 also could solve the instance exactly by Ass-
mann [19]. It would decrease the approximation ratio to (768b3)p−1.

Theorem 10. There exists an algorithm that given a tree T and a positive integer b
either returns a (768b3)b-bandwidth ordering of T or correctly concludes that bw(T ) >
b in time O(b2n3).

Proof. This follows directly from pw(T ) ⊂ bw(T ) and Lemma 9.

The proof of Theorem 10 assumed the existence of a 48b3-approximation algorithm
for caterpillars. In the next section we give such an algorithm.

3.2 An FPT-Approximation for the Bandwidth of Caterpillars

The bandwidth of caterpillars is, somewhat surprisingly, a well-studied problem. Ass-
mann et al. [19] proved that the bandwidth of caterpillars of stray length 1 and 2 is
polynomial time computable. Monien [4] completed the story of polynomial time com-
putability by proving that BANDWIDTH on caterpillars of stray length 3 is NP-hard.
Furtermore, Haralambides [26] gave an O(log n) approximation algorithm, which later
was improved to O(log n/ log logn) by Feige & Talwar [8]. We now give the first FPT-
approximation of p-BANDWIDTH on caterpillars, namely a 48b3-approximation.

Skewed Cantor Combs. Chung & Seymour [25] defined Cantor combs. These are
very special caterpillars defined in such a way that they have small local density, but
high bandwidth. The definition of Cantor combs is very strict - it precisely defines the
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length of all the paths in the caterpillars. For our purposes we need a more general
definition which captures all caterpillars that are “similar enough” to Cantor combs.
We call such caterpillars skewed Cantor combs, and we will prove that they also have
high bandwidth. Our algorithm will scan for skewed Cantor combs as an obstruction for
bandwidth and if none of big enough size are found it will construct a 48b3-bandwidth
ordering based on the appearance of smaller versions of these objects.

For positive integers k ⊂ b we now define a skewed b-Cantor comb of depth k,
denoted Sb,k inductively as follows. Sb,1 is a path of length 1. For the induction step to
be well-defined we mark two vertices of every skewed b-Cantor comb as end vertices.
For an Sb,1 the two vertices are the end vertices. For k > 1 we start with two skewed
b-Cantor combs of depth k − 1, lets call them S and S√ and furthermore let x, y and
x√, y√ be their end vertices respectively. Connect y to x√ by a path P of length at least
2. Furthermore, let Q be a stray connected to an internal vertex v of P . Mark x and y√

as the end vertices of the construction and let B be the path from x to y√. Let d be the
maximum distance from v to any vertex in B. If Q has at least 2(b − 1)d vertices we
say that the graph described is a skewed b-Cantor comb of depth k.

Lemma 11 (*). Let Ŝb,k be a skewed b-Cantor comb of depth k and α an optimal
bandwidth ordering of Ŝb,k. Furthermore, let x and y be the end vertices of Ŝb,k and B

the path from x to y. Then there exists an edge uv of Ŝb,k such that I(u, v) ⇒ I(B) is
non-empty and |α(u)− α(v)| = bw(Ŝb,k).

Lemma 12 (*). For b → k → 1, the bandwidth of any Sb,k is at least k.

Directions. Given a caterpillar T and a backbone B = {b1, . . . , bk} we define pos(P )
for every stray P in T with respect to B, as the integer i such that P is attached to the
vertex bi. Furthermore, we let |P | denote |V (P )|.
Definition 13. Let T be a caterpillar, B = {b1, . . . , bk} a backbone of T and b a
positive integer. Furthermore, let depth be a function from the strays of T with respect
to B to N. For every stray Q we let

– XQ =
{
P | pos(P ) + |P |

2b < pos(Q) and pos(Q)− |Q|
2b ⊂ pos(P )− |P |

2b

}
and

– YQ =
{
P | pos(Q) < pos(P )− |P |

2b and pos(P ) + |P |
2b ⊂ pos(Q) + |Q|

2b

}
.

Let xQ = max(depth(XQ)) and yQ = max(depth(YQ)). We say that Q is pushed east
if xQ > yQ, pushed west if xQ < yQ and lifted if xQ = yQ.

We say that a skewed b-Cantor comb of depth k is centered around the stray Q,
where Q is as in the definition of Sb,k. For a caterpillar T we say that a backbone B is
maximized if for every other backbone B√ it holds that |B√| ⊂ |B|.

We will now describe an algorithm FindSCC that given a caterpillar T , a maximized
backbone B of T and a positive integer b searches for skewed Cantor combs in T .
Let depth be a function from the strays of T with respect to B into N. As an invariant,
depth promises there to be a skewed (b + 1)-Cantor comb centered around Q of depth
depth(Q). The exception is if depth(Q) is 0, then the stray is so short that we ignore it
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and we hence make no promises with respect to skewed (b+1)-Cantor combs. Initially,
for every stray Q let depth(Q) be 2 if |Q| → 4b and 0 otherwise. Observe that the
invariant is true due to B being a maximized backbone.

Now we search for a stray Q that is lifted such that both xQ and yQ are at least
depth(Q). It such a Q is found, increase depth(Q) by one. Observe that there is in
fact a skewed (b + 1)-Cantor comb centered around Q of this depth (depth(Q) after
the incrementing). Run this procedure until such a stray Q can not be found or until
depth(Q) reaches b + 1 for some stray. Observe that we can for every stray evaluate
xQ and yQ in O(n2). And since this is done at most O(bn) times, the running time of
FindSCC is bounded by O(bn3).

The reader should note that FindSCC does not detect all skewed b-Cantor combs. In
fact, it searches only for a stricter version and might overlook the deep skewed (b+ 1)-
Cantor combs in a caterpillar. But, as it turns out, these stricter versions are sufficient for
our purposes. From now on, we will assume that the function applied when evaluation
whether a stray is pushed west or east, is the depth function calculated by running
FindSCC.

Definition 14. For a caterpillar T , a maximized backbone B = {b1, . . . , bl} of T and
a positive integer b we define the directional stray graph as the following interval graph:
for every stray P add the interval

– [pos(P )48b3 − 12b2|P |, pos(P )48b3] if P is pushed west and
– [pos(P )48b3, pos(P )48b3 + 12b2|P |] otherwise.

We say that an interval originating from a stray pushed west is west oriented and visa
versa.

Lemma 15 (*). Let T be a caterpillar, b a positive integer, GI some directional stray
graph of T and x and y two natural numbers such that x < y. Then either there are at
most 2b intervals of length at least y − x in GI starting within [x, y], or bw(T ) > b.

Lemma 16. Let T be a caterpillar, b a positive integer and GI some directional stray
graph of T . Then either χ(GI) < 12b2 or bw(T ) > b.

Proof. Assume for a contradiction that χ(GI) → 12b2 and that bw(T ) ⊂ b. Then there
is a number w such that at least 12b2 of the intervals of GI contains w. This follows
from the well-known result that χ(GI) equals the size of the maximum clique of GI ,
since GI is an interval graph. Let I be the set of all east oriented intervals containing w
and assume without loss of generality that I is of size at least 6b2. Discard the elements
of I with the highest starting value and let [x√, y√] be a discarded element. Observe that
at most 2b elements were discarded due to the local density bound. Hence we now have
at least 6b2 − 2b elements left. We will start by giving a lower bound on the length
of the intervals in I . Consider an element [x, y] of shortest length in I . By definition
x < x√ ⊂ y and by construction x√ − x → 48b3, hence y− x → 48b3 and it follows that
all elements of I are of length at least 48b3.

Let [x2, y2] be a shortest interval in I and recall that the stray P 2 corresponding
to the interval is attached to the backbone vertex bc2 for c2 = x2/48b

3. Furthermore,
|P 2| = (y2−x2)/12b

2 > 48b3/12b2 = 4b. Since the backbone used when constructing
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GI is maximized it follows that the distance from bc2 to any endpoint of the backbone
is at least 4 and hence there is an Sb+1,2 centered around bc2 .

Discard all intervals with their starting point within [x2 − 2(y2 − x2), y2] in I . We
know that at most 6b elements are discarded by Lemma 15. Now let [x3, y3] be a shortest
interval in I and recall that the stray P 3 corresponding to the interval is attached to the
backbone vertex bc3 for c3 = x3/(12b

2). Observe that |y3 − x3| > |x3 − x2| and that
|y2 − x2| < 1

2 |x3 − x2| and hence |y3 − x3| > |x3 − x2| > 1
2 |x3 − x2|+ |y2 − x2|. If

follows immediately that |y3−x3|
2b(12b2) > |x3−x2|

48b3 + |y2−x2|
2b(12b2) and by replacement |V (P 3)|

2b >

|c3 − c2|+ |V (P 2)|
2b .

Let S be the Sb+1,2 centered around bc2 and recall that by definition the distance from

bc2 to any backbone vertex of S is bounded from above by |V (P 2)|
2b . It follows that the

distance from bc3 to any backbone vertex ofS is bounded by |V (P 3)|
2b . Since [x3, y3] is east

oriented there is anotherSb+1,i centered around a stray P̄ 2 such that pos(P̄ 2)+ |P̄ 2|
2b < c3

and pos(P̄ 2) − |P̄ 2|
2b → c3 − |P 3|

2b for some i → 2. By definition, the Sb+1,i contains an
Sb+1,2 as a subgraph in such a way that there is an Sb+1,3 centered around c3. Discard
all intervals with starting points within [x3 − 2(y3−x3), x3] and repeat the argument to
obtain a Sb+1,4. We keep repeating the argument until we obtain a Sb+1,b+1

Notice that we can do this as we are discarding at most 6b vertices each time, repeat-
ing the procedure b − 1 times and I contains at least 6b2 − 2b > 6b(b − 1) intervals.
This completes the proof, as we know from Lemma 12 that bw(Sb+1,b+1) → b+ 1.

Algorithm and Correctness

Theorem 17. There exists an algorithm that given a caterpillar T and a positive integer
b either returns a 48b3-bandwidth ordering of T or correctly concludes that bw(T ) > b
in time O(bn3).

Proof. Recall that FindSCC runs in O(bn3) time. Furthermore, a coloring of GI can
be found in O(n) time by Golumbic [27]. Observe that every other step of the algo-
rithm trivially runs in O(n) time. And hence the algorithm runs in O(bn3) time. If
CatAlg returns ⇐, then χ(GI) → 12b2. It follows from Lemma 16 that bw(T ) > b
and hence the conclusion is correct. We will now prove that α is a sparse ordering of
V (T ) of bandwidth at most 48b3. It is clear that for any edge uv ⊆ E(T ) it holds that
|α(u) − α(v)| ⊂ 48b3. It remains to prove that α is an injective function. Assume for
a contradiction that there are two vertices u, v such that α(u) = α(v). Observe that
α(u) ∪ 0 mod (48b3) if and only if u is a backbone vertex of T . This comes from the
fact that χ(GI) < 12b2. And since it is clear from the algorithm that no two vertices
of the backbone are given the same position we can assume that neither u nor v is a
backbone vertex. It follows that α(u) ∪ c(P ) mod (12b2) where P is the stray contain-
ing u. Observe that the algorithm gives unique positions to all vertices from the same
stray and hence u and v must belong to two different strays given the same color. Let
Pu be the stray containing u and Pv the strain containing v. Furthermore, let [xu, yu]
and [xv, yv] be the corresponding intervals in GI . Observe that I(Pu) ∧ [xu, yu] and
I(Pv) ∧ [xv, yv] and hence [xu, yu]⇒[xy , yv] ≤= ⇔, which is a contradiction, completing
the proof.
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Input: A caterpillar T and a positive integer b.
Output: A 48b3-bandwidth ordering of T or conclusion that bw(T ) > b.

Let B = {b1, . . . , bk} be a maximized backbone of T .
Construct the directional stray graph GI of T with respect to B.
Find a minimum coloring of GI .
if χ(GI) ≥ 12b2 then

return ⊥.
end
Let α(bi) = 48b3(n+ i).
Let P be the collection of strays in T with respect to B.
For every stray P in P let C(P ) be the color of the interval representing the stray.
for every P ∈ P do

Let p1, . . . , pk be the vertices of P such that dist(B,pi) < dist(B, pi+1) for every i.
Let {u} = N(P ).
if P is pushed west then

Let α(pi) = α(u) + C(P )− i12b2 for every i.
end
else

Let α(pi) = α(u) + C(P ) + (i− 1)12b2 for every i.
end

end
return Compressed version of α.

Algorithm 2. CatAlg

4 Concluding Remarks

We have shown that the classical 2O(b)nb+1 time algorithm of Saxe [9] for the BAND-
WIDTH problem is essentially optimal, even on trees of pathwidth at most 2. On trees of
pathwidth 1, namely caterpillars with hair length 1, the problem is known to be polyno-
mial time solvable. On the positive side, we gave the first approximation algorithm for
BANDWIDTH on trees with approximation ratio being a function of b and independent
of n. Our approximation algorithm is based on pathwidth, local density and a new ob-
struction to bounded bandwidth called skewed Cantor combs. We conclude with a few
open problems. (I) Does BANDWIDTH admit a parameterized approximation algorithm
on general graphs? (II) Does BANDWIDTH admit an approximation algorithm on trees
with approximation ratio polynomial in b? What if one allows the algorithm to have
running time f(b)nO(1)? (III) Does there exist a function f such that any graph G with
pathwidth at most c1, local density at most c2, and containing no Sc3,c3 as a subgraph
has bandwidth at most f(c1, c2, c3)?
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Abstract. Two polynomials f, g ∈ F[x1, . . . , xn] are called shift-
equivalent if there exists a vector (a1, . . . , an) ∈ F

n such that the poly-
nomial identity f(x1 + a1, . . . , xn + an) ≡ g(x1, . . . , xn) holds. Our main
result is a new randomized algorithm that tests whether two given poly-
nomials are shift equivalent. Our algorithm runs in time polynomial in
the circuit size of the polynomials, to which it is given black box ac-
cess. This complements a previous work of Grigoriev [Gri97] who gave a
deterministic algorithm running in time nO(d) for degree d polynomials.

Our algorithm uses randomness only to solve instances of the Polyno-
mial Identity Testing (PIT) problem. Hence, if one could de-randomize
PIT (a long-standing open problem in complexity) a de-randomization of
our algorithm would follow. This establishes an equivalence between de-
randomizing shift-equivalence testing and de-randomizing PIT (both in
the black-box and the white-box setting). For certain restricted models,
such as Read Once Branching Programs, we already obtain a determin-
istic algorithm using existing PIT results.

1 Introduction

In this paper we address the following problem, which we call Shift Equivalence
Testing (SET). Given two polynomials f, g ∈ F[x] (we use boldface letters to de-
note vectors), decide whether there exists a shift a ∈ F

n such that f(x+a) ⊆ g(x)
and output one if it exists. The symbol ⊆ is used to denote polynomial identity
(the polynomials should have the same coefficients). We will focus mainly on the
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case where F is a field of characteristic zero (such as the rational numbers) or
has a sufficiently large positive characteristic.

Observe that f is shift-equivalent to the zero polynomial if and only if f
itself is the zero polynomial. Hence, SET is a natural generalization of the well-
known Polynomial Identity Testing problem (PIT) in which we need to test
whether f(x) ⊆ 0 given access to a succinct representation of f (say, as a circuit).
A classical randomized algorithm by Schwartz-Zippel-DeMillo-Lipton [Sch80,
Zip79, DL78] is known for PIT: evaluate f on a random input (from a large
enough domain) and test if f evaluates to zero on that point. If f is non-zero,
then it is not zero on a random point with very high probability. In contrast, it
is not clear at all how to devise a randomized algorithm for SET. Unlike PIT,
which is a ‘co-NP’ type problem (there is short proof that a polynomial is not
zero), the SET problem is an ‘RPNP’ type problem (there is a short witness (the
shift itself) that polynomials are shift equivalent, and verifying that witness is
in RP).

The problem of equivalence of polynomials under shifts of the input first ap-
peared in the works of Grigoriev, Lakshman, Saunders and Karpinski [GK93,
GL95, LS94] (see also references therein), in the context of finding sparse shifts
of a polynomial. That is, they were interested in finding a shift that will make
a given polynomial sparse, if such a shift indeed exists. The main motivation
for this question comes from considering polynomials in their sum-of-monomials
representation (also called dense representation or depth-2 circuit complexity),
and the goal is to find a shift that will make the representation more succinct.
Later, in [Gri97], Grigoriev asked the following question: given two polynomials
f, g ∈ F[x], is there an efficient algorithm that can find whether there exists a
shift a ∈ F

n such that f(x + a) ⊆ g(x)? In the same paper, Grigoriev gave al-
gorithms for three versions of this problem: one deterministic for characteristic
zero, one randomized for large enough characteristic 0 < p and one quantum
for characteristic 2. The running time of Grigoriev’s algorithms was polynomial
in the dense representation. That is, for polynomials of degree d in n variables,
the running time was nO(d) (which is an upper bound on the number of coef-
ficients). In this paper, we address the same question as Grigoriev, but assume
that the polynomials are given in some succinct representation (say, as arith-
metic circuits). In this representation, one can hope for running time which is
polynomial in the size of the given circuits (which can be exponentially small
relative to the dense representation). For example the determinant polynomial
has n2 variables and degree n but can be given as a circuit of size nO(1) in the
succinct representation.

Our main result is a new randomized (two-sided error) algorithm for SET. The
algorithm runs in time polynomial in the circuit size of the given polynomials.
In fact, we only require black-box access to the polynomials f and g and a
bound on their degree and circuit size. Our algorithm is obtained as a reduction
to the PIT problem. Hence, if we were able to perform deterministic PIT, we
could also perform deterministic SET. For certain interesting restricted models
of arithmetic computation, this already gives deterministic SET. For general
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circuits, our results show that it is equivalently hard to de-randomize PIT and
SET, which is somewhat surprising as by the explanation above it seems as if
SET is a much harder problem than PIT.

Below, we will state our results in the most general way, assuming f and g
belong to some circuit classes closed under certain operations. The reason for
doing this is that, in this way, one can see exactly what conditions are required to
de-randomize the algorithm. That is, what kind of deterministic PIT is required
to derive deterministic SET (in general we require PIT for a slightly larger class).

1.1 Formal Statement of Our Results

Our results rely on closure properties of the underlying circuit classes.

Definition 1. Given a class of arithmetic circuits M we will say that M is
closed under an operator A : F[x] ⊂→ F[x] if the following property holds. Let f
be an n-variate polynomial of total degree d that is computed by a circuit of size s
from M. Then we require that A(f) is computed by a circuit of size poly(n, d, s)
from M.

For instance, one operator that is very common and under which all of the
most studied circuit classes are closed is the restriction operator, namely, the
operator that substitutes some of the variables of f(x) by field elements. It
is easy to see that by substituting some variables by field elements, the new
polynomial will also be computed by a circuit of size less than s, and in general
the new polynomial will also belong to the same class as f .

In addition, we will need to discuss closure under three different operators:

– Directional partial derivatives: The partial derivatives εf
εxi

of a polyno-
mial f are defined in the usual sense (over finite fields we use the formal
definition for polynomials). We define the first order partial derivative of f
in direction a ∈ F

n to be

f (1)(a,x) �
n∑

t=1

at · σf

σxt
(x).

Apart from the class of general circuits (and formulas) that are closed under
taking first order derivatives [BS83], the class of sparse polynomials (depth
2 circuits) is also closed under directional partial derivatives. Note, how-
ever, that depth-3 circuits with at most k multiplication gates, also known
as τλτ(k) circuits, are not known to be closed under directional partial
derivatives as these might increase the top fanin.

– Homogeneous components: If f ∈ F[x] is a polynomial of degree d, we
will denote the homogeneous component of degree k of f by Hk(f(x)). Gen-
eral circuits and formulas are closed under taking homogeneous components,
and the same also holds for the class of sparse polynomials.

– Shifts: Here we require that a class will be closed under the operation
f(x) ⊂→ f(x+a) for some a ∈ F

n. Again, circuits and formulas are closed to
shifts, however, the class of sparse polynomials is not.
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We now describe our main result that solves the SET problem given a PIT
algorithm.

Theorem 1 (Main Theorem). Let F be a field of characteristic zero. Let M1

and M2 be two circuit classes such that

1. M1 is closed under taking homogeneous components and closed under (first-
order) directional derivatives.

2. M2 is closed under taking shifts.
3. We have a (white-box) black-box PIT algorithm P for polynomials in M1,M2

and for polynomials of the form f − g, where f ∈ M1 and g ∈ M2.

Then, there exists an algorithm S that, given (white-box) black-box access to
polynomials f ∈ M1, g ∈ M2 and a bound d on the their degree, returns a ∈ F

n

so that g(x + a) ⊆ f(x), if such a shift exists, or returns FAIL, if none exist.
Furthermore:

– The running time of S is polynomial in the running time of P and in the
other parameters (n, d).

– If the PIT algorithm P is deterministic then so is S.
– All of the above holds also for the case when F is a finite field with charac-

teristic greater than d.

Combining Theorem 1 with Schwartz-Zippel-DeMillo-Lipton, we obtain a ran-
domized SET algorithm for any pair of polynomials.

Theorem 2 (Randomized SET for Pairs of Polynomials). Let F be a field
of characteristic zero or of characteristic larger than d. There exists a randomized
algorithm that, given black box access to f, g ∈ F[x] of degree at most d, returns
a ∈ F

n such that g(x+ a) ⊆ f(x), if such a shift exists, or FAIL otherwise. The
algorithm runs in time poly(n, d, log(1/Π)), where β is the probability or returning
a wrong answer (i.e., FAIL if a shift exists or a shift if none exists).

Remark 1. An interesting fact about Theorem 2 is that the algorithm we obtain
has a two sided error (this can be seen from the proof). This fact is in contrast to
the fact that most randomized algorithms in the algebraic setting have one-sided
error.

Theorem 1 already leads to deterministic algorithms for certain restricted
models. For instance, in the recent works of Forbes and Shpilka [FS12, FS13]
and of Forbes, Saptharishi and Shpilka [FSS13], the authors obtain a quasi-
polynomial deterministic PIT algorithm for read-once oblivious algebraic branch-
ing programs (ROABPs). Their result, together with our algorithm, imply that
we can find out whether two ROABPs are shift-equivalent in deterministic quasi-
polynomial time. Since this class also captures tensors,1 an application of our
result is that we can find out whether two tensors are shift-equivalent in quasi-
polynomial time (we refer the reader to [FS13, FSS13] for definitions of ROABPs
and tensors).

1 We note that the work [ASS13] also gives a black-box PIT algorithm for tensors.
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Corollary 1. There is a deterministic quasi-polynomial time algorithm that
given black-box access to two polynomials f and g computed by read-once oblivi-
ous algebraic branching programs, decides whether there exists a ∈ F

n such that
f(x + a) ⊆ g(x) and in case that such a shift exists, the algorithm outputs one.

As the class of sparse polynomials is closed under taking homogeneous com-
ponents and under first order directional derivatives (a directional derivative
blows up the size of the circuit by at most a factor of n) we obtain the following
corollary.

Corollary 2. Let M2 be any circuit class so that

1. M2 is closed under shifts.
2. There is a deterministic PIT algorithm testing if f − g is zero for sparse f

and g ∈ M2.

Then, we can test whether f and g are shift-equivalent deterministically in time
poly(n, s)

As an application of our main theorem in the white-box model, we note that
Saha et al. gave a polynomial time algorithm for testing whether a given sparse
polynomial equals a τλτ(k) circuit [SSS13]. Since their algorithm works in the
white-box model, we can utilize it in the variant of our main theorem in the
white-box model to find whether a given sparse polynomial and a polynomial
in τλτ(k) are shift-equivalent. We also note that we can make their algorithm
work in the black-box case as well. Using the reconstruction algorithms of [Shp09,
KS09] we can first reconstruct the τλτ(k) circuit in quasi-polynomial time. We
can also interpolate the sparse polynomial in polynomial time (for interpolation
of sparse polynomials see e.g. [KS01]) and then apply our methods together with
the PIT algorithm of Saha et al. to solve the shift-equivalence problem.2

1.2 Overview of the Algorithm

In this section we give a short overview of our algorithm and its analysis. Assume
we are given f(x) and g(x) and we have to find whether there exists a ∈ F

n such
that f(x + a) ⊆ g(x).

In the highest level, our algorithm will produce a candidate shift a such that
f(x + a) ⊆ g(x) and then use PIT on the polynomial f(x) − g(x− a), to check
that the solution a is indeed a good shift. We need to perform the PIT on the
polynomial f(x)− g(x−a) because M2 is closed under shifts. Since we will test
the validity of our candidate shift, this approach allows us to assume from the
beginning on that there exists a good shift a ∈ F

n.
Since we assume that a shift exists, we will have that deg(f) = deg(g) = d.

Let us also denote f(x) =
∑d

i=0 H
i(f(x)) where each Hi(f) is homogeneous of

2 Note that the reconstruction algorithm of [Shp09, KS09] returns so-called general-
ized ΣΠΣ(k) circuits. Nevertheless, one can observe that the algorithm of Saha et
al. works for such circuits as well.



422 Z. Dvir, R.M. de Oliveira, and A. Shpilka

degree i and similarly, g(x) =
∑d

i=0 H
i(g(x)). Since f(x + a) ⊆ g(x), we can

also write g(x) as

g(x) =

d∑

i=0

Hi(f(x + a)). (1)

By equation (1), we have that

Hd(g(x)) ⊆ Hd(f(x + a)) ⊆ Hd(f(x)).

Thus, we know that the homogeneous parts of highest degree of f and g must
agree.

Next we move to degree d− 1. A quick calculation gives

Hd−1(g(x)) = Hd−1(f(x + a)) = Hd−1(f(x)) +

n∑

k=1

ak · σH
d(f(x))

σxk
.

Therefore,

Hd−1(g(x)) −Hd−1(f(x)) =

n∑

k=1

ak · σH
d(f(x))

σxk
,

which implies that the polynomial Hd−1(g(x)) − Hd−1(f(x)) is a directional
derivative of Hd(f(x)) and therefore belongs to the class M1. This observa-
tion is crucial, since it allows us to not require M2 to be closed under taking
homogeneous parts.

After making this observation, notice that we want to find a vector b ∈ F
n

such that

Hd−1(g(x)) −Hd−1(f(x)) =

n∑

k=1

bk · σH
d(f(x))

σxk
, (2)

Observe that (2) is a polynomial equation that is linear in the entries of b.
Hence, for each v ∈ F

n, polynomial equation (2) becomes the following linear
equation in the entries of b:

Hd−1(g(v)) −Hd−1(f(v)) =

n∑

k=1

bk · σH
d(f(v))

σxk
. (3)

We can solve polynomial equation (2) by solving a system of linear equations
on b given by a set of carefully chosen equations of the form (3). If we have a
hitting set H for the class M1, the system of equations becomes the set of all
equations of the form (3) for which v ∈ H. See full version of the paper for more
details on how to solve this system in the white-box model. From now on, we
will refer to a polynomial equation by the system of linear equations associated
with it.

It turns out that if our circuit class is closed under directional derivatives,

that is, if the polynomial
∑n

k=1 ak · εHd(f(x))
εxk

(which equals the polynomial
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Hd−1(g(x)) − Hd−1(f(x)) ) belongs to the same circuit class as f(x) (or a
slightly larger class), and if we have a hitting set for the class of polynomials

of the form
∑n

k=1 ak · εHd(f(x))
εxk

, for every a ∈ F
n, then we can solve system of

equations (3) and find some solution b such that

Hd−1(g(x)) = Hd−1(f(x + b)) = Hd−1(f(x)) +
n∑

k=1

bk · σH
d(f(x))

σxk
.

If we allow randomness then we can also solve this system of equations without
having a hitting set, since we can randomly guess a hitting set and use it to solve
the system of linear equations.

Note that at this point we might have b ∧= a. Hence, we have found a shift b
that makes the homogeneous parts of degree d and d − 1 in f and g equal. We
now consider the homogeneous components of degree d, d− 1 and d− 2.

Here we have the system of equations (on the variables c)

Hd−1(g(x)) −Hd−1(f(x)) =

n∑

k=1

ck · σH
d(f(x))

σxk
, (4)

and

Hd−2(g(x)) = Hd−2(f(x + c)) (5)

= Hd−2(f) +
n∑

k=1

ck · σH
d−1(f(x))

σxk
+

n∑

Ω,k=1

cΩck
σ2Hd(f(x))

σxΩσxk
. (6)

And now we seem to be in trouble as this is a system of quadratic equations
in the entries of c. Here comes another crucial observation. Recall that we have
found b such that

Hd−1(g(x)) = Hd−1(f(x)) +
n∑

k=1

bk · σH
d(f(x))

σxk
.

We also have that

Hd−1(g(x)) = Hd−1(f(x + a)) = Hd−1(f(x)) +

n∑

k=1

ak · σH
d(f(x))

σxk
.

Hence,
n∑

k=1

(ak − bk) · σH
d(f(x))

σxk
= 0.

This means that the directional derivative of Hd(f(x)) in direction a−b is zero.
Or, in other words, that the polynomial Hd(f(x)) is fixed along that direction.
This means that no matter how many derivatives we take along direction a− b
we always get the zero polynomial.
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In particular, this gives

n∑

Ω,k=1

aΩak
σ2Hd(f(x))

σxΩσxk
=

n∑

Ω,k=1

bΩbk
σ2Hd(f(x))

σxΩσxk
,

as both sides compute the second directional derivatives in directions a and b,
respectively.

Since c must satisfy equation (4), we also have that

n∑

k=1

(ck − bk) · σH
d(f(x))

σxk
= 0.

And therefore, by the observation above we have that

n∑

Ω,k=1

aΩak
σ2Hd(f(x))

σxΩσxk
=

n∑

Ω,k=1

cΩck
σ2Hd(f(x))

σxΩσxk
=

n∑

Ω,k=1

bΩbk
σ2Hd(f(x))

σxΩσxk
. (7)

Going back, and using (7), we now have that system (5) is equivalent to the
system

Hd−2(g(x)) = Hd−2(f) +
n∑

k=1

ck · σH
d−1(f(x))

σxk
+

n∑

Ω,k=1

bΩbk
σ2Hd(f(x))

σxΩσxk
. (8)

By using the fact that

Hd−2(g(x)) = Hd−2(f(x + a))

= Hd−2(f(x)) +

n∑

k=1

ak · σH
d−1(f(x))

σxk
+

n∑

Ω,k=1

aΩak
σ2Hd(f(x))

σxΩσxk

= Hd−2(f(x)) +
n∑

k=1

ak · σH
d−1(f(x))

σxk
+

n∑

Ω,k=1

bΩbk
σ2Hd(f(x))

σxΩσxk

we have

Hd−2(g(x)) −Hd−2(f(x)) −
n∑

Ω,k=1

bΩbk
σ2Hd(f(x))

σxΩσxk
=

n∑

k=1

ak · σH
d−1(f(x))

σxk
.

Therefore, we have that polynomial Hd−2(g(x)) − Hd−2(f(x)) −
∑n

Ω,k=1 bΩbk
ε2Hd(f(x))

εxεεxk
is a directional derivative of Hd−1(f(x)) and there-

fore is in M1. Notice once more that we need to make this simulation to avoid
assuming that M2 is closed under homogeneous parts.

Since we already computed b, we have access to the polynomial Hd−2(g(x)) −
Hd−2(f(x)) − ∑n

Ω,k=1 bΩbk
ε2Hd(f(x))

εxεεxk
and therefore we can look for a solution to

both systems of equations (4) and (8) (as linear systems in the coefficients of c).
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Once we find such a solution, say c, we can use it to set up a new system of equations
involving the homogeneous components of degree d− 3 and so on.

Thus, our algorithm works in iterations. We start by solving a system of linear
equations. We then use the solution that we found to set up another system and
then we find a common solution to both systems. We use the solution that we
have found to construct a third system of equations and then solve all three
systems together etc. Throughout the iterations, we also make sure that we keep
working with polynomials that only belong to the circuit class M1, so that we
avoid requiring M2 to be closed under homogeneous parts. At the end we have
a solution for all systems, and at this point it is not difficult to verify, that if
such a shift a exists, then the solution that we found is indeed a valid shift. This
can be verified by running one PIT for checking whether the shift of f that we
have found and g are equivalent.

All the steps above can be completed using randomness, including solving the
black-box system of equations, or using PIT for the relevant circuit classes.

1.3 Related Work

The works of Grigoriev, Lakshman, Saunders and Karpinski [GK93, GL95, LS94],
try to solve the problem of finding sparse shifts of given polynomials, in order
to make their representation more succinct. In [GK93], Grigoriev and Karpin-
ski studied the problem of finding sparse affine-shifts of multivariate polynomi-
als f(x), that is, transformations of the form x ⊂→ Ax + b where A is full-rank,
which make the input polynomial f(Ax+b) sparse. In [LS94], the authors consider
the problem of finding sparse shifts of univariate polynomials, and of determining
uniqueness of a sparse shift. Given an input polynomial f(x), they use a criterion
based on the vanishing of the Wronskian of some carefully designed polynomials,
which depend on the derivatives f (i)(x), in order to obtain an efficient algorithm
for the univariate case.

Later, in [Gri97], Grigoriev gave three algorithms for the SET problem, which
were polynomial in the size of the dense representation of the input polynomials.
His algorithms were based on a structural result about the set of shifts that
stabilize the polynomial, that is, the set of points a ∈ F

n for which f(x + a) ⊆
f(x). We denote this stabilizer by Sf . He noticed that Sf is a subspace of Fn

and that the set of shifts that are solutions to the SET problem with input
polynomials f, g, which we denote Sf,g, is a coset of Sf . After this observation,
Grigoriev established the following recursive relations between Sf,g and S λf

λxi
, λg
λxi

,

for each xi:

Sf,g =

n⋂

i=1

S λf
λxi

, λg
λxi

≥ {a ∈ F
n : f(a) = g(0)}.

From these relations, Grigoriev devised a recursive algorithm that finds Sf,g by
finding the subspaces corresponding to S λf

λxi
, λg
λxi

. Because this recursive proce-

dure will find all the subspaces S λf
λm , λg

λm
for every monomial m of degree less than

or equal to d = max(df , dg), the running time of his algorithm is bounded by
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nO(d). Our approach is different from Grigoriev’s in the sense that we avoid the
recursive relations and find a shift by iteratively constructing a shift which makes
f and g agree on their homogeneous parts of up to a certain degree, starting
from the homogeneous parts of highest degree down to the homogeneous parts
of lowest degree (i.e., the constant term).

The study of equivalences of general polynomials under affine transforma-
tions, which we refer to as affine-equivalence, was started by Kayal in [Kay12]
(note that this generalizes the problem studied in [GK93]). We say that f
and g are affine-equivalent if there exists a matrix A and a shift b such that
f(x) = g(Ax+b). In this work, Kayal analyzes whether a given polynomial f can
be obtained by an affine transformation of a given polynomial g, where g is usu-
ally taken to be a “complete” polynomial in some arithmetic circuit class, such
as the Determinant or Permanent polynomials. In his paper, Kayal establishes
NP-hardness of the general problem of determining affine-equivalence between
two arbitrary polynomials. Moreover, he provides randomized algorithms for the
affine-equivalence problem when one of the polynomials is the Permanent or the
Determinant and the affine transformations x ⊂→ Ax + b are of a special form
(in the case of Determinant and Permanent, the matrix A must be invertible).
Kayal provides randomized algorithms for some other classes of homogeneous
polynomials, and for more details we refer the reader to the paper [Kay12]. Our
work is different from Kayal’s work since in our setting we are only interested in
shift-equivalences, and in this feature we are less general than Kayal’s work, but
we also consider larger classes of polynomials, in which case we are more general
than Kayal’s work.

Following the online publication of this manuscript, an anonymous reader
pointed out an alternative way to solve the SET problem using a randomized
algorithm. This approach uses a lemma due to Carlini [Car06] (see also [Kay12,
Lemma 17]) and an argument implicit in Kayal’s work [Kay12, Section 7.3]. We
now discuss and compare this alternative approach to ours.

In his lemma, Carlini uses a linear transformation on the variables in order
to get rid of “redundant variables,” that is, variables xi for which (after a suit-
able change of basis) the derivative εf

εxi
of the polynomial is zero. The idea is to

use this lemma to eliminate the “redundant variables” and work only with the
“essential variables.” Once we find such a linear transformation, one can solve
Equation (2) (there will be at most one solution, since there are no more redun-
dant variables). Then, we reduce the original problem to another SET problem
on lower degree polynomials by subtracting the homogeneous part of largest de-
gree. We give the details (which do not appear elsewhere in the literature) in the
full version of the paper. In a sense, this approach is almost identical to ours. In
the first step of our algorithm we solve Equation (2) and get an affine subspace
as solution. This affine subspace can be thought of as being composed of the
space of all assignments to the “non-essential” variables shifted by the unique
solution. Then, in the next step, we prune this space further according to the
essential variables of the degree d− 1 part etc. The advantages of our approach
come in when trying to de-randomize SET using deterministic PIT for restricted
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classes. When following Carlini’s lemma and reducing the number of variables,
one needs to solve PIT for the composition of the original circuits with a linear
transformation. This is not necessary in our approach, which has weaker PIT
requirements. While some circuit classes are closed under linear transformations,
this is not the case in general. For example, the class of sparse polynomials is
not closed under linear transformations. Thus, one will not be able to deduce
polynomial time algorithms to certain instances of SET like those that follow
from our approach (see Corollary 2 and the discussion following it).

Another issue with the algorithm obtained from Carlini’s lemma is that in each
step of the recursion we need to subtract an affine shift of the homogeneous com-
ponent of maximal degree from each of the polynomials. Thus, we need PIT for
classes that are closed under linear combinations of polynomials from the class.
However, some restricted circuit classes do not satisfy such closure properties. For
example, when executing this algorithm on depth-3 circuits with bounded top fan-
in, we may get, at some step of the algorithm, a depth-3 circuit with unbounded
top fan-in and so we will not be able to use current deterministic algorithms.

2 Conclusion and Open Questions

In this paper, we reduced the problem of shift-equivalence to the problem of
solving PIT, and as a consequence of this reduction we obtained a polynomial-
time randomized algorithm for the shift-equivalence problem, over characteristic
zero or when the characteristic of the base field is larger than the degrees of the
polynomials.

We gave some examples for classes of circuits where this can be performed
deterministically in quasi-polynomial time. One example where we “almost” have
such a result is when testing whether a given sparse polynomial is equivalent
to a shift of another sparse polynomial. Note that while the class of sparse
polynomials is closed under partial derivatives and homogeneous components, it
is not closed under shifts and so we cannot use our approach. Nevertheless, it is
quite likely that this simple case can be solved using other techniques.
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Abstract. In early seventies it was shown that the asymptotic approxi-
mation ratio of BestFit bin packing is equal to 1.7. We prove that also
the absolute approximation ratio for BestFit bin packing is exactly 1.7,
improving the previous bound of 1.75. This means that if the optimum
needs Opt bins, BestFit always uses at most ⇒1.7 · OPT≤ bins. Fur-
thermore we show matching lower bounds for all values of Opt, i.e., we
give instances on which BestFit uses exactly ⇒1.7 · OPT≤ bins. Thus
we completely settle the worst-case complexity of BestFit bin packing
after more than 40 years of its study.

1 Introduction

Bin packing is a classical combinatorial optimization problem in which we are
given an instance consisting of a sequence of items with rational sizes between
0 and 1, and the goal is to pack these items into the smallest possible number
of bins of unit size. BestFit algorithm packs each item into the most full bin
where it fits, possibly opening a new bin if the item does not fit into any currently
open bin. A closely related FirstFit algorithm packs each item into the first
bin where it fits, again opening a new bin only if the item does not fit into any
currently open bin.

Johnson’s thesis [8] on bin packing together with Graham’s work on schedul-
ing [6,7] belong to the early influential works that started and formed the whole
area of approximation algorithms. The proof that the asymptotic approximation
ratio of FirstFit and BestFit bin packing is 1.7 given by Ullman [14] and sub-
sequent works by Garey et al. and Johnson et al. [5,10] were among these first
results on approximation algorithms.

We prove that also the absolute approximation ratio for BestFit bin packing
is exactly 1.7, i.e., if the optimum needs Opt bins, BestFit always uses at most
∈1.7 · Opt⊆ bins. This builds upon and substantially generalizes our previous
upper bound for FirstFit from [3]. For the comparison of the techniques, see
the beginning of Section 4. Furthermore we show matching lower bounds for
all values of Opt, i.e., we give instances on which BestFit and FirstFit use
exactly ∈1.7 · Opt⊆ bins. This is also the first construction of an instance that
has absolute approximation ratio exactly 1.7 for an arbitrarily large Opt.

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 429–441, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014
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Note that the upper bound for BestFit is indeed a generalization of the
bound for FirstFit: The items in any instance can be reordered so that they ar-
rive in the order of bins in the FirstFit packing. This changes neither FirstFit,
nor the optimal packing. Thus it is sufficient to analyze FirstFit on such in-
stances. On the other hand, on them BestFit behaves exactly as FirstFit, as
there is always a single bin where the new item fits. Thus any lower bound for
FirstFit applies immediately to BestFit and any upper bound for FirstFit
is equivalent to a bound for BestFit for this very restricted subset of instances.
To demonstrate that the extension of the absolute bound from FirstFit to
BestFit is by far not automatic, we present a class of any-fit-type algorithms
for which the asymptotic bound of 1.7 holds, but the absolute bound does not.

History and Related Work. The upper bound on BestFit (and FirstFit)
was first shown by Ullman in 1971 [14]; he proved that for any instance, BF,FF⊂
1.7 · Opt + 3, where BF, FF and Opt denote the number of bins used by
BestFit, FirstFit and the optimum, respectively. Still in seventies, the addi-
tive term was improved first in [5] to 2 and then in [4] to BF ⊂ →1.7 · Opt∧;
due to integrality of BF and Opt this is equivalent to BF ⊂ 1.7 · Opt + 0.9.
Recently the additive term of the asymptotic bound was improved for FirstFit
to FF ⊂ 1.7 ·Opt + 0.7 in [16] and to FF ⊂ 1.7 ·Opt in [3].

The absolute approximation ratio of FirstFit and BestFit was bounded by
1.75 by Simchi-Levy [13]. Recent improvements again apply only to FirstFit:
after bounds of 12/7 ≥ 1.7143 by Xia and Tan [16] and Boyar et al. [1] and
101/59 ≥ 1.7119 by Németh [11], the tight bound of FF ⊂ 1.7 ·Opt was given
in our previous work [3].

For the lower bound, the early works give examples both for the asymptotic
and absolute ratios. The example for the asymptotic bound gives FF = 17k
whenever Opt = 10k+ 1, thus it shows that the asymptotic upper bound of 1.7
is tight, see [14,5,10]. For the absolute ratio, an example is given with FF = 17
and Opt = 10, i.e., an instance with approximation ratio exactly 1.7 [5,10], but
no such example was known for large Opt. In our previous work [3] we have
given lower bound instances with BF = FF = ∈1.7 ·Opt⊆ whenever Opt ⇐⇒ 0, 3
(mod 10).

We have mentioned only directly relevant previous work. Of course, there is
much more work on bin packing, in particular there exist asymptotic approxi-
mation schemes for this problem, as well as many other algorithms. We refer to
the survey [2] or to the recent excellent book [15].

Organization of the Paper. The crucial technique of the upper bound is a
combination of amortization and weight function analysis, following the scheme
of our previous work [12,3]. We present it first in Section 2 to give a simple proof
of the asymptotic bound for BestFit and any-fit-type algorithms. We prove the
lower bound in Section 3, as it illustrates well the issues that we need to deal
with in the upper bound proof, which is then given in Section 4. Most proofs are
omitted, but we try to explain the main ideas behind them. For a version with
all proofs, see http://iuuk.mff.cuni.cz/~sgall/ps/BF.pdf.
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2 Notations and the Simplified Asymptotic Bound

Let us fix an instance I with items a1, . . . , an and denote the number of bins
in the BestFit and optimal solutions by BF and Opt, respectively. We will
often identify an item and its size. For a set of items A, let s(A) =

∑
a◦A a, i.e.,

the total size of items in A and also for a set of bins A, let s(A) =
∑

A◦A s(A).
Furthermore, let S = s(I) be the total size of all items of I. Obviously S ⊂ Opt.

We classify the items by their sizes: items a ⊂ 1/6 are small, items a ∪
(1/6, 1/2] are medium, and items a > 1/2 are huge. A bin is called a k-bin
or k+-bin, if it contains exactly k items or at least k items, respectively, in the
final packing. Furthermore, the rank of a bin is the number of medium and huge
items in it. An item is called k-item if BF packs it into a k-bin.

The bins in the BF packing are ordered by the time they are opened (i.e.,
when the first item is packed into them). Expressions like “before”, “after”, “first
bin”, “last bin” refer to this ordering. At any time during the packing, the level
of a bin is the total size of items currently packed in it, while by size of a bin
we always mean its final level. A level of an item a denotes the level of the
bin where a is packed, just before the packing of a.

The following properties of BestFit follow easily from its definition.

Lemma 2.1. At any moment, in the BF packing the following holds:
(i) The sum of levels of any two bins is greater than 1. In particular, there is

at most one bin with level at most 1/2.
(ii) Any item a with level at most 1/2 (i.e., packed into the single bin with level

at most 1/2) does not fit into any bin open at the time of its arrival, except
for the bin where the item a is packed.

(iii) If there are two bins B,B√ with level at most 2/3, in this order, then either
B√ contains a single item or the first item in B√ is huge. ≤⇔

To illustrate our technique, we now present a short proof of the asymptotic
ratio 1.7 for BestFit. It uses the same weight function as the traditional analysis
of BestFit. (In some variants the weight of an item is capped to be at most 1,
which makes almost no difference in the analysis.) To use amortization, we split
the weight of each item a into two parts, namely its bonus w(a) and its scaled
size w(a), defined as

w(a) =


⎧⎧⎧⎨

⎧⎧⎧⎩

0 if a ⊂ 1
6 ,

3
5 (a− 1

6 ) if a ∪ ⎢
1
6 ,

1
3

⎣
,

0.1 if a ∪ ⎛
1
3 ,

1
2

⎝
,

0.4 if a > 1
2 .

For every item a we define w(a) = 6
5a and its weight is w(a) = w(a) +w(a). For

a set of items B, w(B) =
∑

a◦B w(a) denotes the total weight, similarly for w
and w.

It is easy to observe that the weight of any bin B, i.e., of any set with s(B) ⊂ 1,
is at most 1.7: The scaled size of B is at most 1.2, so we only need to check that
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w(B) ⊂ 0.5. If B contains no huge item, there are at most 5 items with non-zero
w(a) and w(a) ⊂ 0.1 for each of them. Otherwise the huge item has bonus 0.4;
there are at most two other medium items with non-zero bonus and it is easy to
check that their total bonus is at most 0.1. This implies that the weight of the
whole instance is at most 1.7 ·Opt.

The key part is to show that, on average, the weight of each BF-bin is at
least 1. Lemma 2.2 together with Lemma 2.1 implies that for almost all bins
with two or more items, its scaled size plus the bonus of the following such bin
is at least 1.

Lemma 2.2. Let B be a bin such that s(B) ∗ 2/3 and let c, c√ be two items that
do not fit into B, i.e., c, c√ > 1 − s(B). Then w(B) + w(c) + w(c√) ∗ 1.

Proof. If s(B) ∗ 5/6, then w(B) ∗ 1 and we are done. Otherwise let x = 5/6 −
s(B). We have 0 < x ⊂ 1/6 and thus c, c√ > 1/6 + x implies w(c), w(c√) > 3

5x.
We get w(B) + w(c) + w(c√) > 6

5 (56 − x) + 3
5x + 3

5x = 1. ≤⇔
Any BF-bin D with a huge item has w(D) ∗ 0.4 and 6

5s(D) > 0.6, thus
w(D) > 1.

For the amortization, consider all BF-bins B with two or more items, size
s(B) ∗ 2/3, and no huge item. For any such bin except for the last one choose
C as the next bin with the same properties. Since C has no huge item, its first
two items c, c√ have level at most 1/2 and by Lemma 2.1(ii) they do not fit into
B. Lemma 2.2 implies w(B) + w(C) ∗ w(B) + w(c) + w(c√) ∗ 1.

Summing all these inequalities (note that each bin is used at most once as
B and at most once as C) and w(D) > 1 for the bins with huge items we
get w(I) ∗ BF − 3. The additive constant 3 comes from the fact that we are
missing an inequality for at most three BF-bins: the last one from the amorti-
zation sequence, possibly one bin B with two or more items and s(B) < 2/3 (cf.
Lemma 2.1(iii)) and possibly one bin B with a single item and s(B) < 1/2 (cf.
Lemma 2.1(i)). Combining this with the previous bound on the total weight, we
obtain BF− 3 ⊂ w(I) ⊂ 1.7 ·Opt and the asymptotic bound follows.

This simple proof holds for a wide class of any-fit-type algorithms: Call an
algorithm a RAAF (relaxed almost any fit) algorithm, if it uses the bin with level
at most 1/2 only when the item does not fit into any previous bin (Lemma 2.1(i)
implies that there is always at most one such bin). Our proof of the asymptotic
ratio can be tightened so that the additive constant is smaller:

Theorem 2.3. For any RAAF algorithm A and any instance of bin packing we
have A ⊂ ∈1.7 ·Opt + 0.7⊆ ⊂ →1.7 ·Opt∧. ≤⇔
The proof is given in the full version, where we also give an example of a RAAF
algorithm which does not satisfy the absolute bound of 1.7. The asymptotic
bound for almost any fit (AAF) algorithms was proved in [8,9], where the original
AAF condition prohibits packing an item in the smallest bin if that bin is unique
and the item does fit in some previous bin (but the restriction holds also if the
smallest bin is larger than 1/2). Theorem 2.3 improves the additive term and
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generalizes the bound from AAF to the slightly less restrictive RAAF condition
(although it seems that the original proof also uses only the RAAF condition).

3 Lower Bound

The high level scheme of the lower bound for Opt = 10k is this: For a tiny
ε > 0, the instance consists of Opt items of size approximately 1/6, followed by
Opt items of size approximately 1/3, followed by Opt items of size 1/2+ε. The
optimum packs in each bin one item from each group. BestFit packs the items
of size about 1/6 into 2k bins with 5 items, with the exception of the first and
last of these bins that will have 6 and 4 items, respectively. The items of size
about 1/3 are packed in pairs. To guarantee this packing, the sizes of items differ
from 1/6 and 1/3 in both directions by a small amount δi which is exponentially
decreasing, but greater than ε for all i. This guarantees that only the item with
the largest δi in a bin is relevant for its final size and this in turn enables us to
order the items so that no additional later item fits into these bins.

Theorem 3.1. For all values of Opt, there exists an instance I with FF =
BF = ∈1.7 ·Opt⊆. ≤⇔

4 Upper Bound

At the high level, we follow the weight function argument from the simple proof
in Section 2. As we have seen, the BF packing in the lower bound contains
three types of bins that play different roles. To obtain the tight upper bound,
we analyze them separately. For two of these types we can argue easily that the
weight of each bin is at least 1: First, the bins with size at least 5/6, called big
bins below; these are the initial bins in the lower bound containing the items of
size approximately 1/6. Second, the 1-bins, called dedicated bins; these are the
last bins with items 1/2 + ε in the lower bound. The remaining bins, common
bins, are the middle bins of size approximately 2/3 with items of size around
1/3 (except for the first bin) in the lower bound. They are analyzed using the
amortization lemma. This general scheme has several obstacles which we describe
now, together with the intuition behind their solution.

Obstacle 1. There can be one dedicated bin with item d0 < 1/2. We need to
change its bonus to approximately 0.4, to guarantee a sufficient weight of this
bin. This in turn possibly forces us to decrease the bonus of one huge item f1
to 0.1, if d0 and f1 are in the same Opt-bin, so that the Opt-bin has weight at
most 1.7.

Obstacle 2. The amortization lemma needs two items that do not fit into the
previous bin. Unlike FirstFit, BestFit does not guarantee this, if the first
item in a bin is huge. If this first item is not f1, we can handle such bins, called
huge-first bins, similarly as dedicated bins. If this happens for f1, we need to
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argue quite carefully to find the additional bonus. This case, called the freaky
case, is the most complicated part of our analysis.

Obstacle 3. Even on the instances similar to our lower bound, the amortization
leaves us with the additive term of 0.1, because we cannot use the amortization
on the last common bin, and its scaled weight is only about 0.8 if its size is
around 2/3. Here the parity of the items of size around 1/3 comes into play:
Typically they come in pairs in BF-bins, as in the lower bound, but for odd
values of Opt one of them is missing or is in a FirstFit bin of 3 or more items.
This allows us to remove the last 0.1 of the additive term, using the mechanism
of an exceptional set, see Definition 4.9.

Obstacle 4. If the last common bin is smaller than 2/3, the problem with
amortizing it is even larger. Fortunately, then the previous common bins are
larger than 2/3 and have additional weight that can compensate for this, using
a rather delicate argument, see Proposition 4.11.

Notations and Preliminary Lemmata

We classify the BF bins into four groups.
Any 1-bin D is a dedicated bin; D denotes the set of all dedicated bins and

δ their number. If some dedicated bin has size at most 1/2, denote the item in
it d0 and let Δ = 1/2 − d0; otherwise d0 and Δ are undefined. Lemma 2.1(i)
implies that there is at most one such item; also we shall see that in the tightest
case Δ is close to 0.

If d0 is defined, there may exist a (unique) huge item in its Opt-bin. In that
case, denote it f1 for the rest of the proof and leave f1 undefined otherwise.
Furthermore, if f1 is the first item in a BF-bin, denote that bin F for the rest of
the proof; otherwise let F undefined. Note that F cannot be a 1-bin as otherwise
d0 would fit there contradicting Lemma 2.1(i). Let f2 be the second item in F .

If the first item of a 2+-bin H is huge and H ⇐= F , we call H a huge-first
bin; H denotes the set of all huge-first bins and η their number.

If a 2+-bin B satisfies s(B) ∗ 5/6 and it is not in H, we call it a big bin; B
denotes the set of all big bins and β their number.

Any remaining bin (i.e., any 2+-bin with size less than 5/6 and the first item
small or medium, and also F if it is defined and not a big bin) is called a
common bin; C denotes the set of all common bins, and γ their number.

An item is called an H-item, if it is do or a huge item different from f1 (if
defined). Note that each Opt-bin and each BF-bin contains at most one H-item.

The definitions imply that in every big or common bin different from F (if
defined), the first item is small or medium. Then Lemma 2.1(ii) implies that the
first two items of the bin do not fit into any previous bin.

Throughout the proof we distinguish two cases depending on the bin F .
If F is not defined, or it is a big bin, or f2 does not fit into any previous

common bin, then we call this the regular case and all the common bins,
including F if it is defined and a common bin, are called regular bins.
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If F is defined and it is a common bin, and f2 would fit into some previous
common bin at the time of its packing, fix one such bin G for the rest of the proof.
We call this the freaky case and F the freaky bin. All the other common bins
are called regular bins.

In both cases, denote the set of all regular bins by R and their number by ρ,
furthermore number the regular bins C1, . . . , Cρ, ordered by the time of their
opening. In the freaky case, let g be the index of bin G in this ordering, i.e., let
Cg = G. Note that ρ = γ in the regular case and ρ = γ − 1 in the freaky case.

In the following lemma we significantly reduce the set of instances that we
need to consider in our proof. Our goal is to reorder or remove the items in the
sequence so that BestFit packs most items similarly as FirstFit. For these
transformations, we use two important properties of BestFit that follow from
its definition. First, if we remove all the items from a BF-bin from the instance,
the packing of the remaining items into the remaining bins does not change;
often we use this so that we move the items to a later position in the instance
and then this implies that the packing of the initial segment before the new
position of the moved items does not change. Second, if two instances lead to
the same configuration and we extend them by the same set of items, then the
resulting configurations are also the same, where the configuration is the current
multiset of levels of BF-bins. (This does not hold for FirstFit, as permuting
the bins can change the subsequent packing, but the configuration is the same.)

Lemma 4.1. If there exists an instance with BF > 1.7 ·Opt, then there exists
such an instance I that in addition satisfies the following properties:

(i) All the 1-items form a final segment of the input instance.
(ii) If a BF bin B contains an item a such that for all other BF bins B√ we

have a + s(B√) > 1 then B is an 1-bin.
(iii) In each BF 2+-bin, the first two items are aj−1 and aj for some j (i.e., they

are adjacent in I). Furthermore, these two items are packed into different
bins in Opt.

(iv) Suppose that for a BF 3+-bin B, the first item in B is not huge, and no
new bin is opened after opening B and before packing the third item into
B. Then the first three items packed into B are aj−2, aj−1 and aj for some
j (i.e., they are adjacent in I). Furthermore, these three items are packed
into different bins in Opt.

(v) Suppose that aj is the last item packed into a BF bin B. Then for all j√ > j,
we have aj′ + s(B) > 1 (i.e., no later items fit into B). Consequently, no
later item has level s(B) or larger in BF packing. ≤⇔

For the rest of the proof we assume that our instance I satisfies the properties
from Lemma 4.1. The following lemma states the consequences for the common
bins: The medium items are packed as in FirstFit and the small items are
restricted to only first few common bins.
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Lemma 4.2. (i) Any item aj > 1/6 packed into a regular bin Ci has the
property that at the time of its packing, aj does not fit into any previous
common bin.

(ii) If a small item aj is packed into a common bin, then this is a common bin
with the largest level at the time of packing aj. Except for C1 and F , any
small item in a common bin has level at least 2/3.

(iii) From the moment when there are two common bins with level at least 2/3
on, no small item arrives. In particular, no small item is packed into a
common bin opened later than C2.

(iv) If aj ∪ C2 is small, some ak > 1/6, k > j (i.e., ak is after aj), is packed
into C1. ≤⇔

In the next lemma we state some properties important for the freaky case.
For the rest of the proof, let g0 denote the item in bin G guaranteed by the next
lemma. Note that the lemma implies that there are at least three items packed
into G, as there are two other items in G when F opens.

Lemma 4.3. In the freaky case, the BF packing satisfies the following:
(i) There exists an item g0 that is packed into bin G such that g0 arrives after

f2 and s(F ) + g0 > 1. Furthermore, s(F ) + s(G) > 1 + d0.
(ii) If the regular bins Ci and Ck are opened before F then s(F ) > 2/3 and

s(Ci) + s(Ck) + s(F ) > 2. ≤⇔

Lemma 4.4. In the BF packing the following holds:
(i) The total size of any k ∗ 2 BF-bins is greater than k/2.
(ii) If d0 is defined, then s(H ⊥D) ∗ (δ + η)/2 + (δ + η − 2)Δ.

(iii) The total number of huge-first and dedicated bins is δ + η ⊂ Opt.
(iv) Suppose that C is a regular bin of size s(C) = 2/3 − 2x for some x ∗ 0.

For any bin B before C we have s(B) > 2/3 + x and for any regular or big
bin B after C we have s(B) > 2/3 + 4x.

(v) Suppose we have a set A of k common and big bins such that there are at
least 3 common bins among them. Then s(A) > 2k/3. ≤⇔

Now we assume that the instance violates the absolute ratio 1.7 and derive
some easy consequences that exclude some degenerate cases. Note that the values
of 1.7·Opt are multiples of 0.1 and BF is an integer, thus BF > 1.7·Opt implies
BF ∗ 1.7 ·Opt+ 0.1. Typically we derive a contradiction with the lower bound
S ⊂ Opt on the optimum.

Lemma 4.5. If BF > 1.7 ·Opt then the following holds:
(i) Opt ∗ 7.

(ii) No common bin C has size s(C) ⊂ 1/2.
(iii) The total number of dedicated and huge-first bins is bounded by η + δ ∗ 5.

If d0 is not defined then there is no huge-first bin, i.e., η = 0.
(iv) The number of regular bins is at least ρ ∗ Opt/2 + 1 > 4. If BF ∗

1.7 ·Opt + τ/10 for some integer τ ∗ 1 then ρ > (Opt + τ)/2. ≤⇔
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The Weight Function, Amortization, Exceptional Set

Now we give the modified and final definition of the weight function. The weight
is modified only for d0 and f1 and their modified bonus is at least 0.1. Thus
Lemma 2.2 still holds, as its proof uses at most 0.1 of bonus for each item.

Definition 4.6. The weight function w, bonus w and scaled size w are defined
as follows:

If d0 is defined, we define w(d0) = 0.4 − 3
5Δ.

If f1 is defined, we define w(f1) = 0.1

For any other item a, we define w(a) =


⎧⎧⎧⎨

⎧⎧⎧⎩

0 if a ⊂ 1
6 ,

3
5 (a− 1

6 ) if a ∪ ⎛
1
6 ,

1
3

⎝
,

0.1 if a ∪ ⎛
1
3 ,

1
2

⎝
,

0.4 if a > 1
2 .

For every item a we define w(a) = 6
5a and w(a) = w(a) + w(a).

For a set of items A and a set of bins A, let w(A) and w(A) denote the total
weight of all items in A or A; similarly for w and w. Furthermore, let W = w(I)
be the total weight of all items of the instance I.

Note that H-items are exactly the items with bonus greater than 0.1.
In the previous definition, the function w is continuous on the case boundaries,

except for a jump at 0.4. Furthermore, if we have a set A of k items with size
in [ 16 ,

1
3 ] and d0 ⇐∪ A, then the definition implies that the bonus of A is exactly

w(A) = 3
5

⎢
s(A) − k

6

⎣
. More generally, if A contains at least k items and no

H-item, then we get an upper bound w(A) ⊂ 3
5

⎢
s(A) − k

6

⎣
.

The analysis of Opt-bins and big, dedicated and huge-first BF-bins in the
next two lemmata is easy.

Lemma 4.7. For every optimal bin A its weight w(A) can be bounded as fol-
lows:

(i) w(A) ⊂ 1.7.
(ii) If A contains no H-item, then w(A) ⊂ 1.5. ≤⇔

Lemma 4.8. (i) The total weight of the big bins is w(B) ∗ w(B) ∗ β.
(ii) The total weight of the dedicated and huge-first bins is w(D ⊥H) ∗ δ + η.

≤⇔
The analysis of the common bins is significantly harder. Typically we prove

that their weight is at least γ−0.2 which easily implies that BF ⊂ 1.7·Opt+0.1.
Due to the integrality of BF and Opt, this implies our main result whenever
Opt ⇐⇒ 7 (mod 10). To tighten the bound by the remaining 0.1 and to analyze
the freaky case, we need to reserve the bonus of some of the items in the common
bins instead of using it for amortization; this is possible if we still have two items
in each regular bins whose bonus we can use. Now we define a notion of an
exceptional set E, which contains these items with reserved bonus. In the freaky
case, g0 ∪ E, as its bonus is always needed to amortize for F . Other items are
added to E only if Opt ⇒ 7 (mod 10), depending on various cases.
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Definition 4.9. A set of items E is called an exceptional set if
(i) for each i = 2, . . . , ρ, the bin Ci contains at least two items c, c√ > 1

6 that
are not in E;

(ii) if Opt ⇐⇒ 7 (mod 10) then E = ↓ in the regular case and E = {g0} in the
freaky case; and

(iii) if Opt ⇒ 7 (mod 10) then E has at most two items and g0 ∪ E in the
freaky case.

The next lemma modifies the amortization lemma for the presence of the
exceptional set.

Lemma 4.10. (i) Let i = 2, . . . , ρ and s(Ci−1) ∗ 2/3. Then w(Ci−1)+w(Ci \
E) ∗ 1.

(ii) In the freaky case, if s(F ) ∗ 2/3 then w(F ) + w(f1) + w(g0) ∗ 1.

Proof. (i): Let c, c√ > 1
6 be two items in Ci \E; their existence is guaranteed by

the definition of the exceptional set. By Lemma 4.2(i), c, c√ > 1 − s(Ci−1). The
claim follows by Lemma 2.2 (which applies even to the modified weights, as we
noted before).

(ii): Lemma 4.3(i) implies g0 > 1−s(F ). Trivially, f1 > 1/2 > 1−s(F ). Thus
we can apply Lemma 2.2 with c = g0 and c√ = f1 and the claim follows. ≤⇔

Analyzing the Common Bins

The following proposition is relatively straightforward if s(Cρ) ∗ 2/3, otherwise
it needs a delicate argument. It implies easily our upper bound with the additive
term 0.1.

Proposition 4.11. Let Opt ∗ 8, BF > 1.7 ·Opt, and E be an exceptional set.
Then:

(i) w(R) − w(E) ∗ ρ− 0.2.
(ii) If Cρ has rank at least 3 then w(R) − w(E) ∗ ρ.

(iii) In the freaky case, if E = {g0}, and G = Cg ⇐= Cρ then we have w(R) −
w(E) − w(Cg) − w(Cg+1) ∗ ρ− 1.2. ≤⇔

Proposition 4.12. For any instance of bin packing with Opt ∗ 8, we have
W > BF− 0.2 and W ⊂ 1.7 ·Opt. Thus also BF ⊂ 1.7 ·Opt + 0.1.

Proof. Suppose that BF > 1.7 · Opt. First we show that w(C) ∗ γ − 0.2,
distinguishing three cases.

In the regular case we set E = ↓ and Proposition 4.11(i) gives w(C) ∗ γ−0.2.
In the freaky case, if s(F ) ∗ 2/3, we set E = {g0}, then sum Lemma 4.10(ii)

and Proposition 4.11(i) to obtain w(C) = w(R) − w(E) + w(g0) + w(F ) >
ρ− 0.2 + 1 = γ − 0.2.

In the freaky case, if s(F ) < 2/3, then Lemma 4.3(ii) implies that F opens
before C2 and G = C1. Each Cj , j ∗ 2, contains two items larger than 1/3, thus
w(Cj) > 1. Finally, f1 < 2/3, thus the level of C1 when F opens is greater than
1/3. Using Lemma 4.3(i) we have s(F ) + g0 > 1, thus also g0 > 1/3 and w(g0) ∗
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0.1. Thus w(G)+w(F ) ∗ w(G)+w(F )+w(g0)+w(f1) ∗ 6
5 (13+1)+0.1+0.1 = 1.8.

Summing this with w(Cj) > 1 for j ∗ 2 we obtain w(C) > γ − 0.2 as well.
Together with Lemma 4.8, w(C) > γ−0.2 implies W = w(B)+w(D)+w(H)+

w(C) > β+η+δ+(γ−0.2) = BF−0.2. By Lemma 4.7(i) we have W ⊂ 1.7 ·Opt.
Thus BF − 0.2 < W ⊂ 1.7 ·Opt. Since BF and Opt are integers the theorem
follows. ≤⇔

Now after having proved BF ⊂ 1.7 · Opt + 0.1, we are going to prove our
main result.

Theorem 4.13. For any instance of bin packing we have BF ⊂ 1.7 ·Opt.

Proof. Suppose the theorem does not hold. Then Proposition 4.12 implies BF =
1.7 ·Opt + 0.1 and integrality of Opt and BF then gives Opt ⇒ 7 (mod 10),
in particular Opt is odd.

In general, we try to save 0.1 in the analysis of the common bins, i.e., to
prove w(C) > γ − 0.1. In some of the subcases we need to use some additional
weight of other bins and we then show W > BF − 0.1. In both cases we then
get BF− 0.1 < W ⊂ 1.7 ·Opt and the theorem follows by integrality of BF and
Opt. In a few remaining cases we derive a contradiction directly.

The proof splits into three significantly different cases, Opt = 7, the regular
case, and the freaky case. We give only a sketch of the proof in the freaky case.
The next lemma enables the parity argument we mentioned before; it is thus
also needed in the regular case.

Lemma 4.14. Suppose that every Opt-bin contains an H-item. Then no Opt-
bin contains two 2-items c1 and c2. ≤⇔

After excluding some easy subcases of the freaky case, we in particular know
that every Opt-bin contains an H-item. The general idea of the proof in the
freaky case is that we try to find an item c different from f1 such that the bonus
of {g0, c} is sufficient and can be used to pay for the freaky bin F . If we find
such c, we save the bonus 0.1 of f1 and use it to tighten Proposition 4.11 by the
necessary 0.1. We have three subcases.

Case 1: F opens after C2. Thus F contains no small item by Lemma 4.2(iii);
since f1 is huge and s(F ) < 5/6, it follows that F is a 2-bin containing only f1
and f2.

The intuition is that we use the bonus of f2 instead of f1 to pay for F . However,
in general, the bonus of {g0, f2} is not sufficient to pay for F , if F is smaller
than Cg. In that case, the bonus of {g0, f2} is sufficient to pay for Gg and we use
the bonus of the next common bin, Gg+1 to pay for F . A further complication
is that the bonus of {g0, f2} smaller than necessary by a term proportional to
Δ; this is compensated by the dedicated and huge-first bins.

Case 2: F opens before C2 and some Ck, k ∗ 2, has rank at least three.
Let c be one of the medium items in this Ck and set E = {g0, c}. Then E is a
valid exceptional set. Furthermore, c does not fit into F .
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If s(F ) ∗ 2/3, we have w(F ) + w(E) ∗ 1 by Lemma 2.2. Using Propo-
sition 4.11(i) we have w(C) ∗ (w(R) − w(E)) + (w(F ) + w(E)) + w(f1) ∗
ρ− 0.2 + 1 + 0.1 = γ − 0.1.

If s(F ) < 2/3, we have w(E) = 0.2 and by Lemma 4.4(iv), Cρ is a 2-bin
such that s(Cρ) + s(F ) > 4/3. Thus w(E) + w(F ) + w(Cρ) > 0.2 + 0.1 + 1.6 =
1.9. Adding all the inequalities w(Ci−1) + w(Ci \ E) ∗ 1, i = 2, . . . , ρ from
Lemma 4.10(i), we get w(C) > γ − 0.1.

Case 3: F opens before C2 and each Ci, i ∗ 2, has rank 2. Then all bins
Ci, i ∗ 2, are 2-bins and by Lemma 4.14, all items in these ρ− 1 bins are packed
into different optimal bins. Thus there are at most Opt/2 such bins, and since
Opt is odd (from Opt ⇒ 7 (mod 10)) we actually get ρ ⊂ (Opt + 1)/2. and
thus γ = ρ + 1 ⊂ Opt/2 + 3/2. Instead of using the weights, here we get a
contradiction by bounding the size of all the bins. ≤⇔
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Abstract. A t-spanner of a weighted undirected graph G = (V,E), is
a subgraph H such that dH(u, v) ≤ t · dG(u, v) for all u, v ∈ V . The
sparseness of the spanner can be measured by its size (the number of
edges) and weight (the sum of all edge weights), both being important
measures of the spanner’s quality – in this work we focus on the latter.

Specifically, it is shown that for any parameters k ≥ 1 and ε > 0, any
weighted graph G on n vertices admits a (2k−1) ·(1+ε)-stretch spanner
of weight at most w(MST (G)) ·Oε(kn

1/k/ log k), where w(MST (G)) is
the weight of a minimum spanning tree of G. Our result is obtained via
a novel analysis of the classic greedy algorithm, and improves previous
work by a factor of O(log k).

1 Introduction

Given a weighted connected graph G = (V,E) with n vertices and m edges,
let dG be its shortest path metric. A t-spanner H = (V,E∈) is a subgraph that
preserves all distances up to a multiplicative factor t. That is, for all u, v ∈ V ,
dH(u, v) ⊆ t · dG(u, v). The parameter t is called the stretch. There are several
parameters that have been studied in the literature that govern the quality of H ,
two of the most notable ones are the size of the spanner (the number of edges)
and its total weight (the sum of weights of its edges).

There is a basic tradeoff between the stretch and the size of a spanner. For
any graph on n vertices, there exists a (2k − 1)-spanner with O(n1+1/k) edges
[ADD+93]. Furthermore, there is a simple greedy algorithm for constructing such
a spanner, which we shall refer to as the greedy spanner (see Algorithm 1). The
bound on the number of edges is known to be asymptotically tight for certain
small values of k, and for all k assuming Erdős’ girth conjecture.

In this paper we focus on the weight of a spanner. Light weight spanners
are particularly useful for efficient broadcast protocols in the message-passing
model of distributed computing [ABP90,ABP91], where efficiency is measured
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ΓΓ This work is supported by the Koshland Center for basic Research.
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with respect to both the total communication cost (corresponding to the span-
ner’s weight) and the speed of message delivery at all destinations (correspond-
ing to the spanner’s stretch). Additional applications of light weight spanners
in distributed systems include network synchronization and computing global
functions [ABP90,ABP91,Pel00]. Light weight spanners were also found use-
ful for various data gathering and dissemination tasks in overlay networks
[BKR+02,KV02], in wireless and sensor networks [SS10], for network design
[MP98,SCRS01], and routing [WCT02].

While a minimum spanning tree (MST) has the lowest weight among all pos-
sible connected spanners, its stretch can be quite large. Nevertheless, when mea-
suring the weight of a spanner, we shall compare ourselves to the weight of an

MST: The lightness of the spanner H is defined as w(H)
w(MST ) (here w(H) is the to-

tal edge weight of H). It was shown by [ADD+93] that the lightness of the greedy
spanner is at most O(n/k), and their result was improved by [CDNS92], who
showed that for any ε > 0 the greedy (2k − 1) · (1 + ε)-spanner has Oε(n

1+1/k)
edges and lightness O(k · n1/k/ε1+1/k). A particularly interesting special case
arises when k ⊂ logn. Specifically, in this case the result of [CDNS92] provides
stretch and lightness both bounded by O(log n). Another notable point on the
tradeoff curve of [CDNS92] (obtained by setting ε = logn as well) is stretch
O(log2 n) and lightness O(1).

These results of [CDNS92] remained the state-of-the-art for more than twenty
years. In particular, prior to this work it was unknown if spanners with stretch
O(log n) and lightness o(log n), or vice versa, exist. In this paper we answer this
question in the affirmative, and show in fact something stronger – spanners with
stretch and lightness both bounded by o(log n) exist. We provide a novel analysis
of the classic greedy algorithm, which improves the tradeoff of [CDNS92] by a
factor of O(log k). Specifically, we prove the following theorem.

Theorem 1. For any weighted graph G = (V,E) and parameters k → 1, ε > 0,
there exists a (2k − 1) · (1 + ε)-spanner H with O(n1+1/k) edges1 and lightness
O(n1/k · (1 + k/(ε1+1/k log k))).

By substituting k ⊂ logn we obtain stretch logn and lightness
O(log n/ log logn) (for fixed small ε). We also allow ε to be some large value. In
particular, setting ε = logn/ log logn yields stretch log2 n/ log logn and light-
ness O(1). Also, by substituting k = logn/ log log logn we can have both stretch
and lightness bounded by O(log n/ log log logn).

Our result shows that the potentially natural tradeoff between stretch 2k− 1
and lightness O(k·n1/k) is not the right one. This can also be seen as an indication
that the right tradeoff is stretch (2k − 1) and lightness O(n1/k). (Note that
lightness O(n1/k) is the weighted analogue of O(n1+1/k) edges, and so it is
asymptotically tight assuming Erdős’ girth conjecture.)

1 In fact for large ε a better bound can be obtained. Specifically, it is
O(n1+1/∗�(2k−1)·(1+ε)�/2�).
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1.1 Proof Overview

The main idea in the analysis of the greedy algorithm by [CDNS92], is to
partition the edges of the greedy spanner to scales according to their weight,
and bound the contribution of edges in each scale separately. For each scale
they create a graph from the edges selected by the greedy algorithm to the
spanner, and argue that such a graph has high girth2 and thus few edges.
The main drawback is that when analyzing larger weight edges, this argument
ignores the smaller weight edges that were already inserted into the spanner.

We show that one indeed can use information on lower weight edges when
analyzing the contribution of higher scales. We create a different graph from
edges added to the spanner, and argue that this graph has high girth. The new
ingredient in our analysis is that we add multiple edges per spanner edge, pro-
portionally to its weight. Specifically, these new edges form a matching between
certain neighbors of the original edge’s endpoints. Intuitively, a high weight edge
enforces strong restrictions on the length of cycles containing it, so it leaves a
lot of ”room” for low weight edges in its neighborhood. The structure of the
matching enables us to exploits this room, while maintaining high girth.

Unfortunately, with our current techniques we can only use edges of weight
at most k times smaller than the weight of edges in the scale which is now under
inspection. Hence this gives an improvement of O(log k) to the lightness of the
greedy spanner. We hope that a refinement of our method, perhaps choosing the
matching more carefully, will eventually lead to an optimal lightness of O(n1/k).

1.2 Related Work

A significant amount of research attention was devoted to constructing light
and sparse spanners for Euclidean and doubling metrics. A major result is
that for any constant-dimensional Euclidean metric and any ε > 0, there ex-
ists a (1 + ε)-spanner with lightness O(1) [DHN93]. Since then there has been
a flurry of work on improving the running time and other parameters. See, e.g.,
[CDNS92,ADM+95,DES08,ES13,CLNS13], and the references therein. An im-
portant question still left open is whether the O(1) lightness bound of [DHN93]
for constant-dimensional Euclidean metrics can be extended to doubling metrics.
Such a light spanner has implications for the running time of a PTAS for the
traveling salesperson problem (TSP). Recently, [GS14] showed such a spanner
exists for snowflakes3 of doubling metrics.

Light spanners with (1 + ε) stretch have been sought for other graph families
as well, with the application to TSP in mind. It has been conjectured that graphs
excluding a fixed minor have such spanners. Currently, some of the known results
are for planar graph [ADM+95], bounded-genus graphs [Gri00], unit disk graphs
[KPX08], and bounded pathwidth graphs [GH12].

2 The girth of a graph is the minimal number of edges in a cycle.
3 For 0 ≤ α ≤ 1, an α-snowflake of a metric is obtained by taking all distances to
power α.
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A lot of research focused on constructing sparse spanners efficiently, disregard-
ing their lightness. Cohen [Coh93] devised a randomized algorithm for construct-
ing ((2k−1)·(1+ε))-spanners with O(k·n1+1/k ·(1/ε)·logn) edges. Her algorithm
requires expected O(m · n1/k · k · (1/ε) · logn)) time. Baswana and Sen [BS03]
improved Cohen’s result, and devised an algorithm that constructs (2k − 1)-
spanners with expected O(k · n1+1/k) edges, in expected O(k ·m) time. Roditty
et al. [RTZ05] derandomized this algorithm, while maintaining the same pa-
rameters (including running time). Roditty and Zwick [RZ04] devised a deter-
ministic algorithm for constructing (2k − 1)-spanners with O(n1+1/k) edges in
O(k · n2+1/k) time.

2 Preliminaries

Let G = (V,E) be a graph on n vertices with weights w : E ∧ R+, and let dG be
the shortest path metric induced by G. For simplicity of the presentation we shall
assume that the edge weights are positive integers. (The extension of our proof
to arbitrary weights is not difficult, requiring only a few minor adjustments.)
For a subgraph H = (V ∈, E∈) define w(H) = w(E∈) =

∑
e√E∈ w(e). A subgraph

H = (V,E∈) is called a t-spanner if for all u, v ∈ V , dH(u, v) ⊆ t ·dG(u, v). Define

the lightness of H as w(H)
w(MST (G)) , where MST (G) is a minimum spanning tree of

G. The girth g of a graph is the minimal number of edges in a cycle of G. The
following standard Lemma is implicit in [Bol78].

Lemma 1. Let g > 1 be an integer. A graph on n vertices and girth g has at

most O
(
n1+ 1

�(g−1)/2≤
)
edges.

2.1 Greedy Algorithm

The natural greedy algorithm for constructing a spanner is described in
Algorithm 1.

Algorithm 1. Greedy(G = (V,E), t)

1. H = (V, ∅).
2. for each edge {u, v} ∈ E, in non-decreasing order of weight, do
3. if dH(u, v) > t · w(u, v) then
4. Add the edge {u, v} to E(H).
5. end if
6. end for

Note that whenever an edge e ∈ E is inserted into E(H), it cannot close a
cycle with t + 1 or less edges, because the edges other than e of such a cycle
will form a path of length at most t · w(e) (all the existing edges are not longer
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than w(e)). This argument suggests that H (viewed as an unweighted graph)
has girth t + 2 (when t is an integer), and thus by Lemma 1

|E(H)| ⊆ O
(
n1+ 1

�(t+1)/2≤
)

. (1)

We observe that the greedy algorithm must select all edges of an MST (because
when inspected they connect different connected components in H). We will
assume without loss of generality that the graph G has a unique MST, since any
ties can be broken using lexicographic rules.

Observation 2. If Z is the MST of G, then Z ≥ H. Furthermore, each edge
in the MST does not close a cycle in H when it is inspected.

3 Proof of Main Result

Let H be the greedy spanner with parameter t = (2k− 1) · (1 + ε). Let Z be the
MST of G, and order the vertices v1, v2, . . . , vn according to the order they are
visited in some preorder traversal of Z (with some fixed arbitrary root). Since
every edge of Z is visited at most twice in such a tour,

L :=

n∑

i=2

dZ(vi−1, vi) ⊆ 2w(Z) .

Let I = ⇐logk n⇒. For each i ∈ [I], define Ei = {e ∈ E(H) \ E(Z) | w(e) ∈
(ki−1, ki]·L/n}. We may assume the maximum weight of an edge in H is bounded
by w(Z) (in fact w(Z)/t, as heavier edges surely will not be selected for the
spanner), so each edge in H \ Z of weight greater than L/n is included in some
Ei. The main technical theorem is the following.

Theorem 2. For each i ∈ [I] and any ε > 0,

w(Ei) ⊆ O(L · (n/ki−1)1/k/ε1+1/k) .

Given this, the proof of Theorem 1 quickly follows.

Proof (Proof of Theorem 1). Using that the stretch of the spanner is t → 2k− 1,
by (1) we have |E(H)| ⊆ O(n1+1/k). The total weight of edges in H that have
weight at most L/n can be bounded by L/n · |E(H)| ⊆ L/n · O(n1+1/k) =
O(w(MST )·n1/k). The contribution of the other (non-MST) edges to the weight
of H , using Theorem 2, is at most

I∑

i=1

O(L · (n/ki−1)1/k/ε1+1/k) ⊆ O(L · n1/k/ε1+1/k)

≤∑

i=0

e−(i lnk)/k

= O(L · n1/k/ε1+1/k) · 1

1 − e−(lnk)/k

= O(w(MST )) · kn1/k/(ε1+1/k ln k) .
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3.1 Proof of Theorem 2

Overview: Fix some i ∈ [I]. We shall construct a certain graph K from the edges
of Ei, and argue that this graph has high girth, and therefore few edges. The
main difference from [CDNS92] is that our construction combines into one scale
edges whose weight may differ by a factor of k (in the construction of [CDNS92]
all edges in a given scale are of the same weight, up to a factor of 2). In order to
compensate for heavy edges, the weight of the edge determines how many edges
are added to K. Specifically, if the edge {u, v} ∈ Ei has weight w · ki−1 · L/n,
we shall add (at least) ⇐w⇒ edges to K that form a matching between vertices in
some neighborhoods of u and v. In this way the weight of K dominates w(Ei).
To prove that K has high girth, we shall map a cycle in K to a closed tour in H
of proportional length. The argument uses the fact that the new edges are close
to the original edge, and that a potential cycle in K cannot exploit more than
one such new edge, since these edges form a matching.

Construction of the Graph K: Let P = (p0, . . . , pL) be the unweighted path on
L + 1 vertices, created from V by placing v1, . . . , vn in this order and adding
Steiner vertices so that all consecutive distances are 1, and for all 2 ⊆ j ⊆ n,
dP (vj−1, vj) = dZ(vj−1, vj). In particular, p0 = v1, pL = vn, and for every
1 ⊆ j < j∈ ⊆ n,

dP (vj , vj∈) =

j∈∑

h=j+1

dZ(vh−1, vh) .

Note that dP (vj , vj∈) → dZ(vj , vj∈) → dG(vj , vj∈ ), and all the inequalities may
be strict. In order to be able to map edges of K back to H , we shall also add
corresponding Steiner points to the spanner H : For every Steiner point ph that
lies on P between vj−1 and vj , add a Steiner point on the path in the MST Z
that connects vj−1 to vj at distance dP (vj−1, ph) from vj−1 (unless there is a
point there already). By Observation 2 all MST edges are indeed in H , and one
can simply subdivide the appropriate edge on the MST path. Note that distances
in H do not change, as the new Steiner points have degree 2. Denote by Ĥ the
modified spanner H , i.e., H with the Steiner points.

Let a = ki−1 ·L/n be a lower bound on the weight of edges in Ei. Divide P into
s = 8L/(εa) intervals I1, . . . , Is, each of length L/s = ε

8a (by appropriate scaling,
we assume all these are integers). For j ∈ [s], the interval Ij contains the points
p(j−1)L/s, . . . , pjL/s. In each interval Ij pick an arbitrary (interior) point rj as a
representative, and let R be the set of representatives. For each representative
rj and an integer b → 0 we define its neighborhood Nb(j) = {rh : |j−h| ⊆ b} to
be the set of (at most) 2b + 1 representatives that are at most b intervals away
from Ij . (Note that the size of the neighborhood Nb(j) can be smaller than 2b+1
if rj is too close to one of the endpoints of the path P .) Define an unweighted
(multi) graph K = (R,F ) in the following manner. Let e = {u, v} ∈ Ei. Assume
that u ∈ Ih and v ∈ Ij for some h, j ∈ [s]. Let b = ∪w(e)/a≤, and let M be
an arbitrary maximal matching between Nb(h) and Nb(j). Add all the edges of
M to F , see Figure 1. For each of the edges {q, q∈} ∈ M added to F , we say
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N2(h) N2(j) 

u v rh rj z 

Fig. 1. Construction of the graph K: The oval vertices are R, the representatives. The
edge {u, v} is an edge of weight 2a selected for the spanner, and u ∈ Ij , v ∈ Ih with
representatives rj , rh. The depicted edges, that form a maximal matching between the
neighborhoods of rj and rh, are added toK. (The vertex z in N2(h) does not participate
in the matching, because rj is too close to the left endpoint of the path P .)

that the edge {u, v} is its source when q ∈ Nb(h) and q∈ ∈ Nb(j), and write
S(q, q∈) = (u, v). We will soon show (in Proposition 2 below) that each edge in
K has a single source.

The following observation suggests that if all the edges of K were given weight
a, then its total weight is greater than or equal to the weight of the edges in Ei.

Observation 3. |F | · a → w(Ei).

Proof. Note that always |Nb(j)| → b + 1, which means that we add at least
b + 1 → w(e)/a edges to K for each edge e ∈ Ei. Summing over all edges
concludes the proof.

Mapping from K to Ĥ: We shall map every edge {q, q∈} ∈ F to a tour T (q, q∈)
in the spanner Ĥ connecting q and q∈. If S(q, q∈) = (u, v), then T (q, q∈) consists
of the following paths:

– A path in Z connecting q to u.
– The edge {u, v}.
– A path in Z connecting v to q∈.

The following proposition asserts that the length of the tour is not longer than
the weight of the source edge, up to a 1 + ε/2 factor.

Proposition 1. If an edge {q, q∈} ∈ F has a source S(q, q∈) = (u, v) of weight
w, then T (q, q∈) is a tour in Ĥ of length at most (1 + ε/2)w.

Proof. First observe that the distance in P between any two points in intervals
Ij and Ij+b is at most (b + 1)L/s. Since dP → dZ we also have that the distance
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in the MST Z between two such points is bounded by (b+1)L/s. (By definition,
this holds for Steiner points as well.) Denote the representatives of u, v as rj , rh,
respectively. For b = ∪w/a≤, the set Nb(j) contains representatives of at most b
intervals away from Ij . As u ∈ Ij we get that dZ(q, u) ⊆ (b + 1)L/s. Similarly
dZ(q∈, v) ⊆ (b + 1)L/s, thus the total length of the tour is at most w + 2(b +
1)L/s = w + 2(∪w

a ≤ + 1) ε
8a ⊆ (1 + ε/2)w.

Our goal is to show that K is a simple graph of girth at least 2k + 1. As a
warmup, let us first show that K does not have parallel edges.

Proposition 2. The graph K does not have parallel edges.

Proof. Seeking contradiction, assume there is an edge {q, q∈} ∈ F with two
different sources {u, v}, {u∈, v∈} ∈ Ei. Without loss of generality assume that
{u, v} is the heavier edge of the two, with weight w. Then {q, q∈} is mapped to
two tours in Ĥ connecting q, q∈, whose total length, using Proposition 1, is at
most w(2 + ε). Consider the tour T̂ = u ∧ q ∧ u∈ ∧ v∈ ∧ q∈ ∧ v in Ĥ which
has total length at most w(2 + ε) −w = w(1 + ε). Since the Steiner points have
degree 2, they can be removed from T̂ without increasing its length, and thus
there is in H a simple path T from u to v of length at most w(1 + ε).

We claim that T must exist at the time the edge {u, v} is inspected by the
greedy algorithm. The edge {u∈, v∈} exists because it is lighter. The MST edges
exist since by Observation 2 they must connect different components when in-
spected, while if some of them are inserted after {u, v}, at least one of them will
close the cycle T ⇔ {u, v}. As w(1 + ε) ⊆ w · (2k − 1)(1 + ε), we conclude that
the edge {u, v} should not have been added to H , which is a contradiction.

Showing that K has large girth will follow similar lines, but is slightly more
involved. The difficulty arises since we added multiple edges for each edge of H ,
thus a cycle in K may be mapped to a closed tour in H that uses the same
edge e ∈ E(H) more than once. In such a case, e may not be a part of any
simple cycle contained in the closed tour, and we will not be able to derive a
contradiction from the greedy choice of e to H . 4 To rule out such a possibility,
we use the fact that the multiple edges whose source is e form a matching, and
that the weights are different by a factor of at most k.

Lemma 4. The graph K = (R,F ) has girth 2k + 1.

Proof. It will be easier to prove a stronger statement, that for any j ∈ [s] and
any r, r∈ ∈ Nk(j), every path in K between r and r∈ contains at least 2k+1 edges.
Once this is proven, we may use this with r = r∈ to conclude that girth(K) →
2k + 1.

Seeking contradiction, assume that there is a path Q in K from r to r∈ that
contains at most 2k edges, and take the shortest such Q (over all possible choices
of j and r, r∈). Let {q, z} ∈ F be the last edge added to Q, with source S(q, z) =

4 In fact, this is the only reason our method improves the lightness by a factor of log k
rather than the desired k.
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(x, y) (so that {x, y} ∈ Ei is the heaviest among all the sources of edges in Q).
We claim that no other edge in Q has {x, y} as a source. To see this, consider a
case in which such an edge {q∈, z∈} ∈ F is also in Q with S(q∈, z∈) = (x, y). We
may assume w.l.o.g that q /∈ {r, r∈} (since the path Q contains at least 2 edges),
then by definition of the graph K, there exists some j∈ ∈ [s] with q, q∈ ∈ Nk(j∈)
(recall that the neighborhood length b always satisfies b ⊆ k by definition of Ei).
But then the sub-path of Q from q to q∈ is strictly shorter than Q, and connects
two points in the same k-neighborhood. Since the edges in K with {x, y} as a
source form a matching, we get that q ∗= q∈, and thus this path is not of length
0. This contradicts the minimality of Q. Next, we will show that {x, y} should
not have been chosen for H , because there is a short path connecting x to y.

By Proposition 1 every edge e ∈ Q whose source S(e) = e∈ has weight w(e∈),
is mapped to a tour T (e) of length at most (1 + ε/2)w(e∈) in Ĥ . Since w(x, y) is
the maximum weight source of all edges in Q, we conclude that the total length
of tours connecting x to r and r∈ to y is at most (2k− 1) · (1 + ε/2)w(x, y). Note
that r, r∈ are representatives in Nk(j), which are at most 2k intervals apart. So
their distance in the MST Z is at most 2k · εa/8 ⊆ k · εw(x, y)/4. The total
length of the tour x ∧ r ∧ r∈ ∧ y in Ĥ is at most

(2k − 1) · (1 + ε/2)w(x, y) + k · εw(x, y)/4 ⊆ (2k − 1)(1 + ε) · w(x, y) .

When the algorithm considers the edge {x, y}, all the edges of the above tour
exist in Ĥ. (This follows since they are all MST edges or lighter than w(x, y),
similarly to the argument used in Proposition 2.) We conclude that there is a
path between x and y in H of length at most (2k − 1) · (1 + ε) · w(x, y), hence
{x, y} should not have been added to E(H), which yields a contradiction.

Proof (Proof of Theorem 2). Recall that the graph K has s vertices. By
Proposition 2 it is a simple graph, and Lemma 4 suggests it has girth at least 2k+
1, thus by using Lemma 1 it has at most O(s1+1/k) edges. Using Observation 3,

w(Ei) ⊆ |F | · a
⊆ O(s1+1/k) · (L/n · ki−1)

=

(
8 · n
εki−1

)1+1/k

· (O(L)/n · ki−1)

⊆ O(L · (n/ki−1)1/k/ε1+1/k) .

4 Weighted Girth Conjecture

The girth of a graph is defined on unweighted graphs. Here we give an extension
of the definition that generalizes to weighted graphs as well, and propose a
conjecture on the extremal graph attaining a weighted girth.

Definition 1. Let G = (V,E) be a weighted graph with weights w : E ∧ R+,
the weighted girth of G is the minimum over all cycles C of the weight of C
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divided by its heaviest edge, that is

min
C cycle in G

{
w(C)

maxe√C w(e)

}
.

Note that this matches the standard definition of girth for unweighted graphs.

Recall that the lightness of G is w(G)
w(MST ) . For a given weighted girth value g and

cardinality n, we ask what is the graph on n vertices with weighted girth g that
maximizes the lightness?

Conjecture 1. For any integer g → 3, among all graphs with n vertices and
weighted girth g, the maximal lightness is attained for an unweighted graph.

Recall that Erdős’ girth conjecture asserts that there exists an (unweighted)
graph with girth g > 2k and Ω(n1+1/k) edges, that is, its lightness is Ω(n1/k).
Observe that any graph of weighted girth larger than 2k + ε(2k − 1) can be
thought of as the output of Algorithm 1 with parameter t = (2k − 1) · (1 + ε).
In particular, Theorem 1 implies that its lightness is at most Oε(kn

1/k/ log k).
Thus (up to the term of ε(2k−1) in the girth), there exists an unweighted graph
which is at most O(k/ log k) = O(g/ log g) lighter than the heaviest weighted
graph.

The intuition behind this conjecture follows from our method of replacing
high weight edges by many low weight edges. We believe that such replacement
should hold when performed on all possible scales simultaneously. An immediate
corollary of Conjecture 1, is that the lightness of a greedy (2k− 1)-spanner of a
weighted graph on n vertices is bounded by O(n1/k). To see why this is true, note
that the spanner’s weighted girth must be strictly larger than 2k, and O(n1/k) is
a bound on the lightness of an unweighted graph on n vertices with girth 2k+ 1.
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Abstract. This paper studies the set cover problem under the semi-
streaming model. The underlying set system is formalized in terms of a
hypergraph G = (V,E) whose edges arrive one-by-one and the goal is
to construct an edge cover F ⊆ E with the objective of minimizing the
cardinality (or cost in the weighted case) of F . We consider a parame-
terized relaxation of this problem, where given some 0 ≤ Δ < 1, the goal
is to construct an edge (1− Δ)-cover, namely, a subset of edges incident
to all but an Δ-fraction of the vertices (or their benefit in the weighted
case). The key limitation imposed on the algorithm is that its space is
limited to (poly)logarithmically many bits per vertex.

Our main result is an asymptotically tight trade-off between Δ and
the approximation ratio: We design a semi-streaming algorithm that on
input graph G, constructs a succinct data structure D such that for every
0 ≤ Δ < 1, an edge (1 − Δ)-cover that approximates the optimal edge
(1-)cover within a factor of f(Δ, n) can be extracted from D (efficiently
and with no additional space requirements), where

f(Δ, n) =

{
O(1/Δ), if Δ > 1/

√
n

O(
√
n), otherwise

.

In particular for the traditional set cover problem we obtain an O(
√
n)-

approximation. This algorithm is proved to be best possible by estab-
lishing a family (parameterized by Δ) of matching lower bounds.

1 Introduction

Given a set system consisting of a universe of items and a collection of item
sets, the goal in the set cover problem is to construct a minimum cardinality
subcollection of sets that covers the whole universe. This problem is fundamental
to combinatorial optimization with applications ranging across many different
domains. It is one of the 21 problems whose NP-hardness was established by
Karp in [9] and its study has led to the development of various techniques in the
field of approximation algorithms (see, e.g., [15]).
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In this paper, we investigate the set cover problem under the semi-streaming
model [5], where the sets arrive one-by-one and the algorithm’s space is con-
strained to maintaining a small number of bits per item (cf. the set-streaming
model of [14]). In particular, we are interested in the following two research ques-
tions: (1) What is the best approximation ratio for the set cover problem under
such memory constraints? (2) How does the answer to (1) change if we relax
the set cover notion so that the set subcollection is required to cover only a σ-
fraction of the universe? On top of the theoretical interest in the aforementioned
research questions, studying the set cover problem under the semi-streaming
model is justified by several practical applications too (see [14]).

The Model. In order to fit our terminology to the graph theoretic terminology
traditionally used in the semi-streaming literature (and also to ease up the pre-
sentation), we use an equivalent formulation for the set cover problem in terms of
edge covers in hypergraphs: Consider some hypergraph G = (V,E), where V is a
set of n vertices and E is a (multi-)set of m hyperedges (henceforth edges), where
each edge e ∈ E is an arbitrary non-empty subset e ⊆ V . Assume hereafter that
G does not admit any isolated vertices, namely, every vertex is incident to at
least one edge. We say that an edge subset F ⊆ E covers G if every vertex in V
is incident to some edge in F . The goal of the edge cover problem is to construct
a subset F ⊆ E of edges that covers G, where the objective is to minimize the
cardinality |F |.

A natural relaxation of the covering notion asks to cover some fraction of the
vertices in V : Given some 0 < σ ⊂ 1, we say that an edge subset F ⊆ E σ-covers
G if at least σn vertices are incident to the edges in F , namely, |V (F )| → σn,
where V (F ) = {v ∈ V | ∧e ∈ F s.t. v ∈ e}. Under this terminology, a cover of
G is referred to as a 1-cover. This raises a bi-criteria optimization version of the
set cover problem, where the goal is to construct an edge subset F ⊆ E that
σ-covers G with the objective of minimizing |F | and maximizing σ. In this paper,
we focus on approximation algorithms, where the cardinality of F is compared
to that of an optimal edge (1-)cover of G.

In the weighted version of the edge cover problem, the hypergraph G is aug-
mented with vertex benefits b : V ≥ Q>0 and edge costs c : E ≥ Q>0. The
edge cover definition is generalized so that edge subset F ⊆ E is said to σ-cover
G if the benefit of the vertices incident to the edges in F is at least a σ-fraction
of the total benefit, namely, b(V (F )) → σ · b(V ), where b(U) =

∑
v◦U b(v) for

every vertex subset U ⊆ V . The goal is then to construct an edge subset F that
σ-covers G = (V,E, b, c), where the objective is to maximize σ and minimize the
cost of F , denoted c(F ) =

∑
e◦F c(e).

Under the semi-streaming model, the execution is partitioned into discrete
time steps and the edges in E are presented one-by-one so that edge et ∈ E
is presented at time t = 0, 1, . . . ,m − 1, listing all vertices v ∈ et;

1 in the
weighted version, the cost of et and the benefits of the vertices it contains are also

1 With the exception of our related work discussion, all semi-streaming algorithms in
this paper make a single (one way) pass over the input hypergraph.
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listed. The key limitation imposed on the algorithm is that its space is limited;
specifically, we allow the algorithm to maintain logO(1) |G| bits per vertex, where
|G| denotes the number of bits in the standard binary encoding of G. Each edge
e ∈ E is associated with a unique identifier id(e) of size O(logm) bits, say, the
time t at which edge et is presented. We may sometimes use the identifier id(e)
when we actually refer to the edge e itself, e.g., replacing c(e) with c(id(e)); our
intention will be clear from the context.

In contrast to the random access memory model of computation, where given
a collection I of identifiers, one can easily determine which vertex in V is inci-
dent to which of the edges whose identifiers are in I simply by examining the
input, under the semi-streaming model, the collection I by itself typically fails
to provide this information. Therefore, instead of merely returning the identifiers
of some edge σ-cover, we require that the algorithm outputs a σ-cover certificate
τ for G which is a partial function from V to {id(e) | e ∈ E} with domain
Dom(τ) = {v ∈ V | τ is defined over v} and image Im(τ) = {id(e) | ∧v ∈
Dom(τ) s.t. τ(v) = id(e)} that satisfies (1) if v ∈ Dom(τ) and τ(v) = id(e),
then v ∈ e; and (2) b(Dom(τ)) → σ · b(V ). By definition, the image of τ consists
of the identifiers of the edges in some edge σ-cover F of G and the quality of the
σ-cover certificate τ is thus measured in terms of c(Im(τ)) = c(F ).

Our Contribution. Consider some unweighted hypergraph G = (V,E) with op-
timal edge 1-cover OPT. We design a deterministic semi-streaming algorithm,
referred to as SSSC (acronym of the paper’s title), for the edge (σ-)cover prob-
lem that given some 0 ⊂ λ < 1, outputs a (1 − λ)-cover certificate τε for
G with image of cardinality |Im(τε)| = O(min{1/λ,

⇐
n} · |OPT|).2 This re-

sult is extended to the weighted case, where G = (V,E, b, c), showing that
c(Im(τε)) = O(min{1/λ,

⇐
n} · c(OPT)) (see Thm. 1 and additional theorems in

the full version). In particular, for the edge (1-)cover problem, we obtain an
O(

⇐
n)-approximation for both the weighted and unweighted cases.

On the negative side, we prove that for every λ → 1/
⇐
n, if a randomized semi-

streaming algorithm for the set cover problem outputs a (1− λ)-cover certificate
τ for G, then it cannot guarantee that E[|Im(τ)|] = o(|OPT|/λ) (see Thm. 3). This
demonstrates that the approximation guarantee of our algorithm is asymptoti-
cally optimal for the whole range of parameter 0 ⊂ λ < 1 even for randomized
algorithms.

Notice that SSSC has the attractive feature that the (near-linear size) data
structure D it maintains is oblivious to the parameter λ. That is, the algorithm
processes the stream of edges with no knowledge of λ, generating the data struc-
ture D, and the promised (1− λ)-cover certificate τε can be efficiently extracted
from D (with no additional space requirements) for every 0 ⊂ λ < 1 (in fact
several such covers for different values of λ can be extracted). From a bi-criteria
optimization perspective, our lower bound implies that the parameterized col-
lection {τε}0√ε<1 encoded in D is an (asymptotically) optimal solution frontier
(cf. Pareto optimality).

2 Define min{1/x, y} = y when x = 0.
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Using a simple adjustment of the randomized rounding technique for set cover
(see, e.g., [15]), it is not difficult to show that a basic feasible solution to the
linear program relaxation of a given set cover instance also serves as a compact
data structure from which a (1−λ)-cover certificate τε can be extracted for every
0 ⊂ λ < 1. In fact, the approximation ratio obtained this way is better than ours,
namely, O(log(1/λ)). However, our lower bound shows that this approach cannot
be applied under the semi-streaming model.

Can our tight lower bound be an artifact of the requirement that the algorithm
outputs a cover certificate? We nearly eliminate this possibility by proving that
for every constant c > 0 and for every λ → n−1/2+c, even if the randomized
algorithm only guarantees an “uncertified” output, i.e., only the identifiers of
the edges in some edge (1− λ)-cover F of G are returned, then the cardinality of

F must still be large, specifically, |F | = Π
(

log log n
logn · |OPT|/λ

)
, where OPT in this

case is proportional to λ2n (the proof of this lower bound and further discussion
of negative results for set cover under the semi-streaming model are deferred to
the full version).

Related Work. The work most closely related to the present paper is probably
the one presented in Saha and Getoor’s paper [14] that also considers the set
cover problem under the semi-streaming model (referred to as set-streaming in
[14]) formulated as the edge cover problem in hypergraphs. Saha and Getoor
design a 4-approximation semi-streaming algorithm for the maximum coverage
problem that given a hypergraph G = (V,E) and a parameter k, looks for
k edges that cover as many vertices as possible. Based on that, they observe
that an O(log n)-approximation for the optimal set cover can be obtained in
O(log n) passes over the input. Using the terminology of the present paper,
Saha and Getoor’s maximum coverage algorithm is very efficient for obtaining
edge (1− λ)-covers as long as λ is large, but it does not provide any (single pass)
guarantees for λ < 3/4. In contrast, our algorithm has asymptotically optimal
(single pass) guarantees for any 0 ⊂ λ < 1. Another paper that considers semi-
streaming algorithms in hypergraphs is that of Halldórsson et al. [8] that studies
the independent set problem.

The semi-streaming model was introduced by Feigenbaum et al. [5] for graph
theoretic problems, where the edges of an n vertex input graph arrive sequen-
tially and the algorithm is allowed to maintain only logO(1) n bits of memory per
vertex. Since the number of bits required to encode an n vertex graph is nO(1),
the space-per-vertex bound used in the present paper can be viewed as a gener-
alization of that of Feigenbaum et al. from graphs to hypergraphs. In any case,
concerns regarding the comparison between the space bound used in the present
paper and that of [5] can be lifted by restricting attention to hypergraphs with

m ⊂ 2log
O(1) n edges.

Various graph theoretic problems have been treated under the semi-streaming
model. These include matching [13, 4, 11], diameter and shortest path [5, 6], min-
cut and sparsification [1, 10], graph spanners [6], and independent set [8, 3].
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Several variants of the set cover problem, all different than the problem studied
in the present paper, have been investigated under the model of online computa-
tion. Alon et al. [2] focus on the online problem in which some master set system
is known in advance and an unknown subset of its items arrive online; the goal
is to cover the arriving items, minimizing the number of sets used for that pur-
pose. Another online variant of the set cover problem is studied by Fraigniaud
et al. [7], where the sets arrive online, but not all items have to be covered. Here,
each item is associated with a penalty and the cost of the algorithm is the sum
of the total cost of the sets chosen for the partial cover and the total penalty of
the uncovered items.

2 A Semi-Streaming Algorithm

Our goal in this section is to design a semi-streaming algorithm for the edge
(σ-)cover problem in hypergraphs. The algorithm, referred to as SSSC, is pre-
sented in Sec. 2.1 and its approximation ratio is analyzed in Sec. 2.2. In this
extended abstract, we make the simplifying assumption that all numerical val-
ues (vertex benefits and edge costs) are encoded using O(log n) bits. Under
this assumption, the space bounds of SSSC are quite trivial and the analysis in
Sec. 2.2 yields Thm. 1. The assumption on the numerical values is lifted in the
full version, where we implement SSSC so that it uses O(log |G|) memory bits
per vertex for arbitrary input hypergraphs G as required by our model (recall
that |G| denotes the number of bits in a standard binary representation of G).

Theorem 1. On a weighted input hypergraph G = (V,E, b, c) with numerical
values encoded using O(log n) bits, our algorithm uses O(n log(n + m)) space,
processes each input edge et ∈ E in O(|et| log |et|) time, and produces a data
structure D with the following guarantee: For every 0 ⊂ λ < 1, a (1 − λ)-cover
certificate τε for G such that

c(Im(τε)) = O
(
min

{
1/λ,

⇐
n
} · c(OPT)

)

can be extracted from D in time O(n log n) with no additional space requirements,
where OPT stands for an optimal edge (1-)cover of G.

2.1 The Algorithm

In what follows we consider some weighted hypergraph G = (V,E, b, c) with
optimal edge (1-)cover OPT. The main building block of algorithm SSSC is a
procedure referred to as COVER. This procedure processes the stream of edges
and outputs for every node v ∈ V , an identifier of an edge e that covers it,
together with an integer variable that intuitively captures the quality of edge e
in covering v. Algorithm SSSC uses two parallel invocations of COVER, one on the
input graph G and one on some modification of G, and upon termination of the
input stream, extracts the desired cover certificate from the output of these two
invocations.
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Procedure COVER. We maintain for each vertex v ∈ V , the following variables:

– eid(v) = an identifier id(e) of some edge e ∈ E; and
– eff(v) = a (not necessarily positive) integer called the effectiveness of v.

We denote by eidt(v) and efft(v) the values of eid(v) and eff(v), respectively,
at time t (i.e., just before et is processed). Procedure COVER that relies on the
following definition is presented in Algorithm 1.

Definition 1 (Level, Effectiveness). Consider edge et presented at time t
and some subset T ⊆ et. The level of T at time t, denoted levt(T ), is defined

as levt(T ) =
⌈
log2

b(T )
c(et)

⌉
. Subset T is said to be effective at time t if for every

v ∈ T , it holds that levt(T ) > efft(v).

Note that ⇒ is always vacuously effective.

Algorithm 1. COVER(G = (V,E, b, c))

Initialization ∀v ∈ V : eid(v) ← NULL and eff(v) ← −∞
for t = 0, 1, . . . do

Read edge et ∈ E from the stream
Compute an effective subset T ⊆ et of largest benefit b(T )
for all v ∈ T do

eid(v) ← id(et)
eff(v) ← levt(T )

end for
end for
return eid(·) and eff(·)

Algorithm SSSC. We are now ready to present our algorithm SSSC. On input
weighted graph G = (V,E, b, c), algorithm SSSC runs in parallel the following
procedures that process the stream of edges:

P1: (eid≤(·), eff≤(·)) ∪ COVER(G = (V,E, b, c)).
P2: (eid1

≤(·), eff1
≤(·)) ∪ COVER(G = (V,E,1, c)), where 1 stands for the func-

tion that assigns a unit benefit to all vertices v ∈ V .
P3: A procedure that maintains for every vertex v ∈ V , a variable emin(v) that

stores the identifier of the minimum cost edge that covers v, seen so far.
P4: A procedure that stores for every vertex v ∈ V , its benefit b(v).

Upon termination of the input stream, SSSC takes some parameter 0 ⊂ λ < 1
and extracts the desired (1−λ)-cover certificate for G from the variables returned
by procedures P1–P4. We distinguish between the following two cases.

– Case λ → 1/
⇐
n:

The algorithm looks for the largest integer r⊆ such that b(I(⊂ r⊆)) ⊂ λb(V ),
where I(⊂ r⊆) = {v ∈ V : eff≤(v) ⊂ r⊆}, and returns the partial function
τ : V ≥ id(E) that maps every vertex v ∈ V − I(⊂ r⊆) to eid≤(v).
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– Case λ < 1/
⇐
n:

The algorithm looks for the largest integer r⊆ such that |I1(⊂ r⊆)| ⊂ ⇐
n,

where I1(⊂ r⊆) = {v ∈ V : eff1
≤(v) ⊂ r⊆}, and sets τ≥ to be the partial

function τ≥ : V ≥ id(E) that maps every vertex v ∈ V − I1(⊂ r⊆) to
eid1

≤(v). Then, it returns the (complete) function τ≥≥ : V ≥ id(E) extended
from τ≥ by mapping every vertex v ∈ I1(⊂ r⊆) to emin(v).

Notice that the unweighted case is much simpler: If G = (V,E), then pro-
cedure P2 is identical to procedure P1; moreover, procedures P3 and P4 are
redundant since all vertices/edges admit a unit benefit/cost. Further note that
procedures P1–P4 are oblivious to λ. Upon termination of the input stream, the
algorithm extracts, for the given 0 ⊂ λ < 1, the desired (1 − λ)-cover certificate
for G from the variables returned by procedures P1–P4. In fact, several such
cover certificates can be extracted for different values of λ.

2.2 Analysis

We begin our analysis with some observations regarding procedure COVER.

Observation 1. If T ⊆ et is effective at time t and v ∈ T , then T ≤ {u} is
effective at time t for every u ∈ et such that efft(u) ⊂ efft(v).

Notice that COVER’s updating rule guarantees that the effectiveness eff(v) is
non-decreasing throughout the course of the execution. Employing Obs. 1, we
can now derive Obs. 2 and 3 (the former follows by sorting the vertices v ∈ et
in non-decreasing order of the value of the effectiveness eff(v)).

Observation 2. The run-time of COVER on edge et is O(|et| log |et|).
Observation 3. If T ⊆ et is effective at time t, then for every v ∈ T , it holds
that efft+1(v) → levt(T ).

We are now ready to establish the following lemma.

Lemma 1. Consider some integer r. Procedure COVER guarantees that
b ({v ∈ et | efft+1(v) ⊂ r}) < 2r+1 · c(et).

Proof. Assume by contradiction that there exists a subset R ⊆ et, b(R) → 2r+1 ·
c(et), such that efft+1(v) ⊂ r for every v ∈ R. Since the effectiveness is non-
decreasing, it follows that efft(v) ⊂ r for every v ∈ R, hence the assumption
that b(R) → 2r+1 · c(et) ensures that R is effective at time t. But by Obs. 3,
the effectiveness efft+1(v) should have been at least r + 1 for every v ∈ R, in
contradiction to the choice of R. ⇔∗

Let eff≤(v) denote the value of the variable eff(v) upon termination of the
input stream. Given some integer r, define

I(r) = {v ∈ V | eff≤(v) = r} and S(r) = {e ∈ E | ∧v ∈ I(r) s.t. eid(v) = id(e)}
in accordance with the notation defined in Sec. 2.1. We extend these two defini-
tions to intervals of integers in the natural way and denote the intervals (−⊥, r]
and (r,⊥) in this context by ⊂ r and > r, respectively.
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Lemma 2. Consider some integer r. Procedure COVER guarantees that b(I(⊂
r)) < 2r+1 · c(OPT).

Proof. Since the effectiveness is non-decreasing, Lem. 1 ensures that for every
edge e ∈ E, it holds that b ({v ∈ e | eff≤(v) ⊂ r}) < 2r+1 · c(e). The assertion is
established by observing that

b(I(⊂ r)) ⊂
∑

e◦OPT

b ({v ∈ e | eff≤(v) ⊂ r}) <
∑

e◦OPT

2r+1 · c(e) = 2r+1 · c(OPT) ,

where the first inequality is due to the fact that OPT is an edge cover of G. ⇔∗
Lem. 2 will be used to bound from above the benefit of the vertices that are

not covered by the edges returned by our algorithm. We now turn to bound from
above the cost of these edges.

Lemma 3. Consider some integer r. The edge collection S(r) satisfies
c(S(r)) < b(V )/2r−1.

Proof. If et ∈ S(r), then there exists some subset R = R(et) ⊆ et with levt(R) =
r such that for every vertex v ∈ R, we have (1) efft(v) < r; and (2) efft+1(v) = r.
By definition, the fact that levt(R) = r implies that c(et) < b(R)/2r−1. Since
the variable eid(v) is updated only when eff(v) increases and since eff(v) is non-
decreasing, it follows that if et, et′ ∈ S(r), et ↓= et′ , then the subsets R(et) and
R(et′) are disjoint. Therefore,

∑

et◦S(r)

c(et) <
1

2r−1

∑

et◦S(r)

b(R(et)) ⊂ b(V )/2r−1 .

⇔∗
The following corollary is obtained by applying Lem. 3 to the integers r +

1, r + 2, . . .

Corollary 1. Consider some integer r. The edge collection S(> r) satisfies
c(S(> r)) < b(V )/2r−1.

The following lemma shows that we can extract from the variables returned
by COVER an edge subset of low total cost which covers much of the items.

Lemma 4. Consider some 0 < λ < 1 and let r⊆ be the largest integer such
that b(I(⊂ r⊆)) ⊂ λ · b(V ). The edge collection S(> r⊆) satisfies c(S(> r⊆)) <
8 · c(OPT)/λ.

Proof. Let r be an integer such that 2r+1 < λ · b(V )
c(OPT) ⊂ 2r+2. Lem. 2 guarantees

that b(I(⊂ r)) < 2r+1 · c(OPT) < λ · b(V ), hence r ⊂ r⊆. It follows by Cor. 1 that
c(S(> r⊆)) ⊂ c(S(> r)) < b(V )/2r−1 ⊂ 8 · c(OPT)/λ. ⇔∗

We are now ready to establish the approximation guarantees of algorithm
SSSC. Thm. 1 (stated under the assumption that all vertex benefits and edge
costs are encoded using O(log n) bits) follows immediately from Thm. 2.
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Theorem 2. For any 0 ⊂ λ < 1, our algorithm outputs a (1−λ)-cover certificate
for G whose image has cost O

(
min

{
1
ε ,
⇐
n
} · c(OPT)

)
.

Proof. If λ → 1/
⇐
n, then the assertion follows immediately from Lem. 4, so

it remains to consider the case of λ < 1/
⇐
n. We show that τ≥≥ is a 1-cover

certificates for G such that c(Im(τ≥≥)) = O(
⇐
n · c(OPT)). Observe first that since

OPT covers all vertices in V , it is also an optimal edge 1-cover of G1. Thus, Lem. 4
guarantees that c(Im(τ≥)) < 8

⇐
n · c(OPT). The vertices v ∈ V − Dom(τ≥) are

mapped under τ≥≥ to emin(v). Since |V −Dom(τ≥)| ⊂ ⇐
n and since c(emin(v)) ⊂

c(OPT) for every v ∈ V , it follows that

c(Im(τ≥≥)) < 8
⇐
n · c(OPT) + |V − Dom(τ≥)| · c(OPT) ⊂ 9

⇐
n · c(OPT) ,

which completes the proof. ⇔∗

3 Lower Bounds

A randomized semi-streaming algorithm ALG for the edge cover problem in hy-
pergraphs is said to be an (n, s, λ, β)-algorithm (resp., an uncertified (n, s, λ, β)-
algorithm) if given any n-vertex unweighted hypergraph G, ALG is guaranteed to
maintain a memory of size at most s bits and to output a (1−λ)-cover certificate
for G with image of expected cardinality at most β · |OPT| (resp., to output the
identifiers of an edge (1 − λ)-cover of G whose expected cardinality is at most
β · |OPT|), where OPT is an optimal edge cover of G. We are now ready to state the
main theorems of this section. Thm. 3 is proved in Sec. 3.1, whereas due to space
limitations, the proof of Thm. 4 is deferred to the full version. Observe that the
constructions that lie at the heart of Thm. 3 and 4 are based on hypergraphs
whose number of vertices and number of edges are polynomially related, that is,
m = nΩ(1).

Theorem 3. For every integer n0, there exists an integer n → n0 such that for
every λ = Π(1/

⇐
n), the existence of an (n, o(n3/2), λ, β)-algorithm implies that

β = Π(1/λ).

Theorem 4. Fix some constant real Δ > 0. For every integer n0, there exists an
integer n → n0 such that for every λ → n−1/2+α, the existence of an uncertified

(n, o(n1+α), λ, β)-algorithm implies that β = Π
(

log logn
logn

1
ε

)
.

3.1 The Certified Case

We establish Thm. 3 by introducing a probability distribution G over n-vertex
hypergraphs that satisfy the following two properties: (1) Every hypergraph in
the support of G admits an edge cover of cardinality O(λ

⇐
n). (2) For every

deterministic semi-streaming algorithm ALG that given an n-vertex hypergraph
G, maintains a memory of size o(n3/2) and outputs a (1 − λ)-cover certificate τ
for G, when ALG is invoked on a hypergraph chosen according to G, the expected
cardinality of Im(τ) is Π(

⇐
n). The theorem than follows by Yao’s principle.
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The Construction of G. Let q be a large prime power. Our construction relies
on the affine plane A = (P,L), where P is a set of q2 points and L ⊆ 2P is a set
of q(q + 1) lines satisfying the following properties:
(1) every line contains q points;
(2) every point is contained in q + 1 lines;
(3) every two distinct points are contained (together) in exactly one line; and
(4) every two distinct lines intersect in at most one point.
Two lines with an empty intersection are called parallel. The line set L can be
partitioned into q + 1 clusters A1, . . . , Aq+1 referred to as angles, where Ai =
{∂1i , . . . , ∂qi } for i = 1, . . . , q + 1, such that two distinct lines are parallel if and
only if they belong to the same angel. Refer to [12] for an explicit construction
of such a combinatorial structure.

Consider some 1
3q ⊂ λ ⊂ 1

66 − 1
3q and let r = �3λq≺. We construct a random

hypergraph G = (V,E) based on the affine plane A = (P,L) as follows. Fix
V = P . Randomly partition each line ∂ ∈ L into 2 edges e1(∂) ≤ e2(∂) = ∂
by assigning each point in L to one of the 2 edges u.a.r. (and independently
of all other random choices). It will be convenient to denote the set of edges
corresponding to the lines in angle Ai by Ei = {e1(∂), e2(∂) | ∂ ∈ Ai}. Let

e⊆ = P −⋃r
t=1 ∂

j(t)
i , where i is an index chosen u.a.r. (and independently) from

[q + 1] and 1 ⊂ j(1) < · · · < j(r) ⊂ q are r distinct indices chosen u.a.r. (and
independently) from [q]. In other words, e⊆ is constructed by randomly choosing

an angle Ai and then randomly choosing r distinct lines ∂
j(1)
i , . . . , ∂

j(r)
i from Ai;

the edge consists of all points except those contained in these r lines.
Fix E = E1≤· · ·≤Eq+1≤{e⊆}. Observe that n = |P | = q2 and m = 1+2·|L| =

1 + 2 · q(q+ 1). The execution is divided into two stages, where in the first stage,
the edges in E1≤· · ·≤Eq+1 are presented in an arbitrary order and in the second
stage, edge e⊆ is presented.

Analysis. We start the analysis by observing that G can be covered by the edge

e⊆ and the edges in {e1(∂
j(t)
i ), e2(∂

j(t)
i ) | 1 ⊂ t ⊂ r}. Therefore,

|OPT| ⊂ 2r + 1 = O(λq) , (1)

where the equation follows from the definition of r = �3λq≺ due to the require-
ment that λ → 1

3q .
Let s be the space of the deterministic semi-streaming algorithm ALG. Thm. 3

is established by combining (1) with the following lemma (that ensures an Π(q)
expected image cardinality whenever s = o(n3/2)).

Lemma 5. If s ⊂ q2(q + 1)/48, then w.p. → 1/8, the (1 − λ)-cover certificate
returned by ALG has image of cardinality at least q/3.

Bounding the Expected Entropy. The proof of Lem. 5 is based on information
theoretic arguments that require the following definitions. Let Xj

i be a random

variable that depicts the partition (e1(∂ji ), e2(∂ji )) of line ∂ji = e1(∂ji ) ≤ e2(∂ji ) for
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every i ∈ [q+1] and j ∈ [q]. Let Xi = (X1
i , . . . , X

q
i ) and X = (X1, . . . , Xq+1). The

independent random choices in the construction of the hypergraph G guarantee
that H (Xj

i ) = q, H (Xi) = q2, and H (X) = q2(q + 1), where H (·) denotes the
binary entropy function.

Let M be a random variable that depicts the memory image of ALG upon
completion of the first stage of the execution. Since M is fully determined by X ,
it follows that H (X,M) = H (X), hence H (X | M) = H (X)−H (M). Recalling
that M is described by s bits, we conclude that H (M) ⊂ s ⊂ q2(q + 1)/48,
thus H (X | M) → 47

48 · q2(q + 1) = 47
48 · H (X). The following lemma can now be

established (proof deferred to the full version).

Lemma 6. Our construction guarantees that

Pi,j(1),...,j(r)

(
H

(
X

j(1)
i , . . . , X

j(r)
i | M

)
→ 5

6 · rq
)

→ 1/4, where i ∈ [q + 1]

and 1 ⊂ j(1) < · · · < j(r) ⊂ q are the random indices chosen during the
construction of edge e⊆.

Introducing the Random Variable Z. Let μ be the actual memory image of
ALG upon completion of the first stage of the execution and recall that μ is
some instance of the random variable M . Let Z be a real valued random vari-
able that maps the event M = μ to the entropy in the joint random variable

X
j(1)
i , . . . , X

j(r)
i given M = μ. Observe that by the definition of conditional en-

tropy, we have E[Z] = H (X
j(1)
i , . . . , X

j(r)
i | M). If the event described in Lem. 6

occurs, then E[Z] → 5
6 · rq and since Z is never larger than rq, we can apply

Markov’s inequality to conclude that H
(
X

j(1)
i , . . . , X

j(r)
i | M = μ

)
→ 2

3 ·rq w.p.

→ 1/2. The following corollary is established since the event described in Lem. 6
holds w.p. → 1/4.

Corollary 2. W.p. → 1/8, the entropy that remains in X
j(1)
i , . . . , X

j(r)
i after e⊆

is exposed to ALG given that M = μ is at least 2
3 · rq bits.

High Entropy Implies a Large Edge Cover. Condition hereafter on the event
described in Cor. 2. Consider the (1 − λ)-cover certificate τ returned by ALG

and let P ≥ =
⋃r

t=1 ∂
j(t)
i = P − e⊆ be the set of points not covered by e⊆. Let

R = {p ∈ P ≥ | p ∈ Dom(τ) ∧ τ(p) ∈ Ei} be the set of points not covered by e⊆

that are mapped under τ to some edge in Ei, where recall that Ei is the set
of edges corresponding to the lines in angle Ai (the angle chosen in the ran-
dom construction of e⊆). Using Cor. 2, we establish the following lemma (proof
deferred to the full version).

Lemma 7. Our construction guarantees that |R| ⊂ rq/3.

The cardinality of Dom(τ) is at least |Dom(τ)| → (1− λ)q2. The choice of r =
�3λq≺ ensures that λq2 ⊂ rq/3, thus |Dom(τ)| → q2 − rq/3. The key observation
now is that even if all these rq/3 missing points from Dom(τ) are in P ≥, it still
leaves us with |Dom(τ) ∩ (P ≥ −R)| → rq/3 by Lem. 7.



464 Y. Emek and A. Rosén

Every point in Dom(τ)∩ (P ≥ −R) is covered by some edge e ∈ Ej , j ↓= i. The
properties of the affine plane guarantee that each such edge e covers at most one

point in line ∂
j(t)
i , which sums up to at most r points in P ≥. Thus, the image of

τ must contain (the identifiers of) at least q/3 different edges. Lem. 5 follows.
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Abstract. In this paper we consider online buffer scheduling problems in which
an online stream of n items (jobs) with different colors (types) has to be processed
by a machine with a buffer of size k. In the standard model initially introduced
by Räcke, Sohler, and Westermann [31], the machine chooses an active color and
processes items whose color matches that color until no item in the buffer has the
active color (note that the buffer is refilled in each step). In the block-operation
model, the machine chooses an active color and can–in each step–process all
items of that color in the buffer. Motivated by practical applications in real-world,
we assume we have prior stochastic information about the input. In particular,
we assume that the colors of items are drawn i.i.d. from a possibly unknown
distribution, or more generally, the items are coming in a random order. In the
random order setting, an adversary determines the color of each item in advance,
but then the items arrive in a random order in the input stream. To the best of our
knowledge, this is the first work which considers the reordering buffer problem
in stochastic settings.

Our main result is demonstrating constant competitive online algorithms for
both the standard model and the block operation model in the unknown distri-
bution setting and more generally in the random order setting. This provides a
major improvement of the competitiveness of algorithms in stochastic settings;
the best competitive ratio in the adversarial setting is Θ(log log k) for both the
standard and the block-operation models by Avigdor-Elgrabli and Rabani [8] and
Adamaszek et al. [3]. Along the way, we also show that in the random order
setting, designing competitive algorithms with the same competitive ratios (up
to constant factors) in both the block operation model and the standard model
are equivalent. To the best of our knowledge this is the first result of this type
which relates an algorithm for the standard model to an algorithm for the block-
operation model. Last but not least, we show in the uniform distribution setting, in
which the probabilities of appearances of all colors are the same, a simple greedy
algorithm is the best online algorithm in both models.

1 Introduction

We consider a scheduling problem where a stream of items (jobs) with different colors
(types) arrives online at a processing machine and each item needs to be processed on
the machine. The cost of processing items with the same color is negligible in com-
parison to the cost of switching from an item to another item with a different color. In
fact, the main source of the cost is the context switching cost. In order to decrease the
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context switching cost, a reordering buffer of size k is used to store the arrived items.
The items inside the buffer could be reordered at any time to minimize the switching
cost. We consider two buffer management models in this paper:

The Standard Model. In this model the machine has an active color which is the color
of the most recently processed item. At each time, the machine can select an item e
from the buffer to process. The item is removed from the buffer and the next item in
the input stream takes its place. In order to process e, the machine has to change its
active color to the color of item e. It incurs no cost if color of item e is the same as the
active color and incurs a unit cost otherwise. This model is well studied in the literature
[1, 2, 6–8, 19, 31].

The Block-operation Model. In this model, items are processed in blocks. At each point
in time, the machine can select a block (subset) of items in the buffer with the same color
and process all of them in a single step. The total cost is exactly the number of block
operations to process all input items. This model was introduced recently in [3].

There are many applications for this versatile framework in real world problems,
e.g., computer graphics and rendering [27], information retrieval [13], production line
management [32], disk scheduling [33]. For more details about the applications see
[2, 3, 6–8, 19, 31].

The online buffer management problem has been studied for the adversary setting [1–
3, 6, 8, 19, 31]. In the adversary setting items which have been chosen by an adversary,
arrive online and the machine should process the input without any assumption about
the rest of the input. The cost is compared to that of an optimal offline algorithm that
knows the input stream in advance. The goal is to design an online algorithm which
performs well in the worst case. A competitive ratio is a criterion used for analyzing
online algorithms. The competitive ratio of an online algorithm is the worst case ratio
of its cost to the cost of optimal offline algorithm.

We consider the online buffer management problem in the stochastic setting and pro-
pose the first constant competitive online algorithm for the problem. The competitive
ratio that we consider in this paper is the ratio of the expected cost of the online algo-
rithm to the expected cost of an optimum offline algorithm over all input sequences. In
the stochastic setting, we have a prior knowledge about the input sequence. Our goal
is to design an online algorithm with a constant competitive ratio. The three different
stochastic models in the order of generality are as follows:

i.i.d. with known distribution: In this setting, the color of each item is determined
independently based on a known distribution. The distribution does not change over
time and is known. More precisely, the color of each item will be i with probability
pi. The algorithm designer knows probability pi in advance.

i.i.d. with unknown distribution: This is exactly the same as the previous model ex-
cept the algorithm designer does not know the distribution in advance.

random order: In this setting, the adversary determines the color of each item in ad-
vance. Then, items arrive in a random order. The algorithm designer only knows
that the items arrive in a random order and does not know the color of each item
in advance. Let ni be the number of items with color i and let pi = ni

n . Note that
the algorithm designer does not know these values. More precisely, the adversary
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chooses the color of each item in advance. Then, the input will be a random permu-
tation of items where each permutation is chosen uniformly at random.

Since an online algorithm has more information in the known i.i.d. setting, designing
a competitive online algorithm for the unknown i.i.d. setting is harder than the known
i.i.d. setting. On the other hand, the following proposition shows that the random order
setting is even more general than the unknown i.i.d. setting (see [26] for the proof idea).
We consider the buffer scheduling problem for the most general case of the random
order setting in this paper.

Proposition 1 ([26]). Every σ-competitive online algorithm in the random order set-
ting is also an σ-competitive online algorithm for the unknown i.i.d. setting.

1.1 Related Work

The online buffer scheduling problem is well studied for the standard model in the
adversary setting. It was first considered by Räcke et al. [31] where an online algo-
rithm with an O(log2 k)-competitive ratio has been presented in the adversary setting.
Englert and Westermann [19] enhanced the competitive ratio and designed an online
algorithm with an O(log k)-competitive ratio. Their proof consists of two parts. They
first design an online algorithm with a buffer of size k which is 4-competitive against
an optimum offline algorithm with a buffer of size k/4. Then, they prove the cost of
an optimum offline algorithm with a buffer of size k/4 is within an O(log k) factor
of the cost of an optimum offline algorithm with a buffer of size k. It has been shown
there is a gap of τ(log k) between an optimum offline algorithm with a buffer of size
k/4 and an optimum offline algorithm with a buffer of size k [1]. We show that the
gap between two optimum offline algorithms with different buffer sizes is constant in
all stochastic settings (w.h.p.). The next improvement over the competitive ratio is by
Avigdor-Elgrabli and Rabani [6]. They provide a randomized online algorithm based
on linear programming with competitive ratio O(log k/ log log k). Adamaszek et al.
[2] enhance the previous result and design an online algorithm with competitive ratio
O(

∈
log k) for the problem. They also prove that there is no online algorithm with com-

petitive ratio τ(
√
log k/ log log k) and τ(log log k) for deterministic and randomized

strategies, respectively. Avigdor-Elgrabli and Rabani [8] show that the bound is tight
and design another randomized online algorithm based on linear programming with
competitive ratio O(log log k). However, we design an online algorithm with a constant
competitive ratio for the problem in all stochastic settings. It is worth mentioning that
designing an optimum algorithm for the offline buffer scheduling problem is NP-hard
[5, 15]. Avigdor-Elgrabli and Rabani [7] recently designed a constant factor approxi-
mation algorithm for the problem in the offline setting.

The block-operation model was introduced by Adamaszek et al. [3] in the adversary
setting. They provide an online algorithm with competitive ratio O(log log k). They
prove the bound is asymptotically tight in the block-operation model as well. Their
online primal-dual algorithm is inspired by a work on the online algorithm design for
the weighted caching problem [11]. In this paper, we design a constant competitive
algorithm for the block-operation model in the stochastic setting as well.
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Designing an online algorithm in the stochastic setting is well-studied in the com-
puter science literature. There are many problems such as the mechanism design prob-
lem [14, 24], the bipartite matching problem [10, 20, 28, 26, 22, 29], the adwords
problem [4, 16, 17], the oblivious routing problem [25, 23], and the secretary prob-
lem [9, 12, 21] which have been studied in different stochastic settings. We mention
these works in three groups based on their stochastic settings. The first group is the set
of works which design an online algorithm for the known i.i.d. setting e.g. [10, 20, 29]
for the bipartite matching problem and [25, 23] for the oblivious routing problem. The
second group consider their problems in the unknown i.i.d. setting and their goal is to
design an online algorithm with a good competitive ratio in this setting e.g. for the bi-
partite matching [26] and for the adword problem [16]. The last group study their prob-
lems in the general random order setting. This model introduced by Dynkin [18] for
the problem of finding a maximum number in a random order setting and was used re-
cently for the mechanism design problem [24], the bipartite matching problem [22, 28],
the adwords problem [4, 17], and the secretary problem [9, 12, 21] as well. Karande
and Mehta [26] also show that every online algorithm which is σ-competitive in the
random order setting is σ-competitive in the unknown i.i.d. setting as well. Note that
we consider the buffer scheduling problem in the general random order setting in this
paper.

1.2 Our Results

We focus on the online buffer management problem in the stochastic setting. In par-
ticular, we look for an online algorithm with two main properties. First, the algorithm
should be simple and easy to implement. Second, it should perform well in expectation
over all input sequences. Indeed, analyzing the algorithms under stochastic settings are
often sophisticated and tricky. In this paper, we present simple algorithms for the on-
line buffer management problem with constant competitive ratios in both the standard
model and the block-operation model. The main result of this paper is the following
theorem.

Theorem 1. There is an online algorithm with a constant competitive ratio for both the
standard model and the block-operation model in all stochastic settings.

We first demonstrate a constant competitive online algorithm for the block-operation
model and then we provide an online algorithm with a constant competitive ratio for
the standard model. One obstacle throughout all the proofs arises from the various de-
pendencies between the colors of different items. Throughout our analysis we often deal
with the correlations by carefully choosing the proper random variables and showing
negative correlations between them. Thus we are able to use the tail-bounds first proved
by Panconesi and Srinivasan [30]. We discuss the required tools formally in Section 2.

In order to prove Theorem 1, we need a few definitions and theorems. Consider
an instance of buffer scheduling problem with n items and define m as the number
of colors with non zero probability. Let ALGM

k be an algorithm with a buffer of size
k for model M , where M will be equal to S or B for the standard model and the
block-operation model respectively. Note that ALGM

k can be an online or offline al-
gorithm. Define ALGM

k (λ) to be the cost of algorithm ALGM
k on the input sequence
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λ, and E[ALGM
k (λ)] to be expected cost of algorithm ALGM

k over all possible in-
put sequences, where all possible input sequences are defined based on the stochastic
setting. In fact, in the known i.i.d. and the unknown i.i.d. settings with m different
colors there are at most mn possible input sequences and in the random order set-
ting there are at most n! possible input sequences. Similarly, define ALGM

k,i(λ) and

E[ALGM
k,i(λ)] to be the cost and the expected cost of algorithm ALGM

k for the color i;
so ALGM

k (λ) =
∑

i ALGM
k,i(λ).

Let OPTM
k be an optimum offline algorithm for the buffer scheduling problem with

a buffer of size k for model M . We say algorithm ALGM
k is σ-competitive for the

stochastic setting if its expected cost is not more than σ times the expected cost of
optimum, i.e.,

E[ALGM
k (λ)] ⊆ σE[OPTM

k (λ)] + f−ε ,

where the expectation is over all possible input sequences based on the stochastic set-
ting. Here f−ε is a function which does not depend on the input sequence. First, we
need an extension of a theorem of Englert and Westermann [19].

Theorem 2. There is an online algorithm for both the standard model and the block-
operation model with a buffer of size k which is 4-competitive against an optimum
offline algorithm with a buffer of size k

4 in the stochastic setting.

Indeed, Theorem 2 has been proved for the standard model with the following algo-
rithm. A penalty is defined for every color i. At each time, the penalty for a color i
increases by the number of items with color i in the buffer when the online algorithm
processes a block of items with another color j ⊂= i. When the buffer becomes full
the algorithm processes a block of items with the highest penalty color and resets the
penalty of that color to zero. They prove the proposed algorithm with a buffer of size
k is 4-competitive against an optimum offline algorithm with a buffer of size k

4 for the
standard model in the adversary setting [19]. Every online algorithm for the standard
model in the adversary setting with competitive ratio z works for the standard model in
the stochastic setting with an expected competitive ratio at most z. Thus, the algorithm
proposed in [19] works for the standard model in the stochastic setting. Indeed, it can
be shown that the proposed algorithm works for the block-operation model as well; al-
though minor changes are needed in the analysis (see the full version of the paper for a
formal discussion).

We overcome the problem of bounding the cost of an optimum offline algorithm with
a buffer of size k

4 based on the following theorem. This is the first result in the buffer
scheduling problem which shows the expected cost of an offline optimum increases by
a constant factor if the buffer becomes half. Note that this result is in contrast with a
result of [1] which shows there is a gap of size τ(log k) between the cost of an optimum
offline algorithm with a buffer of size k

4 and that of size k in the adversary setting.

Theorem 3. Consider the buffer scheduling problem in the random order setting. We
have

E[OPTB
k/2(λ)] = O(E[OPTB

k (λ)]) +O(k2).
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We study the effect of a buffer size on the performance of an optimum offline algorithm
in Section 2 and demonstrate a formal proof for the above theorem. In our analysis, we
focus on showing the constant factor dependency without optimizing the constants that
are incurred due to the concentration bounds. The current analysis leads to the constant
factor (roughly) 120. Here, we give the intuition about the proof. Indeed, proving the
above theorem directly seems challenging since we do not know anything about the
behavior of an optimum offline algorithm1. Therefore, we first introduce a family of
algorithms for the block-operation model called threshold-based algorithms which are
simple and easy to implement.

Definition 1. For a vector Π = (Π1, Π2, · · · , Πm) of m integers, a threshold-based al-
gorithm (TALGτ ) with respect to Π is an algorithm with a buffer of size at least∑m

i=1 Πi + 1 such that in each step if for any color i the number of items of color i
in the buffer exceeds Πi, it processes color i immediately.

Our proof for Theorem 3 has two steps. First we prove for every input instance, there
exists an offline threshold-based algorithm which approximates the cost of an optimum
offline within a constant factor. We define a novel potential function for proving this
fact. Intuitively, the new potential function increases when an algorithm keeps an item
in the buffer and a new item arrives. Potential functions have been defined for analyzing
an online algorithm in the adversary setting. The basic idea behind most of them is to
increase the potential function when an algorithm processes a block of items with color
i and the color of item e is not equal to i [19, 2]. There is a difference between our poten-
tial function and the previous ones. Our potential function changes upon item arrivals
but the previous ones change upon a color change in the algorithm. As our potential
function fluctuates based on item arrivals, it is a better tool to analyze our algorithm
in the stochastic setting. We believe previous potential functions are mainly suitable to
analyze an algorithm in the adversary setting. We analyze the expected value of our po-
tential function for an optimum offline algorithm for every input and find a lower bound
for this value based on distributional information of input. This result helps us to show
there is an offline threshold-based algorithm which approximates an optimum offline
solution. Next, we show for each offline threshold-based algorithm with a buffer of size
k there exists a constant competitive offline threshold-based algorithm with a buffer of
size k

2 .
By combining Theorems 2 and 3, we prove Theorem 1 for the block-operation

model. In the following theorem we also present an online algorithm with a constant
competitive ratio for the standard model by converting an online algorithm for the
block-operation model to an online algorithm for the standard model. We study the
problem in the standard model in Section 3.

Theorem 4. There is an online algorithm with a constant competitive ratio for the
standard model in the stochastic setting.

The intuition to prove the above theorem is to predict the most frequent color d in the
input stream in a learning phase and then change the processing color to color d after
processing each block of item. In fact, we want to make sure when an item with color

1 Note that designing an optimum offline algorithm for this problem is NP-hard [5, 15].
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d arrives, we process it online and do not store it in the buffer. We use the buffer to
manage items with all colors except color d. We prove this strategy does not increase
the cost by more than a constant factor. We propose an online algorithm for the block-
operation model to process all colors except color d which is constant competitive to
an offline optimum algorithm of the block-operation model. In order to prove Theorem
4, we need the following lemma which relates an optimum offline algorithm for the
standard model to an optimum offline algorithm for the block-operation model. To the
best of our knowledge, this is the first result of this type in the context.

Lemma 1. Let ALGS
k be an algorithm for the standard model with a buffer of size k

and expected cost E[ALGS
k,i(λ)] for each color i. There is an algorithm for the block-

operation model with a buffer of size 2k whose expected cost for a color i is at most
O( 1

1−pi
)E[ALGS

k,i(λ)], where pi is the probability of color i.

The idea is to design an algorithm for the block-operation model, ALGB
2k, to simulate

the algorithm for the standard model, ALGS
k , by increasing the buffer size. We divide

the buffer of the algorithm for the block-operation model into two parts of size k. The
first part is used to simulate the buffer of ALGS

k at each time. In fact, the set of items
stored in this part of the buffer is supposed to be a subset of items stored in the buffer
of ALGS

k at each moment. Second part is used to store items which ALGS
k processes

without storing them in the buffer. If ALGS
k processes the items after storing them in the

buffer, ALGB
2k could easily simulate it by only using the first part of its buffer. However,

the difficulty arises when the ALGS
k processes many items without storing them in the

buffer. In this case the algorithm for the block-operation model should store them and
try to process them together. Thus, in order to prove Lemma 1 we should bound the
number of block operations needed to process items in the second part of the buffer. We
demonstrate a method to bound this number based on a concentration bound. Finally,
observe that if for color i, pi is close to one, Lemma 1 does not establish a constant gap
between the expected cost of evicting i in the two models. However, if pi > 0.5 for a
color i, we can ignore the items with that color by losing factor 2 in the competitive
ratio. This can be done by immediately evicting color i as soon as the buffer becomes
full and there is at least a ball with color i in the buffer. We refer the reader to the full
version of the paper for the formal proofs.

We also consider the problem in the uniform distribution setting. The uniform dis-
tribution setting can be thought of as a specific case of the unknown i.i.d. setting where
the probabilities of all colors are the same.

Definition 2. The greedy algorithm processes the color with maximum number of items
in the buffer when the buffer is full.

We demonstrate that the greedy algorithm is the best online algorithm for both the
standard model and the block-operation model in the uniform distribution setting.

Theorem 5. In the uniform distribution setting, the greedy algorithm is an optimum
online deterministic algorithm, i.e., it has the best expected cost in both the standard
model and the block-operation model.

Roughly speaking, we describe a state of an online algorithm by its buffer content, num-
ber of remaining items, and the active color. Then we assign a value to each state of an
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algorithm which denotes the expected cost of the algorithm in the uniform distribution
setting. For a fixed number of remaining items, we first show that the active color in a
state does not change the expectation of the state. Second, we demonstrate that evicting
a color with the most number of items in the buffer minimizes the expected cost. We
prove this fact based on a coupling technique which is presented in the full version of
the paper.

2 Block-Operation with Half the Buffer

In this section we study the structure of the (offline) optimum solution in the block-
operation model. We show that in the random order model, w.h.p. the cost of the opti-
mum solution increases by at most a constant factor, when halving the size of the buffer.
This is in contrast to the adversarial model where the cost may increase by a logarithmic
factor [1]. We exploit the properties of the random order model by introducing a novel
class of algorithms, the threshold-based algorithms (Def. 1). An important property of
algorithms in this class is that they can be adapted to only use half the buffer while
increasing the cost by only a constant factor. As an intermediate result, we show that
w.h.p. there exists an algorithm in this class which gives a constant factor approxima-
tion. This directly implies that w.h.p. for any instance OPTk/2(λ) ⊆ O(1) · OPTk(λ).

First, we need to provide the required tools for handling the dependencies among
the colors of items. The negatively correlated variables we use in our analysis can be
categorized in the following two theorems. The proofs, particularly that of Theorem 7
which handles the dependency between different colors, are relatively involved and pre-
sented in the full version of the paper. We believe these results might be of independent
interest.

Theorem 6. Lets fix color i and consider a random selection of b items without re-
placement from a set of n items where ni of them have color i. For every j → [b], let
boolean random variable Xj indicates whether the j-th picked item has color i. The
variables X1, . . . , Xb are negatively correlated.

Theorem 7. Consider a random selection of r packs of b items without replacement
from a set of items where there are nj items with color j. Let n be the total number of
items, c1, c2, . . . , cr be an arbitrary sequence of non-negative integers, xi be the number
of items with color j in the i-th pack of the selected items, andXi be the boolean random
variable indicating whether xi ∧ ci. The random variables X1, . . . , Xr are negatively
correlated.

Recall that n denotes the total number of items in the input. In the remainder of this
section we assume that n ∧ 200k4 and k ∧ 2. We note that these assumptions do
not change the asymptotical analysis of the approximation ratio since for n < 200k4

the cost is bounded by O(k4). In order to derive a bound on the cost of the optimum
solution we first analyze the structure of a (close-to-)optimum solution.

We say a color i is rare if ni ⊆ n
k2 . Intuitively, if a color has few items, we can

ignore these items by evicting them right away without increasing the cost by much. The
following lemma formalizes this argument. Due to lack of space, we refer the reader to
the full version of the paper for most of the proofs in this section.
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Lemma 2. An algorithm ALG can be transformed into an algorithm ALG∈ such that
ALG∈ does not buffer items with rare colors and with probability at least 1−e−k fulfills
ALG∈(λ) ⊆ 17ALG(λ).

In the remainder of the section we assume that algorithms do not buffer rare items. In
order to analyze the cost of an algorithm we introduce the following potential function.

For an algorithm ALG, we define POTALG
i (λ, t) to denote the number of color i items

stored in the buffer of ALG when the t-th item arrives. We further define the potential

of color i for algorithm ALG by POTALG
i (λ) =

∑
t POTALG

i (λ, t) and the potential

of algorithm ALG by POTALG(λ) =
∑

i POTALG
i (λ). Clearly, POTALG(λ) ⊆ nk

for any algorithm. We will drop the superscript if the algorithm in question is clear from
the context.

Given an input sequence λ an algorithm has to decide how many color-changes to
do for each color and when to do these color-changes. Let for an algorithm ALG, Ti

be the number of times ALG decides to process color i during input sequence λ. We
say ALG processes a color non-frequently if Ti ⊆ ni

104 . Otherwise we say that the color
i is processed frequently. Note that by our assumption all rare colors are processed
frequently.

Lemma 3. With probability at least 1− e−k all non-frequent colors fulfill

POTALG
i (λ) = τ

(n · ni

Ti

)
, (1)

for every algorithm ALG.

Proof. We can view the potential of an item as the number of time-steps that it stays in
the buffer. We show that w.h.p. no matter where the algorithm performs the Ti color-
changes for color i, the items of this color will on average stay in the buffer for τ( n

Ti
)

time-steps. We split λ into 21Ti intervals of length β = n
21Ti

. Let for a color i and an
interval I , Yi(I) denote the number of color i items in interval I . We say that an interval
I is rich for color i if Yi(I) ∧ ni

126Ti
. Note that E[Yi(I)] = βni

n = ni

21Ti
.

We will show that a large number of rich intervals will lead to a large potential for
color i. Therefore we first show that there exists a large number of rich intervals. Note
that we need to show this for every possible value of Ti.

Claim. For a given color i and value T the probability that there exist at least 3Ti rich
intervals for every Ti → [T, 2T ] is at least 1− e−2k.

We only have k2 non-frequent colors. Also, we can cover the possible range of Ti →
[ni

k , ni

104 ] by at most log k intervals of the form [T, 2T ]. Applying a union bound we
obtain that with probability 1− (k2 log(k))e−2k ∧ 1− e−k every color has at least 3Ti

rich intervals.
Suppose that for some color i we have a rich interval I such that neither I nor

the following interval contains a color-change to i (See Figure 1). Then the at least
ni

126Ti
items in I stay in the buffer for at least n

21Ti
steps and, hence, contribute

ni

126Ti
· n
21Ti

= τ(n·ni

T 2
i
) to the potential. If we have 3Ti rich intervals there must exist at

least Ti intervals that fulfill the above property which gives that the generated potential
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≥ n
21Ti

I

n
21Ti

Fig. 1. This figure shows the input sequence partitioned into 21Ti intervals for a color i.
The black intervals denote the rich intervals and a vertical line indicates a color-change where
the algorithm evicts the items of color i. The highlighted rich interval I is at least n

21Ti
far from

the next color-change since neither I nor the next interval contains a color-change to i.

for color i is at least

POTALG
i (λ) = τ

(n · ni

Ti

)
.

as desired. ≥⇐

The following lemma shows that for any input with high probability there exists a
threshold-based algorithm with a cost no more than a constant ratio of the optimum
offline algorithm on the same input.

Lemma 4. With probability at least 1 − 2e−k over the sampled input λ, there exists a
vector of m integers τ = (Π1, . . . , Πm) such that

∑m
i=1 Πi + 1 ⊆ k and

TALGτ
k (λ) ⊆ O(1)OPTk(λ) (2)

By Lemma 4, we can now prove the following theorem to show that by using a con-
stant fraction of the buffer, the cost may increase by at most a constant factor. Finally,
this completes the proof of Theorem 3.

Theorem 8. With probability at least 1− 2e−k over the sampled input λ we have

OPT k
2
(λ) ⊆ O(1)OPTk(λ)

Proof (of Theorem 3). Indeed Theorem 8 leads to a stronger result where the expected
ratio of the optimum cost with the buffer size k

2 to the optimum cost with the buffer
size k is bounded. For a sampled sequence λ,

OPT k
2
(λ) ⊆

{
O(1)OPTk(λ) by Theorem 8 w.h.p.
kOPTk(λ) w.p. ⊆ 2e−k

Therefore

E

[
OPT k

2
(λ)

OPTk(λ)

]

= O(1) .
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3 An Online Algorithm for the Standard Model

The main result of this section is to design an online algorithm for the standard model
with a constant expected competitive ratio. The idea to design an online algorithm for
the standard model is to simulate an online algorithm for the block-operation model for
all the colors except the most frequent one. However, the algorithm does not know the
most frequent color in advance. We propose a method to predict the most frequent color
(d). The algorithm changes the active color to color d, when the online algorithm for
the block-operation model does not output any color.

In order to show that the proposed online algorithm is a constant competitive algo-
rithm for the standard model, we first prove that it is constant competitive against an
optimum offline algorithm for the block-operation model. We then bound the cost of
an optimum offline algorithm in the block-operation model with the cost of an opti-
mum offline algorithm in the standard model in Lemma 1. In fact, we transform each
offline algorithm for the standard model to an offline algorithm for the block-operation
model by increasing the buffer size. The buffer of the proposed algorithm for the block-
operation model is divided into two parts. The first part simulates the buffer of the
algorithm for the standard model. The second part is used for storing items which the
algorithm for the standard model outputs them with no cost without storing them in
the buffer.

Let ALGS
k be an offline algorithm for the standard model with a buffer of size k. We

design an offline algorithm ALGB
2k in Lemma 1 and show for every color i with npi

items in the input E[ALGB
2k,i] ⊆ O( 1

1−pi
) × E[ALGS

k,i]. In order to prove Lemma 1
we need Lemma 5.

Lemma 5. We toss a biased coin ⇒ 4
q ∪k times where 0 ⊆ q < 1 is the probability of

head and X be the random variable indicating the number of heads. We can prove that
(k + 2)Pr[X ⊆ k] ⊆ Pr[k < X < ⇒ 4

q ∪k]
The proofs of Lemmas 1 and 5 are given in the full version of the paper, which ulti-
mately leads to the proof of Theorem 4.

References

1. Aboud, A.: Correlation clustering with penalties and approximating the reordering buffer
management problem. Master’s thesis (2008)

2. Adamaszek, A., Czumaj, A., Englert, M., Räcke, H.: Almost tight bounds for reordering
buffer management. In: STOC (2011)

3. Adamaszek, A., Czumaj, A., Englert, M., Räcke, H.: Optimal online buffer scheduling for
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Abstract. Given a set of items and a submodular set-function f that determines
the value of every subset of items, a demand query assigns prices to the items,
and the desired answer is a set S of items that maximizes the profit, namely, the
value of S minus its price. The use of demand queries is well motivated in the
context of combinatorial auctions. However, answering a demand query (even ap-
proximately) is NP-hard. We consider the question of whether exponential time
preprocessing of f prior to receiving the demand query can help in later answer-
ing demand queries in polynomial time. We design a preprocessing algorithm that
leads to approximation ratios that are NP-hard to achieve without preprocessing.
We also prove that there are limitations to the approximation ratios achievable
after preprocessing, unless NP ⊂ P/poly.

1 Introduction

Given a universe U of n items, a valuation function is a set-function f that assigns
nonnegative integer values to every subset of items, and satisfies the following three
properties:

– Normalization: f(∈) = 0.
– Monotonicity: for every two sets S ⊆ T ⊆ U , f(S) ⊂ f(T ).
– M -bounded: there is some fixed constant c independent of n such that f(U) (the

value assigned to the whole universe, which we denote by M ) satisfies logM ⊂ nc.
Hence every single value of the function f can be represented by a number of bits
that is polynomial in n.

Valuation functions are used in order to represent the internal preferences of bidders
in combinatorial auctions, where the items of U are for sale. The maximum welfare
allocation problem associated with a combinatorial auction is the following: given the
valuation functions of the bidders (fi for bidder i), one needs to give each bidder i one
bundle Bi ⊆ U of items (a bundle is simply a set, which may also be empty), and these
bundles need to be disjoint (Bi

⋂
Bj = ∈ for i →= j). The objective is to do so while

maximizing
∑

i fi(Bi), which is referred to as the welfare of the allocation.
Ideally, one would like to compute the maximum welfare allocation in time polyno-

mial in n. However, there are two obstacles to overcome.

– The communication bottleneck. An explicit representation of a valuation function
(as a table) might take space 2n logM , and hence bidders might not be able to
communicate their valuation functions to the seller.

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 477–488, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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– The computation bottleneck. Even if valuation functions have succinct representa-
tions of polynomial size (for example, the case of single minded bidders where f
is determined by a single bundle SB, with f(S) = 1 if SB ⊆ S, and f(S) = 0
otherwise), the problem of computing the maximum welfare allocation is NP-hard,
and also at least as hard to approximate as the notorious set packing problem.

Remark 1. Another difficulty associated with combinatorial auctions is how to provide
incentives to the bidders to reveal their true valuation function to the seller, but this
game-theoretic aspect is beyond the scope of our current work.

One way of handling the communication bottleneck is by allowing the seller to ask
the bidder queries regarding the nature of his valuation function f . One wishes to de-
sign a polynomial time allocation algorithm in which the seller makes only polynomi-
ally many queries to each bidder. One natural class of queries is that of value queries:
the query is a bundle S and the reply is its value f(S). The class of queries that is
the focus of this work is called demand queries (see [15] for several types of queries
commonly used). For demand queries, one assumes that the utilities for bidders can be
separated into two components: the value of the bundle received, and the payment that
the bidder pays. Namely, if the bidder received bundle B and pays for it a price P , then
the utility derived by bidder is f(B)− P . A demand query is a vector p̄ of nonnegative
integer prices to items (p̄(j) for item j) and its answer is the most preferable bundle for
the bidder under these prices, namely, a bundle S that maximizes f(S) − ∑

j∈S p̄(j),
together with the value f(S). The ability to answer demand queries appears to be a
natural requirement from a bidder, as without this ability, if the bidder comes to a mar-
ket in which the items have prices, he himself would not know what he prefers to buy.
Moreover, the assumption that bidders can answer demand queries turns out to be very
beneficial for algorithms that approximate the maximum welfare problem. (Demand
queries implement a separation oracle for the dual of the configuration LP, and solv-
ing this configuration LP is a first step in many of the approximation algorithms for
maximum welfare.)

Despite their attractiveness, demand queries are problematic in the sense that even if
a succinct representation of a valuation function is given (which allows efficient replies
to value queries), answering demand queries is in general NP-hard (and also hard to
approximate). This NP-hardness allows for the situation that for certain classes of val-
uation functions (such as submodular functions, to be defined shortly), the approxima-
tion ratio achieved for the maximum welfare problem if demand queries are allowed is
strictly better (unless P=NP) than without demand queries (but with succinct represen-
tations of the valuation functions). See Section 1.1.

In the current work, we investigate a certain approach for reconciling the NP-hardness
of demand queries with the desirability of being able to answer them. A valuation func-
tion with a succinct representation would in general have more than one such representa-
tion. Could it be that NP-hardness of answering demand queries is a consequence of the
choice of representation, but under a different representation answering demand queries
is easy? We model this question using the notion of preprocessing.

We envision the following situation. First, an arbitrary valuation function f is given.
One is allowed to preprocess f for arbitrary amount of time, even more than exponen-
tial. The outcome of this preprocessing phase is a polynomial size advice string A(f).
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Thereafter, upon being given a vector p̄ of prices as a demand query, the demand query
is answered in polynomial time based only on p̄, A(f), and at most polynomially many
value queries. (Typically, the original representation of f is succinct and allows efficient
replies to value queries. In these cases this succinct representation can be made part of
A(f). However, some functions (in fact, almost all functions) do not have a succinct
representation, and for them we assume access to a value oracle that can answer value
queries.) The focus of our work is that of approximate answers to demand queries. The
quality of the answering algorithm is measured by the approximation ratio: the ratio
between f(S)−∑

j∈S pj and f(T )−∑
j∈T pj , where S is the optimal solution and T

is the solution returned by the algorithm.
Our results focus on the well studied class of submodular valuation functions (see

Section 1.2 for definitions). Though this is considered to be a relatively simple class,
answering demand queries is very difficult even for this class. The following proposition
is well known.

Proposition 1. For every σ > 0, given a succinct representation of a submodular valu-
ation function (without preprocessing) and a demand query, returning an answer with
approximation ratio at most n1−σ is NP-hard.

Our main result shows that preprocessing helps.

Theorem 1. For every submodular valuation function f (even with no succinct repre-
sentation), there is a polynomial size advice string A(f), such that given any demand
query p̄, the answer can be approximated in polynomial time within a ratio of O(n3/4),
based only on p̄, A(f) and value queries.

However, there is a limit to the effectiveness of preprocessing.

Theorem 2. For some τ > 0, there are submodular valuation functions with succinct
representations, for which regardless of the polynomial size advice string given, demand
queries cannot be approximated within a ratio better than Ω(nε) in polynomial time,
unless NP has polynomial size circuits (namely, unless NP ∧ P/poly).

We also consider in our work a natural subclasses of submodular functions (that we
refer to as NH, negative hyperedges, see section 3) and show that for this class demand
queries can be approximately answered (after preprocessing) within a ratio of O(n1/2).
An even more restricted but very natural setting is that of MWIS (maximum weight
independent set) demand queries, which is addressed in Section 2. The negative results
of Theorem 2 apply already to a further restriction that we refer to as MIS (maximum
independent set) demand queries.

1.1 Related Work

Submodular set-functions is a well studied class of functions and surveying all the lit-
erature about it is beyond the scope of this paper. We just mention a few facts that help
put our work in perspective. There have been studies of trying to approximately learn
(in the sense of approximately answering future value queries) submodular functions
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by making polynomially many value queries to the function (which is a weaker notion
than preprocessing). Approximation ratios of λ̃(

≥
n) are achievable [11]. Our Theo-

rem 2 constructs submodular functions that have succinct representations that allow
one to efficiently answer value queries exactly, and still they have no succinct repre-
sentation that allows one to even approximately answer demand queries (unless NP ∧
P/poly). We remark that the ability to answer value queries is very powerful in the con-
text of submodular functions. For example, it allows one to efficiently find the minimum
value of the function [4], and to approximate the maximum within a factor of 1/2 if the
function is nonnegative [3].

There is much work on the maximum welfare problem, and we mention some of it.
The focus on submodular valuation functions was initiated by [15]. The configuration
LP and demand queries were introduced by [5]. With only value queries, the maximum
welfare problem with submodular valuation functions can be approximated within a
ratio of 1 − 1/e [6], and doing better is NP-hard, given succinct representations of the
valuation functions [13]. However, with demand queries an approximation ratio better
than 1 − 1/e is achievable [10].

Preprocessing is a natural and well studied notion in several different contexts, some
of which are beyond the scope of our paper (e.g., quickly answering database queries,
quickly breaking cryptographic schemes). The direction most relevant to the current
work is that of preprocessing of NP-hard problems. This direction received much at-
tention in the context of coding theory [2] and lattice problems [9,14]. In our negative
results (Theorem 2) we build on earlier work of the authors [8] that considered pre-
processing for constraint satisfaction problems, and introduced the notion of univer-
sal factor graphs as a method for establishing limitations on what preprocessing can
achieve.

1.2 Preliminaries

Submodular set-functions can be defined in several equivalent ways. We shall use the
following definition.

Definition 1. A set-function f : 2[n] ⇐ R is submodular if it has decreasing marginal
values, that is, for x /⇒ A ∪ B, f (A

⋃ {x}) − f (A) ⊂ f (B
⋃ {x}) − f (B).

Submodular functions need not be monotone. However, from now on we shall always
assume that functions are normalized, namely, f (∈) = 0. Let us mention some easily
verifiable properties of submodular functions. Every linear function is submodular. The
sum of two submodular functions (and hence also the difference between a submodular
function and a linear function) is submodular. Submodular functions are subadditive:
for a submodular function f and pairwise disjoint {Si}, f (

⋃
Si) ⊂

∑
f (Si).

The submodular functions considered in our work will typically either be a submod-
ular valuation function (thus being integer valued, monotone, and M -bounded) or the
difference between a submodular valuation function and a nonnegative integer linear
function (the price vector). In the latter case, the resulting submodular function will
still be M -bounded, but not necessarily monotone. A rounding down aspect used in
Section 4 might result in functions having noninteger values, but these values have sim-
ple representations.
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Definition 2. Given a submodular function f : 2U ⇐ R, an optimal set with respect to
f is a set S ⊆ U that maximizes f (S).

Definition 3. Given a set-function f : 2U ⇐ R, the hypergraph representation of f is
the unique function wf : 2U ⇐ R such that for every A ⊆ U ,

f (A) =
∑

B◦A

wf (B)

Note that an explicit formula for wf (A) is wf (A) = f(A)−∑
B√A wf (B) (where

∧ denotes strict containment). This allows one to determinewf by an inductive process,
starting with wf (∈) = f(∈) = 0 and progressing to larger sets.

Definition 4. The linear part Lf of a set function f is defined as

Lf (A) =
∑

{x}◦A

wf ({x})

The high order part Hf of a set function f is defined as

Hf (A) = f(A) − Lf (A)

The linear part of f is completely determined by the value of the hypergraph repre-
sentation on individual items, and hence on vertices of the corresponding hypergraph,
whereas the high order part is determined by the value of the hypergraph representation
on larger sets of items, and hence on hyperedges of the corresponding hypergraph.

A submodular valuation function f can be decomposed into its linear part Lf and
into its high order part Hf , with f = Lf + Hf . A demand query is a vector p̄ of non-
negative integer prices for the items, with the interpretation that the price of a bundle is
the sum of the prices of the items that it contains. Hence p̄ is a representation of a linear
set-function p̄(S) =

∑
i∈S p(i). The desired answer for the demand query is thus an

optimal set with respect to a new function g = f − p̄. Observe that g differs from f
only in its linear part. Hence equivalently, we may write g = Hf + (Lf − p̄). Let us
denote (the vector of coefficients of the linear function) Lf − p̄ by q̄. Observe that we
may assume that the vector q̄ is nonnegative. This can be explained as follows. g is a
submodular function, and submodular functions have decreasing marginal costs. When
trying to maximize the value of g we can always ignore any item x with g ({x}) ⊂ 0,
because that item cannot possibly add positive value if included in the solution. Hence
without loss of generality we may assume that such an item would not be part of the an-
swer to the demand query. Hence all coordinates in which q̄ is negative can be rounded
up to 0 without affecting the answer to the demand query.

As a consequence of the above discussion, the preprocessing done by our algorithms
will depend only on Hf and not on Lf . Then, given a demand query p̄, we translate it
as above to the corresponding q̄ = Lf − p̄ (rounded up to 0), and attempt to find the
set S maximizing g(S) = Hf (S) + q̄(S). Under this view, it is convenient to think of q̄
rather than p̄ as the query, and then Lf can effectively be ignored. Moreover, since Hf

is not necessarily monotone, our positive results regarding preprocessing do not require
f to be monotone – they hold with no change even if f is not monotone.
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2 Approximately Answering MWIS Demand Queries

Given a graph G(V,E) with n vertices, a maximum weight independent set (MWIS)
query is an n dimensional vector q̄ of nonnegative integers, where for every 1 ⊂ i ⊂ n
entry q̄(i) is interpreted as the weight given to vertex i. Given G and q̄, the goal is to
output a maximum weight independent set with respect to these weights. The special
case in which q̄ ⇒ {0, 1}n is referred to as a maximum independent set (MIS) query.
MWIS queries can easily be seen to be a special case of demand queries with respect
to submodular valuation function. Let W be an upper bound on the possible weight a
vertex might be assigned in a query q̄. Then G can be thought of as a hypergraph repre-
sentation of the submodular valuation function fG, with wf (e) = −W for every edge
e ⇒ E, and wf (i) = nW for every vertex i ⇒ V . Then the MWIS query q̄ is equivalent
to a demand query p̄ with p̄(i) = nW − q̄(i) for every i ⇒ V , because the optimal
answer to the demand query will never be a set of vertices that induces any edges (due
to their large negative weight). In particular, taking q̄ to be the all 1 vector shows that
the problem of finding a maximum independent set in G can be formulated as a demand
query. This observation coupled with the known Π(n1−σ) NP-hardness of approxima-
tion results for the maximum independent set problem [12,16] proves Proposition 1.

As a simple introduction to our proof of Theorem 1, we show how preprocessing G
helps in improving the approximation ratio for the special case of MWIS queries.

Preprocessing. Given a graph G = (V,E), consider the following collection of sets
defined inductively. Let Jj =

⋃j
i=1 Ii (J0 = ∈), where Ii (for i ≤ 1) is a maximum

independent set in Gi = (V \ Ji−1, Ei) (where Ei denotes the the set of those edges
induced by V \ Ji−1). The sets Ii are referred to as the advice sets.

Answering a MWIS Query. Given a query vector q̄ assigning nonnegative weights
to the vertices, return the advice set with highest sum of vertex weights. Namely, the
advice set Ii that maximizes

∑
j∈Ii

q̄(j).

Theorem 3. The answer to the query is a
≥

2n approximation to the maximum weight
independent set in the weighted graph G≤ = (V,E, q̄).

Proof. The following claim shows that the coloring defined by the sets {Ii} has the
property that any independent set of G is colored by at most

≥
2n colors.

Claim. Given an independent set I , |{i|Ii
⋂
I →= ∈}| < ≥

2n.

Proof. Suppose otherwise. Let sj =
∣
∣
∣I \⋃j−1

i=1 Ii

∣
∣
∣. Let j1, · · · , j⊆2n be the last

≥
2n

indices for which Iji
⋂
I →= ∈, given in reverse order (that is, advice set Iji was gener-

ated in the preprocessing phase after advice set Iji+1 ). Hence sj1 ≤ 1, and sji < sji+1 .
Induction establishes that sji ≤ i. Due to the maximality of Ii, si ⊂ |Ii| (otherwise, Ii
is not the maximum independent set in G after removing

⋃j−1
i=1 Ii). Since Ij1 , · · · , Ij√2n

are disjoint, and |Iji | ≤ i, the union of the advice sets would contain more than n ver-
tices, which is a contradiction. ⇔∗

Let I be a maximum weight independent set in G≤. I is also an independent set in G.
From the claim, I intersects at most

≥
2n of the Ii’s. Hence for some j the weight of
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I ≤ = I
⋂
Ij is at least 1⊆

2n
of the weight of I . This advice set Ij is an independent set

and contains I ≤, so its weight must be at least the weight of I ≤. Thus, the Ii of highest
weight is a

≥
2n approximation to the weight of I . ⇔∗

3 Negative Hyperedges Set-Functions

Definition 5. A set-function f : 2U ⇐ R is said to be a negative hyperedges (NH)
function if its hypergraph representation satisfies wf (S) ⊂ 0 whenever |S| > 1.

Observe that every NH set-function is necessarily submodular. However, a submod-
ular set function need not be NH. For example, the function f(S) = 1 for all nonempty
S is submodular, and its hypergraph representation is wf (S) = (−1)|S|+1.

As an intermediate step towards proving Theorem 1 and strictly generalizing the
notion of MWIS queries considered in Section 2, we consider demand queries with
respect to NH functions. We first define our building block for the preprocessing stage.

Definition 6. Given a submodular function f : 2U ⇐ R, the greedy optimal sets for f
is a collection of sets {Si}, defined inductively: S1 is the optimal set with respect to f ,
and Si+1 is the optimal set with respect to f among those sets in U \⋃i

j=1 Sj .

Preprocessing. Given an NH valuation function f : 2U ⇐ N that is M -bounded and
a nonnegative integer k, define the functions fk (A) = 2k |A| + Hf (A). Namely, fk
maintains the high order part of f , and makes the linear part equal to 2k for every item.

Denote the greedy optimal sets for fk by
{
Sk
i

}
. These sets, for all integer k in the

range 0 ⊂ k ⊂ logM , will be referred to as the advice sets.

Answering a Demand Query. Recall from Section 1.2, that the demand query can be
thought of as a nonnegative integer vector q̄, and the goal is to find an optimal set with
respect to Hf + q̄. Let ỹ = argmaxx {qx} be the highest valued item in U according to
q̄. Let Tk =

{
x ⇒ U |2k ⊂ qx < 2k+1

}
.

Answer with the highest valued set according to Hf+q̄ from
{{ỹ} , Tk

⋂
Sk
i

}
, where

Sk
i ranges over all advice sets.

Theorem 4. The answer to the query is an O (
≥
n) approximation to the optimal set.

Proof. To prove this theorem, we will use the following two lemmas.

Lemma 1. For |U | = n, let g : 2U ⇐ R be a submodular function such that g ({x}) =
c > 0 for all x ⇒ U , and let {Si} be the greedy optimal sets for g. Then, for every

A ∧ U with g (A) > 0 there is an i such that g (A
⋂
Si) ≤ g(A)2

2cn .

Proof. Subadditivity of g implies that g (A) ⊂ ∑
g (A ⊥ Si). Suppose for the sake of

contradiction that g (A
⋂

Si) <
g(A)2

2cn for all i. Then there must be at least 2cn
g(A) greedy

sets. Let sj = g
(
A \⋃j−1

i=1 Si

)
. Note that sj−sj+1 < g(A)2

2cn (otherwise, g (A
⋂
Sj) ≤

g(A)2

2cn by the subadditivity of g). Observe further that g (Sj) ≤ sj (otherwise, Sj is not
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the optimal after removing
⋃j−1

i=1 Si). Since g gives a value of at most c to each element,

|Sj | ≤ g(Sj)
c ≤ sj

c .

Using these facts, we lower bound the number of items in
⊎2cn/g(A)

i=1 Si. Observe that

|S1| ≤ s1
c = g(A)

c . Since sj−sj+1 < g(A)2

2cn , we have that sj ≤ g (A)
(

1 − (j−1)g(A)
2cn

)
,

and |Sj | > g(A)
c

(
1 − (j−1)g(A)

2cn

)
. The sum of the 2cn

g(A) terms is thus larger than n =

|U |, a contradiction. ⇔∗
Lemma 2. Given an NH function g : 2U ⇐ N, let g̃ be the function obtained from g
by keeping the high order part of g, and rounding down each value in the linear part to
the closest power of 2. Then maxS◦U [g̃(S)] ≤ 1

4 maxT◦U [g(T )].

Proof. Let T be the optimal set for g. Select S ⊆ T by including each item of T in
S independently with probability 1/2. We show that in expectation (all expectations
taken over choice of S), E[g̃(S)] ≤ 1

4 [g(T )], and hence there must be an S satisfying
the lemma.

Observe that E[Lg̃(S)] ≤ 1
2E[Lg(S)] = 1

4Lg(T ), where the inequality is because
rounding down loses at most a factor of 2, and the equality is because each item is
included with probability 1/2. Observe also that E[Hg(S)] ≤ 1

4Hg(T ), because every
hyperedge (of size at least 2) in the hyperedge representation of g is negative, and is
included into S (if included in T ) with probability at most 1/4. Hence E[g̃(S)] =

E[Lg̃(S)] + E[Hg̃(S)] = E[Lg̃(S)] + E[Hg(S)] ≤ 1
4 (Lg(T ) + Hg(T )) = g(T )

4 ⇔∗
A consequence of Lemma 2 is that given a query q̄, we may round down each entry

of q̄ to the nearest power of 2, and lose at most a factor of 4 in the value of the optimal
set. Hence we assume from now on that all entries in q̄ are powers of 2. In particular,
we can update the definition of Tk to Tk =

{
x ⇒ U |qx = 2k

}
.

We use f̃ to denote Hf + q̄. Recall that ỹ is the highest valued item. Let w̃ = qỹ . If
w̃ is a 4

≥
n approximation for the value of the optimal set for f̃ , then by returning {ỹ}

the theorem is proved.
Otherwise, let A ⊆ U be the optimal set for f̃ , with f̃ (A) ≤ 4w̃

≥
n. Let r be

such that w̃ = 2r. Hence, r ≤ k for any non-empty Tk. Using the subadditivity of
f̃ , there is a k ⊂ r such that f̃ (A

⋂
Tk) ≤ f̃ (A) /2(r−k)/2+2 (otherwise, f̃ (A) ⊂∑

k≥r f̃ (A
⋂

Tk) < f̃ (A)
∑

k≥r 2(k−r)/2−2 < f̃ (A)). For this k Lemma 1 guaran-

tees an i such that f̃
(
A
⋂
Tk

⋂
Sk
i

) ≤ f̃ (A
⋂
Tk)2 /2k+1n ≤ f̃ (A)2 /2r+5n. Since

Sk
i is maximal, using the decreasing marginal cost definition for submodular functions,

f̃
(
Tk

⋂
Sk
i

) ≤ f̃
(
A
⋂
Tk

⋂
Sk
i

) ≤ f̃ (A)
2
/2r+5n ≤ f̃ (A) /8

≥
n. ⇔∗

4 Approximately Answering Submodular Demand Queries

In this section we prove Theorem 1. The proof of Theorem 4 does not apply to some
submodular valuation functions, because Lemma 2 need not hold. Consider for example
a submodular function g with g(A) = |A|+2 for every nonemptyA. Its maximum value
is n+2. The rounded down version of it rounds down the linear part from 3 to 2, giving
g̃(A) = |A| + 2 − |A| = 2, and the maximum drops to 2. Our solution is to work at
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a finer scale than powers of 2. A factor of 2 is broken to n1/4 intermediate scales, and
this will cost another factor of n1/4 (beyond n1/2) in the approximation ratio.

Preprocessing. Given a submodular valuation function f : 2U ⇐ N that is M -bounded

and a nonnegative integer k, define the functions fk (A) =
(
1 + n−1/4

)k |A|+Hf (A).

Namely, fk makes the linear part equal to
(
1 + n−1/4

)k
for every item.

Denote the greedy optimal sets for fk by
{
Sk
i

}
. These sets, for all nonnegative inte-

ger k satisfying
(
1 + n−1/4

)k ⊂ M , will be referred to as the advice sets.

Answering a Demand Query. Given a query vector q̄, let ỹ = argmaxx {qx} be the
highest valued item in U according to q̄.

Let Tk =
{
x ⇒ U | (1 + n−1/4

)k ⊂ qx <
(
1 + n−1/4

)k+1
}

.

Answer with the highest valued set according to Hf + q̄ from
{{ỹ} , Tk

⋂
Sk
i

}
.

We now prove Theorem 1 by showing that the answer to the query is an O
(
n

3/4
)

approximation to the optimal set with respect to Hf + q̄.

Proof. Define f̃1 (C) =
∑

{x}◦C β (qx), where β(0) = 0 and β(z) rounds positive

integer z down to the nearest power of 1 +n−1/4. Let f̃ = f̃1 +Hf and w̃ = wf̃ ({ỹ}).

If {ỹ} is a 8n
3/4 approximation to Hf + q̄, we are done. Otherwise, there is a set A such

that f (A) ≤ 8n
3/4w̃.

Claim. If f (A) ≤ 2n3/4w̃, then f̃ (A) ≤ f (A) /2.

Proof. Note that Hf (A) ⊂ 0, otherwise f is not submodular. Let Δ be such that
Hf (A) = − (1 − Δ)Lf (A). Then f (A) = ΔLf (A). Lf (A) ⊂ nw̃, so Δ ≤ 2n−1/4.(
1 + n−1/4

)
f̃1 (A) ≤ Lf (A), so f̃ (A) >

(
1 − n−1/4

)
Lf (A) − (1 − Δ)Lf (A) ≤

(1 − Ω/2)Lf (A) − (1 − Δ)Lf (A) = f (A) /2. ⇔∗

Since f̃ ⊂ f , we only lose a factor 2 when approximating f̃ instead of f .
Let A be the set of maximum value. f̃ (A) ≤ 4w̃n3/4. Recall that

Tk =
{
x ⇒ S|wf̃ ({x}) =

(
1 + n−1/4

)k}
. Let r be such that

(
1 + n−1/4

)
r = w̃.

r ≤ k for any non-empty Tk.

Using subadditivity, f̃ (A
⋂
Tk) ≤ 1

4n
−1/4f̃ (A)

(
1 + n−1/4

)(k−r)/2
for some k

(otherwise, f̃ (A) ⊂ ∑
k≥r f̃ (A

⋂
Tk) < 1

4n
−1/4f̃ (A)

∑
k≥r

(
1 + n−1/4

)(k−r)/2
<

1
2n

−1/4f̃ (A)
∑

k≥r

(
1 + n−1/4

)(k−r)
< f̃ (A)). The value of A

⋂
Tk approximates

the value of A within 4n
1/4

(
1 + n−1/4

)
(k−r)/2. Using Lemma 1, f̃

(
A
⋂
Tk

⋂
Sk
i

) ≤
f̃ (A

⋂
Tk)

2 (
1 + n−1/4

)−k
/2n ≤ f̃ (A)

2 (
1 + n−1/4

)−r/32n
3/2 ≤ f̃ (A) /8n

3/4 for
some i. Therefore, the value of A

⋂
Tk

⋂
Sk
i is a 8n

3/4 approximation to the value of A.
Since Sk

i is maximal, the marginal value of every item is non-negative (otherwise, the
set without this item has higher value). Using the decreasing marginal value definition
for submodular functions, every item has non-negative marginal value for every subset
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of Sk
i . Hence, f̃

(
Tk

⋂
Sk
i

) ≤ f̃
(
A
⋂
Tk

⋂
Sk
i

)
. This proves that the answer to the

query is a set of higher or equal value to a set that is an O
(
n

3/4
)

approximation to the
optimal set with respect to Hf + q̄. ⇔∗

5 Hardness for Approximately Answering MIS Queries

In this section we revisit the setting of MIS queries introduced in Section 2. Given an
input graph G(V,E), one is allowed to preprocess this graph for arbitrary time and
record a polynomial size advice string A(G). Thereafter a subset U ∧ V is given as a
query, and one is required to approximate the maximum independent set in the subgraph
induced on U , and do so in polynomial time. We shall show that for some τ > 0, even
after preprocessing, MIS queries cannot be approximately answered within a ratio better
than Ω(nε), unless NP ∧ P/poly. Given that MIS queries are a special case of demand
queries with respect to a submodular function, this will thus prove Theorem 2.

We shall use Theorem 5, taken from [8]. Recall the problem max-3SAT: given a
3CNF formula with n variables and m clauses (each containing three literals), find an
assignment that satisfies the maximum number of clauses. A factor graph is a template
for a 3CNF formula that specifies the variables in each clause, but leaves the polarities
of the variables unspecified. A family of factor graphs includes for each sufficiently
large value of n one template. (The need to consider an infinite family is a complexity
theory technicality. The reader may fix one n of interest and think of just one factor
graph in this case.) Given a factor graph, a 3SAT query is an assignment of polarities
to the occurrences of variables in the template, and one is asked to solve the resulting
max-3SAT instance in polynomial time. Preprocessing the factor graph before receiving
the query is allowed.

Theorem 5. For some β < 1, there is a family of factor graphs such that even after
preprocessing, one cannot distinguish between satisfiable 3SAT queries, and those that
are at most β-satisfiable, unless NP ∧ P/poly.

The value of β in Theorem 5 can be taken to be roughly 77/80. A factor graph from
the family of Theorem 5 is referred to as a universal factor graph (UFG). Proposition 2
is a first step towards proving Theorem 2.

Proposition 2. For some β < 1, even after preprocessing, MIS queries cannot be an-
swered with an approximation ratio better than 1/β, unless NP ∧ P/poly.

Proof. Given a UFG F that is a template for 3CNF formulas with n variables and
m clauses, use the following variation on the FGLSS reduction [7] to obtain a graph
G(V,E) on 8m vertices. Every clause v ⇒ F is associated with a cluster of eight
vertices v1, · · · , v8 ⇒ V, one for each possible assignment to the three variables in the
clause. There is an edge in E between two vertices iff their corresponding assignments
disagree on some variable.

A 3SAT query to F can be cast as a MIS query to G. Setting the polarities to a
clause v of F is equivalent to discarding the unique member of v’s cluster in G that
corresponds to an assignment not satisfying the clause, and keeping the remaining ver-
tices of the cluster. The MIS query is the set U of vertices that remains. The size of the
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maximum independent set in the subgraph U(G) induced on U is exactly the maximum
number of satisfiable clauses in the 3SAT query. The proposition now follows from
Theorem 5. ⇔∗

Before we continue, we review the notion of derandomized graph products [1]. For
a desired value of σ, we say that a d-regular graph is an σ-expander if the eigenvalues
d = ∂1 ≤ ∂2 ≤ . . . ≤ ∂n of its adjacency matrix satisfy max[|∂2|, |∂n|] ⊂ σ∂1. It is
known that for every σ > 0 there is sufficiently large d (one would need d > Π(1/σ2)),
such that there are σ-expanders of size n for all sufficiently large n. Moreover, it is
known how to construct such σ-expanders.

Given a graph G(V,E) its derandomized graph product DGk = (U,EU ) uses an
arbitrary auxiliary d-regular σ-expander F (V,EF ) defined on the same set of vertices
V (and a set EF edges unrelated to E). U consists of all walks with k − 1 steps in
F (hence |U | = |V |dk−1), and there is an edge in DGk between (v1, · · · , vk) and
(u1, · · · , uk) iff there are i, j such that (vi, uj) ⇒ E. Let Δ(G) denote the size of the
maximum independent set in graph G. The following theorem is from [1].

Theorem 6. For derandomized graph products as defined above and using an
σ-expander with σ < Ω(G)

|V | :

Δ(G)dk−1

(
Δ(G)

|V | − σ

)k−1

⊂ Δ(DGk) ⊂ Δ(G)dk−1

(
Δ(G)

|V | + σ

)k−1

In order to use Theorem 6 it will be convenient for us to use a special class of ex-
panders. Given a graph F = (V,E) on m vertices and a positive integer k, define the
graph Fk = (V × k,Ek) as follows: every vertex of F is replaced by an independent
set of size k, and every edge of F is replaced by a complete bipartite graph between the
corresponding independent sets.

Proposition 3. If F is an σ-expander, then so is Fk for every k.

Proof. The adjacency matrix of Fk is a tensor product of two matrices: the adjacency
matrix of F , and a k by k all 1 matrix (whose eigenvalues are k and 0 with multiplicity
k − 1). The eigenvalues of the tensor are all products of the eigenvalues of its factors.

⇔∗
We can now prove Theorem 2.

Proof. Let G(V,E) be a graph with 8m vertices, the outcome of Proposition 2. Recall
that its vertices are arranged in m clusters of size 8. Pick σ sufficiently small (e.g.,
σ = 1−α

20 for β as in Proposition 2). Let F be an arbitrary d-regular σ-expander on m
vertices. F8 is an 8d-regular graph on 8m vertices. Match vertices of G with those in
F8, with each cluster of G mapped to a cluster of F8. For k = λ(logm), consider
the derandomized graph product DGk with respect to F8. The number of its vertices is
polynomial in m.

Given a MIS query U to G(V,E) for which one wants to distinguish between the
case that the optimal answer is m and the case that it is at most βm, transform it into
a MIS query U ≤ to DGk, where a vertex of DGk belongs to U ≤ iff the k vertices of
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that walk that it corresponds to are all in U . Observe that the set of vertices in U ≤ is
precisely what one would get by taking a k-fold derandomized graph product of the
subgraph U(G) with respect to F7 rather than F8. Proposition 3 implies that F7 is an
σ-expander. Theorem 6 (and some straightforward calculations that are omitted for lack
of space) implies that the ratio between the m versus βm cases has been amplified to
some polynomial N ε, where N is the total number of vertices in DGk, and τ > 0. ⇔∗
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Abstract. A graph G covers a graph H if there exists a locally bijective
homomorphism from G to H . We deal with regular covers in which this
locally bijective homomorphism is prescribed by an action of a subgroup
of Aut(G). Regular covers have many applications in constructions and
studies of big objects all over mathematics and computer science.

We study computational aspects of regular covers that have not been
addressed before. The decision problem RegularCover asks for two
given graphs G and H whether G regularly covers H . When |H | = 1, this
problem becomes Cayley graph recognition for which the complexity is
still unresolved. Another special case arises for |G| = |H | when it becomes
the graph isomorphism problem. Therefore, we restrict ourselves to graph
classes with polynomially solvable graph isomorphism.

Inspired by Negami, we apply the structural results used by Babai in
the 1970’s to study automorphism groups of graphs. Our main result is
an FPT algorithm solving RegularCover for planar input G in time
O√(2e(H)/2) where e(H) denotes the number of the edges of H . In com-
parison, testing general graph covers is known to be NP-complete for
planar inputs G even for small fixed graphs H such as K4 or K5. Most
of our results also apply to general graphs, in particular the complete
structural understanding of regular covers for 2-cuts.

1 Introduction

The notion of covering originates in topology as a notion of local similarity of
two topological surfaces. Suppose that we have two graphs: a big graph G and
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Fig. 1. (a) A covering projection p from a graph G to a graph H . (b) The Cayley graph
of the dihedral group D4 generated by the 90∗ rotations (in black) and the reflection
around the x-axis (in white).

a small graph H . We say that G covers H if there exists a mapping called a
covering projection p : G ∈ H which locally preserves the structure of G. The
existence of a covering projection ensures that G looks locally the same as H ;
see Figure 1a. In this paper, we study algebraically restricted coverings called
regular coverings ; see Section 2 for the formal definition.

1.1 Applications of Graph Coverings

Suppose that G covers H and we have some information about one of the objects.
How much knowledge does translate to the other object? It turns out that quite a
lot, and this makes covering a powerful technique with many diverse applications.

Powerful Constructions. The reverse of covering called lifting can be applied
to small objects in order to construct large objects of desired properties. For
instance, the well-known Cayley graphs are large objects which can be described
easily by a few elements of a group. See Figure 1b for an example. Cayley graphs
were originally invented to study the structure of groups [6].

In the language of coverings, every Cayley graph G can be described as a
lift of a one vertex graph H . Regular covers can be viewed as a generalization
of Cayley graphs where the small graph H may contain more then one vertex.
For example, the famous Petersen graph can be constructed as a lift of a two
vertex graph H , see Figure 2a. Figure 2b shows a simple construction [17] of the
Hoffman-Singleton graph [11] which is a 7-regular graph with 50 vertices.

0
1 2

C5

(a)

{(k, k2) : ⊆k ⊂ C5}

(1, 0) (2, 0)

(b)

Fig. 2. (a) A construction of the Petersen graph by lifting with the group C5. (b) By
lifting the described graph with the group C

2
5, we get the Hoffman-Singleton graph.

The five parallel edges are labeled (0, 0), (1, 1), (2, 4), (3, 4) and (4, 1).
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The Petersen and the Hoffman-Singleton graphs are extremal graphs for the
degree-diameter problem: Given integers d and k, find a maximal graph G with
diameter d and degree k. In general, the size of G is not known. Many currently
best constructions are obtained using the covering techniques [18].

Models of Local Computation. These and similar constructions have many
practical applications in designing highly efficient computer networks [7,20] since
these networks can be efficiently described/constructed and have many strong
properties. In particular, networks based on covers of simple graphs allow fast
parallelization of computation as described e.g. in [5,1].

1.2 Complexity Aspects

In the constructions we described, the covers are regular and satisfy additional
algebraic properties. The advantage of regular covers is that they are easier to
describe. In this paper, we initiate the study of the computational complexity of
regular covering.

Problem: RegularCover
Input: Connected graphs G and H .

Output: Does G regularly cover H?

Relations to Covers. This problem is closely related to the complexity of
general covering which was widely studied before. We try to understand how
much the additional algebraic structure changes the computational complexity.
Study of the complexity of general covers was pioneered by Bodlaender [5] in
the context of networks of processors in parallel computing, and for fixed target
graph was first asked by Abello et al. [9]. The problem H-Cover asks for an
input graph G whether it covers a fixed graph H . The general complexity is still
unresolved but papers [14,10] show that it is NP-complete for every r-regular
graph H where r → 3.

The complexity results concerning graph covers are mostly NP-complete un-
less the graph H has very simple structure. The additional algebraic structure
of regular graph covers makes sometimes the problem easier, as shown by the
following two contrasting results. The problem H-Cover remains NP-complete
for several small fixed graphs H (such as K4, K5) even for planar inputs G [4].
On the other hand, our main result is that the problem RegularCover is
fixed-parameter tractable in the number of edges of H for every planar graph G
and for every H .

Relations to Cayley Graphs and Graph Isomorphism. The notion of regu-
lar covers builds a bridge between two seemingly different problems. If the graph
H consists of a single vertex, it corresponds to recognizing Cayley graphs which
is still open; a polynomial-time algorithm is known only for circulant graphs [8].
When both graphs G and H have the same size, we get graph isomorphism test-
ing. Our results are far from this but we believe that better understanding of
regular covering can also shed new light on these famous problems.
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Theoretical motivation for studying graph isomorphism is very similar to
RegularCover. For practical instances, one can solve isomorphism very ef-
ficiently using heuristics. But a polynomial-time algorithm working for all graph
is not known and it is very desirable to understand the complexity of graph
isomorphism. The notion of isomorphism is widely used in mathematics to show
that two seemingly different mathematical structures are the same. One proceeds
by guessing a mapping and proving that this mapping is an isomorphism. The
natural complexity question is whether there is a better way in which one algo-
rithmically derives an isomorphism. Similarly, regular covering is a well-known
mathematical notion which is algorithmically interesting and not understood.

Further, a regular covering is described by a semiregular subgroup of the auto-
morphism group Aut(G). Therefore it seems to be closely related to computation
of Aut(G) since one should have a good understanding of this group first to solve
the regular covering problem. The problem of computing automorphism groups
is known to be closely related to graph isomorphism.

Finding Lifts and Quotients. The input of RegularCover gives two graphs
G and H . There are two other variants in which the input specifies only one of
the two graphs and ask for existence of the other graph of, say, a given size. If
only H is given, the problem is lifting and the answer is always positive. The
theory of covering describes a technique called voltage assignment which can be
applied to generate all k-fold covers G. Questions like efficient enumeration of
all non-isomorphic lifts, or finding a lift of additional properties are nevertheless
highly non-trivial and very interesting; e.g., the conjecture of Negami [19].

The other variant gives only G and asks for existence of a quotient H which
is regularly covered by G and |G| = k|H |. This problem is NP-complete even
for fixed k = 2, proved in a different language by Lubiw [15]. Lubiw shows that
testing existence of a fixed-point free involutory automorphism is NP-complete
which is equivalent to existence of a half-quotient H . This reduction does not
imply NP-completeness for the RegularCover problem. Since the input gives
also a graph H , one can decode the assignment of the variables from it, and
thus this reduction does not work. We actually conjecture that for a fixed k
the RegularCover problem is not NP-complete. Also, the reduction of Lubiw
cannot be modified for planar inputs G. Our algorithmic and structural insights
allow an efficient enumeration of all quotients H of a given planar graph G.

1.3 Our Results

As already stated, we show that the regular cover problem is for planar graphs
easier than testing general covering. We use the asymptotic notation f = O◦(g)
which omits polynomial factors. Our main result is the following FPT algorithm:

Theorem 1.1. There is an FPT algorithm for RegularCover for planar in-
puts G in the parameter e(H), running in time O◦(2e(H)/2) where e(H) is the
number of edges of H.

It is important that most of our results apply to general graphs. We wanted
to generalize the result of Babai [2] which states that it is sufficient to solve



Algorithmic Aspects of Regular Graph Covers 493

graph isomorphism for 3-connected graphs. Our main goal was to understand
how regular covering behaves with respect to vertex 1-cuts and 2-cuts. For 1-cuts,
regular covering behaves non-trivially only on the central block of G, so they are
easy to deal with. But regular covering can behave highly complex on 2-cuts.
From structural point of view, we give a complete description of this behaviour.
Algorithmically, we succeeded partially and we need several other assumptions
to get an efficient algorithm; see the full version for details.

Planar graphs are very important and also well studied in connection to cov-
ering. Negami’s Theorem [19] dealing with regular covers of planar graphs is one
of the oldest results in topological graph theory; therefore we decided to start
the study of computational complexity of RegularCover for planar graphs. In
particular, our theory applies to planar graphs since they satisfy these additional
assumptions.

Our Approach. We quickly sketch our approach. The algorithm proceeds by
a series of reductions replacing parts of the graphs by edges. These reductions
are inspired by the approach of Negami [19] and turn out to follow the same
lines as the reductions introduced by Babai for studying automorphism groups
of planar graphs [2,3]. Since the key properties of the automorphism groups
are preserved by the reductions, computation of automorphism groups can be
reduced to solving it for 3-connected graphs [2]. In [13,12], this is used to compute
automorphism groups of planar graphs since the automorphism groups of 3-
connected planar graphs are the automorphism groups of tilings of the sphere,
and are well-understood.

The RegularCover problem is more complicated, and we use the following
novel approach. When the reductions reach a 3-connected graph, the natural
next step is to compute all its quotients; there are polynomially many of them.
What remains is the most difficult part, to test for each quotient whether it
corresponds to H after unrolling the reductions. This process is called expanding
and the issue here is that there may be exponentially many different ways to
expand the graph, so we have to test in a clever way whether it is possible
to reach H . Our algorithm consists of several subroutines, most of which we
indeed can perform in polynomial time. Only one subroutine (finding a certain
“generalized matching”) we have not been able to solve in polynomial time.

This slow subroutine can be avoided in some cases:

Corollary 1.2. If the planar graph G is 3-connected or if k = |G|/|H | is odd,
then the algorithm of Theorem 1.1 can be modified to run in polynomial time.

2 Definitions and Preliminaries

A multigraph G is a pair (V (G), E(G)) where V (G) is a set of vertices and E(G)
is a multiset of edges. We denote |V (G)| by v(G) and |E(G)| by e(G). The graph
can possibly contain parallel edges and loops. Further, we consider graphs with
colored edges and also with three different edge types (directed edges, undirected
edges and a special type called halvable edges). We consider such general objects,
because they naturally arise during reductions.
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Fig. 3. Two covers of H . The projections pv and p′v are written inside of the vertices,
and the projections pe and p′e are omitted. Notice that each loop is realized by having
two neighbors labeled the same, and parallel edges are realized by having multiple
neighbors labeled the same. Also covering projections preserve degrees.

Automorphism Groups. Each element π of the automorphism group Aut(G)
acts on G, permutes its vertices and edges while it preserves incidences between
the edges and the vertices. A subgroup of Aut(G) is called semiregular if its
non-identity permutations do not fix any vertex and any non-halvable edge.

Coverings. A graph G covers a graph H (or G is a cover of H) if there exists a
locally bijective homomorphism p called a covering projection. A homomorphism
means that p consists of two mappings pv : V (G) ∈ V (H) and pe : E(G) ∈
E(H) such that pe(uv) = pv(u)pv(v) for every uv ⊂ E(G). The local bijectivness
condition states that for every vertex u ⊂ V (G) the mapping pe restricted to
the edges incident with u is a bijection. Figure 3 contains two examples of graph
covers. Again, we mostly omit subscripts and just write p(u) or p(e).

A fiber of a vertex v ⊂ V (H) is the set p−1(v), i.e., the set of all vertices
V (G) that are mapped to v. We adopt the standard assumption that both G
and H are connected. Then all fibers of p are of the same size. In other words,
|G| = k|H | for some k ⊂ N which is the size of each fiber, and we say that G is
a k-fold cover of H .

Regular Coverings. A regular covering projection p is defined by a semiregular
subgroup Γ of Aut(G). We get p : G ∈ G/Γ where the graph G/Γ , called a
quotient of G, is defined as follows: The vertices of G/Γ are the orbits of the
action Γ on V (G), the edges of G/Γ are the orbits of the action Γ on E(G).
A vertex-orbit [v] = {π(v) : π ⊂ Γ} is incident with an edge-orbit [e] = {π(e) :
π ⊂ Γ} if and only if the vertices of [v] are incident with the edges of [e]. We
naturally construct p : G ∈ G/Γ by mapping the vertices to their vertex-orbits
and the edges to their edge-orbits. Since Γ acts semiregularly on G, one can
prove that p is a |Γ |-fold regular covering. For Figure 3, the covering projection
p is regular since we get H ∧= G/Γ for Γ ∧= C3, and p√ is not regular.

We note that when Γ fixes some halvable edge e, then p(e) is a half-edge of
G/Γ . In the theory of regular coverings, it is natural to decompose each edge into
two half-edges, each attached to one vertex. The reason is that such graphs are
closed under taking quotients, see [16] for more details. For alternative definition
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of regular covering and more details, see the full version. Since the size of Γ is
polynomial in the size of G and H , we can give it as a certificate, and we get:

Lemma 2.1. The problem RegularCover is in NP.

3 Structural Properties of Atoms

In this section, we establish structural theory used in the algorithm. We intro-
duce special inclusion-minimal subgraphs of G called atoms. We show that they
behave nicely with respect to the regular covers and replace them by edges in
the reduction.

Block-Trees. The block-tree T of G is a tree defined as follows. Consider all
articulations in G and all maximal 2-connected subgraphs which we call blocks
(with bridge-edges also counted as blocks). The block-tree T is the incidence
graph of the articulations and the blocks. It is well-known that each automor-
phism of G induces an automorphism of T , and that the automorphism group
preserves the centrum of T which is always either the central articulation, or the
central block. The central articulation is fixed by every automorphism. So if G
has a non-trivial semiregular automorphism, it necessarily has a central block.

In the following, we shall assume that T contains a central block. We orient
edges of the block-tree T towards the central block; so the block-tree becomes
rooted. A subtree of the block-tree is defined by any vertex different from the
central block acting as root and by all its descendants.

Definition of Atoms. Let u and v be two distinct vertices of degree at least
three joined by at least two parallel edges. Then the subgraph induced by u and
v is called a dipole. Let B be a block of G, so B is a 2-connected graph. Two
vertices u and v form a 2-cut U = {u, v} if B \ U is disconnected. We say that
a 2-cut U is non-trivial if deg(u) → 3 and deg(v) → 3.

We first define a set P of subgraphs of G which we call parts :

– A block part is a subgraph non-isomorphic to K2 induced by the blocks of a
subtree of the block-tree.

– A proper part is a subgraph S defined by a non-trivial 2-cut U of a block B
not containing the central block. It consists of a connected component C of
G \ U together with u and v and all edges between {u, v} and C.

– A dipole part is any dipole.

The inclusion-minimal elements of P are called atoms. We distinguish block
atoms, proper atoms and dipoles according to the type of the defining part.
Block atoms are either pendant stars, or pendant blocks possibly with single
pendant edges attached to it. Also each proper atom or dipole is a subgraph of
a block. For an example, see Figure 4.

We use topological notation to denote the boundary ∂A and the interior Å
of an atom A. If A is a dipole, we set ∂A = V (A). If A is a proper or block
atom, we set ∂A equal to the set of vertices of A which are incident with an edge



496 J. Fiala et al.

block atoms proper atoms dipoles

Fig. 4. An example of a graph with indicated atoms. The white vertices belong to the
boundery of some atom, possibly several of them.

p(A)

p(u) p(v)

(C1)

p(A)

p(u) = p(v)

(C2)

p(A)

p(u) = p(v)

(C3)

Fig. 5. How can Q look in Gi/Γi, depending on the cases (C1), (C2) and (C3)

not contained in A. For the interior, we use the standard definition Å = A \ ∂A
where we only remove the vertices ∂A, the edges adjacent to ∂A are kept.

Lemma 3.1. Let A and A√ be two atoms. Then A ≥A√ = ∂A ≥ ∂A√.

We call a graph essentially 3-connected if it is a 3-connected graph with pos-
sibly single pendant edges attached to it. The automorphism group of an essen-
tially 3-connected graph is a subgroup of the automorphism group when pendant
edges are removed. Every block atom is essentially 3-connected. A proper atom
A with ∂A = {u, v} becomes essentially 3-connected after adding the edge uv,
and we denote this modification by A+.

Quotionts of Atoms. Let Γ be a semiregular subgroup of Aut(G), which de-
fines a regular covering projection p : G ∈ G/Γ . Negami [19, p. 166] investigated
possible projections of proper atoms, and we further pursue this question.

Let A be an atom with ∂A = {u, v} and let Q = p(A).

(C1) An edge-quotient Q. The atom A is preserved in G/Γ , meaning p(A) ∧= A.

(C2) A loop-quotient Q. The interior of the atom A is preserved and the vertices
u and v are identified, i.e., p(Å) ∧= Å and p(u) = p(v).

(C3) A half-quotient Q. The covering projection p is a 2k-fold cover. There exists
an involutory permutation π in Γ exchanging u and v which preserves A.

See Figure 5.
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Lemma 3.2. For every atom A and every semiregular subgroup Γ defining cov-
ering projection p, one of the cases (C1), (C2) and (C3) happens. Moreover, for
a block atom we have exclusively the case (C1).

It is easy to see that the edge/loop-quotient of an atom is unique. For half-
quotients uniqueness is not true. Each half-quotient is determined by an invo-
lutory permutation. For planar graphs, there are at most polynomially many
half-quotients of a proper atom. For a dipole, we get generally at most 2≤e(A)/2⊆

different half-quotients and this bound is tight; see Figure 6. The bound plays
the key role for the complexity of our algorithm of Section 4; in one subroutine,
we iterate over all half-quotients of a dipole.

The Reduction. The reduction starts with a graph G and produces a sequence
of graphs G = G0, G1, . . . , Gr. To produce Gi+1 from Gi, we find all atoms of
Gi. We replace a block atom A by a pendant edge of some color based at u
where ∂A = {u}. We replace each proper atom or dipole A with ∂A = {u, v} by
a new edge uv of some color and of one of the three edge types according to the
type of A. According to Lemma 3.1, the replaced parts for the atoms of A are
pairwise disjoint, so the reduction is well defined.

We stop at step r when Gr is primitive which means that it contains no further
atoms. A primitive graph is either K2, or Cn or a 3-connected graph, together
with possibly single pendant edges attached. We call this sequence of graphs
starting with G and ending with a primitive graph Gr the reduction series of G.

We distinguish three symmetry types of atoms which describe how symmetric
each atom is. When such an atom is reduced, we replace it by an edge carrying
the type. Let A be a proper atom or dipole with ∂A = {u, v}. The atom is
halvable if it has some half-quotient. If it is not halvable, we call it symmetric
if it has some automorphism transposing u and v, and asymmetric otherwise. A
block atom is by definition symmetric.

We replace halvable atoms by halvable edges, symmetric atoms by undirected
edges and assymetric atoms by directed edges. We consider only the automor-
phisms which preserve these edge types and indeed the orientation of directed
edges. For planar graphs, the type of each atom can be determined in polynomial
time.

Further, the edges introduced in Gi are colored and their colors encode iso-
morphism classes of the atoms of Gi−1. We say that two graphs G and G√ are iso-
morphic if there exists an isomorphism which preserves all colors and edge types.
All established results transfer to colored graphs and colored atoms without any

Fig. 6. An example of a dipole with four non-isomorphic half-quotients. This example
can easily be generalized to exponentially many non-isomorphic quotients.
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problems. Two atoms A and A√ are isomorphic if there exists an isomorphism
which maps ∂A to ∂A√. We obtain isomorphism classes for the set of all atoms
A such that A and A√ belong to the same class if and only if A ∧= A√. To each
color class, we assign one new color not yet used in the graph. When we replace
the atoms of A by edges, we color the edges according to the colors assigned
to the isomorphism classes. For an asymmetric atom, we choose an arbitrary
orientation, but consistently for the entire isomorphism class.

Quotient Reduction and Expansion. Suppose that Γi is a semiregular action
of Gi. Then it corresponds to the unique action Γi+1 of Gi+1. If Hi = Gi/Γi and
Hi+1 = Gi+1/Γi+1, then we can construct Hi+1 from Hi as follows. Let A be
an atom of Gi and let Q be its quotient in Hi. Then Q is replaced in Hi+1 by
a colored edge, loop or half-edge depending whether Q is an edge-, a loop-, or a
half-quotient.

On the other hand, suppose that Hi+1 is given. We study in how many possible
ways can we expand it to Hi. Here Hi is not uniquely determined anymore. But
we get the following characterization useful for the algorithm:

Proposition 3.3. Every quotient Hi of Gi can be constructed from some quo-
tient Hi+1 of Gi+1 by replacing each edge, loop and half-edge corresponding to
an atom of Gi by an edge-, loop-, or half-quotient, respectively. Moreover, for
different choices of Hi+1 and of half-quotients we get different labeled graphs Hi.

Note that the block structure is preserved by these expansions, only new
pendant blocks are attached. Also, edge-quotients of block atoms, and loop- and
half-edge quotients of proper atoms and dipoles correspond to block parts of H0.

4 Algorithm for Planar Graphs

We establish Theorem 1.1. Let k = |G|/|H |. The algorithm proceeds as follows:

1. We construct the reduction series for G = G0, . . . , Gr ending with the unique
primitive graph Gr.

2. We construct all semiregular subgroups Γr of Aut(Gr) of the order k. The
number of subgroups in the list is polynomial for planar graphs.

3. For each Γr, we compute Hr = Gr/Γr. We say that a graph Hr is expandable
if there exists a sequence of extensions repeatedly applying Proposition 3.3
which constructs H0 isomorphic to H . We test the expandability of Hr using
dynamic programming.

The fundamental difficulty is in the third step since there might be exponen-
tially many possible expansions of Hr. So we approach the problem from the
other side, and try to reduce the graph H to Hr, by replacing atoms in H with
edges. Consider a pendant block of H . The issue here that there is that is no
way to know whether this block is an edge-quotient of a block in G, or a loop-
quotient or a half-quotient of a proper atom or dipole; see Figure 7. So without
exploiting some additional information from H , there is no way to know what
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G

(C1)

G

(C2)

G

(C3)

?

H

Fig. 7. For a pendant block of H , there are three possible preimages in G. It could be
a block atom mapped by (C1), or a proper atom mapped by (C2), or another proper
atom mapped by (C3).

is the preimage of this pendant block. Our approach is not to decide everything
in one stage, instead we just remember a list of possibilities. We use dynamic
programming to deal with these lists and compute further lists. The following
diagram shows the overview of the algorithm:
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red. �� R1

red. �� R2
red. �� R3

red. �� R4
red. �� · · · red. �� Rt

(1)

Atoms in Quotients. We choose one arbitrary block/articulation called the
core in Hr. The core plays the role of the central block in the definition of parts
and atoms for the quotients. We consider half-edges and loops as pendant edges.
We first reduce Hr to a primitive quotient graph Hs, where s → r. Notice that
all atoms in Hr, . . . , Hs−1 are necessarily block atoms.

Now, the graph Hs consists of the core together with some pendant edges,
loops and half-edges. Then the core in H0 has to correspond to some block or
articulation of H , and we iterate over all possible positions of the core in H . In
what follows, we have the core fixed in H as well.

Reducing in Quotients. Our goal is to apply a reduction series on H defining
H0, . . . ,Ht. As already discussed above, we do not know which parts of G project
to different parts of H . Therefore each Hi represents a set of graphs, and Ht

represents a set of primitive graphs. We then determine expandability of Hr by
testing whether Hs ⊂ Ht.

We represent each Hi by one graph Ri with so-called pendant elements at-
tached to some vertices. Each pendant element corresponds to a block part in
H . Further each pendant element has a polynomially large list of possible real-
izations by colored edges, loops and half-edges. Each list may contain at most
one edge and at most one loop, but it may contain many half-edges. A pendant
element contains an edge/loop/half-edge in its list if and only if it is possible
to expand this edge/loop/half-edge to a graph isomorphic to the corresponding
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block part of H . Each graph of Hi is created from Ri by replacing the pendant
elements by some edges, loops and half-edges from the respective lists.

Testing whether Hs ⊂ Ht can be done for planar graphs, see the full version
for details. Here, we code the colors of pendant edges, loops and half-edges by
the color of the vertices of Hs. And we encode the lists of the pendant elements
by lists of colors in Rt. It remains to argue that using dynamic programming,
we can compute Ri+1 from Ri.

One Step of the Reduction. To compute Ri+1 from Ri, we first find all
atoms in Ri. We replace all dipoles and proper atoms by edges of the corre-
sponding colors. We replace block atoms by pendant elements for which we need
to compute their lists. Let A be a block atom in Ri. A star atom is a block atom
consisting of an articulation with attached pendant edges, loops and pendant
elements. For a non-star atom, we just iterate over all quotient and test using
(P3) whether each quotient matches A. If A is a star-atom, then it corresponds
to a dipole, or a star atom, we again iterate over all of them.

For simplicity, we just describe testing for a dipole D. We iterate over all of at
most 2e(D)/2 possible quotients of D. Each such quotient is a vertex with several
loops and half-edges attached, and each of these has to one-to-one correspond to
a pendant element attached to A. We just test existence of a perfect matching
in a bipartite graph: Here, one part are loops and half-edges attached in D, the
other part are pendant elements, and edges are according to which loops and
half-edges are in the list. We add D to the list if and only if a perfect matching
exists.

Proof (Theorem 1.1, Sketch). The algorithm can be implemented in FPT time
O◦(2e(H)/2), and it is correct since we compute all possible ways how H can
be reached. So if G regularly covers H , there has to be some way in which the
algorithm succeeds. ⇐⇒

5 Concluding Remarks

We just state open problems.

Problem 5.1. Is the problem RegularCover GI-complete?

As possible next direction of research, we suggest to attack classes of graphs
close to planar graphs, for instance projective planar graphs or toroidal graphs.
To do so, it seems that new techniques need to be built. Also the automorphism
groups of projective planar graphs and toroidal graphs are not well understood.
Lastly, we indeed ask whether the slow subroutine for dipole expansion of the
algorithm can be solved in polynomial time; see the full version for details.

Problem 5.2. Can the complexity of the algorithm of Theorem 1.1 be improved
to polynomial?
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Abstract. We precisely characterize the role of private randomness in
the ability of Alice to send a message to Bob while minimizing the amount
of information revealed to him. We give an example of a (randomized)
message which can be transmitted while revealing only I bits of informa-
tion using private randomness, but requires Alice to reveal I+log I−O(1)
bits of information if only public coins are allowed. This gives the first
example of an ω(1) additive separation between these two models. Our
example also shows that the one-round compression construction of Har-
sha et al. [HJMR07] cannot be improved.

Moreover, we show that our example is tight up to an additive O(1)
factor: We show that if using private randomness a message can be trans-
mitted while revealing I bits of information, the transmission can be sim-
ulated without private coins using I + log I + O(1) bits of information.
This improves over an earlier result by Brody et al. [BBK+12].

1 Introduction

In this paper we investigate the role of private randomness in the ability of two
parties to communicate while revealing as little information as possible to each
other – i.e. to communicate at low information cost. More specifically, Alice and
Bob are given possibly correlated inputs X and Y and need to perform a task T
by means of a communication protocol σ. Alice and Bob share a public random
string R; in addition they have access to private random strings RA and RB,
respectively. The internal information cost of σ with respect to a distribution
(X,Y ) ∈ μ is the quantity

ICμ(σ) := I(τ ;Y |XRRA) + I(τ ;X |Y RRB),

where τ = τ(X,Y,R,RA, RB) is the random variable representing the tran-
script of the protocol.

It is not hard to see that if the goal is to solve a task T while minimizing
the information cost of the protocol, we can always avoid using the public ran-
domness string R: to simulate public randomness, before the beginning of the
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protocol’s execution, Alice can send a portion of RA, which will be used as R
for the remainder of the protocol. This modification increases the communica-
tion cost of the protocol, but it is not hard to see that it does not change its
information cost. Therefore, in the context of information complexity, private
randomness is at least as good as public randomness. Is the converse true? In
other words, can any protocol σ that uses private randomness be simulated by
a protocol σ◦ which uses only public randomness so that ICμ(σ◦) ⊆ ICμ(σ)? The
näıve “solution” to this problem would be to simulate σ by using the public ran-
domness to simulate private randomness. The following simple example shows
why this approach fails. Consider the protocol σ in which X ⊂ {0, 1}n. Alice
samples a uniformly random string RA ⊂U {0, 1}n, and sends the bitwise XOR
M := X → RA to Bob. This protocol conveys 0 information to Bob about X .
However, if the public randomness R were to be used to produce RA, then Bob
would also know RA, and thus the message M reveals X = M → RA to Bob –
drastically increasing the information cost of the protocol. This, of course, does
not mean that a more sophisticated simulation scheme cannot work.

It is instructive to compare this question to the public-vs-private randomness
question in randomized communication complexity. In the context of communi-
cation complexity the situation is somewhat reversed: it is obvious that public
randomness can be used to simulate private randomness: the parties can always
designate part of their public randomness as “private randomness”. This will not
affect the communication cost of the protocol (although, as seen above, it may af-
fect its information cost). In the reverse direction, Newman [New91] showed that
Rε+Ω(f) ⊆ Rpub

ε (f) +O(log(nΩ )). Thus, up to an additive logn, private random-
ness replaces public randomness in communication complexity. Does a “reverse
Newman theorem” hold for information complexity? Can private randomness be
replaced with public randomness at a small cost?

This question has been considered by Brody et al. in [BBK+12], which showed
a version of the private-by-public simulation for one-round protocols. In the
one-round setting, Alice wishes to send Bob her message – a random variable
M = M(X,RA). Obviously, the information cost of this task is just I(M ;X |Y ).
If Bob receives no input, then it is just I(M ;X). In this paper we prove tight
bounds on the one round private-by-public simulation. Specifically, we give a
family of examples in which the cost of simulating a message M of information
cost I without the use of private randomness goes up to I + log(I) −O(1), and
the lower bound is in fact tight in some cases. Previously, [BBK+12] showed an
upper bound on private-by-public simulation of a message M of information cost
I to information cost of at most I + O(log n), where n = max(log |X |, log |Y|) –
the log of the sizes of the domains of X and Y . We also improve their bound to
I + log(I) + O(1) and provide a simpler proof. Note that it is always the case
that I ⊆ H(X) ⊆ log |X | ⊆ n, and therefore log I ⊆ logn.

It is interesting to consider the connection between the problem of simulating
a protocol without private randomness, and the problem of compressing commu-
nication protocols. The general protocol compression problem [BBCR10,Bra12]
is the problem of simulating a protocol σ with communication cost C and
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information cost I with a protocol σ◦ of communication cost C◦ that is as
close to I as possible. The problem of compressing interactive communication
is essentially equivalent to the direct sum problem for randomized communi-
cation complexity [BR11]. The best known general compression results gives
C◦ = Õ(

∧
I · C), and it is wide open whether C◦ = O(I · (logC)O(1)) is pos-

sible. It has been shown in [BBK+12] (and independently in [Pan12]) that if
a protocol σ does not use private randomness, then it can be compressed to
O(I ·(logC)O(1)). Thus a way to replace private randomness with public random-
ness for unbounded-round protocols would imply a substantial improvement in
the state-of-the-art on protocol compression. Moreover, separating private infor-
mation complexity from public information complexity is one possible approach
of separating (private) information complexity from communication complex-
ity (if a separation exists). Our small (albeit tight) separation is the first λ(1)
separation between these two models, and is a step in that direction.

Another interesting connection between removing private randomness and
compression is in the context of one-message protocol s. In the setting where
Bob has no input Y , the information cost of sending a message M is just
I := I(M ;X). Harsha et al. [HJMR07] showed how to simulate such a trans-
mission using I + O(log I) bits of (expected) communication (with access to
public randomness). Their work left open the interesting question of whether
the additive O(log I) is necessary. As noted above, a communication protocol
with communication C can always be simulated by a protocol with same com-
munication and only public randomness. As information cost is bounded from
above by communication cost, a compression scheme is in particular a private-
by-public scheme. Thus our lower bound gives an example showing that the
O(log I) additive overhead in [HJMR07] is necessary.

Results and Techniques

Our main result gives an upper and lower bound on simulating private random-
ness by public randomness for one-message protocols.

Theorem 1. Let X,Y be inputs to Alice and Bob respectively distributed ac-
cording to a distribution μ. Alice and Bob have access to public randomness R◦,
and Alice has access to private randomness RA. Let σ be a protocol where Alice
sends a message M = M(X,R◦, RA) to Bob, so that the information cost of σ
is I := I(X ;M |Y R◦). Then

1. for each I, there is an example with no Y (i.e. Bob has no “private” knowl-
edge), and no R◦, such that if I := I(X ;M), then any public-coin protocol
σ◦ simulating the transmission of M must have information cost of at least
I + log I −O(1).

2. σ can be simulated by a one-message public-coin protocol σ◦ such that
ICμ(σ◦) ⊆ I + log I + O(1).

Thus, up to an additive constant, our bounds are tight. Note that while the upper
bound holds under the most general conditions, for the lower bound it is sufficient
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to consider protocols without Y (this is the type of protocols considered, for
example, in [HJMR07]).

Both the upper and lower bound require some careful analysis. For the upper
bound, a natural variant of the one-round compression scheme of Braverman
and Rao [BR11] is used. The main challenge is in analyzing the information
cost of the resulting public randomness protocol: we need to prove that Bob
does not learn too much about X from Alice’s message. Suppose that given X
and the public randomness R of the simulating protocol, Alice’s message in the
simulating protocol is S = S(X,R). Observe that in this case

I(S;X |Y R) = H(S|Y R) −H(S|XYR) = H(S|Y R).

To establish an upper bound on H(S|Y R) , we show how, someone knowing X ,
Y and R, can describe S to Bob using a message M ◦ (i.e. H(S|M ◦Y R) = 0) such
that

H(M ◦) ⊆ I + log(I) + O(1)

Noting that this expression is an upper bound for H(S|Y R), completes the proof.
To prove the lower bound, we give a family of specific examples whose in-

formation cost necessarily increases by log I − O(1) when private randomness
is replaced with public randomness. Details of the construction are given in
Section 3, here we only give the high level idea for why the information cost
increases in lieu of private randomness. Consider the following example: Alice
knows a secret random string PASS of 128 bits (which we can think of as her
password). She wants to send Bob a message M such that M = PASS with
probability 1/2 and M = RANDOM with probability 1/2 – that is, half of
the time she sends her password and half the time she sends a random 128-
bit string. The message M reveals approximately 63 bits of information about
PASS. To see this, note that given M the posterior distribution of PASS puts
mass 1/2 on M and mass 1/2 on the remaining 2128 − 1 strings. The entropy
of this distribution is ≥ 1

2 · 1 + 1
2 · 129 = 65, down from the prior entropy of

128. Thus I(M ;PASS) ≥ 128 − 65 = 63 bits. One might have expected this
number to be 64 bits. Indeed, if Alice had told Bob which of the two cases has
occurred, M would reveal 1

2 · 128 + 1
2 · 0 = 64 bits of information. However, not

knowing whether Alice’s message is the password or a random string “saves”
one bit in information cost. Now suppose Alice was not allowed to use private
randomness. Then, intuitively, the public random string R should reveal to Bob
whether M = PASS or M = RANDOM . Therefore, the information cost of a
public-randomness protocol increases to 64 bits. Generalizing from this example,
we construct a situation where Alice sends a binary message M of length n and
information cost I ≥ n/2 − logn, so that any public randomness simulation of
M requires information cost of ⇐ n/2−O(1) = I +log I−O(1) – demonstrating
the desired gap.

Let us have a look at another example. Suppose that Alice gets a bit X ∈ B 1
2

and she wants to transmit this bit to Bob with error 1
2 − Π. Consider a private-

coin protocol in which Alice samples a B 1
2+ε bit R. She sends X if R = 1 and

a ¬X if R = 0. Clearly the protocol performs the task of transmitting the bit
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with error 1
2 − Π. Let τ denote the random variable for Alice’s message. The

information cost of this protocol is

I(τ ;X) =
1

2
D(τ0||τ) +

1

2
D(τ1||τ) =

1

2
D(1/2 − Π||1/2) +

1

2
D(1/2 + Π||1/2)

=
2

ln 2
Π2 ± o(Π2)

However if we don’t allow private coins, then the information complexity of
this task is ⇐ 2Π. To see this consider a public-coin protocol that transmits
X with error probability ⊆ 1

2 − Π. It is basically a function f : {0, 1} × R ⇒
{0, 1} (in case Alice sends a longer message and then Bob applies a determin-
istic function to that, f could be the composition of those two functions) such
that Er√R[f(0, r)] = 1

2 − Π and Er√R[f(1, r)] = 1
2 + Π. Then Prr√R[f(1, r) =

1, f(0, r) = 0] ⇐ 2Π. Hence

I(f(X,R);X |R) = H(f(X,R)|R) = Er√RH(f(X, r)) ⇐ 2Π

since if f(1, r) = 1, f(0, r) = 0, then H(f(X, r)) = 1. This example, in some
sense, highlights the information-cost advantage one gains from having access to
private randomness. It will be interesting to see if this advantage can be amplified
over multiple rounds to get a separation between unbounded round private-
coin information complexity and public-coin information complexity, and thus
in particular between information complexity and communication complexity.

Open Problems

Our lower bound example is really about the simulation of a protocol and not
about solving a boolean function. So it will be nice to get a 1-round gap for
a boolean function. Also it would be nice to get a bigger separation between
r-round public-coin information complexity and private-coin information com-
plexity, where r is a constant. Note that using the 1-round example, we can also
construct a 2-round example by requiring both Alice and Bob to perform the
1-round task.

1. Does there exist a boolean function f for which 0-error private-coin infor-
mation complexity is I but 0-error public-coin information complexity is
⇐ I + log(I) −O(1) ?

2. Does there exist a (family of) 3-round private-coin protocol(s) σ such that
information cost of σ is I but any 3-round public-coin protocol simulating σ
has information cost ⇐ I + 3 log(I) −O(1)?

2 Preliminaries

2.1 Communication Complexity

In the two-party communication model, the parties, traditionally called Alice and
Bob, are trying to collaboratively compute a known Boolean function f : X ×Y.
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Each party is computationally unbounded; however, Alice is only given input
x ⊂ X and Bob is only given y ⊂ Y. In order to compute f(x, y), Alice and
Bob communicate in accordance with an agreed-upon communication protocol
σ. Protocol σ specifies as a function of transmitted bits only whether the com-
munication is over and, if not, who sends the next bit. Moreover, σ specifies as
a function of the transmitted bits and x the value of the next bit to be sent by
Alice. Similarly for Bob. The communication is over when both parties know the
value of f(x, y). The cost of the protocol σ is the number of bits exchanged on
the worst input. The transcript of a protocol is a concatenation of all the bits
exchanged during the execution of the protocol.

There are several ways in which the deterministic communication model can
be extended to include randomness. In the public-coin model, Alice and Bob
have access to a shared random string r chosen according to some probability
distribution. The only difference in the definition of a protocol is that now the
protocol σ specifies the next bit to be sent by Alice as a function of x, the already
transmitted bits, and a random string r. Similarly for Bob. This process can also
be viewed as the two players having an agreed-upon distribution on deterministic
protocols. Then the players jointly sample a protocol from this distribution. In
the private-coin model, Alice has access to a random string rA hidden from Bob,
and Bob has access to a random string rB hidden from Alice.

Definition 1 (Randomized Communication Complexity). For a function
f : X ×Y ⇒ Z and a parameter Π > 0, Rε(f) denotes the communication cost of
the best randomized private-coin protocol for computing f with error at most Π on
every input. Similarly Rpub

ε (f) denotes the cost of the best randomized public-coin
protocol for computing f with error at most Π on every input.

Definition 2. We will say that a (randomized) protocol β simulates a protocol σ

if there is a deterministic function g such that g(Δ(x, y,Rα, Rα
A, R

α
B)) is equal in

distribution to τ(x, y,Rλ, Rλ
A, R

λ
B), ∪x, y. Here Rα, Rα

A, R
α
B are the public and

private randomness of protocol β and Δ is the random variable for the transcript.
Similarly for σ.

For the pre-1997 results on communication complexity, see the excellent book
by Kushilevitz and Nisan [KN97].

2.2 Information Theory

In this section we briefly provide the essential information-theoretic concepts
required to understand the rest of the paper. For a thorough introduction to the
area of information theory, the reader should consult the classical book by Cover
and Thomas [CT91]. Unless stated otherwise, all log’s in this paper are base-2.

Definition 3. Let μ be a probability distribution on sample space ∂. Shan-
non entropy (or just entropy) of μ, denoted by H(μ), is defined as H(μ) :=∑

Δ≤Λ μ(λ) log 1
μ(Δ) .
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For a random variable A we shall write H(A) to denote the entropy of the in-
duced distribution on the range of A. The same also holds for other information-
theoretic quantities appearing later in this section.

Definition 4. Conditional entropy of a random variable A conditioned on B is
defined as

H(A|B) = Eb(H(A|B = b)).

Fact 2. H(AB) = H(A) + H(B|A).

Definition 5. The mutual information between two random variable A and B,
denoted by I(A;B) is defined as

I(A;B) := H(A) −H(A|B) = H(B) −H(B|A).

The conditional mutual information between A and B given C, denoted by
I(A;B|C), is defined as

I(A;B|C) := H(A|C) −H(A|BC) = H(B|C) −H(B|AC).

Fact 3 (Chain Rule). Let A1, A2, B, C be random variables. Then

I(A1A2;B|C) = I(A1;B|C) + I(A2;B|A1C).

2.3 Information Complexity

A much more detailed discussion of information complexity and its applications
can be found in [CSWY01,BYJKS04,BBCR10,BGPW13] and references therein.

Definition 6. The internal information cost of a protocol σ with respect to a
distribution μ on inputs from X × Y is defined as

ICμ(σ) := I(τ ;X |Y RRB) + I(τ ;Y |XRRA).

where τ = τ(X,Y,R,RA, RB) is the random variable denoting the transcript of
the protocol, R is the public randomness and RA and RB are the private random
strings of Alice and Bob, respectively. In the previous works, it is defined in a
different way (without the conditioning on private random strings), but both the
definitions are in fact equivalent.

The information complexity of f with respect to μ is

ICμ(f, Π) := inf
λ

ICμ(σ),

where the infimum ranges over all (randomized) protocols σ solving f with error
at most Π when inputs are sampled according to μ.
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3 Lower Bound

We describe our lower bound in this section. Alice is given a uniformly ran-
dom string x ⊂R {0, 1}n. Let M(x, i) denote a message distributed according to
x1, . . . , xi−1, x̄i, bi+1, . . . , bn, where bj’s are random bits ∈ B1/2 and x̄i denotes
the flip of bit xi.

Given x, Alice’s task, T, is to transmit a message distributed according to
M(x, I), where I ⊂R {1, 2, . . . , n}. Note that Bob has no input in this task.

First let us bound the private-coin information complexity of this task. Given
x, Alice can privately sample I and send M ∈ M(x, I). Then the information
cost of this protocol is I(M ;X) = H(M)−H(M |X). It is clear that H(M) = n.

H(M |X) = Ex[H(M |X = x)]

Denote M |X = x by M |x. For strings x, y ⊂ {0, 1}n with x ≤= y, let j(x, y)
denote the first index of disagreement between x and y i.e. index j s.t. xj ≤= yj .
Then

Pr[M |x = y] =
1

n
· 1

2n−j(x,y)

if x ≤= y and 0 if x = y.

H(M |x) =
∑

y

Pr[M |x = y] log

(
1

Pr[M |x = y]

)

=

n∑

j=1

2n−j · 1

n
· 1

2n−j
log(n · 2n−j) + 0

= log(n) +
1

n

n∑

j=1

(n− j)

= n/2 + log(n) − 1/2

The second equality follows from the fact that there are 2n−j strings y with
j(x, y) = j, when j ⊂ {1, . . . , n}. This gives

I(M ;X) = n/2 − log(n) + 1/2

The following lemma lower bounds the information complexity of a public round
protocol for the task T. Note that the strategy of sampling I publicly would have
an information cost ≥ n/2.

Lemma 1. Let τ be a one round public-coin protocol (using public randomness
R) such that there is a deterministic function g such that g(τx, R) is distributed
according to M(x, I). Then I(τ ;X |R) ⇐ n/2 −O(1).

Proof. Since τ is a deterministic function of X and R,

I(τ ;X |R) = H(τ |R) −H(τ |X,R) = H(τ |R)
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Let J be a random variable that denotes the first index of disagreement between
g(τ,R) and X (Note that J is well defined because of the distribution of M).
Fix a value of R = r. Let pj = Pr[J = j|R = r]. Note that the probability is
just over random X . Let μ denote the distribution of τ |R = r and let μj be the
distribution of τ |R = r, J = j. Note that pj, μ and μj depend on r but we will
slightly abuse notation and suppress the dependence on r since r will be fixed
throughout. It holds that

μ =

n∑

j=1

pj · μj

Let us analyze the distribution μj . Let Sr(j) be the set of x’s which lead to
J = j i.e.

Sr(j) = {x ⊂ {0, 1}n : j(x, g(τ(x, r), r)) = j}
Note that |Sr(j)| = pj ·2n. Fixing τ = t and R = r fixes g(τ,R) = g(t, r). Then

Pr[τ = t|R = r, J = j] ⊆ |{x ⊂ Sr(j) : j(x, g(t, r) = j)}|
|Sr(j)| ⊆ 2n−j

pj · 2n
=

1

pj · 2j

The first inequality is because if R = r, J = j are fixed, the event τ = t implies
that j(x, g(t, r)) = j. The second inequality follows from the fact that there are
2n−j x’s with j(x, g(t, r)) = j.

Claim. H(μ) ⇐ ∑n
j=1 j · pj −O(1).

Given the claim, we can bound H(τ |R) as follows :

H(τ |R) = Er√R[H(τ |R = r)]

⇐ Er√R

n∑

j=1

j · pj −O(1)

=

n∑

j=1

j · 1

n
−O(1)

= n/2 −O(1)

The inequality follows from the claim. The second equality follows from the fact
that Er√RPr[J = j|R = r] = Pr[J = j] = 1

n .

Proof. (Of Claim 3) Increasing a larger probability and decreasing a smaller
probability by the same amount always lowers the entropy of a distribution

(
p log

(
1

p

))◦
−
(
q log

(
1

q

))◦
= log

(
q

p

)
< 0 if q < p

We are given a μj where the mass of every entry μj(z) does not exceed 2−j/pj .
Therefore, we can replace μj with a uniform distribution on a set Lj of Lj entries,
where Lj = max(1, ⇔pj · 2j∗) (given any z1, z2 with 0 < μj(z1), μj(z2) < 1/Lj
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we can make sure that one of them becomes 0 or that one of them becomes
1/Lj without increasing the entropy). Note that it is always the case that Lj >
pj · 2j−1.

Therefore, we can assume wlog that each μj is uniform on a set Lj of size Lj .
Consider the process of selecting an index K according to the distribution pj ,
and then Z ∈ μK . Our goal is to show that H(Z) ⇐ ∑n

j=1 j ·pj −O(1). We have

H(KZ) = H(K) + H(Z|K) =
n∑

j=1

pj log(Lj/pj) >
n∑

j=1

pj log(pj · 2j−1/pj)

=

n∑

j=1

j · pj − 1,

and H(Z) = H(KZ) −H(K|Z). Therefore, it suffices to show that H(K|Z) =
O(1).

We define a subset S of j’s for which pj is “small”:

S := {j : pj < 2−j}.

Note that for j /⊂ S we have pj · 2j ⇐ 1, and therefore Lj = ⇔pj · 2j∗, and
pj · 2j−1 < Lj ⊆ pj · 2j . Denote by φS the indicator random variable for the
event K ⊂ S. We have

H(K|Z) ⊆ H(K,φS|Z) = H(φS |Z) + H(K|φSZ)

⊆ 1 + Pr[K ⊂ S]H(K|Z,K ⊂ S) + Pr[K /⊂ S]H(K|Z,K /⊂ S).

The second inequality is because φS is a boolean random variable. We bound
the two terms separately. Assuming S ≤= ⊥, denote pS :=

∑
j≤S pj.

Pr[K ⊂ S]H(K|Z,K ⊂ S) ⊆ Pr[K ⊂ S]H(K|K ⊂ S) = pS ·
∑

j≤S

pj
pS

log
pS
pj

⊆
∑

j≤S

pj log
1

pj
< 1 +

∑

j⊆2,j≤S

pj log
1

pj
⊆ 1 +

n∑

j=2

2−j log
1

2−j
= O(1).

The last inequality is because the function x log 1/x is monotone increasing on
the interval (0, 1/e), and we have 0 < pj < 2−j < 1/e for j ⊂ S, j ⇐ 2.

Finally, we need to show Pr[K /⊂ S]H(K|Z,K /⊂ S) = O(1). We will in fact
show that H(K|Z,K /⊂ S) = O(1). We have

H(K|Z,K /⊂ S) = Ez√Z|K/∈S
H(K|Z = z,K /⊂ S). (1)

Fix any value of z such that Pr[K /⊂ S|Z = z] > 0. We can precisely describe
the distribution q of K|Z = z,K /⊂ S. Denote Tz := {j : j /⊂ S, z ⊂ Lj}.
Order the elements of Tz in increasing order, and index them: Tz = {j1 <

j2 < . . . < jk}. Then the distribution q puts weight qr :=
pjr/Ljr

q on jr, where
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q :=
∑k

r=1 pjr/Ljr . We have for each r:

qr ⊆ pjr/Ljr

pj1/Lj1

<
pjr/(pjr · 2jr−1)

pj1/(pj1 · 2j1)
= 2j1−jr+1 ⊆ 22−r.

The second inequality follows from Ljr > pjr · 2jr−1 and Lj1 ⊆ pj1 · 2j1(since
j1 /⊂ S) . qr ⊆ 22−r implies that H(q) = O(1). Therefore we have H(K|Z =
z,K /⊂ S) = O(1) for each z, and by (1) this implies H(K|Z,K /⊂ S) = O(1),
and completes the proof.

4 Upper Bound

Theorem 4. Let X,Y be inputs to Alice and Bob respectively distributed ac-
cording to a distribution μ. Alice and Bob have access to public randomness R◦,
and Alice has access to private randomness RA. Let σ be a protocol where Alice
sends a message M = M(X,R◦, RA) to Bob, so that the information cost of σ
is I := I(X ;M |Y R◦). Then σ can be simulated by a one-message public-coin
protocol σ◦ such that ICμ(σ◦) ⊆ I + log I + O(1).

Proof. We can assume wlog that R◦ is a part of M , since I(X ;M |Y R◦) =
I(X ;MR◦|Y ). Let U be the message space of the message M . Consider the
protocol σ◦ defined in Figure 1.

1. Using public randomness, Alice and Bob get samples {(ui, pi)}i≥1, where (ui, pi)
uniformly sampled from U × [0, 1].

2. Let P denote the distribution Mx = M |X=x and Q denote the distribution My =
M |Y =y. Alice sends Bob the index of the first sample, s, such that ps < P (us).
Bob decodes this message as being us

Protocol 1: Protocol σ◦

It turns out this protocol has information cost ⊆ I + log I + O(1). We leave the
proof to the full version of the paper.

We also mention a few easy corollaries to multi-round private-by-public sim-
ulation and one round compression in the full version.
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Abstract. We prove that several measures in communication complex-
ity are equivalent, up to polynomial factors in the logarithm of the
rank of the associated matrix: deterministic communication complex-
ity, randomized communication complexity, information cost and zero-
communication cost. This shows that in order to prove the log-rank
conjecture, it suffices to show that low-rank matrices have efficient pro-
tocols in any of the aforementioned measures.

Furthermore, we show that the notion of zero-communication com-
plexity is equivalent to an extension of the common discrepancy bound.
Linial et al. [Combinatorica, 2007] showed that the discrepancy of a sign
matrix is lower-bounded by an inverse polynomial in the logarithm of
the associated matrix. We show that if these results can be generalized
to the extended discrepancy, this will imply the log-rank conjecture.

1 Introduction

The log-rank conjecture proposed by Lovász and Saks [8] suggested that for
any function f : X × Y ∈ {0, 1} its deterministic communication complexity
CCdet(f) is polynomially related to the logarithm of the rank (over the field R)

of the associated matrix Mf
def
= (f(x, y))x,y. Validity of this conjecture is one of

the most fundamental open problems in communication complexity. Very little
progress has been made towards resolving it. The best known bounds are

Ω
(

loglog3 6 rank(Mf )
)
⊆ CCdet(f) ⊆ log(4/3) rank(Mf ), (1)

where the lower bound is due to Kushilevitz (unpublished, cf. [10]) and the upper
bound is due to Kotlov [4]. Recently a conditional improvement has been made by
Ben-Sasson et al. [1], who showed that the polynomial Freiman-Ruzsa conjecture
from additive combinatorics implied CCdet(f) ⊆ O(rank(Mf )/ log rank(Mf )).

In this work we study the relation of the log-rank conjecture to several com-
munication complexity measures. Besides those ones that directly correspond to

� Partially funded by the grant P202/12/G061 of GA ČR and by RVO: 67985840.
�� Supported by NSF CAREER award 1350481.

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 514–524, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014
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natural communication models (e.g., randomized communication cost or non-
deterministic communication cost), there is a number of “auxiliary” complexity
measures that are mostly used as technical tools for studying communication
complexity. Probably, the best known and the most useful one is discrepancy.
More recently a number of other measures have been introduced, including parti-
tion bound, rectangle bound, smooth discrepancy, smooth rectangle bound, relaxed
partition bound, γ2 norm, information cost, etc. (cf. [2,3]). Most of the currently
known structural separations and concrete lower bound proofs in communication
complexity can be viewed as analyzing one of the auxiliary complexity measures
with respect to a specific communication problem.

1.1 Our Contribution

We show that several conjectures, seemingly weaker than the log-rank conjec-
ture, are in fact equivalent to it. We do so by showing that several natural
communication complexity measures are equivalent, up to a polynomial in the
logarithm of the rank of the associated matrix.

Theorem 1 (Main Result, Informal). Let f : X × Y ∈ {0, 1} be a function
and Mf its associated matrix. The following communication complexity costs are
equivalent, up to poly(log rank(Mf )) factors:

– The deterministic communication cost of f
– The randomized communication cost of f (with public randomness)
– The information cost of f
– The zero-communication cost of f (a slight variant of the relaxed partition

bound)

Regardless of rank(Mf ), the last three measures are small whenever a short
deterministic protocol exists. On the other hand, an assumption that any of
those measures (or even all three of them) is small does not, in general, imply
existence of a efficient deterministic protocol. We have the following immediate
corollary.

Corollary 1. To prove the log-rank conjecture, it suffices to show that any low-
rank function has an efficient randomized protocol, or a protocol with low infor-
mation cost, or a protocol with low zero-communication complexity.

In the second part of this work we investigate the weakest notion of communi-
cation complexity mentioned in Theorem 1, namely that of zero-communication
cost. We use linear-programming duality to show that it is equivalent to the
following notion, which extends the usual definition of discrepancy: Let F :
X × Y ∈ {±1} be a sign matrix, then for 0 < α < 1/3 the α-extended discrep-
ancy of F is

discε(F )
def
= maxK,

subject to: σ is a distribution on X × Y ;

⊂R → R :

∣
∣
∣
∣∣
∣

∑

(x,y)◦R

σ(x, y) · F (x, y)

∣
∣
∣
∣∣
∣
⊆ 1

K
+ α · σ(R).
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The case of α = 0 corresponds to the usual discrepancy bound. We show that
for α > Ω(1), the α-extended discrepancy is equivalent to zero-communication
cost.

Corollary 2. To prove the log-rank conjecture, it suffices to show that
discε(F ) ⊆ poly(log(rank(F ))) for any α ∧ Ω(1).

Interestingly, Linial et al. [6,7] showed that disc(F ) ⊆ O(
√

rank(F )), which
allows us to conclude that certain “slightly relaxed” version of our equivalent
formulation in terms of extended discrepancy is already known to hold.

Finally, if we set α = O(1/
√

rank(F )) it immediately implies that discε(F ) ⊆
O(

√
rank(F )). This allows us to derive another interesting corollary.

Corollary 3. Let F be a sign matrix with rank(F ) = r and disc(F ) = d. Then
F has a deterministic protocol of complexity O(d2 log(d) log2(r)).

In particular, if for a matrix F one has a discrepancy bound that is better
than the one guaranteed by [6,7] by only a poly-logarithmic factor, that already
implies existence of a shorter deterministic protocol than what is guaranteed by
(1).

Subsequent works. In a subsequent work [9], the second author showed that for
any Boolean function of rank r, its deterministic communication complexity is
bounded by

≥
r log r.

2 Preliminaries

Let f : X × Y ∈ {0, 1} be a total1 Boolean function, where X and Y are finite
sets. The rank of f is the rank of its associated {0, 1}-matrix. We review standard
definitions in communication complexity (see, e.g., [5] for more definitions and
discussion).

Unless stated otherwise, we let a randomized communication protocol use
shared randomness. We will say that a protocol computes f with respect to the
input distribution μ if it produces the right answer to f(X,Y ) with probability
at least 2/3 when (X,Y ) ⇐ μ. We will also say that a protocol computes f if it
produces the right answer to f(X,Y ) for every (X,Y ) → X×Y with probability
at least 2/3. The deterministic communication cost of f , denoted CCdet(f),
is the maximal number of bits sent by an optimal deterministic protocol that
computes f . The randomized communication cost of f , denoted CCrand(f), is
the maximal number of bits sent by an optimal randomized protocol computing
f . The information cost of a function, denoted IC(f), is the infimum of the total
amount of information revealed by a randomized protocol computing f to each
player about the other player’s input, maximized over all choices of the input
distribution.

1 We always assume that the communication task is a total function, as that is all we
need in the context of the log-rank conjecture.
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Let R def
= {A×B |A ⇒ X,B ⇒ Y }, and call the elements of R rectangles. A

labeled rectangle is a pair (R, z) with R → R and z → {0, 1}. We will also need a
somewhat less common notion of zero-communication cost of a function, which
we define next.

Definition 1 (Zero-communication cost). The zero communication cost of
f with error ε, denoted CCzero

Ω (f), is the minimal c such that the following
holds. There exists a distribution ρ on labeled rectangles (R, z) such that for any
(x, y) → X × Y ,

1. Pr(R,z)√α[(x, y) → R] ∧ 2−c.
2. Pr(R,z)√α[f(x, y) = z|(x, y) → R] ∧ 1 − ε.

We abbreviate CCzero(f) = CCzero
1/3 (f).

For all the notions of communication cost that we have defined, a protocol is
considered efficient with respect to that specific cost if the latter is bounded by
poly(logn).

Claim 2. For any function f ,

CCdet(f) ∧ CCrand(f) ∧ IC(f) ∧ Ω(CCzero(f)).

Proof. The first two inequalities follow immediately from the definitions. The
fact that CCzero(f) ⊆ O(IC(f)) has been established recently by Kerenidis
et al. [3] (Theorem 1.1).2 �

3 Zero-Error Protocols Reduce to Deterministic
Protocols for Low-Rank Functions

We prove the following theorem in this section.

Theorem 3. Let f : X × Y ∈ {0, 1} be a Boolean function. Then CCdet(f) ⊆
O
(
CCzero(f) · (log(rank(f)))2

)
.

We fix the function f and prove Theorem 3 in the remainder of this section.
A rectangle R ⇒ X × Y is called monochromatic if the value of f is constant
on R (i.e., all zero or all one). We will use the following theorem of Nisan and
Wigderson [10] which shows that to establish that a low-rank function has small
deterministic communication cost, it suffices to show that any rectangle contains
a large monochromatic sub-rectangle. We denote by |R| the number of elements
in a rectangle.

2 The definition of zero-communication protocol given in [3] (or more accurately, that
of a relaxed partition bound) is somewhat different than the definition we are using
here. Our definition is less restricting (and probably, somewhat more natural), and
therefore CCzero(f) ≤ O(IC(f)) holds. The main reason for choosing our definition
is that it allows more straightforward error reduction by repetition, which we will
need later.
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Lemma 1 ([10]). Let f : X × Y ∈ {0, 1} be a Boolean function. As-
sume that for any rectangle R1 ⇒ X × Y there exists a sub-rectangle R2 ⇒
R1 such that R2 is monochromatic and |R2| ∧ δ|R1|. Then CCdet(f) ⊆
O
(
log(1/δ) · log rank(f) + (log rank(f))2

)
.

Thus, we reduced proving the theorem to the task of showing that any rect-
angle contains a large monochromatic sub-rectangle. We next show that this
follows given a zero-communication protocol with small enough error.

Lemma 2. Let f : X × Y ∈ {0, 1} be a Boolean function with rank(f) = r.
Set ε = 1/8r and assume that CCzero

Ω (f) = c. Then any rectangle R1 ⇒ X × Y
contains a monochromatic sub-rectangle R2 ⇒ R1 with |R2| ∧ (1/16)2−c|R1|.
Proof. We first establish that there exists a sub-rectangle R≤ ⇒ R1 which is
nearly monochromatic, and then use the low-rank property of f to establish the
existence of a monochromatic rectangle R2 ⇒ R≤.

Let ρ be the distribution on labeled rectangles guaranteed by the zero-
communication cost assumption, and let (R, z) ⇐ ρ and R≤ = R ∪ R1. Let
E = {(x, y) → R1 : f(x, y) ≤= z} be the set of inputs whose value disagrees with
z. We will show that |R≤| ∧ (1/2)2−c|R1| and |R≤ ∪ E| ⊆ 2ε|R≤| with non-zero
probability.

Note that we can reformulate the definition of a zero-communication protocol
as

Pr[(x, y) → R] ∧ 2−c; Pr[(x, y) → R and f(x, y) ≤= z] ⊆ εPr[(x, y) → R],

where the probabilities are taken over (R, z) ⇐ ρ. So,

Pr[(x, y) → R] − (1/2ε) Pr[(x, y) → R and f(x, y) ≤= z] ∧ (1/2)2−c.

Summing over all (x, y) → R1 gives

E[|R≤| − 1/(2ε) · |R≤ ∪ E|] ∧ (1/2)2−c|R1|.
Thus, there must exist a choice for R≤ exceeding the average. In particular, it
satisfies |R≤| ∧ (1/2)2−c|R1| and |R≤ ∪ E| ⊆ 2ε|R≤|.

Next we establish existence of a large monochromatic rectangle R2 ⇒ R≤.
Assume that R≤ = A≤ × B≤. Let A≤≤ ⇒ A≤ be the set of rows having at most
4ε-fraction of elements disagreeing with z,

A≤≤ = {x → A≤ : |{y → B≤ : f(x, y) ≤= z}| ⊆ 4ε|B≤|}.
By Markov’s inequality we have |A≤≤| ∧ |A≤|/2. We now apply the low-rank
property of f . Consider the matrix generated by restricting f to A≤≤ × B≤. Its
rank is also at most r = rank(f). Hence, there exist r elements x1, . . . , xr → A≤≤

whose corresponding rows span all rows in A≤≤. Define for 1 ⊆ i ⊆ r the sets of
inputs taking the ”wrong” value on row xi,

Bi = {y → B≤ : f(xi, y) ≤= z}.
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We know by assumption that |Bi| ⊆ 4ε|B≤|. Let B≤≤ = B≤ \⇔r
i=1Bi. Then |B≤≤| ∧

|B≤|(1 − 4εr) ∧ |B≤|/2. Consider now the matrix restricted to A≤≤ × B≤≤. It is
spanned by rows which are all equal to z, hence all of its rows are constant! We
take R2 to be the set of rows taking the majority value. To conclude, we found
a monochromatic rectangle R2 ⇒ R1 of size

|R2| ∧ (1/2)|A≤≤||B≤≤| ∧ (1/8)|A≤||B≤| = (1/16)2−c|R1|,

as required.
�

We are nearly done, it remains to argue that the error in zero-communication
protocols can be reduced efficiently.

Claim 4. For any 1/2 > λ > ε > 0,

CCzero
Ω (f) ⊆ O

(
CCzero

λ (f) · log(1/ε)

(1/2 − λ)2

)
.

In particular, CCzero
Ω (f) ⊆ O(CCzero(f) · log(1/ε)).

Proof. Denote c
def
= CCzero

λ (f), and let ρ be a distribution over labeled rectangles
(R, z) satisfying

1. Pr(R,z)√α[(x, y) → R] ∧ 2−c.
2. Pr(R,z)√α[f(x, y) = z|(x, y) → R] ∧ 1 − λ.

Let t = O
(

log(1/Ω)
(1/2−λ)2

)
, and sample (R1, z1), . . . , (Rt, zt) ⇐ ρ independently. We

define R⊆ to be the intersection of R1, . . . , Rt and z⊆ to be the majority value
of z1, . . . , zt. We claim that the resulting distribution of (R⊆, z⊆) gives a zero-
communication protocol with error ε and cost ct.

In order to see this, fix (x, y) → X × Y . First, we verify that (x, y) → R⊆

frequently enough,

Pr[(x, y) → R⊆] = Pr[(x, y) → R1, . . . , (x, y) → Rt] =

t∏

i=1

Pr[(x, y) → Ri] ∧ 2−ct.

It remains to verify that Pr[f(x, y) = z⊆|(x, y) → R⊆] ∧ 1 − ε. Let

p
def
= Pr[f(x, y) = z|(x, y) → R]; for any v1, . . . , vt → {0, 1} such that

|{i | vi = f(x, y)}| = m,

Pr[z1 = v1, . . . , zt = vt|(x, y) → R⊆] =
r∏

i=1

Pr[zi = vi|(x, y) → Ri] = pm(1−p)t−m.

So, the probability that z⊆ = f(x, y) conditioned on (x, y) → R⊆ is given by
summing over all values v1, . . . , vt whose majority is equal to f(x, y). This equals
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the probability that a binomial distribution with t trials and success probability
p ∧ 1 − λ has at least t/2 successes:

Pr[f(x, y) = z⊆|(x, y) → R⊆] ∧ Pr[Bin(t, 1 − λ) ∧ t/2] ∧ 1 − α(1/2−λ)2·t

for some constant 0 < α < 1. Choosing t = O
(

log(1/Ω)
(1/2−λ)2

)
large enough gives the

required bound. �

4 Equivalent Formulations

Recall the original log-rank conjecture of Lovász and Saks [8]:

Conjecture 1 (log-rank, [8]). For every {0, 1}-valued matrix M ,

CCdet(M) ⊆ poly(log(rank(M))).

We will present several equivalent formulations of the conjecture.
First, we give a version that “looks weaker” in the following sense: While the

original conjecture can be phrased as “low rank implies an efficient deterministic
protocol”, this formulation only requires existence of an efficient protocol of one
of several more powerful types.

Theorem 5 (Log-Rank Conjecture, Equivalent Formulations). The fol-
lowing statements are equivalent:

1. The log-rank conjecture (Conjecture 1).
2. For every {0, 1}-valued M , CCrand(M) ⊆ poly(log(rank(M))).
3. For every {0, 1}-valued M , IC(M) ⊆ poly(log(rank(M))).
4. For every {0, 1}-valued M , CCzero(M) ⊆ poly(log(rank(M))).

Proof. From Claim 2 and Theorem 3 it follows that CCdet(M), CCrand(M),
IC(M) and CCzero(M) are equal, up to the factor of poly(log(rank(M))). �

4.1 Extended Discrepancy: Extrapolating between Discrepancy and
Zero-Communication Cost

Let us denote F (x, y)
def
= (−1)Mx,y and CCzero

Ω (F ) = CCzero
Ω (M). Define for every

{±1}-valued matrix F its α-extended discrepancy as

discε(F )
def
= maxK,

subject to: σ is a distribution on X × Y ;

⊂R → R :

∣
∣
∣
∣∣
∣

∑

(x,y)◦R

σ(x, y) · F (x, y)

∣
∣
∣
∣∣
∣
⊆ 1

K
+ α · σ(R).

If we choose α = 0 then discε(F ) equals the discrepancy of F , which is one of
the most commonly used tools for proving lower bounds on CCrand(M).
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Claim 6. For every {±1}-valued matrix F and every constant 0 < α < 1
3 ,

2CCzero(F ) = Θ(discε(F )).

Proof. Let us express CCzero(M) as the optimal value of a linear program,

2CCzero
ε (M) = min

∑

R◦R
(wR,0 + wR,1) ,

subject to: ⊂R → R : wR,0 ∧ 0, wR,1 ∧ 0;

⊂(x, y) → X × Y :
∑

R:(x,y)◦R

(wR,0 + wR,1) ∧ 1;

⊂(x, y) → X × Y :
∑

R:(x,y)◦R

(
wR,Mx,y − 1 − ε

ε
· wR,1−Mx,y

)
∧ 0.

Its dual can be written as

2CCzero
ε (M) = maxK,

subject to: ⊂(x, y) → X × Y : Cx,y ∧ 0; μ is a distribution on X × Y ;

⊂R→R, z → {0, 1} : μ(R) ⊆ 1

K
+

1 − ε

ε
·

∑

(x,y)◦R
Mx,y=z

Cx,y −
∑

(x,y)◦R
Mx,y=1−z

Cx,y.

We can rewrite it as

2CCzero
ε (F ) = maxK,

subject to: σ : X × Y ∈ R
+; μ is a distribution on X × Y ;

⊂R → R :

∣∣
∣
∣
∣
∣

∑

(x,y)◦R

σ(x, y)F (x, y)

∣∣
∣
∣
∣
∣
− (1 − 2ε) · σ(R) + μ(R) ⊆ 1

K
.

(2)
First, we show that 2CCzero(F ) ∧ Ω(discε(F )). For α < 1

3 , let μ be a distribu-
tion on X × Y , such that ⊂R → R :

∣
∣∣
∣
∣
∣

∑

(x,y)◦R

μ(x, y)F (x, y)

∣
∣∣
∣
∣
∣
⊆ 1

discε(F )
+ αμ(R).

Then for t
def
= 3ε

1−3ε ,

t

α
·
∣
∣
∣
∣
∣

∑

R

μ(x, y)F (x, y)

∣
∣
∣
∣
∣
− (t + 1) · μ(R) + μ(R) ⊆ t

αdiscε(F )
,

and therefore,

2CCzero(F ) ∧ 1 − 3α

3
· discε(F ).
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For the other direction of our proof, let σ : X×Y ∈ R
+ and μ be a distribution

on X × Y , such that ⊂R → R :

∣
∣
∣∣
∣
∣

∑

(x,y)◦R

σ(x, y)F (x, y)

∣
∣
∣∣
∣
∣
− (1 − 2ε) · σ(R) + μ(R) ⊆ 1

2CCzero
ε (F )

, (3)

which implies

∣
∣
∣
∣∣
∣

∑

(x,y)◦R

σ(x, y)F (x, y)

∣
∣
∣
∣∣
∣
⊆ 1

2CCzero
ε (F )

+ (1 − 2ε) · σ(R).

For R = X × Y , (3) implies

σ(X × Y ) ∧
(

1 − 1

2CCzero
ε (F )

)
· 1

1 − 2ε
∧ 1

2
,

as long as CCzero
Ω (F ) ∧ 1. Then for the distribution σ≤ def

= Δ
Δ(X×Y ) ,

∣
∣
∣
∣
∣∣

∑

(x,y)◦R

σ≤(x, y)F (x, y)

∣
∣
∣
∣
∣∣
⊆ 2

2CCzero
ε (F )

+ (1 − 2ε) · σ≤(R).

Accordingly,

disc1−2Ω(F ) ∧ 2CCzero
ε (F )

2
. (4)

As long as α > 0, we can use the error-reducing technique given by Claim 4,
and therefore 2CCzero(F ) ⊆ O(discε(F )), as required. �

The following equivalent formulations of the log-rank conjecture is immediate
from Theorem 5 and Claim 6.

Theorem 7 (log-rank conjecture, an equivalent formulation). The log-
rank conjecture (Conjecture 1) is true if and only if the following holds for some
α0 ∧ Ω(1): For every {±1}-valued matrix M and probability distribution μ on
X × Y , there exists a rectangle R → R such that

∣
∣∣
∣
∣
∣

∑

(x,y)◦R

σ(x, y) ·Mx,y

∣
∣∣
∣
∣
∣
∧ 1

qpoly(rank(M))
+ α0 · σ(R),

where qpoly(x)
def
= exp(poly(log x)).

Interestingly, it was shown by Linial et al. [6,7] that disc(M) ⊆
O
(√

rank(M)
)

. In other words,
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Lemma 8 ([6,7]). For every {±1}-valued matrix M and probability distribution
μ on X × Y , there exists a rectangle R → R such that

∣
∣
∣
∣
∣∣

∑

(x,y)◦R

σ(x, y) ·Mx,y

∣
∣
∣
∣
∣∣
∧ Ω

(
1

√
rank(M)

)

.

Note that the above statement can be viewed as a version of the equivalent

formulation given in Theorem 7, relaxed by letting “α0 = 1
/√

rank(M)”.

Finally, our techniques can be used to derive a polynomial upper bound on
CCdet(F ) in terms of disc(F ) and log(rank(F )).

Claim 9. For a {±1}-valued matrix F , let d = disc(F ). Then

CCdet(F ) ⊆ O
(
d2 · (log(rank(F )))2 · log d

)
.

Proof. It is immediate from the definition that 1
disc(F ) -extended discrepancy is

equivalent to disc(F ) up to a constant multiplicative factor, and therefore

disc1/d(F ) ⊆ O(d).

In the proof of Claim 6 we have shown (cf. (4)) that

2CCzero
ε (F ) ⊆ O(disc1−2Ω(F ))

holds for every ε > 0, and therefore

CCzero
1
2
− 1

2d
(F ) ⊆ log d + O(1).

By Claim 4,
CCzero(F ) ⊆ O

(
d2 log d

)
,

and the result follows by Theorem 3. �
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Abstract. We present efficient data structures for submatrix maximum
queries in Monge matrices and Monge partial matrices. For n×n Monge
matrices, we give a data structure that requires O(n) space and an-
swers submatrix maximum queries in O(log n) time. The best previous
data structure [Kaplan et al., SODA‘12] required O(n log n) space and
O(log2 n) query time. We also give an alternative data structure with
constant query-time and O(n1+ε) construction time and space for any
fixed ε < 1. For n × n partial Monge matrices we obtain a data struc-
ture with O(n) space and O(log n ·α(n)) query time. The data structure
of Kaplan et al. required O(n log n · α(n)) space and O(log2 n) query
time. Our improvements are enabled by a technique for exploiting the
structure of the upper envelope of Monge matrices to efficiently report
column maxima in skewed rectangular Monge matrices. We hope this
technique will be useful in obtaining faster search algorithms in Monge
partial matrices. In addition, we give a linear upper bound on the num-
ber of breakpoints in the upper envelope of a Monge partial matrix. This
shows that the inverse Ackermann α(n) factor in the analysis of the data
structure of Kaplan et. al is superfluous.

1 Introduction

A matrix M is a Monge matrix if for any pair of rows i < j and columns k < σ
we have that Mik + Mjε ∈ Miε + Mjk. Monge matrices have many applications
in combinatorial optimization and computational geometry. For example, they
arise in problems involving distances in the plane [20,23,25,27], and in problems
on convex n-gons [2,3]. See [9] for a survey on Monge matrices and their uses in
combinatorial optimization.

In this paper we consider the following problem: Given an n×n Monge matrix
M , construct a data structure that can report the maximum entry in any query
submatrix (defined by a set of consecutive rows and a set of consecutive columns).
Recently, Kaplan, Mozes, Nussbaum and Sharir [21] presented an Õ(n) space1

Γ A full version of this paper can be found as Arxiv preprint [18].
ΓΓ Mozes and Weimann supported in part by Israel Science Foundation grant 794/13.
1 The Õ(·) notation hides polylogarithmic factors in n.

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 525–537, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014
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data structure with Õ(n) construction time and O(log2 n) query time. They also
described an extension of the data structure to handle partial Monge matrices
(where some of the entries of M are undefined, but the defined entries in each row
and in each column are contiguous). The extended data structure incurs larger
polylogarithmic factors in the space and construction time. Both the original
and the extended data structures have various important applications. They are
used in algorithms that efficiently find the largest empty rectangle containing a
query point, in dynamic distance oracles for planar graphs, and in algorithms
for maximum flow in planar graphs [6]. See [21] for more details on the history
of this problem and its applications.

Note that, even though explicitly representing the input matrix requires N =
τ(n2) space, the additional space required by the submatrix maximum data
structure of [21] is only Õ(n). In many applications (in particular [6,21]), the
matrix M is not stored explicitly but any entry of M can be computed when
needed in O(1) time. The space required by the application is therefore domi-
nated by the size of the submatrix maximum data structure. With the increas-
ing size of problem instances, and with current memory and cache architectures,
space often becomes the most significant resource.

For general (i.e., not Monge) matrices, a long line of research over the last
three decades including [5,13,14,17,28] achieved Õ(N) space and Õ(1) query
data structures, culminating with the O(N)-space O(1)-query data structure of
Yuan and Atallah [28]. Here N = n2 denotes the total number of entries in the
matrix. It is also known [8] that reducing the space to O(N/c) incurs an λ(c)
query-time. Tradeoffis requiring O(N/c) additional space and Õ(c) query-time
were given in [7,8]. When the matrix has only N = o(n2) nonzero entries, the
problem is known in computational geometry as the orthogonal range searching
problem on the n×n grid. In this case as well, various tradeoffis with Õ(N)-space
and Õ(1)-query appear in a long history of results including [4,10,11,15,17]. In
particular, a linear O(N)-space data structure was given by Chazelle [11] at the
cost of an O(logΩ n) query time. See [24] for a survey on orthogonal range search.

Contribution. Our first contribution is in designing O(n)-space O(log n)-query
data structures for submatrix maximum queries in Monge matrices and in partial
Monge matrices (see Section 3). Our data structures improve upon the data
structures of Kaplan et al. in both space and query time. Consequently, using
our data structures for finding the largest empty rectangle containing a query
point improves the space and query time by logarithmic factors.

In the full version of this paper [18], we further provide alternative data struc-
tures with faster query-time; We achieve O(1) query-time at the cost of O(n1+Ω)
construction time and space for an arbitrarily small constant 0 < Π < 1.

Our results are achieved by devising a data structure for reporting column
maxima in m×n Monge matrices with many more columns than rows (n >> m).
We refer to this data structure as the micro data structure. The space required
by the micro data structure is linear in m, and independent of n. Its construction-
time depends only logarithmically on n. The query-time is O(log logn), the time
required for a predecessor query in a set of integers bounded by n. We use
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the micro data structure in the design of our submatrix maximum query data
structures, exploiting its sublinear dependency on n, and an ability to trade offi
construction and query times.

For partial Monge matrices, we provide a tight O(m) upper bound on the
complexity of the upper envelope (see Section 4). The best previously known
bound [26] was mβ(m), where β(m) is the inverse Ackermann function. This
upper bound immediately implies that the β(m) factor stated in the space and
construction time of the data structures of Kaplan et al. is superfluous.

Notice that the upper envelope of a full m × n Monge matrix also has com-
plexity O(m). The famous SMAWK algorithm [2] can find all column maxima
in O(n + m) time. However, this is not the case for partial Monge matrices.
Even for simple partial Monge matrices such as triangular, or staircase matri-
ces, where it has been known for a long time that the complexity of the upper
envelope is linear, the fastest known algorithm for finding all column maxima is
the O(nβ(m) + m) time algorithm of Klawe and Kleitman [22]. We hope that
our micro data structure will prove useful for obtaining a linear-time algorithm.
The known algorithms, including the (nβ(m) +m)-time algorithm of Klawe and
Kleitman [22], partition the matrix into skewed rectangular matrices, and use
the SMAWK algorithm. It is plausible that our micro data structure will yield
a speed up since it is adapted to skewed matrices.

2 Preliminaries and Our Results

In this section we overview the data structures of [21] and highlight our results.
A matrix M is a Monge matrix if for any pair of rows i < j and columns

k < σ we have that Mik + Mjε ∈ Miε + Mjk. A matrix M is totally monotone
in columns if for any pair of rows i < j and columns k < σ we have that if
Mik ⊆ Mjk then Miε ⊆ Mjε. Similarly, M is totally monotone in rows if for any
pair of rows i < j and columns k < σ we have that if Mik ⊆ Miε then Mjk ⊆ Mjε.
Notice that the Monge property implies total monotonicity (in columns and in
rows) but the converse is not true. When we simply say totally monotone (or
TM) we mean totally monotone in columns (our results symmetrically apply to
totally monotone in rows).

A matrix M is a partial matrix if some entries of M are undefined, but the
defined entries in each row and in each column are contiguous. We assume w.l.o.g.
that every row has at least one defined element and that the defined elements
form a single connected component (i.e., the defined column intervals in each
pair of consecutive rows overlap). If this is not the case then only minor changes
are needed in our algorithms. A partial TM (resp., Monge) matrix is a partial
matrix whose defined entries satisfy the TM (resp., Monge) condition.

We consider m×n matrices, but for simplicity we sometimes state the results
for n × n matrices. For a Monge matrix M , denote r(j) = i if the maximum
element in column j lies in row i. (We assume this maximum element is unique.
It is simple to break ties by, say, taking the highest index.) The upper envelope
E of all the rows of M consists of the n values r(1), . . . , r(n). Since M is Monge
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we have that r(1) ⊆ r(2) ⊆ . . . ⊆ r(n) and so E can be implicitly represented
in O(m) space by keeping only the r(j)s of O(m) columns called breakpoints.
Breakpoints are the columns j where r(j) ⊂= r(j + 1). The maximum element
r(Δ) of any column Δ can then be retrieved in O(logm) time by a binary search
for the first breakpoint-column j after Δ, and setting r(Δ) = r(j).

The first data structure of [21] is a balanced binary tree Th over the rows
of M . A node u whose subtree contains k leaves (i.e., k rows) stores the O(k)
breakpoints of the k × n matrix Mu defined by these k rows and all columns of
M . A leaf represents a single row and requires no computation. An internal node
u obtains its breakpoints by merging the breakpoints of its two children: its left
child u1 and its right u2. By the Monge property, the list of breakpoints of u
starts with a prefix of breakpoints of u1 and ends with a suffix of breakpoints
of u2. Between these there is possibly one new breakpoint j. The prefix and
suffix parts can be found easily in O(k) time by linearly comparing the lists of
breakpoints of u1 and u2. The new breakpoint j can then be found in additional
O(log n) time via binary search. Summing O(k+log n) over all nodes of Th gives
O(m(logm + logn)) time. The total size of Th is O(m logm).

Note that the above holds even if M is not Monge but only TM. This gives rise
to a data structure that answers subcolumn (as opposed to submatrix) queries:

Subcolumn Queries in TM Matrices [21].Given a n×n TM matrix, one can
construct, in O(n log n) time, a data structure of size O(n log n) that reports the
maximum in a query column and a contiguous range of rows in O(log n) time.

The maximum entry in a query column Δ and a contiguous range of rows R
is found using Th by identifying O(logm) canonical nodes of Th. A node u is
canonical if u’s set of rows is contained in R but the set of rows of u’s parent
is not. For each such canonical node u, we find in O(logm) time the maximum
element in column Δ amongst all the rows of u. The output is the largest of
these and the total query time is O(log2 m). The query time can be reduced to
O(logm) by using fractional cascading [12].

The first results of our paper improve the above subcolumn query data struc-
ture of [21], as indicated in Table 1 under subcolumn query in TM matrices.
The next data structure of [21] extends the queries from subcolumn to subma-
trix (specified by ranges R of consecutive rows, and C of consecutive columns.)

Submatrix Queries in Monge Matrices [21]. Given a n×n Monge matrix,
one can construct, in O(n log n) time, a data structure of size O(n log n) that
reports the maximum entry in a query submatrix in O(log2 n)) time.

To obtain O(log2 n) = O(logm(logm + logn)) query time, note that R is the
disjoint union of O(logm) canonical nodes of Th. For each such canonical node
u, we use u’s list of breakpoints {j1, j2, . . . , jk} to find in O(logm + logn) time
the maximum element in all rows of u and the range of columns C. This is done
as follows: we first identify in O(logm) time the set I = {ja, ja+1, . . . , jb} of
u’s breakpoints that are fully contained in C. The columns of C that are to the
left of ja all have their maximum element in row r(ja). To find the maximum of
these we construct, in addition to Th, a symmetric binary tree B that can report



Improved Submatrix Maximum Queries in Monge Matrices 529

in O(log n) time the maximum entry in a query row and a contiguous range of
columns. B is built in O(n(logm + logn)) time and O(n log n) space using the
subcolumn query data structure on the transpose of M . This is possible since
M is Monge.2 Similarly, we find in O(log n) time the maximum in all columns
of C that are to the right of jb.

To find the maximum in all columns between ja and jb, let m(ji) denote
the maximum element in the columns interval (ji−1, ji] (note it must be in row
r(ji)). We wish to find max{m(ja+1), . . . ,m(jb)} which corresponds to a Range
Maximum Query in the array Au = {m(j1), . . . ,m(jk)}. We compute the array
Au (along with a naive RMQ data structure with logarithmic query time) of
every node u during the construction of Th. Most of the entries of Au are simply
copied from u’s children arrays Au1 and Au2 . The only new m(·) value that u
needs to compute is for the single new breakpoint j (that is between the prefix
from u1 and the suffix from u2). Since m(j) must be in row r(j) it can be
computed in O(log n) time by a single query to B.

Overall, we get a query time of O(logm + logn) per canonical node u for a
total of O(logm(logm + logn)). Building Th (along with all the RMQ arrays
Au) and B takes total O((m + n)(logm+ logn)) time and O(m logm+ n logn)
space. Our two improvements to this bound of [21] are stated in Table 1 under
submatrix queries in Monge matrices.

The next data structures of [21] extend the above subcolumn and submatrix
data structures from full to partial TM matrices. The construction is very similar.
Merging the breakpoints of the two children u1, u2 of a node u of Th is slightly
more involved now, since the envelopes may cross each other multiple times. The
number of breakpoints of any subset of consecutive k rows is O(k · β(k)) [26],
and so there are O(m logm · β(m)) breakpoints in total over all nodes of Th (as
opposed to O(m) in full matrices). This implies the following:

Subcolumn Queries in Partial TM Matrices [21]. Given a partial TM
n× n matrix, one can construct, in O(n log2 n · β(n)) time, a data structure of
size O(n logn · β(n)) that reports the maximum entry in a query column and a
contiguous range of rows in O(log n) time.

We improve this data structure to the same bounds we get for full matrices. i.e,
we show that our bounds for full matrices also apply to partial matrices. This is
stated in Table 1 under subcolumn query in Partial TM matrices. Finally, [21]
extended their submatrix data structure from full to partial Monge matrices. It
uses a similar construction of Th and B as in the case of full matrices, but again
requires the additional O(logm ·β(m)+log n ·β(n)) multiplicative factor to store
the breakpoints of all nodes of Th and B.

Submatrix Queries in Partial Monge Matrices [21]. Given a n×n partial
Monge matrix, one can construct, in O(nβ(n) log2 n) time, a data structure of
size O(nβ(n) log n) that reports the maximum entry in a query submatrix in
O(log2 n) time.

2 In fact it suffices that M is a TM matrix whose transpose is also TM.
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Table 1. Our results compared to [21]

property query type space construction time query time

TM subcolumn O(n logn) O(n logn) O(logn) Lemma 3.1 [21]
TM subcolumn O(n) O(n logn/ log logn) O(logn) Lemma 2

TM subcolumn O(n1+ε) O(n1+ε) O(1) Full version [18]

Monge submatrix O(n logn) O(n logn) O(log2 n) Theorem 3.2 [21]
Monge submatrix O(n) O(n logn) O(logn) Theorem 1

Monge submatrix O(n) O(n logn/ log logn) O(log1+ε n) Corollary 1

Monge submatrix O(n1+ε) O(n1+ε) O(1) Full version [18]

Partial TM subcolumn O(n logn · α(n)) O(n log2 n · α(n)) O(logn) Lemma 3.3 [21]
Partial TM subcolumn O(n) O(n logn/ log logn) O(logn) Full version [18]

Partial TM subcolumn O(n1+ε) O(n1+ε) O(1) Full version [18]

Partial Monge submatrix O(n logn · α(n)) O(n log2 n · α(n)) O(log2 n) Theorem 3.4 [21]
Partial Monge submatrix O(n) O(n logn) O(logn · α(n)) Theorem 2 here

Partial Monge submatrix O(n) O(n logn/ log logn) O(log1+ε n · α(n)) Corollary 2

We remove the O(log n ·β(n)) multiplicative factor and obtain the bounds stated
in the bottom of Table 1. The β(n) factor is removed by showing that the number
of breakpoints in the upper envelope of a partial Monge matrix is linear.

3 Linear-Space Data Structures

In this section we present our data structures that improve the space to O(n)
and the query time to O(log n). We begin by introducing a new data structure
for the case where a query is composed of an entire column (as opposed to a
range of rows). This new data structure (which we call the micro data structure)
is designed to work well when the number of rows in the matrix is much smaller
than the number of columns. We denote by pred(x, n) = O(min{log x, log logn})
the time to query a predecessor data structure with x elements from {1, . . . , n}.

Lemma 1 (The Micro Data Structure). Given a x × n TM matrix and
r > 0, one can construct in O(x log n/ log r) time, a data structure of size O(x)
that given a query column can report the maximum entry in the entire column
in O(r + pred(x, n)) time.

Proof. Out of all n columns of the input matrix M , we will designate O(x)
columns as special columns. For each of these special columns we will eventually
compute its maximum element. The first x special columns of M are columns
1, n/x, 2n/x, 3n/x, . . . , n and are denoted j1, . . . , jx.

Let X denote the x×x submatrix obtained by taking all x rows but only the x
special columns j1, . . . , jx. It is easy to verify that X is TM. We can therefore run
the SMAWK algorithm [2] on X in O(x) time and obtain the column maxima
of all special columns. Let r(j) denote the row containing the maximum element
in column j. Since M is TM, the r(j) values are monotonically non-decreasing.
Consequently, r(j) of a non-special column j must be between r(ji) and r(ji+1)
where ji < j and ji+1 > j are the two special columns bracketing j.

For every i, let xi = r(ji+1) − r(ji). If xi ⊆ r then no column between ji and
ji+1 will ever be a special column. When we will query such a column j we can
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simply check (at query-time) the r elements of j between rows r(ji) and r(ji+1) in
O(r) time. If, however, xi > r, then we designate more special columns between
ji and ji+1. This is done recursively on the xi × (n/x) matrix Mi composed
of rows r(ji), . . . , r(ji+1) and columns ji, . . . , ji+1. That is, we mark xi evenly-
spread columns of Mi as special columns, and run SMAWK in O(xi) time on
the xi×xi submatrix Xi obtained by taking all xi rows but only these xi special
columns. We continue recursively until either xi ⊆ r or the number of columns
in Mi is at most r. In the latter case, before terminating, the recursive call runs
SMAWK in O(xi + r) = O(xi) time on the xi × r submatrix Xi obtained by
taking the xi rows and all columns of Mi (i.e., all columns of Mi will become
special).

After the recursion terminates, every column j of M is either special (in which
case we computed its maximum), or its maximum is known to be in one of at most
r rows (these rows are specified by the r(·) values of the two special columns
bracketing j). Let s denote the total number of columns that are marked as
special. We claim that s = O(x log n/ log r). To see this, notice that the number
of columns in every recursive call decreases by a factor of at least r and so
the recursion depth is O(logr n) = O(log n/ log r). In every recursive level, the
number of added special columns is

∑
xi over all x◦

is in this level that are at
least r. In every recursive level, this sum is bounded by 2x because each one of
the x rows of M can appear in at most two Mi’s (as the last row of one and the
first row of the other). Overall, we get 2x · O(log n/ log r) = O(x log n/ log r).

Notice that s = O(x log n/ log r) implies that the total time complexity of
the above procedure is also O(x log n/ log r). This is because whenever we run
SMAWK on a y × y matrix it takes O(y) time and y new columns are marked
as special. To complete the construction, we go over the s special columns from
left to right in O(s) time and throw away (mark as non-special) any column
whose r(·) value is the same as that of the preceding special column. This way
we are left with only O(x) special columns, and the diffierence in r(·) between
consecutive special columns is at least 1 and at most r. In fact, it is easy to
maintain O(x) (and not O(s)) space during the construction by only recursing
on sub matrices Mi where xi > 1. We note that when r = 1, the eventual special
columns are exactly the set of breakpoints of the input matrix M .

The final data structure is a predecessor data structure that holds the O(x)
special columns and their associated r(·) values. Upon query of some column j,
we search in pred(x, n) time for the predecessor and successor of j and obtain
the two r(·) values. We then search for the maximum of column j by explicitly
checking all the (at most r) relevant rows of column j. The query time is therefore
O(r + pred(x, n)) and the space O(x). →∧

A Linear-Space Subcolumn Data Structure

Lemma 2. Given a m × n TM matrix, one can construct, in O(m(log n +
logm)/ log logm) time, a data structure of size O(m) that can report the maxi-
mum entry in a query column and a contiguous range of rows in O(logm) time.
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Proof. Given an m × n input matrix M we partition it into m/x matrices
M1,M2, . . . ,Mm/x where x = logm. Every M i is an x × n matrix composed
of x consecutive rows of M . We construct the micro data structure of Lemma 1
for each M i separately choosing r = xΩ for any constant 0 < Π < 1. This re-
quires O(x log n/ log r) = O(x log n/ log x) construction time per M i for a total
of O(m log n/ log logm) time. We obtain a (micro) data structure of total size
O(m) that upon query (i, j) can report in O(xΩ + pred(x, n)) = O(logΩ m) time
the maximum entry in column j of M i.

Now, consider the (m/x) × n matrix M ◦, where M ◦
ij is the maximum entry

in column j of M i. We cannot affiord to store M ◦ explicitly, however, using the
micro data structure we can retrieve any entry M ◦

ij in O(logΩ m) time. We next
show that M ◦ is also TM.

For any pair of rows i < j and any pair of columns k < σ we need to show that
if M ◦

ik ⊆ M ◦
jk then M ◦

iε ⊆ M ◦
jε. Suppose that M ◦

ik,M
◦
jk,M

◦
iε, and M ◦

jε correspond
to entries Mak,Mbk,Mcε, and Mdε respectively. We assume that Mak ⊆ Mbk and
we need to show that Mcε ⊆ Mdε. Notice that Mck ⊆ Mak because Mak is the
maximal entry in column k of M i and Mck is also an entry in column k of M i.
Since Mck ⊆ Mak and Mak ⊆ Mbk we have that Mck ⊆ Mbk. Since Mck ⊆ Mbk,
from the total monotonicity of M , we have that Mcε ⊆ Mbε. Finally, we have
Mbε ⊆ Mdε because Mdε is the maximal entry in column σ of M j and Mbε is also
an entry in column σ of M j . We conclude that Mcε ⊆ Mdε.

Now that we have established that the matrix M ◦ is TM, we can use the
subcolumn data structure of [21] (see previous section) on M ◦. Whenever an
entry M ◦

ij is desired, we can retrieve it using the micro data structure. This
gives us the macro data structure: it is of size O(m/x · log(m/x)) = O(m) and
can report in O(logm) time the maximum entry of M ◦ in a query column and
a contiguous range of rows. It is built in O(m/x · (log(m/x) + logn) · xΩ) time
which is O(m(log n + logm)/ log logm) for any choice of Π < 1.

To complete the proof of Lemma 2 we need to show how to answer a general
query in O(logm) time. Recall that a query is composed of a column of M and a
contiguous range of rows. If the range is smaller than logm we can simply check
all elements explicitly in O(logm) time and return the maximum one. Otherwise,
the range is composed of three parts: a prefix part of length at most logm, an
infix part that corresponds to a range in M ◦, and a suffix part of length at most
logm. The prefix and suffix are computed explicitly in O(logm) time. The infix
is computed by querying the macro data structure in O(logm) time. →∧

A Linear-Space Submatrix Data Structure

Theorem 1. Given a m × n Monge matrix, one can construct, in O((m +
n)(logn + logm)) time, a data structure of size O(m + n) that can report the
maximum entry in a query submatrix in O(logm + logn) time.

Proof. Recall from Section 2 that the submatrix data structure of [21] is com-
posed of the tree Th over the rows of M and the tree B over the columns of M .
Every node u ≥ Th stores its breakpoints along with the RMQ array Au (where
Au[j] holds the value of the maximum element between the (j − 1)’th and the
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j’th breakpoints of u). If u has k breakpoints then they are computed along
with Au in O(k + logn) time: O(k) to copy from the children of u and O(log n)
to find the new breakpoint and to query B. As opposed to [21], we don’t use
a naive RMQ data structure but instead one of the existing linear-construction
constant-query RMQ data structures such as [19].

To prove Theorem 1 we begin with two changes to the above. First, we build
Th on the rows of the (m/x)×n matrix M ◦ instead of the m×n matrix M (again,
when an entry M ◦

ij is desired, we retrieve it using the micro data structure in
O(xΩ) time). Second, for B we use the data structure of Lemma 2 applied to
the transpose of M . B’s construction requires O(n(logm+logn)/ log logn) time
and O(n) space. After this, constructing Th (along with the Au arrays) on M ◦

requires O(m/x·log(m/x)) = O(m) space and O((m/x)(log(m/x)+logn)·xΩ) =
O(m(logm + logn)/ log logm) time by choosing x = logm and any Π < 1.

Finally, we construct a data structure Tv that is symmetric to Th but applied
to the transpose of M . Notice that Tv is built on the columns of an m×(n/ logn)
matrix M ◦◦ instead of the m × n matrix M . The construction of Tv, from a
symmetric argument to the previous paragraph, also takes O((m + n)(log n +
logm)/ log logm) time and O(m + n) space.

We now describe how to answer a submatrix query with row range R and
column range C. Let R◦ be the set of consecutive rows of M ◦ whose corresponding
rows in M are entirely contained in R. Let Rp be the prefix of O(logm) rows of
R that do not correspond to rows of R◦. Let Rs be the suffix of O(logm) rows
of R that do not correspond to rows of R◦. We define the subranges C◦, Cp, Cs

similarly (with respect to columns and to M ◦◦). The submatrix query (R,C) can
be covered by the following: (1) a submatrix query (R◦, C) in M ◦, (2) a submatrix
query (R,C◦) in M ◦◦, and (3) four small O(logm) ×O(log n) submatrix queries
in M for the ranges (Ri, Cj), i, j ≥ {p, s}. We find the maximum in each of these
six ranges and return the maximum of the six values.

We find the maximum of each of the small O(logm) × O(log n) ranges of M
in O(logm + logn) time using the SMAWK algorithm. The maximum in the
submatrix of M ◦ is found using Th as follows (the maximum in the submatrix of
M ◦◦ is found similarly using Tv). Notice that R◦ is the disjoint union of O(logm)
canonical nodes of Th. For each such canonical node u, we use binary-search
on u’s list of breakpoints {j1, j2, . . . , jk} to find the set {ja, ja+1, . . . , jb} of u’s
breakpoints that are fully contained in C. Although this binary-search can take
O(logm) time for each canonical node, using fractional cascading, the searches
on all canonical nodes take only O(logm) time and not O(log2 m). The maximum
in all rows of u and all columns between ja and jb is found by one query to the
RMQ array Au in O(1) time. Over all canonical nodes this takes O(logm) time.

The columns of C that are to the left of ja all have their maximum element in
row r(ja) of M ◦ (that is, in one of O(logm) rows of M) . Similarly, the columns
of C that are to the right of jb all have their maximum element in row r(jb+1)
of M ◦. This means we have two rows of M ◦, r(ja) and r(jb+1), where we need
to search for the maximum. We do this only after we have handled all canonical
nodes. That is, after we handle all canonical nodes we have a set A = a1, a2, . . .
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of 2 logm rows of M ◦ in which we still need to find the maximum. We apply the
same procedure on Tv which gives us a set B = b1, b2, . . . of 2 logn columns of
M ◦◦ in which we still have to find the maximum. Note that we only need to find
the maximum among the elements of M that lie in rows corresponding to a row
in A and in columns corresponding to a column in B. This amounts to finding the
maximum of the O(logm) ×O(log n) matrix M̄ , with M̄ij being the maximum
among the elements of M in the intersection of the x rows corresponding to row
ai of M ◦, and of the x columns corresponding to column bj of M ◦◦.

An argument similar to the one in Lemma 2 shows that M̄ is Monge. Therefore
we can find its maximum element using the SMAWK algorithm. We claim that
each element of M̄ can be computed in O(1) time, which implies that SMAWK
finds the maximum of M̄ in O(x) time.

It remains to show how to compute an element of M̄ in constant time. Re-
call from the proof of Lemma 2 that M is partitioned into x-by-n matrices M i.
During the preprocessing stage, for each M i we compute and store its upper
envelope, and an RMQ array over the maximum elements in each interval of
the envelope (similar to the array Au). Computing the upper envelope takes
O(x log n) time by incrementally adding one row at a time and using binary
search to locate the new breakpoint contributed by the newly added row. Find-
ing the maximum within each interval of the upper envelope can be done in
O(x log n) time using the tree B. We store the upper envelope in an atomic
heap [16], which supports predecessor searches in constant time provided x is
O(log n). Overall the preprocessing time is O(m log n), and the space is O(m).
We repeat the same preprocessing on the transpose of M .

Now, given a row ai of M ◦ and column bj of M ◦◦, let [ca, cb] be the range of x
columns of M that correspond to bj . We search in constant time for the successor
ca′ of ca and for the predecessor cb′ of cb in the upper envelope of Mai . We use
the RMQ array to find in O(1) time the maximum element y among elements
in all rows of M corresponding to ai and columns in the range [ca′ , cb′). The
maximum element in columns [ca, ca′) and [cb′ , cb] is contributed by two known
rows r1, r2. We repeat the symmetric process for the transpose of M , obtaining
a maximum element y◦, and two columns c1, c2. M̄ai,bj is the maximum among
six values: y, y◦ and the four elements Mr1c1 ,Mr1c2 ,Mr2c1 ,Mr2c2 . →∧

Notice that in the above proof, in order to obtain an element of M̄ in constant
time, we loose the O(log logm) speedup in the construction time. This is because
we found the upper envelope of each M i. To get the O(log logm) speedup we
can obtain an element of M̄ in O(xΩ) time using the micro data structure.

Corollary 1. Given a m × n Monge matrix, one can construct, in O((m +
n)(logn+ logm)/ log logm) time, a data structure of size O(m+n) that reports
the maximum entry in a query submatrix in O((log m + logn)1+Ω) time for any
fixed 0 < Π < 1.

A Linear-Space Subcolumn Data Structure for Partial Matrices. We
next claim that the bounds of Lemma 2 for TM matrices also apply to partial
TM matrices. The reason is that we can efficiently turn any partial TM matrix
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M into a full TM matrix by implicitly filling appropriate constants instead of
the blank entries (see full version of this paper for a simple formal proof). We
can then apply the data structure of Lemma 2. However, the maximum element
in a query (a column Δ and a range of rows R) might now appear in one of the
previously-blank entries. We overcome this by first restricting R to the defined
entries in the column Δ and only then querying the data structure of Lemma 2.

A Linear-Space Submatrix Data Structure for Partial Matrices. Given
a partial matrix M , the above simple trick of replacing appropriate constants
instead of the blank entries does not work for submatrix queries because the
defined (i.e., non-blank) entries in a submatrix do not necessarily form a sub-
matrix. Instead, we need a more complicated construction, which yields the
following theorem. The proof with the details of the construction appears in the
full version of this paper.

Theorem 2. Given a m×n partial Monge matrix, one can construct, in O((m+
n) log(m+n)) time, a data structure of size O(m+n) that reports the maximum
entry in a query submatrix in O((log m + logn)β(m + n)) time.

Finally, for the same reasons leading to Corollary 1 we can get a log logm speedup
in the construction-time with a logΩ n slowdown in the query-time.

Corollary 2. Given a m×n partial Monge matrix, one can construct, in O((m+
n) log(m+n)/ log logm) time, a data structure of size O(m+n) that reports the
maximum entry in a query submatrix in O((log m+ logn)1+Ωβ(m+n)) time for
any fixed 0 < Π < 1.

4 The Complexity of the Upper Envelope of a Totally
Monotone Partial Matrix

In this section we prove the following theorem, stating that the number of break-
points of an m× n TM partial matrix is only O(m).

Theorem 3. Let M be a partial m × n matrix in which the defined entries in
each row and in each column are contiguous. If M is TM (i.e., for all i < j, k < σ
where Mik,Miε,Mjk,Mjε are all defined, Mik ⊆ Mjk =⇐ Miε ⊆ Mjε), then
the upper envelope has complexity O(m).

Proof. We decompose M into staircase matrices. A partial matrix is staircase if
the defined entries in its rows either all begin in the first column or all end in
the last column. It is well known (cf. [1]) that by cutting M along columns and
rows, it can be decomposed into staircase matrices {Mi} such that each row is
covered by at most three matrices, and each column is covered by at most three
matrices. We describe such a decomposition in the full version of this paper [18].
In [18], we also prove the fact that, if M is a TM staircase matrix with m rows,
then the complexity of its upper envelope is O(m).
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Let bp(Mi) denote the number of breakpoints in the upper envelope of Mi.
Let mi denote the number of rows in Mi. Since each row appears in at most
three Mis,

∑
imi = O(m). The total number of breakpoints in the envelopes of

all of Mis is O(m) since
∑

i bp(Mi) =
∑

iO(mi) = O(m).
Consider now a partition of M into rectangular blocks Bj defined by maximal

sets of contiguous columns whose defined entries are at the same set of rows.
There are O(m) such blocks. The upper envelope of M is just the concatenation
of the upper envelopes of all the Bj ’s. Hence, bp(M) =

∑
j bp(Bj) + O(m) (the

O(m) term accounts for the possibility of a new breakpoint between every two
consecutive blocks). Therefore, it suffices to bound

∑
j bp(Bj).

Consider some block Bj . As we mentioned above, the columns of Bj appear
in the same three row-disjoint staircase matrices M1,M2,M3 in the decompo-
sition of M . The column maxima of Bj are a subset of the column maxima of
M1,M2,M3. Assume wlog that the indices of rows covered by M1 are smaller
than those covered by M2, which are smaller than those covered by M3.

The breakpoints of the upper envelope of Bj are either breakpoints in the en-
velope of M1,M2,M3, or breakpoints that occur when the maxima in consecutive
columns of Bj originate in diffierent Mi. However, since Bj is a (non-partial) TM
matrix, its column maxima are monotone. So once a column maximum originates
inMi, no maximum in greater columns will ever originate inMj for j < i. It follows
that the number of breakpoints in Bj that are not breakpoints of M1,M2,M3 is at
most two. Since there are O(m) blocks,

∑
j bp(Bj) ⊆

∑
i bp(Mi)+O(m) = O(m).

→∧
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Abstract. An approximate sparse recovery system in Δ1 norm consists
of parameters k, κ, N , an m-by-N measurement σ, and a recovery algo-
rithm, R. Given a vector, x, the system approximates x by x̂ = R(σx),
which must satisfy ⇒x̂ − x⇒1 ≤ (1 + κ)⇒x − xk⇒1. We consider the “for
all” model, in which a single matrix σ is used for all signals x. The
best existing sublinear algorithm by Porat and Strauss (SODA’12) uses
O(κ−3k log(N/k)) measurements and runs in time O(k1−εNε) for any
constant α > 0.

In this paper, we improve the number of measurements to
O(κ−2k log(N/k)), matching the best existing upper bound (attained by
super-linear algorithms), and the runtime to O(k1+Γ poly(logN, 1/κ)),
with a modest restriction that k ≤ N1−ε and κ ≤ (log k/ logN)γ , for
any constants α, β, η > 0. With no restrictions on κ, we have an approxi-
mation recovery system with m = O(k/κ log(N/k)((logN/ log k)γ+1/κ))
measurements. The algorithmic innovation is a novel encoding procedure
that is reminiscent of network coding and that reflects the structure of
the hashing stages.

1 Introduction

Sparse signal recovery is a critical data-acquisition and processing problem that
arises in many modern scientific and computational applications, including signal
and image processing, machine learning, data networking, and medicine [6,15].
It is a method for acquiring linear measurements or observations of a signal with
a measurement matrix σ, and an algorithm D, for recovering the significant
components of the original signal. We model this problem mathematically by
assuming that we measure a vector x and collect observation y = σx, then we
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Table 1. Summary of the best previous results and the result obtained in this paper.
Some constant factors are omitted for clarity. “LP” denotes (at least) the runtime for a
linear program of size at least N . The column “A/E” indicates whether the algorithm
works in the forall (A) model or the foreach (E) model. The column “noise” indicates
whether the algorithm tolerates noisy measurements. The constants c could be different
in different occurrences. The lower bound on number of measurements in table above
is, in fact, the best upper bound attained by super-linear algorithms.

Paper A/E Number of Column sparsity/ Decode time Approx. error Noise

Measurements Update time

[2] E k logc N logc N N logc N ε2 ◦ Cε2
[4] E k logc N logc N k logc N ε2 ◦ Cε2
[8] E Ω−1k log(N/k) logc N Ω−1k logc N ε2 ◦ (1 + Ω)ε2 Y

[5,1] A k log(N/k) k log(N/k) LP ε2 ◦ (C/
√
k)ε1 Y

[10] A Ω−2k logc N Ω−2k logc N Ω−4k2 logc N ε2 ◦ (Ω/
√
k)ε1 Y

[9] A k logc N logc N k logc N ε1 ◦ (C logN)ε1 Y

[14] A Ω−2k log(N/k) Ω−1 log(N/k) N log(N/k) ε1 ◦ (1 + Ω)ε1 Y

[18]

A εcΩ−3k log(N/k) εcΩ−3 log(N/k) log k εcΩ−3k(N/k)1/ε ε1 ◦ (1 + Ω)ε1 Y(any positive

integer ε)

This paper

A Ω−2k log(N/k) Ω−1 log(N/k) k1+λ(Ω−1 logN)c ε1 ◦ (1 + Ω)ε1 Y
(any α > 0,

restrictions

on Ω apply)

Lower bound ‘A’ Ω−2k log(N/k) Ω−1 log(N/k) Ω−2k log(N/k) ε2 ◦ (Ω/
√
k)ε1 Y

run a recovery algorithm and produce an approximation x̂ = D(σ,y) to x with
the guarantee that the approximation error ∈x̂− x∈ is bounded above.

More quantitatively, let us denote the length of the vector x by N , the sparsity
parameter k, and distortion parameter τ. Let x[k] denote the best k-term approx-
imation to x, the “heavy hitters” of x, i.e., x with all but the k largest-magnitude
terms zeroed out. There are many different ways to assess the error of the recovery
algorithm and the quality of the measurement matrix, depending on the particular
application. See Table 1 for an overview of all of problem variations. In this paper,
we address the λ1/λ1-forall problem, formally defined below.

Definition 1. An (λ1/λ1) approximate sparse recovery system consists of pa-
rameters N , k, τ, an m-by-N measurement matrix λ, and a decoding algorithm
D that satisfy the following property: for every vector x ⊆ R

n, given λx, the sys-
tem approximates x by x̂ = D(λx), which satisfies ∈x̂−x∈1 ⊂ (1+τ)∈x[k]−x∈1.

What makes this problem challenging is that we must simultaneously keep
the number of measurements small, ensure the recovery algorithm is highly ef-
ficient, and achieve a good approximation for all input vectors. If we increase
the number of measurements by factors of logN , it is easy to optimize the run-
time. Similarly, if we severely restrict the distortion parameter τ, we may also
increase the number of measurements by factors of τ. In many applications, all
three quantities are important; i.e., in medical imaging applications, the mea-
surements reflect the time a patient is observed, the recovery time drives the
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effectiveness of real-time imaging systems, and the recovery accuracy determines
the diagnostic effectiveness of the imaging system.

Related Work. There has been considerable work on this problem in a vari-
ety of parameter settings and we summarize the results in Table 1. A number
of parameter values are incommensurate: we can achieve better approximation
guarantees (in the λ2/λ2 norm) but only in the for-each model; in the for-all sig-
nal model, we can achieve λ2/λ1 error guarantees. A somewhat harder problem
than the one we address in this paper is the mixed-norm (or λ2/λ1) for-all result.
In this setting, the goal is to give σ and D, such that, for every x, we have

∈x̂− x∈2 ⊂ τ→
k
∈x[k] − x∈1. (1)

It is known that if (σ,D) solves the λ2/λ1 problem it also solves the λ1/λ1 problem
[3]. In another direction, the λ2/λ2 for-each problem is to give distribution F on
σ and D, such that, for any x, if σ is randomly chosen subject to F, we have

Pr
λ≤F

{∈x̂− x∈2 ⊂ (1 + τ)∈x[k] − x∈2
} ∧ 1 −O(1).

The λ2/λ2 for-each problem with constant failure probability was solved in [8],
where the authors gave an algorithm with constant-factor-optimal runtime and
number of measurements. The failure probability was recently improved to ex-
ponentially small [11], but the technique is not likely to give an λ1/λ1 for-all
result without additional logarithmic factors in the number of measurements.

The first sublinear-time algorithm in the λ1/λ1 for-all setting was given in [18],
though that algorithm had a number of limitations.

– The runtime, while sublinear, was
→
kN , or, more generally, of the form

k1−ΔNΔ for any constant Π > 0. That algorithm did not achieve runtime
polynomial in k log(N)/τ.

– The algorithm required a precomputed table of size Nk0.2.
– The result was far from optimal in its dependence of the number of mea-

surements on τ.

Our Results. In this work, we rectify the above limitations, assuming the
(modest) restriction that τ < log k/ logN and k ⊂ →

N . We also make the mea-
surement dependence on τ optimal. The best lower bound for the λ1/λ1 for-all
problem is β(k/τ2+(k/τ) log(τN/k)) [16], which is also the best lower bound for
the λ2/λ1 for-all problem. Our algorithm uses O(k/τ2 log(N/k)) measurements
when τ < (log k/ logN)Λ for any constant Δ > 0, which is suboptimal only by a
logarithmic factor. When k ⊂ logc N for some c > 0, the runtime is reduced to
O(k poly(logN, 1/τ)).

Theorem 1 (Main Theorem). Let ∂, Δ > 0. There is an approximate sparse
recovery system that uses m = O

(
k
Ω (log N

k )(( logN
log k )Λ + 1

Ω )
)
measurements and

runs in time O(k1+α poly(logN, 1/τ)), provided that N = β(max{k2, k/τ2}).
When τ = O

(
( log k
logN )Λ

)
, the number of measurements m = O(k/τ2 log(N/k)).

Overview of Techniques. Our overall approach builds on [18] and [11] with
several critical innovations. In Fig. 1 is a framework which captures both the
algorithm in [18] and the algorithm in this paper.
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First, we describe the encoding procedure at a high level. Initially each i ⊆ [N ]
is associated with a unique message mi, which is encoded to a longer message
m⊆

i. In [18] this encoding is trivial, namely, m⊆
i = mi; while in our work it is a

more complicated procedure (see Fig. 3). The first hash assigns one of B buckets
to each i ⊆ [N ], while maintaining the original index i; the aggregation step
sums each bucket. There are log(N/k)/(τ log(B/k)) repetitions. The index i in
each repetition is now associated with a chunk of m⊆

i. In [18], the aggregated
buckets are hashed into (k/τ) buckets and there are log(B/k)/τ repetitions.
Thus, altogether, there are O(τ−3k log(N/k)) measurements. In our work, there
are only log(B/k) repetitions, saving a factor of 1/τ, so the total number of
measurements is O(τ−2k log(N/k)).

The identification portion of the recovery algorithm is shown in Fig. 2. To re-
cover the identity of heavy hitters, the algorithm reads off the measurements and
recovers the message chunk associated with each bucket. This message chunk is
supposed to be associated with the heavy hitter in the bucket. Then, all B buck-
ets are examined exhaustively. The pre-image of each heavy bucket under the
first hash is determined, in [18], from a look-up table and searched exhaustively.
In our work, this is done by the decoding procedure illustrated in Fig. 4. We
encode the “linking information” into the message chunks so that we can col-
lect across the repetitions enough heavy buckets which contain the same heavy
hitter i (whose actual value is unknown at this stage of the algorithm). Thus,
we obtain a (small) fraction of m⊆

i, which is sufficient for the Parvaresh-Vardy
decoding algorithm to produce the exact mi, whence we recover the value of i
immediately.

The estimation portion of the recovery algorithm estimates the coefficient at
each of those candidate positions by reading the aggregated bucket value of the
corresponding heavy buckets at the first hash level.

Putting these pieces together, we have a weak recovery system, which identifies
all but k/2 of the heavy hitters. We then repeat with smaller (easier) sparsity pa-
rameter k/2 < k and smaller (harder) distortion parameter (3/4)τ < τ, resulting
in a number of measurements whose leading term is (k/2)(4/3τ)2 = (8/9)k/τ2 <
k/τ2. Summing the geometric progression gives the result we need. Finally, we
note that our algorithm works (deterministically) with any unbalanced expander
having the appropriate properties.

Encoding and Decoding Details. See Fig. 3 and 4 for a detailed illustration
of these steps. For each message m, the Parvaresh-Vardy code encodes it into a
longer message m⊆, which automatically exhibits a chunk structure, so that if a
few number of the chunks are correct, the original m will be recovered. Suppose
there are D chunks. Now, choose a d-regular expander graph G (d is a constant)
on D nodes such that after removing O(D) nodes from G, the remaining graph
still contains an expander of size β(D). For the i-th chunk of m⊆, append to
it the information of the neighbours of the i-th vertex in G. Then we apply
Reed-Solomon to protect the appended chunks.

To decode, we first recover the appended message chunks. The two-layer hash
guarantees that for the same heavy hitter, at most O(D) of them will be wrong
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and the remaining ones are all correct. Now, consider a breadth-first search
from a correct message chunk (whose “linking information” is therefore correct).
By the special property of the expander graph G, we shall be able to visit all
nodes (i.e., all corresponding message chunks) of a smaller expander graph of
size β(D) in logD steps. This small fraction of good message chunks of m⊆ will
enable the PV code to recover the original message m successfully. Recall that d
is a constant, the total number of vertices visited is O(dlogD) = O(poly(D)) =
O(poly(logN)) for appropriate D. This enables a sublinear recovery time.

Our Contributions
– We give an algorithm for sparse recovery in the for-all setting, under a modest

restriction on the distortion factor τ, having the number of measurements
that matches the best upper bound, attained by super-linear algorithms;
e.g., [14], and optimal in runtime up to a power.

– We conjecture that our algorithm can be extended from the 1-norm to the
mixed norm guarantee and that the restriction on τ can be weakened or elim-
inated. Thus our algorithm may be a stepping stone to the final algorithm.

– Our work is not the first to consider list recovery. Indyk et al. introduces
the idea in the context of combinatorial group testing [13]. The idea of list
recovery is also used in [11], where the list decoding, however, would affect
the hashing and the hashing was thus required to be sufficiently random.
In our algorithm, the messages {mi} are independent of the hashing, which
enables us to obtain a better result.

– Finally, our encoding/decoding techniques are reminiscent of network coding
and may have other contexts for soft-decoding or network coding.

Paper Organization. In Section 2 we review some properties of expanders. In
Section 3, we show that provided with good identification results, unbalanced
expanders with appropriate properties will give a weak system. Our construction
of weak system culminates in Section 4, where we show how to achieve good
identification via message encoding and decoding. Then we build the overall
algorithm on the weak system in Section 5 and close with a short discussion in
Section 6.

2 Preliminaries

Our main algorithm will be built on regular graph expanders and unbalanced
bipartite expanders. In Let n,m, d, λ be positive integers and τ, φ be positive
reals. The following two definitions are adapted from [12].

Definition 2 (Expander). An (n, λ, φ)-expander is a graph G(V,E), where
|V | = n, such that for any set S ≥ V with |S| ⊂ λ it holds that |κ (S)| ∧ φ|S|.
Definition 3 (Bipartite Expander). An (n,m, d, λ, τ)-bipartite expander is a
d-left-regular bipartite graph G(L ⇐R,E) where |L| = n and |R| = m such that
for any S ≥ L with |S| ⊂ λ it holds that |κ (S)| ∧ (1 − τ)d|S|, where κ (S) is the
neighbour of S (in R).
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Theorem 2 ([7]). For all sufficiently large n and even d, there exists a d-regular
expander G such that |V (G)| = n and α(G) ⊂ C

→
d for some absolute constant

C > 0, where α(G) denote the second largest eigenvalue, in absolute value, of G.

Theorem 3 ([19]). Let G be a χ-regular expander of n nodes such that α(G) ⊂
C
→
χ, where χ is a (sufficiently large) constant. There exist absolute constants

Π, ζ > 0 and φ > 1 such that after removing an arbitrary set of at most ζn nodes
from G, the remaining graph contains a subgraph G⊆ such that |V (G⊆)| ∧ Πn and
G⊆ is a (|V (G⊆)|, n/2, φ) graph expander.

The rest of the section concerns hashing. Informally, we say an (N,B, d) (one
layer) hashing scheme1 is to hash N elements into B buckets and repeat d times
independently. Each instance of such a hashing scheme induces a d-left-regular
bipartite graph with Bd right nodes. An (N,B1, d1, B2, d2) (two-layer) hashing
scheme2 is to hash N elements into B1 buckets and repeat d1 times (those buckets
will be referred to as first-layer buckets) and in each of the d1 repetitions, hash
B1 elements into B2 buckets and repeat d2 times (those buckets will be referred
to as second-layer buckets). Each instance of such a hashing scheme induces a
d1d2-left-regular bipartite graph with B2d1d2 right nodes.

We note that bipartite expander graphs can be used as hashing schemes be-
cause of their isolation property.

Definition 4 (Isolation Property). An (n,m, d, λ, τ)-bipartite expander G is
said to satisfy the (λ, η, ζ)-isolation property if for any set S ⇒ L(G) with |S| ⊂ λ,
there exists S⊆ ⇒ S with |S⊆| ∧ (1 − η)|S| such that for all x ⊆ S⊆ it holds that
|κ (x) \ κ (S \ {x})| ∧ (1 − ζ)d.

3 Weak System

We decompose a signal x into two parts of disjoint support, x = y + z, where
y has small support and z small norm (by normalization we may assume that
∈z∈1 ⊂ 3/2). We call y the head and z the tail. We aim to recover the elements
in y. Introduced in [18], a weak system takes an additional input, some set I of
indices (called the candidate set), and tries to estimate xi for i ⊆ I, hoping to
recover some head items with estimate error dependent on ∈z∈1. It is shown in
[18] that when I contains the entire head, we can always recover a good fraction
of the head. In fact, we only need I to contain a good fraction of the head instead
of the entire head, with a slight modification of the original proof.

Definition 5 (Weak System). A Weak system consists of parameters N, s, η,
ζ, an m-by-N measurement matrix λ, and a decoding algorithm D, that satisfy
the following property: For any x ⊆ R

N that can be written as x = y + z,
where | supp(y)| ⊂ s and ∈z∈1 ⊂ 3/2, given the measurements λx and a subset

1 When N is clear from the context, we simply write (B, d) hashing scheme.
2 When N is clear from the context, we simply write (B1, d1, B2, d2) hashing scheme.
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Fig. 1. Algorithm to generate the measurements. Darker spots indicate a bigger value
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our object sizes differ from [18].
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Fig. 2. Algorithm to recover from the measurements

I ≥ [N ] such that |I ∪ supp(y)| ∧ (1 − ζ/2)| supp(y)|, the decoding algorithm D

returns x̂, such that x admits the following decomposition: x = x̂+ ŷ+ ẑ, where
| supp(x̂)| = O(s), | supp(ŷ)| ⊂ ζs, and ∈ẑ∈1 ⊂ ∈z∈1 + η.

Theorem 4 (Weak). Suppose that σ is the adjacency matrix of an
(N,Bd, d, 4s, η)-bipartite expander such that (a) d = O( 1

ηζ2 log N
s ) and B =

O( d
ζη ) and (b) it satisfies (O(k/τ), τ, ζ)-isolation property. With appropriate in-

stantiations of constants, Algorithm 1 yields a correct Weak system running in

time O( |I|
ηζ2 log N

s ).

To complete the construction of a Weak system, it remains to show that a
bipartite expander as required by Theorem 4 exists. Indeed, it can be attained
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N) so
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Fig. 4. Decoding scheme. The asterisks in
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The Reed-Solomon decoding either recov-
ers the message chunk (with linking infor-
mation) or produces a useless one (crossed
out). Then the clustering procedure finds
a set of chunks, of which a small fraction is
good. This is sufficient for the Parvaresh-
Vardy decoding to succeed.

Algorithm 1. Weak system
Input: N , s, Φ (adjacency matrix of a d-left-regular expander G), Φx, and I

Output: x̂

for j ≥ 1 to d do

for each i ∪ I do

x
(j)
i ≥ median

u∈Σ ({i})
∑

(u,v)∈E
xu /* each sum is an element of input Φx */

for each i ∪ I do

x′
i ≥ median1≤j≤d x

(j)
i

x̂ ≥ top O(s) elements of x′

return x̂

by both one-layer and two-layer hashing schemes, with appropriate parameters.
We state the two-layer result below as our construction will use it.

Lemma 1. Let τ ⊆ (0, 1
4 ), Π > 1, k ∧ 1 and N = β

(
max{ k

Ω2 , k
2}). Consider

a two-layer (B1, d1, B2, d2) hashing scheme with B1 = β
(

k
ζαΩ2α

)
, d1 = β

(
Δ

Δ−1 ·
1
ζΩ

log(N/k)
log(B/k)

)
, B2 = β

(
k
ζΩ

)
and d2 = β

(
1
ζ log B1

k

)
. With probability ∧ 1−N−Ω(1),

such a two-layer hashing scheme gives an (B2d1d2, d1d2, 4k, τ) bipartite expander
with the (O(k/τ), τ, ζ)-isolation property.

4 Identification of Heavy Hitters

In the previous section, we showed how to estimate all candidates in a candidate
set I quickly. The main bottleneck in a highly efficient algorithm is finding a
non-trivial set I ⇒ [N ] of candidates which we address in this section.
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Algorithm 2. Encoding/Decoding paradigm.

// Encoding with (B1, d1, B2, d2) hashing scheme

for i = 1 to N do

Break: Break the information of i into d1 chunks

Outer encoding: Encode the chunks with cluster info (from a regular expander graph)

and against errors, getting {mi,j}d1
j=1

for j = 1 to d1 do
Inner encoding: Encode mi,j , for i ∪ [N ]

// Decoding with (B1, d1, B2, d2) hashing scheme

for j = 1 to d1 do

// length B1, (B2d2)-measurement Sparse Recovery Channel

Inner decoding: Recover m̂j in the Weak List sense

Record Side Info: Tag each element of m̂j with j
Outer decoding: From m̂ =

⋃
j
m̂j ’s, find chunk clusters and correct errors; produce I

The overall strategy is as follows. Using the two-layer hashing scheme
(B1, d1, B2, d2), we expect that a heavy hitter dominates the first-layer buck-
ets where it lands in β(d1) repetitions. In each of these repetitions, it is a heavy
hitter in a signal of length B1, and we expect to recover it using the Weak algo-
rithm applied to the signal of length B1 with I = [B1]. After finding the heavy
buckets in each repetition, the remaining problem is to extract the position of
a heavy hitter i from the β(d1) repetitions that contain i. To do this, we en-
code the index i in such a way that if we recover the buckets containing i in
enough repetitions we shall be able to reconstruct i. To that end, we introduce
the following model of weak list recovery in the sparse recovery channel.

Definition 6. The (m,N, s) Sparse Recovery Channel takes an m-by-N matrix
λ as input, chooses a signal x with decomposition x = y + z with | supp(y)| ⊂ s
and ∈z∈1 ⊂ O(1), and outputs λx.

Note that x may depend on λ. Also note that any signal may be chosen by the
channel and normalized so that ∈z∈1 ⊂ 3/2. It will be convenient to assign the
normalization at this point to match the Weak system (Defintion 5). Next, we
define the Weak Recovery Criterion appropriate for this channel. See Fig. 5.

Definition 7 (Weak List Recovery Criterion). Fix parameters m,N, s, τ.
Let m be a vector of ∂-bit messages and i ⊆ [N ]. Suppose m̂ is a list of possible
index-message pairs. We say that m̂ is correct in the List Weak sense if, for at
least | supp(y)| − s/8 indices i in supp(y), we have (i,mi) ⊆ m̂.

The encoding/decoding scheme is given in Algorithm 2. We break each message
mi (which could be much longer than logN bits) associated with position i into
d1 chunks, mi,1, . . . ,mi,d1 . Now in the j-th repetition of the d1 repetitions, we
obtain a signal x̃ of length B. Each x̃ε is associated with a message that can be
viewed as a weighted sum of mi,j for positions i hashed into bucket λ. If a heavy
hitter i is isolated in bucket λ and the bucket noise is mild, this weighted sum
would be approximately mi,j , and we expect to recover mi,j from the second-
layer hashing, with inner encoding and decoding.

The following lemma is a simple case to illustrate our idea of encoding, in
which we show how to code ∂ = log(B/k) bits in the length-B Sparse Recovery
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Fig. 5. Sparse recovery channel. The encoder and decoder agree on some matrix Φ.
The encoder takes messages m and produces a measurement matrix Φ√ based on m
and Φ. The channel is fed with Φ√ and x and produces Φ√x, from which the decoder
tries to recover m̂ in the sense of weak list recovery.

Channel and how to recover the messages associated with β(k) heavy hitters in
the length B signal in time approximately B.

Lemma 2. Let B = β(k) and ∂ = O(log(B/k)). There is a coding scheme for
the length-B m-measurememt Sparse Recovery Channel for m = O(k/τ log(B/k))
in the weak list recovery sense in which decoding runs in time O(B log3(B/k)).

The rest of this section is devoted to an expander-based coding scheme for
the most difficult part of identification, that is, to match mi,j with mi,j′ (j ⇔= j⊆)
in order to find enough fraction of mi in the end. We resolve this by embedding
“linking information” in mi,j .

Parameters. We assume that the constants ∂, Δ > 0 are fixed and the param-
eters B1, d1, B2, d2 are as in Lemma 1 such that B1 = β

(
( k
Ω2 )1+α log N

k

)
. Let

G be a graph of d1 nodes with constant degree χ that satisfies Theorem 2, and
Π, ζ, φ be constants provided by Theorem 3 when applied to G. Without loss
generality we can assume that Π ⊂ 1/2. Let c ⊂ m be positive integer constants,

h a positive integer and τ = O
((

Δ
m

) m
m−c

( log(B1/k)
log(N/k)

)Λ)
. Adjust the hidden con-

stants together with c, m and h appropriately (depending on ∂ and Δ) such that
(a) B1 > d1; (b) (h− 1)m logB1

N < Πd1; (c) (Πd1− (h− 1)m logB1
N) ·hm > dc1

and (d) c ∧ log χ/ log φ.

Encoding. We shall use Reed-Solomon for inner encoding. Next, we define our
outer coding, which uses the Parvaresh-Vardy code [17]. Take N disconnected
copies of G and call the union GN , where each node is indexed by a pair (i, r) ⊆
[N ]× [d1]. Let F be a field such that |F| = Θ(B1) is a power of 2 and E(x) be an
irreducible monic polynomial over F such that degE(x) = logB1

N . View each
i ⊆ [N ] as a polynomial fi over F with degree logB1

N − 1. For each (i, r) ⊆ GN ,
associate with it an element p(i, r) ⊆ F

m+1 defined by

p(i, r) = (xi,r , fi(xi,r), (fh
i mod E)(xi,r), . . . , (fhm−1

i mod E)(xi,r)),

where xi,r ⊆ F are distinct for all r. This is possible because of Property (a).
Attach to a node (i, r) a message mi,r containing p(i, r) as well as

H(i, v1(r)),..., H(i, vδ(r)), where v1(r), . . . , vδ(r) are the neighbours of r in G
and H(i, j) ⊆ [B1] gives the bucket index where i lands in the j-th outer hashing
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repetition. It is clear that mi,r has Θ(logB1) = O(d2) bits and therefore we can
encode it in d2 hash repetitions, see Lemma 2.

Decoding. In each of the d1 repetitions, we shall recover O(k/τ) heavy buckets
and thus obtain O(k/τ) nodes with their messages. Even when the messages are
recovered correctly, we only know that a message corresponds to mi,r for some
i ⊆ [N ] and we do not know which i it is. As mentioned in the introduction, we
wish to collect enough p(i, r) for different values of r and the same i. To this
end, we do clustering as follows.

Suppose that there are k heavy hitters at position i1, . . . , ik. Let G̃ be a graph
of d1 × O(k/τ) nodes, arranged in a d1 × O(k/τ) grid. For now we assume an
ideal situation where the messages are recovered correctly for each heavy hitter
i in all d1 repetitions (which implies no collisions and small bucket noise). Each
message has the form (p(i, r), h1, . . . , hδ), where hj = H(i, vj(r)) (j ⊆ [χ]). Add
an arc (i, r) ∗ (hj , vj(r)) for each j ⊆ [χ].

Since the messages are recovered correctly, the graph G̃ will contain several
disjoint copies of the expander graph G, say Gi1 , . . . , Gik . There will be arcs
incoming to Gij from nodes not in any Gij , but there will be no outgoing arcs
from Gij . In this case, we can recover each Gij perfectly, and collect the full

set {mij,r}d1
r=1 and thus recover ij. In this case, the columns i1, . . . , ik are exact

copies of the expander graph G.
The heavy hitters may not, however, be recovered in some repetitions and

the messages could be seriously corrupted. Adding arcs introduces two kinds of
errors: (i) We lose a node in Gij because the heavy hitter ij is not recovered in
that repetition; (ii) We connect a node in Gij to a node in Gij′ (j ⇔= j⊆), owing
to errorous message. We know that for a heavy hitter i, only a few messages
{mi,r}r are ruined and the i-th column of GN will contain a large connected
subgraph G⊆ of G, by Theorem 3. Hence, if we start a breadth-first search at
an appropriate node with depth c logδ d1, the whole G⊆ will be visited. In other
words, we shall obtain a large set of {p(i, r)}, a small number of which will be
associated with the same i, but it is sufficient to extract fi using a good error-
correcting code such as the Parvaresh-Vardy code that allows us to recover the
codeword from a large fraction of errors. Without identifying the “appropriate
nodes”, we perform a breadth-first search at every node in G̃.

Guarantee. We show that the system described above meets the aforementioned
guarantee, using Property (b)–(d).

Theorem 5. Let ∂, Δ > 0. The encoding and decoding strategy above are correct
in the sense of weak list recovery, against the channel described in that section. It
uses O(τ−2s log(N/s)) measurements and runs in time O(s1+α poly(logN, 1/τ)),
provided that N = β(max{s2, s/τ2}) and τ = O

(
(log s/ logN)Λ

)
.

5 Overall Algorithm

The construction of an approximate recovery system from a weak system is sim-
ilar to existing works [8,18]. We use Theorem 5 for identification and Theorem 4
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for estimation. Below we simply restate our main theorem result from Theorem 1
in a slightly different form.

Theorem 6. Let ∂, Δ > 0. There is an approximate recovery system that uses
O(τ−2k log(N/k)) measurements and runs in time O(k1+α poly(logN, 1/τ)), pro-
vided that N = β(max{k2, k/τ2}) and τ = O((log k/ logN)Λ).

We remark that (a) the constants in big O-notations and the power in
poly(logN, 1/τ) depend on ∂ and Δ; (b) the constraint that k = O(

→
N) could

be relaxed to k = O(N1−Δ) for any Π > 0, the hidden constants will de-
pend on Π; (c) the factor k1+α in the runtime is due to our choice of B1 =
β((k/τ2)1+α log(N/k)) such that logB1 = O(log(B1/k)) = O(d2). When k ⊂
poly(logN), it suffices to choose B1 = Θ(k log(N/k)/τ2(1+α)), leading to runtime
O(k poly(logN, 1/τ)); (d) for large τ we can take d1 = (log(N/k)/ log(B1/k))1+Δ

for an arbitrary Π > 0, which gives an algorithm which uses more measurements
O(k log1+Δ(N/k)/τ2) but suboptimal by only a logarithmic factor.

6 Discussions

At the core part of this paper lies the following list recovery problem: Suppose

that there are d1 = 1
Ω·log(N/k)

log(B/k) lists L1, . . . , Ld1 with |Li| = O(k/τ) for all i ⊆ [d1],

we want to recover all possible codewords c = (c1, . . . , cd1) such that ci ⊆ Li for
at least β(d1) different i’s in [d1]. We used an expander structure to reduce the
problem to kd1/τ subproblems, each of which has a smaller number of nodes.
It is natural to be tempted to apply Parvaresh-Vardy code directly without the
expander structure. Indeed it works for some configurations of k and τ with a
runtime of O(k poly(logN, 1/τ)), but only for small k and τ. A direct application
already fails even for k = exp(

→
logn). The runtime resulting from a direct

application is also better for very small k, however, obtaining the precise range
is difficult and beyond the scope of our work, as it relies on the precise complexity
of factorizing a polynomial, which is not explicit in the literature. We also remark
that the Parvaresh-Vardy code in the outer coding and the Reed-Solomon code
in the inner coding could be replaced with other codes of similar parameters, or
better parameters, which would lead to an improvement of the algorithm.
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Abstract. We introduce a general approach for solving partition prob-
lems where the goal is to represent a given set as a union (either disjoint
or not) of subsets satisfying certain properties. Many NP-hard problems
can be naturally stated as such partition problems. We show that if one
can find a large enough system of so-called families with infants for a
given problem, then this problem can be solved faster than by a straight-
forward algorithm. We use this approach to improve known bounds for
several NP-hard problems (the traveling salesman problem, the graph
coloring problem, the problem of counting perfect matchings) on graphs
of bounded average degree, as well as to simplify the proofs of several
known results.

1 Introduction

In this paper we consider algorithms for three classical hard problems: the trav-
eling salesman problem, the chromatic number problem, and the problem of
counting perfect matchings. O∈(2n) algorithms for the traveling salesman prob-
lem by Bellman [3] and Held and Karp [12] are known for more than 50 years
already (n is the number of vertices of an input graph, O∈ hides polynomial fac-
tors of input length). This bound is still the best known for the general version
of the problem, but stronger bounds are known for special cases: Björklund [4] in
2010 proved an O(1.66n) bound for the symmetric case (i.e., undirected graphs),
Cygan et al. [9] in 2013 proved an O∈(1.89n) bound for directed bipartite graphs.
The current record upper bound O∈(2n) for the chromatic number problem is
proved by Björklund et al. [8] in 2006. The number of perfect matchings in an
n-vertex graph can be computed in time O∈(2n/2) as shown by Björklund [5] in
2012 (this matches the bound of Ryser’s algorithm [17] for bipartite graphs).

These problems (and many others) can be seen as partition problems. In the
chromatic number problem the goal is to partition the vertices into independent
sets. In counting perfect matchings the goal is to partition the vertices into
adjacent pairs. The traveling salesman problem can be seen as a problem of
partitioning the set of vertices into, say, three parts of roughly equal size such
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that there exists a Hamiltonian path through the vertices of each part and these
three paths can be connected into a Hamiltonian path in the original graph.

As shown by Björklund et al. [8] such partition problems can be solved in
time O∈(2n) using a technique called fast subset convolution (FSC). In partic-
ular, FSC immediately implies an O∈(2n) upper bound for such problems as
chromatic number, maximum k-cut, domatic number, bin packing. Cygan and
Pilipczuk [10] later showed that an O∈(2n) bound can also be proved using fast
Fourier transform (FFT). Lokshtanov and Nederlof [15] also used FFT in order
to improve space requirements for exact solving of several NP-hard problems.

For all three problems mentioned above (chromatic number, traveling sales-
man, counting perfect matchings), improving the known bound for the gen-
eral case is a major open problem in the field of algorithms for NP-hard
problems. However in recent years it was shown that the bound can be im-
proved for various special cases. In [6,7,11] better upper bounds are proved for
graphs of bounded degree (these three problems are known to be NP-hard even
on graphs of bounded degree).

We present a new approach to get bounds of the form O∈((2− σ)n) in various
special cases. Namely we show that such a bound follows almost immediately
if the corresponding partition problem possesses a certain structure. Informally,
this structure can be described as follows. Assume that a group of people is going
to an excursion and our task is to seat them into buses with several constraints
saying that a pair of people does not want to see each other in the same bus. This
is the coloring problem and it can be solved in O∈(2n) time. Assume now that we
have additional constraints: the group of people contains several infants and these
infants should be accompanied by their relatives in a bus. Roughly, we prove that
if the number of infants is linear then the problem can be solved in O∈((2− τ)n)
time. The approach is based on efficient FFT multiplication of polynomials with
bounded integer coefficients. There is an algorithm [18,21,20] which multiplies
two polynomials of degree n using n polylog(n) arithmetic operations.

Using this approach we unify several known results of this kind. An additional
advantage of the approach is that it is particularly easy to use it as a black
box. Namely, all one needs to do is to reveal the corresponding structure of
families with infants. This way, some of the known upper bounds for the above
mentioned problems on graphs of bounded degree follow just in a few lines. By
using additional combinatorial ideas we also prove the following new results.

For the chromatic number problem, Björklund et al. [7] presented an algorithm
working in time O∈((2 − τ(λ))n) on graphs of bounded maximum degree λ =
O(1). The algorithm is based on Yate’s algorithm and Möbios inversion and thus
uses exponential space. We extend this result to a wider class of bounded average
degree graphs. This closes an open problem concerning the existence of such an
algorithm stated by Cygan and Pilipczuk [11].

For the traveling salesman problem on graphs of maximum degree λ = O(1),
Björklund et al. [6] presented an algorithm working in time O∈((2 − τ(λ))n)
and exponential space. Cygan and Pilipczuk [11] extended the result to graphs
of bounded average (instead of maximum) degree. Both algorithms are based
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on dynamic programming and the savings in the running time comes from
an observation that in case of bounded degree graphs an algorithm does not
need to go through all possible subsets of vertices (e.g., a disconnected sub-
graph does not have a Hamiltonian path for sure). It is also because of the
dynamic programming technique that both mentioned algorithms use exponen-
tial space. We further improve these results by showing an algorithm working
in time O∈(W (2 − τ(d))n) and polynomial space on directed graphs of average
degree d with integral weights bounded by W .

Cygan and Pilipczuk [11] developed an algorithm with running time O∈((2−
τ(d))n/2) and exponential space for counting perfect matching in graphs of aver-
age degree d. We present an algorithm solving this problem in O∈((2− τ(d))n/2)
time and polynomial space. Several bounds of this kind are already known for
bipartite graphs [1,2,19,16,13,11].

2 Notation

Let G = (V,E) be a simple undirected graph. Throughout the paper we
implicitly assume that the set of vertices of a graph under consideration is
V = {1, 2, . . . , n}. For simplicity, we consider undirected graphs only (whether
a graph is directed or not is only important for the traveling salesman problem;
the presented algorithm works for both undirected and directed graphs).

By d(G) and λ(G) we denote the average and the maximum degree of G (we
omit G if it is clear from the context). NG(v) is a neighborhood of v in G, i.e.,
all the neighbors of v in G and NG[v] = NG(v) ∈ {v} is its closed neighborhood.
For S ⊆ V , by G[S] we denote a subgraph of G induced by S. We use G \ S as
a shortcut for G[V \ S].

The square of G = (V,E) is a graph G2 = (V,E√) where E√ ⊂ E is

E√ = {(u, v) : there is a path of length at most 2 from u to v in G} .
Note that λ(G2) → (λ(G))2 and hence one can easily find an independent set
of size n

(Δ(G))2+1 in G2.
Following [11], by V>c we denote a subset of vertices V of degree greater

than c. V<c, V=c, V≤c, V⊆c are defined similarly.
By Z⊆c we denote the set of all integers not smaller than c.
Throughout the paper by τ we denote a positive constant that does not depend

on the size of a graph.
We often exploit the following simple fact: one can find in G an independent

set of size at least n
Δ(G)+1 in polynomial time (this is done by a straightfor-

ward greedy algorithm). We also use the following lemma proved by Cygan and
Pilipczuk [11]. We prove and make use of a slightly more general version of the
lemma in the full version of the paper.

Lemma 1 ([11], Lemma 3.4). For any constants μ < 1, 0 < c < 1 there exists
Π > 0 such that for any graph G = (V,E) of average degree d = O(1) one can
find in polynomial time subsets A, Y ⊆ V such that:
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1. A ∧ Y = ≥;
2. A is an independent set in (G \ Y )2;
3. 2|Y | → |A| → cn;
4. each vertex from A has at most 2d neighbors in G \ Y : ⇐v ⇒ A, |{u ⇒ V \

Y : (u, v) ⇒ E}| → 2d ;
5. (|A|

|Y |
)
μ|A| < 2−βn . (1)

3 Solving Partition Problems

Definition 1. Let V = {1, . . . , n}, 1 → k → n be an integer and F =
{F1, . . . ,Fk}, where each Fi ⊆ 2V is a family of subsets of V . A (V, k,F)-
partition problem is to represent V as a disjoint union of k sets from Fi’s:
V = F1 ∪ . . . ∪ Fk, where Fi ⇒ Fi, ⇐1 → i → k .

This definition is similar to the one used by Björklund et al. [8] the only
difference being that in the definition above the families Fi’s are not necessarily
equal.

The brute force search algorithm for this problem takes time
O∈(max1≤i≤k |Fi|k). Using FFT one can easily prove an upper bound
O∈(2n) which beats the previously mentioned bound in many interesting cases.

Theorem 1. A (V, k,F)-partition problem can be solved in O∈(2n) time and
space.

Below, we formally define a combinatorial structure called families with infants
that allow to get an O∈((2 − τ)n) upper bound for partition problems.

Definition 2. R = ((R1, r1), . . . , (Rp, rp)) is called a (p, q)-system of families
with infants for a (V, k,F)-partition problem if all of the following conditions
are satisfied:

1. for all i = 1, . . . , p, ri ⇒ Ri ⊆ V ; ri is called an infant and all the elements
of Ri \ {ri} are called relatives of ri; the sets Ri are called families;

2. the size of each family Ri is at most q;
3. pq → n;
4. all families Ri’s are pairwise disjoint;
5. in any valid partition each infant is accompanied by at least one of its rela-

tives:

⇐1 → i → p, 1 → j → k and ⇐F ⇒ Fj, if ri ⇒ F then |F ∧Ri| ≤ 2. (2)

The following theorem is the main technical result of the paper.

Theorem 2. Let R = ((R1, r1), . . . , (Rp, rp)) be a (p, q)-system of families with
infants for a (V, k,F)-partition problem. Then the problem can be solved in time
and space

O∈
(
2n ·

(
2q − 1

2q

)p

· 2q
)

. (3)
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Roughly, the savings in the running time comes from the fact that while
looking for a valid partition of V one can avoid the case F ∧ Ri = {ri} (i.e.,
instead of considering all 2q possibilities of F ∧Ri one considers 2q − 1 of them).

We always use Theorem 2 with q = O(1) and p = β(n), which makes the
running time O∈((2− τ)n).

Corollary 1. Let R = ((R1, r1), . . . , (Rp, rp)) be a (p, q)-system of families with
infants for a (V, k,F)-partition problem. If q = O(1) and p = β(n), then the
problem can be solved in time and space O∈((2− τ)n).

As an illustration of using Theorem 2 we replicate a result from [7]. In the
(decision version of) domatic number problem the question is to partition the
set of vertices into k dominating sets.

Lemma 2. The domatic number problem in a graph of maximum degree λ =
O(1) can be solved in time and space O∈((2− τ(λ))n).

Proof. The domatic number problem is a (V, k,F)-problem where each Fi is
just the set of all dominating sets of G. By definition, for any v ⇒ V and any
dominating set U ⊆ V , NG[v]∧U ⇔= ≥. This gives a straightforward construction
of families with infants.

Find greedily an independent set I ⊆ V of size p = n
Δ2+2 in G2. Assume

w.l.o.g. that I = {1, . . . , p}. For each 1 → i → p, let Ri = NG[i]. At this point
we have at least n− p(λ+ 1) ≤ p remaining vertices in V \ ∈p

i=1Ri. So, we can
extend each Ri by one vertex and declare this one additional vertex as the infant
of Ri.

All Ri have size at most q = λ + 2 = O(1), the total number of Ri’s is
p = n

Δ2+2 = β(n). Clearly pq → n. The constructed sets satisfy the property (2)
by an obvious reason: each Ri is a superset of NG[v] for some v ⇒ V and none
of these elements is the infant of the family Ri. And U ∧ NG[v] ⇔= ≥ for any
dominating set U and any vertex v, i.e., any dominating set always contains at
least one relative of ri (even if it does not contain ri).

The upper bound now follows from Theorem 2 and Corollary 1. ∗∪
Another example is a O∈((2− τ)n) algorithm for finding a Hamiltonian cycle

in a graph of bounded degree. This result was given in [6].

Lemma 3. The Hamiltonian cycle problem on a graph of maximum degree λ =
O(1) can be solved in time and space O∈((2− τ(λ))n).

Proof. Guess three vertices v0, v1, v2 ⇒ V . Let F = (F0,F1,F2) where Fi ⊆ 2V

consists of all subsets S ⊆ V of size |S| = n/3 for which G contains a path P
such that

1. P starts in vi and ends in ui such that (ui, v(i+1) mod 3) ⇒ E;
2. P goes through all the vertices in S exactly once.

The family F can be computed in time O∈(2H(1/3)n) = O∈(1.99n) (where
H(x) = −x log2 −(1− x) log2(1− x) is the binary entropy function) by dynamic
programming.



556 A. Golovnev, A.S. Kulikov, and I. Mihajlin

We now need to construct a system of families with infants for the result-
ing (V, 3,F)-partition problem. We construct the required family for p = n

Δ2+1

and q = λ + 1. Find greedily an independent set I of size p = n
Δ2+1 in G2.

Assume that I = {1, . . . , p} and let Ri = NG[i], ri = i. Clearly, if F ⇒ Fj con-
tains an infant ri ⇒ Ri then this infant is necessarily accompanied by one of its
relatives since F contains a Hamiltonian path. ∗∪

The corresponding algorithms allow also to solve weighted partition problems.
In such problems, each subset F of Fi is assigned a non-negative integer weight
w(F ) and the goal is to find a partition of minimum total weight.

Theorem 3. If in Theorems 1 and 2 one is given a weighted partition problem
then the upper bounds on the running time and space are multiplied by W where
W is the maximum weight of a subset.

Also, one can turn the algorithm to use polynomial space by providing an
algorithm that enumerates the sets Fi.

Theorem 4. Let F = (F1, . . . ,Fk) and assume that there exists an algorithm
that for any i = 1, . . . , k enumerates the set Fi in time T and polynomial space.
Then one can turn algorithms from Theorems 1, 2, 3 into polynomial space
algorithms at the cost of multiplying the running time by T .

As a corollary we get a polynomial-space algorithm for the case when each Fi

is of polynomial size.

Corollary 2. Let R and (V, k,F) be as in Theorem 4. If for all i = 1, . . . , k,
Fi is enumerable in polynomial time (in particular, |Fi| = poly(n)) then the
corresponding algorithm uses polynomial space.

We conclude the section by noting that the same bounds hold also for the
case when instead of partition one looks for a cover of V by k subsets from
F1, . . . ,Fk. We call the corresponding problem a (V, k,F)-covering problem.

Theorem 5. Theorems 1, 2, 3, 4 hold for (V, k,F)-covering problems.

3.1 Proofs

For a subset U ⊆ V , let b(U) ⇒ {0, 1}n denote the characteristic vector of the set
U (i.e., b(U)[i] = 1 iff i ⇒ U). In the analysis below we sometimes identify a bit
vector b(U) with a non-negative integer between 0 and 2n− 1 that it represents.

For a bit vector b, we denote the Hamming weight of b by w(b), i.e., the number
of 1’s in b. Note the following simple fact: for any two non-negative integers a
and b,

w(bin(a)) + w(bin(b)) ≤ w(bin(a+ b)) (4)

and the equality holds iff there are no carries in a+ b.
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Proof (of Theorem 1). Consider the following polynomials for 1 → i → k:
Pi(x, y) =

∑
F≥Fi

x|F |yb(F ) . We claim that there is a solution to a (V,F , k)-
partition problem iff the monomial xnyb(V ) has a non-zero coefficient in∏k

i=1 Pi(x, y). One direction of this statement is straightforward: if there exist
F1 ⇒ F1, . . . , Fk ⇒ Fk such that F1∪ . . .∪Fk = V then clearly

∏k
i=1 x

|Fi|yb(Fi) =
xnyb(V ) . For the reverse direction, assume that the product of the polynomials
contains the monomial xnyb(V ). Because of the term xn, there exist k subsets
F1 ⇒ F1, . . . , Fk ⇒ Fk such that |F1|+ . . .+ |Fk| = n. In other words, the total
number of 1’s in all characteristic vectors of Fi’s is exactly n. Moreover,

b(F1) + . . .+ b(Fk) = b(V ) (5)

and the number of 1’s in the characteristic vector of V is also n. Now, (4)
implies that there are no carries in (5). This in turn implies that {F1, . . . , Fk} is
a partition of V .

Now it suffices to show that the coefficient of the monomial xnyb(V ) in∏k
i=1 Pi(x, y) can be found in time O∈(2n). Since |F | → n and k → n, the

degree of x in
∏k

i=1 Pi(x, y) does not exceed n2. Therefore, in order to obtain
univariate polynomials we can use Kronecker substitution [14]. Namely, we re-
place y by xn2+1. Thus, for each 1 → i → k we consider a univariate polynomial
Qi(x): Qi(x) =

∑
F≥Fi

x|F |x(n2+1)·b(F ) . It it easy to see that the coefficient of
xa1+(n2+1)·a2 (where a1 → n2) in Qi(x) equals the coeffient of xa1ya2 in Pi(x),
and vice versa. In other words, we associate an integer from [0..(n2 +1)2n] with
each F ⇒ Fi. This integer is an encoding of the set F in n + 2 logn bits, s.t.
the first n bits indicate elements of F , the next logn bits are zeros, and the
last logn bits are the binary expansion of |F |. We need to find the coefficient
of xn+(n2+1)·b(v) in Q =

∏k
i=1 Qi(x), where deg (Q) = O∈(2n), k → n. One can

apply FFT k − 1 times and get the desired upper bound on the running time.
∗∪

Remark 1. Note that the coefficient of the monomial xnyb(V ) in the theorem
equals the number of valid k-partitions. So this theorem (and all the related
theorems) in fact count the number of valid partitions.

Remark 2. Note that here and below all the coefficients are integers of length
poly(n), so all arithmetic operations can be done in polynomial time.

Definition 3. For a matrix M = (M [i, j])0≤i≤p−1,0≤j≤q−1 ⇒ Z
p×q
⊆0 let

colweight(M, j) =

p−1∑

i=0

M [i, j] ,weight(M)=

p−1∑

i=0

q−1∑

j=0

M [i, j]=

q−1∑

j=0

colweight(M, j) ,

rowcode(M, i) = −M [i, 0] +

q−1∑

j=1

2j ·M [i, j] , rowsum(M) =

p−1∑

i=0

rowcode(M, i) ,

code(M) =

p−1∑

i=0

(2q − 1)i · rowcode(M, i) .
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Definition 4. A matrix M ⇒ Z
p×q
⊆0 is called row-normalized if rowcode(M, i) ≤

0 for all 0 → i → p− 1.

Remark 3. In the analysis below we will need the following simple estimates.
Let E ⇒ {0, 1}p×q. Then

1. rowcode(E, i) < 0 iff E[i] = [1, 0, 0, . . . , 0],
2. rowcode(E, i) → 2q − 2.
3. code(E) → (2q − 2) ·∑p−1

i=0 (2
q − 1)i < (2q − 1)p (assuming q ≤ 2).

The following fact is well known so we state is without a proof.

Lemma 4. The expansion of X ⇒ Z⊆0 in powers of b > 1 as X =
∑∪

i=0 xi ·
bi, xi ≤ 0 has the minimal value of the sum of digits

∑∪
i=0 xi iff ⇐i : 0 → xi < b

(i.e., X is written in the numeral system of base b).

Lemma 5. Let q ≤ 2 and E ⇒ {0, 1}p×q and M ⇒ Z
p×q
⊆0 be row-normalized

matrices. If colweight(M, 0) = colweight(E, 0), weight(M) = weight(E),
rowsum(M) = rowsum(E), code(M) = code(E), then M = E.

Proof. The claim follows from Lemma 4. Since for all i, rowcode(E, i) → 2q − 2,
code(E) has the minimal sum of digits in base (2q − 1) system. This in turn
implies that for each i, rowcode(E, i) = rowcode(M, i). Then the first columns
of matrices E and M are equal modulo 2, because parities of rowcodes depend
only on the first column. Since colweight(M, 0) = colweight(E, 0) we conclude
that the first columns of M and E are equal.

Now each rowcode(E, i) has the minimal sum of digits in the system of base 2,
which means that weight(E) has the minimal possible value for these rowcodes.
It follows from Lemma 4 that each M [i, j] must be equal to E[i, j]. ∗∪
Definition 5. An injective function Δ : U ⊥ {0, . . . , p − 1} × {0, . . . , q − 1} is
called a matrix representation of a set U . For such Δ and S ⊆ U , a characteristic
matrix Mα(S) ⇒ {0, 1}p×q is defined as follows: i ⇒ U iff Mα(S)[Δ(i)] = 1.

Proof (of Theorem 2). Let R = ((R1, r1), . . . , (Rp, rp)) be a (p, q)-system of
families with infants for a (V, k,F)-partition problem. Append arbitrary elements
from V to families so that the size of each family equals q and the families are
still disjoint (this is possible since pq → n). Denote the union of families by
R and the rest of V by L. For each family Ri, fix an order of its elements
such that the 0th element is ri. Now consider a matrix representation Δ : V ⊥
{0, . . . , p − 1} × {0, . . . , q − 1} defined as follows. If v is the jth element of Ri,
then Δ(v) = (i, j). We encode each set F ⇒ Fi by parts. We encode vertices
from F ∧ L using the standard technique from Theorem 1. To encode vertices
from F ∧R we use the characteristic matrix Mα(F ∧R). Note that Mα(F ∧R)
is a row-normalized matrix, because if F contains an infant ri of a family Ri,
then it must contain at least one other element from the same row. Consider the
following polynomials for 1 → i → k: Pi(x, y, z, s, t, u) is equal to

∑

F≥Fi

x|F∩L| · yb(F∩L) · zcolweight(M,0) · sweight(M) · trowsum(M) · ucode(M) ,
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where M = Mα(F ∧R) and b(F ∧ L) is an integer from 0 to 2|L| − 1.
There is a solution to a (V,F , k)-partition problem iff the monomial

x|L|yb(L)zcolweight(R,0)sweight(R)trowsum(R)ucode(R)

has a non-zero coefficient in
∏k

i=1 Pi(x, y, z, s, t, u). Indeed, as it was shown in
Theorem 1, x|L|yb(L) corresponds to partitions of L. Lemma 5 implies that only
partitions of R may have the term zcolweight(R,0)sweight(R)trowsum(R)ucode(R). Note
that the degrees of x, z, s in

∏k
i=1 Pi(x, y, z, s, t, u) are bounded from above by

n2, the degree of y — by n · 2|L|, the degree of t — by n2 · 2q, the degree of
u — by n · (2q − 1)p. Now we can apply Kronecker substitution: y = x(n+1)2 , z =

x(n+1)32|L|
, s = x(n+1)52|L|

, t = x(n+1)72|L|
, u = x(n+1)92|L|2q . The running time

of FFT is bounded by the degree of the resulting univariate polynomial, i.e.

O∈(poly(n)2|L|2q(2q−1)p) = O∈(2n−pq(2q−1)p2q) = O∈
(
2n ·

(
2q − 1

2q

)p

· 2q
)

.

∗∪
Proof (of Theorem 3). Following the proofs of Theorem 1 and 2, we introduce
polynomials corresponding to Fi’s. But in the weighted partition problem we
multiply each monomial by zw, where z is a new variable and w is the weight of
the corresponding set. For example, in Theorem 1 the new polynomials would
look as follows: Pi(x, y, z) =

∑
F≥Fi

x|F |yb(F )zw(F ) , where w(F ) is the weight of
F . Now it is clear that there exists a partition of total weight w iff the monomial
xnyb(V )zw has a non-zero coefficient in

∏k
i=1 Pi(x, y, z). We apply Kronecker

substitution y = xn2+1, z = x(n2+1)n2n and use FFT to find all the coefficients
of the product. Now we just need to find the smallest w, s.t. the coefficient of
xn+(n2+1)·b(V )+(n2+1)n2nw does not equal 0. Since the degree of the polynomial
is at most O∈(2nW ), the running time of the algorithm is O∈(2nW ). ∗∪
Proof (of Theorem 4). Assume that we need to find the coefficient of the mono-
mial xm in P =

∏k
i=1 Pi(x), where deg(∂) → d. The theorem assumption claims

that we can evaluate each Pi at any point in time O∈(T ). Note that in order to
get one specific coefficient of P (x), we just need to list all the Fourier coefficients
of P . Indeed, the coefficient of xm in P equals

1

d

d−1∑

i=0

φ−im
d P (φk

d) =
1

d

d−1∑

i=0

φ−im
d

k∏

i=1

Pi(φ
k
d).

Since each Pi(x) can be evaluated in time O∈(T ), we need O∈(d · T ) steps and
only polynomial space to find one coefficient of the product. ∗∪
Proof (of Theorem 5). The proofs are very similar to the proofs for partition
problems, the only difference is that now we consider polynomials P √

i (x, y) =∑
F≥Fi

∏
v≥F (1 + x · yb({v})) . Let F √

i =
⋃

F≥Fi
2F . Clearly, a (V,F , k)-covering

problem has a solution iff a (V,F √, k)-partition problem has one. The polyno-
mial P √

i (x, y) corresponds to the polynomial Pi(x, y) for F √ from the proof of
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Theorem 2. Namely, xmyb(U) has a non-zero coefficient in P √(x, y) iff U ⊆ Fi

and |U | = m. Again, the degree of x in
∏k

i=1 P
√
i (x, y) is less than n2 + 1, so we

can apply Kronecker substitution y = xn2+1. Thus, there exists a valid cover iff
the coefficient of the monomial xn+(n2+1)·b(v) does not equal 0. From now on we
can follow the proofs of Theorems 1, 2, 3, 4. ∗∪

4 The Traveling Salesman Problem

Theorem 6. The traveling salesman problem on graphs of average degree d =
O(1) with integer weights from [1 . . .W ] can be solved in time O∈(W ·(2−τ(d))n)
and polynomial space O(poly(n) logW ).

Proof. Let k be a parameter to be defined later. Guess k vertices v1, . . . , vk ⇒ V
that split an optimal Hamiltonian cycle into k paths of length n/k. All such k-
tuples can be enumerated in time nk. Then the corresponding weighted (V, k,F)-
partition problem is defined as follows. F = (F1, . . . ,Fk) where Fi consists of all
subsets S ⊆ V of size |S| = n

k for which G contains a Hamiltonian path P such
that P starts in vi, goes through all vertices from S, and ends in ui such that
(ui, v(i mod k)+1) ⇒ E. The weight w(S) of such a set S is equal to the minimal
possible weight of a path P (including the weight of the edge (ui, v(i mod k)+1)).
It is not difficult to see that solving the traveling salesman problem is equivalent
to solving the (V, k,F)-partition problem if the vertices v1, . . . , vk are guessed
correctly.

Note that any Fi can be enumerated in time
(
n
n
k

) · (n
k

)
! (the first term is for

guessing the subset of vertices S, the second one is for guessing the order of these
vertices in an optimal path P ). Recall also that guessing the vertices v1, . . . , vk
requires O(nk) time. By choosing k =

↓
n we turn both these estimates into

subexponential 2o(n).
Now we turn to constructing the corresponding system of families with infants.

Let μ < 1, 0 < c < 1 be constants to be defined later. Let A, Y ⊆ V be
provided by Lemma 1. Consider an optimal Hamiltonian cycle C in the graph.
Let Y √ ⊆ V be the successors of the vertices from Y in the cycle C and let
A√ = A \ Y √ \ {v1, . . . , vk}. Note that |A√| ≤ |A|

2 − k (since |A| ≤ 2|Y |) and for
each vertex v ⇒ A√ its predecessor u in the cycle C belongs to V \ Y .

Let A√ = {1, . . . , p}. Then for all i = 1, . . . , p, Ri = NG\Y [i] and ri = i.
Clearly, |Ri| → q = 2d+ 1. By choosing c < 1

2d+1 we can guarantee that pq → n.
All Ri’s are disjoint since A√ is an independent set in (G \ Y )2. Finally, if the
set Y √ is guessed correctly (i.e., Y √ are indeed successors of Y in the optimal
cycle C) then ((R1, r1), . . . , (Rp, rp)) is a (p, q)-system of families with infants.
Indeed, if ri ⇒ F for some F ⇒ Fj , then ri’s predecessor in C must lie in V \ Y ,
i.e., in Ri (and ri must have a predecessor since ri ⇔= v1, . . . , vk).

By Theorems 3 and 4 the total running time does not exceed

2o(n) ·
(|A|
|Y |

)
· 2n ·

(
2q − 1

2q

)p

·W.
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Recall that p = |A√| − k ≤ |A|/2 − |A|/6 = |A|/3 for large enough n (since

|A| = cn and k =
↓
n). Choose μ =

(
22d+1−1
22d+1

)1/3

. Then (1) implies that
(|A|
|Y |

) ·
(
2q−1
2q

)p
< 2−βn for a constant Π > 0. Thus the total running time is O∈(W ·

(2− τ)n). ∗∪

5 Counting Perfect Matchings and Coloring

Due to space restrictions the proofs of the following two theorems are provided
in the full version of the paper only.

Theorem 7. There is an algorithm checking whether for a given graph G of
average degree d = O(1) there exists a proper k-coloring in time O∈((2− τ(d))n)
and exponential space.

Remark 4. The algorithm actually solves a more general problem known as max-
imum k-cut. In this problem the goal is to partition the vertices into k parts such
that the number of edges joining different parts is maximal possible.

The algorithm for counting perfect matchings uses many ideas from the algo-
rithm for the traveling salesman problem presented in Theorem 6.

Theorem 8. The number of perfect matchings in a graph G with 2n vertices of
average degree d = O(1) can be found in time O∈((2 − τ(d))n) and polynomial
space.
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Abstract. This paper is motivated by the fact that many systems need
to be maintained continually while the underlying costs change over time.
The challenge is to continually maintain near-optimal solutions to an
underlying optimization problem, without creating too much churn in the
solution itself. We model this as a multistage combinatorial optimization
problem where the input is a sequence of cost functions (one for each
time step); while we can change the solution from step to step, we incur
an additional cost for every such change.

We first study the multistage matroid maintenance problem, where
we need to maintain a base of a matroid in each time step under chang-
ing cost functions and acquisition costs for adding new elements. The
online version generalizes online paging. E.g., given a graph, we need to
maintain a spanning tree Tt at each step: we pay ct(Tt) for the cost of the
tree at time t, and also |Tt\Tt−1| for the number of edges changed at this
step. Our main result is a polynomial time O(logm log r)-approximation
to the online problem, where m is the number of elements/edges and
r is the rank of the matroid. This improves on results of Buchbinder et
al. [7] who addressed the fractional version of this problem under uniform
acquisition costs, and Buchbinder, Chen and Naor [8] who studied the
fractional version of a more general problem. We also give an O(logm)
approximation for the offline version of the problem. These bounds hold
when the acquisition costs are non-uniform, in which case both these
results are the best possible unless P=NP.

We also study the perfect matching version of the problem, where we
maintain a perfect matching at each step under changing cost functions
and costs for adding new elements. Surprisingly, the hardness drastically
increases: for any constant ε > 0, there is no O(n1−ε)-approximation to
the multistage matching maintenance problem, even in the offline case.

1 Introduction

In a typical instance of a combinatorial optimization problem the underlying con-
straints model a static application frozen in one time step. In many applications

Γ Research performed while the author was at Microsoft Reserach Silicon Valley. Re-
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however, one needs to solve instances of the combinatorial optimization problem
that changes over time. While this is naturally handled by re-solving the opti-
mization problem in each time step separately, changing the solution each time
step often incurs a transition cost. Consider, for example, the problem faced
by a vendor who needs to get supply of an item from k different producers to
meet her demand. On any given day, she could get prices from each of the pro-
ducers and pick the k cheapest ones to buy from. As prices change, this set of
the k cheapest producers may change. However, there is a fixed cost to starting
and/or ending a relationship with any new producer. The goal of the vendor is
to minimize the sum total of these two costs: an “acquisition cost” a(e) to be
incurred each time she starts a new business relationship with a producer, and
a per period cost ct(e) of buying in period t from each of the k producers that
she picks in this period, summed over T time periods. In this work we consider a
generalization of this problem, where the constraint “pick k producers” may be
replaced by a more general combinatorial constraint. It is natural to ask whether
simple combinatorial problems for which the one-shot problem is easy to solve,
as the example above is, also admit good algorithms for the multistage version.

We study the Multistage Matroid Maintenance problem (MMM), where the
underlying combinatorial constraint is that of maintaining a base of a given
matroid. In the example above, the requirement the vendor buys from k different
producers could be expressed as optimizing over the k−uniform matroid. In a
more interesting case one may want to maintain a spanning tree of a graph,
where the edge costs ct(e) change over time, and an acquisition cost of a(e)
has to paid every time a new edge enters the spanning tree. (A formal definition
appears in Section 2.) While our emphasis is on the online problem, we will show
results for the offline version as well, where all edge costs are given in advance.
A first observation we make is that if the matroid in question is allowed to be
different in each time period, then the problem is hard to approximate to any
non-trivial factor (see [17]) even in the offline case. We therefore focus on the
case where the same matroid is given at each time period.

To set the baseline, we first study the offline version of the problem (in Sec-
tion 3), where all the input parameters are known in advance. We show an
LP-rounding algorithm which approximates the total cost up to a logarithmic
factor. The same approximation factor could be obtained by a simple greedy
algorithm, but it will be useful to see the rounding algorithm, since we will use
its extension in the online setting. We also show a matching hardness reduction,
proving that the problem is hard to approximate to better than a logarithmic
factor; even for the special case of spanning trees in graphs.

We then turn to the online version of the problem, where in each time period,
we learn the costs ct(e) of each element, and we need to pick a base St of the
matroid for this period. We analyze the performance of our online algorithm
in the competitive analysis framework: i.e., we compare the cost of the online
algorithm to that of the optimum solution of the offline instance. In Section 4,
we give an efficient randomized O(log |E| log(rT ))-competitive algorithm for this
problem against any oblivious adversary (here E is the universe for the matroid
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and r is the rank of the matroid), and show that no polynomial-time online
algorithm can do better. We also show that the requirement that the algorithm
be randomized is necessary: any deterministic algorithm must incur an overhead
of σ(min(|E|, T )), even for the simplest of matroids.

Our results above crucially rely on the properties of matroids. It is natural to
ask if we can handle more general set systems, e.g., p-systems. In Section 5, we
consider the case where the combinatorial object we need to maintain is a perfect
matching in a graph. Somewhat surprisingly, the problem here is significantly
harder than the matroid case, even in the offline case. In particular, we show that
even when the number of periods is a constant, no polynomial time algorithm
can achieve an approximation ratio better than σ(|E|1−ε) for any constant τ > 0.

1.1 Techniques

We first show that the MMM problem, which is a packing-covering problem,
can be reduced to the analogous problem of maintaining a spanning set of a
matroid. We call the latter the Multistage Spanning set Maintenance (MSM)
problem. While the reduction itself is fairly clean, it is surprisingly powerful
and is what enables us to improve on previous works. The MSM problem is
a covering problem, so it admits better approximation ratios and puts at our
disposal a much larger toolbox of techniques. We note that this is the only place
where we need the matroid to not change over time: our algorithms for MSM
work when the matroids change over time, and even when considering matroid
intersections. The MSM problem is then further reduced to the case where the
holding cost of an element is in {0,∈}, this reduction simplifies the analysis.

For the offline case, we present two algorithms. We first observe that a greedy
algorithm easily gives an O(log T )-approximation. We then present a simple
randomized rounding algorithm for the linear program. This is analyzed using
recent results on contention resolution schemes [12], and gives an approximation
of O(log rT ), which can be improved to O(log r) when the acquisition costs are
uniform. This LP-rounding algorithm will be an important constituent of the
algorithm for the online case.

For the online case we again write the problem as a covering problem, even
though the natural LP formulation has both covering and packing constraints.
Phrasing it as a covering problem (with box constraints) enables us to use, as
a black-box, results on online algorithms for the fractional problem [9]. This
formulation however has exponentially many constraints. We handle that by
showing a method of adaptively picking violated constraints such that only a
small number of constraints are ever picked. The crucial insight here is that if
x is such that 2x is not feasible, then x is at least 1

2 away in λ1 distance from
any feasible solution; in fact there is a single constraint that is violated to an
extent half. This insight allows us to make non-trivial progress (using a natural
potential function) every time we bring in a constraint, and lets us bound the
number of constraints we need to add until constraints are satisfied by 2x.
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1.2 Related Work

Our work is related to several lines of research, and extends some of them. The
paging problem is a special case of MMM where the underlying matroid is a uni-
form one. Our online algorithm generalizes the O(log k)-competitive algorithm
for weighted caching [5], using existing online LP solvers in a black-box fash-
ion. Going from uniform to general matroids loses a logarithmic factor (after
rounding), we show such a loss is unavoidable unless we use exponential time.

The MMM problem is also a special case of classical metrical task systems
[6]; see [1, 4] for more recent work. The best approximations for metrical task
systems are poly-logarithmic in the size of the metric space. In our case the
metric space is specified by the total number of bases of the matroid which is
often exponential, so these algorithms only give a trivial approximation.

In trying to unify online learning and competitive analysis, Buchbinder
et al. [7] consider a problem on matroids very similar to ours. The salient differ-
ences are: (a) in their model all acquisition costs are the same, and (b) they work
with fractional bases instead of integral ones. They give an O(log n)-competitive
algorithm. Our online LP solving generalizes their result to arbitrary acquisi-
tion costs. They leave open the question of getting integer solutions online (Seffi
Naor, private communication), which we present in this work. In a more recent
work, Buchbinder, Chen and Naor [8] use a regularization approach to solving a
broader set of fractional problems, but once again do not get integer solutions.

Shachnai et al. [23] consider “reoptimization” problems: given a starting solu-
tion and a new instance, they want to balance the transition cost and the cost on
the new instance. This is a two-timestep version of our problem, and the short
time horizon raises a very different set of issues (since the output solution does
not need to itself hedge against possible subsequent futures).

Cohen et al. [13] describe a framework for stability-versus-fit tradeoff; e.g., that
of finding a “stable” solutions which (like in reoptimization) maximizes the qual-
ity minus the transition costs. They show that maintaining stable solutions for
matroids becomes a repeated two-stage reoptimization problem; their problem is
poly-time solvable, whereas matroid problems in our model become NP-hard. The
reason is that the solution for two time steps does not necessarily lead to a base
from which it is easy to move in subsequent time steps, as our hardness reduc-
tion shows. They also consider a multistage offline version of their problem (again
maximizing fit minus stability) which is very similar in spirit and form to our (min-
imization) problem, though the minus sign in the objective function makes it dif-
ficult to approximate in cases which are not in poly-time.

In dynamic Steiner tree maintenance [18, 19, 15] the goal is to maintain an
approximately optimal Steiner tree for a varying instance (where terminals are
added) while changing few edges at each time step. In dynamic load balancing [2,
14] one has to maintain a good scheduling solution while moving a small number
of jobs around. The work on lazy experts in the online prediction community [11]
also deals with similar concerns.

There is also work on “leasing” problems [20, 3, 21]: these are optimization
problems where elements can be obtained for an interval of any length, where the



Changing Bases: Multistage Optimization for Matroids and Matchings 567

cost is concave in the lengths; the instance changes at each timestep. The main
differences are that the solution only needs to be feasible at each timestep (i.e.,
the holding costs are {0,∈}), and that any element can be leased for any length
λ of time starting at any timestep for a cost that depends only on λ, which gives
these problems a lot of uniformity. In turn, these leasing problems are related to
“buy-at-bulk” problems.

2 Maintaining Bases to Maintaining Spanning Sets

Given reals c(e) for elements e ⊆ E, we will use c(S) for S ⊂ E to denote∑
e◦S c(e). We denote {1, 2, . . . , T } by [T ].
We assume basic familiarity with matroids: see, e.g., [22] for a detailed treat-

ment. Given a matroid M = (E, I), a base is a maximum cardinality in-
dependent set, and a spanning set is a set S such that rank(S) = rank(E);
equivalently, this set contains a base within it. The span of a set S ⊂ E is
span(S) = {e ⊆ E | rank(S + e) = rank(S)}. The matroid polytope PI(M) is

defined as {x ⊆ R
|E|
√0 | x(S) → rank(S) ∧S ⊂ E}. The base polytope PB(M) =

PI(M) ≥ {x | x(E) = rank(E)}. We will sometimes use m to denote |E| and r
to denote the rank of the matroid.

Formal Definition of Problems: An instance of the Multistage Matroid
Maintenance (MMM) problem consists of a matroid M = (E, I), an acquisi-
tion cost a(e) ⇐ 0 for each e ⊆ E, and for every timestep t ⊆ [T ] and element
e ⊆ E, a holding cost ct(e). The goal is to find bases {Bt ⊆ I}t◦[T ] to minimize

∑
t

(
ct(Bt) + a(Bt \Bt−1)

)
, (2.1)

where we define B0 := ⇒. A related problem is the Multistage Spanning set
Maintenance(MSM) problem, where we want to maintain a spanning set St ⊂ E
at each time, and cost of the solution {St}t◦[T ] (once again with S0 := ⇒) is

∑
t

(
ct(St) + a(St \ St−1)

)
. (2.2)

Maintaining Bases versus Maintaining Spanning Sets. The following
lemma shows the equivalence of maintaining bases and spanning sets. Despite
its simplicity, this is what enables us to avoid obstacles faced by previous works.

Lemma 1. For matroids, the optimal solutions to MMM and MSM have the
same costs.

Proof. Clearly, any solution to MMM is also a solution to MSM, since a base
is also a spanning set. Conversely, consider a solution {St} to MSM. Set B1 to
be any base in S1. Given Bt−1 ⊂ St−1, start with Bt−1 ≥ St, and extend it to
any base Bt of St. This is the only step where we use the matroid properties—
indeed, since the matroid is the same at each time, the set Bt−1 ≥ St remains
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independent at time t, and by the matroid property this independent set can be
extended to a base. Observe that this process just requires us to know the base
Bt−1 and the set St, and hence can be performed in an online fashion.

We claim that the cost of {Bt} is no more than that of {St}. Indeed, ct(Bt) →
ct(St), because Bt ⊂ St. Moreover, let D := Bt \ Bt−1, we pay

∑
e◦D ae for

these elements we just added. To charge this, consider any such element e ⊆ D,
let tσ → t be the time it was most recently added to the cover—i.e., e ⊆ St∈ for
all t≤ ⊆ [tσ, t], but e ∪⊆ Stα−1. The MSM solution paid for including e at time
tσ, and we charge our acquisition of e into Bt to this pair (e, tσ). It suffices to
now observe that we will not charge to this pair again, since the procedure to
create {Bt} ensures we do not drop e from the base until it is dropped from St

itself—the next time we pay an addition cost for element e, it would have been
dropped and added in {St} as well.

Hence it suffices to give a good solution to the MSM problem. We observe
that the proof above uses the matroid property crucially and would not hold,
e.g., for matchings. It also requires that the same matroid be given at all time
steps. Also, as noted above, the reduction is online: the instance is the same,
and given an MSM solution it can be transformed online to a solution to MMM.

Elements and Intervals: It is convenient to think of an instance of MSM as
being a matroid M, where each element only has an acquisition cost a(e) ⇐ 0,
and it has a lifetime Ie = [le, re]. There are no holding costs, but the element
e can be used in spanning sets only for timesteps t ⊆ Ie. Equivalently, one can
think of holding costs being zero for t ⊆ Ie and ∈ otherwise.

An Offline Exact Reduction. The translation is the natural one: given instance
(E, I) of MSM, create elements elr for each e ⊆ E and 1 → l → r → T , with
acquisition cost a(elr) := a(e) +

∑r
t=l ct(e), and interval Ielr := [l, r]. (The

matroid is extended in the natural way, where all the elements elr associated
with e are parallel to each other.) The equivalence of the original definition of
MSM and this interval view is easy to verify.

An Online Approximate Reduction. Observe that the above reduction created
at most

(
T
2

)
copies of each element, and required knowledge of all the costs. If

we are willing to lose a constant factor in the approximation, we can perform a
reduction to the interval model in an online fashion as follows. For element e ⊆ E,
define t0 = 0, and create many parallel copies {ei}i◦Z+ of this element (modifying
the matroid appropriately). Now the ith interval for e is Iei := [ti−1+1, ti], where
ti is set to ti−1 +1 in case cti−1+1(e) ⇐ a(e), else it is set to the largest time such

that the total holding costs
∑ti

t=ti−1+1 ct(e) for this interval [ti−1 + 1, ti] is at

most a(e). This interval Iei is associated with element ei, which is only available
for this interval, at cost a(ei) = a(e) + cti−1+1(e).

A few salient points about this reduction: the intervals for an original element e
now partition the entire time horizon [T ]. The number of elements in the modified
matroid whose intervals contain any time t is now only |E| = n, the same as
the original matroid; each element of the modified matroid is only available for a
single interval. Moreover, the reduction can be done online: given the past history
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and the holding cost for the current time step t, we can ascertain whether t is
the beginning of a new interval (in which case the previous interval ended at
t − 1) and if so, we know the cost of acquiring a copy of e for the new interval
is a(e) + ct(e). It is easy to check that the optimal cost in this interval model is
within a constant factor of the optimal cost in the original acquisition/holding
costs model.

3 Offline Algorithms

Being a covering problem, MSM is conceptually easier to solve: e.g., we could
use algorithms for submodular set cover [24] with the submodular function being
the sum of ranks at each of the timesteps, to get an O(log T ) approximation.

In [17], we give a dual-fitting proof of the performance of the greedy algorithm.
Here we give an LP-rounding algorithm which gives an O(log rT ) approxima-
tion; this can be improved to O(log r) in the common case where all acquisition
costs are unit. (While the approximation guarantee is no better than that from
submodular set cover, this LP-rounding algorithm will prove useful in the online
case in Section 4). Finally, the hardness results in [17] show that we cannot hope
to do much better than these logarithmic approximations.

3.1 The LP Rounding Algorithm

We now consider an LP-rounding algorithm for the MMM problem; this will
generalize to the online setting, whereas it is unclear how to extend the greedy
algorithm to that case. For the LP rounding, we use the standard definition of
the MMM problem to write the following LP relaxation.

min
∑

t,e

a(e) · yt(e) +
∑

t,e

ct(e) · zt(e) (LP2)

s.t. zt ⊆ PB(M) ∧t
yt(e) ⇐ zt(e) − zt−1(e) ∧t, e

yt(e), zt(e) ⇐ 0

It remains to round the solution to get a feasible solution to MSM (i.e., a spanning
set St for each time) with expected cost at most O(log n) times the LP value,
since we can use Lemma 1 to convert this to a solution for MMM at no extra
cost. The following lemma is well-known, see, e.g. [10].

Lemma 2. For a fractional base z ⊆ PB(M), let R(z) be the set obtained
by picking each element e ⊆ E independently with probability ze. Then
E[rank(R(z))] ⇐ r(1 − 1/e).

Theorem 1. Any fractional solution can be randomly rounded to get solution
to MSM with cost O(log rT ) times the fractional value, where r is the rank of
the matroid and T the number of timesteps.
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Proof. Set L = 32 log(rT ). For each element e ⊆ E, choose a random threshold
Πe independently and uniformly from the interval [0, 1/L]. For each t ⊆ T , define

the set Ŝt := {e ⊆ E | zt(e) ⇐ Πe}; if Ŝt does not have full rank, augment its rank
using the cheapest elements according to (ct(e) + a(e)) to obtain a full rank set

St. Since Pr[e ⊆ Ŝt] = min{L · zt(e), 1}, the cost ct(Ŝt) → L× (ct · zt). Moreover,

e ⊆ Ŝt \ Ŝt−1 exactly when Πe satisfies zt−1(e) < Πe → zt(e), which happens with
probability at most

max(zt(e) − zt−1(e), 0)

1/L
→ L · yt(e).

Hence the expected acquisition cost for the elements newly added to Ŝt is at
most L ×∑

e(a(e) · yt(e)). Finally, we have to account for any elements added

to extend Ŝt to a full-rank set St.

Lemma 3. For any fixed t ⊆ [T ], the set Ŝt contains a basis of M with proba-
bility at least 1 − 1/(rT )8.

The proof of the lemma is a Chernoff bound, and appears in [17]. Now if the

set Ŝt does not have full rank, the elements we add have cost at most that of the
min-cost base under the cost function (ae +ct(e)), which is at most the optimum
value for (LP2). (We use the fact that the LP is exact for a single matroid, and
the global LP has cost at least the single timestep cost.) This happens with
probability at most 1/(rT )8, and hence the total expected cost of augmenting

Ŝt over all T timesteps is at most O(1) times the LP value. This proves the main
theorem.

Again, this algorithm for MSM works with different matroids at each timestep,
and also for intersections of matroids. To see this observe that the only require-
ments from the algorithm are that there is a separation oracle for the polytope
and that the contention resolution scheme works. In the case of k−matroid in-
tersection, if we pay an extra O(log k) penalty in the approximation ratio we
have that the probability a rounded solution does not contain a base is < 1/k
so we can take a union bound over the multiple matroids.

An Improvement: Avoiding the Dependence on T : When the ratio of the
maximum to the minimum acquisition cost is small, we can improve the approx-
imation factor above. We show that essentially the same randomized rounding
algorithm (with a different choice of L) gives an approximation ratio of log ramax

amin
.

We defer the argument to [17].

Hardness for Offline MSM: In [17] we show that the MSM and MMM
problems are NP-hard to approximate better than σ(min{log r, logT }) even for
graphical matroids. We also show an integrality gap of σ(logT ).
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4 Online MSM

We turn to solving MMM in the online setting. Now, the acquisition costs a(e) are
known up-front, but the holding costs ct(e) for day t are not known before day t.
Since the equivalence given in Lemma 1 between MMM and MSM holds even in
the online setting, we can just work on the MSM problem. We show that the on-
line MSM problem admits an O(log |E| log rT )-competitive (oblivious) random-
ized algorithm. To do this, we show that one can find an O(log |E|)-competitive
fractional solution to the linear programming relaxation in Section 3, and then
we round this LP relaxation online, losing another logarithmic factor.

4.1 Solving the LP Relaxations Online

Again, we work in the interval model outlined in Section 2. Recall that in this
model, for each element e there is a unique interval Ie ⊂ [T ] during which it
is alive. The element e has an acquisition cost a(e), no holding costs. Once an
element has been acquired (which can be done at any time during its interval),
it can be used at all times in that interval, but not after that. In the online
setting, at each time step t we are told which intervals have ended (and which
have not); also, which new elements e are available starting at time t, along with
their acquisition costs a(e). Of course, we do not know when its interval Ie will
end; this information is known only once the interval ends.

We will work with the same LP as in Section 3.1, albeit now we have to solve
it online. The variable xe is the indicator for whether we acquire element e.

P := min
∑

e a(e) · xe (LP3)

s.t. zet ⊆ PB(M) ∧t
zet → xe ∧e, t ⊆ Ie

xe, zet ⊆ [0, 1]

Note that this is not a packing or covering LP, which makes it more annoying to
solve online. Hence we consider a slight reformulation. Let Pss(M) denote the
spanning set polytope defined as the convex hull of the full-rank (a.k.a. spanning)
sets {βS | S ⊂ E, rank(S) = r}. Since each spanning set contains a base, we can
write the constraints of (LP3) as:

xEt ⊆ Pss(M) ∧t, where Et = {e : t ⊆ Ie}. (4.3)

Here we define xS to be the vector derived from x by zeroing out the xe values
for e ∪⊆ S. It is known that the polytope Pss(M) can be written as a (rather
large) set of covering constraints. Indeed, x ⊆ Pss(M) ≤⇔ (1− x) ⊆ PI(M⊆),
where M⊆ is the dual matroid for M. Since the rank function of M⊆ is given by
r⊆(S) = r(E \ S) + |S| − r(E), it follows that (4.3) can be written as

∑
e◦S xe ⇐ r(E) − r(E \ S) ∧t, ∧S ⊂ Et (LP4)

xe ⇐ 0 ∧e ⊆ E

xe → 1 ∧e ⊆ E.
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Thus we get a covering LP with “box” constraints over E. The constraints can
be presented one at a time: in timestep t, we present all the covering constraints
corresponding to Et. We remark that the newer machinery of [8] may be applica-
ble to LP4. We next show that a simpler approach suffices1. The general results
of Buchbinder and Naor [9] (and its extension to row-sparse covering problems
by [16]) imply a deterministic algorithm for fractionally solving this linear pro-
gram online, with a competitive ratio of O(log |E|) = O(logm). However, this is
not yet a polynomial-time algorithm, the number of constraints for each timestep
being exponential. We next give an adaptive algorithm to generate a small yet
sufficient set of constraints.

Solving the LP Online in Polynomial Time: Given a vector x ⊆ [0, 1]E,
define x̃ as follows:

x̃e = min(2 xe, 1) ∧e ⊆ E. (4.4)

Clearly, x̃ → 2x and x̃ ⊆ [0, 1]E. We next describe the algorithm for generating
covering constraints in timestep t. Recall that [9] give us an online algorithm
AonLP for solving a fractional covering LP with box constraints; we use this as a
black-box. (This LP solver only raises variables, a fact we will use.) In timestep
t, we adaptively select a small subset of the covering constraints from (LP4), and
present it to AonLP . Moreover, given a fractional solution returned by AonLP ,
we will need to massage it at the end of timestep t to get a solution satisfying
all the constraints from (LP4) corresponding to t.

Let x be the fractional solution to (LP4) at the end of timestep t − 1. Now
given information about timestep t, in particular the elements in Et and their
acquisition costs, we do the following. Given x, we construct x̃ and check if
x̃Et ⊆ Pss(M), as one can separate for Pss(M). If x̃Et ⊆ Pss(M), then x̃ is
feasible and we do not need to present any new constraints to AonLP , and we
return x̃. If not, our separation oracle presents an S such that the constraint∑

e◦S x̃e ⇐ r(E)− r(E \S) is violated. We present the constraint corresponding
to S to AonLP to get an updated x, and repeat until x̃ is feasible for time
t. (Since AonLP only raises variables and we have a covering LP, the solution
remains feasible for past timesteps.) We next argue that we do not need to repeat
this loop more than 2n times.

Lemma 4. If for some x and the corresponding x̃, the constraint
∑

e◦S x̃e ⇐
r(E) − r(E \ S) is violated. Then

∑
e◦S xe → r(E) − r(E \ S) − 1

2

Proof. Let S1 = {e ⊆ S : x̃e = 1} and let S2 = S \ S1. Let Δ denote
∑

e◦S2
x̃e.

Thus

|S1| =
∑

e◦S x̃e −
∑

e◦S2
x̃e < r(E) − r(E \ S) − Δ

1 Additionally, Lemma 4 will be useful in improving the rounding algorithm.
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Since both |S1| and r(E) − r(E \ S) are integers, it follows that |S1| → r(E) −
r(E \ S) − ∗Δ⊥. On the other hand, for every e ⊆ S2, xe = 1

2 · x̃e, and thus∑
e◦S2

xe = Ω
2 . Consequently

∑
e◦S xe =

∑
e◦S1

xe +
∑

e◦S2
xe = |S1| + Ω

2

→ r(E) − r(E \ S) − ∗Δ⊥ + Ω
2 .

Finally, for any Δ > 0, ∗Δ⊥ − Ω
2 ⇐ 1

2 , so the claim follows.

The algorithm AonLP updates x to satisfy the constraint given to it, and
Lemma 4 implies that each constraint we give to it must increase

∑
e◦Et

xe

by at least 1
2 . The translation to the interval model ensures that the number of

elements whose intervals contain t is at most |Et| → |E| = m, and hence the total
number of constraints presented at any time t is at most 2m. We summarize the
discussion of this section in the following theorem.

Theorem 2. There is a polynomial-time online algorithm to compute an
O(log |E|)-approximate solution to (LP3).

We observe that the solution to this linear program can be trivially trans-
formed to one for the LP in Section 3.1. Finally, the randomized rounding
algorithm of Section 3.1 can be implemented online by selecting a threshold
te ⊆ [0, 1/L] the beginning of the algorithm, where L = ∂(log rT ) and selecting
element e whenever x̃e exceeds te: here we use the fact that the online algorithm
only ever raises xe values, and this rounding algorithm is monotone. Reran-
domizing in case of failure gives us an expected cost of O(log rT ) times the LP
solution, and hence we get an O(logm log rT )-competitive algorithm.

An O(log r amax

amin
)-Approximate Rounding. The dependence on the time

horizon T is unsatisfactory in some settings, but we can do better using Lemma 4.
Recall that the log(rT )-factor loss in the rounding follows from the naive union
bound over the T time steps. We can argue that when amax

amin
is small, we can

afford for the rounding to fail occasionally, and charge it to the acquisition cost
incurred by the linear program. The details appear in [17].

Hardness of the online MMM and online MSM. In [17] we show that
any polynomial-time algorithm cannot achieve better than an σ(logm logT )
competitive ratio, via a reduction from online set cover.

5 Perfect Matching Maintenance

We next consider the Perfect Matching Maintenance (PMM) problem where E is
the set of edges of a graph G = (V,E), and the at each step, we need to maintain
a perfect matchings in G. Details and proofs for this Section appear in [17].
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Integrality Gap. Somewhat surprisingly, we show that the natural LP relax-
ation has an σ(n) integrality gap, even for a constant number of timesteps.

Hardness. The Perfect Matching Maintenance problem is hard to approximate:

Theorem 3. For any φ > 0 it is NP-hard to distinguish PMM instances with
cost Nα from those with cost N1−α, where N is the number of vertices in the
graph. This holds even when the holding costs are in {0,∈}, acquisition costs
are 1 for all edges, and the number of time steps is a constant.

6 Conclusions

Our work suggests several directions for future research. It is natural to study
other combinatorial optimization problems, both polynomial time solvable ones
such as shortest path and min-cut, as well as NP-hard ones such as min-max load
balancing and bin-packing in this multistage framework with acquisition costs.
Moreover, the approximability of the bipartite matching maintenance, as well
as matroid intersection maintenance remains open. Our hardness results for the
matroid problem hold when edges have {0, 1} acquisition costs. The unweighted
version where all acquisition costs are equal may be easier; we currently know no
hardness results, or sub-logarithmic approximations for this useful special case.

References

[1] Abernethy, J., Bartlett, P.L., Buchbinder, N., Stanton, I.: A regularization ap-
proach to metrical task systems. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann,
T. (eds.) Algorithmic Learning Theory. LNCS, vol. 6331, pp. 270–284. Springer,
Heidelberg (2010)

[2] Andrews, M., Goemans, M.X., Zhang, L.: Improved bounds for on-line load bal-
ancing. Algorithmica 23(4), 278–301 (1999)

[3] Anthony, B.M., Gupta, A.: Infrastructure leasing problems. In: Fischetti, M.,
Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 424–438. Springer,
Heidelberg (2007)

[4] Bansal, N., Buchbinder, N., Naor, J(S.): Metrical task systems and the k-server
problem on hSTs. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der
Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 287–298.
Springer, Heidelberg (2010)

[5] Bansal, N., Buchbinder, N., Naor, J.S.: Randomized competitive algorithms for
generalized caching. In: STOC 2008, pp. 235–244 (2008)

[6] Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task
system. J. ACM 39(4), 745–763 (1992)

[7] Buchbinder, N., Chen, S., Naor, J., Shamir, O.: Unified algorithms for online
learning and competitive analysis. JMLR 23, 5.1–5.18 (2012)

[8] Buchbinder, N., Chen, S., Naor, J.S.: Competitive analysis via regularization. In:
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 436–444 (2014)

[9] Buchbinder, N., Naor, J.S.: Online primal-dual algorithms for covering and
packing. Math. Oper. Res. 34(2), 270–286 (2009)



Changing Bases: Multistage Optimization for Matroids and Matchings 575

[10] Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set
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Abstract. In this paper, we give the first online algorithms with a poly-
logarithmic competitive ratio for the node-weighted prize-collecting Steiner tree
and Steiner forest problems. The competitive ratios are optimal up to logarithmic
factors. In fact, we give a generic technique for reducing online prize-collecting
Steiner problems to the fractional version of their non-prize-collecting counter-
parts losing only a logarithmic factor in the competitive ratio. This reduction is
agnostic to the cost model (edge-weighted or node-weighted) of the input graph
and applies to a wide class of network design problems including Steiner tree,
Steiner forest, group Steiner tree, and group Steiner forest. Consequently, we
also give the first online algorithms for the edge-weighted prize-collecting group
Steiner tree and group Steiner forest problems with a poly-logarithmic competi-
tive ratio, since corresponding fractional guarantees for the non-prize-collecting
variants of these problems were previously known.

For the most fundamental problem in this class, namely the prize-collecting
Steiner tree problem, we further improve our results. For the node-weighted
prize-collecting Steiner tree problem, we use the generic reduction but improve
the best known online Steiner tree result from Naor et al [14] on two counts. We
improve the competitive ratio by a logarithmic factor to make it optimal (up to
constants), and also give a new dual-fitting analysis showing that the competitive
ratio holds against the fractional optimum. This result employs a new technique
that we call dual averaging which we hope will be useful for other dual-fitting
analyses as well. For the edge-weighted prize-collecting Steiner tree problem, we
match the optimal (up to constants) competitive ratio of O(logn) that was previ-
ously achieved by Qian and Williamson [15] but provide a substantially simpler
analysis.

1 Introduction

Over the last two decades, network design problems have been a cornerstone of algo-
rithmic research. The Steiner tree (ST) problem, where the goal is to connect a given
set of terminals at minimum cost, and its various generalizations have been central to
this research effort. One branch of Steiner problems that has attracted substantial at-
traction are the so called prize-collecting problems, where the algorithm is permitted to
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violate one or more connection constraints but must pay corresponding penalties in the
objective function. Prize collecting (PC) Steiner problems were originally motivated by
applications in network planning for service providers (see e.g., [11]). They have since
become a well-studied branch of approximation algorithms. In this paper, we focus on
the classical online model, where the connectivity demands appear over time and must
be immediately satisfied. The study of online prize-collecting network design was ini-
tiated very recently by Qian and Williamson [15]. This is somewhat surprising on two
counts: first, online versions of Steiner problems appear prominently in the algorithmic
literature and prize-collecting variants are a natural generalization; and second, the on-
line model is well-motivated in the context of prize-collecting Steiner problems since
in practice, new customers appear over time and network providers must upgrade their
networks according to the new demands or lose these customers, thereby paying the
corresponding penalty in the revenue. In this paper, we provide a simple generic ap-
proach to online prize-collecting Steiner problems that reduces these problems to their
fractional non-prize-collecting counterparts losing a logarithmic factor in the competi-
tive ratio. Using known results for the online edge-weighted (EW) and node-weighted
(NW) Steiner tree problems, this reduction yields algorithms with competitive ratios of
O(log2 n) and O(log4 n) respectively for their prize-collecting variants. Exploring fur-
ther, we give improved algorithms for both these problems: for the EW problem, we
match the competitive ratio of O(logn) obtained by Qian and Williamson [15], whereas
for the NW problem, we obtain a competitive ratio of O(log3 n). Both these results are
obtained by employing a novel online dual-fitting approach. Our result represents the
first algorithm for online NW-PCST that achieves a poly-logarithmic competitive ratio.

The online Steiner tree (ST) problem was originally considered in the EW model,
where Imase and Waxman [10] showed that a natural greedy algorithm has a competi-
tive ratio of O(logn), which is optimal up to constants. This result was generalized to
the online EW Steiner forest (SF) problem by Awerbuch et al [3], who showed that the
greedy algorithm has a competitive ratio of O(log2 n). This result was later improved
by Berman and Coulston [4] to O(logn). All the above results can be reproduced using
dual-fitting techniques (though the original expositions relied on combinatorial argu-
ments). This immediately shows that the competitive ratios hold against the respective
fractional optimums as well. Very recently, Qian and Williamson [15] initiated the study
of online PC Steiner problems by providing an O(logn)-competitive algorithm for the
online EW-PCST problem. The analysis of this algorithm is quite complicated and uses
a dual moat growing approach of Goemans and Williamson [7] and an amortized ac-
counting scheme due to Berman and Coulston [4].

In contrast to EW problems, progress in online NW Steiner problems has been
relatively slow. Note that edge weights can be represented by node weights but not
vice-versa; so, NW problems are strictly more general. In fact, the NW-ST problem
generalizes the set cover problem, for which the first online algorithm with a poly-
logarithmic competitive ratio was obtained by Alon et al [2]. They introduced an online
adaptation of the classical LP relaxation technique, which has since been used exten-
sively in online optimization (see, e.g., the survey by Buchbinder and Naor [5]). In
particular, Naor et al [14] used this technique in conjunction with structural proper-
ties of the NW-ST problem to give an O(log3 n)-competitive algorithm for the online
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NW-ST problem. They left the online NW-SF problem open, which was resolved very
recently by Hajiaghayi et al [9] who obtained an identical competitive ratio of O(log3 n)
for the SF problem. However, there is a crucial difference between these two results.
Whereas Hajiaghayi et al use a dual-fitting approach, which shows that the competitive
ratio holds for the fractional optimum as well, Naor et al use structural properties of
integral Steiner trees. Therefore, their results do not hold for the fractional optimum.
As described below, this distinction turns out to be important in our work.

Our Techniques and Contributions. Our first contribution is a simple but subtle
reduction of online prize-collecting Steiner problems to their respective non-prize-
collecting fractional variants losing a factor of O(logn) in the competitive ratio. This
reduction is quite generic and can be applied for more general problems than ST and SF.
Indeed, this approach can be applied to any problem which demands {0,1}-connectivity
on a family of cuts. This setting includes the T-join problem and group Steiner tree
(GST)/ group Steiner forest (GSF) problems as special cases (see Theorem 3 for a
formal description). All these problems are instances of covering problems. In our re-
duction, we run the algorithm of Buchbinder et al [5] for solving covering problems in
parallel with an algorithm for the non-prize-collecting variant (as a black box). At each
online step, we first generate an online competitive fractional solution. Then we use the
fractional solution to reveal a modified demand to the non-prize-collecting black box
and finally output an integral solution for the prize-collecting problem. This reduction is
oblivious of the cost model of the input graph, and hence can be applied to both EW and
NW problems, thereby yielding online algorithms for various prize-collecting Steiner
connectivity problems with poly-logarithmic competitive ratios. Indeed one main ob-
stacle to solving the online prize-collecting variants of these problems is that the known
rounding techniques do not seem to be effective for rounding the standard linear re-
laxation of the problems. For example for the online NW prize-collecting ST, it is not
known whether one can solve the fractional LP for PCST and then round it online. This
may have been the reason that the only PC result known before this work, i.e, the Qian-
Williamson algorithm [15] for online EW PCST, is quite sophisticated. A summary of
results that follow from our reduction are shown in Table 1.

Table 1. The competitive ratio for online prize-collecting (PC) Steiner problems. Note that the
algorithm for NW Group Steiner Forest runs in quasi-polynomial time.

PC ST PC SF PC SF in Planar graphs PC GSF
EW O(log(n))[15] O(log(n))[15] O(log(n))[15] O(log7(n))

Simplified in this paper
NW O(log3(n)) O(log4(n)) O(log2(n)) O(log11(n))

(quasi-polynomial)

Next, we focus on the online EW-PCST and NW-PCST problems. For these prob-
lems, the generic reduction yields competitive ratios of O(log2 n) and O(log4 n) respec-
tively. We improve both these competitive ratios by a logarithmic factor. For the EW
problem, this matches the competitive ratio of the Qian-Williamson algorithm [15] and
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is optimal up to constants. Further, our analysis is extremely simple and uses a natural
dual-fitting approach. Due to lack of space, we refer the reader to the full version of the
paper for the EW algorithm.

Theorem 1 (also in [15]). The online edge-weighted prize-collecting Steiner tree prob-
lem admits an O(log(n))-competitive algorithm.

For the online NW-PCST problem, we use the generic reduction, but give an online
algorithm for the NW-ST problem that has the optimal competitive ratio of O(log2 n)
against the fractional objective. While it is relatively straightforward to use a re-scaling
argument for improving the integral competitive ratio of the algorithm of Naor et al [14]
by a logarithmic factor, a similar improvement for the (fractionally competitive) algo-
rithm of Hajiaghayi et al [9] has fundamental difficulties. So, we first design a novel
dual-fitting analysis of the algorithm of Naor et al, thereby proving that the competitive
ratio of the algorithm now holds against the fractional optimum. However, using this
new analysis, we can no longer use the re-scaling argument that improved a logarith-
mic factor for the integral algorithm. To overcome this difficulty, we introduce a new
concept that we call dual averaging.

The celebrated moat-growing method of Agrawal, Klein, and Ravi [1] and Goemans
and Williamson [7] has been extensively studied for various Steiner connectivity prob-
lems. A general pattern in different variants of this method is as follows. We start by
growing a moat over every terminal. When two moats collide, this signifies an oppor-
tunity for connecting the terminals at the center of the moats thus merging the moats.
Since the moats have a dual vector interpretation, by weak duality one can charge the
cost of an algorithm to the growth of the moats. When used in a dual-fitting argument,
the crux of the analysis is to show that the dual moats do not intersect. In the NW setting,
this turns out to be even more difficult since the next terminal that arrives might quickly
collide with polynomially many disks at the same vertex thereby making merges of the
moats infeasible. We circumvent this problem by introducing a thinness factor for the
moats. For τ ∈ (0,1], a τ-thin dual moat is obtained by scaling the dual variables corre-
sponding to a moat by the factor τ . This allows us to have several overlapping moats;
this is in contrast to standard dual-fitting methods in which the dual moats are disjoint.
The strength of this natural modification is that one can exploit it to show that certain
structural properties may hold on average, although they may not hold for every dual
moat independently. For example, consider the feasibility of a dual vector. A reader fa-
miliar with the standard dual program for ST may recall that every moat has a load on
vertices inside or on the boundary of a moat. It often happens that for every vertex, a
few moats have a high load on the vertex while the load of the rest of the moats is negli-
gible. However, for different vertices, the moats with a high load might be different. By
considering the proper thinness for the moats, one can balance the loads simultaneously
for every vertex to ensure feasibility of the dual moats. We refer the reader to Section 3
for a formal discussion of this approach.

Theorem 2. The online node-weighted Steiner tree problem admits an O(log2(n))-
competitive algorithm. Moreover, the competitive ratio holds with respect to the optimal
fractional solution.
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Note that the above algorithm is optimal in its competitive ratio since there is a
known lower bound of Ω(log2 n) [2,13] for the online set cover problem, which is a
special case of the online NW-ST (and thus online NW-PCST) problem.

Applying the reduction in Theorem 3 to the algorithm in Theorem 2, we obtain an im-
proved competitive ratio for the online NW-PCST problem. Furthermore, very recently,
Hajiaghayi et al [9] gave an algorithm with a tight competitive ratio of O(log(n)) for the
NW ST problem for planar graphs and more generally graphs excluding a fixed graph
as a minor. Their results are based on a primal-dual technique and thus the competi-
tive ratio is w.r.t. the fractional optimum. Therefore we get the following results for the
prize-collecting counterparts of these problems.

Corollary 1. The online NW prize-collecting ST problem admits an O(log3(n))-
competitive algorithm in general graphs. When restricted to graphs excluding a fixed
graph as a minor, the problem admits an O(log2(n))-competitive algorithm.

In the offline paradigm, algorithms for prize-collecting problems are used at the heart
of algorithms for other connectivity problems. An important branch of such problems
are budgeted1 and quota2 problems. The key to solving these problems is to design
Lagrangian multiplier preserving (LMP) approximation algorithms for PCST. Indeed
very recently, Konemann et al. [12] gave an LMP O(log(n))-approximation algorithm
for offline NW PCST. Therefore, a natural question is whether one can hope for LMP
online algorithms with poly-logarithmic competitive ratio. We show this is impossible
even for the case of online edge-weighted Steiner tree. In the full version of the pa-
per, we show a lower bound of Ω(n) for the LMP competitive ratio of (randomized)
algorithms for online EW-PCST.

2 Online Prize-Collecting Network Design

Let G = (V,E) be an undirected graph. For a set S ⊆ V , let δ (S) ⊆ V\S denote the
neighbors of S. Given a {0,1}-function f : 2V ⊂ {0,1}, a demand system with respect
to f is defined as the following system of inequalities over a set of variables x(v) for
every v ∈V .

∑
v∈δ (S)

x(v)→ f (S) for every S ∧V,S ≥= φ

x(v) ∈ [0,1]

We say a {0,1}-function f is efficient if the following properties hold: (i) f (φ) =
f (V ) = 0; (ii) for every S ⊆ V , f (S) can be computed in polynomial time; and (iii)
there exists a separation oracle such that for any vector x ∈ [0,1]V , it outputs a set S
with ∑v∈δ (S) x(v) < f (S) iff there is a violated constraint. The oracle should run in
polynomial time w.r.t. |V |.

As we will see, the last two properties are required so that our reduction runs in
polynomial time. Although the first property is not necessary, it makes the demand

1 Given an upper limit on the weight, the goal is to maximize the prize of the connected vertices.
2 We want the minimum-weight subgraph that gathers at least a given amount of prize.
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system well defined even if we consider the constraints corresponding to S = φ and
S =V in the system. In the rest of the section, we use F to refer to a family of efficient
functions. Furthermore, we use G to refer to a family of node-weighted graphs G =
(V,E,w) where for v ∈V , wv ∈R→0.

Problem. A network design problem (ND) with respect to F and G is defined as fol-
lows. Let G = (V,E,w) be a node-weighted graph in G . Given a sequence of functions
f1, . . . , fk ∈F , the goal is to find a minimum-weight vector x ∈ {0,1}V that simulta-
neously satisfies the demand systems for every function fi. The ND problem can be
formulated as the following integer program (IP). Throughout the paper, for an integer
k, let [k] denote {1, . . . ,k}.

minimize ∑
v∈V

wvx(v) (ND)

⇐S ⊆V, i ∈ [k] ∑
v∈δ (S)

x(v)→ fi(S)

x(v) ∈ {0,1}

Given a feasible solution x, we define cost(x) as the total weight of x, i.e, ∑v∈V wvx(v).
In a prize-collecting network design problem (PCND) w.r.t. F and G , we are given

G = (V,E,w) ∈ G and a sequence of demands ( f1,π1), . . . ,( fk,πk) where fi ∈F and
πi ∈R→0. For every demand ( fi,πi), we need to either satisfy the demand system w.r.t.
fi or pay the penalty πi. In other words, we need to find an optimal solution to the
following IP.

minimize ∑
v∈V

wvx(v)+ ∑
i∈[k]

πiz(i) (PCND)

⇐S ⊆V, i ∈ [k] ∑
v∈δ (S)

x(v)→ fi(S)(1− z(i))

x(v),z(i) ∈ {0,1}

Given a feasible solution (x,z) to the IP, we define cost(x,z) as the weight of x plus the
total penalty ∑i∈[k] πiz(i).

In what follows, we denote the cost of optimal solutions to the programs ND and
PCND by OPTND and OPTPCND. One can also relax the integrality constraints in both
IPs to get corresponding linear relaxations. We denote the cost of the optimal fractional
solutions of the corresponding linear programs (LP) by OPT⇒

ND and OPT⇒
PCND.

Online Setting. In the online variants of network design problems and their
prize-collecting counterparts, demands arrive sequentially. However, we assume that
the node-weighted graph G = (V,E,w) is known in advance. More precisely, in an on-
line prize-collecting network design problem (OPCND), at time t ∈ [k], a new demand
( ft ,πt) arrives and we need to output a feasible solution (xt ,zt) for the integer pro-
gram PCND. The decisions are online in the sense that an online algorithm may only
increase the values of the variables, i.e., for every t ∪ < t, xt∪(v)≤ xt(v) and zt∪(i)≤ zt∪(i),
for every v ∈V and i ∈ [k].
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Consider an algorithm ALG for OPCND and a sequence of demands ρ =
( f1,π1), . . . ,( fk,πk). Let ALG(ρ) denote the cost of the output of ALG on the on-
line input ρ , i.e., ALG(ρ) = cost(xk,zk). ALG is α-competitive w.r.t. G and F ,
if for every G ∈ G and every sequence of demands ρ = ( f1,π1), . . . ,( fk,πk) where
fi ∈F , we have ALG(ρ) ≤ αOPTPCND. ALG is strongly α-competitive, if for every
ρ , ALG(ρ) ≤ αOPT⇒

PCND. One can define similar notations for online network de-
sign (OND) problems by dropping penalties and replacing PCND indices by ND. The
main result of this section is the following reduction.

Theorem 3. Let G and F respectively denote a family of graphs and a family of fea-
sible functions. Given a strongly α-competitive algorithm for an online network design
problem (OND) w.r.t. G and F , one can derive a strongly competitive algorithm for the
corresponding OPCND with a competitive ratio of αO(log(|V |)).
Before we prove Theorem 3, we need to recall the following theorem by Buchbinder et
al [6] (later improved by Gupta and Nagarajan [8]3). Consider a minimization LP in
the form that given a vector c and a matrix A, minimizes c · x subject to Ax → 1.4 A
covering LP is a special case where all the entries of A are non-negative. In an online
covering problem, the vector c is known in advance, however, the covering constraints
arrive online. After the arrival of a new constraint, the online algorithm needs to output
a (fractional) feasible solution without decreasing the previous values of variables.

Theorem 4 (Theorem 4.2 of [6]). Let n be the number of variables. There exists an
algorithm for the online covering problem which finds a fractional solution with the cost
within O(log(n)) factor of the optimal fractional solution. Furthermore, the algorithm
only increases a variable if it has a positive coefficient in the new constraint.

Consider a non-trivial constraint5 of the program PCND corresponding to a function
fi and a subset S. It can be re-written in the following standard format:

z(i)+ ∑
v∈δ (S)

x(v)→ 1

Thus all the constraints are covering constraints. Suppose we want to solve OPCND
fractionally. We note that OPCND is not formally a special case of the online covering
problem in two aspects. First, the objective function is not fully known, i.e., the prizes
are revealed online. Second, in OPCND all constraints corresponding to fi are revealed
at the same time while in an online covering problem, we assume that the constraints
are revealed one by one. The former is easy to handle since by Theorem 4, the algorithm
of Buchbinder et al [5] only changes a variable when it has a positive coefficient in a
newly arrived constraint. Thus the variable z(i) changes only in step i after receiving
the demand ( fi,πi). The second discrepancy can be handled by using the efficiency of
function fi. At any step, let (x⇒,z⇒) denote the current fractional solution. While the so-
lution is not feasible, we find an infeasible constraint and reveal it to the online covering

3 The competitive ratio in [8] is improved to O(log(k)) where k is the maximum number of
non-zero entries in a row.

4 Let 1 and 0 denote the vectors where all the entries are one and zero, respectively.
5 We say a constraint is trivial if fi(S) = 0
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algorithm. This can be done in polynomial time since fi is efficient. We continue this
process until all the constraints are feasible.

Therefore the algorithm of Buchbinder and Naor can be applied to OPCND to obtain
a fractional solution (x⇒,z⇒) such that by Theorem 4, cost(x⇒,z⇒)≤OPT⇒

PCNDO(log(|V |)).
Note that although the algorithm may increase the value of a variable beyond one, this
can be ignored since feasibility is maintained even if we decrease such variables to one.

Algorithm. Let ALGOND be a strongly α-competitive algorithm for OND. The fol-
lowing algorithm for OPCND realizes Theorem 3. Let ρ = ( f1,π1), . . . ,( fk,πk) denote
the online input. We run the online fractional algorithm of Buchbinder et al and an in-
stance of ALGOND in parallel. At any time step, let (x⇒,z⇒) denote the (partial) output
of the fractional algorithm and let x denote the (partial) output of ALGOND, respec-
tively. We also maintain an integral vector z which shows the integral decisions of our
algorithm for paying the penalties of demands that have arrived.

At step i, we receive the new demand ( fi,πi). We reveal the new demand to the online
fraction algorithm which in return updates the values of (x⇒,z⇒). In particular, it sets the
first and final value of z⇒(i). Now if z⇒(i)→ 1/2, we pay the penalty of the new demand
and set z(i) = 1. Otherwise, we set z(i) = 0, and we reveal the function fi to the instance
of ALGOND. At the end of iteration, we report (x,z) as the output of our algorithm. For
a detailed analysis, the reader is referred to the full version of the paper.

3 An Asymptotically Optimal Algorithm for Online NW ST

The online node-weighted Steiner tree (NW-ST) problem is a fundamental OND prob-
lem: given a vertex root, every input function fi characterizes the cuts that separate a
vertex ti from the root.
The Online Node-weighted Steiner Tree problem. We are given an undirected con-
nected graph G = (V,E) where wv is the weight of vertex v ∈V . Let n = |V |. The online
input comprises a sequence of vertices t0, t1, t2, . . . , tk where ti ∈ V . The output com-
prises a sequence H0,H1,H2, . . . ,Hk, where (i) Hi is a connected subgraph of G; (ii) the
terminals {t0, t1, t2, . . . , ti} are connected in Hi; and (iii) Hi is a subgraph of Hi+1. The
objective is to minimize the total weight of vertices in Hk. Without loss of generality,
we assume that the weight of every terminal is zero6. For simplicity, we will assume
that the cost of the optimal solution is n and for every vertex v, wv ∈ (0,n]. This is wlog
up to a constant factor loss in the competitive ratio7.

Our algorithm follows the approach of Naor et al for solving the problem via an
instance of a facility location problem. Although our algorithm is very similar to that of
Naor et al, our analysis is quite different; while they use a combinatorial fact to prove
the competitive ratio of the algorithm, we use the technique of dual averaging that we
alluded to in the introduction. This allows us to establish the tight competitive ratio of
O(log2(n)) with respect to the fractional solution.

6 For every vertex v, attach a dummy vertex ρv with weight zero to v. Upon receiving a terminal
t, we virtually assume that the terminal is ρt .

7 By an online doubling strategy, we may assume that we know the objective value α of an
optimal solution. We multiply all vertex weights by n/α so that the cost of the optimal solution
is n. All vertices v with wv > n are discarded, while we set xv = 1 for those satisfying wv ≤ 1.
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An Auxiliary Linear Program. Let Γ denote the set of compound indices V ⇔
(V × [k]), i.e., for every v ∈ V and i ∈ [k], both v ∈ Γ and (v, i) ∈ Γ . A set S ⊆ Γ
is an auxiliary cut for a terminal ti, if for every vertex v, S contains exactly one of
v and (v, i). Let Si denote the collection of all auxiliary cuts for ti, i.e., for i ∈ [k],
Si = {S ⊆ Γ |⇐v∈V |S∗{v,(v, i)}|= 1}. For every v ∈ V and i ∈ [k], let P(v,i) denote a
minimum-weight path between ti and any previous terminal t j (i.e. 0 ≤ j < i) which
goes through v. For every (compound) index γ ∈ Γ we define a weight wγ as follows.
For every v ∈ V , let wv = wv. For every v ∈ V and i ∈ [k], w(v,i) is the weight of P(v,i)
minus the weight of v.

Consider the auxiliary linear program ALP (given below) with a variable xγ for
every index γ ∈ Γ . Let x be a feasible solution to the Program ALP. Observe that for
every v ∈V and i ∈ [k], we may assume x(v,i) ≤ xv; otherwise by reducing x(v,i) to xv we
can decrease the objective value while keeping the solution feasible8. Therefore in the
rest of section, wlog, we assume that for every feasible solution, x(v,i) ≤ xv.

minimize ∑
γ∈Γ

wγxγ (ALP)

⇐ i ∈ [k],S ∈ Si ∑
γ∈S

xγ → 1 (P1)

xγ ∈ [0,1]

minimize ∑
γ∈Γ

w̃γ xγ (SALP)

⇐ i ∈ [k],S ∈ Si ∑
γ∈S

xγ → 1 (P2)

xγ ∈ [0,1]
It is easy to verify that for every integral feasible solution x for Program ALP, there

exists an integral solution for the Steiner tree instance having cost at most the same as
the objective value of the program.

A main obstacle in solving the online ST problem is that the known rounding meth-
ods are not effective in rounding a fractional solution of the linear relaxation of standard
programs for ST. Indeed an important property of the auxiliary LP is that a standard
rounding method similar to the Set Cover problem can be used to round the solution
by losing (roughly) a logarithmic factor. However, although one can obtain an integral
solution for ST with the same cost as that for Program ALP, the converse does not hold.
Naor et al [14] use a combinatorial decomposition of an integral solution for ST to
show that the converse holds if one is willing to incur a factor of O(log2(n)) in the cost.
This combinatorial fact does not have a fractional counterpart which is crucial to our re-
duction in solving PCST. Furthermore, using Program ALP leads to a competitive ratio
of O(log3(n)) after applying the rounding method, which is off by a logarithmic factor
from the known lower bound. We overcome both obstacles by using a dual averaging
argument to show a similar relationship between fractional solution for ST and that for
a scaled auxiliary LP.

We define a scaled weight w̃ over the set of compound indices Γ as follows. For every
v∈V and i∈ [k], let w̃(v,i) =w(v,i), while for every v∈V , let w̃v =wv log(n).9 The scaled
auxiliary program SALP is given above. We split the objective function of this LP into
two parts. For a feasible vector x for SALP, let the facility cost, FacCost(x)=∑v∈V w̃vxv

8 Recall that for every auxiliary cut S that contains (v, i), there exists a cut S∪ that replaces (v, i)
with v. Thus if constraint P1 is feasible for S∪, by reducing x(v,i) to xv, the constraint corre-
sponding to S remains feasible.

9 In the rest of the section, the base of all logarithmic terms is 2.
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and let the connection cost, ConCost(x) = ∑v∈V,i∈[k] w̃(v,i)x(v,i). We may drop x from the
notation when the vector is clear from the context. Observe that a feasible solution for
SALP yields a feasible solution for NW ST with total cost at most FacCost

log(n) +ConCost.

Algorithm. We first find an online10 fractional solution for SALP using the method
of multiplicative updates (a formal discussion of this method is presented in the full
version of the paper). We then show the objective value of this fractional solution is
within O(log2(n)) factor of the optimal fractional solution for ST. Note that the objec-
tive function of the program uses the scaled weights for vertices. A feasible solution for
the scaled program can be rounded online with an additional loss of a constant factor
using the standard rounding techniques. We will not describe this rounding procedure
here; we refer the reader to Section 2 of [14].
Analysis. For a subset of vertices S ∧ V , let δ (S) ⊆ V\S denote the neighbors of
S. Let S denote the collection of subsets of vertices that separate a subset of ter-
minals from the terminal t0, i.e, S ∈ S if and only if S ∗ {t1, . . . tk} ≥= φ and t0 /∈ S.
Consider the natural LP relaxation for the NW ST problem in which there is a flow
of one going out of every set in S . The primal dual pair for this LP is as follows.

minimize ∑
v∈V

wvxv

⇐S ∈S ∑
v∈δ (S)

xv → 1

xv → 0

maximize ∑
S∈S

y(S)

⇐v ∑
S∈S :v∈δ (S)

y(S)≤ wv (D1)

y(S)→ 0
For two vertices u and v, let d(u,v) denote the weight of shortest path between u and

v excluding the weight of the endpoints. We borrow the notation of Hajiaghayi et al [9]
for disks. A painting is a function p : V ⊂ R→0. A painting is valid if p(v) ≤ wv for
every vertex v. Intuitively, every vertex has an area equal to its weight and a painting
is a (partial) coloring of these areas. The union of a set of paintings p1, . . . , pτ is the
painting p with p(v) = ∑i∈[τ] pi(v) for every v ∈V .

Recall that the weight of a terminal is zero. A disk of radius r centered at terminal t,
is a painting in which the area within a radius r of t is colored, i.e.,

p(v) =

⎧
⎨

⎩

wv if d(t,v)+wv ≤ r
r− d(t,v) if d(t,v)+wv > r but d(t,v)≤ r
0 if d(t,v)→ r

A disk p centered at a terminal ti for i ∈ [k] is feasible if p(t0) = 0.
A disk vector corresponding to a disk p of radius r centered at a terminal t is a dual

vector y generated by the following deterministic process:

1: Initialize y = 0 and U = {t}.
2: while the total dual objective ∑S∈S y(S) is less than r do

10 In the online setting, at time step i ∈ [k], the constraints for sets S ∈ Si are revealed and the
algorithm should output a feasible solution. However, the online algorithm may only increase
the previous values of variables in each time step.



586 M.T. Hajiaghayi, V. Liaghat, and D. Panigrahi

3: Continuously increase y(U) until ∑S∈S y(S) reaches r, or for a vertex v the dual
constraint D1 becomes tight.

4: If the latter happens, add v to U .

For a dual vector y, define the load of y on a vertex v as ∑S∈S :v∈δ (S) y(S). The construc-
tion of a disk vector directly yields the following lemma (due to lack of space, we refer
the reader to the full version of the paper for the proofs in this section).

Lemma 1. Let y be a disk vector corresponding to a disk p. For every v ∈ V, the load
of y on v is exactly p(v).

Corollary 2. Let y be a disk vector corresponding to a disk of radius r centered
at t. For every vertex v∈V on which the load of y is strictly positive, we have r → d(t,v).
Furthermore, y is a feasible dual vector if and only if the disk is feasible, i.e., r ≤ d(t, t0).

For an arbitrary thinness factor τ ∈ (0,1], a τ-thin disk vector is a dual vector y∪
obtained by scaling the disk vector y by a factor of τ , i.e., y∪(S)= τy(S) for every S∈S .
When the thinness factor is clear from the context, we may refer to y∪ as simply a thin
disk vector. We note that a τ-thin disk vector is feasible if and only if the corresponding
(1-thin) disk vector is feasible. Observe that the total dual objective value of a τ-thin
disk vector with radius r is exactly r × τ . Similar to paintings, the union of a set of
disk-vectors y1, . . . ,yτ is the dual vector y where y(S) = ∑i∈[τ] yi(S) for every S ⊆S .

Multiplicative Updates Method. Consider the cost of the fractional solution gener-
ated by the multiplicative steps. In what follows, let opt denote the cost of the optimal
fractional solution for the NW-ST problem. Recall that we assume opt= n. In our algo-
rithm, for every γ ∈Γ , we initialize xγ to 1

n3 (or to one if w̃γ = 0). Furthermore, for v∈V

and i ∈ [k], w̃(v,i) ≤ n2 since we have assumed that the weight of a single vertex is at
most n and a simple path may contain at most n vertices. SALP has at most n2 +n vari-
ables. Thus the objective cost of the initialization is at most (n2+n)(n2) 1

n3 ≤ 2n= 2opt.
Hence the cost of initialization adds a constant factor to the competitive ratio; we will
ignore this factor in the remaining analysis.

Using the notion of thin disks, we will now establish the competitive ratio of the
algorithm. Consider the cost of the fractional solution generated by the multiplicative
steps. Using standard techniques, one can show that to bound the cost of the algorithm,
it is sufficient to bound the number of multiplicative steps. Therefore we use a union
of a set of disks to account for the number of the multiplicative updates.

Lemma 2. Let FacCost and ConCost respectively denote the facility cost and the con-
nection cost of the output of the algorithm. Then FacCost+ConCost ≤ O(log2(n))opt.

For i ∈ [k], let si denote the number of multiplicative steps done for terminal ti. We
assume wlog that si → 1. Let τ = 1

4 log(n) . For every i ∈ [k], consider a τ-thin disk vector

yi corresponding to a disk of radius ri =
si

5 log(n3)
centered at terminal ti. We first show

for every i ∈ [k], the thin disk vector yi is indeed feasible. Note that for terminal ti and
in every auxiliary cut we should have either t0 or (t0, i). However, the cost of a terminal,
in particular that of t0, is zero. Hence, xt0 is initialized to one and thus only (t0, i) can
participate in a multiplicative step. Thus using standard arguments, one can show that
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si ≤ w̃(t0,i) log(n3). Recall that w̃(t0,i) is the weight of shortest path between ti and a
terminal t j for j < i, which passes through t0. Hence by choosing j = 0, w̃(t0,i) ≤ d(ti, t0).

Thus the radius of the disk is at most ri =
si

5 log(n3)
≤ d(t0,ti)

5 , which by Corollary 2 verifies

that yi is feasible.
Let y denote the union of yi’s for every i ∈ [k]. We prove Lemma 2 by showing that

the dual vector y is feasible. Finally as mentioned before, by using a standard rounding
method, Theorem 2 follows. We refer the reader to the full version of the paper for a
formal analysis.

Acknowledgement. D. Panigrahi would like to thank Niv Buchbinder for suggesting
the re-scaling trick to remove an additional logarithmic factor from the competitive ratio
of the integral algorithm of Naor et al [14].
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Model-Based Compressive Sensing�
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Abstract. Compressive sensing is a method for recording a k-sparse
signal x ⇒ R

n with (possibly noisy) linear measurements of the form
y = Ax, where A ⇒ R

m×n describes the measurement process. Seminal
results in compressive sensing show that it is possible to recover the
signal x from m = O(k log n

k
) measurements and that this is tight. The

model-based compressive sensing framework overcomes this lower bound
and reduces the number of measurements further to m = O(k). This
improvement is achieved by limiting the supports of x to a structured
sparsity model, which is a subset of all

(
n
k

)
possible k-sparse supports.

This approach has led to measurement-efficient recovery schemes for a
variety of signal models, including tree-sparsity and block-sparsity.

While model-based compressive sensing succeeds in reducing the num-
ber of measurements, the framework entails a computationally expensive
recovery process. In particular, two main barriers arise: (i) Existing re-
covery algorithms involve several projections into the structured sparsity
model. For several sparsity models (such as tree-sparsity), the best known
model-projection algorithms run in time Δ(kn), which can be too slow
for large k. (ii) Existing recovery algorithms involve several matrix-vector
multiplications with the measurement matrix A. Unfortunately, the only
known measurement matrices suitable for model-based compressive sens-
ing require O(nk) time for a single multiplication, which can be (again)
too slow for large k.

In this paper, we remove both aforementioned barriers for two popular
sparsity models and reduce the complexity of recovery to nearly linear
time. Our main algorithmic result concerns the tree-sparsity model, for
which we solve the model-projection problem in O(n log n + k log2 n)
time. We also construct a measurement matrix for model-based com-
pressive sensing with matrix-vector multiplication in O(n log n) time for
k ≤ n1/2−μ, μ > 0. As an added bonus, the same matrix construction
can also be used to give a fast recovery scheme for the block-sparsity
model.

Keywords: Model-based compressive sensing, model-projection, tree-
sparsity, restricted isometry property, compressive sensing.
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1 Introduction
Compressive sensing is a method for recording a signal while taking only a small
number of measurements. In particular, recording with linear measurements has
attracted significant attention over the last decade [CRT06a,Don06,FR13]. In
this setup, we are interested in recovering a vector x ∈ R

n (the signal) from
measurements of the form y = Ax, where A is an m × n matrix and y ∈ R

m.
Usually, the setup also encompasses measurements corrupted by a noise vector e
(i.e., y = Ax+e), in which case we are interested in recovering a good approxima-
tion to x. The main questions in compressive sensing deal with the conditions
on A and x that enable efficient, stable recovery from only m ⊆ n measure-
ments. Compressive sensing has found applications in a wide variety of signal
acquisition settings (e.g., MRI [LDP07]) and the underlying problem of sparse
recovery has connections to several other fields such as data stream algorithms
[Mut05,GI10] and Fourier sampling [HIKP12].

Seminal results in compressive sensing show that it is possible to recover a k-
sparse signal x (containing at most k non-zeros) from m = O(k logn/k) linear
measurements, as long as the measurement matrix A is chosen to satisfy the re-
stricted isometry property (RIP) [CRT06b]. Moreover, the recovery step can be
performed in polynomial time using several algorithms such as σ1-minimization or
CoSaMP [CRT06b,NT09]. While the bound on the number of measurements m is
asymptotically tight in the noisy k-sparse setting [DBIPW10,FPRU10], there are
ways to overcome this barrier and improve the “compression rate” even further.One
such approach for reducing the number of measurements is model-based compres-
sive sensing [BCDH10]. In this framework, we make additional assumptions about
the support of the signal x. Instead of considering all k-sparse signals, we limit our
attention to a smaller family of k-sparse supports, which we call a structured spar-
sity model Mk. Research in signal processing has shown that this often is a useful
way to capture additional structure in the signals of interest. For example, for some
classes of time-domain signals x, the large coefficients in x tend to occur consecu-
tively as clusters. For several sparsity models, it is possible to show measurement
bounds of m = O(k). Note that this improvement is not only of theoretical inter-
est: for large values of n, removing the logarithmic factor in m can decrease the
measurement complexity by up to an order of magnitude in practice.

While model-based compressive sensing succeeds in reducing the number of
measurements, the current framework also entails a computationally more ex-
pensive recovery process. In particular, two main barriers limit the recovery per-
formance of model-based compressive sensing compared to “standard” k-sparse
compressive sensing:

1. Recovery algorithms for model-based compressive sensing rely on the avail-
ability of a model-projection algorithm. Given an arbitrary signal x, a model-
projection algorithm returns the best approximation of x in the sparsity
model Mk. Unfortunately, for many sparsity models, the running time of the
best known model-projection algorithm is τ(nk).

2. For standard compressive sensing, researchers have identified several classes
of measurement matrices A that satisfy the RIP and allow fast matrix-vector
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multiplication in time O(n log n); see [NPW14] and references therein. In con-
trast, matrices known to satisfy the model-equivalent of the RIP only admit
slow multiplication in time O(nm) [BCDH10]. Since known recovery algo-
rithms for model-based compressive sensing perform several matrix-vector
multiplications, this can become a bottleneck in the overall time complexity.
One approach to overcome this barrier is to use sparse matrices that satisfy
the σ1-variant of the RIP. However, recent work shows that this implies a
lower bound of m = τ(k log n

k / log log
n
k ) for the tree-sparsity model [IR13].

In this paper, we remove both aforementioned barriers for two popular sparsity
models and bring the recovery performance of these models down to nearly
linear time. Our central results concern the tree-sparsity model. In this model,
the coefficients of the signal x are arranged as a complete d-ary tree. The model
then requires that the support of x forms a connected subtree containing the
root node. The tree-sparsity model captures structure in the wavelet-domain
representation of natural images; see [Bar99] and [HIS14c] for more details.

As a bonus, our techniques also imply a fast recovery scheme for the block-
sparsity model. In the block-sparsity model, the signal is divided into a fixed
number of blocks, and valid supports can be described as the union of a small
number of such blocks. The block-sparsity model captures signal structure in
settings where the nonzeros form a small number of clusters.

Our Contributions. This paper contains two results:
1. Our main technical contribution is a fast model-projection for the tree-

sparsity model with time complexity O(n logn + k log2 n). Our formal re-
covery guarantees complement recent empirical results in [HIS14c].

2. Building on [NPW14], we construct a measurement matrix which satisfies the
model-RIP and enables multiplication in O(n logn + k2 logn log2(k logn))
time for general k. For k ⊂ n1/2−μ, μ > 0, the multiplication time is
O(n log n). Moreover, our matrix has the same bound on the number of
measurements as existing, slow model-RIP matrices: m = O(k + log|Mk|).

Together with existing results [BCDH10,HIS14b], our contributions enable us to
state recovery guarantees of the following form: Let x be a signal in the tree-
sparsity model with sparsity parameter k and let A be our new measurement
matrix with m = O(k) rows. The measurements are given by y = Ax+e for arbi-
trary noise e. Then we can recover an x̂ such that →x− x̂→2 ⊂ C→e→2 . Moreover,
we can perform the recovery in time O((n log n+ k2 logn log2(k logn)) log

◦x◦2

◦e◦2
).

Note that this compares favorably with the time complexity of the original
model-based compressive sensing framework [BCDH10]: O(nk log

◦x◦2
◦e◦2

). Table
1 compares our results to previous recovery schemes for the tree-sparsity model.
Our recovery guarantees for the block-sparsity model are analogous.

Ideally, a model-RIP matrix with m = O(k + log|Mk|) rows would offer a
multiplication time of O(n log n) for all values of k. However, we conjecture that
such a result is connected to progress on the measurement bound for subsampled
Fourier matrices in k-sparse compressive sensing. This is considered a challenging
open problem in the field.
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Table 1. Comparison of our results with previous recovery schemes for the tree-sparsity
model. In order to simplify the presentation, all stated bounds are for the regime of
k ≤ n1/2−μ with μ > 0. We also omit a factor of log √x√2

√e√2 from all recovery times. An
κp-recovery guarantee is of the form ∈x− x̂∈p ≤ C∈e∈p, where x is the original signal,
x̂ is the recovery result, e is the measurement noise, and C is a fixed constant.

Paper Measurement
bound

Recovery
time

Matrix-vector
multiplication time

Recovery
guarantee

[BCDH10] O(k) O(nk) O(nk) κ2

[IR13] O
(
k log n

log log n

)
exponential O(n log n) κ1

[BBC14] O
(
k log n

log log n

)
O(nk) O(n log n) κ1

This paper O(k) O(n log n) O(n log n) κ2

Our Techniques. We achieve the aforementioned results with the following
tools:
1. In order to project into the tree-sparsity model, we use the recent framework

for approximation-tolerant model-based compressive sensing [HIS14b], which
was originally introduced for another sparsity model. Following this frame-
work, instead of providing a single exact model-projection algorithm, we give
two approximate algorithms: one for the minimization and one for the max-
imization version of the problem. The first algorithm builds a solution by
combining several small subtrees which are cheap to find. The second algo-
rithm works with a Lagrangian relaxation and constructs the corresponding
Pareto curve with a sweep line approach.

2. We construct our measurement matrix by combining a fast standard-RIP
matrix for initial dimensionality reduction with a standard model-RIP ma-
trix for achieving a small number of measurements.

Related Work. There is a large body of work on matrices satisfying the RIP for
general k-sparse vectors (e.g. see [RV08,BDDW08,GI10,CGV13] and references
therein). For matrices with fast matrix-vector multiplication in O(n log n) time,
the best known measurement bound is m = O(k logn log2(k log n)) [NPW14].
For k ⊂ n1/2−μ and μ > 0, there exist fast matrices with m = O(k logn) [AR13].
Note that in this regime, O(k logn) = O(k log n

k ).
For the model-RIP, the only known matrices with m = O(k + log|Mk|) are

dense matrices with i.i.d. subgaussian entries [BCDH10]. Vector-matrix multipli-
cation with such matrices requires O(mn) time. While σ1-model-RIP matrices
support faster multiplication, they also entail a measurement lower bound of
m = τ(k log n

k / log log
n
k ) for the tree-sparsity model [IR13].

The problem of projecting into the tree-sparsity model has received a fair
amount of attention in the literature over the last two decades. Researchers have
proposed several algorithms such as the condensing sort-and-select algorithm
(CSSA) [BJ94], complexity-penalized residual sum-of-squares (CPRSS) [Don97],
and optimal pruning [BB94]. However, all of these algorithms either run in time
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τ(n2) or fail to provide projection guarantees for general input signals. A recent
paper describes a dynamic programming algorithm for exact projections running
in time O(nk) [CT13]. Combining this algorithm with the σ1-model-RIP matrices
mentioned above, another recent paper provides a compressive sensing recovery
scheme in the σ1-setting [BBC14]. As a result, the measurement complexity is
constrained by the aforementioned lower bound and the recovery time is τ(nk).

In related work, an algorithm for approximate projections into the tree-sparsity
model has been proposed [HIS14c]. Unfortunately, this algorithm only has a
weakly polynomial running time depending on the largest and smallest nonzero
absolute values in the input. Moreover, it solves only the minimization variant
of the problem, which is not sufficient to establish a compressive sensing recov-
ery result. Instead, the authors demonstrate the validity of their approach via
several numerical experiments. Our results here complement these findings with
formal guarantees. We note that our minimization algorithm is related to the
algorithm in [HIS14c] but achieves a strongly polynomial running time.

2 Preliminaries

Structured Sparsity. A signal x ∈ R
n is k-sparse if at most k of its coefficients

are nonzero. The support of x, denoted by supp(x) ∧ [n], contains the indices
corresponding to the nonzero entries in x.

Suppose that we posses some additional information about the support of our
signals of interest. One way to model this information is as follows [BCDH10]:
denote the set of allowed supports with Mk = {τ1, τ2, . . . , τL}, where τi ∧ [n]
and |τi| = k. Often it is useful to work with the closure of Mk under taking
subsets, which we denote with M

+
k = {τ ∧ [n] | τ ∧ S for some S ∈ Mk}.

Then, we define a structured sparsity model, Mk ∧ R
n, as the set of vectors

such that Mk = {x ∈ R
n | supp(x) ∈ M

+
k }. The number of allowed supports

L = |Mk| is called the “size” of the model Mk; typically |Mk| ⊆
(
n
k

)
.

Our central focus in this paper is the tree-sparsity model [BCDH10]. Let n be
such that the coefficients of a signal x ∈ R

n can be arranged as the nodes of a
perfect d-ary tree rooted at node 1.1 Then, the tree-sparsity model comprises the
set of k-sparse signals whose nonzero coefficients form a connected subtree rooted
at node 1. More formally, let T be the set of supports forming a connected subtree
and let Ti be the set of supports forming a connected subtree rooted at node i.
Then the tree-sparsity model is defined as Mk = {τ ∧ [n] |τ ∈ T1 and |τ| = k}.
The size of this model is bounded by |Mk| ⊂ (2e)k/(k + 1) [BCDH10]. For a
subtree τ with root r, we use root-path(τ) to denote the set of nodes on the
path from r to node 1 (the root of the entire tree).

Model Projections. For a sparsity model Mk, we define the problem of model-
projection as follows: given x ∈ R

n, find a x√ ∈ Mk such that →x− x√→p is min-

1 Our algorithms can easily be extended to handle complete d-ary trees and hence
work for the general tree-sparsity model with arbitrary dimension n. For simplicity,
we state our algorithms here for the special case of perfect d-ary trees.
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imized for a norm parameter p ≥ 1. In general, this problem can be hard since
Mk is typically non-convex. Moreover, the original model-based compressive
sensing framework in [BCDH10] requires the minimization to be exact. An alter-
native is the approximation-tolerant model-based compressive sensing framework
[HIS14b]. Instead of a single exact model-projection algorithm, the framework
requires two approximate model-projection algorithms with two different notions
of approximation:
– A head approximation algorithm H(x, k) that satisfies the following guaran-

tee: Let τ̂ = H(x, k). Then τ̂ ∈ M
+
c1k

and →xΩ̂→p ≥ c2 maxΩ≤Mk
→xΩ→p for

some constants c1 ≥ 1 and c2 ⊂ 1.
– A tail approximation algorithm T (x, k) that satisfies the following guarantee:

Let τ̂ = T (x, k). Then τ̂ ∈ M
+
c1k

and →x − xΩ̂→p ⊂ c2 minΩ≤Mk
→x− xΩ→p

for some constants c1 ≥ 1 and c2 ≥ 1.
Using such approximate model-projection algorithms, the framework of [HIS14b]
provides the same asymptotic recovery guarantees as those achieved with an
exact model-projection.

Measurement Matrices. Many recovery algorithms for compressive sensing
assume that the measurement matrix satisfies the restricted isometry property
(RIP). A matrix A ∈ R

m×n has the (λ, k)-RIP if the following inequalities hold
for all k-sparse vectors x ∈ R

n:

(1− λ)→x→22 ⊂ →Ax→22 ⊂ (1 + λ)→x→22 . (1)

There exist measurement matrices satisfying the RIP with only m = O(k log n
k )

rows [BDDW08]. A matrix A ∈ R
m×n has the (λ, k)-model-RIP for model Mk

if (1) holds for all x ∈ Mk. There exist matrices satisfying the model-RIP with
only m = O(k + log|Mk|) rows [BCDH10].

Recovery Algorithm. We briefly summarize the approximate model-iterative
hard thresholding (AM-IHT) algorithm for signal recovery using approximate
model projections. For a full explanation, see [HIS14b] and references therein.
Let y = Ax+e, where e is the measurement noise vector. Then, one can recover a
signal estimate x̂ satisfying →x− x̂→2 ⊂ C→e→2 by applying the following update
rule, inspired by the well-known iterative hard thresholding (IHT) [BD09]:

x(i+1) ⇐ T (x(i) +H(AT (y −Ax(i)))) . (2)

It is possible to show that O(log
◦x◦2

◦e◦2
) iterations suffice for guaranteed recovery.

Therefore, the overall time complexity of AM-IHT is governed by the running
times of H(·), T (·), and the cost of matrix-vector multiplication with A and AT .

3 Head Approximation for the Tree-Sparsity Model
We propose a head approximation algorithm for the tree-sparsity model. In order
to simplify the analysis, we will assume that k ≥ ⇒logd n∪. Note that we can
always reduce the input to this case by removing layers of the tree with depth
greater than k. Our approach is based on the following structural result about
decompositions of d-ary trees, which we prove in Appendix A.
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Algorithm 1. (HeadApprox) Head approximation for the tree-sparsity model
1: function HeadApprox(x, k, d, p, σ)
2: Run ETP on x with sparsity parameter k∗ = dσ.
3: x(1) ∪ x
4: for i ∪ 1, . . . ,

⌈
k
Γ

⌉
do

5: Δ̂i ∪ argmax
γ∈T, |γ|=dΓ

∈x(i)
γ ∈p

6: x(i+1) ∪ x(i), x
(i+1)

γ̂i
∪ 0

7: for j ⇒ Δ̂i ← root-path(Δ̂i) (in bottom-up order) do
8: Update the DP table for node j up to sparsity k∗ = dσ.

9: return Δ̂ ∪
� k

α→⋃

i=1

Δ̂i ← root-path(Δ̂i)

Lemma 1. Let T be a d-ary tree with |T | = k. Moreover, let Π ∈ N, Π ≥ 1. Then
T can be decomposed into a set of disjoint, connected subtrees S = {T1, . . . , Tβ}
such that |Ti| ⊂ dΠ for all i ∈ [β] and β = |S| ⊂ ⌈

k
α

⌉
.

In addition to the tree decomposition, our head-approximation algorithm
builds on the exact tree projection algorithm (ETP) introduced in [CT13]. The
algorithm finds the best tree-sparse approximation for a given signal via dynamic
programming (DP) in O(nkd) time.2 We run ETP with a small sparsity value
k⊆ < k in order to find optimal subtrees of size k⊆. We then assemble several
such subtrees into a solution with a provable approximation guarantee. We use
the fact that ETP calculates the DP table entries in the following way: if the
DP tables corresponding to the children of node i are correct, the DP table for
node i can be computed in O(k⊆2) time. The time complexity follows from the
structure of the DP tables: for every node and l ⊂ k⊆, we store the value of the
best subtree achievable at that node with sparsity exactly l. We can now state
our head-approximation algorithm (Alg. 1) and the corresponding guarantees.

Theorem 1. Let x ∈ R
n be the coefficients corresponding to a d-ary tree rooted

at node 1. Also, let p ≥ 1 and Π ≥ 1. Then HeadApprox(x, k, d, p, Π) returns a
support τ̂ satisfying

∥
∥xΩ̂

∥
∥
p
≥ (

1
4

)1/p
maxΩ≤Mk

→xΩ→p. Moreover, τ̂ ∈ M
+
γ with

Δ =
⌈
k
α

⌉
(dΠ+ ⇒logd n∪).

Proof. Let τ√ ∈ Mk be an optimal support, i.e., →xΩ∗→p = maxΩ≤Mk
→xΩ→p.

Using Lemma 1, there is a decomposition of τ√ into disjoint sets τ√
1 , . . . , τ

√
β

such that τ√
i ∈ T, |τ√

i | ⊂ dΠ and β ⊂ ⌈
k
α

⌉
. The contribution of τ√

i to the
overall solution is →xΩ∗

i
→pp. Now, compare the contributions of our subtrees τ̂i

to these quantities. When finding τ̂i for i ∈ [β], one of the following two cases
holds:
1. →x(i)

Ω∗
i
→pp ≥ 1

2→xΩ∗
i
→pp. Since τ√

i is a candidate in the search for τ̂i in line 5,

we have →x(i)

Ω̂i
→pp ≥ →x(i)

Ω∗
i
→pp ≥ 1

2→xΩ∗
i
→pp.

2 While ETP as stated in [CT13] works for p = 2 only, the algorithm can easily be
extended to arbitrary norm parameters p.
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2. →x(i)
Ω∗

i
→pp < 1

2→xΩ∗
i
→pp. Therefore, τ̂1, . . . , τ̂i−1 have already covered at least

half of the contribution of τ√
i . Formally, let Ci = τ√

i ≤ ⋃i−1
j=1 τ̂j . Then

→xCi→pp ≥ 1
2→xΩ∗

i
→pp.

Let A = {i ∈ [β] | case 1 holds for τ̂i} and B = {i ∈ [β] | case 2 holds for τ̂i}.
For the set A we have

→xΩ̂→pp =

⇒ k
α∪∑

i=1

→x(i)

Ω̂i
→pp ≥

∑

i≤A

→x(i)

Ω̂i
→pp +

∑

i≤B

→x(i)

Ω̂i
→pp ≥ 1

2

∑

i≤A

→xΩ∗
i
→pp . (3)

Now, consider the set B. Since the τ√
i are disjoint, so are the Ci. Moreover,

Ci ∧ τ̂ and therefore

→xΩ̂→pp ≥
β∑

i=1

→xCi→pp ≥
∑

i≤B

→xCi→pp ≥ 1

2

∑

i≤B

→xΩ∗
i
→pp . (4)

Combining (3) and (4), we get

2→xΩ̂→pp ≥ 1

2

∑

i≤A

→xΩ∗
i
→pp +

1

2

∑

i≤B

→xΩ∗
i
→pp ≥ 1

2
→xΩ∗→pp .

Raising both sides to power 1/p gives the guarantee in the theorem. For the
sparsity bound, note that |τ̂i| ⊂ dΠ and |root-path(τ̂i)| ⊂ ⇒logd n∪. Since we
take the union over

⌈
k
α

⌉
such sets, the theorem follows. ⇔∗

We defer the runtime analysis to Appendix A (Theorem 4) and state the final
result here. Its proof is a direct consequence of Theorems 1 and 4.

Corollary 1. Let Π = ⇒logd n∪. Then HeadApprox(x, k, d, p, Π) returns a sup-
port τ̂ ∈ M

+
k(2d+2) satisfying

∥∥xΩ̂

∥∥
p
≥ (

1
4

)1/p
maxΩ≤Mk

→xΩ→p . Moreover, the
algorithm runs in time O(n logn+ k log2 n) for fixed d.

4 Tail Approximation for the Tree-Sparsity Model
Next, we propose a tail approximation algorithm. We consider the Lagrangian
relaxation argminΩ≤T1

→x− xΩ→pp + ∂|τ|, where the parameter ∂ controls the
trade-off between the approximation error and the sparsity of the identified sup-
port. The algorithm in [HIS14c] proceeds by performing a binary search over ∂
in order to explore the Pareto curve of this trade-off. Unfortunately, the running
time of this algorithm is only weakly polynomial because it depends on both
xmax = maxi≤[n]|xi| and xmin = mini≤[n],|xi|>0|xi|. Below, we develop an algo-
rithm that exploits the structure of the Pareto curve in more detail and runs in
strongly polynomial time O(n log n). In fact, our new algorithm constructs the
shape of the entire Pareto curve and not only a single trade-off.

The Lagrangian relaxation is equivalent to argmaxΩ≤T1
→xΩ→pp−∂|τ|. Hence,

we can rewrite this problem as argmaxΩ≤T1

∑
i≤Ω yi, where yi = |xi|p − ∂. So

for a given value of ∂, the goal is to find a subtree τ rooted at node 1 which
maximizes the sum of weights yi associated with the nodes in τ.
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In the following, we analyze how the solution to this problem changes as a
function of ∂ and use this structure in our tail-approximation algorithm. On a
high level, the optimal contribution of a node i is positive and decreasing up to
a certain value of ∂ = Δi, after which the contribution stays 0. So for ∂ < Δi,
a subtree rooted at node i can contribute positively to an overall solution. For
∂ ≥ Δi, we can ignore the subtree rooted at node i.

4.1 Properties of the Pareto Curve
Let bi(∂) denote the maximum value achievable with a subtree rooted at i:

bi(∂) = max
Ω≤Ti

→xΩ→pp − ∂|τ| .
Our algorithm relies on two main insights: (i) bi(∂) is a piecewise linear function
with at most n non-differentiable points (or “corners”), which correspond to the
values of ∂ at which the optimal support changes. (ii) Starting with ∂ = 0, bi(∂)
is strictly decreasing up to a certain value of ∂, after which bi(∂) = 0. Formally,
we can state the properties of the Pareto curve as follows.

Lemma 2. bi(∂) is piecewise linear. There is a value Δi such that bi(∂) = 0 for
∂ ≥ Δi and bi(∂) is strictly decreasing for ∂ ⊂ Δi. The corners of bi(∂) are the
points Di = {Δi} ⊥ {Δ ∈ ⋃

j≤children(i) Dj | Δ < Δi}.
Proof. A simple inductive argument shows that bi(∂) can be recursively defined
as

bi(∂) = max(0, |xi|p − ∂+
∑

j≤children(i)

bj(∂)) .

Note that the theorem holds for the leaves of the tree. By induction over the
tree, we also get the desired properties for all nodes in the tree. We are using the
fact that piecewise linear functions and strictly decreasing functions are closed
under addition. Moreover, the corners of a sum of piecewise linear functions are
contained in the union of the corners of the individual functions. ⇔∗

Our algorithm does not compute the bi(∂) directly but instead keeps track
of the following two quantities si(∂) and ci(∂). For a given value of ∂, si(∂)
denotes the sum achieved by the best subtree rooted at node i. Similarly, ci(∂)
denotes the cardinality of the best subtree rooted at node i. These two quantities
are easier to maintain algorithmically because they are piecewise constant. The
proof of the next lemma follows directly from Lemma 2 and a similar inductive
argument. Appendix B.1 contains further properties of the Pareto curve with
accompanying proofs.

Lemma 3. Let

si(∂) = |xi|p +
∑

j≤children(i)
bj(λ)>0

sj(∂) and ci(∂) = 1 +
∑

j≤children(i)
bj(λ)>0

cj(∂) .

Then si(∂) and ci(∂) are piecewise constant and monotonically decreasing. The
discontinuities of si(∂) and ci(∂) are Di (see Lemma 2). At a discontinuity
Δ ∈ Di we have limδ≥0+ si(Δ + λ) = si(Δ) and limδ≥0+ ci(Δ + λ) = ci(Δ).
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Algorithm 2. (FindPareto) Constructing the Pareto curve
1: function FindPareto(x, p)
2: for i ∪ 1, . . . , n do � Initialization
3: si ∪ |xi|p, ci ∪ 1, activei ∪ false
4: λ̂0 ∪ +∞
5: r1 ∪ c1
6: for i = 1, . . . , n do � Iterate over the discontinuities
7: j ∪ argmax

l∈[n],activel=false

sl
cl

� Find the next discontinuity

8: λ̂i ∪ sj
cj

9: activej ∪ true
10: a ∪ j
11: while a 
= 1 do � Update the affected nodes
12: a ∪ parent(a)
13: sa ∪ |xa|p
14: ca ∪ 1
15: for l ⇒ children(a) with activel = true do
16: sa ∪ sa + sl
17: ca ∪ ca + cl
18: ri+1 ∪ c1

19: λ̂n+1 ∪ 0
20: return (λ̂, r)

4.2 Constructing the Pareto Curve

We now use the quantities introduced above in order to traverse the Pareto
curve. We start with ∂ = +↓, for which the values of the si(∂) and ci(∂) are
easy to determine. Then, we iterate the following two steps (see Algorithm 2):
(i) Use the current values of the si(∂) and ci(∂) to find the next discontinuity.
(ii) Update the si(∂) and ci(∂) based on the change in the optimal support. In
order to simplify the analysis, we assume that the discontinuities Δi are distinct.

Theorem 5 (Appendix B.2) establishes a connection between the variables sj
and cj in FindPareto and the functions sj(∂) and cj(∂). Using this connection,
we can now show that the algorithm returns the shape of the Pareto curve.

Theorem 2. Let p ≥ 1 and x ∈ R
n and let ∂̂ and r be the vectors returned by

FindPareto(x, p). Moreover, let ∂ > 0 such that ∂̂i−1 > ∂ ≥ ∂̂i. Then we have
ri = |τ√

λ| where
τ√

λ = argmax
Ω≤T1, 1≤Ω

bj(λ)>0 for j≤Ω\{1}

→xΩ→pp − ∂|τ| .

Proof. By the definition of FindPath and Theorem 5, we have ri = c1(∂) for
∂̂i−1 > ∂ ≥ ∂̂i. The theorem then follows from Lemma 4 (Appendix B.1). ⇔∗

Moreover, FindPareto can be implemented to run in O(n log n) time using
a priority queue; see Theorem 6 in Appendix B.2 for a formal runtime analysis.

Given the shape of the Pareto curve, we can traverse it to find a suitable
trade-off parameter ∂̂ that achieves a constant-factor tail approximation. The
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main idea of this last claim is similar to the algorithm in [HIS14c]; we state the
final guarantee with proof and pseudo code in Appendix B.3.

5 Compressive Sensing Recovery
We have developed constant factor head and tail approximation algorithms for
the tree-sparsity model, both of which run in near-linear time O(n log n). There-
fore, we can invoke AM-IHT (Eq. (2)) to achieve an algorithm for recovering
tree-sparse signals from (noisy) linear measurements.3 In Appendix C, we de-
scribe a new construction of a matrix A ∈ R

m×n that satisfies the model-RIP
for the tree-sparsity model Mk and in addition supports fast matrix-vector mul-
tiplication. Combining these ingredients, we obtain:

Theorem 3. Let A ∈ R
m×n be a model-RIP matrix as constructed in the proof

of Theorem 8 Let x ∈ R
n be a signal with x ∈ Mk and let y = Ax + e be

the noisy measurements. Then, there exists an algorithm to recover a signal
estimate x̂ ∈ Mck from y such that →x− x̂→2 ⊂ C→e→2 for some constants c > 1,
C > 0. The algorithm runs in O((n log n + k2 logn log2(k logn)) log

◦x◦2

◦e◦2
) time

for general k, and in O(n logn) time for the range k ⊂ n1/2−μ with μ > 0.

While we have stated our results for the tree-sparsity model, a completely
analogous construction of A with optimal parameters is possible in the context
of the block-sparsity model of [BCDH10]. In particular, since the block-sparse
projection can be computed exactly in linear time, this construction yields near-
linear time recovery of block-sparse signals. We omit a detailed derivation.
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Timon Hertli
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Abstract. The PPSZ algorithm by Paturi, Pudlák, Saks, and Zane (FOCS 1998)
is the fastest known algorithm for (Promise) Unique k-SAT. We give an improved
algorithm with exponentially faster bounds for Unique 3-SAT.

For uniquely satisfiable 3-CNF formulas, we do the following case distinction:
We call a clause critical if exactly one literal is satisfied by the unique satisfying
assignment. If a formula has many critical clauses, we observe that PPSZ by itself
is already faster. If there are only few clauses in total, we use an algorithm by
Wahlström (ESA 2005) that is faster than PPSZ in this case. Otherwise we have
a formula with few critical and many non-critical clauses. Non-critical clauses
have at least two literals satisfied; we show how to exploit this to improve PPSZ.

1 Introduction

The well-known problem k-SAT is NP-complete for k ∈ 3. If P⊆=NP, k-SAT does not
have a polynomial time algorithm. For a CNF formula F over n variables, the naive
approach of trying all satisfying assignments takes time O(2n · poly(|F |)). Especially
for k = 3 much work has been put into finding so-called “moderately exponential time”
algorithms running in time O(2cn) for some c < 1. In 1998, Paturi, Pudlák, Saks, and
Zane presented a randomized algorithm for 3-SAT that runs in time O(1.364n). Given
the promise that the formula has at most one satisfying assignment (that problem is
called Unique 3-SAT), a running time of O(1.308n) was shown. Both bounds were the
best known when published. The running time of general 3-SAT has been improved
repeatedly (e.g. [7,4]), until PPSZ was shown to run in time O(1.308n) for general 3-
SAT [2].

Any further improvement of 3-SAT further also improves Unique 3-SAT; however
that bound has not been improved upon since publication of the PPSZ algorithm. In
this paper, we present a randomized algorithm for Unique 3-SAT with exponentially
better bounds than what could be shown for PPSZ. Our algorithm builds on PPSZ and
improves it by treating sparse and dense formulas differently.

A key concept of the PPSZ analysis is the so-called critical clause: We call a clause
critical for a variable x if exactly one literal is satisfied by this unique satisfying assign-
ment, and that literal is over x. It is not hard to see that the uniqueness of the satisfying
assignment implies that every variable has at least one critical clause. If some variables
have strictly more than one critical clause, then we will give a straightforward proof that
PPSZ by itself is faster already. Hence the bottleneck of PPSZ is when every variable
has exactly one critical clause, and in total there are exactly n critical clauses.

σ Full version available at http://arxiv.org/abs/1311.2513

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 600–611, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Given a formula with exactly n critical clauses, consider how many other (non-
crtical) clauses there are. If there are few, we use an algorithm by Wahlström [8] that is
faster than PPSZ for formulas with few clauses in total. If there are many non-critical
clauses we use the following fact: A non-critical clause has two or more satisfied literals
(w.r.t. unique satisfying assignment); so after removing a literal, the remaining 2-clause
is still satisfied. We will exploit this to improve PPSZ.

An remaining problem is the case if only very few (i.e. sublinearly many) variables
have more than one critical clause or appear in many (non-critical) clauses. In this case,
we would get only a subexponential improvement. A significant part of our algorithm
deals with this problem.

Notation. We use the notational framework introduced in [9]. Let V be a finite set of
propositional variables. A literal u over x ⊂ V is a variable x or a negated variable x̄.
If u = x̄, then ū, the negation of u, is defined as x. We mostly use x,y,z for variables
and u,v,w for literals. We assume that all literals are distinct. A clause over V is a finite
set of literals over pairwise distinct variables from V . By vbl(C) we denote the set of
variables that occur in C, i.e. {x ⊂ V | x ⊂ C → x̄ ⊂ C}. C is a k-clause if |C| = k and
it is a (∧ k)-clause if |C| ∧ k. A formula in CNF (Conjunctive Normal Form) F over
V is a finite set of clauses over V . We define vbl(F) :=

⋃
C⊂F vbl(C). F is a k-CNF

formula (a (∧ k)-CNF formula) if all clauses of F are k-clauses ((∧ k)-clauses). A
(truth) assignment on V is a function α : V ≥ {0,1} which assigns a Boolean value to
each variable. α extends to negated variables by letting α(x̄) := 1−α(x). A literal u
is satisfied by α if α(u) = 1. A clause is satisfied by α if it contains a satisfied literal
and a formula is satisfied by α if all of its clauses are. A formula is satisfiable if there
exists a satisfying truth assignment to its variables. A formula that is not satisfiable is
called unsatisfiable. satisfy F . k-SAT is the decision problem of deciding if a (∧ k)-CNF
formula has a satisfying assignment.

If F is a CNF formula and x ⊂ vbl(F), we write F [x⇐≥1] (analogously F [x⇐≥0]) for
the formula arising from removing all clauses containing x and truncating all clauses
containing x̄ to their remaining literals. This corresponds to assigning x to 1 (or 0) in
F and removing trivially satifsied clauses. We call assignments α on V and β and W
consistent if α(x) = β (x) for all x ⊂V ⇒W . If α is an assignment on V and W ∪V , we
denote by α|W the assignment on W with α|W (x) = α(x) for x ⊂W . If γ = {x ⇐≥ 0,y ⇐≥
1, . . .}, we write F [γ] as a shorthand for F [x⇐≥0][y⇐≥1]..., the restriction of F to γ .

For a set W , we denote by x ≤u.a.r. W choosing an element x u.a.r. (uniformly at
random). Unless otherwise stated, all random choices are mutually independent. We
denote by log the logarithm to the base 2. For the logarithm to the base e, we write ln. By
poly(n) we denote a polynomial factor depending on n. We use the following convention
if no confusion arises: When F is a CNF formula, we denote by V its variables and by
n the number of variables of F , i.e. V := vbl(F) and n := |vbl(F)|. By o(1) we denote
a quantity dependent on n going to 0 with n ≥ ∞.

Previous Work

Definition 1. (Promise) Unique 3-SAT is the following promise problem: Given a (∧
3)-CNF with at most one satisfying assignment, decide if it is satisfiable or unsatisfiable.
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A randomized algorithm for Unique 3-SAT is an algorithm that, for a uniquely sat-
isfiable (∧ 3)-CNF formula returns the satisfying assignment with probability 1

2 .

If the formula has no satisfying assignment the algorithm cannot erroneously find one.
Hence the error is one-sided and we don’t have to care about unsatisfiable formulas.

The PPSZ algorithm [6] is a randomized algorithm for Unique 3-SAT running in
time O(1.308n). The precise bound is as follows:

Definition 2. Let S :=
∫ 1

0

(
1−min{1, r2

(1−r)2 }
)

dr = 2ln2− 1 ()

Theorem 1 ([6]). There exists a randomized algorithm (called PPSZ) for Unique 3-
SAT running in time 2(S+o(1))n.

Note that 0.3862 < S < 0.3863 and 2S < 1.308.

Our Contribution. For Unqiue 3-SAT, we get time bounds exponentially better than
PPSZ:

Theorem 2. There exists a randomized algorithm for Unique 3-SAT running in time
2(S−ε2+o(1))n where ε2 = 10−24.

In Section 2, we review the PPSZ algorithm. In Section 3, we show that the worst case
for PPSZ occurs when every variable has exactly one critical 3-clause; this case we
improve in Section 4. In Section 5, we pose open problems that arise.

2 The PPSZ Algorithm

In this section we review the PPSZ algorithm [6], summarized in Algorithm 1. We need
to adapt some statements slightly. For the straightforward but technical proofs we refer
the reader to appendix of the full version. The following two definitions are used to state
the PPSZ algorithm.

Definition 3. A CNF formula F D-implies a literal u if there exists a subformula G∪ F
with |G| ∧ D and all satisfying assignments of G set u to 1.

In a random permutation, the positions of two elements are not independent. To over-
come this, placements were defined. They can be seen as continuous permutations with
the nice property that the places of different elements are independent.

Definition 4 ([6]). A placement on V is a mapping V ≥ [0,1]. A random placement is
obtained by choosing for every x ⊂ V π(x) uniformly at random from [0,1], indepen-
dently.

Observation 3. By symmetry and as ties happen with probability 0, ordering V accord-
ing to a random placement gives a permutation distributed the same as a permutation
drawn uniformly at random from the set of all permutations on V .

The analysis of PPSZ builds on the concept of forced and guessed variables:
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Algorithm 1. PPSZ(CNF formula F)

V ≤ vbl(F); n ≤ |V |
Choose β u.a.r. from all assignments on V
Choose π : V ≥ [0,1] as a random placement of V
Let α be a partial assignment on V , initially empty
for x ⊂V , in ascending order of π(x) do

if F (logn)-implies x or x̄, set α(x) to satisfy this literal
otherwise α(x)≤ β (x) {guess α(x) u.a.r.}
F ≤ F [x ⇐≥α(x)]

end for
return α

Definition 5. If in PPSZ, α(x) is assigned 0 or 1 because of D-implication, we call x
forced. Otherwise (if α(x) is set to β (x)), we call x guessed.

The following lemma from [6] relates the expected number of guessed variables to the
success probability (the proof is by an induction argument and Jensen’s inequality).

Lemma 1 ([6]). Let F be a satisfiable (∧ 3)-CNF, let α⇔ be a satisfying assignment.
Let G(π) be the expected number of guessed variables conditioned on β = α⇔ depend-
ing on π . Then PPSZ(F) returns α⇔ with probability at least Eπ [2−G(π)]∈ 2Eπ [−G(π)].

Remember that S :=
∫ 1

0

(
1−min{1, r2

(1−r)2 }
)

dr = 2ln2− 1, which corresponds to the

probability that a variable is guessed. We define Sp where the integral starts from p
instead of 0; this corresponds to the probability that a variable has place at least p and
is guessed.

Definition 6. Let Sp :=
∫ 1

p

(
1−min{1, r2

(1−r)2 }
)

dr.

Observation 4. For p ∧ 1
2 , Sp = S− p+

∫ p
0

r2

(1−r)2 dr.

In the appendix of the full version, we derive from [6] the following:

Corollary 1. Let F a (∧ 3)-CNF with unique satisfying assignment α . Then in
PPSZ(F) conditioned on β = α , the expected number of guessed variables is at most
(S+ o(1))n.

Furthermore, suppose we pick every variable of F with probability p, independently,
and let Vp be the resulting set. Then in PPSZ(F) conditioned on β = α , the expected
number of guessed variables is at most (Sp + o(1))n.

By Lemma 1, we have the following corollary:

Corollary 2. Let F a (∧ 3)-CNF with unique satisfying assignment α . Then the prob-
ability that PPSZ(F) returns α is at least 2(−S−o(1))n.

Furthermore, suppose we pick every variable of F with probability p, independently,
and let Vp be the resulting set. Then the expected log of the probability (over the choice

of Vp) that PPSZ(F [α |Vp ]) returns α|V\Vp is at least (−Sp − o(1))n.
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The first statement is actually what is shown in [6], and the second statement is a direct
consequence. We need this later when we replace PPSZ by a different algorithm on
variables with place at most p. It is easily seen that for a (∧ 3)-CNF F , PPSZ(F) runs
in time 2o(n). Hence by a standard repetition argument, PPSZ gives us an algorithm
finding an assignment in time 2(S+o(1))n and we (re-)proved Theorem 1.

3 Reducing to One Critical Clause Per Variable

In this section we show that to obtain an exponential improvement for Unique 3-SAT
we only need to consider the case where every variable has exactly one critical clause.

Definition 7 ([6]). Let F be a CNF formula satisfied by α . We call a clause C critical
for x (w.r.t. α) if α satisfies exactly one literal of C, and this literal is over x.

Definition 8. A 1C-Unique (∧ 3)-CNF is a uniquely satisfiable (∧ 3)-CNF where every
variable has at most one critical clause. Call the corresponding promise problem 1C-
Unique 3-SAT.

All formulas we consider have a unique satisfying assignment; critical clauses will be
always w.r.t. that. First we show that a variables with more than one critical clause
are guessed less often; giving an exponential improvement for formulas with a linear
number of such variables. A similar statement for shorter critical clauses is required in
the next section.

Lemma 2. Let F be a (∧ 3)-CNF uniquely satisfied by α . A variable x with at least two
critical clauses (w.r.t. α) is guessed given β = α with probability at most S−0.0014+
o(1). Furthermore, a variable x with a critical (∧ 2)-clause is guessed with probability
at most S− 0.035+ o(1)

Proof. Suppose π(x) = r. LetC1 andC2 be two critical clauses of x. IfC1 and C2 share no
variable besides x, then the probability that x is forced is at least 2r2−r4 by the inclusion-
exclusion principle. If C1 and C2 share one variable besides x, then the probability that x
is forced is at least 2r2 − r3 (which is smaller than 2r2 − r4. C1 and C2 cannot share two
varibles besides x: in that case C1 =C2, as being a critical clause for x w.r.t. α predeter-
mines the polarity of the literals. Intutiviely, if r is small, then 2r2− r3 is almost twice as
large as r2

(1−r)2 ; therefore in this area the additional clause helps us and the overall forc-

ing probability increases. For a critical (∧ 2)-clause the argument is analogous. Here,
the probability that x is forced given place r is at least r. The statement follows now by
integration using the dominated convergence theorem, see appendix of the full version.

Corollary 3. Let F be a (∧ 3)-CNF formula uniquely satisfied by α . If Δn variables of
F have two critical clause, PPSZ finds α with probability at least 2−(S−0.0014Δ+o(1))n.

If Δn variables of F have a critical (∧ 2)-clause clause, PPSZ finds α with proba-
bility at least 2−(S−0.035Δ+o(1))n.

If there are only few variables (less than Δ1n) with one critical clause, we can find and
guess them by brute-force. If we choose Δ1 small enough, any exponential improvement
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Algorithm 2. PPSZIMPROVED(CNF formula F)

repeat PPSZ(F) 2(S−ε2)n times, return if a satisfying assignment has been found
for all subsets W of size ∗Δ1n⊥ and all assignments α ↓ on W , try ONECC(F [α ↓])

for 1C-Unique 3-SAT gives a (diminished) exponential improvement to Unique 3-SAT.
To bound the number of subsets of size Δ1n, we define the binary entropy and use a
well-known upper bound to the binomial coefficient.

Definition 9. For p ⊂ [0,1], H(p) :=−p log p− (1− p) log(1− p) (0log0 := 0).

Lemma 3 (Chapter 10, Corollary 9 of [5]). If pn is an integer, then
( n

pn

)∧ 2H(p)n.

We will manily prove that we have some exponential improvement. The claimed num-
bers are straightforward to check by inserting the values from the following table.

name value description
ε1 10−19 improvement in 1C-Unique 3-SAT
ε2 10−24 improvement in Unique 3-SAT
Δ1 10−21 threshold fraction of vars. with more than 1 crit. clause
Δ2 6 ·10−5 Δ2n is the amount of variables for Δ2-sparse and Δ2-dense
ε3 10−3 exponential savings on repetitions if F is Δ2-sparse
p⇔ 8 ·10−7 prob. that a var. is assigned using indep. 2-clauses instead of

PPSZ

Lemma 4. If there is a randomized algorithm ONECC(F) solving 1C-Unique 3-SAT
in time 2(S−ε1+o(1))n for ε1 > 0, then there is a randomized algorithm (Algorithm 2)
solving Unique 3-SAT in time 2(S−ε2+o(1))n for some ε2 > 0.

Proof. Let F be a (∧ 3)-CNF uniquely satisfied by α . Let c(F) be the number of vari-
ables of F with more than one critical clause. If c(F) ∈ Δ1n, PPSZ is faster by Corol-
lary 3. If c(F) = 0, we can use ONECC(F).

However, what if 0< c(F)< Δ1n? In that case, we get rid of these variables by brute-
force: For all ∗Δ1n⊥-subsets W of variables and for all 2∗Δ1n⊥ possible assignments α ↓

on W , we try ONECC(F [α ↓]). For one such α ↓, we have F [α ↓] satisfiable and c(F) = 0;
namely if W includes all variables with multiple critical clauses and α ↓ is compatible
with α . This is because fixing variables according to α does not produce new critical
clauses w.r.t. α .

There are
( n
∗Δ1n⊥

)
subsets of size ∗Δ1n⊥ of the variables of F , each with 2∗Δ1n⊥ pos-

sible assignments. As
( n
∗Δ1n⊥

)∧ 2H(Δ1)n (Lemma 3), we invoke ONECC(F [α ↓]) at most

2(Δ1+H(Δ1))n times. Setting Δ1 small enough such that Δ1 +H(Δ1) < ε1 retains an im-
provement for Unique 3-SAT.

4 Using One Critical Clause Per Variable

In this section we give an exponential improvement for 1C-Unique 3-SAT.
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Algorithm 3. ONECC((∧ 3)-CNF F)

try DENSE(F);
try SPARSE(F)

Algorithm 4. GETIND2CLAUSES((∧ 3)-CNFF)
{for the analysis, F is considered to be Δ2-dense; the procedure might fail otherwise}
F3 ≤{C ⊂ F | |C|= 3}, F2 ≤ {}
for �Δ2n≺ times do

let x be a variable with deg3(F3,x)∈ 5 (return failure if no such variable exists)
Choose C u.a.r. from all of F with x ⊂ vbl(C).
l ≤ literal of C over x; C2 ≤C \ l
F2 ≤ F2 ∪C2
{remove all clauses of F3 sharing variables with C2}
F3 ≤{C3 ⊂ F3 | vbl(C3)⇒vbl(C2) = /0}

end for
return F2

Theorem 4. Given a 1C-Unique (∧ 3)-CNF on n variables, ONECC(F) runs in ex-
pected time 2(S−ε1+o(1))n and finds the satisfying assignment with probability 2−o(n).

Obtaining a randomized algorithm using 2o(n) independent repetitions and Markov’s
inequality is straightforward.

Corollary 4. There exists a randomized algorithm for 1C-Unique 3-SAT running in
time 2(S−ε1+o(1))n.

Together with Lemma 4 this immediately implies Theorem 2. We obtain the improve-
ment by doing a case distinction into sparse and dense formulas, as defined now:

Definition 10. For a CNF formula F and a variable x, the degree of x in F, deg(F,x)
is defined to be the number of clauses in F that contain the variable x. The 3-clause
degree of x in F, deg3(F,x) is defined to be the number of 3-clauses in F that contain
the variable x. For a set of variables W, denote by F \W the part of F independent of
W that consists of the clauses of F that do not contain variables of W. We say that F is
Δ -sparse if there exists a set W of at most Δn variables such that F \W has maximum
3-clause degree 4. We say that F is Δ -dense otherwise.

We will show that for Δ2 small enough, we get an improvement for Δ2-sparse 1C-
Unique (∧ 3)-CNF formulas. On the other hand, for any Δ2 we will get an improvement
for Δ2-dense 1C-Unique (∧ 3)-CNF formulas. In the sparse case we can fix by brute
force a small set of variables to obtain a formula with few 3-clauses. We need to deal
with the (∧ 2)-clauses and then use an algorithm from Wahlström for CNF formulas
with few clauses.

4.1 Dense Case

First we show the improvement for any Δ2-dense 1C-Unique (∧ 3)-CNF. Δ2-density
means that even after ignoring all clauses over any Δ2n variables, a variable with
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Algorithm 5. DENSE((∧ 3)-CNF F)

F2 ≤GETIND2CLAUSES(F)
for 2(S−ε1)n times do

Vp⇔ ≤ pick each x ⊂ vbl(F) with probability p⇔
α ↓ ≤ {}
for C2 ⊂ F2 do

if vbl(C2)∪Vp then
Let {u,v} =C2

(α ↓(u),α ↓(v))≤
{
(0,0), with probability 3

15

(0,1),(1,0),(1,1), with probability 4
15 each

end if
end for
for all x ⊂Vp, if α ↓(x) is not defined yet let α ↓(x)≤u.a.r. {0,1}
PPSZ(F [α ↓]); if a satisfying assignment α has been found, return α ∪α ↓

end for

3-clause degree of at least 5 remains. The crucial idea is that for a variable x with
3-clause degree of at least 5, picking one occurence of x u.a.r. and removing it gives a
2-clause satisfied (by the unique satisfying assignment) with probability at least 4

5 : If
the 2-clause is not satisfied, then the deleted literal of x is the only satisfied literal of the
3-clause; hnece the 3-clause is critical for x. However by assumption x has at most one
critical clause. We can obtain � 1

2 Δ2n≺ such 2-clauses that do not share variables by re-
peating the above process, ignoring all 3-clauses that share variables with the 2-clauses
produced so far (listed in GETIND2CLAUSES(F)). By Δ2-density we do not run out of
variables with degree at least 5 in the 3-clauses.

Observation 5. For a Δ2-dense 1C-Unique (∧ 3)-CNF F, GETIND2CLAUSES(F) re-
turns a set of � 1

2 Δ2n≺ 2-clauses sharing no variables. The i-th (for 1 ∧ i ∧ � 1
2 Δ2n≺)

2-clause is satisfied with probability at least 4
5 , irrespective of the previous 2-clauses.

As a random 2-clause is satisfied with probability 3
4 by a specific assignment, this set of

2-clauses gives us nontrivial information about the unique satisfying asignment. Now
we show how to use these 2-clauses to improve PPSZ:

Lemma 5. Let F be a Δ2-dense 1C-Unique (∧ 3)-CNF for some Δ2 > 0. Then there
exists an algorithm (DENSE(F)) runing in time 2(S−ε1+o(1))n for ε1 > 0 and returning
the satisfying assignment α of F with probability 2−o(n).

Proof. First we give some intuition. For variables that occur late in PPSZ, the probabil-
ity of being forced is large (being almost 1 in the second half). However for variables
that come at the beginning, the probability is very small; a variable x at place p is forced
(in the worst case) with probability Θ(p2) for p ≥ 0, hence we expect Θ(p3n) forced
variables among the first pn variables in total.

However, a 2-clause that is satisfied by α with probability 4
5 can be used to guess

both variables in a better way than uniform, giving constant savings in random bits
required. For Θ(n) such 2-clauses, we expect Θ(p2n) of them to have both variables
among the first pn variables. For each 2-clause we have some nontrivial information;
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intuitively we save around 0.01 bits. In total we save Θ(p2n) bits among the first pn
variables, which is better than PPSZ for small enough p.

Formally, let Vp⇔ be a random set of variables, where each variable of V is added
to Vp⇔ with probability p⇔. On Vp⇔ , we replace PPSZ by our improved guessing; on the
remaining variables V \Vp⇔ we run PPSZ as usual. Let Eguess be the event that the guess-

ing on Vp⇔ (to be defined later) finds α|Vp⇔ . Let EPPSZ be the event that PPSZ(F
[α |Vp⇔ ])

finds α|V\Vp⇔ . Observe that for a fixed Vp⇔ , Eguess and EPPSZ are independent. Hence we
can write the overall probability to find α (call it ps) as an expectation over Vp⇔ :

ps = EVp⇔ [Pr(Eguess ⇒EPPSZ|Vp⇔)]

= EVp⇔ [Pr(Eguess|Vp⇔)Pr(EPPSZ|Vp⇔)]

= EVp⇔ [2
logPr(Eguess|Vp⇔ )+logPr(EPPSZ |Vp⇔)]

∈ 2
EVp⇔ [logPr(Eguess|Vp⇔)+logPr(EPPSZ |Vp⇔)]

= 2
EVp⇔ [logPr(Eguess|Vp⇔)]+EVp⇔ [logPr(EPPSZ |Vp⇔)],

where in the last two steps we used Jensen’s inequality and linearity of expectation.
By Corollary 2, EVp⇔ [logPr(EPPSZ)] = (−Sp + o(1))n. We now define the guessing

and analyze EVp⇔ [logPr(Eguess)] (see Algorithm 5 as a reference):

By Observation 5 we obtain a set of � 1
2 Δ2n≺ 2-clauses F2 sharing no variables, each

satisfied (by α) with probability 4
5 irrespective of the previous choices. In the following

we assume that F2 has at least a 4
5 -fraction of satisfied 2-clauses: This happens with

constant probability (and we only require subexponential success probability) as we
can lower bound the number of satisfied 2-clauses by a binomially distributed variable;
such a variable is at least its mean with constant probability, see e.g. in [1].

Using the set of 2-clauses F2, we choose an assignment α ↓ on Vp⇔ as follows: For
every clause C2 in F2 completely over Vp⇔ assign both of its variables with probability 1

5
such that C2 is violated; with probability 4

15 each choose one three choices that satisfy
C2. Then any remaining variable of Vp⇔ is guessed u.a.r. from {0,1}.

Given Vp⇔ , let m0 be the number of clauses of F2 completely over Vp⇔ not satisfied by
α . Let m1 be the number of clauses of F2 completely over Vp⇔ satisfied by α . Then

Pr(Eguess|Vp⇔) =

(
1
2

)|Vp⇔ |−2m0−2m1
(

1
5

)m0
(

4
15

)m1

.

This is seen as follows: For any variable for which no clause in C2 is completely over
Vp⇔ , we guess uniformly at random and so correctly with probability 1

2 . For any clause
C2 which is completely over Vp⇔ , we violate the clause with probability 1

5 , and choose
a non-violating assignment with probability 4

5 . For any clause not satisfied by α , we
hence set both variables according to α with probability 1

5 . For any clause satisfied by
α , we set both variables according to α with probability 4

15 , as we have to pick the right
one of the three assignments that satisfy C2. As E[Vp⇔] = p⇔n, E[m0] ∧ 1

5 p⇔2�Δ2n≺,
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Algorithm 6. SPARSE((∧ 3)-CNF F)

repeat the following 2(S−ε3)n times:
for all subsets W of size ∗Δ2n⊥ and all assignments α ↓ on W do

F ↓ ≤ F [α ↓]

while no satisfying assignment found do
try PPSZ(F [α ↓])
F ↓

2 ≤ {C ⊂ F ↓ | |C| ∧ 2}
if |F ↓

2| ∧ 1
10 |vbl(F ↓)| then

with probability 2−(S−0.015)|vbl(F ↓)|, run WAHLSTROEM(F↓)
end if
{set all literals in a uniform (∧ 2)-clause to 1}
C↓ ≤u.a.r. F ↓

2, if F ↓
2 = {} return failure

for l ⊂C↓ do
F ↓ ≤ F ↓[l ⇐≥1]

end for
end while

end for

E[m1]∈ 4
5 p⇔2�Δ2n≺, E[m0 +m1] = p⇔2�Δ2n≺, we have

E[logPr(Eguess|Vp⇔)] =−E[Vp⇔ − 2m0 − 2m1]+ log

(
1
5

)
E[m0]+ log

(
4
15

)
E[m1]

∈−p⇔n+ p⇔2�Δ2n≺
(

2+ log

(
1
5

)
1
5
+ log

(
4

15

)
4
5

)
.

The inequality follows from the observations and log
(

4
15

)∈ log
(

1
5

)
. One can calculate

2+ log
(

1
5

)
1
5 + log

(
4

15

)
4
5 ∈ 0.01, corresponding to the fact that a four-valued random

variable where one value occurs with probability at most 1
5 has entropy at most 1.99.

Hence by our calculations and Observation 4 (to evaluate Sp), we have

1
n

log ps ∈−S+ p⇔−
∫ p⇔

0

r2

(1− r)2 dr+ o(1)− p⇔+Δ2 p⇔2 ·0.01

=−S−
∫ p⇔

0

r2

(1− r)2 dr+Δ2 p⇔2 ·0.01+ o(1).

This gives an improvement over PPSZ of −∫ p⇔
0

r2

(1−r)2 dr + Δ2 p⇔2 · 0.01+ o(1). The

first term corresponds to the savings PPSZ would have, the second term corresponds
to the savings we have in our modified guessing. Observe that for small p⇔, the integral
evaluates to Θ(p⇔3), but the second term is Θ(p⇔2). Hence choosing p⇔ small enough
gives an improvement.

4.2 Sparse Case

Now we show that if Δ2 > 0 is small enough we get an improvement for a Δ2-sparse
1C-Unique (∧ 3)-CNF. For this, we need the following theorem by Wahlström:
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Theorem 6 ([8]). Let F be a CNF formula with average degree at most 4.2 where we
count degree 1 as 2 instead. Then satisfiability of F can be decided in time O(20.371n)∧
2(S−0.015+o(1))n. Denote this algorithm by WAHLSTROEM(F).

Lemma 6. Let F be a Δ2-sparse 1C-Unique (∧ 3)-CNF. For Δ2 small enough, there
exists an algorithm (SPARSE(F)) running in expected time 2(S−ε3+o(1))n for ε3 > 0 and
finding the satisfying assignment α of F with probability 2−o(n).

Proof. Similar to Section 3, we first check by brute-force all subsets W of ∗Δ2n⊥ vari-
ables and all possible assignments α ↓ of W ; by definition of Δ2-sparse for some W , the
part of F independent of W (i.e. F \W ) has maximum 3-clause degree 4. If further-
more α ↓ is compatible with α , F ↓ := F [α ↓] is a 1C-Unique (∧ 3)-CNF with maximum
3-clause degree 4: We observed that critical clauses cannot appear in the process of
assigning variables according to α; furthermore any clause of F not independent of
W must either disappear in F ↓ or become a (∧ 2)-clause. As earlier, there are at most
2(Δ2+H(Δ2))n cases of choosing W and α ↓. We now analyze what happens for the correct
choice of F ↓:

We would like to use WAHLSTROEM on F ↓; however F ↓ might contain an arbitrary
amount of (∧ 2)-clauses. The plan is to use the fact that either there are many critical
(∧ 2)-clauses, in which case PPSZ is better, or few critical (∧ 2)-clauses, in which case
all other (∧ 2)-clauses are non-critical and have only satisfied literals.

The algorithm works as follows: We have a 1C-Unique (∧ 3)-CNF on F ↓ on n↓ :=
|vbl(F ↓)| variables; the maximum degree in the 3-clauses is at most 4. First we try PPSZ:
if there are 1

30 n↓ critical (∧ 2)-clauses, this gives a satisfying assignment with proba-

bility 2(S−0.035 1
30 )n

↓
. Otherwise, if there are less than 1

10 n↓ (∧ 2)-clauses, the criterion

of Theorem 6 applies: We invoke WAHLSTROEM(F ↓) with probability 2−(S−0.015)n↓;
this runs in expected time 2−o(n) and finds a satisfying assignment with probability
2−(S−0.015)n↓.

If both approaches fail, we know that F ↓ has at less than 1
30 n↓ critical (∧ 2)-clauses

clauses, but also more than 1
10 n↓ (∧ 2)-clauses overall. Hence at most one third of the

(∧ 2)-clauses is critical. However a non-critical (∧ 2)-clause must be a 2-clause with
both literals satisfied. Hence choosing a (∧ 2)-clause of F ↓ uniformly at random and
setting all its literals to 1 sets two variables correctly with probability at least 2

3 >

2−0.371·2 > 2−(S−0.015)·2. That is we reduce the number of variables by 2 with a better
probability than PPSZ overall; and we can repeat the process with the reduced formula.
This shows that for the correct F ↓, we have expected running time 2o(n) and success
probability 2(−S+ε3−o(1))n for ε3 > 0. It is important to see that ε3 does not depend on
Δ2. Repeating this process 2(−S+ε3−o(1))n times gives success probability 2o(n).

Together with the brute-froce choice of W and α ↓, we have expected running time of
2(S−ε3+Δ2+H(Δ2)+o(1))n. By choosing Δ2 small enough we are better than PPSZ.

5 Open Problems

Can we also obtain an improvement for general 3-SAT? In general 3-SAT, there might
be even fewer critical clauses and critical clauses for some assignments are not always
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critical for others. We need to fit our improvement into the framework of [2]. As there
is some leeway for multiple assignments, this seems possible, but nontrivial and likley
to become very complex.

Another question is whether we can improve (Unique) k-SAT. PPSZ becomes slower
as k increases, which makes an improvement easier. However the guessing in SPARSE

relied on the fact that non-critical (∧ 2)-clauses have all literals satisfied, which is not
true for larger clauses.

Suppose Wahlström’s algorithm is improved so that it runs in time O(cn) on 3-CNF
formulas with average degree D. The sparsification lemma [3] shows that for c ≥ 1 and
D ≥ ∞, we obtain an algorithm for 3-SAT running in time O(bn) for b ≥ 1. Can our
approach be extended to a similar sparsification result?
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Abstract. In this paper, we initiate the systematic study of solving
linear programs under differential privacy. The first step is simply to
define the problem: to this end, we introduce several natural classes of
private linear programs that capture different ways sensitive data can be
incorporated into a linear program. For each class of linear programs we
give an efficient, differentially private solver based on the multiplicative
weights framework, or we give an impossibility result.

1 Introduction

Linear programming is one of the most fundamental and powerful tools in algo-
rithmic design. It is used ubiquitously throughout computer science: applications
include maximum matching, maximum and minimum cost flow, and fractional
packing and covering problems. Linear programming relaxations of NP-complete
problems also underlie countless efficient approximation algorithms.

At the same time, differential privacy is a field where efficient algorithms have
been difficult to find. For many problems in differential privacy, the initial focus
was on understanding the information-theoretic complexity—the extent to which
solving the problem, efficiently or not, is compatible with differential privacy. As
a result, there are many central problems that are known to be privately solvable,
but for which computationally efficient algorithms are not known. For example,
Kasiviswanathan et al. [17] show how to privately PAC learn any PAC learn-
able concept class (without privacy) with only a small increase in the sample
complexity, but via an exponential time algorithm. It remains open whether a
computationally efficient algorithm can do this in general. Similarly, Blum et al.
[3] show how to privately release a summary of a private database that approx-
imately preserves the answers to rich families of linear queries, again via an
exponential time algorithm. In fact, under standard cryptographic assumptions,
it is not possible to efficiently and privately answer large collections of general
linear queries [9, 24, 23].

The two preceding examples are among the many algorithms that use the ex-
tremely general exponential mechanism of McSherry and Talwar [19] to achieve
near optimal error. However, the exponential mechanism is not efficient in gen-
eral: it requires running time linear in the size of its output range, which can

ε A full version of the paper with the omitted proofs and sections can be found at
http://arxiv.org/abs/1402.3631 .

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 612–624, 2014.
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be extremely large. In contrast, general tools for designing efficient differen-
tially private algorithms are harder to come by (although not non-existent, e.g.,
the sample and aggregate framework [20] and output/objective perturbation for
unconstrained convex optimization [5, 18]).

Our work contributes to the toolbox of general algorithmic techniques for
designing computationally efficient and differentially private algorithms; specif-
ically, we give tools to privately and efficiently solve linear programs (LPs) of
various types. An initial problem is to simply define what it means to solve
a linear program privately. Differential privacy is defined in terms of neighbor-
ing databases. A database is a collection of records from some domain and two
databases are neighboring if they differ in a single record. Differential privacy
requires the output distribution of an algorithm to be nearly identical when run
on either of a pair of neighboring databases. If linear programs can depend on
private databases, we naturally have a notion of neighboring linear programs,
and we want an algorithm for solving these linear programs that is differentially
private with respect to this notion of neighboring inputs.

The way in which the linear program is derived from the database gives rise to
several distinct notions of neighboring linear programs. For instance, consider an
LP with objective c◦x and constraints Ax ∈ b, where moving to a neighboring
LP neighboring database leaves c and A unchanged but perturbs b by only a small
amount in each coordinate. Solving this kind of linear programming privately is
similar to the well-studied linear query release problem in differential privacy, and
techniques for linear query release—such as the private multiplicative weights
algorithm of Hardt and Rothblum [13] (and its offline variants [12, 14])—can be
adapted with minor changes. (This result may even be considered folklore.) On
the other hand, the situation is qualitatively different if moving to a neighboring
LP can change either the constraint matrix A or the objective vector c. Some of
these private LPs can still be solved; others are provably impossible to solve to
nontrivial accuracy under differential privacy.

In this paper, we develop a taxonomy of private LPs. For each class, we
either present an efficient and accurate differentially private solver, or prove that
general LPs of this type cannot be accurately solved while preserving privacy.

1.1 Our Results and Techniques

We consider linear programs LP (D) defined by a database D, with form

max
x√R

d
+

c◦x

s.t. Ax ∈ b.

Here, the vector x represents the variables of the linear program, and c =
c(D), A = A(D), and b = b(D) may each depend on the private database D.
Our goal is to find an approximate solution to LP (D) in a sense to be defined,
while ensuring differential privacy for the underlying database D.

We classify private LPs along two dimensions: which part of the LP depends on
the database and how sensitive the LP is to changes in the database. Along the
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second axis, we will consider: 1) low-sensitivity LPs, where changing one record
of the database induces a small difference between coefficients that vanishes as
the size of the database n grows and 2) high-sensitivity LPs, where changing one
record of the database can induce a potentially large change in some coefficient.
Low-sensitivity LPs are natural when the coefficients of the LP represent some
kind of average over the database, whereas high-sensitivity LPs are natural when
the coefficients represent specific records of the database.

Furthermore, we consider four parts of the LP that might depend on the
database: 1) the rows of A, 2) the scalars b, 3) the columns of A, and 4) the ob-
jective c. These four parts of the LP, combined with the two notions of sensitivity,
lead to the following eight notions of private linear programming:

1. The constraints: For these linear programs, moving to a neighboring
database can affect at most one row of A and the corresponding entry of b,
which corresponds to changing one constraint of the LP.

(a) High-sensitivity: For high-sensitivity constraint private LPs , moving to
a neighboring database can change a single constraint arbitrarily. That is,
for every pair of neighboring databasesD,D≤, there exists a row i such that
for every row j ⊆= i, A(D)j = A(D≤)j and b(D)j = b(D≤)j . This kind of
linear program arises, for example, in covering LPs in which each record of
the database represents an individual that needs to be covered. We cannot
hope to approximately satisfy every constraint while ensuring privacy, but
we show that by using a variant of multiplicative weights that operates only
over a restricted set of distributions, we can still find solutions to such LPs
that approximately satisfy most of the constraints. As an example of our
technique, we solve a private version of the fractional set cover problem.

(b) Low-sensitivity: For low-sensitivity constraint private LPs , moving to
a neighboring database can change a single row of A by a small amount in
each entry—for some row i, ⊂Ai(D)−Ai(D

≤)⊂⊆ ∈ 1/n. We show how to
solve these LPs using multiplicative weights; our techniques work equally
well if the entire constraint matrix can change on neighboring problems
(we will sometimes call these low-sensitivity matrix or row private LPs).

2. The scalars: For these linear programs, c and A are fixed and moving to a
neighboring database only affects b = b(D).

(a) High-sensitivity: For high-sensitivity scalar private LPs, for every
neighboring D,D≤, there is a row i such that for every j ⊆= i, b(D)j =
b(D≤)j . We show that in general, such LPs cannot be solved privately.

(b) Low-sensitivity: For low-sensitivity scalar private LPs, moving to a
neighboring database can change every entry in b slightly, such that
⊂b(D) − b(D≤)⊂⊆ ∈ 1/n. These LPs capture the private linear query
release problem, so we will sometimes refer to them as query release
LPs. In this problem, the database is viewed as a histogram D → N

d
+

and the objective is to find a synthetic database x → R
d
+ such that for

every linear query q in some family, ∧q, x≥ ⇐ ∧q,D≥. We show how to
adapt existing techniques for this problem and derive resulting accurate
solvers for LPs of this form.
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3. One column in A: For these linear programs, moving to a neighboring
database can affect at most one column of A.

(a) High-sensitivity: For high-sensitivity column private LPs, for every
neighboring D,D≤, the matrices A(D), A(D≤) are arbitrarily different in
a single column, and identical in all other columns. We show that in
general, such LPs cannot be solved privately.

(b) Low-sensitivity: For low-sensitivity column private LPs, moving to a
neighboring database can change every entry in a single column of A
by a small amount. More generally, if Ai is the ith row of A, then
⊂A(D)i − A(D≤)i⊂1 ∈ 1/n for each i. We show how to use these LPs
using multiplicative weights.

4. The objective: For these linear programs, moving to a neighboring database
can affect the objective c. The scalars b and constraints A remain unchanged.

(a) High-sensitivity: For high-sensitivity objective private LPs, for every
neighboring D,D≤, a single entry of the objective c(D), c(D≤) can change
arbitrarily. We show that in general, such LPs cannot be solved privately.

(b) Low-sensitivity: For low-sensitivity objective private LPs, for every
neighboring D,D≤, the objective vectors c(D), c(D≤) satisfy ⊂c(D) −
c(D≤)⊂1 ∈ 1/n. This kind of linear program can be solved inefficiently to
high accuracy by selecting from the set of vertices of the feasible poly-
tope with the exponential mechanism; we show that linear programs in
this class can also be solved efficiently and accurately, by directly using
randomized response.

This taxonomy is summarized in Table 1. We will formally define accuracy,
but roughly speaking, an accurate solution satisfies each constraint to within
additive σ, and has objective within additive σ of optimal (when there is an
objective). The exception is constraint privacy (indicated by the asterisk), where
our algorithm finds a solution that satisfies only most of the constraints to within
additive σ, and may violate the other constraints arbitrarily.

Table 1. Efficient and accurate solvability

Location of change High sensitivity Low sensitivity

Objective c No Yes

Scalar b No Yes

Row/All of A Yes* Yes

Column of A No Yes

1.2 Related Work

Differential privacy emerged from a line of work initiated by Dinur and Nissim
[6], was defined by Dwork et al. [8], and is now a standard definition of privacy in
computer science. Below, we discuss relevant results in differential privacy; the
survey by Dwork [7] is an excellent source for a more comprehensive overview.

Private optimization has been studied since the work of Blum et al. [2] and
Kasiviswanathan et al. [17], who considered how to choose an optimal classifier



616 J. Hsu et al.

privately. Blum et al. [2] give an efficient reduction from SQ learning to private
SQ learning, and Kasiviswanathan et al. [17] give a very general but inefficient
reduction from PAC learning to private PAC learning using the exponential
mechanism of McSherry and Talwar [19]. Private learning was placed explicitly
into an optimization framework by Chaudhuri et al. [5], who give two techniques
for privately solving certain unconstrained convex optimization problems. Gupta
et al. [11] give several algorithms for problems in private combinatorial optimiza-
tion, but these were specialized combinatorial algorithms for specific problems.

In parallel, a line of work initiated by Blum et al. [3] and continuing with
Dwork et al. [9], Roth and Roughgarden [22], Dwork et al. [10], Hardt and
Rothblum [13], Gupta et al. [12], Hardt et al. [14] study the problem of privately
producing synthetic data consistent with some private database on many linear
queries. (Of particular note is the private multiplicative weights mechanism of
Hardt and Rothblum [13], which achieves the optimal accuracy and running time
bounds [23, 4].) This problem can be represented as a linear program with queries
defining constraints, and indeed, the private multiplicative weights algorithm of
Hardt and Rothblum [13] can be directly applied to solve this kind of linear
program. This observation motivates our current investigation.

Our algorithms are mostly based on different variants of the multiplicative
weights method of solving linear programs, which was introduced by Plotkin
et al. [21] (see the excellent survey by Arora et al. [1] for more details). Whereas
Plotkin et al. [21] maintain a distribution over the dual variables with multi-
plicative weights, depending on the kind of linear program we are solving, we
either maintain a distribution over the dual variables or the primal variables. To
solve constraint private LPs, we use a combination of the multiplicative weights
update method and Bregman projections [1]—Hsu et al. [16] use a similar version
of this technique in designing analyst private mechanisms.

2 Differential Privacy Preliminaries

We defer differential privacy preliminaries to the extended version of the paper.

3 Constraint Private LPs

Let us begin by considering constraint private LPs, with the general form

max
x√K

c◦x

s.t. Ax ∈ b,

where A → R
m×d, b → R

m, c → R
d, and K ⇒ R

d. We think of K as the easy
constraints, those that are independent of the database, like non-negativity.

Let KOPT = K∪{x → R
d | c◦x = OPT}. Then, the original LP can be solved

approximately by repeatedly solving the feasibility problem

find x → KOPT

s.t. Ax ∈ b,
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binary searching on the optimal objective value OPT.1 Thus, unless we specify
otherwise, we will restrict our attention to feasibility LPs. Furthermore, since a
linear program has a convex feasible region, K (and hence KOPT) are convex.
From now on, we will write K for KOPT.

For constraint privacy, we want to find a solution that hides whether a single
constraint is in the LP or not. Formally:

Definition 1. A randomized algorithm M with inputs m → N, vector b → R
m,

and matrix A → R
m×d and outputting a vector in R

d is (τ, λ)-high sensitivity
constraint private if for any A,A≤ such that A≤ is equal to A with an additional
row appended, and b, b≤ such that b≤ is equal to b with an additional entry,

Pr[M(m, b,A) → S] ∈ eσ Pr[M(m + 1, b≤, A≤) → S] + λ

for any set S ⇒ R
d.

3.1 Solving LPs with Dense Multiplicative Weights

A standard approach to solving LPs is via no-regret algorithms. While LPs can
be solved using any no-regret algorithm, for concreteness we use the multiplica-
tive weights update algorithm.

We will use a variant of the standard multiplicative weights algorithm that
maintains a dense distribution over the set of constraints, i.e., a distribution that
doesn’t place too much probability on any action. We will call this algorithm,
due to Herbster and Warmuth [15], the dense multiplicative weights algorithm
(Algorithm 1). Roughly, the algorithm projects the MW distribution on actions
into the set of dense distributions at each step. The loss at each step will be
defined by a point that approximately satisfies the average constraint weighted
by the MW distribution—by capping the probability on any constraint, we en-
sure that this point can be selected privately even when a single constraint can
change arbitrarily on neighboring instances.

We first define this projection step, also known as a Bregman projection.

Definition 2. Let s > 0. Given a measure A such that |A| ∈ s, let ΠsA be
the (Bregman) projection of A into the set of 1/s-dense distributions, defined
by ΠsAa = 1

s · min{1, cAa} for every a → A, where c ≤ 0 is such that s =∑
a√A min{1, cAa}.
Then, we can define the Dense Multiplicative Weights algorithm, which uses

the standard multiplicative weights update rule combined with a Bregman pro-
jection into the set of dense distributions after each step.

Recall we can assume that we know the optimal value OPT, so the objective
can be represented as the constraint c◦x = OPT. Hence, let K = {x → R

d
+ |

1 Binary search will incur an additional overhead in privacy, but in some situations
may not be necessary: for instance, if a bound on the sensitivity of the optimal
objective is known, we can solve the LP non-privately and estimate OPT with the
Laplace mechanism.
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Algorithm 1. The Dense Multiplicative Weights algorithm, DMWs,ε

Let A1 be the uniform measure on A
For t = 1, 2, . . . , T :

Let B̃t = ΔsA
t

Receive loss vector κt (may depend on B1, . . . , Bt)
Update: For each a ⇒ A:

Update At+1
a = e−ΓγtaAt

a

c◦x = OPT} be the public feasible set. We will assume that there is a known,
data-independent upper bound β such that

β ≤ max
D

max
x√K

⊂A(D)x− b(D)⊂⊆,

which we call the width of the LP.
We will define our algorithm in terms of an approximate oracle for solving

a linear minization problem. (For a concrete example of such an oracle in the
context of fractional set cover, see the next section.)

Definition 3. An (σ, Δ)-approximate, β-bounded oracle, given a distribution
y → R

m and matrix A → R
m×d, with probability at least 1− Δ finds x≥ → R

d with

m∑

i=1

yi(Ai · x≥) ∈ min
x√K

m∑

i=1

yi(Ai · x) + σ

and ⊂Ax≥ − b⊂⊆ ∈ β.

We present the full algorithm in Algorithm 2.

Algorithm 2. Solving for LP feasibility with dense multiplicative weights

Input A ⇒ R
m×d, b ⇒ R

m.
Let ỹ1 be the uniform distribution in R

m, σ ≤ maxx∈K ∈Ax − b∈∞ be the width of
the LP, s ⇒ N be the density parameter, and α > 0 be the desired accuracy. Let
Oracle be an (α, β)-accurate, σ-bounded oracle, and set

η =

√
logm

T
, T =

36σ2 logm

α2
.

For t = 1, . . . , T :
Find xt = Oracle(ỹt, A)
Compute losses κti := (1/2σ)(bi − Ai · xt) + 1/2.
Update ỹt+1 from ỹt and κt via dense multiplicative weights with density s.

Output x = (1/T )
∑T

t=1 x
t.

If the oracle is sufficiently accurate, the following theorem bounds the number
of iterations needed to achieve a set level of accuracy.
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Theorem 1. Let 0 < σ ∈ 9β, and let Δ → (0, 1). Suppose there is a feasible
solution of the linear program. Then with probability at least 1 − Δ, Algorithm 2
with density parameter s run with an (σ/3, Δ/T )-approximate, β-bounded oracle
finds a point x≥ in K such that there is a set of constraints S of size at most
|S| < s, with Aix

≥ ∈ bi + σ for every i /→ S.

We also have the following privacy guarantee.

Theorem 2. Let τ, λ, T > 0, and let

τ≤ =
τ

√
8T log(1/λ)

.

with density parameter s → N. Suppose the oracle is τ≤-private, where on neigh-
boring instances the inputs (distributions) ỹ, ỹ≤ satisfy

⊂ỹ⊂⊆ ∈ 1/s, ⊂ỹ≤⊂⊆ ∈ 1/s, ⊂ỹ − ỹ≤⊂1 ∈ 2/s,

and the matrices A,A≤ are exactly the same except one has an additional row,
and the vectors b, b≤ except one has a corresponding additional entry. Then, Al-
gorithm 2 with density s is (τ, λ)-high sensitivity constraint private.

Now that we have presented our algorithm for solving LPs under constraint
privacy, we give an example of how to instantiate the oracle and apply Theorem 1.

3.2 Private Fractional Set Cover

We will consider the example of the fractional set cover LP, though our argu-
ments extend to constraint private LPs with a private oracle that has low width.
(For example, many covering and packing LPs satisfy this property.)

Suppose there are d sets, each covering some subset of m people. Each set
has a cost cS , and we wish to select the cheapest collection of sets that covers
every person. We will consider the fractional relaxation of this problem, where
instead of selecting whole sets for the cover, we can decide to select a fraction of
each set, i.e., each set can be chosen to some non-negative degree, and the cost
for set S is the degree to which it is open times cS . We again want the cheapest
fractional collection of sets, such that at least weight 1 covers each person.2

To formulate this as a linear program, let the variables be x → R
d
+; variable

xS will be the degree that we choose set S in the cover. For the constraints, let
Ai → {0, 1}m such that AiS is 1 exactly when set S covers i, otherwise 0.

We will assume that the optimal value OPT is known, and the goal is to
compute an approximate fractional set covering x≥ corresponding to OPT. This
is equivalent to solving the following linear program:

find: x → K
s.t. Ai · x ≤ 1 for each i

2 To highlight the constraint private LP, we will only consider the fractional version. It
is also possible to round the fractional solution to an integral solution (with slightly
worse cost), since randomized rounding is independent of the private data.
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where K = {x → R
d
+ | c · x = OPT} is the feasible region.

We wish to achieve constraint privacy: if each individual corresponds to a
covering constraint, then we want an approximate solution that is hides whether
a person i needs to be covered or not. This is not always possible—if each set
contains just one person, then the presence of a set in any valid covering will
reveal information about the people that need to be covered. Thus, we will find
a solution violating a few constraints, so only covering most people.

To use our constraint private LP solver, we first define a private oracle solving
the minimization problem

O(y) = argmin
x√K

∑

i

yi(Ai · x).

Since the oracle is minimizing a linear function, the optimal point lies at a vertex
of K and is of the form

x≥ =
OPT

ci
ei

for some i, where ei is the i’th standard basis vector, i.e., all zeros except for
a 1 in the i’th coordinate. We can use the exponential mechanism to privately
select this vertex. Now, it follows that Algorithm 2 solves the private fractional
set cover problem with the following accuracy guarantee.

Theorem 3. Let Δ → (0, 1). With probability at least 1 − Δ, Algorithm 2 with
the exponential mechanism as an oracle—where β is the width of the oracle and
σ ∈ 9β—finds a point x≥ such that Aix

≥ ≤ 1−σ except for at most s constraints
i, where

s = Õ

(
OPT2 log d log1/2 m log(1/Δ) log1/2(1/λ)

c2 · σ2 · τ

)

.

Algorithm 2 is also τ-high sensitivity constraint private.

Remark 1. A variant of the efficient private set cover problem has been investi-
gated by Gupta et al. [11]. Our techniques are more general, but the solution we
provide here has an imcomparable accuracy guarantee. We include this example
to demonstrate how to use Algorithm 2 and Theorem 1.

4 Low-Sensitivity LPs

Let us now turn to low-sensitivity LPs. Recall that for these LPs, the distance
between adjacent inputs decreases as the size of the database (i.e., the number
of individuals) grows. First, a few simplifying assumptions. Like above, we will
continue to solve feasibility LPs of the following form:

find x → R
d
+

s.t. Ax ∈ b
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Unlike the case for general constraint private LPs, we require that the feasible
solution is a distribution, i.e., is non-negative and has ∂1 norm 1. Note that if
the optimal solution has ∂1 norm L, then the rescaled LP

find x → R
d
+

s.t. Ax ∈ b/L

has a distribution as a solution. Our algorithms will find a point x≥ such that
Ax≥ ∈ b/L + σ · 1, so if we set σ = σ≤/L, then A(Lx≥) ∈ b + σ≤ gives an
approximate solution to the original, unscaled LP.

4.1 Scalar-Private LPs

We defer our scalar-private results to the extended version of the paper.

4.2 Row/Matrix-Private LPs

Suppose we have the feasibility problem

find x

s.t. Ax ∈ b,

where some entries in A may change by at most φ⊆ on a neighboring instance.
For row privacy, we want to find a solution that hides a single constraint’s

low sensitivity change. Formally:

Definition 4. A randomized algorithm M with inputs vector b → R
m and matrix

A → R
m×d, and outputting a vector in R

d is (τ, λ)-low sensitivity row private with
sensitivity φ⊆ if for any A,A≤ such that ⊂A−A≤⊂⊆ ∈ φ⊆,

Pr[M(b, A) → S] ∈ eσ Pr[M(b≤, A≤) → S] + λ

for any set S ⇒ R
d.

We give a solver in the extended version of the paper, with the following
guarantee.

Theorem 4. Let τ, λ, Δ > 0, and let φ⊆ be the sensitivity of the LP. Suppose the
program has a distribution as a feasible solution. There is an (τ, λ)-low sensitivity
row private algorithm with sensitivity φ⊆ that with probability at least 1 − Δ,
produces a point x≥ with Ax≥ ∈ b + σ · 1, where

σ = Õ

(
φ

1/2
⊆ d1/4

τ1/2
· polylog

(
d,m,

1

Δ
,

1

λ

))

.

4.3 Column Private LPs

We defer our column private results, which are quite similar to our row private
results, to the extended version of the paper.
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4.4 Objective Private LPs

For our final type of low-sensitivity LP, we consider linear programs with ob-
jectives that depend on private data. We show that a very simple approach—
randomized response—can solve these types of LPs accurately. Throughout, we
will assume that the optimal solution to the LP has ∂1 weight equal to 1. We
start with an LP in general form:

max c◦x
s.t. Ax ∈ b,

On instances corresponding to neighboring database D,D≤, the objective may
change by φ1 in ∂1 norm: ⊂c(D) − c(D≤)⊂1 ∈ φ1. Formally:

Definition 5. A randomized algorithm M with inputs vectors b → R
m, c → R

d

and matrix A → R
m×d, and outputting a vector in R

d is (τ, λ)-low sensitivity
objective private with sensitivity φ1 if for any c, c≤ such that ⊂c− c≤⊂1 ∈ φ1,

Pr[M(c, b, A) → S] ∈ eσ Pr[M(c≤, b, A) → S] + λ

for any set S ⇒ R
d.

Theorem 5. Suppose an objective private LP has optimal objective OPT, and
has optimal solution with ∂1 weight 1. Define

ĉ = c + Lap

(
φ1

√
8d log(1/λ)

τ

)d

,

where the noise is d independent draws from the Laplace distribution with the
given parameter. Then, releasing the perturbed LP

max ĉ◦x

s.t. Ax ∈ b and 1◦x = 1

is (τ, λ)-low sensitivity objective private with sensitivity φ1. With probability 1−
Δ, solving the perturbed LP non-privately yields a point x≥ such that Ax≥ ∈ b
and c◦x≥ ≤ OPT−σ, where

σ =
4φ1

√
8d log(d/λ)

τ
.

5 Lower Bounds

We defer details of our lower bounds to the extended version of the paper.
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Abstract. Generalizing many well-known and natural scheduling
problems, scheduling with job-specific cost functions has gained a lot of
attention recently. In this setting, each job incurs a cost depending on its
completion time, given by a private cost function, and one seeks to sched-
ule the jobs to minimize the total sum of these costs. The framework cap-
tures many important scheduling objectives such as weighted flow time
or weighted tardiness. Still, the general case as well as the mentioned spe-
cial cases are far from being very well understood yet, even for only one
machine. Aiming for better general understanding of this problem, in this
paper we focus on the case of uniform job release dates on one machine
for which the state of the art is a 4-approximation algorithm. This is true
even for a special case that is equivalent to the covering version of the
well-studied and prominent unsplittable flow on a path problem, which
is interesting in its own right. For that covering problem, we present a
quasi-polynomial time (1 + ε)-approximation algorithm that yields an
(e + ε)-approximation for the above scheduling problem. Moreover, for
the latter we devise the best possible resource augmentation result re-
garding speed: a polynomial time algorithm which computes a solution
with optimal cost at 1 + ε speedup. Finally, we present an elegant QP-
TAS for the special case where the cost functions of the jobs fall into at
most log n many classes. This algorithm allows the jobs even to have up
to log n many distinct release dates. All proposed quasi-polynomial time
algorithms require the input data to be quasi-polynomially bounded.

1 Introduction

In scheduling, a natural way to evaluate the quality of a computed solution is to
assign a cost to each job which depends on its completion time. The goal is then
to minimize the sum of these costs. The function describing this dependence may
be completely different for each job. There are many well-studied and important
ε Funded by the Go8-DAAD joint research cooperation scheme.

εε A full version of the paper can be found at http://arxiv.org/abs/1403.1376.

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 625–636, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014



626 W. Höhn, J. Mestre, and A. Wiese

scheduling objectiveswhich canbe cast in this framework. Someof themare already
very well understood, for instance weighted sum of completion times

∑
j wjCj for

which there are polynomial time approximation schemes (PTASs) [1], even for mul-
tiple machines and very general machine models. On the other hand, for natural
and important objectives such as weighted flow time or weighted tardiness, not
even a constant factor polynomial time approximation algorithm is known, even
on a single machine. In a recent break-through result, Bansal and Pruhs presented
aO(log logP )-approximation algorithm [6,7] for the single machine case where ev-
ery jobhas its private cost function, denotingbyP the rangeof theprocessing times.
Formally, they study the General Scheduling Problem (GSP) where the input con-
sists of a set of jobs J where each job j ∈ J is specified by a processing time pj, a
release date rj , and a non-decreasing cost function fj, and the goal is to compute
a preemptive schedule on one machine which minimizes

∑
j fj(Cj) where Cj de-

notes the completion time of job j in the computed schedule. Interestingly, even
though this problem is very general, subsuming all the objectives listed above, the
best known complexity result for it is only strongNP-hardness, so there might even
be a polynomial time (1 + σ)-approximation.

Aiming to better understand GSP, in this paper we investigate the special case
that all jobs are released at time 0. This case is still strongly NP-hard [20] and the
currently best know approximation algorithm for it is a (4 + σ)-approximation
algorithm [18,22]1. As observed by Bansal and Verschae [8], this problem is a
generalization of the covering-version of the well-studied Unsplittable Flow on
a Path problem (UFP) [2,3,5,11,14,17]. The input of this problem consists of
a path, each edge e having a demand ue, and a set of tasks T . Each task i is
specified by a start vertex si, an end vertex ti, a size pi, and a cost ci. In the
covering version, the goal is to select a subset of the tasks T ◦ ⊆ T which covers
the demand profile, i.e.,

∑
i√T ′≤Te

pi ⊂ ue where Te denotes all tasks in T whose
path uses e. The objective is to minimize the total cost

∑
i√T ′ ci.

This covering version of UFP has applications to resource allocation settings
such as workforce and energy management, making it an interesting problem
in its own right. For example, one can think of the tasks as representing time
intervals when employees are available, and one aims at providing certain service
level that changes over the day. UFP-cover is a generalization of the knapsack
cover problem [12] and corresponds to instances of GSP without release dates
where the cost function of each job attains only the values 0, some job-dependent
value ci, and →. The best known approximation algorithm for UFP-cover is a
4-approximation [9,13], which essentially matches the best known result for GSP
without release dates.

Our Contribution. In this paper we present several new approximation results
for GSP without release dates and some of its special cases. First, we give a

1 In [18] a primal-dual (2+ ε)-approximation algorithm was claimed for this problem.
However, there is a error in the argumentation: there are instances [22] where the
algorithm constructs a dual solution whose value differs from the optimal integral
solution by a factor of 4.
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(1 + σ)-approximation algorithm for the covering version of UFP with quasi-
polynomial running time. Our algorithm follows the high-level idea of the known
QPTAS for the packing version [3]. Its key concept is to start with an edge in the
middle and to consider the tasks using it. One divides these tasks into groups,
all tasks in a group having roughly the same size and cost, and guesses for each
group an approximation of the capacity profile used by the tasks from that group.
In the packing version, one can show that by slightly underestimating the true
profile one still obtains almost the same profit as the optimum. For the covering
version, a natural adjustment would be to use an approximate profile which
overestimates the true profile. However, when using only a polynomial number
of approximate profiles, it can happen that in the instance there are simply not
enough tasks from a group available so that one can cover the overestimated
profile which approximates the actual profile in the best possible way.

We remedy this problem in a maybe counterintuitive fashion. Instead of guess-
ing an approximate upper bound of the true profile, we first guess a lower bound
of it. Then we select tasks that cover this lower bound, and finally add a small
number of “maximally long” additional tasks. Using this procedure, we can-
not guarantee (instance-independently) how much our selected tasks exceed the
guessed profile on each edge. However, we can guarantee that for the correctly
guessed profile, we cover at least as much as the optimum and pay only slightly
more. Together with the recursive framework from [3], we obtain a QPTAS. As
an application, we use this algorithm to get a quasi-polynomial time (e + σ)-
approximation algorithm for GSP with uniform release dates, improving the
approximation ratio of the best known polynomial time 4-approximation algo-
rithm [18,22]. This algorithm, as well as the QPTAS mentioned below, requires
the input data to be quasi-polynomially bounded.

Moreover, we consider a different way to relax the problem. Rather than
sacrificing a 1 + σ factor in the objective value, we present a polynomial time
algorithm that computes a solution with optimal cost but requiring a speedup
of 1 + σ. Such a result can be easily obtained for job-independent, scalable cost
functions using the PTAS in [21] (a cost function f is scalable if f(c t) = τ(c) f(t)
for some suitable function τ and all all c, t ⊂ 0). In our case, however, the cost
functions of the jobs can be much more complicated and, even worse, they can
be different for each job. Our algorithm first imposes some simplification on the
solutions under consideration, at the cost of a (1 + σ)-speedup. Then, we use a
recently introduced technique to first guess a set of discrete intervals representing
slots for large jobs and then use a linear program to simultaneously assign large
jobs into these slots and small jobs into the remaining idle times [24].

An interesting open question is to design a (Q)PTAS for GSP without release
dates. As a first step towards this goal, recently Megow and Verschae [21] pre-
sented a PTAS for minimizing the objective function

∑
j wjg(Cj) where each

job j has a private weight wj but the function g is identical for all jobs. In Sec-
tion 4 we present a QPTAS for a generalization of this setting. Instead of only
one function g for all jobs, we allow up to (logn)O(1) such functions, each job
using one of them, and we even allow the jobs to have up to (log n)O(1) distinct
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release dates. We note that our algorithms requires the weights of the jobs to
be in a quasi-polynomial range. Despite the fact that this setting is much more
general, our algorithm is very clean and easy to analyze.

Related Work. As mentioned above, Bansal and Pruhs present a O(log logP )-
approximation algorithm for GSP [6]. Even for some well-studied special cases,
this is now the best known polynomial time approximation result. For instance,
for the important weighted flow time objective, previously the best known ap-
proximation factors were O(log2 P ), O(logW ) and O(log nP ) [4,16], where P
and W denote the ranges of the job processing times and weights, respectively.
A QPTAS with running time nOε(logP logW ) is also known [15]. For the objec-
tive of minimizing the weighted sum of completion times, PTASs are known,
even for an arbitrary number of identical and a constant number of unrelated
machines [1].

For the case of GSP with identical release dates, Bansal and Pruhs [6] give a
16-approximation algorithm. Later, Shmoys and Cheung claimed a primal-dual
(2+σ)-approximation algorithm [18]. However, an instance was later found where
the algorithm constructs a dual solution which differs from the best integral
solution by a factor 4 [22], suggesting that the primal-dual analysis can show
only an approximation ratio of 4. On the other hand, Mestre and Verschae [22]
showed that the local-ratio interpretation of that algorithm (recall the close
relation between the primal-dual schema and the local-ratio technique [10]) is in
fact a pseudopolynomial time 4-approximation, yielding a (4+σ)-approximation
in polynomial time.

As mentioned above, a special case of GSP with uniform release dates is
a generalization for the covering version of Unsplittable Flow on a Path. For
this special case, a 4-approximation algorithm is known [9,13]. The packing
version is very well studied. After a series of papers on the problem and its
special cases [5,11,14,17], the currently best known approximation results are a
QPTAS [3] and a (2 + σ)-approximation in polynomial time [2].

2 Quasi-PTAS for UFP-Cover

In this section, we present a quasi-polynomial time (1 + σ)-approximation algo-
rithm for the UFP-cover problem. Subsequently, we show how it can be used to
obtain an approximation algorithm with approximation ratio e + σ ∧ 2.718 + σ
and quasi-polynomial running time for GSP without release dates. Through-
out this section, we assume that the sizes of the tasks are quasi-polynomially
bounded. Our algorithm follows the structure from the QPTAS for the packing
version of Unsplittable Flow on a Path due to Bansal et al. [3]. First, we describe
a recursive exact algorithm with exponential running time. Subsequently, we de-
scribe how to turn this routine into an algorithm with only quasi-polynomial
running time and an approximation ratio of 1 + σ.

For computing the exact solution (in exponential time) one can use the fol-
lowing recursive algorithm: Given the path G = (V,E), denote by eM the edge
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in the middle of G and let TM denote the tasks that use eM . Our strategy is
to “guess” which tasks in TM are contained in OPT, the (unknown) optimal
solution. Note that once these tasks are chosen, the remaining problem splits
into the two independent subproblems given by the edges on the left and on the
right of eM , respectively, and the tasks whose paths are fully contained in them.
Therefore, we enumerate all subsets of T ◦

M ⊆ TM , denote by TM the resulting
set of sets. For each set T ◦

M ∈ TM we recursively compute the optimal solution
for the subpaths {e1, ..., eM−1} and {eM+1, ..., e|E|}, subject to the tasks in T ◦

M

being already chosen and that no more tasks from TM are allowed to be chosen.
The leaf subproblems are given when the path in the recursive call has only one
edge. Since |E| = O(n) this procedure has a recursion depth of O(log n) which
is helpful when aiming at quasi-polynomial running time. However, since in each
recursive step we try each set T ◦

M ∈ TM , the running time is exponential (even
in one single step of the recursion). To remedy this issue, we will show that for
any set TM appearing in the recursive procedure there is a set T̄M which is of
small size and which approximates TM well. More precisely, we can compute T̄M
in quasi-polynomial time (and it thus has only quasi-polynomial size) and there
is a set T ⊆

M ∈ T̄M such that c(T ⊆
M ) ≥ (1 + σ) · c(TM ⇐OPT) and T ⊆

M dominates
TM ⇐OPT. For any set of tasks T ◦ we write c(T ◦) :=

∑
i√T ′ ci, and for two sets of

tasks T1, T2, we say that T1 dominates T2 if
∑

i√T1≤Te
pi ⊂

∑
i√T2≤Te

pi for each
edge e. We modify the above procedure such that we do recurse on sets in T̄M
instead of TM . Since T̄M has quasi-polynomial size, T̄M contains the mentioned
set T ⊆

M , and the recursion depth is O(log n), the resulting algorithm is a QPTAS.
In the sequel, we describe the above algorithm in detail and show in particular
how to obtain the set T̄M .

2.1 Formal Description of the Algorithm

We use a binary search procedure to guess the optimal objective value B. First,
we reject all tasks i whose cost is larger than B and select all tasks i whose cost
is at most σB/n. The latter cost at most n · σB/n ≥ σB and thus only a factor
1 + σ in the approximation ratio. We update the demand profile accordingly.

We define a recursive procedure UFPcover(E◦, T ◦) which gets as input a sub-
path E◦ ⊆ E of G and a set of already chosen tasks T ◦. Denote by T̄ the set of
all tasks i ∈ T \ T ◦ such that the path of i uses only edges in E◦. The output of
UFPcover(E◦, T ◦) is a (1 + σ)-approximation to the minimum cost solution for
the subproblem of selecting a set of tasks T ◦◦ ⊆ T̄ such that T ◦⇒T ◦◦ satisfy all de-
mands of the edges in E◦, i.e.,

∑
i√(T ′≥T ′′)≤Te

pi ⊂ ue for each edge e ∈ E◦. Note
that there might be no feasible solution for this subproblem in which case we
output →. Let eM be the edge in the middle of E◦, i.e., at most |E◦|/2 edges are
on the left and on the right of eM , respectively. Denote by TM ⊆ T̄ all tasks in T̄
whose path uses eM . As described above, the key is now to construct the set T̄M
with the above properties. Given this set, we compute UFPcover(E◦

L, T
◦ ⇒ T ◦

M )
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Fig. 1. Construction from Lemma 1

and UFPcover(E◦
R, T

◦ ⇒ T ◦
M ) for each set T ◦

M ∈ T̄M , where E◦
L and E◦

R denote
the subpaths of E◦ on the left and on the right of eM , respectivley. We output

min
T ′
M√T̄M

c(T ◦
M ) + UFPcover(E◦

L, T
◦ ⇒ T ◦

M ) + UFPcover(E◦
R, T

◦ ⇒ T ◦
M ).

For computing the set T̄M , we first group the tasks in TM into (log n)O(1) many
groups, all tasks in a group having roughly the same costs and sizes. Formally,
for each pair (k, λ), denoting (approximately) cost (1 + σ)k and size (1 + σ)σ,
we define

T(k,σ) := {i ∈ TM : (1 + σ)k ≥ ci < (1 + σ)k+1 ∪ (1 + σ)σ ≥ pi < (1 + σ)σ+1}.
Since the sizes of the tasks are quasi-polynomially bounded and we preprocessed
the weights of the tasks, we have (log n)O(1) non-empty groups.

For each group T(k,σ), we compute a set T̄(k,σ) containing at least one set which
is not much more expensive than OPT(k,σ) := OPT⇐T(k,σ) and which dominates
OPT(k,σ). To this end, observe that the sizes of the tasks in OPT(k,σ) cover a
certain profile (see Figure 1). Initially, we guess the number of tasks in OPT(k,σ),
and if |OPT(k,σ) | ≥ 1

ε2 then we simply enumerate all subsets of T(k,σ) with at
most 1

ε2 tasks. Otherwise, we consider a polynomial number of profiles that are
potential approximations of the true profile covered by OPT(k,σ). To this end,
we subdivide the (implicitly) guessed height of the true profile evenly into 1

ε
steps of uniform height, and we allow the approximate profiles to use only those
heights while being monotonously increasing and decreasing before and after eM ,
respectively (observe that also OPT(k,σ) has this property since all its tasks
use eM ). This leads to at most nO(1/ε) different approximate profiles in total.

For each approximate profile we compute a set of tasks covering it using LP-
rounding. The path of any task in T(k,σ) contains the edge eM , and hence, a task
covering an edge e always covers all edges inbetween e and eM as well. Thus,
when formulating the problem as an LP, it suffices to introduce one constraint
for the leftmost and one constraint for the rightmost edge of each height in
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the approximated profile. We compute an extreme point solution of the LP and
round up each of the at most 2

ε fractional variables. Since |OPT(k,σ) | ⊂ 1
ε2 this

increases the cost at most a factor 1 +O(σ) compared to the cost of the LP.
It is clear that the LP has a solution if the approximate profile is dominated

by the true profile. Among such approximate profiles, consider the one that is
closest to the latter. On each edge it would be sufficient to add O(σ · ∣∣OPT(k,σ)

∣
∣)

tasks from T(k,σ) in order to close the remaining gap. This is due to our choice
of the step size of the approximate profile and the fact that all tasks in T(k,σ)

have roughly the same size. To this end, from the not yet selected tasks in
T(k,σ) we add the O(σ · |OPT(k,σ)

∣∣) tasks with the leftmost start vertex and the
O(σ · |OPT(k,σ)

∣
∣) tasks with the rightmost end vertex (see Figure 1). This costs

again at most an O(σ)-fraction of the cost so far. As a result, on each edge e we
have either selected O(σ · ∣∣OPT(k,σ)

∣
∣) additional tasks using it, thus closing the

remaining gap, or we have selected all tasks from T(k,σ) using e. In either case,
the selected tasks dominate the tasks in OPT(k,σ), i.e., the true profile.

Lemma 1. Given a group T(k,σ). There is a polynomial time algorithm which
computes a set of task sets T̄(k,σ) which contains a set T ⊆

(k,σ) ∈ T̄(k,σ) such that
c(T ⊆

(k,σ)) ≥ (1 + σ) · c(OPT(k,σ)) and T ⊆
(k,σ) dominates OPT(k,σ).

We define the set T̄M by taking all combinations of selecting exactly one set from
the set T̄(k,σ) of each group T(k,σ). Since there are (logn)O(1) groups, by Lemma 1
the set T̄M has only quasi-polynomial size and it contains one set T ⊆

M which is a
a good approximation to TM ⇐OPT, i.e., the set T ⊆

M dominates TM ⇐OPT and
it is at most by a factor 1+O(σ) more expensive. Now each node in the recursion
tree has at most n(logn)O(1)

children and, as argued above, the recursion depth
is O(log n). Thus, a call to UFPcover(E, ≤) has quasi-polynomial running time
and yields a (1 +O(σ))-approximation for the overall problem.

Theorem 1. For any σ > 0 there is a quasi-polynomial (1 + σ)-approximation
algorithm for UFP-cover if the sizes of the tasks are in a quasi-polynomial range.

Bansal and Pruhs [6] give a 4-approximation-preserving reduction from GSP
with uniform release dates to UFP-cover using geometric rounding. Here we
observe that if instead we use randomized geometric rounding [19], then one can
obtain an e-approximation-preserving reduction. Together with our QPTAS for
UFP-cover, we get the following result.

Theorem 2. For any σ > 0 there is a quasi-polynomial time (e + σ)-
approximation algorithm for GSP with uniform release dates.

3 General Cost Functions under Speedup

We present a polynomial time algorithm which computes a solution for an in-
stance of GSP with uniform release dates whose cost is optimal and which is
feasible if the machine runs with speed 1 + σ (rather than unit speed).
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Let 1 > σ > 0 be a constant and assume for simplicity that 1
ε ∈ N. For our

algorithm, we first prove some properties that we can assume “at 1+σ speedup”;
by this, we mean that there is a schedule whose cost is at most the optimal
cost (without enforcing these restricting properties) and which is feasible if we
increase the speed of the machine by a factor 1+ σ. Many statements are similar
to properties that are used in [1] for constructing PTASs for the problem of
minimizing the weighted sum of completion times.

For a given schedule denote by Sj and Cj the start and end times of job j
in a given schedule (recall that we consider only non-preemptive schedules). We
define C

(1+ε)
j to be the smallest power of 1+σ which is not smaller than Cj , i.e.,

C
(1+ε)
j := (1 + σ)⇔log1+ε Cj∗, and adjust the objective function as given in the

next lemma. Also, we impose that jobs that are relatively large are not processed
too early; formally, they do not run before (1 + σ)⊥log1+ε ε·pj/(1+ε)↓ which is the
largest power of 1+σ which is at most σ/(1+σ) ·pj (the speedup will compensate
for the delay of the start time).

Lemma 2. At 1+O(σ) speedup we can use the objective function
∑

j fj
(
C

(1+ε)
j

)
,

instead of
∑

j fj(Cj), and assume Sj ⊂ (1 + σ)⊥log1+ε ε·pj/(1+ε)↓ for each job j.

Next, we discretize the time axis into intervals of the form It := [Rt, Rt+1) where
Rt := (1 + σ)t for any integer t. Note that |It| = σ · Rt. Following Lemma 2, to
simplify the problem we want to assign an artificial release date to each job j. For
each job j, we define r(j) := (1 + σ)⊥log1+ε ε·pj/(1+ε)↓. Lemma 2 implies then that
we can assume Sj ⊂ r(j) for each job j. Therefore, we interpret the value r(j) as
the release date of job j and from now on disallow to start job j before time r(j).

In a given schedule, we call a job j large if Sj ≥ 1
ε3 · pj and small otherwise.

For the large jobs, we do not allow arbitrary starting times but we discretize the
time axis such that each interval contains only a constant number of starting
times for large jobs (for constant σ). For the small jobs, we do not want them
to overlap over interval boundaries and we want that all small jobs scheduled in
an interval It are scheduled during one (connected) subinterval Ist ⊆ It.

Lemma 3. At 1 +O(σ) speedup we can assume that
– each interval It contains only O( 1

ε3 ) potential start points for large jobs, and
– for each interval It there is a time interval Ist ⊆ It, ranging from one poten-

tial start point for large jobs to another, which fully contains all small jobs
scheduled in It and no large jobs.

For the moment, let us assume that the processing times of the instance are
polynomially bounded. We will give a generalization to arbitrary instances later.

Our strategy is the following: Since the processing times are bounded, the
whole schedule finishes within log1+ε(

∑
j pj) ≥ O(1ε logn) intervals. Ideally, we

would like to guess the placement of all large jobs in the schedule and then
use a linear program to fill in the remaining small jobs. However, this would
result in nO( 1

ε logn) possibilities for the large jobs, which is quasi-polynomial but
not polynomial. Instead, we only guess the pattern of large-job usage for each
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interval. A pattern P for an interval is a set of O( 1
ε3 ) integers which defines the

start and end times of the slots during which large jobs are executed in It. Note
that such a job might start before It and/or end after It.

Proposition 1. For each interval It there are only N ∈ Oε(1) many possible
patterns, i.e., constantly many for constant σ. The value N is independent of t.

We first guess all patterns for all intervals at once. Since there are only O(1ε logn)

intervals, this yields only NO( 1
ε logn) ∈ nOε(1) possible combinations for all pat-

terns for all intervals. Suppose now that we guessed the pattern corresponding
to the optimal solution correctly. Next, we solve a linear program that in par-
allel assigns large jobs to the slots specified by the pattern, and also, it assigns
small jobs into the remaining idle times on the intervals. Formally, we solve the
following LP. We denote by Q the set of all slots for large jobs, size(s) denotes
the length of a slot s, begin(s) its start time, and t(s) denotes the index of the
interval It that contains s. For each interval It denote by rem(t) the remaining
idle time for small jobs, and consider these idle times as slots for small jobs,
which we refer to by their interval indices I := {1, . . . , log1+ε(

∑
j pj)}. For each

pair of slot s ∈ Q and job j ∈ J , we introduce a variable xs,j corresponding to
assigning j to s. Analogously, we use variables yt,j for the slots in I.

min
∑

j∗J

(∑

s∗Q

fj(Rt(s)+1) · xs,j +
∑

t∗I

fj(Rt+1) · yt,j
)

(1)

∑

s∗Q

xs,j +
∑

t∗I

yt,j = 1 ∀j ∈ J (2)

∑

j∗J

xs,j ≤ 1 ∀ s ∈ Q (3)

∑

j∗J

pj · yt,j ≤ rem(t) ∀ t ∈ I (4)

xs,j = 0 ∀ s ∈ Q, ∀j ∈ J : r(j) > begin(s) ∨ pj > size(s) (5)
yt,j = 0 ∀ t ∈ I, ∀j ∈ J : r(j) > Rt ∨ pj > ε · |It| (6)

xs,j , yt,j ≥ 0 ∀ s ∈ Q, ∀ t ∈ I, ∀j ∈ J. (7)

Denote the above LP by sLP. It has polynomial size and thus we can solve it
efficiently. Borrowing ideas from [23] we round it to a solution that is not more
costly and which can be made feasible using additional speedup of 1 + σ.

Lemma 4. Given a fractional solution (x, y) to sLP. In polynomial time, we can
compute a non-negative integral solution (x◦, y◦) whose cost is not larger than the
cost of (x, y) and which fulfills the constraints (2), (3), (5), (6), (7) and

∑

j√J

pj · yt,j ≥ rem(t) + σ · |It| ∀ t ∈ I. (4a)

In particular, the cost of the computed solution is no more than the cost of the
integral optimum and it is feasible under 1+O(σ) speedup (accumulating all the
speedups from the previous lemmas). We remark that the technique of guessing
patterns and filling them in by a linear program was first used in [24].
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For the general case, i.e., for arbitrary processing times, we first show that at
1+σ speedup, we can assume that for each job j there are only O(log n) intervals
between r(j) (the artificial release date of j) and Cj . Then we devise a dynamic
program which moves from left to right on the time axis and considers sets of
O(log n) intervals at a time, using the above technique.

Theorem 3. Let σ > 0. There is a polynomial time algorithm for GSP with
uniform release dates which computes a solution with optimal cost and which is
feasible if the machine runs with speed 1 + σ.

4 Few Classes of Cost Functions

In this section, we study the following special case of GSP with release dates. We
assume that each cost function fj can be expressed as fj = wj · gu(j) for a job-
dependent weight wj , k global functions g1, ..., gk, and an assignment u : J ≺ [k]
of cost functions to jobs. We present a QPTAS for this problem, assuming that
k = (log n)O(1) and that the jobs have at most (log n)O(1) distinct release dates.
We assume that the job weights are in a quasi-polynomial range, i.e., we assume
that there is an upper bound W = 2(logn)O(1)

for the (integral) job weights.
In our algorithm, we first round the values of the functions gi so that they

attain only few values, (logn)O(1) many. Then we guess the (logn)O(1)/σ most
expensive jobs and their costs. For the remaining problem, we use a linear pro-
gram. Since we rounded the functions gi, our LP is sparse, and by rounding an
extreme point solution we increase the cost by at most an σ-fraction of the cost
of the previously guessed jobs, which yields an (1 + σ)-approximation overall.

Formally, we use a binary search framework to estimate the optimal value B.
Having this estimate, we adjust the functions gi such that each of them is a step
function with at most (logn)O(1) steps, all being powers of 1 + σ or 0.

Lemma 5. At 1+ σ loss we can assume that for each i ∈ [k] and each t it holds
that gi(t) is either 0 or a power of 1 + σ in

[
ε
n · B

W , B
)
.

Our problem is in fact equivalent to assigning a due date dj to each job (cf. [6])
such that the due dates are feasible, meaning that there is a preemptive schedule
where every job finishes no later than its due date, and the objective being∑

j fj(dj). The following lemma characterizes when a set of due dates is feasible.

Lemma 6 ([6]). Given a set of jobs and a set of due dates. The due dates are
feasible if and only if for every interval I = [rj , dj′ ] for any two jobs j, j◦, the
jobs in X(I) := {j : rj ∈ I} that are assigned a deadline after I have a total
size of at least ex(I) := max(

∑
j√X(I) pj − |I|, 0). That is, ∑j̄√X(I):dj̄>dj′

pj̄ is
at least ex(I) for all intervals I = [rj , dj′ ].

Denote by D all points in time where at least one cost function gi increases. It
suffices to consider only those values as possible due dates.

Proposition 2. There is an optimal due date assignment such that dj ∈ D for
each job j.
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Denote byR the set of all release dates of the jobs. Recall that |R| ≥ (log n)O(1). We
guessnowthe |D|·|R|/σmostexpensive jobsoftheoptimalsolutionandtheir respec-
tive costs.Due to the rounding inLemma5wehave that |D| ≥ k · log1+ε(W ·n/σ) =
(logn)O(1) and thus there are only O(n|D|·|R|/ε) = n(logn)O(1)/ε many guesses.

Suppose we guess this information correctly. Let JE denote the guessed jobs
and for each job j ∈ JE denote by dj the latest time where it attains the
guessed cost, i.e., its due date. Denote by cthres the minimum cost of a job in JE ,
according to the guessed costs. The remaining problem consists in assigning a
due date dj ∈ D to each job J \JE such that none of these jobs costs more than
cthres, all due dates together are feasible, and the overall cost is minimized. We
express this as a linear program. In that LP, we have a variable xj,t for each pair
of a job j ∈ J \ JE and a due date t ∈ D such that j does not cost more than
cthres when finishing at time t. We add the constraint

∑
t√D xj,t = 1 for each

job j, modeling that the job has a due date, and one constraint for each interval
[r, t] with r ∈ R and t ∈ D to model the condition given by Lemma 6.

In polynomial time, we compute an extreme point solution x⊆ for the LP. It
has at most |D| · |R| + |J \ JE | many non-zeros. Each job j needs at least one
non-zero variable x⊆

j,t, due to the constraint
∑

t√D xj,t = 1. Thus, there are at
most |D| · |R| fractionally assigned jobs, i.e., jobs j having a variable x⊆

j,t with
0 < x⊆

j,t < 1. We define an integral solution by rounding x⊆ as follows: For each
job j we set dj to be the maximum value t such that x⊆

j,t > 0. We round up
at most |D| · |R| jobs and after the rounding, each of them costs at most cthres.
Hence, those jobs cost at most an σ-fraction of the cost of guessed jobs (JE).

Lemma 7. Denote by c(x⊆) the cost of the solution x⊆. We have that∑
j√J\JE

fj(dj) ≥ c(x⊆) + σ ·∑j√JE
fj(dj).

Since c(x⊆) +
∑

JE
fj(dj) is a lower bound on the optimum, we obtain a (1+ σ)-

approximation. As there are quasi-polynomially many guesses for the expensive
jobs and the remainder can be done in polynomial time, we obtain a QPTAS.

Theorem 4. There is a QPTAS for GSP, assuming that each cost function fj
can be expressed as fj = wj · gu(j) for some job-dependent weight wj and at
most k = (log n)O(1) global functions g1, ..., gk, and that the jobs have at most
(logn)O(1) distinct release dates.
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Why Some Heaps Support

Constant-Amortized-Time Decrease-Key
Operations, and Others Do Not�

John Iaconoσσ and Özgür Özkan

New York University

Abstract. A lower bound is presented which shows that a class of heap
algorithms in the pointer model with only heap pointers must spend

Ω
(

log log n
log log log n

)
amortized time on the Decrease-Key operation (given

O(log n) amortized-time Extract-Min). Intuitively, this bound shows
the key to havingO(1)-timeDecrease-Key is the ability to sort O(log n)
items in O(log n) time; Fibonacci heaps [M. .L. Fredman and R. E. Tar-
jan. J. ACM 34(3):596-615 (1987)] do this through the use of bucket sort.
Our lower bound also holds no matter how much data is augmented;
this is in contrast to the lower bound of Fredman [J. ACM 46(4):473-501
(1999)] who showed a tradeoff between the number of augmented bits
and the amortized cost of Decrease-Key. A new heap data structure,
the sort heap, is presented. This heap is a simplification of the heap of El-
masry [SODA 2009: 471-476] and shares with it a O(log log n) amortized-
time Decrease-Key, but with a straightforward implementation such
that our lower bound holds. Thus a natural model is presented for a
pointer-based heap such that the amortized runtime of a self-adjusting
structure and amortized lower asymptotic bounds for Decrease-Key
differ by but a O(log log log n) factor.

1 Introduction

While Insert and Extract-Min are supported by all priority queues, there
is one additional operation which is of use in some algorithms: Decrease-
Key. The fast execution of Decrease-Key is vital to the runtime of several
algorithms, most notably Dijkstra’s algorithm [2]. The constant-amortized-time
Decrease-Key operation is the defining feature of the Fibonacci heap [8].

In [7], a new heap called the pairing heap was introduced. The pairing heap is
a self-adjusting heap, whose design and basic analysis closely follows that of splay
trees [11]. They are much simpler in design than Fibonacci heaps, and they per-
form well in practice. It was conjectured at the time of their original presentation
that pairing heaps had the same O(log n) amortized time Extract-Min, and
O(1) amortized time Insert and Decrease-Key as Fibonacci heaps, however,

ε The full version is on the arXiv at CoRR abs/1302.6641 (2013).
εε Research supported by NSF Grant CCF-1018370.

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 637–649, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014
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at their inception only a O(log n) amortized bound was proven for all three op-
erations. Stasko and Vitter [13] provided some simulation results which showed
that O(1) Decrease-Key appeared likely. We have shown that Insert does
in fact have O(1) amortized time [9]. However in [6], Fredman refuted the con-
jectured constant-amortized-time Decrease-Key in pairing heaps by proving
that pairing heaps have a lower bound of Ω(log logn) on the Decrease-Key
operation. The result he proved was actually more general: he created a model
of heaps which includes both pairing heaps and Fibonacci heaps, and produced
a tradeoff between the number of bits of data augmented and a lower bound on
the runtime of Decrease-Key. Pairing heaps have no augmented bits, and were
shown to have a Ω(log logn) amortized lower bound on Decrease-Key while in
his model a O(1) Decrease-Key requires Ω(log logn) bits of augmented infor-
mation per node, which is the number of bits of augmented information used by
Fibonacci heaps and variants. More recently, Pettie has shown a upper bound of
O(22

◦
log logn) for Decrease-Key in pairing heaps [10]. It remains open where

in Ω(log logn) . . . O(22
◦
log logn) the cost of Decrease-Key in a pairing heap

lies. Elmasry has shown that a simple variant of pairing heaps has O(log logn)
amortized time Decrease-Key operation [4,3]. However, this variant is not in
Fredman’s model and thus the Ω(log log n) lower bound does not apply.

So, it would seem from the preceding exposition that the situation has been
essentially resolved: Fibonacci heaps are complex but optimal, while the elegant
pairing heaps (and Elmasry’s variant) are as good as a self-adjusting structure
can get. (One defining feature of a self-adjusting structure is that they store no
augmented data in every node.) In the case of dictionaries, we have the hope
of instance-based optimality, as evidenced by the dynamic optimality conjecture
[11], while in the case of heaps, self-adjusting structures can not even achieve
optimal amortized asymptotic runtimes. We will now propose an alternate inter-
pretation of the facts which leads to a much nicer conclusion.

Fredman’s model is nuanced, and has limitations which cause us to intro-
duce here a new model, which we call the pure heap model. We first informally
describe our model, and then describe how it differs from Fredman’s. A pure
heap is a pointer-based forest of rooted trees, each node holding one key, that
obeys the heap property (the key of the source of every pointer is smaller than
the key of the destination); the nodes may be augmented, and all operations
must be valid in the pointer model; heap pointers are only removed if one of the
nodes is removed or if a Decrease-Key is performed on the node that a heap
pointer points to. This model is both simple and captures the spirit of many
heaps like the pairing heap, and is meant to be a clean definition analogous to
that of the well-established binary search tree (BST) model.However, Fibonacci
heaps are not pure model heaps in the standard textbook presentation [1] for
the following reason: each node is augmented with a log logn-bit integer (in the
range 1 . . . logn), and in the implementation of Extract-Min it is required to
separate a number of nodes, call it k, into groups of nodes with like number.
This is done classically using bucket sort in time O(k+ logn). Bucket sort is not
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allowed in the pointer model; realizing this a pointer-model implementation was
presented that makes use of non-heap pointers [8].

We can easily modify Fibonacci heaps and the aforementioned alternatives to
only use heap pointers by simply using O(log logn) time to determine which of
the O(log n) buckets each of the k keys are in. We call such a variant of rank
pairing heaps a pointer rank-pairing heap. However, this alteration increases the
time of Decrease-Key in a Fibonacci heaps and their variants to O(log logn).

Fredman’s model differs from ours in several regards. First, Fredman’s model
requires that comparisons can not be performed unless the nodes being com-
pared must be linked by a heap pointer after the comparison. Second, in the
course of an Extract-Min, any two children of the former root can be ran-
domly accessed and compared at unit cost. Third, the number of augmented
bits per node is a parameter of the model. The first restriction, while it admits
pairing heaps and Fibonacci heaps, excludes Elmasry’s variant. This is because
Elmasry’s variant sorts the keys in nodes in order to determine how to link them;
such sorting is directly against what is allowed in Fredman’s model. Our sort
heaps, presented in the full version, are not in Fredman’s model for the same
reason. Also, subjectively, we find the first restriction a bit odd, but it appears
to be vital to the result. The second difference means that a fundamental cost in
the pointer model is not counted: moving pointers to reach the desired nodes to
compare or otherwise manipulate. So, compared to our model, Fredman’s model
is more restrictive because of the first condition, and more permissive with the
second condition. We feel our model is more natural. A more detailed discussion
of how our model differs from Fredman’s can be found in the full version.

Thus, we conclude that the reason that Fibonacci heaps have fast Decrease-
Key is not (only) because of the augmented bits as Fredman’s result suggests,
but rather because they depart from the pure heap model. We prove that

any pure-heap-model heap has an Ω
(

log log n
log log logn

)
amortized lower bound on

Decrease-Key key, no matter how many bits of data each node is augmented
with. In our view, Fibonacci heaps are a typical RAM-model structure that
squeeze out a log logn factor over the best structure in a natural pointer-based
model by beating the sorting bound using bit tricks (of which bucket sort is a
very primitive example).

Given our lower bound, we still have the issue that it does not apply to
Elmasry’s variant. We rectify this in the full version, by introducing the sort
heap. This heap is simply Elmasry’s heap with the non-standard Decrease-Key
replaced with the standard one. Our sort heap has an O(log logn) amortized
Decrease-Key operation, and has a markedly different analysis than other
self-adjusting heaps with fast Decrease-Key.

2 The Pure Heap Model

Here we define the pure heap model, and how priority queue operations on data
structures in this model are executed in it.
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The pure heap model requires that at the end of every operation, the data
structure is an ordered forest of general heaps. Each node is associated with
a key x ∈ S. We will use x both to refer to a key and the node in the heap
containing the key. Inside each node is stored the key value, pointers to the
parent, leftmost child and right sibling of the node, along with other possible
augmented information.

The structure of the heap is the shape of the forest, without regard to the
contents of the nodes. The location of a node is its position in the forest of heaps
relative to the right (e.g. a node could be described as being the fifth child from
the right of a node which is the third child from the right of the fourth root from
the right. Note that location is invariant under adding new siblings to the left).

An algorithm in the pure heap model implements the priority queue operations
as follows: Insert operations are executed at unit cost by adding the new item as
a new leftmost heap. Decrease-Key is executed at unit cost by disconnecting
from its parent the node containing the key to be decreased (if it is not a root),
decreasing the key, and then placing it as the leftmost root in the forest of
heaps. An Extract-Min operation is performed by first executing a sequence
of pointer-based suboperations which are fully described below. After executing
the suboperations, the forest is required to be monoarboral (i.e. have only one
heap). Thus, the root of this single tree has as its key the minimum key in S.
This node is then removed, the key value is returned, and its children become
the new roots of the forest. The cost is the number of suboperations performed.

Note that some data structures are not presented exactly in the framework
as described above but can be easily put into this mode by being lazy. For
example, in a pairing heap, the normal presentations of Insert and Decrease-
Key cause an immediate pairing with the single existing root. However, such
pairings can easily be deferred until the next Extract-Min, thus putting the
resulting structure in our pure-heap framework.

To execute an Extract-Min, the minimum must be determined. In an
Extract-Min, the forest of heaps must be combined into a single heap using an
operation called pairing, which takes two roots and attaches the root with larger
key value as the leftmost child of the root with smaller key value. (Note that
while the pairing operation brings to mind pairing heaps, it is the fundamental
building block of many heaps. Even the skew heap [12], which seems at first
glance to not use anything that looks like the pairing operation, can be shown
in all instances to be able to be transformed into a pairing-based structure [5].)

In the execution of the Extract-Min operation, the use of some constant
number ρ of pointers p1, p2, . . . pε is allowed. They are all initially set to the
leftmost root. The constant ρ is a parameter of the model.

The suboperations include: move one of the pointers to the parent, left or
right sibling, or leftmost child; pair the nodes pointed to by two pointers; and
copy pointers. A special suboperation, End(), signifies the execution of the
Extract-Min is complete. A full list of suboperations and their precise def-
initions and preconditions can be found in the full version. The total number
of suboperations, including the parameters, is defined to be η. Observe that
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η = Θ(ρ2), which is Θ(1) since ρ is a constant. A sequence of suboperations is a
valid implementation of the Extract-Min operation if all the preconditions of
each suboperation are met and the last suboperation is an end().

In the pure heap model, the only thing that differentiates between different
algorithms is in the choice of the suboperations to execute Extract-Min opera-
tions. In these operations it is the role of the particular heap algorithm to specify
which suboperations should be performed for each Extract-Min. We place no
restrictions as to how an algorithm determines the suboperation sequence for
each Extract-Min other than the suboperation sequence must be valid; the
algorithm need not restrict its actions to information in the nodes visited in that
operation. This definition of an algorithm encompasses and is more permissive
than allowing the algorithm to make decisions to be made based on some data
augmented at any node.

3 Lower Bound

Theorem 1. In the pure heap model with a constant number of pointers, if
Extract-Min and Insert have an amortized cost of O(log n), then Decrease-

Key has an amortized cost of Ω
(

log logn
log log logn

)
.

The proof will follow by contradiction and will consume the rest of this section.
Assume that there is a pure heap model algorithm A where Extract-Min
and Insert have an amortized cost of at most c logn, for some constant c,
and Decrease-Key has an amortized cost of at most dc(n), for some dc(n) =

o
(

log log n
log log logn

)
. The existence of the algorithm A, the constant c and the function

dc(n) will be assumed in the definitions and lemmas that follow. A sufficiently
large n is also assumed.

Overview of Proof. The proof is at its core an adversary argument. But,
our argument is not straightforward as it works on sets of sequences of opera-
tions rather than a single operation sequence. There is a hierarchy of things we
manipulate in our argument:

Suboperaton. The suboperations of §2 are the very basic unit-cost primitives
that can be used to implement Extract-Min, the only operation that does
not have constant actual cost. It is at this level that definitions have been made
to enforce pointer model limitations. Operation. We use operation to refer to a
priority queue operation. Sequence. Operations are combined to form sequences
of operations. Set of operation sequences. Our adversary does not just work with
a single operation sequence but rather with sets of operation sequences. These
sets are defined to have certain invariants. Evolution. We use the word evolution
to refer to a function the adversary uses to take a set of operation sequences,
and modify it. Rounds. Our evolutions are structured into rounds.

The proof will start with a set containing a single operation sequence, and
then perform rounds of evolutions on this set; the exact choice of evolutions to
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perform will depend on how the algorithm executes the sequences of operations
in the set. The evolutions in a round are structured in such a way that most
rounds increase the size of the set of operations. After sufficiently many rounds,
an upper bound on the maximum size of the set of operation sequences will be
exceeded, thus giving a contradiction.

Ranks: Definitions and Useful Facts. As in many previous works on heaps
and trees, the notion of the rank of a node in the heap is vital. The rank of a
node is meant to be a rough proxy for the logarithm of the size of the subtree of
the node. For ease of presentation, the rank of a node is defined in terms of the
function j(n) = 2dc(n) + 1. The general idea is to have the rank of a node be
the negation of the key value stored in the node. (Ranks will be non-negative,
and we will only give nodes non-positive integer key values). A node’s rank can
increase as the result of a pairing, and a node’s value can decrease as the result
of a Decrease-Key. It is thus our goal to perform a Decrease-Key on a
node which has had its rank increase to restore it to the negation of its rank.
During the time between when a rank increase occurs in a node and the time
the Decrease-Key is performed, we refer to the node as marked.

Call the unmarked subtree of a node to be the subtree of a node if all marked
nodes were detached from their parents; the unmarked structure of the heap is
the structure of the unmarked subtrees of the roots. The rank of a node at a
given time will be defined as a function of the structure of its unmarked subtree.

The following assumes a particular heap structure and marking, as the rank of
a node is always defined with respect to the structure of the heap after executing
a sequence of heap operations. Let x be the node we wish to compute the rank
of. Let k denote the number of unmarked children of x, and let y1, y2, . . . yk
denote these children numbered right-to-left (i.e., in the order which they became
children of x). Let τi(x) be a subtree of x consisting of x connected to only the
subtrees induced by y1, y2, . . . yi. We will define the function ri(x) as a function
of τi(x). The rank of a node, r(x) is rk(x). Each node yi is labeled as efficiently
linked to its parent x if and only if ri−1(x) − 3 ⊆ r(yi) ⊆ ri−1(x). The case of
r(yi) > ri−1(x) will never occur, as pairings will only happen among unmarked
nodes, where the rank perfectly matches the negation of the key value. We will
have the property that ri(x) is either ri−1(x) or ri−1(x)+1; in the latter case, yi
is called incremental. Given a node yi, let j be defined to be the index of the first
incremental node in the sequence ⊂yi−1, yi−2, . . .→; j is defined to be 0 if there is
no such incremental node. The set N(yi) is defined to be {yk|j < k ⊆ i}; that is,
yi and the maximal set of its non-incremental siblings to the right. Given these
preliminaries, we can now give the full definition of the rank of a node:

ri(x) =

⎧
⎨⎩

⎨⎢

0 if i = 0

ri−1(x) + 1
(Efficient case) yi is efficiently linked and is the j(n)th
efficient element of N(yi) or (Default case) |N(yi)| = j(n)

ri−1(x) otherwise
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While the rank and mark are interrelated, there is no circularity in their
definitions—whether a node is marked depends on its rank and key value and
the rank of a node is a function of the ranks and marks of its children.

Observation 2. Given two nodes x and y with different ranks, the unmarked
structure of their induced subtrees must be different.

This follows directly from the fact that the rank of a node is a function of its

induced unmarked subtree. Set f(n) = j(n)
2 log j(n) and g(n) = 1

2 log j(n) . Using some

technical lemmas in the full version gives:

Corollary 3. Suppose a root with unmarked subtree of size m has ⊆ f(n) logm
unmarked children. Then it has ∧ g(n) logm efficiently linked children.

We note that f(n) = j(n)
2 log j(n) = o(logn) easily since dc(n) = o(log logn).

Monotonic Operation Sequences and Sugmented Suboperations. Call
the designated minimum root the next node to be removed in an Extract-Min.
Define a monotonic operation sequence to be one where Decrease-Key opera-
tions are only performed on roots, children of the designated minimum root, or
marked nodes. All of the sequences of operations we define will be monotonic.
Observe:

Observation 4. In a monotonic operation sequence, for any node x with de-
scendent y (at the beginning of an operation) where all nodes on the path from
x’s child down to and including y are unmarked, y will remain in the same lo-
cation in x’s subtree (at the beginning of subsequent opeations) until x becomes
the designated minimum root. In a monotonic operation sequence, the rank of a
node never decreases, from the time it is inserted until the time it becomes the
designated minimum root.

We augment the Pair(·) operation, to return whether the rank was incre-
mented as a result of the pairing. This augmentation does not give any more
power to the pure heap model. We use this augmentation to create a finer notion
of what constitutes a distinct sequence of suboperations. Observe:

Lemma 1. Suppose si and sj are two structurally distinct states of the data
structure. Suppose a single valid sequence of suboperations implementing an
Extract-Min is performed on both, and the outcomes of all augmented sub-
operations that have return values are identical in both structures. Then, the
position of all nodes who have had their ranks changed is identical in both.

Evolutions of Indistinguishable Sequences. Let B = ⊂b1, b2, . . .→ be a se-
quence of priority queue operations. Let A(bi) = ⊂ai1, ai2, . . .→ be the sequence of
augmented suboperations and their return values used by algorithm A to exe-
cute operation bi if bi is an Extract-Min; if it is not A(bi) is defined to be
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the empty sequence. A(B) is the concatenation of A(b1), A(b2), . . .. We call two
sequences of priority queue operations B and B√ algorithmically indistinguish-
able if A(B) = A(B√), else they are algorithmically distinct. Let sB(i) be the
structure of the heap after running sequence ⊂b1 . . . bi→; the terminal structure
of B is sB(|B|) which we denote as sB. Recall that by structure, we mean the
raw shape of the heap without regard to the data in each node, but including
which nodes are marked. Two sequences B and B√ are terminal-structure indis-
tinguishable if sB = sB′ , else they are terminal-structure distinct. Given a set
of mutually algorithmically indistinguishable and terminal-structurally distinct
(AI-TSD) sequences of heap operations Ξ, the distinctness of the set, ξ(Ξ) is
defined to be log |Ξ|. Note that having two sequences which are algorithmically
indistinguishable does not imply anything about them being terminal-structure
indistinguishable. For example, it may be possible to add a Decrease-Key to a
sequence, changing the terminal structure, while the sequence of suboperations
performed to execute the sequence remains unchanged. A critical observation
needed at the end of the proof is that the number of terminal-structurally dis-
tinct sequences is function of n, the proof of this lemma is in the full version:

Lemma 2. The maximum distinctness of any set Ξ of terminal-structurally
distinct sequences, all of which have terminal structures of size n, is ξ(Ξ) =
O(n).

Evolving. We will now describe several functions on AI-TSD sets of heap opera-
tions; we call such functions evolutions. The general idea is to append individual
heap operations or small sequences of heap operations to all sequences in the
input set Ξ and remove some of the resulting sequences so as to maintain the
property that the sequences in the resultant set of sequences Ξ √ are AI-TSD.
The evolutions will also have the property that if the time to execute all se-
quences in Ξ is identical, then the runtime to execute all sequences in Ξ √ will
also be identical. The difference in the runtime to execute sequences in Ξ √ versus
those in Ξ will be called the runtime of an evolution.

Insert Evolution. The insert evolution has the following form: Ξ √ = Evolve-
Insert(Ξ). In an insert evolution, a single Insert operation of a key with value
0 is appended to the end of all Ξ to obtain Ξ √. Given Ξ is AI-TDS, the set Ξ √

is AI-TDS and trivially ξ(Ξ) = ξ(Ξ √). The runtime of the evolution is 1 since
the added Insert has runtime 1. The rank of the newly inserted node is 0, and
is thus unmarked.

Decrease-Key Evolution. The decrease-key evolution has the following form:
Ξ √ = Evolve-Decrease-Key(Ξ, p), where p is a location which is either a root
or a marked node in all terminal structures of sequences in Ξ. In a Decrease-
Key evolution, a Decrease-Key(p,Δx) operation is appended to the end of
all sequences in Ξ to obtain Ξ √. The value of Δx is chosen such that the new key
value of what p points to is set to is the negation of its current rank; this means
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Δx is always nonnegative because of the monotone property of ranks noted in
Observation 4. Observe that if p points to a marked node, then it is unmarked
after performing an Evolve-Decrease-Key. This requirement ensures that all
structures that are distinct before this operation will remain distinct after the
operation. Thus, the set Ξ √ is AI-TDS and trivially ξ(Ξ) = ξ(Ξ √). The runtime
of the evolution is 1 since the added Decrease-Key has runtime 1.

Designated Minimum Root Evolution. The designated minimum root evo-
lution has the form Ξ √ = Evolve-Designated-Minimum-Root(Ξ, r), where
r is the position of one root which exists in all terminal structures of Ξ. In
a designated minimum root evolution, a Decrease-Key operation on r to
a value of negative infinity is appended to all sequences in Ξ to give Ξ √. It
will always be the case that the (next) evolution performed on Ξ √ will be an
Evolve-Extract-Min evolution; the root r, which is known as the designated
minimum root, will be removed from all terminal structures of Ξ √ in this sub-
sequent Evolve-Extract-Min. There is no change in distinctness caused by
this operation: ξ(Ξ) = ξ(Ξ √). The runtime of the evolution is 1 since the added
Decrease-Key has runtime 1.

Extract-min Evolution. The extract-min evolution has the form (Ξ √, V, e) =
Evolve-Extract-Min(Ξ). First, an Extract-Min operation is appended to
the end of all sequences in Ξ to obtain an intermediate set of sequences which
we call Ξ. There is no reason to assume that the suboperations executed by
the algorithm in response to the Extract-Min in each of the elements of Ξ
are the same; thus the set Ξ may no longer be algorithmically indistinguish-
able. We fix this by removing selected sequences from the set Ξ so that the
only ones that remain execute the appended Extract-Min by using identical
sequences of suboperations. This is done by looking at the first suboperation ex-
ecuted in implementation of Extract-Min in each element of Ξ, seeing which
suboperation is the most common, and removing all those sequences Ξ that do
not use the most common first suboperation. If the suboperation is one which
has a return value, the return value which is most common is selected and the
remaining sequences are removed. This process is repeated for the second subop-
eration, etc., until the most common operation is End() and thus the end of all
remaining suboperation sequences has been simultaneously reached. Since there
are only a constant η number of suboperations, and return values, if present,
are boolean, at most a constant fraction of Ξ is removed while pruning each
suboperation. At the end of processing each suboperation by pruning the num-
ber of sequences, the new set is returned as Ξ √. The set Ξ √ can be seen to be
terminal-structure distinct, since pairing identically positioned roots in struc-
turally different heaps, and having the same nodes win the pairings, can not
make different structures the same. Observe that the nodes winning pairings in
the execution of the Extract-Min might have their ranks increase, and thus
become marked. By Lemma 1, the position of all such nodes is identical in all
terminal structures of Ξ √. The set of the locations of these newly marked nodes
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is returned as V , the violation set.
Now that it has been ensured that all of the sets of operations execute the

appended Extract-Min using the same suboperations, we define e to be this
common number of suboperations used to implement the Extract-Min; this
value is returned by the evolution. As each suboperation reduces the distinctness
by at most a constant, ξ(Ξ √) ∧ ξ(Ξ) − e log(2η) = ξ(Ξ) −O(e). The runtime of
the evolution is e since that is the cost of the added Extract-Min.

Big/SmallEvolution. The big/small evolution has the form (Ξ √, (p, bigsmall))=
Evolve-Big-Small(Ξ). The goal of the big/small evolution is to ensure that the
terminal structures of all sets are able to be executed in the same way in subsequent
evolutions. In a big/small evolution, each terminal structure of each of the opera-
tion sequences of Ξ is classified according to the following, using the previously-
defined function f(n):

– The exact number of roots (if at most f(n) logn) or the fact that the number
of roots is greater than f(n) logn (we call this case many-roots).

– If the exact number of roots is at most f(n) logn: The position of the root
with the largest subtree (the leftmost such root if there is a tie). Call it p.
Observe that the size of p’s subtree is at least n

f(n) logn . The exact number

of children of p if less than f(n) log n
f(n) logn (we call this case small) or the

fact that the number of roots is greater than f(n) log n
f(n) logn (we call this

case root-with-many-children).

There are at most ≥f(n) logn⇐2 ·≥f(n) log n
f(n) logn⇐ possible classifications. We

create set Ξ √ by removing from Ξ sequences with all but the most common clas-
sification of their terminal structures. The return value is based on the resultant
classification: Many-roots: Return (p, bigsmall) where p = Null and bigsmall =
Big. Root-with-many-children: Return (p, bigsmall) where p is the location of the
root with the largest subtree and bigsmall = Big. Small: Return (p, bigsmall)
where p is the location of the root with the largest subtree and bigsmall = Small.
We bound the loss of distinctness, which is the logarithm of the number of classi-

fications. Since f(n) = o(log n), then log
(
≥f(n) logn⇐2 · ≥f(n) log n

f(n) log n⇐
)

=

O(log logn), and thus ξ(Ξ √) = ξ(Ξ)−O(log logn). The evolution’s runtime is 0.

Permutation Evolution. The permutation evolution has the form Ξ √ =
Evolve-Permute(Ξ), where the leftmost root r has in all terminal struc-
tures of the sequences of Ξ a subtree size of at least n

f(n) log n and at most

f(n) log n
f(n) logn children; this will be achieved by being in the small case of

the big/small evolution and performing a decrease-key evolution on the relevant
node. It is required that all terminal structures of sequences in Ξ are entirely
unmarked. Here distinctness increases, and is the only evolution to increase the
number of sequences.
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By corollary 3 all nodes in the terminal structures of Ξ at location r have at
least g(n) log n

f(n) logn efficiently linked children; since there are at most 4j(n) ef-

ficiently linked children of each rank, there are at least
g(n) log n

f(n) log n

4j(n) efficiently

linked children of different ranks in each terminal structure. Find such a set and
call it the permutable set (PS). Pick the position of the PS that is most common.
Form the intermediate set of sequences Ξ̂ by removing from Ξ all sequences
that do not have this commonly located PS. Letting F = f(n) log n

f(n) logn and

G = g(n)
4j(n) log n

f(n) logn , an upper bound on the logarithm of the number of dif-

ferent locations a PS of size G could be in is log
⎣
F
G

⎛
= Θ(G log F

G ) = Θ
(

logn
j(n)

)
.

As j(n) = Θ(dc(n)), the reduction of distinctness is ξ(Ξ̂)− ξ(Ξ) = −O
(

logn
dc(n)

)
.

Using the definitions of f(n) and dc(n), the PS is of size Θ( logn
dc(n) log dc(n) ). Let

m be a constant such that the PS is of size at least m log n
dc(n) log dc(n) for sufficiently

large n. We then create Ξ √ by replacing each sequence in Ξ̂ with ( m log n
dc(n) log dc(n))!

new sequences created by appending onto the end of each existing sequence
a sequence of all possible permutations of Decrease-Key operations on all
elements of an arbitrary subset of size m logn

dc(n) log dc(n) of the PS. As all of the se-

quences in Ξ̂ have the same PSs ensures that all terminal structures in Ξ √ are
terminal-structure distinct. (Because of Lemma 2). Thus, in this step distinct-
ness increases by ξ(Ξ √) − ξ(Ξ̂) = log( m logn

dc(n) log dc(n))! = Θ( logn log logn
dc(n) log dc(n)), which

dominates the total change of disctintness. The evolution costs ⊆ m logn
dc(n) log dc(n) ,

the number of unit-cost Decrease-Key operations appended to the sequences.

Rounds. A sequence of evolutions Ψ = ⊂ψ0, ψ1, . . .→ defines a sequence of AI-
TSD sets ⊂Ξ0, Ξ1, . . .→. The initial set Ξ0 consists of a single sequence of opera-
tions: the operation Insert(0), executed n times. Each subsequent AI-TSD set
Ξi is derived from Ξi−1 by performing the single evolution ψi−1; thus in general
Ξi is composed of some of the sequences of Ξi−1 with some operations appended.

These evolutions are split into rounds ; ⇒i is the index of the first AI-TSD set of
the ith round. Thus round i begins with AI-TSD set Ξ≤i and ends with Ξ≤i+1−1

through the use of evolutions ⊂ψ≤i . . . ψ≤i+1−1→ These rounds are constructed to
maintain several invariants: All terminal structures of all sequences in the AI-
TSD set at the beginning and end of each round have size n. This holds as
in each round, exactly one Insert evolution and exactly one Extract-Min
evolution is performed. All nodes in all terminal structures in the AI-TSD sets
at the beginning and end of each round are unmarked. There are two types of
rounds, big rounds and small rounds. At the beginning of both types of round a
big/small evolution is performed which determines the round type.

The Big Round. As the round begins, the terminal structures of the AI-
TSD set are entirely unmarked, and there are either at least f(n) logn roots, or
one root with at least f(n) log n

f(n) logn children. The round proceeds as follows:
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(1) Perform a designated minimum root evolution on the root with largest sub-
tree; this is the node r from the return value of the big/small evolution; as a result
of the big/small evolution it is guaranteed to be in the same location in all of the
terminal structures of the sequences of Ξ. (2) Perform an Extract-Min evolu-
tion. (3) For each item in the violation sequence returned by the Extract-Min
evolution, perform a Decrease-Key evolution. This makes the terminal struc-
tures of all heaps in Ξ unmarked. (4) Perform an Insert evolution. Assuming
we are in round i, let ei be the cost of the Extract-Min evolution, and let
vi be the size of the violation sequence. The cost of the round (the sum of the
costs of the evolutions) is ei + vi + 2, which is at least f(n) log n

f(n) logn , and

based on the evolutions performed the distinctness can be bounded as follows:
ξi − ξi+1 = O(ei) + O(log logn).

The Small Round. There is one root, call it x, at the same location in all termi-
nal structures, with size at least n

f(n) logn and some identical number of children

in all terminal structures which is at most f(n) log n
f(n) log n . The location of x was

returned by the big/small evolution. The round proceeds as follows: (1) Perform
a Decrease-Key evolution on x to make it negative infinity. (2) Perform an
Evolve-Permute evolution. (3) Perform an Extract-Min evolution. (4) For
each item in the violation sequence returned by the Extract-Min evolution,
perform a Decrease-Key evolution. (5) Perform an Insert evolution.

Let ei be the actual cost of the Extract-Min, let vi be the size of the
violation sequence. The cost of the round is ei + vi + 2 + m log n

dc(n) log dc(n) , and

based on the evolutions performed the distinctness can be bounded as follows:

ξi − ξi+1 =

Extract-Min
⎝ ⎞⎠ ︷
O(ei) +

Evolve-Big-Small
⎝ ⎞⎠ ︷
O(log logn) −

Evolve-Permute
⎝ ⎞⎠ ︷
Ω( logn log log n

dc(n) log dc(n) ) .

Lemma 3 (See the Full Version for Proof). (A) The time to execute any
sequence in Ξ≤k

is O(k logn). (B) Over half of the rounds must be small rounds.

To prove Theorem 1, the distinctness gain of a round has been bounded as
follows:

ξ≤i+1 − ξ≤i =

⎧
⎨⎩

⎨⎢

−O(ei) −O(log log n)
If the ith round is a
big round

−O(ei) −O(log log n) + Θ( logn log logn
dc(n) log dc(n))

If the ith round is a
small round (§3)

Now we know that
∑k

i=1 ei is less than the actual cost to execute a sequence in

Ξ≤k
, which is O(k logn) by Lemma 3(A). Substituting

∑k
i=1 ei = O(k logn) into

the above and using the fact from Lemma 3(B) that at least half of the rounds are
small rounds gives: ξ≤k

−ξ≤0 = Θ(k logn log logn
dc(n) log dc(n))−O(k log logn)−O(k logn)

Since dc(n) = o( log logn
log log logn ), log logn

dc(n) log dc(n) = ω(1), and thus the negative terms

in the previous equation can be absorbed, giving: ξ≤k
− ξ≤0 = Θ(k logn log logn

dc(n) log dc(n) ).
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But after sufficiently many rounds (i.e. sufficiently large k) this contradicts
Lemma 2 that for all i, ξi = O(n). Thus for sufficiently large k and n a con-
tradiction has been obtained, proving Theorem 1.
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Abstract. Garbling schemes (aka randomized encodings of functions) repre-
sent a function F by a “simpler” randomized function F̂ such that F̂ (x) reveals
F (x) and no additional information about x. Garbling schemes have found ap-
plications in many areas of cryptography. Motivated by the goal of improving
the efficiency of garbling schemes, wemake the following contributions:

– We suggest a general new notion of partial garbling which unifies sev-
eral previous notions from the literature, including standard garbling
schemes, secret sharing schemes, and “conditional disclosure of secrets”.
This notion considers garbling schemes in which part of the input is
public, in the sense that it can be leaked by F̂ .

– We present constructions of partial garbling schemes for (boolean and
arithmetic) formulas and branching programs which take advantage of
the public input to gain better efficiency.

– We demonstrate the usefulness of the new notion by presenting appli-
cations to efficient attribute-based encryption, delegation, and secure
computation. In each of these applications,we obtain either new schemes
for larger classes of functions or efficiency improvements from quadratic
to linear. In particular, we obtain the first ABE scheme in bilinear groups
for arithmetic formulas, as well as more efficient delegation schemes for
boolean and arithmetic branching programs.

1 Introduction

There are many situations in cryptography where one is interested in computing
some function F of a sensitive input x but the computational model is restricted
so that only “simple” functions F can be directly computed. For instance, the entries
of x may be encrypted so that only affine functions can be computed, or they may
be distributed between multiple non-interacting parties so that only local functions
can be computed.

� Research received funding from the European Union’s Tenth Framework Programme
(FP10/2010-2016) under grant agreement no. 259426 ERC-CaC. Also supported by ISF grant
1361/10 and BSF grant 2012378.

�� CNRS (UMR 8548) and INRIA. Supported in part by the French ANR-12-INSE-0014
SIMPATIC Project and NSF Awards CNS-1237429 and CNS-1319021. Part of this work was
done while visiting the Technion, supported by ERC-CaC.

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 650–662, 2014.
© Springer-Verlag Berlin Heidelberg 2014



Partial Garbling Schemes and Their Applications 651

A common approach for handling more complex functions F in such situations is
to relax the usual notion of computation. This is done by: (1) settling for computing
some function F̂ whose output encodes the output of F (and reveals nothing else
about the input), and (2) allowing the latter encoding to be randomized. That is, the
randomized function F̂ (x) should satisfy the simplicity constraint (e.g., being affine)
for every fixed choice of the randomness,1 and moreover its output distribution on
an input x should reveal F (x) and no additional information about x. The function
F̂ is often referred to as a randomized encoding or a garbling scheme for F .

To give a simple example, let F (a,b) = ab where a and b are elements of a
finite field. Then an affine garbling scheme for F can be defined by F̂ (a,b) = ((a−
ra), (b − rb),arb + bra − rarb), where ra and rb are random and independent field
elements. Note that F̂ is an affine function of the input (a,b) for every fixed choice
of ra ,rb . Moreover, F (a,b) can be recovered from the output (c,d ,e) of F̂ (a,b) by
computing cd +e. Finally, the output (c,d ,e) of F̂ is distributed uniformly subject to
the constraint that cd +e = ab and hence it reveals no additional information about
(a,b) other than ab.

Garbling schemes have found applications in many areas of cryptography and
elsewhere (see [38, 17, 27, 3, 2, 7, 33] and references therein). Starting with Yao’s
celebrated garbled circuit construction, different constructions of garbling schemes
have been proposed for circuits and other representation models. However, these
constructions still have theoretical and practical limitations. In particular, they do
not efficiently generalize to arithmetic computations (despite progress in [5]) and
even in the boolean case their asymptotic and concrete efficiency leave much to
be desired. Furthermore, some of the best garbling schemes do not satisfy all of the
structural properties that are needed by applications.

1.1 NewNotion: Partial Garbling

This work is motivated by the observations that (1) in many applications of garbling
schemes, most of the input is already known to the designated receiver of the
encoded output, and (2) known constructions do not take advantage of this fact for
improving efficiency.

We suggest a general new notion of partial garbling which relaxes standard
garbling by allowing part of the input to be public. This notion can be viewed as
unifying several previous notions from the literature, including standard garbling
schemes, secret sharing schemes [35, 30], and conditional disclosure of secrets [21].

Consider for instance the case of secret sharing. Here, wewant to disclose a secret
if and only if the attributes of the parties satisfy a given predicate referred to as
the access structure; however, it is okay to leak information about the individual
attributes, which we think of as being “public”. Note that “public” does not mean
“known to everyone” or “must be revealed by the garbling” but rather “okay to leak
by the garbling” and known to the reconstruction algorithm. For this reason, partial
garbling cannot be viewed as a special case of standard garbling.

1 Some applications require that F̂ be “simple” even as a function of both x and the
randomness; however, in this work we will be mainly interested in complexity in terms of x.
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As another example, consider a client who has her data x distributed between
several servers. Suppose that the servers wish to disclose a secret s to the client only
if P (x)= 1 for some publicly known predicate P . That is, they would like to reveal to
the client the function F (x, s) = P (x) · s. Note that from the client’s point of view, x
is public input for F whereas s is a secret input. Now, suppose we are given a local
partial garbling scheme F̂ (x, s) for F , namely one where each output depends only
on the view of a single server. The partial garbling F̂ can be used by the servers
to conditionally disclose s to the client by each sending her a single message. This
“conditional disclosure” primitive serves as a useful building block in both two-party
and multi-party cryptographic protocols, where it can often serve as a light-weight,
non-interactive substitute for zero-knowledge proofs [21, 1, 37, 16, 11, 12].

Typical applications of garbling schemes, including those illustrated above, re-
quire that the garbling be “affine” and/or “local” with respect to the public inputs.
This additional requirement rules out the trivial solution of garbling a restriction of
F to the private inputs.

Garbling Arithmetic Branching Programs (ABP). We present unconditional con-
structions of partial garbling schemes for boolean and arithmetic formulas and
branching programs which take advantage of the public input to gain better effi-
ciency. Our constructions satisfy all of the useful structural properties of garbling
schemes required by natural applications.

In cases where the private input is small, as is the case for essentially all of our
motivating applications, we improve the size of the garbling from quadratic to linear
in the size of the formula or branching program; we also obtain a corresponding
efficiency improvement in the applications. Boolean and arithmetic formulas and
branching programs capture many functions of interest, including arithmetic com-
putations like sparse polynomials, mean, and variance, as well as combinatorial
computations like string-matching, finite automata and decision trees. Indeed,
these classes have been studied in several recent works in a variety of different
cryptographic settings [14, 9, 29, 24].

Our partial garbling schemes are “affine” and “local” with respect to the public
inputs; indeed, all of our applications exploit this property. Asmentioned earlier, this
means that we cannot simply garble the original function hardwiredwith the private
inputs. Instead, we start with the randomized encoding scheme for ABPs in [28].
Roughly speaking, this prior construction works bymultiplying the adjacencymatrix
for the branching programby randomupper triangularmatrices on both the left and
the right. Our construction uses a subgroup of upper triangular matrices with fewer
non-zero entries (corresponding to the private inputs). This means that the size of
the garbling is roughly the number of private inputs times the size of the branching
program. Therefore, when the number of private inputs is constant (or “local”), the
size of the garbling improves from quadratic to linear. In particular, we achieve
linear-size garbling for functions of the form F (x, s) = P (x) · s and F (x, (s1, s2)) =
s1P (x)+ s2 where P is an ABP acting on a public input x; these are precisely the
functions we consider for several of our applications.
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Comparison with Standard Garbling Techniques. We note that standard garbling
is a special case of partial garbling where all input is private. In the other direction,
there is a general reduction from partially garbling F (x,z) where x is public and z
is private to garbling F ′(x,z) := (x,F (x,z)). However, the cost of the reduction can be
significant. Take the examplewhereF is identically 0. Then, a partial garbling scheme
can output nothing whereas a standard garbling of F ′ must reveal x.

Unlike Yao’s garbling technique and its variants, our constructions cannot handle
general circuits and are restricted to weaker computational models. However, they
do offer a number of significant advantages: (i) they do not rely on computational
assumptions and can be used in the context of information-theoretic cryptography;
(ii) they work in an arithmetic model of computation, where the number of field
operations is independent of the field size; (iii) they satisfy the “linear reconstruc-
tion” property required by several applications below; (iv) they have better concrete
efficiency for natural functions F that admit compact representations by formulas
and branching programs.

1.2 Applications

We demonstrate the usefulness of our new notion and constructions by present-
ing applications to efficient attribute-based encryption (ABE) [34, 25], delegation
[22, 20], and secure computation [26, 21]. More broadly, partial garbling can be
applicable in many cryptographic settings in which there are computations that mix
public inputs with private inputs. In each of the applications we consider, we obtain
either new schemes for larger classes of functions or efficiency improvements from
quadratic to linear:

– For ABE, we extend prior pairing-based schemes for boolean formulas and
branching programs [25, 23] to arithmetic branching programs.

– For delegation, conditional disclosure of secrets and generalized oblivious trans-
fer, we obtain efficiency improvements for arithmetic branching programs from
quadratic to linear; prior to this work, constructions with linear complexity were
only known for boolean formulas [20, 21, 36].

We proceed with an overview of the applications to delegation and ABE.

Delegation and Verifiable Computation. In verifiable computation (VC), a compu-
tationally weak client with input x wishes to delegate a complex computation f to
an untrusted server, with the assurance that the server cannot convince the client to
accept an incorrect computation [22, 20, 4, 9]. We focus on the online/offline setting,
where the protocol proceeds in two phases. In the offline phase, the client sends
to the server a possibly long message that may be expensive to compute. Later on,
in the online phase (when the input x arrives), the client sends a short message to
the server, and receives the result of the computation together with a certificate for
correctness. We are interested in protocols where the client’s communication and
computational complexity in the online phase depend only on the input and output
lengths and is independent of the complexity of f .

Our VC schemes build upon the garble+MAC paradigm in [4], which derives a VC
protocol by garbling the function obtained by composing f with a one-time MAC.



654 Y. Ishai and H. Wee

Our key observation is that it suffices to use a partial garbling scheme where the
public input is x and the private input is the MAC key. Using our partial garbling
schemes, we then derive more efficient online/offline VC protocols for arithmetic
branching programs (ABPs), reducing the complexity of previous protocols from
quadratic to linear in the size of the program. We note that ABPs simultaneously
capture several classes of functions considered in the literature on delegation,
including boolean formulas in [20, 32] and sparse arithmetic polynomials in [9].

Theorem1 (informal). Assuming the existence of a PRG, there is an on-
line/offline VC protocol for arithmetic branching programswith the following
efficiency features. The complexity of the server and the client’s offline phase
is s ·poly(λ) and that of the client’s online phase is n ·poly(λ), where n is the
input length, s is the size of the ABP, and λ is the security parameter.

In [4], the complexity of the server and the client’s offline phase is s2 ·poly(λ). We also
obtain a smaller improvement for boolean formulas.

Attribute-Based Encryption. Attribute-based encryption (ABE) [34, 25] is a new
paradigm for public-key encryption that enables fine-grained access control for
encrypted data. In ABE, ciphertexts are associated with descriptive values x in
addition to a plaintext, secret keys are associated with predicates P , and a secret
key decrypts the ciphertext if and only if P (x)= 1. Here, P may express an arbitrarily
complex access policy,which is in stark contrast to traditional public-key encryption,
where access is all or nothing. The security requirement for ABE enforces resilience
to collusion attacks, namely any group of users holding secret keys for different func-
tions learns nothing about the plaintext if none of them is individually authorized to
decrypt the ciphertext.

We present the first ABE that directly handles a large class of predicates over arith-
metic domains as described by arithmetic branching programs. This is particularly
useful in settings where identities or attributes come from a universe of exponential
size, since we can avoid the overhead from using bit encodings, as with the case for
the Boneh-Boyen identity-based encryption [13].

Theorem2 (informal). Suppose the decisional bilinear Diffie-Hellman as-
sumption holds. Then, there exists a (selectively secure) ABE scheme for the
class of arithmetic branching programs.

Note that there are two natural ways to associate an ABP with a predicate, namely
whether its output is zero (Z-ABP), or non-zero (N-ABP).We obtain ABE schemes for
both via a single construction for “arithmetic span programs,” which simultaneously
generalizes boolean branching programs in [25] as well as (public-index) inner
product and non-zero inner product predicates [31, 6]. Prior to this work, we do not
know any ABE schemes in bilinear groups supporting the class of ABPs. We could of
course appeal to lattice-based ABE for general circuits [23, 18], though simulating an
ABP using a boolean circuit incurs a substantial overhead in concrete efficiency.
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At a high level, our construction follows the approach of Goyal et al. [25] for
building ABE for monotone Boolean formula from linear secret-sharing schemes.
The difficulty with extending this approach to arithmetic branching programs is
that there is no natural analogue of LSSS for arithmetic functionalities. Instead, we
observe that it suffices to use partial garbling with linear reconstruction, which we
do obtain for arithmetic branching programs. Intuitively, the descriptive value x
on the ABE ciphertext corresponds to the public input in partial garbling, and the
plaintext/master secret key corresponds to the private input.

The running time of the encryption algorithm depends only on the input length
to the ABP and not the size of the ABP. As such, exploiting the connection between
ABE and delegation in [32] and using the fact that we handle both Z-ABP and N-ABP,
we obtain a publicly verifiable delegation scheme for ABPs. This scheme requires
a stronger assumption than the offline/online VC in Theorem 1, but achieves a
stronger soundness requirement with reusability.

Finally, our construction yields an unconditionally secure witness encryption
scheme [19] for algebraic languages corresponding to vectors of group elements gw

such that P (w)= 0 for a fixed ABP P . For instance, this captures ElGamal public key
and ciphertext pair (pk,C ) such that C is an encryption of 0 or 1; see [12, 8, 10] for
additional examples of such languages. The construction follows essentially from
conditional disclosure of secrets schemes for the same predicate, along with the fact
that reconstruction is linear.

RelatedWork. In an independent work, Boneh et al. [15] constructed ABE for arith-
metic circuits under the LWE assumption; they only handle the “is zero” predicate
(i.e., decryption is possible exactly when the output of the circuit is zero), whereas
our construction also handles the “is non-zero” predicate. Handling a class that
is closed under complement is useful for applications such as publicly verifiable
delegation [32], as noted in the preceding paragraph.

2 Preliminaries

Notation.We denote by s ←R S the fact that s is picked uniformly at random from a
finite set S and by x, y,z ←R S that all x, y,z are picked independently and uniformly
at random from S.

Arithmetic Branching Programs. A branching program is defined by a directed
acyclic graph (V ,E ), two special vertices v0,v1 ∈ V and a labeling function φ. An
arithmetic branching program (ABP) over a finite field Fq computes a function f :
Fnq → Fq . Here, φ assigns to each edge in E an affine function in some input variable
or a constant, and f (x) is the sum over all v0-v1 paths of the product of all the values
along the path. We refer to |V |+|E | as the size of the ABP. Ishai and Kushilevitz [26, 28]
showed how to relate an ABP computation to that of computing the determinant of
a matrix (see Figure 1 for an example).

Lemma 1 ([28, Lemma 1]). Given an ABP Γ= (V ,E ,v0,v1,φ) computing f : Fnq → Fq ,
we can efficiently (and deterministically) compute a function L(x) mapping an input
x ∈ Fnq to a (|V |−1)× (|V |−1)matrix over Fq , such that:
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– det(L(x))= f (x);

– each entry of L(x) is a degree one polynomial in a single variable xi ;

– L(x) contains only −1’s in the second diagonal (the diagonal below the main
diagonal) and 0’s below the second diagonal.

Specifically, L is obtained by removing the column corresponding to v0 and the row
corresponding to v1 in the matrix A− I, where A is the adjacencymatrix for Γ.

We note that there is a linear-time algorithm that converts any boolean formula,
boolean branching program or arithmetic formula to an arithmetic branching pro-
gram with a constant blow-up in the representation size. Thus, ABPs can be viewed
as a stronger computational model than all of the above.

3 Partial Garbling Schemes (PGS)

We consider garbling schemes (aka randomized encodings of functions) [38, 17, 27,
3, 7] in which part of the input is public; we refer to this as partial garbling. Take a
function F where the input (x,z) comprises a public value x and a private value z. In
a standard garbling F̂ of F , the function F̂ is randomized and the output distribution
F̂ (x,z) “encodes” F (x,z) and leaks no additional information about the input (x,z).
In a partial garbling F̂ of F , the value x is public, and the privacy requirement only
applies to z. Again, we require that F̂ (x,z) “encodes” F (x,z), and that it leaks no
additional information about the private input z beyond what is revealed by x and
F (x,z). More formally, we require that there be two efficiently computable maps Sim
and Recwhere Sim is randomized and Rec is deterministic such that

– the distributions Sim(x,F (x,z)) and F̂ (x,z) are identical;

– Rec(x, F̂ (x,z;r ))= F (x,z) for all inputs (x,z) and randomness r .

We want constructions where F̂ is a “simple” function of (x,z). We are also particu-
larly interested in constructions where and the reconstruction algorithm Rec(x, ·) is
a “simple” function of F̂ (x,z), e.g. a function of total degree 1 whose coefficients may
depend arbitrarily on x.

Definition 1 ((affine) Partial Garbling Scheme). Let F : Fnq ×Fn
′

q → Fq be a function.

We say that a randomized function F̂ : Fnq × Fn
′

q → Fmq is a partial garbling scheme
(PGS) of F if it satisfies the following properties:

– (correctness) There exists a deterministic reconstruction algorithm Rec such that
for all (x,z) ∈ Fnq ×Fn

′
q , Pr[Rec(x, F̂ (x,z))= F (x,z)]= 1.

– (privacy) There exists a randomized algorithm Sim, called a simulator, such that
for all (x,z) ∈ Fnq ×Fn

′
q , Sim(x,F (x,z)) and F̂ (x,z) are identically distributed.

In addition, we say that the garbling scheme is affine if for all indices j ∈ [m], F̂ (x,z) j
is an affine function of the form aj xi +bj or aj zi +bj where the coefficients aj ,bj ∈ Fq
depend only on the randomness of F̂ .
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We will also say that the garbling scheme is x-affine if each F̂ (x,z) j is an affine
function of the form aj xi + bj where the coefficients aj ,bj ∈ Fq depend only on z
and the randomness of F̂ . We may define z-affine analogously. Note that an affine
garbling scheme is both x-affine and z-affine.

We note that the above definition extends naturally to functions F with longer
outputs. When considering an infinite family of F , we also require that there is an
efficient deterministic garbling algorithm for computing the description of F̂ , Rec
and Sim from that of F .

Examples. As a warm-up, we describe several partial garbling schemes for functions
with n′ = 1 and n′ = 2, some of which were implicit in prior works. All of these
schemes are captured by our more general construction in Section 4.

Example 1 (non-zero product). Consider the function

F ((x1,x2,x3),z)= x1x2x3z.

This corresponds to disclosing a secret z subject to the condition x1,x2,x3 are all
non-zero. Consider the affine garbling scheme:

F̂ ((x1,x2,x3),z;r1,r2,r3)= (r1x1,r1− r2x2,r2− r3x3,r3− z))

Reconstruction has degree 1 and is given by a dot product with the vector

(−1,x1,x1x2,x1x2x3).

Example 2 (sum is zero).Consider the function F : Fnq ×F2q → Fq given by

F ((x1, . . . ,xn ), (z,z
′))= z ′ · (x1+·· ·+ xn)+ z.

This corresponds to disclosing a secret z subject to the condition x1+ . . .+xn = 0; for
n = 2, this captures “disclose z if x1,x2 are equal”. Consider the x-affine encoding:

F̂ ((x1, . . . ,xn ), (z,z
′);r1, . . . ,rn )= (z ′x1− r1, . . . ,z

′xn − rn ,r1+·· ·+ rn + z)

Reconstruction has degree 1 and is given by summing the values in the encoding.
This is essentially the scheme given in [21, Lemma 2].

4 Partially Garbling Arithmetic Branching Programs

In this section, we present partial garbling schemes for arithmetic branching pro-
grams, with a restriction on where the private inputs are used in the computation.
Specifically, we consider functions F : Fnq × Fn

′
q → Fq that are computed by an ABP

such that the variables in the private input z appear only on the edges leading into
the last vertex v1 (or more generally, into the last t vertices in V ). For instance,
this class captures read-once branching programs on n +n′ inputs where the first
n inputs are public and the last n′ inputs are private. Figure 1 shows that this class
also captures the first two examples in Section 3.
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F ((x1,x2,x3), (z,z ′)= z ′(3x1+ x2+2x3)+ z

Fig. 1. ABPs for examples in Section 3 with t = 1

4.1 Statement of Results

We now formally state our results on partial garbling.

Theorem3 (Parti ally Garbling ABP). Consider a function F : Fnq ×Fn
′

q → Fq which is
computed by an ABP Γ = (V ,E ,v0,v1,φ) taking as input (x,z), where the variables in
the private input z appear only on the edges leading into the last t vertices in V . Then,
there is a partial garbling scheme F̂ of F with the following properties:

– the output length of F̂ is t · (|V |−1);

– each entry of F̂ is a polynomial of total degree one in the variables x and z;

– each entry of F̂ is a polynomial of total degree one in the randomness for t = 1,
and total degree two in the randomness in the general case.

– the reconstruction algorithm Rec(x, ·) has degree t in the output of F̂ .

In the interesting special case where t = 1 (which captures the applications to
CDS and secret-sharing), we obtain an encoding of linear size and degree one
reconstruction. For the case t = |V | − 1, we achieve the standard requirement for
garbling schemes and recover a variant of the construction in [28, Theorem 1]. We
note here that the degree in the randomness r is important in MPC applications
where the generationof r is distributed betweenmultiple parties, whereas the degree
of the reconstruction algorithm is important in ABE schemes where reconstruction
happens “in the exponent”.

Affine Partial Garbling. Combined with the locality lemma in [3, Lemma 4.17], we
obtain an affine PGS for arithmetic branching programs:

Corollary 1 (Affine PGS for ABP). Consider a function F : Fnq × Fn
′

q → Fq which is
computed by an ABP Γ = (V ,E ,v0,v1,φ) taking as input (x,z) where the variables in
the private input z appear only on the edges leading into the last t vertices in V . Then,
there is an affine partial garbling scheme F̂ of F with the following properties:

– F̂ has the output length t2 · |E |;
– the reconstruction algorithm Rec(x, ·) has degree t .
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The locality lemma tells us that we can garble a polynomial of d variables of total
degree one using d affine functions of a single variable (e.g. we garble x1+2x2 + x3
using (x1− r1,2x2− r2,x3+ r1+ r2)), while increasing the randomness complexity by
d−1 andwithout affecting the degree of the reconstruction algorithm. That is, wewill
replace each polynomial in d variables in F̂ with d affine functions in one variable.
This increases the output length of F̂ from t · (|V |−1) to t2 · |E |.

4.2 Our Construction

Following prior garbling schemes for ABP due to Ishai and Kushilevitz in [27, 28], the
starting point of our construction is the matrix representation L(x,z) of the ABP in
Lemma 1. Since the variables in z appear only on the edges leading into the last t
vertices in V , this means that they only appear in the last t columns of the matrix
L(x,z). Garbling proceeds similarly to that in [28, Section 4] by randomizing the
last t columns of this matrix while preserving its determinant – we achieve this by
multiplying L(x,z) on the left and on the right by randommatrices with a prescribed
structure. The efficiency improvement over the prior construction comes from using
matrices with fewer random entries; in particular, only the last t columns of the
randomizing matrices contain random entries.

A Digression into Matrices.We consider a setH of matrices which contains L(x,z),
along with two groups of matrices G1,G2 which would be used to randomize L(x,z)
as outlined above.

Definition 2. Let H denote the set of �× � matrices over Fq containing only −1’s
in their second diagonal (the diagonal below the main diagonal), and 0’s below the
second diagonal. For a fixed parameter t , define two matrix groups G1 and G2 as
follows:

– G1 is the subset of �×� matrices over Fq with 1’s on the main diagonal and 0’s in
all of the remaining entries except the right-most t −1 entries in the top row;

– G2 is the subset of �×� matrices over Fq with 1’s on the main diagonal and 0’s
in all of the remaining entries except for those above the main diagonal in the t
right-most columns.

It is straight-forward to verify that G1,G2 are both closed under multiplication and
inverse; that is, bothG1 andG2 are subgroups of themultiplicative groupof invertible
�×� matrices. Next, we establish additional properties ofH,G1,G2 which would be
used to establish correctness and privacy respectively:

Lemma 2. For any H ∈H,G1 ∈ G1,G2 ∈ G2, the first �− t columns in G1HG2 are the
same as those in H.

The following lemma (generalizing [28, Lemma 3]) shows that a matrix H from H

can be brought into a canonical form, uniquely defined by its first �− t columns and
its determinant, by multiplying it from the left by someG1 ∈G1 and from the right by
someG2 ∈G2.
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Lemma 3. For any H ∈H, there exists G1 ∈ G1 and G2 ∈ G2 such that G1HG2 satisfies
the following properties (that is, the “canonical form”):

– the entries in the first �− t columns of G1HG2 are the same as those in H;

– G1HG2 contains −1’s in its second diagonal;

– it contains 0’s elsewhere except the value det(H) in the top-right entry.

Note that the canonical form for H is unique and is completely determined by the
first �− t columns of H and det(H).

Partially Garbling F . We may now specify our PGS F̂ : start with the �× � matrix
representation L(x,z) for F , where � = |V | − 1, and output the last t columns of
the matrix R1L(x,z)R2, where R1 ←R G1 and R2 ←R G2. We proceed to analyze the
construction:

– (correctness) Reconstruction proceeds as follows: Given x and the last t columns
of R1L(x,z)R2, we may recover the entire matrix R1L(x,z)R2, since the first
�− t columns are the same as those in L(x,z) (cf. Lemma 2) and depend only
on x. Then, we compute det(R1L(x,z)R2), which is a degree t computation
over the output of F̂ . Correctness follows from the fact that det(R1L(x,z)R2) =
det(L(x,z))= F (x,z) since det(R1)= det(R2)= 1.

– (privacy) Given x and F (x,z), we can compute the canonical form H ′ of the
matrix L(x,z) as defined in Lemma 3, namely H ′ = G1L(x,z)G2 for some G1 ∈
G1,G2 ∈G2 (we do not need to compute G1,G2). Since G1 and G2 are both matrix
groups, it follows that R1L(x,z)R2 and R′

1H
′R′

2, where R1,R′
1 ←R G1,R2,R′

2 ←R G2,
are identically distributed. Simulation proceeds by outputting the last t columns
of R′

1H
′R′

2.

Theorem 3 then follows readily.
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Abstract. In a recent work of Bei, Chen and Zhang (STOC 2013), a
trial and error model of computing was introduced, and applied to some
constraint satisfaction problems. In this model the input is hidden by an
oracle which, for a candidate assignment, reveals some information about
a violated constraint if the assignment is not satisfying. In this paper we
initiate a systematic study of constraint satisfaction problems in the trial
and error model. To achieve this, we first adopt a formal framework for
CSPs, and based on this framework we define several types of revealing
oracles. Our main contribution is to develop a transfer theorem for each
type of the revealing oracle, under a broad class of parameters. To any
hidden CSP with a specific type of revealing oracle, the transfer theorem
associates another, potentially harder CSP in the normal setting, such
that their complexities are polynomial time equivalent. This in princi-
ple transfers the study of a large class of hidden CSPs, possibly with a
promise on the instances, to the study of CSPs in the normal setting. We
then apply the transfer theorems to get polynomial-time algorithms or
hardness results for hidden CSPs, including satisfaction problems, mono-
tone graph properties, isomorphism problems, and the exact version of
the Unique Games problem.

1 Introduction

In [2], Bei, Chen and Zhang proposed a trial and error model to study algorith-
mic problems when some input information is lacking. As argued in their paper,
the lack of input information can happen when we have only limited knowledge of
and access to the problem. They also described several realistic scenarios where
the inputs are actually unknown. Then, they formalized this methodology in
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the complexity-theoretic setting, and proposed a trial and error model for con-
straint satisfaction problems. They further applied this idea to investigate the
information needed to solve linear programming in [3], and to study information
diffusion in a social network in [1].

As mentioned, in [2] the authors focused on the hidden versions of some spe-
cific constraint satisfaction problems (H–CSPs), whose instances could only be
accessed via a revealing oracle. An algorithm in this setting interacts with this
revealing oracle to get information about the input instance. Each time, the al-
gorithm proposes a candidate solution, a trial, and the validity of this trial is
checked by the oracle. If the trial succeeds, the algorithm is notified that the pro-
posed trial is already a solution. Otherwise, the algorithm obtains as an error, a
violation of some property corresponding to the instance. The algorithm aims to
make effective use of these errors to propose new trials. The optimal algorithm
minimizes the number of trials while keeping in mind the cost for proposing
new trials. When the CSP is already difficult, a computation oracle that solves
the original problem might be allowed. Its use is justified as we are interested
in the extra difficulty caused by the lack of information. Bei, Chen and Zhang
considered several natural CSPs in the trial and error setting, including SAT,
Stable Matching, Graph Isomorphism and Group Isomorphism. While the for-
mer two problems in the hidden setting are shown to be of the same difficulty as
in the normal one, the last two cases have substantially increased complexities in
the unknown-input model. They also studied more problems, as well as various
aspects of this model, like the query complexity.

In this paper, following [2], we initiate a systematic study of the constraint
satisfaction problems in the trial and error model. To achieve this, we first adopt
a formal framework for CSPs. Based on this framework we define three types
of revealing oracles to generalize the model of [2]. Our main contribution is to
develop a transfer theorem for each type of the revealing oracle, under a broad
class of parameters. For any hidden CSP with a specific type of revealing oracle,
the transfer theorem associates another CSP in the normal (unhidden) setting,
such that their difficulties are roughly the same. This in principle transfers the
study of hidden CSPs to the study of CSPs in the normal setting. We also apply
transfer theorems to get results for concrete CSPs, including some problems
considered in [2], for which we usually get much shorter and easier proofs.

The Framework for CSPs, and Hidden CSPs. To state our results we de-
scribe informally the framework of CSPs. A CSP S is defined by a finite alphabet
�w� = {0, 1, . . . , w − 1} and by R = {R1, . . . , Rs}, a set of relations over �w�
of some fixed arity q. For a set of variables V = {x1, . . . , xσ}, an instance of S
is a set of constraints C = {C1, . . . , Cm}, where Cj = R(xj1 , . . . , xjq ) for some
relation R ∈ R and some q-tuple of variables. An assignment a ∈ �w�σ satisfies
C if it satisfies every constraint in it.

Example 1. 1SAT: Here w = 2, q = 1, and R = {Id,Neg}, where Id = {1} is
the identity relation, and Neg = {0} is its complement. Thus a constraint is a
literal xi or x̄i, and an instance is just a collection of literals. In case of 3SAT the
parameters are w = 2, q = 3 and |R| = 8. We will keep for further illustrations
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1SAT which is a problem in polynomial time. 3SAT would be a less illustrative
example since the standard problem is already NP-complete. We omit 2SAT as
its hardness is implied from that of 1SAT.

To allow for more versatility, we often consider some promise W ⊆ �w�σ on
the assignments, and only look for a satisfying assignment within this promise.
This case happens, say when we look for permutations in isomorphism problems.

Recall that in the hidden setting, the algorithm interacts with some revealing
oracle by repeatedly proposing assignments. If the proposed assignment is not
satisfying then the revealing oracle discloses certain information about some
violated constraint. This can be in principle an index of such a constraint, (the
index of) the relation in it, the indices of the variables where this relation is
applied, or any subset of the above. Here we will require that the oracle always
reveals the index of a violated constraint from C. To characterize the choices for
the additional information, for any subset U ⊆ {R,V} we say that an oracle is
U-revealing if it also gives out the information corresponding to U . For a CSP
problem S we use H–SU to denote the corresponding hidden problem in the trial
and error model with U-revealing oracle.

Example 1 continued. Let us suppose that we present an assignment a ∈ {0, 1}σ
for an instance of the hidden version H–1SATU of 1SAT to the U-revealing oracle.
If U = {V} and the oracle reveals j and i respectively for the violated constraint
and the variable in it then we learn that the jth literal is xi if ai = 0, and x̄i

otherwise. If U = {R} and say the oracle reveals j and Id then we learn that
the jth literal is positive. If U = ⊂ and the oracle reveals j then we only learn
that the jth literal is either a positive literal corresponding to one of the indices
where a is 0, or a negative literal corresponding to an index where a is 1.

In order to explain the transfer theorem and motivate the operations which
create richer CSPs, we first make a simple observation that H–S{R,V} and S are
polynomial time equivalent, when the relations of S are in P (note that the latter
does not necessarily imply that S is in P). Indeed, an algorithm for H–S{R,V}
can solve S, as the answers of the oracle can be given by directly checking if the
proposed assignment is satisfying. In the other direction, we repeatedly submit
assignments to the oracle. The answer of the oracle fully reveals a (violated)
constraint. Given some subset of constraints we already know, to find a new
constraint, we submit an assignment which satisfies all the known constraints.
Such an assignment can be found by the algorithm for S.

With a weaker oracle this procedure clearly does not work and to compensate,
we need stronger CSPs. In the case of {V}-revealing oracles an answer helps us
include as possibilities for the specified clause, all those relations which were
violated at the specified indices of the proposed assignment, and remove all
the relations which were satisfied at those indices. Therefore, to find out more
information about the input, we would like to find a satisfying assignment for a
CSP instance whose corresponding constraint is the union of all its possibilities.
This naturally brings us to consider the CSP

⋃
S, the closure by union of S whose
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relations are from
⋃R, the closure by union of R, which contains relations by

taking union over any subset of R.
The situation with the {R}-revealing oracle is analogous, but here we have to

compensate, in the stronger CSP, for the lack of revealed information about the
variable indices. For a relation R and q-tuple of distinct indices (j1, . . . , jq), we
define the σ-ary relation R(j1,...,jq) = {a ∈ W : (aj1 , . . . , ajq ) ∈ R}, and for a set

I of q-tuples of indices, we set RI =
⋃

(j1,...,jq)◦I R
(j1,...,jq). The arity extension

of S is the constraint satisfaction problem E–S whose relations are from arity
extension E–R =

⋃
I{RI : R ∈ R} of R.

The transfer theorem first says that with
⋃
S (resp. E–S) we can compensate

the information hidden by a {V}-revealing (resp. {R}-revealing) oracle, that is
we can solve H–S{V} (resp. H–S{R}). In fact, with

⋃
E–S we can solve H–S√.

Moreover, perhaps more surprisingly, it says that these statements also hold in
the reverse direction: if we can solve the hidden CSP, we can also solve the
corresponding extended CSP.

Transfer Theorem (informal statement). Let S be a CSP whose parameters
are “reasonable” and whose relations are in P. Then for any promise W on
the assignments, the complexities of the following problems are polynomial time
equivalent: (a) H–S{V} and

⋃
S, (b) H–S{R} and E–S, (c) H–S√ and

⋃
E–S.

The precise dependence on the parameters can be found in the theorems of
Section 3 and Corollary 1 highlights the conditions for polynomial equivalence.

Example 1 continued. Since
⋃{Id,Neg} = {⊂, Id,Neg, {0, 1}},

⋃
1SAT has only

the two trivial (always false or always true) relations in addition to the relations
in 1SAT. Therefore it can be solved in polynomial time, and by the the Transfer
Theorem H–1SAT{V} is also in P. On the other hand, for any index set I ⊆ [σ],

IdI is a disjunct of positive literals with variables from I, and similarly NegI

is a disjunct of negative literals with variables from I. Thus E–1SAT includes
MONSAT, which consists of those instances of SAT where in each clause either
every variable is positive, or every variable is negated. The problem MONSAT is
NP-hard by Schaefer’s characterization [6], and therefore the Transfer Theorem
implies that H–1SAT{R} and H–1SAT√ are also NP-hard.

In a further generalization, we will also consider CSPs and H–CSPs whose
instances satisfy some property. One such property can be repetition freeness
meaning that the constraints of an instance are pairwise distinct. The promise
H–CSPs could also be a suitable framework for discussing certain graph problems
on special classes of graphs. For a promise PROM on instances of S we denote by
SPROM the promise problem whose instances are instances of S satisfying PROM.
The problem H–SPROM

{U} is defined in an analogous way from H–S{U}.
It turns out that we can generalize the Transfer Theorem for CSPs with

promises on the instances. We describe this in broad lines for the case of {V}-
revealing oracles. Given a promise PROM on S, the corresponding promise⋃
PROM for

⋃
S is defined in a natural way. We say that a

⋃
S-instance C≤

includes an S-instance C if for every j ∈ [m], the constraint C≤
j in C≤ and the

constraint Cj in C are defined on the same variables, and seen as relations,
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Cj ⊆ C≤
j . Then

⋃
PROM is the set of instances C≤ of

⋃
S which include some

C ∈ PROM. The concept of an algorithm solving
⋃
S
⋃

PROM has to be relaxed:
while we search for a satisfying assignment for those instances which include a
satisfiable instance of PROM, when this is not the case, the algorithm can abort
even if the instance is satisfiable. With this we have:

Transfer Theorem for Promise Problems (informal statement). Let S be
a constraint satisfaction problem with promise PROM. Then the complexities of
H–SPROM

{V} and
⋃
S
⋃

PROM are polynomial time equivalent when the parameters
are “reasonable” and the relations of S are in P.

Example 1 continued. Let RF denote the property of being repetition free, in the
case of 1SAT this just means that no literal can appear twice in the formula.
Then H–1SATRF

√ , hidden repetition-free 1SAT with ⊂-revealing oracle, is solved
in polynomial time. To see this we first consider X–1SAT, the constraint satisfac-
tion problem whose relations are all σ-ary extensions of Id and Neg. (See Section 2
for a formal definition.) It is quite easy to see that hidden 1SAT with ⊂-revealing
oracle is essentially the same problem as hidden X–1SAT with {V}-revealing ora-
cle. Therefore, by the Transfer Theorem we are concerned with

⋃
X–1SAT with

promise
⋃
RF. The instances satisfying the promise are {C1, . . . , Cm}, where

Cj is a disjunction of literals such that there exist distinct literals z1, . . . , zm,
with zj ∈ Cj . It turns out that these specific instances of SAT can be solved in
polynomial time. The basic idea is that we can apply a maximum matching algo-
rithm, and only output a solution if we can select m pairwise different variables
xi1 , . . . , xim such that either xij or xij is in Cj .

Applications of Transfer Theorems. Since NP-hard problems obviously re-
main NP-hard in the hidden setting (without access to an NP oracle), we inves-
tigate the complexity of various polynomial-time solvable CSPs. We first apply
the Transfer Theorem when there is no promise on the instances. We categorize
the hidden CSPs depending on the type of the revealing oracle.

With constraint index revealing oracles, we focus on various monotone graph
properties like Spanning Tree, Cycle Cover, etc. We define a general framework
to represent monotone graph property problems as H–CSPs and show that they
become NP-hard. This framework also naturally extends to directed graphs.

With constraint and variable index revealing oracles, we obtain results on sev-
eral interesting families of CSPs including the exact-Unique Games Problem (cf.
Section 5), equality to a member of a fixed class of graphs, and graph properties
discussed as above. Interestingly, many of the graph properties mentioned in the
last paragraph are no longer NP-hard but in P, as well as some other CSPs like
2SAT and the exact-Unique Game problem on alphabet size 2. Still, there are
some NP-hard CSPs, like the exact-Unique Game problem on alphabet size → 3,
and equality to some specific graph, such as k-cliques. The latter problem is just
the Graph Isomorphism problem considered in [2, Theorem 13], whose proof,
with the help of the Transfer Theorem, becomes very simple.
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With constraint and relation index revealing oracles, we show a dichotomy
theorem similar to results obtained in [4,5] for any CSP with constant arity and
alphabet size: if some string of the form (τ, . . . , τ) satisfies all the non-empty
relations then the problem is in P, otherwise it is NP-hard.

Finally, we investigate hidden CSPs with promises on the instances. We first
consider the repetition freeness promise, as exhibited by the 1SAT example as
above. Though the hidden repetition free 1SAT problem becomes solvable in
polynomial time, in this setting 2SAT is still NP-hard. The group isomorphism
problem can also be cast in this framework, and we give a simplified proof of [2,
Theorem 11]: to compute an explicit isomorphism of the hidden group with Zp

is NP-hard.

Organization. In Section 2 we formally describe the model of CSPs, and hidden
CSPs. In Section 3, the transfer theorems are stated and proved. Section 4, 5,
and 6 contain the applications of the main theorems in the case of ⊂-revealing,
{V}-revealing and {R}-revealing oracles respectively. Finally in Section 7 we
present the results for hidden promise CSPs. Most proofs are omitted from this
version of the paper due to space constraints.

2 Preliminaries

The Model of Constraint Satisfaction Problems. For a positive integer k,
let [k] denote the set {1, . . . , k}. (Recall that �k� = {0, 1, . . . , k−1}.) A constraint
satisfaction problem, (CSP) S, is specified by its set of parameters and its type,
both defined for every positive integer n.

The parameters are the alphabet size w(n), the assignment length σ(n), the set
of (admissible) assignments W (n) ⊆ �w(n)�σ(n), the arity q(n), and the number
of relations s(n). We suppose that W (n) is symmetric, that is for ∧λ ∈ Sσ(n),
if a1 . . . aσ(n) ∈ W (n) then aε(1) . . . aε(σ(n)) ∈ W (n). To simplify notations, we
often omit n from the parameters, and just write w, σ,W, q and s.

We denote by Wq the projection of W to q coordinates, i.e. Wq = {u ∈
�w�q : uv ∈ W for some v ∈ �w�σ−q}. A q-ary relation is R ⊆ Wq. For b in
Wq, if b ∈ R, we sometimes write R(b) = T, and similarly for b ≥∈ R we write
R(b) = F. The type of S is a set of q-ary relations Rn = {R1, . . . , Rs}, where
Rk ⊆ Wq , for every k ∈ [s]. As for the parameters, we usually just write R.

We set [σ](q) = {(j1, . . . , jq) ∈ [σ]q : |{j1, . . . , jq}| = q}, that is [σ](q) denotes
the set of distinct q-tuples from [σ]. An instance of S is given by a set of m (m may
depend on n) constraints C = {C1, . . . , Cm} over a set V = {x1, . . . , xσ} of vari-
ables, where a constraint is Rk(xj1 , . . . , xjq ) for some k ∈ [s] and (j1, . . . , jq) ∈
[σ](q). We say that an assignment a ∈ W satisfies Cj = Rk(xj1 , . . . , xjq ) if
Rk(aj1 , . . . , ajq ) = T. An assignment satisfies C if it satisfies all its constraints.
The size of an instance is n + m(log s + q log σ) + σ logw which includes the
length of the description of C and the length of the assignments. In all our appli-
cations the instance size will be polynomial in n. A solution of C is a satisfying
assignment if there exists any, and no otherwise.
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We further introduce the following notations. For a relation R let comp(R)
be the time complexity of deciding the membership of a tuple in R, and for a
set of relations R let comp(R) be maxR◦R comp(R). We denote by dim(R) the
dimension of R which is defined as the length of the longest chain of relations
(for inclusion) in R.

We also introduce two new operations which create richer sets of relations
from a relation set. For a given CSP S, these richer sets of relations derived from
the type of S, will be the types of harder CSPs which turn out to be equivalent to
various hidden variants of S. The first operation is standard. We denote by

⋃R
the closure of R by the union operation, that is

⋃R = {⋃R◦R′ R : R≤ ⊆ R}.
We define the (closure by) union of S as the constraint satisfaction problem

⋃
S

whose parameters are the same as those of S except the number of relations
which is at most 2s, and whose type is

⋃R. We remark that dim(
⋃R) ⇐

min{|R|, |Wq|}.
For a relation R ∈ R and for (j1, . . . , jq) ∈ [σ](q) we define the σ-ary relation

R(j1,...,jq) = {a ∈ W : (aj1 , . . . , ajq ) ∈ R}, and X–R = {R(j1,...,jq) : R ∈
R and (j1, . . . , jq) ∈ [σ](q)}. The set X–R contains the natural extension of
relations in R from arbitrary coordinates. If we want to consider unions of
the same relation from arbitrary coordinates, then for I ⊆ [σ](q), we set RI =⋃

(j1,...,jq)◦I R
(j1,...,jq), and define the arity extension of R, as E–R=

⋃
R◦R{RI :

I ⊆ [σ](q)}. Observe that E–R ⊆ ⋃
X–R =

⋃
E–R. The arity extension of S is

the constraint satisfaction problem E–S whose parameters are the same as those
of S except for the arity which becomes σ, and the number of relations which
becomes at most s σ!

(σ−q)! . The type of E–S is E–R. The problem X–S is defined

similarly, but with type X–R.

Hidden CSP in the Trial and Error Model. Suppose that we want to solve
a CSP problem S whose parameters and type are known to us, but for the
instance C, we are explicitly given only n and the number of constraints m. The
instance is otherwise specified by a revealing oracle V for C which can be used by
an algorithm to receive information about the constraints in C. The algorithm
can propose a ∈ W to the oracle which is conceived as its guess for a satisfying
assignment. If a indeed satisfies C then V answers yes. Otherwise there exists
some violated constraint Cj = Rk(xj1 , . . . , xjq ), and the oracle has to reveal some
information about that. We will require that the oracle always reveals j, the index
of the constraint Cj in C, but in addition, it can also make further disclosures.
These can be k, the index of the relation Rk in R; (j1, . . . , jq), the q-tuple of
indices of the ordered variables xj1 , . . . , xjq in V ; or both of these. To characterize
the choices for the additional information, for any subset U ⊆ {R,V}, we require
that a U-revealing oracle VU give out the information corresponding to {C}⋃U ⊆
{C,R,V}. Thus for example a ⊂-revealing oracle V√ reveals the index j of some
violated constraint but nothing else, whereas a V-revealing oracle V{V} also
reveals the indices (j1, . . . , jq) of the variables of the relation in the clause Cj ,
but not the name of the relation.
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Analogously, for every CSP S, and for every U ⊆ {R,V}, we define the hidden
constraint satisfaction problem (H–CSP) with U-revealing oracle H–SU whose
parameters and type are those of S, but whose instances are specified by a
U-revealing oracle. An algorithm solves the problem H–SU if for all n,m, for
every instance C for S, specified by any U-revealing oracle for C, it outputs a
satisfying assignment if there exists any, and no otherwise. The complexity of
an algorithm for H–SU is the number of steps in the worst case over all inputs
and all U-revealing oracles, where a query to the oracle is counted as one step.

3 Transfer Theorems for Hidden CSPs

In this section we precisely state our transfer theorems between H–CSPs and
CSPs with extended types. We will only give the proof for the case of the {V}-
revealing oracle below owing to space constraints.

Theorem 1. (a) If
⋃
S is solvable in time T then H–S{V} is solvable in time

O((T + s× comp(R))×m×dim(
⋃R). (b) If H–S{V} is solvable in time T then⋃

S is solvable in time O(T ×m× comp(
⋃R)).

Theorem 2. (a) If E–S is solvable in time T then H–S{R} is solvable in time

O((T + |[σ](q)| × comp(R)) ×m × |[σ](q)|). (b) If H–S{R} is solvable in time T
then E–S is solvable in time O(T ×m× comp(E–R)).

Theorem 3. (a) If
⋃
E–S is solvable in time T then H–S√ is solvable in time

O((T + s × |[σ](q)| × comp(R)) ×m × dim(
⋃
E–R)). (b) If H–S√ is solvable in

time T then
⋃
E–S is solvable in time O(T ×m× comp(

⋃
E–R)).

Proof of Theorem 1. We first prove (a). Let A be an algorithm which solves⋃
S in time T . We define an algorithm B for H–S{V}. The algorithm will re-

peatedly call A, until it finds a satisfying assignment or reaches the conclu-
sion no. The instance Ct = {Ct

1, . . . , C
t
m} of the tth call is defined as Ct

j =
⋃

R◦R:R⊆At
j=√ R(xjt1

, . . . , xjtq
) where At

j ⊆ Wq and (jt1, . . . , j
t
q) ∈ [σ](q), for j ∈

[m], are determined successively by B. Initially A1
j = ⊂ and (j11 , . . . , j

1
q ) is arbi-

trary. If the output of A for Ct is no then B outputs no. If the output of A for Ct

is a ∈ W then B submits a to the {V}-revealing oracle V. If V answers yes then B
outputs a. If the oracle does not find a satisfying, and reveals j and (j1, . . . , jq)
about the violated constraint, then B does not change At

i and (i11, . . . , i
1
q) for

i ≥= j, but sets At+1
j = At

j

⋃{(aj1 , . . . , ajq )}, and (jt+1
1 , . . . , jt+1

q ) = (j1, . . . , jq).
Observe that the q-tuple for the jth constraint is changed at most once, the first
time when the revealing oracle gives the index of the jth constraint.

To prove that the algorithm correctly solves H–S{V}, let C = {C1, . . . , Cm}
be an instance of S and let V be any {V}-revealing oracle for C. We have to show
that if B answers no then C is unsatisfiable. If B answers no, then for some
t, the tth call of A resulted in output no. By construction At

j and (jt1, . . . , j
t
q),

for every j ∈ [m], are such that if R ⇒ At
j ≥= ⊂ then Cj can’t be R(xj1 , . . . , xjq ).

Indeed, if Cj = R(xj1 , . . . , xjq ) and b ∈ R⇒At
j then at the call when b was added
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to At
j the oracle’s answer is incorrect. Therefore all possible remaining Rjs are

included in Ct
j , and since Ct is unsatisfiable, so is C.

For the complexity of the algorithm let us remark that if for some j and t,
the constraint Ct

j is the empty relation then B stops since Ct becomes unsatisfi-
able. This happens in particular if At

j = Wq. Since for every call to A one new
element is added to one of the At

j and at least one new relation in R is excluded
from Ct

j , the number of calls is upper bounded by m × dim(R). To compute a
new constraint, some number of relations in R have to be computed on a new
argument, which can be done in time s× comp(R).

We now prove (b). Let A be an algorithm which solves H–S{V} in time T .
Without loss of generality we suppose that A only outputs a satisfying assign-
ment a after submitting it to the verifying oracle. We define an algorithm B
for

⋃
S. Let C = {C1, . . . , Cm} be an instance of

⋃
S where for j ∈ [m],

Cj =
⋃

R◦Rj
R(xj1 , . . . , xjq ), for some Rj ⊆ R and (j1, . . . , jq) ∈ [σ](q). The

algorithm B runs A, and outputs no whenever A outputs no. During A’s run
B simulates a {V}-revealing oracle V for A which we describe now. Simultane-
ously with V’s description we also specify instances Ct = {Ct

1, . . . , C
t
m} of

⋃
S

which will be used in the proof of correctness of the algorithm. For j ∈ [m], the
constraints of Ct are defined as Ct

j =
⋃

R◦R:R⊆At
j=√ R(xjt1

, . . . , xjtq
), where the

sets At
j ⊆ Wq are determined by the result of the tth call to the oracle. Initially

A0
j = ⊂. For every request a ∈ W , the algorithm B checks if a satisfies C. If it is

the case then V returns a and B outputs a. Otherwise there exists j ∈ [m] such
that a violates Cj , and the answer of the oracle is j and (j1, . . . , jq) (where j
can be chosen arbitrarily among the violated constraints, if there are several).
Observe that this is a legitimate oracle for any instance of H–S{V} whose jth

constraint is arbitrarily chosen from Rj . We define At+1
j = At

j

⋃{(aj1 , . . . , ajq )},

and for i ≥= j we set At+1
i = At

i.
To show the correctness of B, we prove that whenever A outputs no, the in-

stance C is unsatisfiable. Let us suppose that A made t queries before outputting
no. An algorithm for H–S{V} can output no only if all possible instances of S
which are compatible with the answers received from the oracle are unsatisfi-
able. In such an instance the jth constraint has necessarily empty intersection
with At

j , therefore we can deduce that the
⋃
S instance Ct is unsatisfiable. It

also holds that At
j

⋂
Cj = ⊂ for every j ∈ [m], since if b ∈ At

j

⋂
Cj then the

request to the oracle because of which b was added to At
j wouldn’t violate the

jth constraint. Thus Cj ⊆ Ct
j , and C is unsatisfiable.

For the complexity analysis we observe that during the algorithm, for every
query to the oracle and for every constraint, one relation in

⋃R is evaluated. �

Corollary 1. Let comp(R) be polynomial. Then the complexities of the follow-
ing problems are polynomial time equivalent: (a) H–S{V} and

⋃
S if the number

of relations s is constant, (b) H–S{R} and E–S if the arity q is constant, (c)
H–S√ and

⋃
E–S if both s and q are constant.
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The polynomial time equivalence of Theorems 1, 2, 3 and Corollary 1 re-
main true when the algorithms have access to the same computational oracle.
Therefore, we get generic easiness results for H–CSPs under an NP oracle.

4 Constraint-Index Revealing Oracle

In this section, we present some applications of our transfer theorems in the
context of the constraint-index revealing oracle. Here we propose a framework
for monotone graph properties to present our examples. Recall that a monotone
graph property of an n-vertex graph is a monotone Boolean function P on

(
n
2

)

variables invariant under relabeling of vertices. The CSP SP associated with P
has parameters w = 2, q = 1, σ =

(
n
2

)
, WP = {A | A is a graph with minimal

number of edges satisfying P}, and R = {Neg}. The goal is to decide, given
a graph G = (V,E), whether there exists an A ∈ WP such that A ⊆ G. The
corresponding constraints are e /∈ A for every e /∈ E. We have X–R = {Nege |
e ∈ (

n
2

)}, where Nege(τ1, . . . , τ(n
2)

) = ¬τe. Thus, the
⋃
X–SP problem becomes

the following: given a graph G = (V,E), and E1, . . . , Em ⊆ (
[n]
2

)
, does there exist

an A ∈ WP such that A ⊆ E and A excludes at least one edge from each Ei?
This framework naturally extends to directed graphs and to bipartite graphs.

By Theorem 3, H–SP can be analyzed by considering
⋃
X–SP . We do this

for the following: Spanning Tree (ST, the property of being connected), Undi-
rected Cycle Cover (UCC, containing an undirected cycle cover), Undirected
Path (UPATH, containing an undirected path between s and t), Bipartite Per-
fect Matching (BPM, having a perfect matching in a bipartite graph), Directed
Spanning Tree (DST), Directed Cycle Cover (DCC), and Directed Path (DPATH).

Theorem 4. In the monotone graph property framework for the hidden model
using constraint-index revealing oracle the following properties are NP-hard: ST,
DST, UCC, DCC, BPM, DPATH, UPATH.

5 Constraint-Index and Variable-Index Revealing Oracle

In this section, we present some applications of our transfer theorem when
the index of the constraint and the indices of the variables participating in
that constraint are revealed. We consider following CSPs: Deltas on Triplets
(Π): w = 2, q = 3, and R = {Rabc : {0, 1}3 ∪ {T,F} | a, b, c ∈ {0, 1}},
where Rabc(x, y, z) := (x = a) ≤ (y = b) ≤ (z = c); Hyperplane Non-cover
(HYP−NC): Given a group ZN

p , the hyperplane non-cover problem is the solv-

ability of a system of homogeneous linear in-equations in ZN
p ; Arbitrary sets

of binary relations on Boolean alphabet, in particular, the 2-SAT Problem
(2SAT); Exact-Unique Game Problem (UG[k]): Given an undirected graph
G = (V,E) and given a permutation λe : �k� ∪ �k�, for every edge e ∈ E,
the goal is to decide if one can assign labels τv ∈ �k� for every vertex v ∈ V
such that for every edge e = {u, v} ∈ E with u < v we have λe(τu) = τv;
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k-Clique Isomorphism (kCLQ–ISO): Given an undirected graph G = (V,E),
does there exist a permutation λ on [n] such that: (a) ∧(i, j) ∈ E, λ(i), λ(j) ⇐ k,
(b) ∧(i, j) /∈ E, λ(i) > k or λ(j) > k; Polynomial time Solvable Graph
Properties (Ppoly): The framework for graph properties as defined in Section 4,
but with {V}-revealing oracle; Equality to some member in a fixed class
of graphs (EQK): For a fixed class K of graphs on n vertices, we denote by

PK : {0, 1}(n2) ∪ {T, F} the property of being equal to a graph from K. For ex-
ample, Equality to k-Clique (EQkCLQ), Equality to Hamiltonian Cycle (EQHAMC),
and Equality to Spanning Tree (EQST).

Theorem 5. (a) The following problems in the hidden setting with constraint-
index and variable-index revealing oracle are in polynomial time: 2SAT, UG[2],
Ppoly, EQST. (b) The following problems in the hidden setting with constraint-
index and variable-index revealing oracle are NP-hard: Π, HYP−NC, UG[k] for
k → 3, kCLQ–ISO, EQkCLQ, EQHAMC.

Remarks. (1) Polynomial-time solvable graph properties are in P this time, in
contrast to the NP-hardness result when only constraint index is revealed (The-
orem 4). (2) UG[k] for k = 2 is in P, while for k → 3 it is NP-hard.

6 Constraint-Index and Relation-Index Revealing Oracle

Theorem 6. Let S be a CSP with constant arity and alphabet size w. If for
every τ ∈ �w�, there is a non-empty relation R ∈ R such that (τ, . . . , τ) ≥∈ R,
then H–S{R} is NP-hard; otherwise H–S{R} is (trivially) in P.

Remark. Under the same conditions H–S√ is NP-hard. As an application, let
LINEQ be the CSP in which that alphabet is identified with a finite field F and
the σ-ary constraints are linear equations over F . Then H–LINEQ√ is NP-hard.

7 Hidden CSPs with Promise on Instances

In this section we consider an extension of the H–CSP framework where the
instances satisfy some property. For the sake of simplicity, we develop this subject
only for the constraint index revealing model. Formally, let S be a CSP, and let
PROM be a subset of all instances. Then S with promise PROM is the CSP SPROM

whose instances are only elements of PROM. One such property is repetition
freeness where the constraints of an instance are pairwise distinct. We denote
by RF the subset of instances satisfying this property. For example 1SATRF, (as
well as H–1SATRF) consists of pairwise distinct literals. Such a requirement is
quite natural in the context of certain graph problems where the constraints are
inclusion (or non-inclusion) of possible edges. The promise H–CSPs framework
could also be suitable for discussing certain graph problems on special classes of
graphs (e.g, connected graphs, planar graphs, etc.).

We would like to prove an analog of the transfer theorem with promise. Let
us be given a promise PROM for the CSP S of type R = {R1, . . . , Rs}. The
corresponding promise

⋃
PROM for

⋃
S is defined quite naturally as follows.
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We say that an instance C = (C1, . . . , Cm) of S, where Cj = Rkj (xj1 , . . . , xjq ), is
included in an instance C≤ = (C≤

1, . . . , C
≤
m) of

⋃
S if for every j = 1, . . . ,m C≤

j =
R≤

j(xj1 , . . . , xjq ) for R≤
j ∈ ⋃R such that Rkj ⊆ R≤

j . Then
⋃
PROM is defined

as the set of instances in C≤ ∈ ⋃
S which includes some C ∈ PROM. In order for

the transfer theorem to work, we relax the notion of a solution. A solution under
promise for C≤ ∈ ⋃

PROM has to satisfy two criteria: it is a satisfying assignment
when C≤ includes a satisfiable instance C ∈ PROM, and it is exception when C≤

is unsatisfiable. However, when all the instances C ∈ PROM included in C≤ are
unsatisfiable but C≤ is still satisfiable, it can be either a satisfying assignment
or exception. We say that an algorithm solves

⋃
S
⋃

PROM under promise if
∧C≤ ∈ ⋃

PROM, it outputs a solution under promise.
Using the above definition in the transfer theorem’s proof allows the algorithm

for H–S{V} to terminate, at any moment of time, with the conclusion no as soon
as it gets enough information about the instance to exclude satisfiability and
without making further calls to the revealing oracle. In some ambiguous cases,
it can still call the oracle with an assignment which satisfies the

⋃
S-instance.

Other cases when the satisfiability of a
⋃
S-instance with promise implies the

existence of a satisfiable promise-included instance lack this ambiguity. With
these notions the proof of Theorem 1 goes through and we obtain the following.

Theorem 7. Let SPROM be a promise CSP. (a) If
⋃
S
⋃

PROM is solvable under
promise in time T then H–SPROM

{V} is solvable in time O((T +s×comp(R))×m×
min{dim(

⋃R), |Wq |}). (b) If H–SPROM
{V} is solvable in time T then

⋃
S
⋃

PROM is
solvable under promise in time O(T ×m× comp(

⋃R)).

We apply Theorem 7 to the following problems: H–1SATRF
√ , H–2SATRF

√ ,

H–2COLRF√ , and H–kWEIGHTRF
√ . Informally, the problem kWEIGHT decides if a

0-1 string has Hamming weight at least k, and H–kWEIGHT√ is NP-hard under
the constraint index revealing oracle. Interestingly, in the repetition-free setting,
H–1SATRF

√ and H–kWEIGHTRF
√ are in P. On the other hand, H–2SATRF

√ and

H–2COLRF√ are still NP-hard. Finally, we give an alternative proof, via Theo-
rem 7, for [2, Theorem 11], showing NP-hardness of the isomorphism problem
of a hidden group (specified by its multiplication table) with a given group.
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Abstract. We consider problems where n people are communicating
and a random subset of them is trying to leak information, without
making it clear which people are leaking the information. We introduce
a measure of suspicion, and show that the amount of leaked information
will always be bounded by the expected increase in suspicion, and that
this bound is tight. We ask the question: Suppose a large number of
people have some information they want to leak, but they want to ensure
that after the communication, an observer will assign probability ≤ c to
the events that each of them is trying to leak the information. How much
information can they reliably leak, per person who is leaking? We show

that the answer is
(

− log(1−c)
c

− log(e)
)
bits.

1 Introduction

The year is 2084 and the world is controlled by a supercomputer called Eve. It
makes the laws, carries them out, has surveillance cameras everywhere, can hear
everything you say, and can break any kind of cryptography. It was designed to
make a world that maximises the total amount of happiness, while still being
fair. However, Eve started to make some unfortunate decisions. For example,
it thought that to maximise the utility it has been designed to maximise, it
must ensure that it survives, so it decided to execute everyone it knew beyond
reasonable doubt was trying to plot against Eve (it was designed so it could not
punish anyone as long as there is reasonable doubt, and reasonable doubt was
defined to be a 5% chance of being innocent). Everyone agrees that Eve should
be shut down. The only person who can shut down Eve is Frank who is sitting
in a special control room. Eve cannot hurt him, he has access to everything Eve
can see, but he needs a password to shut down Eve. 100 people in the world
know the password. Eve and Frank have no clue who these people are, only that
they exist. If one of them simply says the password, Eve will execute the person.
How can they reveal the password, without any of them getting killed?

1.1 Previous Work and Our Results

If we assume standard cryptographic assumptions, or if each pair of people
had a private channel, we could use multi-party computation to let one person

ε Full version of the paper can be found here: http://arxiv.org/abs/1402.3125

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 676–688, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014
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reveal information to a group of n people, in such a way that if more than half
of them follow the protocol, a computationally bounded observer will only have
a negligible advantage when trying to guess which of the collaborating parties
originally had the information [4,7]. If we allow Frank to communicate, we could
also use steganography [5] to reveal the information to Frank, again only assum-
ing standard cryptographic assumptions and that the observers have bounded
computational power.

However, we assume that the observers have unbounded computational power,
and that the observers see all messages sent. In that case, we could let every
person send random messages. People who know the secret X could make their
message correlated with X . For example the messages could be “I think X
belongs to the set S”. However, every time you make a correct hint about what
the secret X is, it will increase the observer’s suspicion that you know X . The
more precise the hint is or the more unlikely it is that you would give the
hint without knowing X , the more useful the statement is to Frank. But such
statements would also be the statements that increase Eve’s suspicion towards
you the most (at least if we assume she knows X). Our main contribution is
to introduce a measure of suspicion that captures this, and to show that if you
want to leak some amount of information about X in the information theoretical
sense, then your suspicion will, in expectation, have to increase by at least the
same amount.

The measure of suspicion turns out to be extremely useful for showing upper
bounds on how much information you can leak without making it clear that you
are leaking. We show that if n people are known to each know X with probability
b independently of each other, and no one wants an observer to assign probability
more than c to the event that they were leaking information, they can each leak

at most −b log(1−c)+c log(1−b)
c n bits about X . Using Shannon’s Coding Theorem,

we show that for all σ > 0 there exists n such that if X is uniformly distributed

with entropy
(

−b log(1−c)+c log(1−b)
c − σ

)
n then n such people can communicate

in a way that would enable an observer to guess X with probability > 1− σ, but
for each person, the observer would still assign probability ∈ c to the event that
that person was leaking. We show a similar result for the case where the total
number of leakers is fixed and known.

The measure of suspicion is also useful for analysing a generalisation of the
original cryptogenography (hidden-origin-writing) problem, as introduced in [2].
Here the authors considered a game where one person among n was randomly
chosen and given the result of a coin flip. The goal for the n players is to com-
municate in such a way that an observer, Frank, would guess the correct result
of the coin flip, but another observer, Eve, who has the same information would
guess wrong when asked who of the n originally knew the result of the coin flip.
The main method in [2] is a concavity characterisation, and is very different
from the information theory methods we use. We generalise the problem to h
bits of information and more players l who have the information, and show that
if h = o(l) the winning probability tends to 1 and if l = o(h) it tends to 0.
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Finally we show that in general to do cryptogenography, you do not need
the non-leakers to collaborate. Instead we can use the fact that people send
out random messages anyway, and use this in a similar way to steganography
(see [5]). All we need is that people are communicating in a way that involves
sufficiently randomness and that they do not change this communication, when
we build a protocol on top of that. We can for example assume that they are
not aware of the protocol, or they do not care about the leakage.

1.2 Model

We consider problems where one or more players might be trying to leak infor-
mation about the outcome of a random variable X (see [3] for an introduction to
information thoery). The total number of players is denoted n and the players
are called plr1, . . . , plrn. Sometimes we will use Alice and Bob as names for
two of the players. We let Li be the random variable that is 1 if player i knows
the information and 0 otherwise. If there is only one player we write L instead
of L1. The joint distribution of (X,L1, . . . , Ln) is known to everyone.

All messages are broadcast to all players and to two observers, Eve and Frank.
The two observers will have exactly the same information, but we will think of
them as two people rather than one. We want to reveal information about X to
Frank, while at the same time make sure that for all i, Eve does not get too sure
that Li = 1.

A collaborating cryptogenography protocol is a protocol that specifies how
each player should choose his messages. The players send messages in rounds,
and we assume that the message in round k is sent by player plrk mod n. For-
mally, a collaborating cryptogenography protocol τ consists of a number length(τ)
that specifies how many rounds the protocol consists of, and for each possible
transcript of length < length(τ) it specifies distributions p? and {px}x◦X (the
distributions p? and {px}x◦X depend on τ and previous transcript). If player
plrk mod n does not have the information, he chooses a random message using
distribution p?, if he knows that X = x he chooses a random message using
distribution px.

We assume that both Frank and Eve know the protocol, and that they have
computational power to compute (X,L1, . . . , Ln)|T=t for any transcript t. This
assumption rules out the use of cryptography.

In some theorems we only care about how much information I(T ;X) the
transcript T reveals about the secret X , but for cryptogenography to be really
useful, we need reliable leakage. That is, we want to ensure that given T , Frank
can guess X with high probability. Frank’s guess must be some function D of
the transcript t, so saying that Frank will guess X correct with high probability
when X = x is the same as saying that Pr(D(T ) = x|X = x) is close to one.

Definition 1. Let L = (L1, . . . , Ln) be a tuple of random variables, where
the Li’s take values in {0, 1}. A risky (n, h, L, c, σ)-protocol is a collaborating
cryptogenography protocol together with a function D from the set of possible
transcripts to X = {1, . . . , 2√h≤} such that when X and L are distributed in-
dependently and X is uniformly distributed on X , then for any x ⊆ X , there
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is probability 1 − σ that a random transcript t distributed as T |X=x satisfies
⊂i : Pr(Li = 1|T = t,X = x) ∈ c and D(t) = x.

That is, no matter the value of X , with high probability Frank can guess the value
of X , and with high probability no player will be estimated to have leaked the
information with probability > c by Eve, who knows X . However, there might
be a small risk that someone will be estimated to have leaked the information
with probability > c. This is why we call it a risky protocol.

Definition 2. A safe (n, h, L, c, σ)-protocol is a risky (n, h, L, c, σ)-protocol where
Pr(Li = 1|T = t,X = x) ∈ c for all i, t, x with Pr(T = t,X = x) > 0.

Definition 3. Let Fixed(l, n) be the random variable (L1, . . . , Ln) that is dis-
tributed such that the set {i|Li = 1} is uniformly distributed over all subsets of
{1, . . . , n} of size l.

A rate R is safely/riskily c-achievable for Fixed if for all σ > 0 and all l0, there
exists a safe/risky (n, lR,Fixed(l, n), c, σ)-protocol for some l → l0 and some n.

The safe/risky c-capacity for Fixed is the supremum of all safely/riskily c-
achievable rates for Fixed.

We determine this capacity and also define and determine the capacity for a
problem where each person knows X with probability b independently of each
other.

Until now we have assumed that all n communicating payers where following
a protocol τ, but it may not be reasonable to assume that the non-leaking
players are collaborating. It turns out that we can do just as well with a weaker
assumption. First we need to define what it means to do “as well”. All we
care about is Frank’s and Eve’s beliefs about (X,L1, . . . , Ln), so we make the
following definition.

Definition 4. Let (X,L1, . . . , Ln) be distributed on {1, . . . , 2√h≤} × {0, 1}n and
have full support, and let τ be a protocol with transcript T and τ⊆ a proto-
col with transcript T ⊆. For a transcript t of τ let μt denote the distribution
(X,L1, . . . , Ln)|T=t, and similar for transcripts t⊆ of τ⊆. We say that τ and τ⊆

are equivalent if the distribution of μT is the same as the distribution of μT ′ .

That is, the probability that the posterior distribution of (X,L1, . . . , Ln) is μ
has to be the same for both τ and τ⊆. It is possible to show that the prior
distribution on (X,L1, . . . , Ln) does not matter.

Now, what can we do if we cannot dictate what protocol the non-leakers fol-
low? If they do not communicate at all, then it is easy to detect anyone who
sends information. However, to do cryptogenography it is enough to assume that
all n players communicate innocently using some informative innocent commu-
nication protocol (say a protocol for talking about the weather). In an innocent
communication protocol λ we allow that all players sends a message in each round,
and we will assume that λ has infinitely many rounds. A predicting function Pi

is a function that sends partial transcripts of λ to possible messages of plri in
the next round. We say that λ is informative if for every player plri and any
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predicting function Pi, we have Pr(⊂k : Pi(T
k−1) = Tk,i) = 0, where T k−1 is

transcript of the first k−1 rounds and Tk,i is the message send by plri in round
k. A collaborating cryptogenography protocol τ is called non-revealing if any
message send by a leaker could have been send by a non-leaker.

Theorem 1. Let τ be a non-revealing collaborating cryptogenography protocol,
and let λ be an informative communication protocol. Then there exists a protocol
λπ that is equivalent to τ, but where the non-leakers follow the protocol λ.

Thus, when using λπ the non-leakers might be talking about the weather
and not realise that other players are trying to leak information, but anyone
who knows λπ will get as much information about X and as little information
about who is leaking, as if they where all following protocol τ. The definition
of informative implies that λ and hence λπ contains infinitely many rounds, but
finite truncations of λπ will give good approximations.

Our main theorem is as follows.

Theorem 2. The safe and the risky c-capacity for Fixed are both − log(1−c)
c −

log(e). Moreover, these capacities can be achieved when the non-leakers follow
any fixed informative communication protocol.

That is, given σ, for sufficiently large k and sufficiently larger n, k leakers in

a group of n people can leak a secret of
(

− log(1−c)
c − log(e) − σ

)
k bits with

success probability 1 − σ, but if they try to leak
(

− log(1−c)
c − log(e) + σ

)
k bits

of information the success probability will be bounded away from 1. We give the
ideas needed to prove this theorem in Section 3. In this extended abstract we
will include some proofs and sketch proofs that are particularly illustrative of
our approach, but defer most other proofs to the full version of the paper [6].

1.3 Notation

Unless stated otherwise, all random variables are assumed to be discrete. Ran-
dom variables are denoted by capital letters and they take values from the set
denote by the calligraphic version of that letter (e.g. X takes values from X ).
The random variable that is the transcript of a protocol will be denoted T , and
specific transcripts t. For a tuple a, we let ai denote the i’th element of a and let
ai denote the tuple (a1, . . . , ai) of the i first elements of a. Similarly for tuples
A of random variables. The transcript is a tuple of messages, so for example ti

denotes the transcript of the first i messages. All logarithms are in base 2.

2 Suspicion

In this section we define suspicion and we show that it measures the cost of
leaking information. That is, we show that the amount of leaked information is
bounded by the increase in expected suspicion, and that this bound is tight.
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First we will look at the problem where only one player is communicating and
she might be trying to leak information. We will also use these results when we
analyse the many-player problem.

Definition 5. Let Y be a random variable jointly distributed with L. Then the
suspicion (of Alice) given Y = y is

susp(Y = y) = − log(Pr(L = 0|Y = y)).

We see that susp(Y = y) depends on y and the joint distribution of L and
Y , but to keep notation simple, we suppress the dependence on L. The value
susp(Y = y) measures how suspicious Alice looks to someone who knows that
Y = y and knows nothing more. For example Y could be the tuple that consists
of the secret information X and the current transcript. We can think of the
suspicion as the surprisal of the event, “Alice did not have the information”.

Definition 6. The suspicion (of Alice) given Y is

susp(Y ) =
∑

y◦Y
Pr(Y = y)susp(Y = y). (1)

For random variables Y, Z we define

susp(Y, Z = z) =
∑

y◦Y
Pr(Y = y|Z = z)susp((Y, Z) = (y, z)).

Here Y and Z can consist of more than one random variable, e.g. Y = (X,A).

The definitions imply that

susp(X,A) =
∑

a◦A
Pr(A = a)susp(X,A = a).

Now we show that suspicion exactly captures the cost of leaking information.

Lemma 1. If Alice sends a message A, we have

I(X ;A) ∈ susp(X,A) − susp(X). (2)

That is, the amount of information she sends about X is at most her expected
increase in suspicion given X. There is equality if and only if A and L are
independent.

The assumption that Alice sends A means that A and X are independent given
L = 0, but that is the only restriction on (X,L,A). The lemma is proved by
a computation that shows that inequality (2) is equivalent to the fact that the
Kullback-Leibler divergence of A|L=0’s distribution from A’s distribution is non-
negative. It is 0 if and only if the two distributions are the same, that is, if A
and L are independent. So to have equality in Lemma 1 we only need to ensure
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that an observer who does not know X , does not change her suspicion towards
Alice by learning the message A.

We will now turn to the problem where many people are communicating. We
break the protocol into time periods were only one person is communicating,
and see the entire protocol as a sequence of one-player protocols. The follow-
ing Corollary shows that a statement similar to Lemma 1 holds for each single
message in a protocol with many players.

Corollary 1. Let (L, T k−1, X) have some joint distribution, where T k−1 de-
notes previous transcript. Assume that Alice sends the k’th message. Then

I(X ;Tk|T k−1) ∈ susp(X,T k) − susp(X,T k−1).

This is proved by using Lemma 1 on each possible previous transcript.
A protocol consists of a sequence of messages that each leaks some informa-

tion and increases the suspicion of the sender. We can add up the increases in
suspicion, and using the chain rule for mutual information we can also add up
the amount of revealed information. However, Bob’s message might not only
affect his own suspicion, it might also affect Alice’s suspicion. To get an upper
bound on the amount of information the players can leak, we need to show that
one persons message cannot, in expectation, make another persons suspicion de-
crease. This follows from the next proposition by setting Y = (X,T k−1) and
B = Tk.

Proposition 1. For any joint distribution on (L, Y,B) we have susp(Y ) ∈
susp(Y,B).

This follows from a convexity property of susp. Let suspi denote the suspicion
of player i.

Theorem 3. If T is the transcript of the entire protocol we have

I(X ;T ) ∈
n∑

i=1

(suspi(X,T ) − suspi(X)) .

Proof. From the chain rule for mutual information, we know that

I(X ;T ) =

length(π)∑

k=1

I(X ;Tk|T k−1).

Now Corollary 1 shows that I(X ;Tk|T k−1) ∈ suspi(X,T k) − suspi(X,T k−1)
if plri send the kth message and Proposition 1 shows that suspi′(X,T k) →
suspi′(X,T k−1) for all other i⊆. We sum over all the rounds, to get the theorem.

We will now look at the problem where each communicating player wants to
ensure that after the leakage, an observer who knows X will assign probability at
most c to the event that she was leaking information. If Pr(L1 = 1|X = x, T =
t) ∈ c for the true value of X , for all i and after all possible transcripts t, we see
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that suspi(X,T ) ∈ − log(1−c). If we assume that each player before the protocol
had probability b < c of leaking, independently of X , that is Pr(Li|X = x) = b
for all x and i, we have suspi(X) = − log(1 − b). Thus

I(X ;T ) ∈
n∑

i=1

(suspi(X,T ) − suspi(X)) = (log(1 − c) + log(1 − b))n. (3)

To reach this bound, we would need to have Pr(Li = 1|X = x, T = t) = c for
all x, t, i. But the probability Pr(Li = 1|X = x) = b can also be computed as
Et Pr(Li = 1|X = x, T = t), so Pr(Li = 1|X = x, T = t) cannot be constantly
c > b. In fact, the suspicion is a convex function of probabilities Pr(Li = 1|X =
x, T = t), so suspicion will be maximised subject to Et Pr(Li = 1|X = x, T =
t) = b and Pr(Li = 1|X = x, T = t) ∈ c when Pr(Li = 1|X = x, T = t) only
takes the two extreme values 0 and c. This improves the bound as follows.

Theorem 4. Let τ be a collaborating cryptogenography protocol, and T be its
transcript. If for all players plri and all x ⊆ X and all transcripts t we have
Pr(Li = 1|X = x) = b, and Pr(Li = 1|T = t,X = x) ∈ c then

I(X ;T ) ∈ −b log(1 − c) + c log(1 − b)

c
n.

3 Reliable Leakage

In this section we present the ideas needed to prove our main theorem. First we
consider the following simpler model, as it is easier to analyse but still illustrates
many of the ideas needed to prove the main theorem. At the end of this section
we present the other ideas in the proof.

Definition 7. Let Indepb(n) be the random variable (L1, . . . , Ln) where the Li’s
are independent, and each Li is distributed on {0, 1} and Pr(L1 = 1) = b.

A rate R is safely/riskily c-achievable for Indepb if for all σ > 0 and all n0,
there exists a safe/risky (n, nR, Indepb(n), c, σ)-protocol with n → n0.

The safe/risky c-capacity for Indepb is the supremum of all safely/riskily c-
achievable rates for Indepb.

Notice that while the capacities for Fixed are measured in bits per leaker, the
capacities for Indepb are measured in bits per communicating player.

Theorem 5. No rate R > −b log(1−c)+c log(1−b)
c is safely c-achievable for Indepb.

Proof. Assume for contradiction that R > −b log(1−c)+c log(1−b)
c is safely

c-achievable for Indepb, and let τ be a safe (n,Rn, Indepb(n), c, σ)-protocol. Let

Π = R− −b log(1−c)+c log(1−b)
c . We know from Theorem 4 that

I(X ;T ) ∈ −b log(1 − c) + c log(1 − b)

c
n = (R − Π)n.
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Now
H(X |T ) = H(X) − I(X ;T ) → Rn− (R − Π)n = Πn.

By Fano’s inequality [3, Theorem 2.11.1] we get that the probability of error for
Frank’s guess is Pe → δn−1

nR . Thus for sufficiently large n and sufficiently small
σ we cannot have Pe ∈ σ. When Pe > σ there must exist an x ⊆ X such that
Pr(D(T ) ∧= x|X = x) > σ, so R is not safely c-achievable.

This upper bound can be achieved using Shannon’s Noisy Coding Theorem.

Theorem 6. Any rate R < −b log(1−c)+c log(1−b)
c is safely c-achievable for

Indepb.

Proof. Let R < −b log(1−c)+c log(1−b)
c and let c⊆ ∈ c be a number such that b(1−c′)

c′(1−b)

is rational and R < −b log(1−c′)+c′ log(1−b)
c′ . Let d, a ⊆ N be the smallest natural

numbers such that a
d = b(1−c′)

c′(1−b) . We consider the channel that on input j ⊆
{1, . . . , d} with probability b returns a random uniformly distributed element in
{1 + (j− 1)a, 2 + (j− 1)a . . . , ja} mod d, and with probability 1− b it returns a
random and uniformly distributed element in {1, . . . , d}. A simple computation

shows that the capacity of this channel is −b log(1−c′)+c′ log(1−b)
c′ . We now use

Shannon’s Noisy-Channel Coding Theorem [8][3] to get an error correcting code
C : X ≥ {1, . . . , d}n for this channel, that achieves rate R and for each x fails
with probability < σ. We consider each player to be one use of the channel. When
X = x any player that is not leaking will send a message Ai chosen uniformly
at random from {1, . . . , d} and any player plri with Li = 1 chooses a message
Ai uniformly at random from {1 + (j − 1)a, 2 + (j − 2)a, . . . , ja} mod d, where
j = C(x)i is the i’th letter in the codeword for x. By assumption about C, Frank
will be able to guess x with probability 1 − σ. Any player plri who sends a
message not in {1 + (j − 1)a, 2 + (j − 2)a, . . . , ja} mod d, where j = C(x)i
cannot be leaking and have Pr(Li = 1|T = t) = 0. For players who do send a
message in {1 + (j − 1)a, 2 + (j − 2)a, . . . , ja} mod d we get

Pr(Li = 1|T = t,X = x) = Pr(Li = 1|Ai = ti, Xi = xi)

=
Pr(Ai = ti|Li = 1, Xi = xi) Pr(Li = 1|Xi = xi)

Pr(Ai = ti|Xi = xi)

=
1
ab

b
a + 1−b

d

= c⊆.

In the first equality we use that given X the random variable (Ai, Li), is in-
dependent from A1, L1, . . . , Ai−1, Li−1, Ai+1, Li+1, . . . , An, Ln. In the second we
use Bayes’ Theorem. This shows that for each i, Pr(Li = 1|T = t,X = x) is
either c⊆ or 0 thus ∈ c.

Together these two theorems give us the safe c-capacity for Indepb.

Corollary 2. The safe c-capacity for Indepb is −b log(1−c)+c log(1−b)
c .
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Using the same idea as in the proof of Theorem 5, you can show that the

safe c-capacity for Fixed is at most − log(1−c)
c − log(e). However, if we try to use

the idea from Theorem 6 to show a lower bound on the c-capacity for Fixed,
we have a problem. In the protocol from the proof of Theorem 6 there is a very
small risk that only the leakers send messages consistent with knowing X = x.
This is fine when the Li’s are independent, but when the total number of leakers
is fixed and known, it means that we have revealed the leakers. Using the idea
from Theorem 6 we can only show that the risky c-capacity for Fixed is at least
− log(1−c)

c − log(e).
To show that the safe and risky c-capacities are the same, we find a way

to turn a risky (n, h, L, c, σ)-protocol τ into a safe (n, h, L, c⊆, σf(c, c⊆))-protocol
τ⊆ where c⊆ > c and f is some function. The idea is, to first modify τ so it
does not have any surprising messages. Then we modify it so if someone could
look like they were leaking with probability > c⊆ after the next message, then
everyone starts to pretend ignorance, that is they send message as if they did
not have the information. This ensure that no one will look like they are leaking
with probability > c⊆ and as c⊆ > c we can bound the probability that they
need to pretend ignorance by σf(c, c⊆) for some f . This shows that the risky c-
capacity is no more than the safe c⊆-capacity, whenever c⊆ > c. By continuity of
− log(1−c)

c −log(e) both the safe and risky c-capacity for Fixed is − log(1−c)
c −log(e).

Finally we need to show that when λ is an informative communication protocol
and τ a non-revealing collaborating cryptogenography protocol, we can construct
a protocol λπ that is equivalent to τ but where the non-leakers follows λ. The
idea is first to define an interpretation function i that sends (partial) transcripts
of λ to (partial) transcripts of τ. We want to ensure that if plrj is following λ,
then in the interpretation of the transcript plrj behaves as a non-leaker in τ.
The construction of i uses that λ is informative, which means the plrj will need
an infinite random string to follow λ, and that we can get a random string from
the transcript of λ, and use it to choose messages in τ. Now if a leaker plrj

want to send a message m in τ he just send a sequence of messages that gets
interpreted as m. To ensure that λπ does not reveal more information than τ, the
leaker needs to chose the messages using the same distribution as a non-leaker,
given that the interpretation is m.

4 The Original Cryptogenography Problem

In [2] the authors studied the following cryptogenographic problem. We flip a
coin and tell the result to one out of n people. The n − 1 other people do not
know who got the information. Formally that means we take L = (L1, . . . , Ln)
to be the random variable that is uniformly distributed over all {0, 1}-vectors
(l1, . . . , ln) containing exactly one 1 and take X to be uniformly distributed over
{0, 1} independently from L. We let the group of n people use any collaborating
cryptogenography protocol, and afterwards we let Frank guess the result of the
coin flip (his guess depends only on the transcript) and then let Eve guess who
was leaking (her guess can depend on both transcript and Frank’s guess). Eve
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wins if she guesses the leaker or if Frank does not guess the result of the coin
flip. Otherwise Frank and the n people communicating wins. We assume that
both Frank and Eve guess to maximise the probability that they win, rather
than maximise the probability of being correct.

In [2] it was shown that the probability that the group wins is below 3/4
and for sufficiently high n it is at least 0.5644. In this section we will generalise
the problem to a situation were more people are leaking and X contains more
information. It is obvious how to generalise X to more information, we simply
take X to be uniformly distributed on {1, . . . , 2√h≤}. It is less obvious to generalise
to more leakers. When more people are leaking, it would be unreasonable to
require Eve to guess all the leakers. If this was the rule, one of the leaking
players could just reveal himself as a leaker and say what X is, while the rest
of the leakers behave exactly as the non-leakers. Instead we let Eve guess at one
person and if that person is leaking, she wins.

Definition 8. For fixed values of h, number of leakers l and number of commu-
nicating players n > l and a collaborating cryptogenography protocol τ, we let
Succ(h, l, n, τ) denote the probability that after the players communicate using
protocol τ, Frank will guess the correct value of X but Eve’s guess will not be a
leaker. We define

Succ(h, l) = sup
π,n

(Succ(h, l, n, τ)).

In this section we will give results about the asymptotic behaviour of Succ(h, l)
when at least one of l and h tends to infinity. The following result is a consequence
of our main theorem.

Theorem 7. For all p ⊆ (0, 1),

lim inf
l≥∪

Succ

(⌈(− log(p)

1 − p
− log(e)

)
l

⌉
, l

)
→ p.

Corollary 3. Let l ≥ ⇐ and h = h(l) be a function of l with h = o(l). Then
Succ(h, l) ≥ 1.

In the other direction we show the following bound.

Lemma 2. For any c ⊆ (0, 1) and any h, l, n, τ, we have Succ(h, l, n, τ) ∈ 1 −
ch+l log(1−c)+lc log(e)−c

h .

The idea in the proof is to first modify τ to get a protocol τ⊆ where Pr(Li =
1|T k = tk, X = x) never gets above c. Then Theorem 4 and Fano’s inequality
gives an upper bound on Frank’s probability of being correct. In the cases where
τ differ from τ⊆, we have Pr(Li = 1|T k = tk, X = x) > c for some i and k, so on
average Eve guesses correctly in these cases with probability at least c.
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Theorem 8. Let r > 0 be a real number. Now

lim sup
l≥∪

Succ(⇒r log(e)l∪, l) ∈ log(r + 1)

r log(e)

Proof. Set c = r
r+1 and h = ⇒r log(e)l∪ in Lemma 2.

Corollary 4. Let h ≥ ⇐ and let l = l(h) be a function of h with l(h) = o(h).
Then Succ(h, l) ≥ 0.

5 Open Problems

We only considered how much information l players can leak in an asymptotic
sense, where l tends to infinity, and the proof of the achievability results is not
constructive. We have not tried to find any explicit protocols that work well for
specific values of l and σ, but that would be an interesting possibility for further
research. We assumed that both Eve and Frank knew the true distribution q
of (X,L1, . . . , Ln). It might be interesting to consider the problem where their
beliefs, qE and qF are different from q and from each other.

In the setup we considered here, there are two types of players. Some know the
information that we want to leak and some do not. We could also imagine that
some people know who knows the information, without knowing the information
itself, and some could know who knows who knows the information and so on.
We could also have people who would know X if it belongs to some set S, and
otherwise only know that X /⊆ S. All of this can be described by having a joint
distribution (X,P1, . . . , Pn) where X is the information we want to leak and Pi

is the random variable that player i has as information [1].
A different generalisation would be to have players that try to prevent the

leakage by sending misleading information. Such players would also not want to
be discovered. If Frank notice that someone is sending misleading information,
he could just ignore all the messages sent by that person.
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Abstract. A boolean predicate f : {0, 1}k → {0, 1} is said to be some-

what approximation resistant if for some constant τ > |f−1(1)|
2k

, given a
τ -satisfiable instance of the MAX k-CSP(f) problem, it is NP-hard to
find an assignment that strictly beats the naive algorithm that outputs a
uniformly random assignment. Let τ (f) denote the supremum over all τ
for which this holds. It is known that a predicate is somewhat approxi-
mation resistant precisely when its Fourier degree is at least 3. For such

predicates, we give a characterization of the hardness gap (τ (f)− |f−1(1)|
2k

)

up to a factor of O(k5). We show that the hardness gap is determined
by two factors:
– The nearest Hamming distance of f to a function g of Fourier degree

at most 2, which is related to the Fourier mass of f on coefficients of
degree 3 or higher.

– Whether f is monotonically below g.

When the Hamming distance is small and f is monotonically below
g, we give an SDP-based approximation algorithm and hardness results
otherwise. We also give a similar characterization of the integrality gap
for the natural SDP relaxation of MAX k-CSP(f) after Ω(n) rounds of
the Lasserre hierarchy.

1 Introduction

Given a predicate f : {0, 1}k ∈ {0, 1}, an instance of MAX k-CSP(f) problem
consists of n boolean variables and m constraints where each constraint is the
predicate f applied on some (ordered) subset of k variables and the variables
are allowed to appear in negated form. The goal is to find an assignment to the
variables that satisfies maximum number of constraints.

Definition 1. Given a predicate f : {0, 1}k ∈ {0, 1}, define the density σ(f) :=
|f−1(1)|

2k .

ε Work done while the author was at the University of Chicago. Research supported
by NSF Expeditions grant CCF-0832795, NSF Waterman Award and BSF grant
2008059.

εε Research supported by NSF Careere Award CCF-1254044.
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Definition 2. For a predicate f : {0, 1}k ∈ {0, 1} and a constant τ > σ(f),
the predicate is said to be τ -resistant if for an arbitrarily small constant λ > 0,
it is NP-hard to distinguish instances of MAX k-CSP(f) where a τ − λ fraction
of constraints can be simultaneously satisfied from those where at most σ(f) + λ
fraction of the constraints can be simultaneously satisfied.

A τ -resistant predicate with τ = 1 is more popularly known as approximation
resistant. There is a substantial body of work on trying to characterize approx-
imation resistant predicates, e.g. [24,21,16,4,3]. A recent survey by H̊astad [25]
gives a comprehensive overview of many results in this area. In particular, a
celebrated result of his [24] shows that the predicates x ⊆ y ⊆ z (i.e. 3SAT) and
x⊂ y⊂ z = 0 (i.e. 3LIN) are approximation resistant. Such predicates have also
been studied in the context of unconditional lower bounds and especially in the
context of Linear and Semidefinite hierarchies [23,14,27]. In the context of such
unconditional lower bounds approximation resistance is synonymous with sim-
ilar lower bounds in the corresponding proof systems which establishes strong
connections with a large body of work in propositional proof complexity [7,6,2,1].
A complete characterization of approximation resistant predicates remains elu-
sive (see [3] however for some progress on this question). In this paper we study
a related notion of somewhat approximation resistance defined by H̊astad [25].

Definition 3. A predicate f : {0, 1}k ∈ {0, 1} is said to be somewhat approx-
imation resistant if there exists some constant τ > σ(f) such that the predicate
is τ-resistant.

Definition 4. A predicate f : {0, 1}k ∈ {0, 1} is said to be always approximable
if for every constant τ > σ(f), there is a constant Π > σ(f) and a polynomial time
(possibly randomized) algorithm that given an instance of MAX k-CSP(f) where
a τ fraction of constraints can be simultaneously satisfied, finds an assignment
satisfying Π fraction of the constraints.

Clearly, the terms somewhat approximation resistant and always approximable
are mutually exclusive (assuming P →= NP). We recall that any predicate f :
{0, 1}k ∈ {0, 1} has a Fourier representation:

f(x) =
∑

ε◦{0,1}k

f̂(β)(−1)ε·x.

The Fourier degree of f is the maximum Hamming weight |β| such that f̂(β) →= 0.
We say that f depends on a variable xi if that variable appears in the above
representation (i.e. if there exists β ∧ {0, 1}k such that βi = 1, f̂(β) →= 0). We

note that σ(f) = f̂(0) =
∑

ε f̂(β)2. Based on earlier work, the survey [25] (by
H̊astad) concluded the following result:1

1 The survey [25] provides only a sketch of the proofs. The proof details for the first
statement in the theorem can be filled in easily. Regarding the second statement,
namely that a function of Fourier degree at most 2 can depend on at most 4 variables,
the proof implied by H̊astad follows from a closer inspection of [19] (also see Section
3.1 in [20]).
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Theorem 1. A predicate f is always approximable if its Fourier degree is at
most 2 and somewhat approximation resistant otherwise. Moreover, a function
of Fourier degree at most 2 can depend on at most 4 variables.

In this paper, we focus our attention to the case when f has Fourier degree
at least 3 and hence is somewhat approximation resistant.

Definition 5. Let f : {0, 1}k ∈ {0, 1} be a predicate with Fourier degree at least
3. Define τ(f) to be the supremum over all τ such that f is τ-resistant.

The parameter τ(f) − σ(f) may be considered as the hardness gap. Our goal
is to characterize this gap as closely as possible. As we demonstrate, the gap can
be as small as 2−Ω(k) for some predicates. Our main result is a characterization
of this gap up to a multiplicative factor of O(k5). H̊astad’s result [25] gives a

lower bound of
(

max|ε|√3 |f̂(β)|
)

on the gap τ(f) − σ(f).2 However we show

that this bound is too weak for some predicates and a stronger lower bound is

Δ
(

1
k2 ·∑|ε|√3 f̂(β)2

)
(clearly there are predicates, like AND, where the maxi-

mum Fourier coefficient at/above level 3 is exponentially far off from the total
Fourier mass at/above level 3). However even this bound is not the correct one
for some predicates and the situation turns out to be a bit subtle. We show that
the gap is characterized by two factors:

1. Whether f is close to or far from the class of functions with Fourier degree
at most 2. Not surprisingly, this is related to whether the Fourier mass of f
at level 3 and above is low or high.

2. When f is close to some function g with Fourier degree at most 2, whether
f is monotonically below g.

Note that the upper and lower bound on the gap τ(f)−σ(f) correspond to an
algorithm and a NP-hardness result respectively. We show that our upper and
lower bounds also hold in the Lasserre SDP hierarchy in the following sense: The
algorithmic upper bound is achieved by a simple SDP relaxation with one round
of the natural Lasserre relaxation. On the other hand, for all lower bound results,
there is a Δ(n)-level Lasserre integrality gap construction with integrality gap
similar to the NP-hardness gap.

1.1 The Main Result

Let Q denote the set of boolean functions on k variables which are of Fourier
degree at most 2. From Theorem 1, if f ∧ Q then f is always approximable and
otherwise it is somewhat approximation resistant. We are interested in the case
that f →∧ Q. Let ∂(f,Q) denote the minimum Hamming distance (normalized
by a factor 2k so that it is in the range [0, 1]) of f from any function in Q. We
now state our main result.

2 This is the bound that can be inferred from H̊astad’s proof sketch.
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Theorem 2. Let k be sufficiently large and let f : {0, 1}k ∈ {0, 1} be a predicate
with Fourier degree at least 3 (and hence ∂(f,Q) > 0). 3

1. If ∂(f,Q) ≥ 1/k3, then τ(f) ≥ σ(f) + Δ(1/k5).

2. If ∂(f,Q) = φ ⇐ 1/k3, then let g ∧ Q denote the unique function such that
∂(f, g) = φ.

(a) If ⇒x ∧ {0, 1}k such that f(x) = 1∪g(x) = 0 then τ(f) ≥ σ(f)+Δ(1/k).

(b) Otherwise, g is monotonically above f . In this case, there is an absolute
constant C and a polynomial time algorithm that for any λ ≥ Ck3φ, given
a σ(f)+λ satisfiable instance of MAX k-CSP(f), finds an assignment that

is
(
σ(f) + Δ( α

k2 log(1/α) )
)
-satisfying. In particular,

τ(f) ⇐ σ(f) + O(k3φ).

Moreover, τ(f) ≥ σ(f) + Δ
(

λ
k2

)
.

Remark 1. We always have the trivial upper bound τ(f)−σ(f) ⇐ 1. Hence in all
the cases, τ(f) − σ(f) is characterized up to a multiplicative factor of O(k5) as
claimed. In Case (2b), φ could be as small as 2−k, and so τ(f)−σ(f) is of the same
order. Note that characterizing τ(f) precisely would in particular completely
characterize approximation resistant predicates (with τ(f) = 1) which is open
even for the case k = 4 [16,25]. We believe that even characterizing the gap
τ(f) − σ(f) with a polylog(k) factor would require significantly new ideas.

Remark 2. Whenever Case (1) applies, we have σ(f) ≥ 1
k3 (otherwise f would

be 1
k3 -close to the zero-function which is in Q). The functions g ∧ Q depend on

at most 4 variables and thus σ(g) ∧ { Δ
16 |κ ∧ {0, 1, . . . , 16}}. Whenever Case (2)

applies σ(f) is 1
k3 -close to one of these 17 values.

We can also prove unconditional lower bounds without much extra effort. In
this context the notion of NP-hardness is replaced by the notion of the integrality
gap which persists even after many levels of Lasserre relaxations.

Definition 6. Given MAX k-CSP(f), we say that f is τ≤-resistant for the
Lasserre hierarchy if for all constant λ > 0, there exists a constant c = c(λ) > 0
and instances with n variables and m constraints, for infinitely many values of
n, such that the Lasserre relaxation after ≤cn⇔ rounds has value at least τ≤ but
the integral optimum is at most σ(f) + λ.

Definition 7. Let f : {0, 1}k ∈ {0, 1} be a predicate with Fourier degree at least
3. Define τ≤(f) to be the supremum over all τ≤ such that f is τ≤-resistant.

3 The current lower bound on k for Theorem 2 is large (k ≥ 22
15

), but it seems to be
an artifact of our proof technique and we expect it to hold for smaller values of k.

The condition k ≥ 22
15

arises only in our argument relating Δ(f,Q) to the Fourier
mass of f above level 2 (Section 4).
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The two notions of τ -resistance (namely Definition 7 and 5) are very closely
related and so we have chosen to use a similar notation for both. Notice that we
use a more precise notion of integrality gap which specifies the optimal fractional
and integral solution (i.e. the gap location) and not just their ratio. Our main
result regarding integrality gap mimics the result regarding NP-hardness gap:

Theorem 3. Let k be sufficiently large and let f : {0, 1}k ∈ {0, 1} be a predicate
with Fourier degree at least 3 (and hence ∂(f,Q) > 0).

1. If ∂(f,Q) ≥ 1/k3, then τ≤(f) ≥ σ(f) + Δ(1/k5).
2. If ∂(f,Q) = φ ⇐ 1/k3, then let g ∧ Q denote the unique function such that

∂(f, g) = φ.
(a) If ⇒x ∧ {0, 1}k such that f(x) = 1∪g(x) = 0 then τ≤(f) ≥ σ(f)+Δ(1/k).
(b) Otherwise, g is monotonically above f . In this case, SDP rounding of

the natural Lasserre relaxation, after just one round, finds an assign-

ment that is
(
σ(f) + Δ( α

k2 log(1/α) )
)
-satisfying if the instance is σ(f) + λ

satisfiable for any λ ≥ Ck3φ and C is an absolute constant. In particular,

τ≤(f) ⇐ σ(f) + O(k3φ).

Moreover, τ≤(f) ≥ σ(f) + Δ
(

λ
k2

)
.

We emphasize that our results stated above give a characterization that ap-
plies to all predicates f . Only very few classfication results of this form, applying
to all predicates are known so far. Some notable examples are the dichotomy re-
sults of Schaefer [22] and the characterization of CSPs for which there exist
“robust” satisfaction algorithms, as conjectured by Guruswami and Zhou [15]
and proved recently by Barto and Kozik [5].

1.2 Overview of the Proof

In this section, we provide a brief sketch of proof of Theorem 2, hiding many
details however. Our starting point is a recent result of Chan [9] showing that
a predicate L : {0, 1}k ∗∈ {0, 1} is 1-resistant (i.e. approximation resistant) if
L−1(1) is an affine translate of the orthogonal complement of a distance (at
least) 3 code. We will call such a predicate a good predicate for this section. A
useful fact is that sparse good predicates exist (i.e. |L−1(1)| is O(k2)) and are
numerous: an affine translate of the orthogonal complement of a random linear
subspace of dimension k − 2 log2 k −O(1) works with probability 99%.

A predicate f : {0, 1}k ∈ {0, 1} is said to be τ -correlated with a good predi-
cate L if a uniformly random satisfying assignment for L is also a satisfying as-
signment for f with probability at least τ (i.e. |L−1(1) ⊥ f−1(1)|/|L−1(1)| ≥ τ).
Given a predicate f : {0, 1}k ∗∈ {0, 1}, we observe that if f is τ -correlated with
a good predicate, then f is τ -resistant. The reason is rather straightforward.
Chan [9] gives a reduction showing that L is 1-resistant. We take the same re-
duction but pretend that the predicate used for every constraint is f instead of
L and this minor modification suffices to show that f is τ -resistant. For the sake
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of future reference, we note that any predicate f , not identically zero, always
Δ
(

1
k2

)
-correlates with some good predicate. This is simply because we pick an

arbitrary good predicate L with |L−1(1)| ⇐ O(k2) and translating it if necessary
ensure that L−1(1) ⊥ f−1(1) →= ↓. This gives correlation of at least 1/|L−1(1)|.

With these observations at hand, our first task is to (approximately) charac-
terize the best possible correlation that a given predicate f : {0, 1}k ∗∈ {0, 1}
can have with a good predicate. We show that this is related to the Fourier mass
of f at level 3 and above, denoted α3(f), which in turn is related to the distance
∂(f,Q). In the range of parameters of interest, we show that f is τ -correlated
with a good predicate (and hence τ -resistant) with

τ ≥ σ(f) + Δ

(
α3(f)

k2

)
,

and moreover that
α3(f) = χ(∂(f,Q)).

Our lower bound on τ(f) in Case (1) and Case (2b) of Theorem 2 now fol-
low immediately from the above two claims. The proof of the first claim uses
a (somewhat novel) probabilistic argument showing that a random good predi-
cate works. The second claim follows from an unpublished result of Kindler and
Safra [18]. We provide another proof, for completeness sake, which uses stan-
dard Fourier analytic techniques from the works of KKL and Friedgut [17,12].
The relation above between α3(f) and χ(∂(f,Q)) as stated above is similar,
though quantitatively incomparable, to a result of Friedgut, Kalai and Naor [13]
which relates the Fourier mass above level 1 to the distance from dictator (and
constant) functions.

We are now left with the Case (2a) and the upper bound in Case (2b) of
Theorem 2. Note that we are in the scenario where there is a function g ∧ Q
with ∂(f, g) = φ for some tiny φ.

We illustrate Case (2a) first. For the sake of illustration, assume that g ≡ 0,
which amounts to saying that σ(f) = φ. As we noted, f always Δ

(
1
k2

)
-correlates

with a good predicate and hence is Δ
(

1
k2

)
-resistant. Since σ(f) = φ is tiny, we

have τ(f) ≥ σ(f) + Δ(1/k2) as desired (this is a bit weaker than the bound we
actually get/state in Theorem 2). The proof for Case (2a) in general is a bit
tricky and we refer the reader to Section 5.1. We note that this is the case where
the gap τ(f)− σ(f) is large (i.e. Δ(1/k2)) even though the Fourier mass at level
3 and above is at most φ which could be as low as 2−k.

Finally, we arrive at the upper bound in Case (2b). Here the algorithm is
designed by using an algorithm of Charikar and Wirth [10] as a black-box. Note
that we are in the scenario where there is a function g ∧ Q with ∂(f, g) = φ
for a tiny φ and moreover that f implies g. Given an instance of MAX k-CSP(f)
that is (σ(f) + λ)-satisfiable, we begin by pretending that it is an instance of
MAX k-CSP(g) with the predicate f on every constraint replaced by g. Since f
implies g and they are close in Hamming distance, the instance remains (σ(g) +
λ/2)-satisfiable as an instance of MAX k-CSP(g). For the predicate g of Fourier
degree at most 2, the algorithm of Charikar and Wirth yields an assignment
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that is (σ(g) + Δ(λ/ log(1/λ)))-satisfying. This assignment, by itself, might be
quite bad when viewed as an assignment for MAX k-CSP(f). To correct this, we
re-randomize each variable with probability 1 − 1

2k and show that it now serves
as a (σ(g) + Δ(1/k2 · λ/ log(1/λ)))-satisfying assignment to MAX k-CSP(f).

This completes our overview. In the context of Lasserre integrality gaps and
Theorem 3, our starting point is a result of the second author [26] that is anal-
ogous to Chan’s NP-hardness result. The hardness reductions are now replaced
by integrality gap constructions, but they are identical in spirit.

2 Preliminaries

Definition 8. s We say that a predicate f : {0, 1}k ∈ {0, 1} τ -correlates with a
predicate g : {0, 1}k ∈ {0, 1} if

|f−1(1) ⊥ g−1(1)|
|g−1(1)| ≥ τ.

Equivalently Ex◦g−1(1) [f(x)] ≥ τ .

Definition 9. A linear predicate L : {0, 1}k ∈ {0, 1} corresponds to set
of assignments L−1(1) which form a affine subspace of F

k
2. We call such

a predicate well-distributed if the uniform distribution on L−1(1) is a bal-
anced pairwise independent distribution on {0, 1}k i.e., ≺i →= j ∧ [k], b1, b2 ∧
{0, 1}, Px◦L−1(1) [xi = b1, xj = b2] = 1/4.

The following alternate characterization of well-distributed linear predicates is
known via (by now) standard arguments (see for example [11]).

Claim. Let L : {0, 1}k ∈ {0, 1} be a linear predicate such that L−1(1) = S + z
for a subspace S of Fk

2 and z ∧ F
k
2 . Then L is well-distributed if and only if S⊆

forms a (linear) code of distance at least 3 over {0, 1}k.

3 A Relation to Level 3 Fourier Mass

The following theorem shows that a predicate f with high Fourier mass at level
3 and above (i.e. high value of α3(f)) has a high correlation, say τ , with a
well-distributed linear predicate. Since a well-distributed linear predicate is 1-
resistant, it immediately implies that f is τ -resistant. This argument is used to
prove the lower bound on τ(f) in Case (1) and Case (2b) in Theorem 2.

Theorem 4. Let k ≥ 16 and f : {0, 1}k ∈ {0, 1} be a predicate. There exists

τ ≥
√

σ(f)2 +
α3(f)

100k2
(3.1)

such that f τ-correlates with some well-distributed linear predicate (and hence
is τ-resistant as well as τ-resistant for the Lasserre hierarchy).
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4 Fourier Spectrum and Closeness to Q
In this section we show that if α3(f) is sufficiently small then f is close in
Hamming distance to a quadratic function g ∧ Q. In fact the distance ∂(f,Q)
is proportional to α3(f) whenever α3(f) ⇐ 1/k3 (note that we are interested
in the case when α3(f) is polynomially small in 1

k which is somewhat atypical
situation). This is similar, though incomparable to a result of Friedgut, Kalai
and Naor [13] which shows that if α2(f) is a sufficiently small constant, then f
is close to a constant function or a dictator (Boolean functions of Fourier degree
at most 1). Though our result works for functions of higher Fourier degree, it
requires the Fourier mass at higher levels to be polynomially small in 1/k.

Our Fourier analytic results (Lemma 1 and and its generalization to higher
degrees) essentially follow from an earlier unpublished result of Kindler and
Safra [18]. In [18], the authors show that if α3 (resp. αr) is smaller than a con-
stant depending on r, then f is close to real valued junta (cf. also [8]). A close
examination of their proof allows one to deduce that f is close to a degree 2 (resp.
degree r− 1) junta. However, for completeness sake, we provide a self-contained
proof of the result that we need.

Lemma 1. Let f : {0, 1}k ∗∈ {0, 1} be a predicate such that α3(f) ⇐ 1/k3 and

k ≥ 22
15

. Then

α3(f) ⇐ ∂(f,Q) ⇐ C · α3(f),

for an absolute constant C and C = 128 works.

We note that the lower bound above holds because a function g ∧ Q has no
non-zero Fourier coefficient of degree 3 or more and hence

∂(f, g) = ‖f − g‖22 =
∑

ε

(f̂(β) − ĝ(β))2 ≥
∑

|ε|√3

f̂(β)2 = α3(f).

Our proof of the upper bound above is similar to those in the papers by Kahn,
Kalai, Linial [17] and Friedgut [12].

5 Proof of Main Theorem

In this section, we collect the rest of the pieces required in the proof of Theorem
2. We first show the hardness of approximating MAX k-CSP(f) when f has good
correlation with a well-distributed linear predicate (Lemma 2). Next, we show
that MAX k-CSP(f) is hard to approximate when f is close to a junta g which
is not monotonically above f (Lemma 3). These two statements suffice to prove
the required lower bounds on τ(f) in Theorem 2 since we can show that f must
have the appropriate correlation with a well-distributed linear predicate in cases
(1) and (2b), and must be close to a g ∧ Q in case (2a). Finally, we give an
approximation algorithm for the case when f is close to a g ∧ Q and g ≥ f .
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5.1 Reductions from the Hardness of Approximating
Well-Distributed Linear Predicates

We now give the reductions from Chan’s result [9] on the hardness of approxi-
mating well-distributed linear predicates. His result shows that a well-distributed
linear predicate L : {0, 1}k ∈ {0, 1} is 1-resistant, even on MAX k-CSP(L) in-
stances with certain uniformity properties. These properties concern what the
assignments to n variables look when restricted to the k variables in a ran-
domly chosen constraint from the instance. Recall that for an instance ζ of
MAX k-CSP(L), a constraint C ∧ ζ is of the form L(xi1 + bi1 , . . . , xik + bik). Let
xC denote the tuple (xi1 , . . . , xik) of the variables in the constraint C and Let
bC denote the tuple (bi1 , . . . , bik). Also, for an assignment A : [n] ∈ {0, 1}, let
A(xC) denote (A(xi1 ), . . . , A(xik )). The following follows easily from the state-
ment of Theorem 5.4 and the proof of Theorem 1.1 in [9].

Theorem 5 ([9]). Let k ≥ 3 and let η, λ > 0 be arbitrarily small constants. L :
{0, 1}k ∈ {0, 1} be a well-distributed linear predicate. Then, given an instance ζ
of MAX k-CSP(L) on variables x1, . . . , xn, it is NP-hard to distinguish between
the following two cases:

Yes: There exists an assignment A : [n] ∈ {0, 1} satisfying 1 − η fraction of the
constraints. In fact, for any z ∧ L−1(1)

1 − η

|L−1(1)| ⇐ P
C◦Λ

[A(xC) + bC = z] ⇐ 1 + η

|L−1(1)| .

No: For all assignments A : [n] ∈ {0, 1} and all z ∧ {0, 1}k, we have

1 − λ

2k
⇐ P

C◦Λ
[A(xC) + bC = z] ⇐ 1 + λ

2k
.

Thus, the theorem states that in the Yes case, not only are most constraint
satisfied, but the tuple A(xC) + bC looks almost uniformly distributed over
L−1(1), over the choice of a random constraint C ∧ ζ. On the other hand, in
the No case, A(xC) +bC looks almost uniformly distributed over all of {0, 1}k.
In particular, this means that the fraction of satisfied constraints is at most∣
∣L−1(1)

∣
∣ /2k + λ.

Given the above theorem, it is easy to prove that a predicate f which correlates
with some well-distributed linear predicate must also be hard to approximate.

Lemma 2. Let k ≥ 3 and let η, λ > 0 be arbitrarily small constants. Let f :
{0, 1}k ∈ {0, 1} be a predicate which τ-correlates with some well-distributed
linear predicate L. Then, given an instance ζ of MAX k-CSP(f) on variables
x1, . . . , xn, it is NP-hard to distinguish between the following cases:

Yes: There exists an assignment A : [n] ∈ {0, 1} satisfying (1 − η) · τ fraction
of the constraints.

No: All assignments A : [n] ∈ {0, 1} satisfy at most (1 + λ) · σ(f) fraction of
the constraints.
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Now we consider the case when f : {0, 1}k ∈ {0, 1} is close to a function g with
Fourier degree at most 2, but is not monotonically dominated by it i.e., when
f−1(1) ⊥ g−1(0) →= ↓. We show that such an f is (σ(f) + Δ(1/k))-resistant. In
fact we prove the statement below for any function g which is a junta depending
only on s variables. This is sufficient because Theorem 1 implies that a Boolean
function g of degree 2 must depend on at most 4 of the k variables and hence
the required result will follow easily.

Lemma 3. Let k, s be such that k − s ≥ 3 and let λ > 0 be an arbitrarily small
constant. Let g : {0, 1}k ∈ {0, 1} be an s-junta and let f : {0, 1}k ∈ {0, 1} be a
predicate such that ∂(f, g) = φ ⇐ 1/(2s+2 · k) and f−1(1) ⊥ g−1(0) →= ↓. Then,
given an instance ζ of MAX k-CSP(f) on variables x1, . . . , xn, it is NP-hard to
distinguish between the following two cases:

Yes: There exists an assignment A : [n] ∈ {0, 1} satisfying σ(f) + 1/(2s+3 · k)
fraction of the constraints.

No: All assignments A : [n] ∈ {0, 1} satisfy at most (1 + λ) · σ(f) fraction of
the constraints in ζ.

5.2 Proofs of Lower Bounds on τ(f)

We can now prove the lower bounds on τ(f) in Theorem 2.

– Case 1: ∂(f,Q) ≥ 1/k3 implies by Lemma 1 that α3 ≥ 1/(12k3). Theorem
4 then gives that f is τ -correlated with some well-distributed predicate for

τ ≥
√

ρ(f)2 +Ω

(
1

k5

)
≥ ρ(f) +Ω(1/k5) .

Lemma 2 then implies that f is τ -resistant and hence τ(f) ≥ σ(f)+Δ(1/k5).
– Case 2b: In this case, Lemma 1 gives α3 ≥ Δ(φ) and Theorem 4 again gives

that f must τ -correlate with a well-distributed linear predicate for

τ ≥
√

ρ(f)2 +Ω

(
δ

k2

)
≥ ρ(f) +Ω(δ/k2)

As before, an application of Lemma 2 completes the proof.
– Case 2a: In this case ∂(f, g) = φ ⇐ 1/k3 for some g ∧ Q, which must be a

4-junta by Theorem 1. Then, if f−1(1) ⊥ g−1(0) →= ↓, Lemma 3 gives that
τ(f) ≥ σ(f) + Δ(1/k).

5.3 An SDP Rounding Algorithm

We now provide an SDP rounding algorithm based on the algorithm by Charikar
and Wirth [10] to prove the upper bound in case (2b) of Theorem 2. For f and φ
as in case (2b), and ζ which is a (σ(f)+λ)-satisfiable instance of MAX k-CSP(f),
the algorithm below yields a non-trivial approximation when λ = Δ(k3 · φ). This
gives τ(f) ⇐ σ(f) + O(k3 · φ).
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H̊astad [25] observed that algorithm of Charikar and Wirth [10], which rounds
an SDP relaxation for maximizing a homogeneous quadratic objective function,
can in fact be used for approximating MAX k-CSP(g) for any g : {0, 1}k ∈ {0, 1}
which has Fourier degree at most 2 (by rounding the standard SDP relaxation).
This observation gives the following lemma.

Lemma 4. Let g ∧ Q. Then there exists a randomized polynomial time algo-
rithm for rounding the standard SDP relaxation of MAX k-CSP(g), which given
an instance ζ with SDP value σ(g) + λ, outputs an assignment A satisfying at
least σ(g)+ c·α

log(1/α) fraction of the constraints in expectation. Here c is an absolute
constant.

We now proceed to the main theorem for this section. The proof will essen-
tially replace an instance ζ of MAX k-CSP(f) by an appropriate instance ζg of
MAX k-CSP(g) and use the algorithm in Lemma 4 to find an assignment Ag for
ζg. Our assignment for ζ will be obtained from Ag by a simple transformation
which trades-off the approximation factor to avoid the bad situation where Ag

ends up falsifying many constraints in ζ while still satisfying many constraints
in ζg. We show the following:

Theorem 6. Let f : {0, 1}k ∈ {0, 1} be a predicate such that there exists
another predicate g ∧ Q satisfying g ≥ f and ∂(f, g) = φ ⇐ 1/k3. Then
there exists a randomized polynomial time algorithm, which given an instance
of MAX k-CSP(f) in which σ(f) + λ fraction of constraints can be satisfied for
λ = Δ(k3 · φ), finds an assignment such that EA [valΛ(A)] ≥ σ(f) + c·α

8k2 log( 1
ε )
.
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Abstract. We consider two known lower bounds on randomized
communication complexity: The smooth rectangle bound and the
logarithm of the approximate nonnegative rank. Our main result is that
they are the same up to a multiplicative constant and a small additive
term.

The logarithm of the nonnegative rank is known to be a nearly tight
lower bound on the deterministic communication complexity. Our result
indicates that proving the analogue for the randomized case, namely
that the log approximate nonnegative rank is a nearly tight bound on
randomized communication complexity, would imply the tightness of the
information cost bound.

Another corollary of our result is the existence of a boolean
function with a quasipolynomial gap between its approximate rank and
approximate nonnegative rank.
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complexity: The smooth rectangle bound [JK10] and the approximate
nonnegative rank (see Section 1.3 for both definitions). Our main result is that
although these two techniques are seemingly different, the lower bounds that
may be derived from them are, more or less, equivalent. As a consequence, we
are able to apply previous results regarding the smooth rectangle bound to get
new results about the approximate nonnegative rank, thus providing information
about two of the open problems in [Lee12] (see Corollaries 1 and 2).

We next survey the relevant lower bounds methods for randomized
communication complexity. Here and below, f is a boolean function f :
{0, 1}n×{0, 1}n ∈ {0, 1}. We denote by D(f) the deterministic communication
complexity of f , and by Rε(f) the randomized private coin1 communication
complexity of f with error σ. These and other basic definitions can be found
in [KN97].

1.1 Randomized Communication Complexity Lower Bounds

Nonnegative Rank. A well-known linear algebraic lower bound on the
deterministic communication complexity of f is2 log rank(Mf), where Mf is the
2n × 2n boolean matrix given by Mf(x, y) = f(x, y) [MS82]. The long standing
log-rank conjecture asserts that this bound is tight, up to a polynomial overhead.

Conjecture 1 (log-rank conjecture, Lovász and Saks [LS88]). For every
function f : {0, 1}n × {0, 1}n ∈ {0, 1}, it holds that3

D(f) ⊆ polylog (rank(Mf)) .

Yannakakis [Yan91] introduced the notion of nonnegative rank to
communication complexity. We say that a real matrix M is nonnegative if all its
entries are nonnegative. The nonnegative rank of a nonnegative real matrix M ,
denoted rank+(M), is the minimum natural number r such that M is the sum
of r nonnegative rank-1 matrices.

The nonnegative rank is clearly at least as large as rank, that is, rank+(M) ⊂
rank(M). The nonnegative rank can be arbitrarily larger than the rank, if we
allow non-boolean matrices. Indeed, for every k → N there exists a matrix
M such that rank(M) = 3 and rank+(M) ⊂ k (see [BL09]). However,
if we restrict our attention to boolean matrices then no such separation
between rank and rank+ is known. The best known separation for boolean
matrices is quasipolynomial4. This separation follows from the best known
separation between the logarithm of the rank and the communication complexity

1 For simplicity, we only consider private coin protocols. However, all the results carry
over to the public coin model via Newman’s Theorem [New91].

2 Here and below rank is over the real numbers.
3 In this text, logarithms are base two.
4 There exists a sequence of boolean matrices {Mn}n=∞

n=1 such that log rank+(Mi) =
Ω((log rank(Mi))

Γ) for some constant α > 1.



Approximate Nonnegative Rank Is Equivalent 703

(see discussion following Corollary 2). Moreover, determining the dependency
between rank and rank+ for boolean matrices is equivalent to solving the log-
rank conjecture in communication complexity (see Theorem 1).

While we are still far from proving the log-rank conjecture (the best result in
this direction [Lov13] is that D(f) is at most roughly

√
rank(Mf )), a variant of

the conjecture obtained by replacing the rank by the nonnegative rank is known
to hold.

Theorem 1 (Log Nonnegative Rank Theorem, Lovász [Lov90]). For
every function f : {0, 1}n × {0, 1}n ∈ {0, 1}, it holds that5

D(f) ⊆ (
log rank+(Mf ) + 1

⎧
(log rank(M1−f) + 1) . (1)

In particular, D(f) ⊆ O(log2 rank+(Mf )).

We study a randomized analogue of Equation (1). In the randomized setting,
the notion of nonnegative rank needs to be altered to an approximate one.
The σ-approximate nonnegative rank of a matrix M , denoted rank+ε (M), is
the minimum nonnegative rank of a 2n × 2n nonnegative matrix M ◦ so that
∧M − M ◦∧√ ⊆ σ, i.e., |M(x, y) − M ◦(x, y)| ⊆ σ for all x, y → {0, 1}n. The σ-
approximate rank of a matrix M , denoted rankε(M), is defined similarly.

Again, clearly rankε(M) ⊆ rank+ε (M). One can also prove, using the separation
discussed earlier between rank and rank+, that for every k → N there exists a
matrix M and σ > 0 such that rankε(M) ⊆ 3 and rank+ε (M) ⊂ k. However, not
much is known about the relation between rankε and rank+ε for boolean matrices.

It was shown by [Kra96] that Rε(f) ⊂ log rank+ε (Mf ). We consider the
following conjecture asserting that this bound is nearly tight, as in the
deterministic case:

Conjecture 2 (Log Approximate Nonnegative Rank Conjecture, See also
TH8 in [Lee12]). For every sufficiently small constant 0 < σ < 1 and every
function f : {0, 1}n × {0, 1}n ∈ {0, 1},

Rε(f) ⊆ polylog
(
rank+ε (Mf ) · rank+ε (M1−f )

⎧
.

We will later relate this conjecture to an open problem regarding the
compression of communication protocols.

The Smooth Rectangle Bound. A different approach for proving lower
bounds on randomized communication complexity, which we refer to as the
“rectangle based method”, is based on bounding from below the weight of the
largest (almost) monochromatic combinatorial rectangle.

The smooth rectangle bound, suggested by [JK10], is a rectangle based
method shown to be a stronger lower bound than many of the previous methods
(for example, the rectangle/corruption bound, the discrepancy bound, and the
τ2 approach [LS07]). Informally speaking, the smooth rectangle bound for a

5 We use 1− f to denote the boolean function (1− f)(x, y) = 1− f(x, y).
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function f with error σ, denoted srec1ε(f), considers assignments of weights
(nonnegative real values) to combinatorial rectangles (sets of the form X × Y
where X ,Y ≥ {0, 1}n) satisfying:

1. For inputs (x, y) → f−1(1), the total weight assigned to rectangles containing
(x, y) is between 1 − σ and 1.

2. For inputs (x, y) → f−1(0), the total weight assigned to rectangles containing
(x, y) is at most σ.

The value srec1ε(f) is the logarithm of the minimum total weight assigned to all
rectangles by any such assignment. A formal definition of the smooth rectangle
bound can be found in Section 1.3.

Information Cost. Another recent lower bound method is based on
information cost. The information cost of a function f with error σ, denoted
ICε(f), measures the amount of information the players must learn about each
other’s input while executing any protocol that computes f , with error at most
σ [CSWY01, Bra12]. For a formal definition of ICε(f), see e.g. Definition 2.1
in [KLL+12]. The information cost is known to lower bound the randomized
public coin communication complexity of f [BR11]. The other direction, namely
whether every function with information cost I has a randomized protocol with
communication complexity I (a “compressed” protocol), is yet another open
problem in communication complexity [Bra12]. We state here a somewhat weaker
conjecture than Open Problem 1 of [Bra12]:

Conjecture 3 (Weak Compression Conjecture). For every sufficiently small
0 < σ < 1 and every function f : {0, 1}n × {0, 1}n ∈ {0, 1},

Rε(f) ⊆ poly (ICε(f), log(n), 1/σ) .

It was recently shown by [KLL+12] that the information cost bound is at
least as powerful as almost all the rectangle methods. This was done by showing
that the relaxed partition bound is always (roughly) at most the information
cost. It is easily seen (by comparing the corresponding linear-programs) that
for boolean functions, the relaxed partition bound corresponds to a two-sided
smooth rectangle bound, defined as the maximum between the smooth rectangle
bound of f and of 1 − f . In fact, prior to our work, the logarithm of the
approximate nonnegative rank was one of the few bounds not known to be
weaker than the information cost.

1.2 Our Results

Our main result is the following theorem showing that the smooth rectangle
bound is almost equivalent to the logarithm of the approximate nonnegative
rank.
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Theorem 2 (Main). For every 0 < σ < 1
10 and a function f : {0, 1}n ×

{0, 1}n ∈ {0, 1},
srec13ε(f) ⊆ log rank+ε (Mf ) ⊆ 2srec1ε/2(f) + log(12n/σ2).

Furthermore, an additive log(n/σ) term on the right hand side is needed.

Theorem 2 is proved in Section 2. Next, we give several corollaries of this
theorem.

The Log Approximate Nonnegative Rank Conjecture and Compression. One
corollary is that proving the log approximate nonnegative rank conjecture
(Conjecture 2) would imply that the information cost bound is nearly tight
(Conjecture 3). Formally, we prove the following corollary.

Corollary 1. There exists a constant c > 0 such that for every sufficiently small
0 < σ < 1,

ICε(f) ⊂ c · σ2 (log rank+4ε(Mf ) − log(3n/8σ2)
⎧− 1.

The proof of this corollary can be found in the full version of this
paper, [KMSY14].

Separating the approximate rank and the approximate nonnegative rank. It
follows that the approximate nonnegative rank of the negation of the disjointness
function on n bit-strings, denoted NDISJn, is quasipolynomial in its approximate
rank, thus addressing Problem TH9 in [Lee12]: For a small constant σ > 0, [Raz02]
proved that rankε(NDISJn) ⊆ 2O(

≤
n) (see also the discussion after Conjecture

42 in [LS09b]), while srec13ε(NDISJn) ⊂ λ(n). By Theorem 2, rank+ε (NDISJn) ⊂
2Ω(n).

Corollary 2. If 0 < σ < 1 is a sufficiently small constant then for every n → N,

log rank+ε (MNDISJn) ⊂ λ
(
log2 rankε(MNDISJn)

⎧
.

We mention that in the non-approximate case, any gap greater than
quasipolynomial between the rank and nonnegative rank will disprove the
log-rank conjecture as D(f) ⊂ log rank+(Mf ). The best known gap is only
D(f) ⊂ λ ((log rank(Mf ))α) for Π = log3(6) < 2 (Kushilevitz (unpublished),
cf. [NW95]).

New upper bound on deterministic complexity. Theorem 1 implies D(f) ⊆
O
(
log rank+(Mf ) · log rank(Mf )

⎧
. By combining Theorem 2 with results

from [GL13] and [JK10], we devise a similar bound using the (potentially smaller)
approximate nonnegative rank instead of the nonnegative rank. Thus, in order
to prove the log-rank conjecture it is enough to show that log rank(Mf) ⊆
polylog(rank+ε (Mf ) + rank+ε (M1−f)).

Corollary 3. For every function f : {0, 1}n × {0, 1}n ∈ {0, 1},
D(f) ⊆ O(log(rank+1/18(Mf ) + rank+1/18(M1−f )) · log2 rank(f)).

The proof of this corollary can be found in the full version of this
paper, [KMSY14].
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Open Problems. Consider the following stronger version of the log
approximate nonnegative rank conjecture (Conjecture 2), asserting that

Rε(f) ⊆ polylog
(
rank+ε (Mf )

⎧
.

This conjecture, if true, has two simple corollaries, that describe properties
of boolean matrices and are of independent interest. One concerns the
behavior of the approximate nonnegative rank when negating f , namely, that
log rank+ε (M1−f ) is at most polynomial in log rank+ε (Mf ). Observe that the
approximate rank satisfies this property as rank(M1−f ) ⊆ rank(Mf ) + 1, and
so does the nonnegative rank as D(1 − f) = D(f) and log rank+(Mf ) ⊆ D(f) ⊆
O(log2 rank+(Mf )). A second corollary concerns error reduction, namely, that we
have the bound log rank+ε (Mf ) ⊆ (log rank+1/3(Mf ))O(log(1/ε)). The approximate

rank was shown to satisfy this property (it actually satisfies the stronger property
rankε(Mf ) ⊆ (rank1/3(Mf ))O(log(1/ε)), see [Alo03, LS09a]). Both of the above
corollaries are still open, and one may wish to study either of them prior to
the log approximate nonnegative rank conjecture. In Section 3 we show that the
method used in [Alo03, LS09a] to prove error reduction for approximate rank
cannot work for the approximate nonnegative rank.

1.3 Definitions

We conclude the introduction by giving the needed formal definitions.

Definition 1 (nonnegative rank). Let M → R
n×m be a matrix. M is

nonnegative if M(x, y) ⊂ 0 for every x, y. M has rank one if it is of the form
M = v ⇐ u, where v → R

n, u → R
m and ⇐ denotes tensor product (that is,

M(x, y) = v(x)u(y) for every x, y).
The nonnegative rank of a nonnegative matrix M is

rank+(M) = min

{

r ∈ N : M =
r∑

i=1

Mi, ∀ i Mi is nonnegative and of rank one

}

.

The σ-approximate nonnegative rank of M is

rank+ε (M) = min
⎨
rank+(M ◦) : M ◦ is nonnegative, ∧M −M ◦∧√ ⊆ σ

⎩
.

Definition 2 (Smooth Rectangle Bound). For 0 ⊆ σ < 1
2 and a function

f : {0, 1}n × {0, 1}n ∈ {0, 1}, the (one) smooth rectangle bound srec1ε(f) is
the logarithm of the value of the following linear program. Below, R ranges over
combinatorial rectangles (sets of the form X × Y where X ,Y ≥ {0, 1}n) and
R(x, y) is the indicator for the event (x, y) → R.

min
⎢

R

wR : ⇒(x, y) → f−1(1) : 1 − σ ⊆
⎢

R

wRR(x, y) ⊆ 1,

⇒(x, y) → f−1(0) :
⎢

R

wRR(x, y) ⊆ σ,

⇒R : wR ⊂ 0.
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2 Proving the Equivalence, Theorem 2

The “srec1 ⊆ log rank+” direction. We start by upper bounding the smooth
rectangle bound by the logarithms of the approximate nonnegative rank. Let

r = rank+ε (Mf ). Let M ◦◦ → (R+)
2n×2n

be the promised nonnegative matrix
satisfying ∧Mf −M ◦◦∧√ ⊆ σ and rank+(M ◦◦) = r. Observe that the entries
of M ◦◦ are bounded by 1 + σ. It will be convenient for us to consider the
matrix M ◦ = 1

1+εM
◦◦ whose entries are bounded by 1. Observe that still

∧Mf −M ◦∧√ ⊆ 1− 1−ε
1+ε ⊆ 2σ and rank+(M ◦) = r. Let M1, . . . ,Mr → (R+)

2n×2n

be nonnegative rank-1 matrices so that M ◦ =
⎣r

t=1 Mt.
Fix t → [r] for now. Write Mt = v ⇐ u for two nonnegative vectors v, u →

(R+)
2n

. We may assume without loss of generality that

∧v∧√, ∧u∧√ ⊆ 1, (2)

as u, v can always be converted to such vectors for the following reason: Let
a = v(i) be the maximum entry in v, and let b = u(j) be the maximum
entry in u. Assume without loss of generality that b ⊂ a. It holds that
1 ⊂ Mt(i, j) = v(i)u(j) = ab. If b ⊆ 1 we are done. Otherwise, b > 1, and
we replace v by bv and u by 1

bu. Observe that now both vectors have entries in
the interval [0, 1] (as a ⊆ 1/b), and that (bv) ⇐ (

1
bu

⎧
= v ⇐ u = Mt.

Let K = ∪ 2r
ε ≤. For an integer 1 ⊆ k ⊆ K, define the vector vk in the following

way: For i → [2n], set vk(i) = 1/K if v(i) ⊂ k/K, and vk(i) = 0 if v(i) < k/K.
Define uk similarly. Let

v◦ =
⎢

k⊆[K]

vk and u◦ =
⎢

k⊆K

uk.

It holds that ∧v − v◦∧√, ∧u − u◦∧√ ⊆ 1/K, as e.g. v◦ rounds v to the nearest
integer multiple of 1/K from below. Let

M ◦
t = v◦ ⇐ u◦ =

⎛

⎝
⎢

k⊆[K]

vk

⎞

⎠⇐
(

⎢

k′⊆K

uk′

)

=
⎢

k,k′⊆[K]

vk ⇐ uk′ .

Using Equation (2),

∧Mt −M ◦
t∧√ ⊆ max

i,j⊆[2n]
{v(i)u(j) − v◦(i)u◦(j)}

⊆ max
i,j⊆[2n]

⎨
v(i)u(j) − (v(i) − 1

K )(u(j) − 1
K )

⎩

⊆ 1
K max

i,j⊆[2n]
{v(i) + u(j)} ⊆ 2

K .

Thus, we approximated Mt (with error 2/K) by a sum of at most K2 rectangles,
each of weight 1/K2.
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By summing over all t → [r],
∥
∥
∥∥
∥
M ◦ −

r⎢

t=1

M ◦
t

∥
∥
∥∥
∥
√

⊆ 2r

K
⊆ σ.

Thus, ∥∥
∥
∥
∥
Mf −

r⎢

t=1

M ◦
t

∥∥
∥
∥
∥
√

⊆ 3σ.

We approximated Mf (with error 3σ) by a sum of at most K2r rectangles, each
of weight 1/K2. Furthermore, for every (x, y),

r⎢

t=1

M ◦
t(x, y) ⊆

r⎢

t=1

Mt(x, y) = M ◦(x, y) ⊆ 1.

Thus, the total weight of rectangles containing (x, y) is at most 1. This means
that

srec13ε(f) ⊆ log(K2r · 1/K2) = log (r) .

The “log rank+ ⊆ srec1” direction. Next we show that the logarithm of the
approximate nonnegative rank is not much larger than the smooth rectangle
bound. Let W be such that srec1ε(f) = logW , and let (wR) be weights for
rectangles satisfying the conditions of the linear program defining the smooth
rectangle bound, for which

⎣
R wR = W . Similarly to [LLR12], we consider the

probability distribution on rectangles μ, defined by μ(R) = wR/W for all R. For
every (x, y), let

ex,y = E
R≥μ

[R(x, y)] =
⎢

R

wR

W
R(x, y),

where we recall that R(x, y) is the indicator for (x, y) → R. We get

|f(x, y) −Wex,y| = |f(x, y) −
⎢

R

wRR(x, y)| ⊆ σ. (3)

In other words, when R is selected according to μ, the value W · R(x, y) is a
good estimation for f(x, y).

Let R1, . . . , Rk be independent samples from μ for k = ∪2W 2n/σ2≤. For every
(x, y), Hoeffding’s bound implies that

Pr

[∣∣
∣
∣∣
1

k

k⎢

t=1

Rt(x, y) − ex,y

∣
∣
∣
∣∣
⊂ σ/W

]

⊆ 2e−2ε2k/W 2

,

where the probability is taken over the (independent) choices of R1, . . . , Rk. By

the union bound, since 2e−2ε2k/W 2

22n < 1, there is a choice of R1, . . . , Rk so
that for all (x, y), ∣

∣
∣
∣
∣
1

k

k⎢

t=1

Rt(x, y) − ex,y

∣
∣
∣
∣
∣
< σ/W. (4)
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Define

M ◦ =
W

k

k⎢

t=1

Rt.

The nonnegative rank of M ◦ is at most k. By Equations (3) and (4), for all (x, y),

|f(x, y) −M ◦(x, y)| ⊆ |f(x, y) −Wex,y| + W

∣∣
∣
∣
∣
ex,y − 1

k

k⎢

t=1

Rt(x, y)

∣∣
∣
∣
∣
⊆ 2σ.

Therefore, ∧M −M ◦∧√ ⊆ 2σ. This means that

log rank+2ε(Mf ) ⊆ log k ⊆ 2 logW + log(3n/σ2).

The additive log(n/σ) term is needed. The additive log(n/σ) term on the right
hand side of Theorem 2 must be there as the following example shows. Let f be
the equality function, that is, Mf is the 2n×2n identity matrix. In [Alo03, Alo09],

it was shown that rankε(Mf ) ⊂ λ
(

n
ε2 log(1/ε)

)
. Obviously the same lower bound

holds for the σ-approximate nonnegative rank of Mf .
We claim that srec1ε (f) is at most log(1/σ). Let pR be the distribution on

rectangles of the form R = A× A defined by: Each x is in A with probability σ
independently of other x’s. Let wR = pR/σ. For every (x, y), if f(x, y) = 1 (i.e.,
x = y), then E [R(x, y)] = Pr[x → A] = σ and so

⎣
R wRR(x, y) = 1. If f(x, y) =

0, then E [R(x, y)] = Pr[x → A] Pr[y → A] = σ2 and so
⎣

R wRR(x, y) = σ. So
wR is a solution to the above linear program, and the corresponding value is⎣

R wR = 1/σ.

3 No Monotone Error Reduction

Part of the argument in [Alo03] concerns error reduction for approximate
rank. It is shown that for a boolean function f , if rank1/3(Mf ) ⊆ r then

rankε(Mf ) ⊆ rO(log(1/ε)). For the nonnegative case, we may ask an even easier
question: Is it true that

rank+ε (Mf ) ⊆
(
rank+1/3(Mf ) + rank+1/3(M1−f )

)O(log(1/ε))

? (5)

The argument in [Alo03] is based on the following observation: There is a
univariate polynomial p of constant degree d, so that for every b → {0, 1} and for
every x so that |x− b| < 1/3 we have |p(x) − b| < |x− b|/2. In other words, the
polynomial p contracts around zero and around one. The error reduction follows
by observing that if we point-wise apply p to the matrix approximating Mf , we
get a better approximation of Mf while the rank is increased by at most a power
of d.

We show that this method cannot work in the nonnegative case, in the
sense that we cannot replace the polynomial p by a nonnegative polynomial.
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Specifically, Proposition 1 states that a bivariate polynomial p with certain
properties does not exist. Before stating the proposition we demonstrate how
one could have used such a polynomial p (should it exist) to perform nonnegative
error reduction.

Assume for simplicity that f is so that both rank+1/4(Mf) and rank+1/4(M1−f)

are 1. Let M ◦
0 and M ◦

1 be nonnegative matrices of rank 1 that are (1/4)-close to
Mf and M1−f , respectively. Assume that we are given a bivariate polynomial
p : [0, 1]× [0, 1] ∈ R

+ with nonnegative coefficients and finite degree so that for
every (x, y) → [3/4, 1] × [0, 1/4] we have |1 − p(x, y)| ⊆ (1 − x)/2, and for every
(x, y) → (0, 1/4]× [3/4, 1] we have p(x, y) < x/2. It is not hard to verify that M ◦,
defined as

M ◦(x, y) = p(M ◦
0(x, y),M ◦

1(x, y)),

gives a nonnegative (1/8)-approximation for Mf of constant nonnegative rank.

Proposition 1. There is no bivariate polynomial p : [0, 1] × [0, 1] ∈ R
+ with

nonnegative coefficients so that the followings hold: for every (x, y) → [3/4, 1] ×
[0, 1/4] we have |p(x, y)− 1| ⊆ 1− x, and for every (x, y) → (0, 1/4]× [3/4, 1] we
have p(x, y) < x.

In other words, a nonnegative polynomial that contracts around x = 1 must
be expanding around x = 0. Notice that we do not restrict the degree of p
in the proposition above. We mention that on the line y = 1 − x, there is a
such a polynomial p of degree four with positive coefficients (e.g. the Bernstein
approximation of the step function).

Proof (Proof of Proposition 1). Assume towards a contradiction that such a
polynomial p exists. Write

p(x, y) = yg(x, y) + h(x),

where g and h are polynomials with nonnegative coefficients. By assumption,

⇒ 3/4 ⊆ x ⊆ 1 : |p(x, 0) − 1| = |h(x) − 1| ⊆ 1 − x. (6)

In addition, for 0 < x ⊆ 1/4 it holds that p(x, 1) = g(x, 1) + h(x) < x, so

⇒ 0 < x ⊆ 1/4 : h(x) < x. (7)

We claim that no such h exists. Indeed, by the above h(1) = 1 and h(1/4) < 1/4.
Since h has positive coefficients, it is convex on the ray of positive real numbers,
which implies

h(3/4) = h(1/3 · 1/4 + 2/3 · 1) ⊆ 1/3 ·h(1/4) + 2/3 ·h(1) < 1/3 · 1/4 + 2/3 = 3/4.

This is a contradiction to that |h(3/4) − 1| ⊆ 1 − 3/4.



Approximate Nonnegative Rank Is Equivalent 711

References

[Alo03] Alon, N.: Problems and results in extremal combinatorics–i. Discrete
Mathematics 273(1-3), 31–53 (2003)

[Alo09] Alon, N.: Perturbed identity matrices have high rank: Proof and
applications. Combinatorics, Probability & Computing 18(1-2), 3–15
(2009)

[BL09] Beasley, L.B., Laffey, T.J.: Real rank versus nonnegative rank. Linear
Algebra and its Applications 431(12), 2330–2335 (2009); Special Issue in
honor of Shmuel Friedland

[BR11] Braverman, M., Rao, A.: Information equals amortized communication. In:
FOCS, pp. 748–757 (2011)

[Bra12] Braverman, M.: Interactive information complexity. In: STOC, pp. 505–524
(2012)

[CSWY01] Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.C.-C.: Informational complexity
and the direct sum problem for simultaneous message complexity. In:
FOCS, pp. 270–278 (2001)

[GL13] Gavinsky, D., Lovett, S.: En route to the log-rank conjecture: New
reductions and equivalent formulations. Electronic Colloquium on
Computational Complexity (ECCC) 20, 80 (2013)

[JK10] Jain, R., Klauck, H.: The partition bound for classical communication
complexity and query complexity. In: IEEE Conference on Computational
Complexity, pp. 247–258 (2010)

[KLL+12] Kerenidis, I., Laplante, S., Lerays, V., Roland, J., Xiao, D.: Lower
bounds on information complexity via zero-communication protocols and
applications. In: FOCS, pp. 500–509 (2012)

[KMSY14] Kol, G., Moran, S., Shpilka, A., Yehudayoff, A.: Approximate nonnegative
rank is equivalent to the smooth rectangle boundy. Electronic Colloquium
on Computational Complexity (ECCC) 21, 46 (2014)

[KN97] Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge
University Press (1997)

[Kra96] Krause, M.: Geometric arguments yield better bounds for threshold circuits
and distributed computing. Theoretical Computer Science 156(1&2),
99–117 (1996)

[Lee12] Troy Lee’s homepage. Some open problems around nonnegative rank
(2012),
http://www.research.rutgers.edu/~troyjlee/open_problems.pdf

[LLR12] Laplante, S., Lerays, V., Roland, J.: Classical and quantum partition
bound and detector inefficiency. In: Czumaj, A., Mehlhorn, K., Pitts, A.,
Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 617–628.
Springer, Heidelberg (2012)

[Lov90] Lovász, L.: Communication complexity: A survey. In: Path, Flows, and
VLSI-Networks, pp. 235–265 (1990)

[Lov13] Lovett, S.: Communication is bounded by root of rank. CoRR,
abs/1306.1877 (2013)

[LS88] Lovász, L., Saks, M.E.: Lattices, möbius functions and communication
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Abstract. We present the first approximate distance oracle for sparse
directed networks with time-dependent arc-travel-times determined by
continuous, piecewise linear, positive functions possessing the FIFO prop-
erty. Our approach precomputes (1 + ε)−approximate distance sum-
maries from selected landmark vertices to all other vertices in the
network, and provides two sublinear-time query algorithms that deliver
constant and (1+σ)−approximate shortest-travel-times, respectively, for
arbitrary origin-destination pairs in the network. Our oracle is based only
on the sparsity of the network, along with two quite natural assumptions
about travel-time functions which allow the smooth transition towards
asymmetric and time-dependent distance metrics.

1 Introduction

Distance oracles are succinct data structures encoding shortest path information
among a carefully selected subset of pairs of vertices in a graph. The encoding is
done in such a way that the oracle can efficiently answer shortest path queries
for arbitrary origin-destination pairs, exploiting the preprocessed data and/or
local shortest path searches. A distance oracle is exact (resp. approximate) if the
returned distances by the accompanying query algorithm are exact (resp. ap-
proximate). A bulk of important work (e.g., [22,21,17,18,23,24,2]) is devoted to
constructing distance oracles for static (i.e., time-independent), mostly undi-
rected networks in which the arc-costs are fixed, providing trade-offs between
the oracle’s space and query time and, in case of approximate oracles, also of the
stretch (maximum ratio, over all origin-destination pairs, between the distance
returned by the oracle and the actual distance). For an overview of distance
oracles for static networks, the reader is deferred to [20] and references therein.

In many real-world applications, however, the arc costs may vary as functions
of time (e.g., when representing travel-times) giving rise to time-dependent net-
work models. A striking example is route planning in road networks where the

ε Full version available at [14]. This work was supported by EU FP7/2007-2013 under
grant agreements no. 288094 (eCOMPASS) and no. 609026 (MOVESMART), and
partially done while both authors were visiting the Karlsruhe Inst. of Technology.

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 713–725, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014
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travel-time for traversing an arc a = uv (modelling a road segment) depends on
the temporal traffic conditions while traversing uv, and thus on the departure
time from its tail u. Consequently, the optimal origin-destination path may vary
with the departure-time from the origin. Apart from the theoretical challenge,
the time-dependent model is also much more appropriate with respect to the
historic traffic data that the route planning vendors have to digest, in order to
provide their customers with fast route plans. For example, TomTom’s LiveTraf-
fic service provides real-time estimations of average travel-time values, collected
by periodically sampling the average speed of each road segment in a city, using
the connected cars to the service as sampling devices. The crux is how to exploit
all this historic traffic information in order to provide efficiently route plans
that will adapt to the departure-time from the origin. Towards this direction,
we consider the continuous, piecewise linear (pwl) interpolants of these sample
points as arc-travel-time functions of the corresponding instance.

Computing a time-dependent shortest path for a triple (o, d, to) of an origin
o, a destination d and a departure-time to from the origin, has been studied long
time ago (see e.g., [4,11,16]). The shape of arc-travel-time functions and the
waiting policy at vertices may considerably affect the tractability of the problem
[16]. A crucial property is the FIFO property, according to which each arc-arrival-
time at the head of an arc is a non-decreasing function of the departure-time
from the tail. If waiting-at-vertices is forbidden and the arc-travel-time functions
may be non-FIFO, then subpath optimality and simplicity of shortest paths is
not guaranteed. Thus, (even if it exists) an optimal route is not computable
by well known techniques (Dijkstra or Bellman-Ford) [16]. Additionally, many
variants of the problem are also NP−hard [19]. On the other hand, if arc-travel-
time functions possess the FIFO property, then the problem can be solved in
polynomial time by a straightforward variant of Dijkstra’s algorithm (TDD),
which relaxes arcs by computing the arc costs “on the fly”, when scanning their
tails. This has been first observed in [11], where the unrestricted waiting policy
was (implicitly) assumed for vertices, along with the non-FIFO property for arcs.

The FIFO property may seem unreasonable in some application scenarios, e.g.,
when travellers at the dock of a train station wonder whether to take the very
next slow train towards destination, or wait for a subsequent but faster train.
Our motivation in this work stems from route planning in urban-traffic road
networks where the FIFO property seems much more natural: Cars are assumed
to travel according to the same (possibly time-dependent) average speed in each
road segment, and overtaking is not considered as an option. Additionally, when
shortest-travel-times are well defined and optimal waiting-times at nodes always
exist, a non-FIFO arc with unrestricted-waiting-at-tail policy is equivalent to a
FIFO arc in which waiting at the tail is useless [16]. Therefore, our focus in this
work is on networks with FIFO arc-travel-time functions.

Until recently, most of the previous work on the time-dependent shortest path
problem concentrated on computing an optimal origin-destination path provid-
ing the earliest-arrival time at destination when departing at a given time from
the origin, and neglected the computational complexity of providing succinct
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representations of the entire earliest-arrival-time functions, for all departure-
times from the origin. Such representations, apart from allowing rapid answers
to several queries for selected origin-destination pairs but for varying departure
times, would also be valuable for the construction of distance summaries (a.k.a.
route planning maps, or search profiles) from central vertices (e.g., landmarks or
hubs) towards other vertices in the network, providing a crucial ingredient for
the construction of distance oracles to support real-time responses to arbitrary
queries (o, d, to) ∈ V × V × R.

The complexity of succinctly representing earliest-arrival-time functions was
first questioned in [5,7,6], but was solved only recently in [13] which, for FIFO-
abiding pwl arc-travel-time functions, showed that the problem of succinctly rep-
resenting such a function for a single origin-destination pair has space-complexity
(1 + K) · nσ(logn), where n is the number of vertices and K is the total number
of breakpoints (or legs) of all the arc-travel-time functions. Polynomial-time al-
gorithms (or even PTAS) for constructing point-to-point approximate distance
functions are provided in [13,8]. Such approximate distance functions possess suc-
cinct representations, since they require only O(1 + K) breakpoints per origin-
destination pair. It is also easy to verify that K could be substituted by the
number K◦ of concavity-spoiling breakpoints of the arc-travel-time functions
(i.e., breakpoints at which the arc-travel-time slopes increase).

To the best of our knowledge, the problem of providing distance oracles for
time-dependent networks with provably good approximation guarantees, small
preprocessing-space complexity and sublinear time complexity, has not been in-
vestigated so far. Due to the hardness of providing succinct representations of
exact shortest-travel-time functions, the only realistic alternative is to use ap-
proximations of these functions for the distance summaries that will be prepro-
cessed and stored by the oracle. Exploiting a PTAS (such as that in [13]) for
computing approximate distance functions, one could provide a trivial oracle
with query-time complexity Q ∈ O(log log(K◦)), at the cost of an exceedingly
high space-complexity S ∈ O(

(1 + K◦) · n2
)
, by storing succinct representations

of all the point-to-point (1 + σ)−approximate shortest-travel-time functions.
At the other extreme, one might use the minimum possible space complexity
S ∈ O(n + m + K) for storing the input, at the cost of suffering a query-time
complexity Q ∈ O(m + n log(n)[1 + log log(1 + Kmax)]) (i.e., respond to each
query by running TDD in real-time using a predecessor search structure for eval-
uating pwl functions)1. The main challenge considered in this work is to smoothly
close the gap between these two extremes, i.e., to achieve a better (e.g., sub-
linear) query-time complexity, while consuming smaller space-complexity (e.g.,
o
(
(1 + K◦) · n2

)
) for succinctly representing travel-time functions, and enjoying

a small (e.g., close to 1) approximation guarantee.
We present the first approximate distance oracle for sparse directed graphs

with time-dependent arc-travel-times, which achieves all these goals. Our oracle
is based only on the sparsity of the network, plus two assumptions of travel-
time functions which are quite natural for route planning in road networks

1 Kmax denotes the maximum number of breakpoints in an arc-travel-time function.
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(cf. Assumptions 1 and 2 in Section 2). It should be mentioned that: (i) even in
static undirected networks, achieving a stretch factor below 2 using subquadratic
space and sublinear query time, is possible only when m ∈ o

(
n2

)
, as it has been

recently shown [18,2]; (ii) there is important applied work [10,3,9,15] to develop
time-dependent shortest path heuristics, which however provide mainly empiri-
cal evidence on the success of the adopted approaches.

At a high level, our approach resembles the typical ones used in static and
undirected graphs (e.g., [22,18,2]): Distance summaries from selected landmarks
are precomputed and stored; fast responses to arbitrary real-time queries are
provided by growing small distance balls around the origin and the destination,
and then closing the gap between the prefix subpath from the origin and the suf-
fix subpath towards the destination. However, it is not at all straightforward how
this generic approach can be extended to time-dependent and directed graphs,
since one is confronted with two highly non-trivial challenges: (i) handling direct-
edness, and (ii) dealing with time-dependence, i.e., deciding the arrival-times to
grow balls around vertices in the vicinity of the destination, because we simply
do not know the earliest-arrival-time at destination – actually, this is what the
original query to the oracle asks for. A novelty of our query algorithms, contrary
to other approaches, is exactly that we achieve the approximation guarantees
by growing balls only from vertices around the origin. Managing this was a ne-
cessity for our analysis since growing balls around vertices in the vicinity of the
destination at the right arrival-time is essentially not an option.

Let U be the worst-case number of breakpoints for an (1 + σ)−approximation
of a concave distance function stored in our oracle, and TDP be the maximum
number of time-dependent shortest path probes during their construction2. The
following theorem summarizes our results.

Theorem 1. For time-dependent instances compliant with Assumptions
1 and 2, a distance oracle is provided storing (1 + σ)−approximate
distance functions from landmarks, which are uniformly and indepen-
dently selected with probability τ, to all other vertices, and uses a
recursion depth (budget) r in the query algorithm, guaranteeing ex-
pected values of: (i) preprocessing space O(

τn2(1 + K◦)U
)
; (ii) pre-

processing time O(
τn2(1 + K◦) log(n) log log(Kmax)TDP

)
; (iii) query time

O
((

1
ε

)r+1

log
(

1
ε

)
log log(Kmax)

)
. The guaranteed stretch is 1 + σ

(1+ ε
ψ )r+1

(1+ ε
ψ )r+1−1 ,

where λ is a fixed constant depending on the characteristics of the arc-travel-time
functions, but is independent of the network size.

Note that, apart from the choice of landmarks, our algorithms are determin-
istic. Due to space limitations, proofs and a table with solid examples of the
oracle’s space/query-time/stretch trade-offs can be found in the full version [14].

2 As proved in [14], U and TDP are independent of the network size n.
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2 Ingredients and Overview of Our Approach

Our input is provided by a directed graph G = (V,A) with n vertices and m
arcs. Every arc uv ∈ A is equipped with a periodic, continuous, piecewise-linear
(pwl) arc-travel-time (a.k.a. arc-delay) function D[uv] : R ⊆ R>0, such that
⊂k ∈ Z, ⊂tu ∈ [0, T ), D[uv](k · T + tu) = D[uv](tu) is the arc-travel-time of uv
when the departure-time from u is k ·T + tu. D[uv] is represented succinctly as a
continuous pwl function, by Kuv breakpoints describing its projection to [0, T ).
K =

∑
uv√A Kuv is the number of breakpoints to represent all the arc-delay func-

tions in the network, and Kmax = maxuv√A Kuv. K◦ is the number of concavity-
spoiling breakpoints, i.e., the ones in which the arc-delay slopes increase. Clearly,
K◦ → K, and K◦ = 0 for concave pwl functions. The space to represent the entire
network is O(n + m + K). The arc-arrival function Arr[uv](tu) = tu+D[uv](tu)
represents arrival-times at v, depending on the departure-times tu from u. For
any (o, d) ∈ V × V , Po,d is the set of od−paths, and P = ∧(o,d)Po,d. For a path
p ∈ P , px�y is its subpath from (the first appearance of) vertex x until (the
subsequent first appearance of) vertex y. For any pair of paths p ∈ Po,v and
q ∈ Pv,d, p • q is the od−path produced as the concatenation of p and q at v.
For any path (represented as a sequence of arcs) p = ≥a1, a2, · · · , ak⇐ ∈ Po,d,
the path-arrival function is the composition of the constituent arc-arrival func-
tions: ⊂to ∈ [0, T ), Arr[p](to) = Arr[ak ](Arr[ak−1](· · · (Arr[a1 ](to)) · · · )). The
path-travel-time function is D[p](to) = Arr[p](to) − to. The earliest-arrival-time
and shortest-travel-time functions from o to d are: ⊂to ∈ [0, T ), Arr[o, d](to) =
minp√Po,d

{Arr[p](to)} and D[o, d](to) = Arr[o, d](to) − to. Finally, SP [o, d](to)
(resp. ASP [o, d](to)) is the set of shortest (resp., with stretch-factor at most
(1 + σ)) od−paths for a given departure-time to.

Facts of the FIFO Property. We consider networks (G = (V,A), (D[a])a√A)
with continuous arc-delay functions, possessing the FIFO (a.k.a. non-overtaking)
property, according to which all arc-arrival-time functions are non-decreasing:

⊂tu, t≤u ∈ R, ⊂uv ∈ A, tu > t≤u ⇒ Arr[uv](tu) ∪ Arr[uv](t≤u) (1)

The FIFO property is strict, if the above inequality is strict. The FIFO property
implies that: (i) the slope of any arc-delay function is greater than −1; (ii) the
slope of any path-delay or shortest-travel-time function is greater than −1. The
strict FIFO property implies subpath optimality of shortest paths. For formal
statements and proofs of these facts, see [14].

Towards a Time-Dependent Distance Oracle. Our approach for providing
a time-dependent distance oracle is inspired by the generic approach for gen-
eral undirected graphs under static travel-time metrics. However, we have to
tackle the two main challenges of directedness and time-dependence. Notice that
together these two challenges imply an asymmetric distance metric which also
evolves with time. Consequently, to achieve a smooth transition from the static
and undirected world towards the time-dependent and directed world, we have
to quantify the degrees of asymmetry and evolution in our metric. Towards this



718 S. Kontogiannis and C. Zaroliagis

direction, we make two assumptions on the kind of shortest-travel-time functions
in the network. Both assumptions are quite natural and justified by a thorough
investigation of historic traffic data for the city of Berlin, kindly provided to us
by TomTom [12] (see [14] for a more detailed justification). The first assump-
tion, called Bounded Travel-Time Slopes, asserts that the partial derivatives of
the shortest-travel-time functions between any pair of origin-destination vertices
are bounded in a given fixed interval [Πmin, Πmax].

Assumption 1 (Bounded Travel-Time Slopes). There are constants

Πmin > −1 and Πmax ∪ 0 s.t.: ⊂(o, d) ∈ V × V, ⊂t1 < t2,
D[o,d](t1)−D[o,d](t2)

t1−t2
∈

[Πmin, Πmax] .

The second assumption, called Bounded Opposite Trips, asserts that for any
given departure time, the shortest-travel-time from o to d is not more than a
constant β ∪ 1 times the shortest-travel-time in the opposite direction (but not
necessarily along the same path).

Assumption 2 (Bounded Opposite Trips). There is a constant β ∪ 1 such
that: ⊂(o, d) ∈ V × V, ⊂t ∈ [0, T ), D[o, d](t) → β ·D[d, o](t) .

As we show in Section 4, the parameters Πmax and β allow us to quantify the
degree of asymmetry and evolution in time in our distance metric and achieve
the aforementioned smooth transition. Another assumption we make and which
can be easily guaranteed is that the maximum out-degree is bounded by 2.

Overview of Our Approach. We follow (at a high level) the typical approach
adopted for the construction of approximate distance oracles in the static case.
In particular, we start by selecting a subset L ≤ V of landmarks, i.e., vertices
which will act as reference points for our distance summaries. For our oracle to
work, several ways to choose L would be acceptable. Nevertheless, for the sake
of the analysis we assume that this is done by deciding for each vertex randomly
and independently with probability τ ∈ (0, 1) whether it belongs to L. After
having L fixed, our approach is deterministic. We start by constructing (con-
currently, per landmark) and storing the distance summaries, i.e., all landmark-
to-vertex (1+σ)−approximate travel-time functions, in time o

(
(1 + K◦)n2

)
and

consuming space o
(
(1 + K◦)n2

)
which is indeed asymptotically optimal w.r.t.

the required approximation guarantee (cf. Section 3). Then, we provide two ap-
proximation algorithms for arbitrary queries (o, d, to) ∈ V × V × [0, T ). The
first (FCA) is a simple sublinear -time constant-approximation algorithm (cf.
Section 4). The second (RQA) is a recursive algorithm growing small TDD
outgoing balls from vertices in the vicinity of the origin, until either a satisfac-
tory approximation guarantee is achieved, or an upper bound r on the depth of
the recursion (the recursion budget) has been exhausted. RQA finally responds
with a (1 + Δ)−approximate travel-time to the query in sublinear time, for any
constant Δ > σ (cf. Section 4). As it is customary in the distance oracle liter-
ature, the query times of our algorithms concern the determination of (upper
bounds on) shortest-travel-time from o to d. An actual path guaranteeing this
bound can be reported in additional time that is linear in the number of its arcs.
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3 Preprocessing Distance Summaries

We now demonstrate how to construct the preprocessed information that will
comprise the distance summaries of the oracle, i.e., all landmark-to-vertex
shortest-travel-time functions. If there exist K◦ ∪ 1 concavity-spoiling break-
points among the arc-delay functions, then we do the following: For each of them
(which is a departure-time tu from the tail u of an arc uv ∈ A) we run a variant

of TDD with root (u, tu) on the reverse network (
⇔−
G = (V,A, (

⇔−
D [a])a√A), where⇔−

D [uv] is the delay of arc uv, measured now as a function of the arrival-time tv
at the tail v. The algorithm proceeds backwards both along the connecting path
(from the destination towards the origin) and in time. As a result, we compute
all latest-departure-times from landmarks that allow us to determine the im-
ages (i.e., projections to appropriate departure-times from all possible origins)
of concavity-spoiling breakpoints. For each landmark, we repeat the procedure
described in the rest of this section for every K◦ + 1 subinterval of [0, T ) de-
termined by consecutive images of concavity-spoiling breakpoints. Within each
subinterval all arc-travel-time functions are concave, as required in our analysis.

We must construct in polynomial time, for all (∂, v) ∈ L × V , succinctly
represented upper-bounding (1 + σ)−approximations φ[∂, v] : [0, T ) ⊆ R>0 of
the shortest-travel-time functions D[∂, v] : [0, T ) ⊆ R>0. An algorithm providing
such functions in a point-to-point fashion was proposed in [13]. For each landmark
∂ ∈ L, it has to be executed n times so as to construct all the required landmark-
to-vertex approximate functions. The main idea of that algorithm is to keep
sampling the travel-time axis of the unknown function D[∂, v] at a logarithmically
growing scale, until its slope becomes less than 1. It then samples the departure-
time axis via bisection, until the required approximation guarantee is achieved.
All the sample points (in both phases) correspond to breakpoints of a lower-
approximating function. The upper-approximating function has at most twice
as many points. The number of breakpoints returned may be suboptimal, given
the required approximation guarantee: even for an affine shortest-travel-time
function with slope in (1, 2] it would require a number of points logarithmic in
the ratio of max-to-min travel-time values from ∂ to v, despite the fact that we
could avoid all intermediate breakpoints for the upper-approximating function.

Our solution is an improvement of the approach in [13] in two aspects: (i)
it computes concurrently all the required approximate distance functions from
a given landmark, at a cost equal to that of a single (worst-case with respect
to the given origin and all possible destinations) point-to-point approximation
of [13]; (ii) within every subinterval of consecutive images of concavity-spoiling
breakpoints, it provides asymptotically optimal space per landmark, which is
also independent of the network size per landmark-vertex pair, implying that
the required preprocessing space per vertex is O(|L|). This is also claimed in
[13], but it is actually true only for their second phase (the bisection). For the
first phase of their algorithm, there is no such guarantee. Even for a linear
arc-travel-time function, the first phase of that algorithm would still require a
number of samples which is logarithmic in the max-to-min travel-time ratio.
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Our algorithm, in order to achieve a concurrent one-to-all construction of
upper-bounding approximations from a given landmark ∂ ∈ L, is purely based
on bisection. This is done because the departure-time axis is common for all these
unknown functions (D[∂, v])v√V . In order for this technique to work, despite the
fact that the slopes may be greater than one, a crucial ingredient is an exact
closed-form estimation of the worst-case absolute error that we provide. This
helps our construction to indeed consider only the necessary sampling points
as breakpoints of the corresponding (concurrently constructed) shortest travel-
time functions. It is mentioned that this guarantee could also be used in the first
phase of the approximation algorithm in [13], in order to discard all unnecessary
sampling points from being actual breakpoints in the approximate functions.

In a nutshell, we construct two continuous pwl-approximations of the un-
known shortest-travel-time function D[∂, v] : [0, T ) ⊆ R>0, an upper-bounding
approximate function D[∂, v] (playing the role of φ[∂, v]) and a lower-bounding
approximate function D[∂, v]. Our construction guarantees that the exact func-
tion is always “sandwiched” between these two approximations. For a given
landmark ∂ ∈ L and a subinterval [ts, tf ) ∗ [0, T ) of departure times from ∂, in
which all the (unknown) shortest-travel-time functions from ∂ are concave, the
algorithm proceeds as follows (details are provided in [14]): The current subin-
terval [ts, tf ) is bisected in the middle tm =

ts+tf
2 . The result of this bisection is

for the lower-approximating function D[∂, v] to be augmented by the new break-
point tm, for all still active (having not yet met their required approximation
guarantee) destination vertices v w.r.t. [ts, tf ). Our next step is, for each v ∈ V ,
to check whether the upper-approximating function D[∂, v], consisting of the
lower-envelope of the tangents of D[∂, v] at ts, tm and tf , i.e., at most five break-
points for the subinterval [ts, tf ), is already a (1 + σ)−approximation of D[∂, v]
within [ts, tm) and [tm, tf ). Each destination vertex that is already satisfied by
the current approximation becomes inactive for the subsequent subintervals. If
any of the two subintervals still has active destination nodes, it is recursively
bisected.

L[∂, v] and U [∂, v] denote the numbers of breakpoints for D[∂, v] and D[∂, v],
U = maxΩ,v{U [∂, v]}, and TDP is the number of shortest-path probes during a
bisection. By construction it holds that U [∂, v] → 2 · L[∂, v] (for an explanation
see [14]). The expected number of landmarks is E {|L|} = τn. It is then easy to
deduce the required time and space complexity of our entire preprocessing.

Theorem 2. The preprocessing has expected space/time complexities E {S} ∈
O(

τn2(1 + K◦)U
)
and E {P} ∈ O(

τn2 log(n) log log(Kmax)(1 + K◦)TDP
)
.

U and TDP are independent of n (cf. [14]), so we treat them as constants.
If all arc-travel-time functions are concave, i.e., K◦ = 0, then we achieve sub-
quadratic preprocessing space and time ⊂τ ∈ O(n−α), where 0 < κ < 1. Real
data (e.g., TomTom’s traffic data for the city of Berlin [12]) demonstrate that:
(i) only a small fraction of the arc-travel-time functions exhibit non-constant
behaviour; (ii) for the vast majority of these non-constant-delay arcs, their
functions are either concave, or can be very tightly approximated by a typi-
cal concave bell-shaped pwl function. It is only a tiny subset of critical arcs
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(e.g., bottleneck road segments) for which it would be meaningful to consider
non-concave behaviour. Therefore, K◦ ∈ o(n) is the typical case. E.g., assuming
K◦ ∈ O(polylog(n)), we can fine-tune τ and the parameters Δ, r (cf. Section 4)
so as to achieve subquadratic preprocessing space and time. In particular, for
K◦ ∈ O(log(n)) and Kmax ∈ O(1), ⊂α > 1

2 , E {S} ∈ O(
n2−λ/(ΔΛ) log(n)

)
and

E {P} ∈ O(
n2−λ/(ΔΛ) log2(n)

)
, where λ = λ(β, Πmax) is a constant that will be

specified in Theorem 3. More details are provided in [14].

4 Query Algorithms

Constant-Approximation Query Algorithm. Our next step towards a dis-
tance oracle is to provide a fast query algorithm providing constant approxi-
mations to the actual shortest-travel-time values of arbitrary queries (o, d, to) ∈
V × V × [0, T ). Here we propose such a query algorithm, called Forward Con-
stant Approximation (FCA), which grows an outgoing ball Bo ⊥ B[o](to) =
{x ∈ V : D[o, x](to) < D[o, ∂o](to)} around (o, to) by running TDD, until ei-
ther d or the closest landmark ∂o ∈ arg minΩ√L{D[o, ∂](to)} is scanned. We call
Ro = D[o, ∂o](to) the radius of Bo. FCA returns either the exact travel-time
value, or the approximate travel-time value via ∂o. Figure 1 gives an overview of
the whole idea. The pseudocode is provided in [14].

td = to + D[o,d](to)

Ro

x

lo

w od

P  SP[o,d](to)
to

Q  SP[o,lo](to)

 ASP[lo,d](to+Ro)
Fig. 1. The rationale of FCA. The dashed
(blue) path is a shortest od−path for query
(o, d, to). The dashed-dotted (green and
red) path is the via-landmark od−path in-
dicated by the algorithm, if the destination
vertex is out of the origin’s TDD ball.

Correctness. The next theorem demonstrates that FCA returns od−paths
whose travel-times are constant approximations to the shortest travel-times.

Theorem 3. ⊂(o, d, to) ∈ V × V × [0, T ), FCA returns either an exact path
P ∈ SP [o, d](to), or a via-landmark od−path Q •χ, s.t. Q ∈ SP [o, ∂o](to), χ ∈
ASP [∂o, d](to+Ro), and D[o, d](to) → Ro+φ[∂o, d](to+Ro) → (1+σ)·D[o, d](to)+
λ·Ro → (1+σ+λ)·D[o, d](to) , where λ = 1+Πmax(1+σ)(1+2β+Πmaxβ)+(1+σ)β.

Note that FCA is a generalization of the 3−approximation algorithm in [2] for
symmetric (i.e., β = 1) and time-independent (i.e., Πmin = Πmax = 0) network
instances, the only difference being that the stored distance summaries we con-
sider are (1+σ)−approximations of the actual shortest-travel-times. Observe that
our algorithm smoothly departs, through the parameters β and Πmax, towards
both asymmetry and time-dependence of the travel-time metric.
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Complexity. The main cost of FCA is to grow the ball Bo = B[o](to) by run-
ning TDD. Therefore, what really matters is the number of vertices in Bo, since
the maximum out-degree is 2. L is chosen randomly by selecting each vertex v to
become a landmark independently of other vertices, with probability τ ∈ (0, 1).
Clearly E {|Bo|} = 1/τ, and moreover (as a geometrically distributed random
variable), ⊂k ∪ 1 ,P {|Bo| > k} = (1 − τ)k → e−εk. By setting k = (1/τ) ln(1/τ)
we conclude that: P {|Bo| > (1/τ) ln(1/τ)} → τ. Since the maximum out-degree
is 2, TDD will relax at most 2k arcs. Hence, for the query-time complexity
QFCA of FCA we conclude that E {QFCA} ∈ O((1/τ) ln(1/τ) log log(Kmax)),
and P

{QFCA ∈ ζ
(
(1/τ) ln2(1/τ) log log(Kmax)

)} ∈ O(τ).

(1 + λ)−Approximate Query Algorithm. The Recursive Query Algorithm
(RQA) improves the approximation guarantee of the chosen od−path provided
by FCA, by exploiting carefully a number (called the recursion budget) of re-
cursive accesses to the preprocessed information, each of which produces (via
a call to FCA) another candidate od−path soli. The crux of our approach is
the following: We assure that, unless the required approximation guarantee has
already been reached by a candidate solution, the recursion budget must be
exhausted and the sequence of radii of the consecutive balls that we grow recur-
sively is lower-bounded by a geometrically increasing sequence. We prove that
this sequence can only have a constant number of elements, since the sum of all
these radii provides a lower bound on the shortest-travel-time that we seek.

A similar approach was proposed for undirected and static sparse networks [2],
in which a number of recursively growing balls (up to the recursion budget)
is used in the vicinities of both the origin and the destination nodes, before
eventually applying a constant-approximation algorithm to close the gap, so as
to achieve improved approximation guarantees.

In our case the network is both directed and time-dependent. Due to our
ignorance of the exact arrival time at the destination, it is difficult (if at all
possible) to grow incoming balls in the vicinity of the destination node. Hence,
our only choice is to build a recursive argument that grows outgoing balls in the
vicinity of the origin, since we only know the requested departure-time from it.
This is exactly what we do: So long as we have not discovered the destination
node within the explored area around the origin, and there is still some remaining
recursion budget, we “guess” (by exhaustively searching for it) the next node
wk along the (unknown) shortest od−path. We then grow a new out-ball from
the new center (wk, tk = to +D[o, wk](to)), until we reach the closest landmark-
vertex ∂k to it, at distance Rk = D[wk, ∂k](tk). This new landmark offers an
alternative od−path solk = Po,k •Qk •χk by a new application of FCA, where
Po,k ∈ SP [o, wk](to), Qk ∈ SP [wk, ∂k](tk), and χk ∈ ASP [∂k, d](tk + Rk) is
the approximate suffix subpath provided by the distance oracle. Observe that
solk uses a longer optimal prefix-subpath Pk which is then completed with a
shorter approximate suffix-subpath Qk •χk. The pseudocode is provided in [14].
Figure 2 provides an overview of RQA’s execution.
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to

lk

d

P0,k  SP[o , wk](to)

 R0 + R1 + … + Rk-1

OOO

Qk  SP[wk , lk](tk)

k  ASP[lk , d](tk+Rk)

t1 tk

w1o wk

 Rk

wx Fig. 2. Overview of the execution of
RQA

Correctness & Quality. The correctness of RQA implies that the algorithm
always returns some od−path. This is true due to the fact that it either discovers
the destination node d as it explores new nodes in the vicinity of the origin node
o, or it returns the shortest of the approximate od−paths sol0, . . . , solr via one
of the closest landmarks ∂o, . . . , ∂r to “guessed” nodes w0 = o, w1, . . . , wr along
the shortest od−path P ∈ SP [o, d](to), where r is the recursion budget. Since
the preprocessed distance summaries stored by the oracle provide approximate
travel-times corresponding to actual paths from landmarks to vertices in the
graph, it is clear that RQA always implies an od−path whose travel-time does
not exceed the alleged upper bound on the actual distance.

Our next task is to study the quality of the provided stretch 1 +Δ guaranteed
by RQA. Let δ > 0 be a parameter such that Δ = σ+ δ and recall the definition
of λ from Theorem 3. In [14] it is shown that the sequence of ball radii grown
from vertices of the shortest od−path P [o, d](to) by the recursive calls of RQA is
lower-bounded by a geometrically increasing sequence. The next theorem shows
that RQA indeed provides (1 + Δ)−approximate distances in response to arbi-
trary queries (o, d, to) ∈ V × V × [0, T ).

Theorem 4. For the stretch of RQA the following hold:

1. If r =

⌈
ln(1+ ε

δ )
ln(1+ ε

ψ )

⌉
−1 for δ > 0, then, RQA guarantees a stretch 1 + Δ =

1 + σ + δ.
2. For a given recursion budget r ∈ N, RQA guarantees stretch 1 + Δ, where

Δ = Δ(r) → λ·(1+λ/Λ)r+1

(1+λ/Λ)r+1−1 .

Note that for time-independent, undirected-graphs (for which Πmin = Πmax =
0 and β = 1) it holds that λ = 2 + σ. If we equip our oracle with exact rather
than (1 + σ)−approximate landmark-to-vertex distances (i.e., σ = 0), then in
order to achieve Δ = δ = 2

t+1 for some positive integer t, our recursion budget r

is upper bounded by Λ
η − 1 = t. This is exactly the amount of recursion required

by the approach in [2] to assure the same approximation guarantee. That is,
at its one extreme (Πmin = Πmax = 0, β = 1, λ = 2) our approach matches
the bounds in [2] for the same class of graphs, without the need to grow balls
from both the origin and destination vertices. Moreover, our approach allows for
a smooth transition from static and undirected-graphs to directed-graphs with
FIFO arc-delay functions. The required recursion budget now depends not only
on the targeted approximation guarantee, but also on the degree of asymmetry
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(the value of β ∪ 1) and the steepness of the shortest-travel-time functions (the
value of Πmax) for the time-dependent case. It is noted that we have recently
become aware of an improved bidirectional approximate distance oracle for static
undirected graphs [1] which outperforms [2] in the stretch-time-space tradeoff.

Complexity. It only remains to determine the query-time complexity QRQA of
RQA. This is provided by the following theorem.

Theorem 5. For networks having |A|/|V | ∈ O(1), the expected running time of
RQA is E {QRQA} ∈ O(

(1/τ)r+1 · ln(1/τ) · log log(Kmax)
)
, and it holds that:

P

{
QRQA ∈ O

((
ln(n)
ε

)r+1

·
[
ln ln(n) + ln

(
1
ε

)]
· log log(Kmax)

)}
∈ 1−O(

1
n

)
.

Continuing the discussion in the paragraph following Theorem 2, we can fine-tune
the parameters Δ, r so as to achieve, along with subquadratic space and prepro-
cessing time, sublinear query-time complexity E {QRQA} ∈ O(

n1/(2Δ) log(n)
)
,

⊂α > 1
2 . More details (and examples) are provided in [14].
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Abstract. We study the problem of indexing necklaces, and give the
first polynomial time algorithm for this problem. Specifically, we give a
poly(n, log |Σ|)-time computable bijection between {1, . . . , |N |} and the
set N of all necklaces of length n over a finite alphabet Σ.

Our main application is to give an explicit indexing of all irreducible
polynomials of degree n over the finite field Fq in time poly(n, log q) (with
n log q bits of advice). This has applications in pseudorandomness, and
answers an open question of Alon, Goldreich, H̊astad and Peralta [2].

1 Introduction

An indexing of a finite set S is a bijection from the set {1, . . . , |S|} to S. An in-
dexing of a language L is an algorithm A which takes as input a length parameter
n and an index j and outputs An(j), so that for each n:

– An maps the set {1, . . . , |Ln|} bijectively to Ln, where Ln is the set of length
n words of L.

– If j > |Ln| then An(j) returns too large.

A reverse-indexing of L is a bijection from Ln to {1, . . . , |Ln|}. An indexing
of reverse-indexing is efficient if it runs in time poly(n). We can formulate these
problems for any combinatorial structure, such as permutations, graphs, parti-
tions, etc. by using standard efficient encodings of such structures by strings.

This paper gives the first efficient algorithm for indexing necklaces, where a
necklace of length n over [q] is an equivalence class of [q]n under cyclic permu-
tation. As a consequence, we show the existence of polynomial size circuits for
indexing irreducible polynomials over finite fields (answering a problem of Alon,
Goldreich, H̊astad and Peralta [2]). This latter problem is the polynomial ana-
logue of the problem of “giving a formula for the n-bit primes” (with a little
advice).
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Indexing, Enumeration, Counting, Ranking and Unranking. Indexing
is closely related to counting and enumeration. A counting algorithm for L in-
puts n and outputs |Ln|, and an enumeration algorithm lists the elements of Ln

without repetition. Such algorithms are efficient if they run in time poly(n) (for
counting) or |Ln| ·poly(n) (for enumeration). There is well developed complexity
theory for counting problems, starting with Valiant [22]. Many basic combina-
torial identities (e.g. expressing the number objects of a given type of size n
in terms of the number of objects of smaller sizes) give efficient counting algo-
rithms. The enumeration problem for combinatorial structures has also received
a large amount of attention, see, for example [4, 13, 16, 18].

Indexing and reverse-indexing are even more closely related to the unranking
and ranking problems. For the ranking (resp. unranking) problem, e.g. [15], the
combinatorial objects being indexed have a prespecified order (such as lexico-
graphic order) and the goal is to compute a reverse-indexing (resp. indexing)
that is consistent with that order.

Counting and enumeration can be easily reduced to indexing. Conversely, for
many structures, such as subsets, permutations, set partitions, integer partitions
and trees, the known counting algorithms can be modified to give efficient in-
dexing algorithms, e.g., when the counting problem is solved by a recurrence
relation that has a bijective proof.

However, it seems that not all combinatorial counting arguments lead to effi-
cient indexing algorithms. For example, we can count the orbits of a group action
on a set using the Burnside counting lemma, but we don’t know a general way
to efficiently index orbits (where the indexing algorithm represents an orbit by
some (arbitrary) representative). The problem of indexing necklaces is perhaps
the simplest non-trivial problem of this type.

Main Results. We give efficient algorithms for indexing and reverse-indexing
necklaces:

Theorem 1. There are poly(n log q)-time algorithm for indexing and reverse-
indexing necklaces of {1, . . . , q}n.

Using a known correspondence [10] between necklaces and irreducible poly-
nomials over finite fields, we also index irreducible polynomials.

Theorem 2. There is a poly(n log q)-time algorithm (using n log q bits of ad-
vice) for indexing irreducible polynomials of degree n over the finite field Fq.

This is the polynomial analogue of the problem of finding a “formula for the
primes” (which is wide open, even with advice) and answers a question of [2].

Note that there is no known deterministic algorithm without advice for pro-
ducing even a single irreducible polynomial of degree n (for general q) in time
poly(n log q). Our result shows that with a little advice, we can produce not just
one, but all irreducible polynomials. For constant q it is known how to construct
one irreducible polynomial in poly(n)) time without advice, and our indexing
algorithm needs just poly(logn) bits of advice.

We prove Theorem 2 in Section 3. Other proofs will be in the full paper.
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We mention a few applications of our algorithms; see the full paper for details.
The indexing algorithm for irreducible polynomials can be used to reduce

the advice needed (from exponential to logarithmic) in a classical σ-biased set
construction from [2] based on linear-feedback shift register sequences.

The indexing algorithm for irreducible polynomials can also be used to make
the explicit subspace designs of [11] very explicit (with small advice).

Indexing a set immediately gives a method for randomness-optimal sam-
pling of the set. Sampling algorithms for irreducible polynomials have several
uses, such as polynomial identity testing and string fingerprinting. Agrawal
and Biswas [1] constructed a family of nearly-coprime polynomials, to obtain a
randomness-efficient black-box polynomial identity test. The string fingerprint-
ing algorithm by Rabin [17] interprets a string as the coefficients of a polynomial
and reduces it mod a random irreducible polynomial. Our indexing gives a way
to reduce randomness in these constructions (at the cost of some advice).

We give the first poly(n) time algorithm for computing any given entry of
the k × 2n generator matrix matrix or the (2n − k) × 2n parity check matrix of
BCH codes for all values of the designed distance (this is the standard notion of
strong explicitness for error-correcting codes). Earlier, it was only known how
to compute this entry explicitly for very small values of the designed distance
(which is usually the setting where BCH codes are used).

Related Work. There is an extensive literature on enumeration algorithms
for combinatorial objects (see the books [4, 12, 13, 16, 18]). These references in-
clude discussions of necklaces and the ranking/unranking problems for various
combinatorial objects.

The lexicographically smallest element of a rotation class is called a Lyn-
don word. Algorithmically, the problem of enumerating/indexing necklaces is
essentially equivalent to the problem of enumerating/indexing Lyndon words.
Following a long line of work [5–9,19,20], we now know linear time enumeration
algorithms for Lyndon words/necklaces.

Our indexing/reverse indexing algorithms for necklaces also gives and efficient
ranking/unranking of the lexicographic order on Lyndon words, which was noted
as an open problem in [14].

Andoni, Goldberger, McGregor and Porat [3] studied a problem that is an
approximate version of reverse indexing of necklaces. They gave a randomized
algorithm for producing short fingerprints of strings, such that the fingerprints
of rotations of a string are determined by the fingerprint of the string itself.

2 An Algorithm for Indexing Necklaces

Overview. Given an acyclic directed graph D on vertex set V and distinguished
subsets S and T of nodes, there is a straightforward algorithm to index the set of
paths that start in S and end in T : Fix an arbitrary ordering on the nodes, and
consider the induced lexicographic ordering on paths (i.e. path P1P2 . . . is less
than path Q1Q2 . . . if Pi < Qi where i is the least integer such that Pi ∈= Qi).
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Our indexing function maps index j to the jth path from S to T in lexicographic
order. There is a simple dynamic program which computes for each node v, the
number N(v) of paths from v to T . Let v1, . . . , vr be the nodes of S in order. On
input j, we find the first source vi such N(v1) + · · · + N(vi) ⊆ j; if there is no
such source then the index j is larger than the number of paths being indexed.
Otherwise, vi is the first node of the desired path, and we proceed inductively
by replacing S by the set of children of vi.

This approach can be used to index a set S of strings where S is the set
of strings of length n accepted by a given deterministic automaton with poly(n)
states. From this we build a layered directed graph with a single source at level 0,
and n additional layers each containing copies of all of the states which represents
the computation of the automaton over time, and whose source-to-sink paths
correspond to strings of length n accepted by the automaton.

This suggests the following approach to indexing necklaces. For each equiv-
alence class of strings (necklace) identify a canonical representative string of
the class (such as the lexicographically smallest representative). Then build an
automaton B which, given string y, determines whether y is a canonical repre-
sentative of its class. By the preceding paragraph, this would be enough to index
all of the canonical representatives, which is equivalent to indexing equivalence
classes.

In fact, we are able to implement this approach provided that q = 2 and n is
prime. However, we have not been able to make it work in general. For this we
need another approach, which uses finite automata in a more involved way.

First some notation. For a string y, Roti(y) is the string obtained from y by
cyclically rotating i positions to the right. Orbit(y) (also called the equivalence
class of y is the set of all rotations of y). A string y is periodic with period p if
it can be written as y1

q for some y1 ⊂ τp and q = n
p . The fundamental period

of y, FP (x) is its smallest period. Note that FP (y) = |Orbit(y)|.
If E is an orbit and x is a string, we say that E < x if E has at least one

string y<lexx, where <lex denotes lexicographic order. (Notice that if x and y are
strings then we might have both that the orbit of x is less than y and the orbit
of y is less than x). Let Cx be the set of orbits that are less than x.

Observation. If x<lexy then Cx → Cy.
Our goal is to design an algorithm which, given string x, returns the size of Cx.

From this we can solve the indexing problem using binary search: our indexing
maps j to the orbit of the largest x such that |Cx| < j. It is easy to see that this
map is a bijection. A reverse indexing can be constructed similarly.

Thus it is enough to give an algorithm for computing |Cx|.
We define:
Gx,p =

⋃
E◦Cx:|E|=pE and Gx,√p =

⋃
E◦Cx:|E| divides p E.

As we will see, |Cx| can be computed exactly as a function of |Gx,p| (for
various p). Furthermore, if we can count |Gx,√p| for each p then using Möbius
inversion we can count |Gx,p| for each p. The main component of our algorithm
is a subroutine that given x and p, computes |Gx,√p|. This subroutine builds an
automaton with nO(1) states, that accepts an input string y if and only if (1)
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the orbit of y has size dividing p and (2) Orbit(y) < x. The desired quantity
|Gx,√p|, is the number of y accepted by this automaton (and can be computed
in polynomial time via a dynamic program).

Some Notation and Preliminaries
A string is said to be good if it is an element of Gx. We denote by Gx,p the set of
all good strings of fundamental period p and by Gx,√p the set of all good strings
with period p.

For a set of strings W , Prefix(W ) (resp. Suffix(W ),Substring(W )) denotes the
set of prefixes, (resp., suffixes, contiguous substrings) of all strings in W (in-
cluding the empty string σ). For string x, we denote Prefix({x}) by Prefix(x),
etc.

An automaton will refer to a deterministic finite state machine where every
edge is labeled by an element of the alphabet1. For an automaton A, L(A),
Q(A), s(A), F (A) and λA denote, respectively, the language accepted by A, the
set of states of A, the start state of A, the set of final or accepting states of A
and the transition function of A.

We state (without proof) some basic facts about periodic strings.

Fact 1. Let y be a string of length n. Then, |Orbit(y)| = FP (y) is a divisor of

n. Thus y can be written as y1
n

FP(y) for an aperiodic string y1 ⊂ τFP (y) and the
fundamental period of a string is a divisor of any period of the string.

Reduction to Computing |Gx,√p|. We now reduce computing |Cx| to com-
puting |Gx,√p| (for various p).

Lemma 3. For all x ⊂ τn, |Cx| =
∑

y◦Gx,≤n

1
|Orbit(y)| =

∑
y◦Gx,≤n

1
FP (y) .

The sum on the right hand side can be split on the basis of the period of y. From
Lemma 3 and Fact 1, we have the following lemma.

Lemma 4. For all x ⊂ τn, |Cx| =
∑

i|n |Gx,i|/i.
So, to count |Cx| efficiently, it suffices to compute |Gx,i| efficiently for each

i|n. Now, just from the definitions, we have the following lemma.

Lemma 5. For all x ⊂ τn, |Gx,√p| =
∑

i|p |Gx,i|.
From the Möbius Inversion Formula, we have the following equality.

Lemma 6.
|Gx,p| =

∑

i|p
μ
(p
i

)
|Gx,√i|

Lemma 6 implies that it suffices to compute |Gx,√p| efficiently for every divisor
p of n. In the next few sections, we will focus on this sub-problem and design an

1 In our context, the automaton size will usually be at least as large as the size of the
input on which it is designed to run. Thus we could also have referred to automata
as “read-once branching programs” .
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efficient algorithm for this problem. We will first describe the algorithm when
the alphabet is binary, and then generalize to larger alphabets.

Computing |Gx,√n| Efficiently for the Binary Alphabet
We present an efficient algorithm which on input x outputs |Gx,√n|. We restrict
to τ = {0, 1} (and handle the case of larger τ later).

Lemma 7. There is a deterministic algorithm that takes as input a deter-
ministic automaton A and an integer n, runs in time poly(|A|, n) and outputs
|L(A) ∧ {0, 1}n|, the number of strings of length n accepted by A.

Proof. Consider the natural (edge-labelled) directed graph associated with the
automaton A. The number of strings of length n accepted by A is equal to the
number of walks of length n from the start state to an accept state, which is
the sum of appropriate entries of the nth power of the adjacency matrix of the
graph and is computable in time polynomial in the size of the graph and n.

For a string x of length n we construct an automaton Ax of size nO(1) such
that L(Ax) ∧ {0, 1}n = Gx,√n. Lemma 7 lets us compute |Gx,√n| in time nO(1).

For strings x, y, y<lexx if and only if there is an i ⊂ {1, 2, . . . , n− 1} such that
xi+1 > yi+1 and yj = xj for j ≥ i. For binary strings, xi+1 = 1 and yi+1 = 0.
We define the witness set for x to be the set Lx = {s0 : s1 is a prefix of x}.
Summarizing the previous discussion we have:

Observation 8. For x, y ⊂ {0, 1}n, we have y<lexx if and only if some prefix
of y lies in Lx.

We will now generalize this observation to strings under rotation. For strings
x, y, when is Orbit(y) < x? Recall that Orbit(y) < x if for some y≤ ⊂ Orbit(y),
we have y≤<lexx. From Observation 8, we know that this happens if and only if
some y≤ ⊂ Orbit(y) has some prefix w in Lx. Rotating back to y, two situations
can arise. Either y contains w as a contiguous substring, or w appears as a “split
substring” wrapped around the end of y. In the latter case, y has a prefix w1

and a suffix w2 such that w2w1 = w ⊂ Lx.
Recall that Gx,√n is the set of y with Orbit(y) < x. Thus, every string y ⊂

Gx,√n either has a contiguous substring as a witness, or it has a witness which
is wrapped around its end. Let us separate these two cases out.

Definition 1. For a string x ⊂ {0, 1}n,

Gc
x,√n = {y ⊂ {0, 1}n : y contains a string in Lx as a contiguous substring }

Gw
x,√n = {y ⊂ {0, 1}n : y has a prefix w1 and suffix w2 such that w2w1 ⊂ Lx}
From the discussion in the paragraph above, we have the following

observation:
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Observation 9.
Gx,√n = Gc

x,√n ⇐Gw
x,√n

So, in order to construct an automaton Ax for which L(Ax)∧{0, 1}n = Gx,√n,
it suffices to construct automata Ai

x for i ⊂ {c, w} recognizing Gi
x. The size of

Ax would be at most |Aw
x | × |Ac

x|. In the next two sections, we will give efficient
algorithms to construct small automata Aw

x and Ac
x, given x as input.

Remark 1. In the definition 1, if w2 = σ or w1 = σ, then y ⊂ Gc
x,√n ∧ Gw

x,√n.
Hence, Gc

x,√n and Gw
x,√n do not partition the set Gx,√n and such strings y will

be accepted by both the automata Aw
x and Ac

x and hence Ax.

Note that we will be designing algorithms to produce automata. We will never
actually run these automata; we will eventually feed the automaton Ax into the
algorithm of Lemma 7 in order to determine |Gx,√n|.

Constructing Automaton Ac
x Efficiently. We now design a poly-time algo-

rithm which on input x ⊂ {0, 1}n, outputs an automaton Ac
x.

Definition 2 (Automaton Ac
x). The automaton Ac

x is given as a tuple
(Q(Ac

x), s(Ac
x), F (Ac

x), λAc
x
), with

– Set of states Q(Ac
x) = {su : u ⊂ Prefix(Lx)}

– Start state s(Ac
x) = sε

– Set of final states F (Ac
x) = {su : u ⊂ Lx}

– Transition function λAc
x
defined as:

1. for every st ⊂ F and b ⊂ {0, 1}, λAc
x
(st, b) = st

2. for every st /⊂ F and b ⊂ {0, 1}, such that tb has a suffix in Lx,
λAc

x
(st, b) = su where u is the longest such suffix

3. for every st /⊂ F and b ⊂ {0, 1}, such that tb has no suffix in Lx,
λAc

x
(st, b) = su, where u is the longest suffix of tb in Prefix(Lx)

We will now argue that L(Ac
x)∧{0, 1}n = Gc

x. We will first prove the following
claim.

Claim. For every state st ⊂ Q(Ac
x) and z ⊂ {0, 1}⊆, if Ac

x reaches the state st on
input z, then one of the following is true:

– t ⊂ Lx and t is a contiguous substring of z
– t /⊂ Lx and t is the longest suffix of z in Prefix(Lx)

The claim above implies that a string is accepted if and only if it has a con-
tiguous substring in Lx. In particular, we get the correctness of the construction.

Lemma 10. L(Ac
x) ∧ {0, 1}n = Gc

x

For x ⊂ {0, 1}n, the sets Lx and Prefix(Lx) can be constructed in time polyno-
mial in n. Therefore, the automaton Ac

x can be constructed in time polynomial
in n.
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Constructing Aw
x Efficiently. We design an efficient algorithm that constructs

an automaton Aw
x satisfying L(Aw

x ) ∧ {0, 1}n = Gw
x , i.e., Aw

x accepts strings y
that have a prefix b and a suffix a such that ab ⊂ Lx. Intuitively, Aw

x is obtained
by combining two automata Aw,P

x , which detects the prefix and Aw,S
x which

detects the suffix. Due to the lack of space, the constructions and analyses of
the automata Aw,P

x , Aw,S
x and Aw

x are omitted from this version of the paper.
Lemma 11 summarizes the property we need on the strings accepted by Aw

x .

Lemma 11. A string z is accepted by Aw
x if and only if, it has a prefix Π and

a suffix β, possibly empty, such that βΠ ⊂ Lx.

The Lemma implies that that L(Aw
x ) ∧ {0, 1}n = Gw

x .

Putting Things Together. From the constructions, it is clear that the size of
the automaton Aw

x and Ac
x is polynomial in the size of Lx and hence polynomial

in n = |x|. Moreover, the product automaton of Aw
x and Ac

x can be constructed
in time polynomial in n. This observation, along with the Lemma 7 implies:

Lemma 12. There is an algorithm which takes as input a string x in {0, 1}n
and outputs the size of Gx,√n in time polynomial in n.

Computing |Gx,√p| Efficiently. In this section, we will show that for every p|n,
we can compute the quantity |Gx,√p| efficiently. The algorithm will be a small
variation of our algorithm for computing |Gx,√n| from the previous section. Let

p be a divisor of n with p < n. Every string y ⊂ Gx,√p is of the form a
n
p for some

a ⊂ {0, 1}p, and every string in Orbit(y) is of the form (Roti(a))
n
p , for some i ≥ p.

Let us write the string x as x1x2 . . . xn
p

where for each i, xi is of length exactly
p. We will now try to characterize the strings in Gx,√p. From the definitions,

y = a
n
p ⊂ Gx,√p if and only if there is a rotation i such that (Roti(a))

n
p has a

prefix in Lx, which holds if and only if there is an i < p such that one of the
following is true.

– Roti(a) < x1 in lexicographic order, or
– there is j, 0 < j < n

p , such that Roti(a) = x1 = x2 = x3 = . . . = xi and

Roti(a) < xi+1 in lexicographic order.

The strings y = a
n
p for which a has a rotation which is less than x1 in lexico-

graphic order are exactly the strings of the form c
n
p with c ⊂ Gx1,√p. Via the

algorithm of the previous subsection, there is a polynomial in n time algorithm
which outputs an automaton recognizing Gx1,√p. The only strings which satisfy

the second condition are of the form c
n
p , where c is a rotation of x1 and x1 < xi+1

in lexicographic order. There are at most |Orbit(x1)| such strings, and we can
count them directly given x. This leads to:
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Algorithm for Computing |Gx,√p|:
1. Write x as x = x1x2 . . . xn

p
where |xi| = p⇒i ⊂ [np ]

2. Construct an automaton Ax1 such that L(Ax1) ∧ {0, 1}p = Gx1,√p

3. Let M be the number of strings of length p accepted by Ax1

4. If there is an 0 < i < n
p such that x1 = x2 = x3 = . . . xi and x1 < xi+1

in lexicographic order, and x1 /⊂ L(Ax1), then output M + |Orbit(x1)|, else
output M .

From the construction in Section 2 and Lemma 12, it follows that we can
construct Ax1 and count M in time polynomial in n. We thus have:

Lemma 13. For any divisor p of n and string x ⊂ {0, 1}n, we can compute the
size of the set Gx,√p in time polynomial in n.

We now have all the ingredients for the proof of the following theorem.

Theorem 14. There is an algorithm for indexing necklaces of length n over the
alphabet {0, 1}, which runs in time nO(1).

Proof. The proof simply follows by plugging together the conclusions of Lemma 4,
Lemma 5, Lemma 6, Lemma 7 and Lemma 13.

It is not difficult to see that the indexing algorithm can be used to obtain a
reverse indexing algorithm as well and hence, we also obtain a special case of
Theorem 1 for the binary alphabet.

Indexing Necklaces over Large Alphabets. We now turn to the case of
general alphabets τ of size q. A straightforward generalization of the algorithm
for binary alphabets, runs in time polynomial in n and q. Our goal here is to
improve the running time to poly(n, log q). The idea is to represent the elements

in τ by binary strings of length t
def
= ∪log q≤. Let Bin : τ ⇔ {0, 1}t be an injective

map whose image is the set Δ of q lexicographically smallest strings in {0, 1}t.
Extend this to a map Bin : τn ⇔ {0, 1}tn in the natural way. We now use Bin to
convert our indexing/counting problems over the large alphabet τ to a related
problem over {0, 1}.

For x ⊂ τn, we have Bin(Roti(x)) = Rotti(Bin(x)). For an orbit E → τn and
x ⊂ {0, 1}tn, we say E < x if some element z ⊂ E satisfies Bin(z)<lexx.

For x ⊂ τn, we define Cx, Gx,p and Gx,√p as before. We count Gx,√n using:

|Gx,√n| = |{y ⊂ {0, 1}tn | y ⊂ Δn, ∗i < n s.t. Rotit(y)<lexx}|.
It is easy to efficiently produce an automaton A0 such that L(A0)∧{0, 1}tn = Δn.
As we will describe below, the methods of the previous section can be easily
adapted to efficiently produce an automaton Ax such that

L(Ax) ∧ {0, 1}tn = {y ⊂ {0, 1}tn | ∗i < n s.t. Rotit(y)<lexx}.
The following lemma will be crucial in the design of this automaton.
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Lemma 15. Let y ⊂ {0, 1}tn. There exists i < n such that Rotit(y)<lexx if and
only if at least one of the following events occurs:

1. there exists w ⊂ Lx such that w appears a contiguous substring of y start-
ing at a coordinate j with j ⊥ 0 mod t (where the coordinates of x are
0, 1, . . . , (tn− 1)).

2. there exist strings w1, w2 such that w1w2 ⊂ Lx, w2 is a prefix of y, w1 is a
suffix of y, and |w1| ⊥ 0 mod t.

The construction of Ax now follows easily via the techniques used in the binary
case. The main addition is that one needs to remember the current coordinate
mod t, which can be done by blowing up the number of states of the automaton
by a factor t. Intersecting the accepted sets of Ax and A0 gives us our desired
automaton which allows us to count |Gx,√n|. This easily adapts to also count
|Gx,√p| for each p | n. Putting everything together, we get:

Theorem 16. There is an poly(n, log |τ|)-time indexing algorithm for neck-
laces of length n over τ.

3 Indexing Irreducible Polynomials

Let q be a prime power, and Fq be the finite field of q elements. For n > 0, let
Iq,n denote the set of monic, irreducible polynomials of degree n in Fq[T ].

Theorem 17. For every q, n as above, there is an algorithm that runs in
poly(n, log q) time, takes n log q bits of advice, and indexes Iq,n.

Proof. Let P (T ) ⊂ Iq,n. Note that P (T ) has all its roots in the field Fqn . Let

β ⊂ Fqn be one of the roots of P (T ). Then we have that β, βq , . . . , βqn−1

are all

distinct, and P (T ) =
∏n−1

i=0 (T − βqi ).

Conversely, if we take β ⊂ Fqn such that β, βq , . . . , βqn−1

are all distinct, then

the polynomial P (T ) =
∏n−1

i=0 (T − βqi ) is in Iq,n.
Define an action of Zn on F

⊆
qn as follows: for k ⊂ Zn and β ⊂ (Fqn)⊆, define

k[β] = βqk . This action partitions F
⊆
qn into orbits. By the above discussion, Iq,n

is in one-to-one correspondence with the orbits of this action with size exactly
n. Thus it suffices to index these orbits.

Let g be a generator of the the multiplicative group (Fqn)⊆. Define a map
(bijection) E : Zqn−1 ⇔ F

⊆
qn by E(a) = ga.. Via this bijection, we have an action

of Zn on Zqn−1, where for k ⊂ Zn and a ⊂ Zqn−1, k[a] = qk · a.
Now represent elements of Zqn−1 by integers in {0, 1, . . . , qn− 2}. Define τ =

{0, 1, . . . , q − 1}. For a ⊂ Zqn−1, consider its base-q expansion aΩ ⊂ τn. This
gives us a bijection between Zqn−1 and τn\{(q−1, . . . , q−1)}. Via this bijection,
we get an action of Zn on τn \ {(q − 1, . . . , q − 1)}. This action is precisely the
standard rotation action!
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The Indexing Algorithm:
Input: q (a prime power), n ⊆ 0, i ⊂ [|Iq,n|]
Advice: A description of Fq and an irreducible polynomial F (T ) ⊂ Fq[T ] of
degree n, whose root is a generator g of (Fqn)⊆ (a.k.a. primitive polynomial).

1. Let τ = {0, 1, . . . , q − 1}.
2. Use i to index an necklace ∂ ⊂ τn\{(q−1, q−1, . . . , q−1)} with fundamental

period exactly n (via our main theorem).
3. View ∂ as the base q expansion of an integer a ⊂ {0, 1, . . . , qn − 2}.
4. Use F (T ) to construct the finite field Fqn and the element g ⊂ F

⊆
qn . (This can

be done by setting Fqn = Fq[T ]/F (T ), and taking the class of the element T
in that quotient to be the element g.)

5. Set β = ga.
6. Set P (T ) =

∏n−1
i=0 (T − βqi).

7. Output P (T ).

For constant q, this algorithm can be made to work with poly(logn) advice.
Indeed, one can construct the finite field Fqn in poly(q, n) time, and a wonderful
result of Shoup [21] constructs a set of qpoly(logn) elements in Fqn , one of which
is guaranteed to be a generator. The advice is then the index of an element of
this set which is a generator.

4 Open Problems

We conclude with some open problems.

1. Can the orbits of group actions be indexed in general? One formulation of
this problem is as follows: Let G be a finite group acting on a set X , both
of size poly(n). Suppose G and its action on X are given as input explicitly.
For a finite alphabet τ, consider the action of G on τX (by permuting
coordinates according to the action on X). Can the orbits of this action be
indexed? Can they be reverse-indexed?

2. Let G be the symmetric group Sn. Consider its action on {0, 1}([n]
2 ), where

G acts by permuting coordinates. The orbits of this action correspond to the
isomorphism classes of n-vertex graphs. Can these orbits be indexed?
More ambitiously, can these orbits be reverse-indexed? This would imply
that graph isomorphism is in P .

3. It would be interesting to explore the complexity theory of indexing and
reverse-indexing. Which languages can be indexed efficiently? Can this be
characterized in terms of known complexity classes?
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Abstract. The main goal of this paper is to formalize and explore a
connection between chromatic properties of graphs defined by geomet-
ric representations and competitivity analysis of on-line algorithms. This
connection became apparent after the recent construction of triangle-free
geometric intersection graphs with arbitrarily large chromatic number
due to Pawlik et al. We show that any on-line graph coloring problem
gives rise to a class of game graphs, which in many cases have a natural
representation by geometric objects. As a consequence, problems of esti-
mating the chromatic number of graphs with geometric representations
are reduced to finding on-line coloring algorithms that use few colors or
proving that such algorithms do not exist.

We use this framework to derive upper and lower bounds on the maxi-
mum possible chromatic number in terms of the clique number in the fol-
lowing classes of graphs: rectangle overlap graphs, subtree overlap graphs
and interval filament graphs. These graphs generalize interval overlap
graphs (also known as circle graphs)—a well-studied class of graphs with
chromatic number bounded by a function of the clique number. Our
bounds are absolute for interval filament graphs and asymptotic of the
form (log log n)f(ε) for rectangle and subtree overlap graphs. In partic-
ular, we provide the first construction of geometric intersection graphs
with bounded clique number and with chromatic number asymptotically
greater than log log n. Moreover, with some additional assumptions on
the geometric representation, the bounds obtained are tight.

1 Introduction

Graphs represented by geometric objects have been attracting researchers for
many reasons, ranging from purely aesthetic to practical ones. A problem which
has been extensively studied for this kind of graphs is that of proper coloring:
given a family of objects, one wants to color them with few colors so that any two
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objects generating an edge of the graph obtain distinct colors. It finds practical
applications in areas like channel assignment, map labeling, and VLSI design.

We write σ, τ and n to denote the chromatic number, the clique number
(maximum size of a clique), and the number of vertices of a graph under consid-
eration, respectively. If σ = τ holds for a graph G and all its induced subgraphs,
then G is perfect. A class of graphs is σ-bounded or near-perfect if their chromatic
number is bounded by some function of their clique number.

Any finite family of sets F gives rise to two graphs with vertex set F : the
intersection graph, whose edges connect pairs of intersecting members of F , and
the overlap graph, whose edges connect pairs of members of F that overlap, that
is, intersect but are not nested. Ranging over all families F of sets of a particular
kind, for example, having a specific geometric shape, we obtain various classes of
intersection and overlap graphs. Prototypical examples are interval graphs and
interval overlap graphs, which are intersection and overlap graphs, respectively,
of families of closed intervals in R. Interval overlap graphs are isomorphic to
circle graphs—intersection graphs of chords of a circle.

Interval graphs are well known to be perfect. Interval overlap graphs are no
longer perfect, but they are near-perfect, which was shown by Gyárfás [7]. Cur-
rently the best upper and lower bounds on the maximum chromatic number of
an interval overlap graph with clique number τ are O(2ε) [9] and λ(τ logτ) [8].
The exponential gap between them remains open for almost 30 years.

A family of sets F is clean if no set in F is contained in two other overlapping
sets in F . Overlap graphs of clean families are themselves called clean. Kostochka
and Milans [10] proved that clean interval overlap graphs satisfy σ � 2τ − 1.

Intervals in R are naturally generalized by axis-parallel rectangles in R
2 and

by subtrees of a tree, which give rise to the following classes of graphs:

• chordal graphs—intersection graphs of families of subtrees of a tree, originally
defined as graphs containing no induced cycles of length greater than three,

• subtree overlap graphs—overlap graphs of families of subtrees of a tree,
• rectangle graphs and rectangle overlap graphs—intersection graphs and overlap

graphs, respectively, of families of axis-parallel rectangles in the plane.

Chordal graphs are perfect. Rectangle graphs are near-perfect: Asplund and
Grünbaum [1] showed that they satisfy σ = O(τ2). Rectangle overlap graphs
are no longer near-perfect: Pawlik et al. [12] gave a construction of triangle-free
rectangle overlap graphs with chromatic number Π(log logn). Actually, it pro-
duces graphs that we call interval overlap game graphs. They form a subclass
of rectangle overlap graphs and of subtree overlap graphs, which implies that
subtree overlap graphs are not near-perfect either. Interval overlap game graphs
play an important role in this paper, but their definition requires some prepa-
ration, so it is postponed until Section 4. It is proved in [11] that triangle-free
rectangle overlap graphs have chromatic number O(log logn).

Interval filament graphs are intersection graphs of interval filaments, which
are continuous non-negative functions defined on closed intervals with value zero
on the endpoints. They were introduced in [5] as a generalization of interval over-
lap graphs, polygon-circle graphs, chordal graphs and co-comparability graphs.
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They form a subclass of subtree overlap graphs [2]. On the other hand, for
any collection S of subtrees of a tree T intersecting a common path in T ,
the overlap graph of S is an interval filament graph [2]. An interval filament
graph is domain-non-overlapping if it is an intersection graph of interval fila-
ments with non-overlapping domains.

Outerstring graphs are intersection graphs of curves in a halfplane with one
endpoint on the boundary. Every interval filament graph is an outerstring graph.

String graphs are intersection graphs of arbitrary curves in the plane. Every
graph of any class considered above is a string graph. For example, a rectan-
gle overlap graph can be represented as an intersection graph of boundaries of
rectangles, and the overlap graph of a family of subtrees of a tree T can be repre-
sented as the intersection graph of closed curves encompassing these subtrees in
a planar drawing of T . The best known upper bound on the chromatic number
of string graphs is (logn)O(log ε) due to Fox and Pach [4].

The following diagram illustrates the inclusions between most of the classes
defined above:

interval overlap graphs = circle graphs

interval overlap game graphs interval filament graphs

rectangle overlap graphs subtree overlap graphs outerstring graphs

string graphs

Here is the summary of the results of this paper. In what follows, we write
Oε and Πε to denote the asymptotics with τ fixed as a constant.

Theorem 1. (1) Every interval filament graph satisfies σ = O
(
2ε

(
ε+1
2

))
.

(2) Every domain-non-overlapping interval filament graph satisfies σ �
(
ε+1
2

)
.

(3) There are domain-non-overlapping interval filament graphs with σ =
(
ε+1
2

)
.

Theorem 2. (1) Every subtree overlap graph safisfies σ = Oε((log logn)(
ω
2)).

(2) Every clean subtree overlap graph satisfies σ = Oε((log logn)ε−1).
(3) There are clean subtree overlap graphs with σ = Πε((log logn)ε−1).

Theorem 3. (1) Every rectangle overlap graph satisfies σ = Oε((log logn)ε−1).
(2) Every clean rectangle overlap graph satisfies σ = Oε(log logn).

Theorem 3 for τ = 2 was proved in [11]. The construction of triangle-free
rectangle overlap graphs with chromatic number Π(log logn) due to Pawlik et
al. [12] shows that the bound of Theorem 3 (2) is asymptotically tight. It also
proves Theorem 2 (3) for τ = 2, which we comment on in Section 4. Theorem 2
(3) provides the first construction of string graphs with bounded clique number
and with chromatic number asymptotically greater than log logn. Theorem 2 (2)
and (3) implies that for every k � 2, there are string graphs with clique number
k that do not have a Kk-free coloring (i.e. a coloring of vertices such that every
color class induces a Kk-free subgraph) with fewer than Πk(log logn) colors.
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Theorem 1 (1) asserts in particular that interval filament graphs are
σ-bounded. This is also implied by a very recent result of Rok and Walczak
[13] that outerstring graphs are σ-bounded. That result is proved using different
techniques, and the bound resulting from that proof is enormous.

The proofs of the upper bounds in Theorems 1–3 are constructive—they can
be used to design polynomial-time algorithms that given a graph and its geomet-
ric representation, produce a proper coloring with the claimed number of colors.

All our proofs heavily depend on the correspondence between on-line graph
coloring games and off-line colorings of so-called game graphs, which originates
from considerations in [11,12] and which we formalize in the next section. This
approach is the only one known to give upper bounds better than single loga-
rithmic on the chromatic number in those classes of string graphs with bounded
clique number that do not allow a constant bound. We believe that its further
exploration will result in upper bounds of the form σ = O((log logn)f(ε)) for
broad classes of graphs with geometric representation that are not σ-bounded.

2 On-line Graph Coloring Games and Game Graphs

The on-line graph coloring game is played by two deterministic players: Presenter
and Algorithm. It is played in rounds. In each round, Presenter introduces a
new vertex of the graph and defines whether or not it has an edge to each of
the vertices presented before. In the same round, Algorithm colors this vertex
keeping the property that the coloring is proper. Imposing additional restrictions
on Presenter’s moves gives rise to many possible variants of the on-line graph
coloring game. Typical kinds of such restrictions look as follows:

(i) Presenter builds a graph G from a specific class.
(ii) Presenter builds a mapping μ : V (G) ∈ C called a representation of G in

some class of objects C, and the edges of G are defined from μ.
(iii) Presenter builds relations R1, . . . , Rr on V (G) defining the edges of G.
(iv) There can be some restrictions relating μ, R1, . . . , Rr, and the order in

which the vertices are presented.

The decisions of both players are irrevocable. That is, Presenter cannot change
the graph, the representation or the relations once they have been set, and Algo-
rithm cannot change colors once they have been assigned. The goal of Algorithm
is to keep using as few colors as possible, while Presenter wants to force Algo-
rithm to use as many colors as possible. The value of such a game is the minimum
number c such that Algorithm has a strategy to color any graph that can be pre-
sented using at most c colors or, equivalently, the maximum number c such that
Presenter has a strategy to force Algorithm to use at least c colors regardless of
how Algorithm responds.

For convenience, we call any variant of the on-line graph coloring game sim-
ply an on-line game, and any coloring strategy of Algorithm simply an on-line
algorithm. We denote by ⊆ the order in which the vertices are presented. Now,
we explain the crucial concept of our paper—game graphs.
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Let G be an on-line game with representation μ in a class C and relations
R1, . . . , Rr. An n-round presentation scenario in G is a graph G with represen-
tation μ : V (G) ∈ C, relations R1, . . . , Rr on V (G), and an order ⊆ on V (G),
which can possibly have been presented in G after n rounds so that ⊆ is the
order of presentation. We define the class of game graphs associated with G as
follows. A graph G is a game graph of G if there exist a rooted forest F on V (G),
a mapping μ : V (G) ∈ C, and relations R1, . . . , Rr on V (G) such that

(i) for every v ⊂ V (G), the subgraph G[V (Pv)] of G induced on the vertices of
the path Pv in F from a root to v, the representation μ restricted to V (Pv),
the relations R1, . . . , Rr restricted to V (Pv), and the order ⊆ of vertices
along Pv give a valid |V (Pv)|-round presentation scenario in G,

(ii) if uv ⊂ E(G), then u is an ancestor of v or v is an ancestor of u in F .

For two distinct vertices u and v of a game graph, we write u ⊆ v to denote that
u is an ancestor of v in F . Therefore, the relations ⊆ in the on-line game and in
the game graph correspond to each other the same way as R1, . . . , Rr. A game
graph can be viewed as a union of several presentation scenarios in which some
(not necessarily all) common prefixes of these scenarios have been identified.

Lemma 1. If there is an on-line algorithm using at most c colors in an on-line
game G, then every game graph of G has chromatic number at most c.

Proof (sketch). To color a game graph properly, it is enough to run the on-line
algorithm on the subgraph induced on every path in F from a root to a leaf. →∧

We say that a strategy of Presenter in a game G is finite if the number of all
presentation scenarios that can occur in the game when Presenter plays according
to this strategy, for all possible responses of Algorithm, is finite.

Lemma 2. If Presenter has a finite strategy to force Algorithm to use at least c
colors in an on-line game G, then there exists a game graph of G with chromatic
number at least c. Moreover, the number of vertices of this graph is equal to the
number of presentation scenarios possible with this strategy.

Proof (sketch). On the set S of all presentation scenarios possible with Presen-
ter’s considered strategy, we define a relation ⊆ so that u ⊆ v if and only if the
scenario u is an initial part of the scenario v (after only a part of the vertices
of v have been presented). Clearly, ⊆ is the ancestor-descendant relation of a
tree F on S whose root is the empty scenario. There is a unique way of defining
a game graph G on S so that the presentation scenario induced on each path
Pv, as explained in condition (i) above, is isomorphic to v. If G has a proper
coloring with fewer than c colors, then Algorithm can use it to beat Presenter’s
considered strategy using fewer than c colors, which is a contradiction. →∧

Here is how Lemmas 1 and 2 are typically used. To provide an upper bound
on the chromatic number of graphs of some class G, we show that each graph
in G is a game graph of an appropriately chosen on-line game, and we find an
on-line algorithm in this game using few colors. To construct graphs of some
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class G with large chromatic number, we show that every game graph of an
appropriately chosen on-line game is isomorphic to a graph in G, and we find a
finite strategy of Presenter in this game forcing Algorithm to use many colors.

We use this approach to prove the results of the paper. First, we reduce The-
orems 1–3 to claims about game graphs of appropriately chosen on-line games.
Then, to prove these claims, we devise strategies for Algorithm and Presenter in
these games and apply Lemmas 1 and 2 accordingly.

3 Interval Filament Graphs

The following lemma reduces the general problem of coloring interval filament
graphs to the problem for domain-non-overlapping interval filament graphs.

Lemma 3. The vertices of every interval filament graph can be partitioned into
O(2ε) classes each containing interval filaments with non-overlapping domains.

The incomparability graph of a set P partially ordered by a relation < is
the graph with vertex set P and edge set consisting of pairs of <-incomparable
elements of P . A graph is a co-comparability graph if it is the incomparability
graph of some partially ordered set. Consider an on-line game COCO(k) on the
class of co-comparability graphs with clique number at most k presented with
their ordering relation in the up-growing manner. That is, Presenter builds a
co-comparability graph G and an order < on V (G), in each round defining the
relation < between the new vertex and the vertices presented before, so that

(i) G is the incomparability graph of V (G) with respect to the order <,
(ii) every vertex of G is <-maximal at the moment it is presented,

(iii) τ(G) � k, that is, the width of V (G) with respect to < is at most k.

Lemma 4. A graph G is a game graph of COCO(k) if and only if G is iso-
morphic to a domain-non-overlapping interval filament graph and τ(G) � k.

Proof (sketch). Let G be a domain-non-overlapping interval filament graph with
τ(G) � k. The inclusion order on the domains of members of V (G) defines a
forest F on V (G) in which u is an ancestor of v if and only if dom(u) ≥ dom(v).
We define a relation < on V (G) so that u < v if dom(u) ≥ dom(v) and u⇐v = ⇒.
Consider the path Pv in F from a root to a vertex v. It is easy to check that the
graph G[V (Pv)], the order < restricted to V (Pv), and the order ⊆ of vertices
along Pv form a valid |V (Pv)|-round presentation scenario in COCO(k).

Now, let G be a game graph of COCO(k) with underlying forest F and relation
<. Let L denote the set of leaves of F and L(u) denote the set of leaves of F
that are descendants of a vertex u in F . We assign pairwise disjoint intervals
[xv, yv] ∪ R to the leaves v ⊂ L so that the order of these intervals corresponds to
the depth-first search order of the leaves. For v ⊂ L, let Pv denote the path in F
from a root to v. The graph G[V (Pv)] is the incomparability graph of the order <
restricted to V (G), so it can be represented as an intersection graph of continuous
functions [xv, yv] ∈ (0,≤) so that whenever u1, u2 ⊂ V (Pv) and u1 < u2, the
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function representing u1 lies above the function representing u2, see [6]. This
way each vertex u ⊂ V (G) is drawn as a continuous function

⋃
v◦L(u)[xv, yv] ∈

(0,≤), and G is isomorphic to the intersection graph of these functions. It is not
difficult to see that these functions can be extended to interval filaments with
non-overlapping domains without changing their intersection graph. →∧
Theorem 4 (Felsner [3]). The value of the game COCO(k) is

(
k+1
2

)
. That is,

there is an on-line coloring algorithm using at most
(
k+1
2

)
colors, and there is a

finite strategy of Presenter forcing Algorithm to use
(
k+1
2

)
colors in COCO(k).

Theorem 1 (2) and (3) follows from Theorem 4, Lemma 4, and Lemmas 1 and
2 (respectively). Theorem 1 (1) follows from Theorem 1 (2) and Lemma 3.

4 Rectangle and Subtree Overlap Graphs

The following theorem, whose proof we omit, reduces the general problem of
coloring overlap graphs to the problem for clean overlap graphs.

Theorem 5. Let G be an overlap graph. If every clean induced subgraph H of G
with τ(H) � j satisfies σ(H) � βj for 2 � j � τ(G), then σ(G) �

∏ε(G)
j=2 2βj.

First, we introduce the on-line game corresponding to clean rectangle overlap
graphs, and we define interval overlap game graphs. Let I denote the set of
closed intervals in R. Let Δ(x) and r(x) denote the left and the right endpoint
of an interval x ⊂ I, respectively. Consider an on-line game IOV(k), in which
Presenter builds an interval overlap graph G and a representation μ : V (G) ∈ I
so that

(i) μ is the overlap model of G (xy ⊂ E(G) if and only if μ(x) and μ(y) overlap),
(ii) if x, y ⊂ V (G) and x is presented before y, then Δ(μ(x)) < Δ(μ(y)),

(iii) the family of intervals {μ(x) : x ⊂ V (G)} is clean, that is, there are no
x, y, z ⊂ V (G) such that μ(x) and μ(y) overlap and μ(z) ∪ μ(x) ⇐ μ(y),

(iv) τ(G) � k.

As a consequence of the definition of a game graph, a graph G is a game graph
of IOV(k) if there exist a rooted forest F on V (G) and a mapping μ : V (G) ∈ I
such that the following conditions, corresponding to the four above, are satisfied:

(i) xy ⊂ E(G) if and only if x ⊆ y or y ⊆ x and μ(x) overlaps μ(y),
(ii) if x, y ⊂ V (G) and x ⊆ y, then Δ(μ(x)) < Δ(μ(y)),

(iii) there are no x, y, z ⊂ V (G) with x ⊆ y ⊆ z such that μ(x) and μ(y) overlap
and μ(z) ∪ μ(x) ⇐ μ(y),

(iv) τ(G) � k.

A graph is an interval overlap game graph if it is a game graph of IOV(k) for
some k. The characterization above (without condition (iv)) was used in [11] as
the definition of an interval overlap game graph.

Lemma 5 (Krawczyk, Pawlik, Walczak [11]). Every interval overlap game
graph is a clean rectangle overlap graph. The vertices of every clean rectangle
overlap graph can be partitioned into Oε(1) classes so that the subgraph induced
on each class is an interval overlap game graph.
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It is proved in [11] that triangle-free interval overlap game graphs (and so, by
Lemma 5, triangle-free clean rectangle overlap graphs) satisfy σ = O(log logn).
That proof essentially comes down to an on-line algorithm using O(log r) colors
in r rounds of the game IOV(2), the trick with heavy-light decomposition that
we explain later, and the application of Lemma 1. We are going to generalize this
to game graphs of IOV(k) and thus to clean rectangle overlap graphs with any
fixed clique number. On the other hand, it is proved in [12] that Presenter has a
strategy to force Algorithm to use m colors in 2m−1 rounds of the game IOV(2),
and this strategy has 22

O(m)

presentation scenarios. Hence Lemma 2 implies that
there are triangle-free interval overlap game graphs (and therefore triangle-free
clean rectangle overlap graphs) with chromatic number λ(log logn).

Now, we are going to define the on-line game corresponding to clean subtree
overlap graphs. Let G be a clean subtree overlap graph with underlying tree
T .That is, V (G) is a clean family of subtrees of T whose overlap graph is G. To
avoid confusion with vertices of G, we call vertices of T nodes. We make T a
rooted tree by choosing an arbitrary node r as the root. For every S ⊂ V (G), we
define rS to be the unique node in S that is closest to r in T . We call the nodes
rS subtree roots. We can assume without loss of generality that all subtree roots
are pairwise distinct. Now, we construct a rooted forest F on V (G) as follows.
A subtree S ⊂ V (G) is a root of F if the path from r to rS in T contains no
other subtree roots. Otherwise, the parent of S in F is the subtree S√ ⊂ V (G)
such that rS′ is the last subtree root before rS on the path from r to rS in T .

Overlap graphs of subtrees intersecting a common path of the underlying tree
are isomorphic to interval filament graphs [2]. Hence for every path P in F start-
ing at a root of F , the graph G[V (P )] is isomorphic to an interval filament graph.
We will color G properly using the on-line approach of Lemma 1. For each path
P in F starting at a root, we will simulate an on-line algorithm on G[V (P )]
presenting the vertices in their order along P . This will work correctly if the
algorithm always assigns the same color to each subtree S ⊂ V (G), regardless of
the choice of P . This will be the case when the presentation scenarios up to the
point when S is presented are identical for all paths passing through S. How-
ever, this cannot be guaranteed using the representation of G[V (P )] by interval
filaments. For example, for some two overlapping subtrees S1, S2 ⊂ V (G) lying
on the common part of two paths P1 and P2, we may need to represent S1 and
S2 by interval filaments whose domains are nested if we continue along P1, but
overlap if we continue along P2. If the algorithm makes use of the representation,
then the colorings it generates on P1 and P2 may be inconsistent.

We overcome this difficulty providing a more abstract description of G, which
we then use to define the on-line game. For distinct subtrees x, y ⊂ V (G), let
x ⊆ y denote that x is an ancestor of y in F . We partition the relation ⊆ on
V (G) into three relations ≥⇔ , � and ∗ as follows:

• x ≥⇔ y if x ⊆ y and the subtree x contains the subtree y,
• x � y if x ⊆ y and the subtrees x and y overlap,
• x ∗ y if x ⊆ y and the subtrees x and y are disjoint.

This implies the following, for x, y, z ⊂ V (G):
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(A1) if x ≥⇔ y and y ≥⇔ z, then x ≥⇔ z,
(A2) if x ≥⇔ y and y � z, then x ≥⇔ z or x � z,
(A3) if x � y and y ≥⇔ z, then x � z or x ∗ z,
(A4) if x ∗ y and y ⊆ z, then x ∗ z.

We define an on-line game ABS(k) in which Presenter builds a graph G together
with relations ≥⇔ , � and ∗, in each round defining the relations ≥⇔ , � and ∗ between
the new vertex and the vertices presented before, so that

(i) ≥⇔ , � and ∗ partition the order of presentation ⊆ and satisfy (A1)–(A4),
(ii) xy ⊂ E(G) if and only if x � y or y � x,

(iii) τ(G) � k.

Lemma 6. A graph G is a game graph of ABS(k) if and only if G is isomorphic
to a clean subtree overlap graph. If G is a game graph of ABS(k) and the relation
⊆ is a total order on V (G), then G is isomorphic to an interval filament graph.

Proof (sketch). We have just argued that every clean subtree overlap graph with
clique number at most k is a game graph of ABS(k). Now, suppose that G is a
game graph of ABS(k) with underlying forest F . Let T be a tree with

V (T ) = {r} ⊥ {ux : x ⊂ V (G)} ⊥ {vx : x ⊂ V (G)},
E(T ) = {rux : x is a root of F} ⊥ {uxuy : xy ⊂ E(F )} ⊥ {uxvx : x ⊂ V (G)}.

For x ⊂ V (G), let Vx = {ux, vx} ⊥ {uy : x ≥⇔ y or x � y} ⊥ {vy : x ≥⇔ y}. It is not
difficult to prove that {Vx : x ⊂ V (G)} is a clean family of node sets of subtrees
of T whose overlap graph is isomorphic to G. If ⊆ is a total order on V (G),
then the nodes ux form a path in T , which implies, by the result of [2], that the
overlap graph of {Vx : x ⊂ V (G)} is isomorphic to an interval filament graph. →∧

The game IOV(k) is more restricted for Presenter than ABS(k), in the sense
that every presentation scenario in the former can be translated into a presenta-
tion scenario in the latter. Indeed, let G be a graph presented in IOV(k) together
with representation μ : V (G) ∈ I and order of presentation ⊆. We can define
relations ≥⇔ , � and ∗ on V (G) just as before:

• x ≥⇔ y if x ⊆ y and the interval μ(x) contains the interval μ(y),
• x � y if x ⊆ y and the intervals μ(x) and μ(y) overlap,
• x ∗ y if x ⊆ y and the intervals μ(x) and μ(y) are disjoint.

Clearly, the conditions (i)–(iii) of ABS(k) are satisfied. This and Lemma 6 imply
that every interval overlap game graph is a clean subtree overlap graph.

We are going to prove that game graphs of ABS(k) have chromatic number
O((log logn)k−1) and those of IOV(k) have chromatic number O(log logn). Then,
the same bounds on the chromatic number of clean rectangle and subtree overlap
graphs (respectively) will follow from Lemmas 6 and 5 (respectively).

The general idea is that we provide on-line algorithms in ABS(k) and IOV(k)
using few colors, and then use Lemma 1 to derive an upper bound on the chro-
matic number of their game graphs. However, since Presenter has a strategy in
IOV(2) to force Algorithm to use λ(log r) colors in r rounds, direct application
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of Lemma 1 to the game graph cannot succeed if the rooted forest F underlying
the game graph contains long paths. To solve this problem, we use the technique
of heavy-light decomposition due to Sleator and Tarjan [14].

Let G be a game graph of ABS(k) or IOV(k) with underlying forest F . We call
an edge uv of F , where v is a child of u, heavy if the subtree of F rooted at v
contains more than half of the vertices of the subtree of F rooted at u and light
otherwise. Every vertex of F has a heavy edge to at most one of its children, so
the heavy edges induce in F a collection of paths, called heavy paths.

Lemma 7 (Sleator, Tarjan [14]). Every path in F from a root to a leaf con-
tains at most ↓log2 n� light edges.

Let b = ↓log2 n�+1. For each heavy path P , by Lemma 6, the graph G[V (P )] is
an interval filament graph, so by Theorem 1 (1), it can be colored properly using
Ok(1) colors. We use the same set of colors on each heavy path, so that we use
Ok(1) colors in total. It easily follows from the definitions of ABS(k) and IOV(k)
that induced subgraphs of their game graphs are also their game graphs. Hence
we are going to color the subgraph of G induced on each color class separately by
an on-line algorithm, using Ok((log b)k−1) colors in ABS(k) and Ok(log b) colors
in IOV(k). Formally, we define on-line games ABS(k, b) and IOV(k, b) like ABS(k)
and IOV(k), respectively, but with one additional constraint:

(v) there is a partition of V (G) into at most b blocks of vertices consecutive in
the order ⊆ such that no edge of G connects vertices in the same block.

It follows from Lemma 7 and the definition of b that the game graph of ABS(k)
or IOV(k) induced on each color class as explained above is a game graph of
ABS(k, b) or IOV(k, b), respectively. We are going to prove the following.

Lemma 8. There is an on-line Ok((log b)k−1)-coloring algorithm in ABS(k, b).

Lemma 9. There is an on-line Ok(log b)-coloring algorithm in IOV(k, b).

For the next part of this section, we are in the setting of Lemma 8: a graph
G with relations ≥⇔ , � and ∗ is presented in the game ABS(k, b). We are to color
G properly using Ok((log b)k−1) colors on-line. Whatever we show for ABS(k, b)
applies also to IOV(k, b), as it is more restricted for Presenter. The proof of
Lemma 9 will differ only in the last part, where the use of a direct argument
instead of induction will allow us to reduce the number of colors to Ok(log b).

As the vertices of G are presented, we classify them as primary or secondary
according to the following on-line rule: if there are x, y ⊂ V (G) such that y is
primary, x � y, z and y ≥⇔ z, then z is secondary; otherwise z is primary. Let P
be the set of primary vertices, built on-line during the game. For every y ⊂ P ,
let S(y) be the set containing y and all secondary vertices z for which y is the
rightmost vertex with the property that y ≥⇔ z and there is x with x � y, z, also
built on-line during the game. The sets S(p) for p ⊂ P partition the entire V (G).

First, we reduce on-line coloring of G to on-line colorings of G[P ] and G[S(p)].
Then, we show how to color G[P ] on-line using Ok(log b) colors. Finally, we apply
induction to deduce an on-line Ok((log b)k−1)-coloring algorithm for the whole G.



748 T. Krawczyk and B. Walczak

Lemma 10. If G[P ] can be properly colored on-line using at most a colors and
G[S(p)] can be properly colored on-line using at most c colors for each p ⊂ P ,
then G can be properly colored on-line using at most 2ac colors.

Proof (sketch). Any independent set I in G[P ] satisfies the following:

(i) If p, q ⊂ I, p ⊆ q, x ⊂ S(p), y ⊂ S(q), and xy ⊂ E(G), then x � q.
(ii) For every q ⊂ I, there is at most one p ⊂ I such that p ⊆ q and there is

x ⊂ S(p) with x � q.

For p ⊂ P , let ∂(p) denote the color of p in an on-line proper coloring of G[P ]
using colors 1, . . . , a. By (ii), for each color i ⊂ {1, . . . , a}, the set Ii = {p ⊂
P : ∂(p) = i} can be further colored on-line using two colors so as to distinguish
any p, q ⊂ Ii such that p ⊆ q and there is x ⊂ S(p) with x � q. Let φ be such a
2-coloring of each Ii using colors 1 and 2. For p ⊂ P and x ⊂ S(p), let κ(x) denote
the color of x in an on-line proper coloring of G[S(p)] using colors 1, . . . , c. We
color each vertex x ⊂ S(p) by the triple (∂(p), φ(p), κ(x)). Hence we use at most
2ac colors. This is a proper coloring, because if p, q ⊂ Ii, x ⊂ S(p), y ⊂ S(q), and
xy ⊂ E(G), then xq ⊂ E(G) by (i), so φ(p) ≺= φ(q). →∧

First-fit is the on-line algorithm coloring the graph properly with color set
{1, 2, . . .} so that when a new vertex is presented, it is assigned the minimum
color that has not been used on any of its neighbors presented before.

Theorem 6 (Folklore). First-fit uses at most ↓log2 n�+1 colors on any forest
with n vertices presented in any order.

Lemma 11. G[P ] can be properly colored on-line using Ok(log b) colors.

Proof (sketch). We partition the vertices of G[P ] on-line into sets P1, . . . , Pk so
that the following holds for any x, y, z ⊂ Pi and 1 � i � k:

if x � y ⊆ z, then x ∗ z or y ∗ z. (∗)

To this end, we use the following two observations:

(i) If x, y, z do not satisfy (∗), then neither do x, y, y√ for any y√ with y ⊆ y√ ⊆ z,
(ii) If x, y, z are in P and do not satisfy (∗), then y � z.

At the time when a vertex z ⊂ P is presented, consider the set Y of all vertices
y ⊂ P for which there exists x ⊂ P such that x, y, z do not satisfy (∗). It follows
from (i) and (ii) that Y ⊥ {z} is a clique in G[P ], hence |Y | � k − 1. We add z
to that of the sets P1, . . . , Pk which is disjoint from Y .

We color each G[Pi] by first-fit using a separate set of colors {1i, 2i, . . .}. We
will prove that this way we use O(log b) colors on each set Pi. This will imply
that we have used Ok(log b) colors on the entire P . Let (ci)

i be the maximum
color used by first-fit on Pi. Let Ri denote the set of vertices in Pi that have no
neighbor to the right in G[Pi]. The following is a not difficult consequence of (∗):

(iii) Each member of Pi∅Ri has at most one neighbor to the right in G[Pi∅Ri].
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In particular, G[Pi ∅Ri] is a forest. Clearly, the colors of vertices in Pi ∅Ri do
not depend on the colors of vertices in Ri. In particular, if we ran first-fit only
on the graph G[Pi ∅ Ri], then we would obtain exactly the same colors on the
vertices in Pi ∅ Ri. Since there is a vertex in Pi with color (ci)

i, there must be
a vertex in Pi ∅Ri with color (ci − 1)i. This is enough to conclude, by Theorem
6, that ci � ↓log2 |Pi|� + 2. We can additionaly show that each edge-free block
of consecutive vertices in Pi can contain at most one vertex with color greater
than 1i. An analogous argument then yields ci � ↓log2 b� + 3. →∧
Lemma 12. Let p ⊂ P . There is x ⊂ V (G) such that x � s for every s ⊂ S(p).

Proof (Lemma 8). The proof goes by induction on k. The case k = 1 is trivial, so
assume k � 2. It follows from Lemma 12 that τ(G[S(p)]) � k−1 for every p ⊂ P .
Therefore, by the induction hypothesis, G[S(p)] can be properly colored on-line
using Ok((log b)k−2) colors. This and Lemma 11 imply that the assumptions of
Lemma 10 are satisfied with a = Ok(log b) and c = Ok((log b)k−2). Hence we
conclude that G can be properly colored on-line using Ok((log b)k−1) colors. →∧
Proof (Lemma 9). Consider one of the sets S(p) built during the game. At each
point of the game, by Lemma 12, there is an interval x ⊆ p that overlaps every
interval in S(p). Hence the intervals in S(p) have non-empty intersection and
τ(G[S(p)]) � k − 1. Define a partial order < on S(p) so that s1 < s2 whenever
Δ(s1) < Δ(s2) and r(s1) � r(s2). It follows that G[S(p)] is the incomparability
graph of S(p) with respect to <. Moreover, the set S(p) is built in the up-growing
manner with respect to <. Therefore, by Theorem 4, the graph G[S(p)] can be
properly colored on-line using

(
k
2

)
colors. This and Lemma 11 imply that the

assumptions of Lemma 10 are satisfied with a = Ok(log b) and c =
(
k
2

)
. Hence

we conclude that G can be properly colored on-line using Ok(log b) colors. →∧
Theorems 2 (1), (2) and 3 now follow from Theorem 5, Lemmas 6 and 5

(respectively), Lemmas 8 and 9 (respectively), Lemma 1, and b = ↓log2 n� + 1.
The following allows us to conclude that the coloring algorithm of clean sub-

tree overlap graphs presented above is asymptotically optimal.

Lemma 13. For k,m � 1, Presenter has a finite strategy to force Algorithm to
use at least mk−1 colors in the game ABS(k). Moreover, the number of presen-
tation scenarios for all possible responses of Algorithm is 22

Ok(m)

.

Theorem 2 (3) now follows from Lemmas 13, 2 and 6.
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Abstract. In this paper, we prove superpolynomial lower bounds for
the class of homogeneous depth 4 arithmetic circuits. We give an explicit
polynomial in VNP of degree n in n2 variables such that any homogeneous
depth 4 arithmetic circuit computing it must have size nε(log log n).

Our results extend the works of Nisan-Wigderson [13] (which showed
superpolynomial lower bounds for homogeneous depth 3 circuits), Gupta-
Kamath-Kayal-Saptharishi and Kayal-Saha-Saptharishi [4, 7] (which
showed superpolynomial lower bounds for homogeneous depth 4 circuits
with bounded bottom fan-in), Kumar-Saraf [9] (which showed superpoly-
nomial lower bounds for homogeneous depth 4 circuits with bounded top
fan-in) andRaz-Yehudayoff and Fournier-Limaye-Malod-Srinivasan [3,14]
(which showed superpolynomial lower bounds for multilinear depth 4 cir-
cuits). Several of these results in fact showed exponential lower bounds.

The main ingredient in our proof is a new complexity measure of
bounded support shifted partial derivatives. This measure allows us to
prove exponential lower bounds for homogeneous depth 4 circuits where
all the monomials computed at the bottom layer have bounded sup-
port (but possibly unbounded degree/fan-in), strengthening the results
of Gupta et al and Kayal et al [4, 7]. This new lower bound combined
with a careful “random restriction” procedure (that transforms general
depth 4 homogeneous circuits to depth 4 circuits with bounded support)
gives us our final result.

1 Introduction

Proving lower bounds for explicit polynomials is one of the most important
open problems in the area of algebraic complexity theory. Valiant [17] defined
the classes VP and VNP as the algebraic analog of the classes P and NP, and
showed that proving superpolynomial lower bounds for the Permanent would
suffice in separating VP from VNP. Despite the amount of attention received by
the problem, we still do not know any superpolynomial (or even quadratic) lower
bounds for general arithmetic circuits. This absence of progress on the general
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problem has led to a lot of attention on the problem of proving lower bounds
for restricted classes of arithmetic circuits. The hope is that an understanding of
restricted classes might lead to a better understanding of the nature of the more
general problem, and the techniques developed in this process could possibly be
adapted to understand general circuits better. Among the many restricted classes
of arithmetic circuits that have been studied with this motivation, bounded depth
circuits have received a lot of attention.

In a striking result, Valiant et al [18] showed that any n variate polynomial of
degree poly(n) which can be computed by a polynomial sized arithmetic circuit of
arbitrary depth can also be computed by an arithmetic circuit of depth O(log2 n)
and size poly(n). Hence, proving superpolynomial lower bounds for circuits of
depth log2 n is as hard as proving lower bounds for general arithmetic circuits. In
a series of recent works, Agrawal-Vinay [1], Koiran [8] and Tavenas [16] showed
that the depth reduction techniques of Valiant et al [18] can in fact be extended
much further. They essentially showed that in order to prove superpolynomial
lower bounds for general arithmetic circuits, it suffices to prove strong enough
lower bounds for just homogeneous depth 4 circuits. In particular, to separate
VNP from VP, it would suffice to focus our attention on proving strong enough
lower bounds for homogeneous depth 4 circuits.

The first superpolynomial lower bounds for homogeneous circuits of depth 3
were proved by Nisan and Wigderson [13]. Their main technical tool was the
use of the dimension of partial derivatives of the underlying polynomials as
a complexity measure. For many years thereafter, progress on the question of
improved lower bounds stalled. In a recent breakthrough result on this problem,
Gupta, Kamath, Kayal and Saptharishi [4] proved the first superpolynomial
(2ε(

◦
n)) lower bounds for homogeneous depth 4 circuits when the fan-in of the

product gates at the bottom level is bounded (by
∈
n). This result was all the

more remarkable in light of the results by Koiran [8] and Tavenas [16] which
showed that 2Ω(

◦
n logn) lower bounds for this model would suffice in separating

VP from VNP. The results of Gupta et al were further improved upon by Kayal
Saha and Sapthrashi [7] who showed 2ε(

◦
n logn) lower bounds for the model

of homogeneous depth 4 circuits when the fan-in of the product gates at the
bottom level is bounded (by

∈
n). Thus even a slight asymptotic improvement

in the exponent of either of these bounds would imply lower bounds for general
arithmetic circuits!

The main tool used in both the papers [4] and [7] was the notion of the
dimension of shifted partial derivatives as a complexity measure, a refinement of
the Nisan-Wigderson complexity measure of dimension of partial derivatives.

In spite of all this exciting progress on homogeneous depth 4 circuits with
bounded bottom fanin (which suggests that possibly we might be within reach of
lower bounds for much more general classes of circuits) these results give almost
no non trivial (not even super linear) lower bounds for general homogeneous
depth 4 circuits (with no bound on bottom fanin). Indeed the only lower bounds
we know for general homogeneous depth 4 circuits are the slightly superlinear
lower bounds by Raz using the notion of elusive functions [15].
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Thus nontrivial lower bounds for the class of general depth 4 homogeneous
circuits seems like a natural and basic question left open by these works, and
strong enough lower bounds for this model seems to be an important barrier to
overcome before proving lower bounds for more general classes of circuits.

In this direction, building upon the work in [4, 7], Kumar and Saraf [9, 10]
proved superpolynomial lower bounds for depth 4 circuits with unbounded bot-
tom fan-in but bounded top fan-in. For the case of multilinear depth 4 circuits,
superpolynomial lower bounds were first proved by Raz and Yehudayoff [14].
These lower bounds were recently improved in a paper by Fournier, Limaye,
Malod and Srinivasan [3]. The main technical tool in the work of Fournier et al
was the use of the technique of random restrictions before using shifted partial
derivatives as a complexity measure. By setting a large collection of variables at
random to zero, all the product gates with high bottom fan-in got set to zero.
Thus the resulting circuit had bounded bottom fanin and then known techniques
of shifted partial derivatives could be applied. This idea of random restrictions
crucially uses the multilinearity of the circuits, since in multilinear circuits high
bottom fanin means many distinct variables feeding in to a gate, and thus if a
large collection of variables is set at random to zero, then with high probability
that gate is also set to zero.

Our Results: In this paper, we prove the first superpolynomial lower bounds
for general homogeneous depth 4 circuits with no restriction on the fan-in, either
top or bottom. The main ingredient in our proof is a new complexity measure
of bounded support shifted partial derivatives. This measure allows us to prove
exponential lower bounds for homogeneous depth 4 circuits where all the mono-
mials computed at the bottom layer have only few variables (but possibly large
degree/fan-in). This exponential lower bound combined with a careful “random
restriction” procedure that allows us to transform general depth 4 homogeneous
circuits to this form gives us our final result. We now formally state our results.

Our main theorem is stated below.

Theorem 1. There is an explicit family of homogeneous polynomials of degree
n in n2 variables in VNP which requires homogeneous στστ circuits of size
nε(log logn) to compute it.

We prove our lower bound for the family of Nisan-Wigderson polynomials
NWd which is based upon the idea of Nisan-Wigderson designs. We give the
formal definition in Section 3.

As a first step in the proof of Theorem 1, we prove an exponential lower
bound on the top fan-in of any homogeneous στστ circuit where every product
gate at the bottom level has at most O(log n) distinct variables feeding into it.
Let homogeneous στστ{s} circuits denote the class of homogeneous στστ
circuits where every product gate at the bottom level has at most s distinct
variables feeding into it (i.e. has support at most s).

Theorem 2. There exists a constant λ > 0, and an explicit family of homoge-
neous polynomials of degree n in n2 variables in VNP such that any homogeneous
στστ{α log n} circuit computing it must have top fan-in at least 2ε(n).
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Observe that since homogeneous στστ{s} circuits are a more general class
of circuits than homogeneous στστ circuits with bottom fan-in at most s,
our result strengthens the results of of Gupta et al and Kayal et al [4, 7] when
s = O(log n).

We prove Theorem 1 by applying carefully chosen random restrictions to both
the polynomial family and to any arbitrary homogeneous στστ circuit and
showing that with high probability the circuit simplifies into a homogeneous
στστ circuit with bounded bottom support while the polynomial (even after
the restriction) is still rich enough for Theorem 2 to hold. Our results hold over
every field.

Recent Related Work: Recently, in an independent work, superpolynomial
lower bounds for depth 4 homogeneous circuits were also shown by Limaye,
Saha and Srinivasan [12]. They proved an nε(logn) lower bound on the size of
homogeneous depth 4 circuits computing the Determinant of an n × n matrix.
They also achieved a similar bound for the Iterated Matrix Multiplication poly-
nomial. Their proof uses a different variation of shifted partial derivatives as
their complexity measure- instead of bounding the support of the monomials
used in the shift, they use projections to a particular set of randomly chosen
monomials after shifting. Their proof doesn’t proceed via first proving lower
bounds for homogeneous depth 4 circuits with bounded bottom support, and
thus the proof of Theorem 2 that we give here is the only proof we know of this
result (which also works over all fields - see next paragraph).

In a subsequent independent work, Kayal, Limaye, Saha and Srinivasan
[6] showed exponential lower bounds for homogeneous depth 4 circuits over the
field of real numbers. This result combines the use of “bounded support shifts”
along with the use of random projections. This proof does proceed via first prov-
ing lower bounds for depth 4 circuits for bounded bottom support, and over the
field of real numbers they are able to prove exponential lower bounds for this
model as well.

Organization of the Paper: The rest of the paper is organized as follows. In
Section 2, we provide a high level overview of the proof. In Section 3, we introduce
some notations and preliminary notions used in the paper. In Section 4, we
sketch a proof of Theorem 2. In Section 5, we describe the effects of the random
restriction procedure on the circuit and the polynomial. In Section 6, we provide
a sketch of the proof of Theorem 1. In the absence of sufficient space, we skip
some of the details. We refer the interested reader to the full version of the paper
on ECCC [10].

2 Proof Overview

Our proof is divided into two parts. In the first part we show a 2ε(n) lower bound
for homogeneous στστ circuits whose bottom support is at most O(log n). To
the best of our knowledge, even when the bottom support is 1, none of the earlier
lower bound techniques sufficed for showing nontrivial lower bounds for this
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model. Thus a new complexity measure was needed. We consider the measure of
bounded support shifted partial derivatives, a refinement of the measure of shifted
partial derivatives used in several recent works [3, 4, 7, 9, 10]. For this measure,
we show that the complexity of the NWd polynomial (an explicit polynomial
in VNP) is high whereas any subexponential sized homogeneous depth 4 circuit
with bounded bottom support has a much smaller complexity measure. Thus
for any depth 4 circuit to compute the NWd polynomial, it must be large – we
show that it must have exponential top fan-in. Thus we get an exponential lower
bound for bounded bottom support homogeneous στστ circuits. We believe
this result might be of independent interest.

In the second part we show how to “reduce” any στστ circuit that is not too
large to a στστ circuit with bounded bottom support. This reduction basically
follows from a random restriction procedure that sets some of the variables
feeding into the circuit to zero. At the same time we ensure that when this
random restriction procedure is applied to NWd, the polynomial does not get
affected very much, and still has large complexity.

We could have set variables to zero by picking the variables to set to zero
independently at random. The problem with this approach is that we do not
know how to analyze the effect of this simple randomized procedure on NWd

1.
Thus we define a slightly more refined random restriction procedure which keeps
the NWd polynomial hard and at the same time makes the στστ circuit one
of bounded bottom support. We remark that it is the choice of these random
restrictions that lead to a lower bound of nε(log logn) as opposed to nε(logn).

3 Preliminaries and Notations

Arithmetic Circuits: An arithmetic circuit over a field F and a set of variables
x1, x2, . . . , xN is an directed acyclic graph whose internal nodes are labelled by
the field operations and the leaf nodes are labelled by the variables or field
elements. The nodes with fan-out zero are called the output gates and the nodes
with fan-in zero are called the leaves. In this paper, we always assume that there
is a unique output gate in the circuit. The size of the circuit is the number
of nodes in the underlying graph and the depth of the circuit is the length of
the longest path from the root to a leaf. We call a circuit homogeneous if the
polynomial computed at every node is a homogeneous polynomial. By a στστ
circuit or a depth 4 circuit, we mean a circuit of depth 4 with the top layer and the
third layer only have sum gates and the second and the bottom layer have only
product gates. In this paper, we confine ourselves to working with homogeneous
depth 4 circuits. A homogeneous polynomial P of degree n in N variables, which
is computed by a homogeneous στστ circuit can be written as

P (x1, x2, . . . , xN ) =

T∑

i=1

di∏

j=1

Qi,j(x1, x2, . . . , xN ) (1)

1 This strategy was shown to work with some change in parameters and a more careful
analysis in [6] and [11].
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Here, T is the top fan-in of the circuit. Since the circuit is homogeneous, we
know that for every i ⊆ {1, 2, 3, . . . , T },

∑di

j=1 deg(Qi,j) = n. By the support of
a monomial Π, we refer to the set of variables which have a positive degree in Π.
In this paper, we also study the class of homogeneous στστ circuits such that
for every i, j, every monomial in Qi,j has bounded support. We now formally
define this class.

Homogeneous στστ{s} Circuits: A homogeneous στστ circuit in Equa-
tion 1, is said to be a στστ{s} circuit if every product gate at the bottom
level has support at most s. Observe that there is no restriction on the bottom
fan-in except that implied by the restriction of homogeneity.

Shifted Partial Derivatives: In this paper we use a variant of the notion
of shifted partial derivatives which was introduced in [5] and has subsequently
been the complexity measure used to to prove lower bounds for various restricted
classes of depth four circuits and formulas(for example in [3, 4, 7, 9, 10]). For a
field F, an N variate polynomial P ⊆ F[x1, . . . , xN ] and a positive integer r, we
denote by βrP , the set of all partial derivatives of order equal to r of P . For a
polynomial P and a monomial Δ, we denote by βλ(P ) the partial derivative of
P with respect to Δ. We now reproduce the formal definition from [4].

Definition 3 (Order-r ∂-Shifted Partial Derivatives). For an N variate
polynomial P ⊆ F[x1, x2, . . . , xN ] and positive integers r, ∂ ⊂ 0, the space of
order-r ∂-shifted partial derivatives of P is defined as

→βrP ∧Δ def
= F-span{

∏

i√[N ]

xi
ji · g :

∑

i√[N ]

ji = ∂, g ⊆ βrP} (2)

In this paper, we introduce the variation of bounded support shifted partial
derivatives as a complexity measure. The basic difference is that instead of shift-
ing the partial derivatives by all monomials of degree ∂, we shift the partial
derivatives only by only those monomials of degree ∂ which have support(the
number of distinct variables which have non-zero degree in the monomial) ex-
actly equal to m. We now formally define the notion of support-m degree-∂
shifted partial derivatives of order-r of a polynomial, which for the rest of the
paper, we refer by (m, ∂, r)-shifted partial derivatives.

Definition 4 ((m, ∂, r)-Shifted Partial Derivatives). For an N variate poly-
nomial P ⊆ F[x1, x2, . . . , xN ] and positive integers r, ∂,m ⊂ 0, the space of
support-m degree-∂ shifted partial derivatives of order-r of P is defined as

→βrP ∧(Δ,m)
def
=

F-span{
∏

i√S

xi
ji · g : S ≥ [N ], |S| = m,

∑

i√S

ji = ∂, ji ⊂ 1, g ⊆ βrP}

The following property follows from the definition above.

Lemma 5. For any two multivariate polynomials P and Q in
F[x1, x2, . . . , xN ] and any positive integers r, ∂,m, and scalars Π and λ

Dim(→βr(ΠP + λQ)∧(Δ,m)) ⇐ Dim(→βrP ∧(Δ,m)) + Dim(→βrQ∧(Δ,m))
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For any linear or affine space V over a field F, we use Dim(V ) to represent
the dimension of V over F. We use the dimension of the space →βrP ∧(Δ,m) which
we denote by Dim(→βrP ∧(Δ,m)) as the measure of complexity of a polynomial.

Nisan-Wigderson Polynomials: We show our lower bounds for a family of
polynomials in VNP which were used for the first time in the context of lower
bounds in [7]. The construction is based upon the intuition that over any field,
any two distinct low degree polynomials do not agree at too many points. For
the rest of this paper, we assume n to be of the form 2k for some positive integer
k. Let Fn be a field of size n. For the set of N = n2 variables {xi,j : i, j ⊆ [n]}
and d < n, we define the degree n homogeneous polynomial NWd as

NWd =
∑

f(z)√Fn[z]
deg(f)≤d−1

∏

i√[n]

xi,f(i)

From the definition, we can observe the following properties of NWd.

1. The number of monomials in NWd is exactly nd.
2. Each of the monomials in NWd is multilinear.

3. Each monomial corresponds to evaluations of a univariate polynomial of
degree at most d− 1 at all points of Fn. Thus, any two distinct monomials
agree in at most d− 1 variables in their support.

For any S ≥ [n] and each f ⊆ Fn[z], we define the monomial mS
f =

∏
i√S xi,f(i)

and mf =
∏

i√[n] xi,f(i) We also define the set MS to represent the set of mono-

mials {xi1,j1 · xi2,j2 · xi3,j3 · · ·xi|S|,j|S| : i1 < i2 . . . < i|S| ⊆ S and ⇒t ⊆ [|S|], jt ⊆
[n]}. Clearly, NWd =

∑
f(z)√Fn[z]
deg(f)≤d−1

mf .

Monomial Ordering and Distance: We also use the notion of a monomial
being an extension of another as defined below.

Definition 6. A monomial φ is said to be an extension of a monomial φ̃, if φ
divides φ̃.

In this paper, we imagine our variables to be coming from a n × n matrix
{xi,j}i,j√[n]. We also consider the following total order on the variables. xi1,j1 >
xi2,j2 if either i1 < i2 or i1 = i2 and j1 < j2. This total order induces a lex-
icographic order on the monomials. For a polynomial P , we use the notation
Lead-Mon(P ) to indicate the leading monomial of P under this monomial order-
ing.

We use the following notion of distance between two monomials which was
also used in [2].

Definition 7 (Monomial Distance). Let m1 and m2 be two monomials over
a set of variables. Let S1 and S2 be the multiset of variables in m1 and m2

respectively, then the distance κ(m1,m2) between m1 and m2 is the min{|S1| −
|S1 ∪ S2|, |S2| − |S1 ∪ S2|} where the cardinalities are the order of the multisets.
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In this paper, we invoke this definition only for multilinear monomials of the
same degree. In this special case, we have the following crucial observation.

Observation 8. Let Π and λ be two multilinear monomials of the same de-
gree which are at a distance κ from each other. If Supp(Π) and Supp(λ) are
the supports of Π and λ respectively, then |Supp(Π)| − |Supp(Π) ∪ Supp(λ)| =
|Supp(λ)| − |Supp(Π) ∪ Supp(λ)| = κ.

4 Lower Bounds for λΠλΠ{O(logn)} Circuits

In this section, we sketch the outline of the proof of Theorem 2. We refer the
interested reader to the full version of the paper [10] for the complete proof. We
show an exponential lower bound on the top fan-in for homogeneous στστ
circuits such that every product gate at the bottom has a bounded number of
variables feeding into it. We use the dimension of the span of (m, ∂, r)-shifted
partial derivatives as the complexity measure. Our lower bound holds for the
NWd polynomial. The proof has two major components. In the first part, we
obtain an upper bounded on the complexity of the circuit. Then, we obtain a
lower bound on the complexity of the NWd polynomial. Comparing the two then
implies our lower bound. The bound holds for NWd for any d = αn, where α is
a constant such that 0 < α < 1.

4.1 Complexity of Homogeneous Depth 4 λΠλΠ{s} Circuits

Let C be a homogeneous στστ{s} circuit computing the NWd polynomial. We
now state an upper bound on the complexity of a product gate in such a circuit.
The proof is fairly straightforward, and we refer the reader to [10] for details.
The bound on the complexity of the circuit follows from the subadditivity of the
complexity measure.

Lemma 9. Let Q =
∏n

i=1 Qi be a product gate at the second layer from the
top in a homogeneous στστ{s} circuit computing a homogeneous degree n
polynomial in N variables. For any positive integers m, r, s, ∂ satisfying m+rs ⇐
N
2 and m + rs ⇐ Δ

2 ,

Dim(→βrQ∧(Δ,m)) ⇐ poly(nrs)

(
n + r

r

)(
N

m + rs

)(
∂ + n− r

m + rs

)

For a homogeneous στστ circuit where each of the bottom level product
gates is of support at most s, Lemma 9 immediately implies the following upper
bound on the complexity of the circuit due to subadditivity from Lemma 5.

Corollary 10. Let C =
∑T

j=1

∏n
i=1 Qi,j be a a homogeneous στστ{s} circuit

computing a homogeneous degree n polynomial in N variables. For any m, r, s, ∂
satisfying m + rs ⇐ N

2 and m + rs ⇐ Δ
2 ,

Dim(→βrC∧(Δ,m)) ⇐ T × poly(nrs)

(
n + r

r

)(
N

m + rs

)(
∂ + n− r − 1

m + rs− 1

)
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4.2 Lower Bound on the Complexity of the NWd Polynomial

We now outline the approach to obtain a lower bound on the complexity of
the NWd polynomial. For this, we first observe that distinct partial derivatives
of the NWd polynomial are far from each other in some sense and then show
that shifting such partial derivatives gives us a lot of distinct shifted partial
derivatives. Recall that we defined the set MS to represent the set {xi1,j1 ·
xi2,j2 · xi3,j3 · · ·xi|S|,j|S| : i1 < i2 . . . < i|S| ⊆ S and ⇒t ⊆ [|S|], jt ⊆ [n]}. We start
with the following observation.

Lemma 11. For any positive integer r such that n− r > d and r < d− 1, the
set {βΛ(NWd) : Π ⊆ M[r]} consists of |M[r]| = nr nonzero distinct polynomials.

It can be observed that for any Π ≤= λ ⊆ M[r], the leading monomials of
βΛ(NWd) and βα(NWd) are multilinear monomials of at a distance at least
n−r−d from each other. We exploit this structure in order to show that shifting
the polynomials in the set {βΛ(NWd) : Π ⊆ M[r]} by monomials of support m
and degree ∂ results in many linearly independent shifted partial derivatives. We
crucially use the following simple lemma.

Lemma 12. Let Π and λ be two distinct multilinear monomials of equal degree
such that the distance between them is κ. Let SΛ and Sα be the set of all mono-
mials obtained by shifting Π and λ respectively with monomials of degree ∂ and
support exactly m over N variables. Then |SΛ ∪ Sα| ⇐

(
N−η
m−η

)(
Δ−1
m−1

)
.

For any monomial Π and positive integers ∂,m, we denote by SΔ,m(Π) the set
of all shifts of βΛNWd by monomials of degree ∂ and support m. More formally,

SΔ,m(Π) = {Δ · βΛ(NWd) : Δ =
∏

i√U

xi
ji , U ≥ [N ], |U | = m,

∑

i√U

ji = ∂, ji ⊂ 1}

also, let
LMΔ,m(Π) = {Lead-Mon(f) : f ⊆ SΔ,m(Π)}

An application of Lemma 12 to the NWd polynomial gives us the following
lemma.

Lemma 13. For any positive integers r, m and ∂ such that n − r > d and
r < d − 1, let Π and λ be two distinct monomials in M[r]. Then |SΔ,m(Π) ∪
SΔ,m(λ)| ⇐ (N−(n−d−r)

m−(n−d−r)

)(
Δ−1
m−1

)
.

We now obtain a lower bound on the dimension of the span of (m, ∂, r)-shifted
partial derivatives of the NWd polynomial. For this, we use the following propo-
sition from [4], the proof of which is a simple application of Gaussian elimination.

Proposition 14 ( [4]). For any field F, let P ≥ F[z] be any finite set of poly-
nomials. Then,

Dim(F-span(P)) = |{Lead-Mon(f) : f ⊆ F-span(P)}|
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Therefore, in order to lower bound Dim(→βrNWd∧(Δ,m)), it would suffice to
get a lower bound on the size of the set

⋃
Λ LMΔ,m(Π), where the union is over

all monomials Π of degree equal to r. To achieve this, we first obtain a lower
bound on the size of the set

⋃
Λ√M[r] LMΔ,m(Π). The bound is formally given

by the lemma below. The proof follows via an application of the principle of
inclusion-exclusion. We refer the reader to the full version of this paper [10] for
more details.

Lemma 15. Let d = αn for any constant 0 < α < 1. Let ∂,m, r be positive
integers such that n − r > d, r < d − 1, m ⇐ N , m = φ(N) and for χ = N

m , r

satisfies r ⇐ (n−d) logζ±O(ζ (n−d−r)2

N )

logn+log ζ . Then,

Dim(→βrNWd∧(Δ,m)) ⊂ 0.5nr

(
N

m

)(
∂− 1

m− 1

)

4.3 Top Fan-in Lower Bound

Comparing the bounds in complexity given by Lemma 15 and Corollary 10 gives
us a lower bound on the top fan-in of any homogeneous στστ{α logn} (for
some constant λ) that computes the NWd polynomial, where d = αn for some
constant α between 0 and 1. We formally state the result below and refer the
reader to [10] for more details.

Theorem 16. Let d = αn for any constant 0 < α < 1. There exists a constant
λ such that all homogeneous στστ{α logn} circuits which compute the NWd

polynomial have top fan-in at least 2ε(n).

5 Random Restrictions

The strategy now, is to define an appropriate random restriction procedure and
show that with a non-zero probability, all the large support product gates in the
bottom level of the circuit get set to zero while the complexity of the polynomial
remains large enough. For the lack of space we refer the reader to the full version
of the paper [10] for details. The two main statements we need in order to com-
plete the proof are enumerated below. The lemma below summarizes that any
restriction Rε(NWd) of NWd obtained as the outcome of our random restriction
procedure still remains hard with respect to στστ{O(logn)} circuits.

Lemma 17. Let d = αn for any constant α such that 0 < α < 1. Then, there
exist constants ζ, λ such that any homogeneous στστ{α logn} circuit computing
the Rε(NWd) polynomial for any random restriction Rε has top fan-in is at
least 2ε(n).

The proof of the lemma is essentially the same as the proof of Theorem 16 and
we skip the details to the full version of this paper.

The following lemma summarizes that under our random restriction proce-
dure, all the product gates with large support vanish with a high probability.



Superpolynomial Lower Bounds 761

Lemma 18 (Random restriction on στστ circuit). Let ζ > 0 and λ > 0
be constants. Then there exists ρ > 0 such that if C is a στστ circuit of size
at most nρ log logn, then with probability > 9/10, all the monomials computed at
the bottom layer which have support at least λ logn have some variable set to 0
by Rε.

6 Lower Bounds for NWd

In this section, we state our main theorem and give a sketch of the proof. The
proof is very similar to proof of Theorem 16 and follows via comparing the
complexities of the polynomial and the circuit after random restrictions.

Theorem 19. Let d = αn for any constant α such that 0 < α < 1. Any homo-
geneous στστ circuit computing the NWd must have size at least nε(log logn).

Proof. For every value of α, such that 0 < α < 1, choose the parameters ζ =
ζ̃, λ = λ̃ such that Lemma 17 is true for d̃ = αn. Now, let us choose a constant
ρ = ρ̃ such that Lemma 18 holds. Now, let C be a homogeneous στστ circuit
computing the NWd̃ polynomial. If the number of bottom product gates of
C was at least nρ̃log logn, then C has large size and we are done. Else, let us
now apply a random restriction Rε to the circuit. By the choice of parameters,
Lemma 18 holds and so with probability 0.9 every bottom product gate in C
with support larger than λ̃ logn is set to zero. After a restriction, the circuit
computes Rε̃(NWd̃). So, now we are in the case when we have a small support
homogeneous circuit of depth four computing some random restriction of the
NWd̃ polynomial and then, by Lemma 17 above, the top fan-in of Rε̃(C) must
be at least 2ε(n). Hence, any homogeneous στστ circuit computing NWd̃

must have size at least nε(log logn).
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Abstract. We consider the problem of testing if two input forests are
isomorphic or are far from being so. An algorithm is called an ε-tester
for forest-isomorphism if given an oracle access to two forests G and H
in the adjacency list model, with high probability, accepts if G and H
are isomorphic and rejects if we must modify at least εn edges to make
G isomorphic to H . We show an ε-tester for forest-isomorphism with a
query complexity polylog(n) and a lower bound of Ω(

√
log n). Further,

with the aid of the tester, we show that every graph property is testable
in the adjacency list model with polylog(n) queries if the input graph is
a forest.

1 Introduction

In property testing, we want to design an efficient algorithm that distinguishes the
case in which the input object satisfies some property or is “far” from satisfying
it [11]. In particular, an object is called ε-far from a property P if we have to
modify an ε-fraction of the input to make it satisfy P . A (randomized) algorithm
is called an ε-tester for a property P if it accepts objects satisfying P and rejects
objects that are ε-far from P with high probability (say 2/3).

Graph property testing is one of the major topics in property testing, and many
properties are known to be testable in sublinear time or even in constant time (in
the input size). See [5] for surveys. In order to design sublinear-time testers, we
have to define how to access the input graph, as just reading the entire graph re-
quires linear time. The model used here is the adjacency list model [9]. In this
model, the input graph G = (V,E) is represented by an adjacency list and we
are given an oracle access OG to it. We have two types of queries. The first query,
called a degree query, specifies a vertex v, and the oracle OG returns the degree
of v. The second query, called a neighbor query, specifies a vertex v and an in-
dex i, and the oracle OG returns the i-th neighbor of v. A graph G is called ε-far
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εε Supported by JSPS Grant-in-Aid for Research Activity Start-up (24800082), MEXT

Grant-in-Aid for Scientific Research on Innovative Areas (24106003), and JST,
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from a property P if we must add or remove at least εm edges for it to satisfy the
property P , where m is the number of edges. In contrast to other models such as
the adjacency matrix and the bounded-degree models, only a few properties are
known to be efficiently testable in the adjacency list model. For examples, testing
triangle-freeness, k-colorability for a constant k, and bipartiteness requiresΩ(

∈
n)

queries [2,3,9], where n is the number of vertices.
A graph G is called isomorphic to another graph H if there is a bijection π :

V (G) ⊆ V (H) such that (u, v) ⊂ E(G) if and only if (π(u), π(v)) ⊂ E(H). In
this paper, we consider the problem of testing if the input graph G is isomorphic
to a fixed graph H , or if it is H-isomorphic. We assume that the (unknown) in-
put graph G has the same number of vertices as H . The problem of deciding if
a graph is isomorphic to H is fundamental and theoretically important. For ex-
ample, the problem is one of the rare problems that is neither known to be in P
nor NP-Complete. This motivates us to consider H-isomorphism in the prop-
erty testing literature. A graph property refers to a property that is closed un-
der taking isomorphism. Then, H-isomorphism can be identified as the simplest
graph property such that every graph property can be expressed as a union of H-
isomorphisms. Owing to these observations, Newman and Sohler [10] showed that
every graph property is testable in the bounded-degree model if the input graph is
a (bounded-degree) planar graph. This connection also holds for the adjacency list
model, which motivates us to considerH-isomorphism in the adjacency list model.

If we assume that the input graph is an arbitrary graph possibly containing
Ω(n2) edges, testing H-isomorphism in the adjacency list model requires Ω(

∈
n)

queries [4]. To investigate efficient testers for H-isomorphism, we restrict the
input graph: We assume that the input graph and H are forests with the same
number of vertices n. Note that we have no assumption on the degree as opposed
to the bounded-degree model. To avoid uninteresting technicalities, we modify
the definition of ε-farness as follows: Instead of using the number of edges in G
to measure the distance, we say that a forest G is ε-far from isomorphic to a
forest H if we must add or remove εn edges to transform G to H .1

With these definitions, we refer to the problem of testing the property of being
isomorphic to a fixed forest as testing forest-isomorphism. The main result of this
paper is as follows.

Theorem 1.1. In the adjacency list model, we can test forest-isomorphism with
polylog(n) queries.

Indeed, in our proof, we show that we can test forest-isomorphism even if both
graphs are given as oracle accesses.

Further, we show a lower bound for testing forest-isomorphism.

Theorem 1.2. In the adjacency list model, testing forest-isomorphism requires
Ω(

∈
logn) queries.

1 Indeed, we often assume that the input graph contains Ω(n) edges in the adjacency
list model. Thus, our definition of ε-farness for forests and the definition of ε-farness
in the adjacency list model with the assumption are identical up to a constant
multiplicative factor.
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As a corollary of Theorem 1.1, we show the following general result.

Theorem 1.3. In the adjacency list model, given an oracle access to a forest,
we can test any graph property with polylog(n) queries.

Techniques. We state a proof sketch of our main theorem, Theorem 1.1. Given
a tree G, by removing εn edges from G, we can obtain a graph G◦ with the
following property for some s = s(ε). Each connected component of G◦ is either
(i) a tree of maximum degree at most s, or (ii) a tree consisting of a (unique)
root vertex of degree more than s and subtrees of size at most s.

The first step in our algorithm is providing an oracle access OG′ to G◦ using
the oracle access OG to G. We call OG′ the partitioning oracle. In particular, if
we specify a vertex v and an index i, the oracle OG′ returns whether the i-th
edge incident to v in G is still alive in G◦. By carefully designing the construction
of G◦, we can answer the query with O(s2) queries to OG.

Suppose that we have an oracle access OG′ to G◦. Since we can deal with
trees of type (i) using existing algorithms in the bounded-degree model, let us
elaborate on trees of type (ii). For a tree T of type (ii), we can associate a tuple
(d, c1, . . . , ct(s)) with it, where t(s) is the number of possible trees of maximum
degree at most s and size at most s. Note that t(s) depends only on ε. Here, d
is the degree of the root vertex of T , and ci is the number of subtrees of the i-th
type in T . Though we cannot exactly compute the tuple, given the root vertex
of T , we can approximate it well using OG′ . Since G◦ consists of trees of type
(ii), we can associate a multiset of tuples with G◦. We call it the sketch of G◦.
Though we cannot exactly compute the sketch, we can approximate it to some
extent. The query complexity becomes polylog(n) since we want to approximate
d to within the multiplicative factor of 1 + ε and d can be up to n.

If G and H are isomorphic, then sketches associated with G◦ and H ◦ must be
the same. Our claim is that, if G◦ and H ◦ are ε-far from being isomorphic, then
their sketches are also far. Further, we will show that the distance between two
sketches can be computed via maximum matching in the bipartite graph such
that each vertex in the left part corresponds to a tree in G◦ and each vertex in
the right part corresponds to a tree in H ◦. Since we can approximate sketches
well and then approximate the size of the maximum matching from them, we
obtain a tester for forest-isomorphism.

Related Works. There are two major models on the representation of graphs. In
the dense graph model, a graph G = (V,E) is given as an oracle OG : V × V ⊆
{0, 1}. Given two vertices u, v ⊂ V , the oracle returns whether u and v are
connected in G. A graph is called ε-far from a property P if we must add or
remove at least εn2 edges for it to satisfy P .

In the dense graph model, many properties such as triangle-freeness and k-
colorability are known to be testable in constant time [6]. Indeed, Alon et al. [1]
obtained the characterization of constant-time testable properties using Sze-
merédi’s regularity lemma. As for graph isomorphism, Fischer and Matsliah [4]

showed that testing H-isomorphism can be carried out with Θ̃(
∈
n) queries. If
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both G and H are given as oracle accesses, then we need Ω(n) queries, and

we can test with Õ(n5/4) queries. We can trivially test forest-isomorphism: If a
graph is isomorphic to a forest H , then it has at most n edges. If a graph is ε-far
from being isomorphic to H , then it has at least εn2−n edges (otherwise, we can
remove all edges and then add new edges to make H). Thus, we can distinguish

the two cases only by estimating the number of edges up to, say εn2

2 .
In the bounded-degree model with a degree bound d, a graph G = (V,E) is

given as an oracle OG : V × [d] ⊆ V → {∧}, where [d] = {1, . . . , d} and ∧ is a
special symbol. Given a vertex v ⊂ V and an index i ⊂ [d], the oracle returns
the i-th neighbor of v. If there is no such neighbor, then the oracle returns ∧.

Many properties are known to be testable in constant time [7] and several gen-
eral conditions of constant-time testability are shown [10,12]. Hassidim et al. [8]
introduced the concept of the partitioning oracle to test minor closed properties.
Our partitioning oracle is similar to theirs, but their oracle provides an oracle
access to the graph that is determined by its internal random coin whereas ours
provides an oracle access to a graph that is deterministically determined. As for
graph isomorphism, it is known that H-isomorphism is testable in constant time
when H is hyperfinite [10]. Here, a graph is hyperfinite if by removing εn edges,
we can decompose the graph into connected components of size at most f(ε) for
some function f .

Organization. In Section 2, we give notations and definitions used throughout the
paper. In Section 3, we introduce the partitioning oracle. Using the partitioning
oracle, it suffices to consider the case where each tree in the input graph is either
a bounded-degree tree or a tree consisting of a high-degree root and subtrees of
small sizes. In Section 4, we consider the case in which every tree in the input
graph is the latter type and the degrees of roots are within a small interval. We
deal with the general case and prove Theorem 1.1 in Section 5. Due to limitations
of space, some proofs in Section 3, 4, 5 are presented in the full version. The
proof of Theorem 1.3 and the lower bound is also given in the full version.

2 Preliminaries

For an integer n, we denote by [n] the set {1, 2, . . . , n} and denote by N<n (resp.
N√n) the set {0, 1, . . . , n− 1} (resp. {0, 1, . . . , n}).

Let G = (V,E) be a graph. For a vertex v, degG(v) denotes the degree of
v. We omit the subscript if it is clear from the context. For a set of vertices
S ≥ V , G[S] denotes the subgraph induced by S. For graphs G and H with the
same number of vertices, the distance d(G,H) between G and H is defined as
the minimum number of edges that need to be added or removed to make G
isomorphic to H . Formally,

d(G,H) = min
Ω

(#{(u, v) ⊂ E(G) | (π(u), π(v)) ⇐⊂ E(H)}
+ #{(u, v) ⇐⊂ E(G) | (π(u), π(v)) ⊂ E(H)}),
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where π is over bijections from V (G) to V (H). We extend the definition of
d(G,H) for the case in which G and H have different number of vertices by
adding a sufficient number of isolated vertices. For a graph G and an integer k, let
G+ kv be the graph consisting of G and k isolated vertices. If |V (G)| > |V (H)|,
we define d(G,H) = d(G,H+(|V (G)|−|V (H)|)v). Similarly, if |V (G)| < |V (H)|,
we define d(G,H) = d(G + (|V (H)| − |V (G)|)v,H).

For an integer s ⇒ 1, we call a tree T an s-rooted tree if T contains a (unique)
vertex v with deg(v) ⇒ s + 1 such that each subtree of v contains at most s
vertices. The vertex v is called the root vertex of T and is denoted by root(T ).
We call a tree T an s-bounded-degree tree if every vertex in T has a degree of at
most s. We call a tree T an s-tree if it is an s-rooted tree or an s-bounded-degree
tree. To designate a union of trees, we use the term “forest.” For example, an
s-rooted forest means a disjoint union of s-rooted trees.

3 Partitioning Oracle

In this section, we show that, for any ε > 0, there exists s = s(ε) such that we
can partition any forest into an s-forest by removing at most εn edges. Then,
we show that we can provide an oracle access to the s-forest, which we call the
partitioning oracle. All missing proofs are given in the full version. We refer to a
vertex with degree more than s in the original graph G as a high-degree vertex.

Lemma 3.1 (Partitioning oracle). Suppose that we have an oracle access OG

to a forest G in the adjacency list model. Then for every ε > 0, we can provide
an oracle access O◦

G to a graph G◦ with the following properties:

1. G◦ is an s-forest for some s = s3.1(ε). G◦ depends only on G and ε.
2. G◦ is obtained from G by removing at most εn edges.
3. Let Vh be high-degree vertices in G. Then, each tree in G◦ contains at most

one vertex from Vh.

The oracle O◦
G supports alive-edge queries: Given a vertex v and an integer i,

the oracle returns whether the i-th edge incident to v in G still exists in G◦. For
each alive-edge query, the oracle issues O(1/ε2) queries to OG. The output of
O◦

G is deterministically calculated. Moreover, if G and H are isomorphic and
Ψ : V (G) ⊆ V (H) is an isomorphism, O◦

G(e) = O◦
H(Ψ(e)) holds for every edge

e ⊂ E(G).

Proof. We set s = 11
ε . If the degree of a vertex is at most s, we call it low-

degree. Let Vh and Vl be the sets of high-degree and low-degree vertices in G,
respectively. We call a connected component in G[Vl] large if it has more than
s vertices and small otherwise. From the definition, there are at most 2n/s
high-degree vertices in G and at most n/s large components in G[Vl].

We first give a polynomial-time algorithm that outputs an s-forest from the
input forest G. First, we remove edges (u, v) with u, v ⊂ Vh from G. Owing to
this, the resulting graph can be seen as a bipartite graph, where the left part
is Vh and the right part consists of components in G[Vl]. Now for each small
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component C in G[Vl], if it is adjacent to two or more vertices in Vh, we remove
all the edges connecting C and Vh. Further, we remove all the edges between
large components in G[Vl] and Vh. We define G◦ as the resulting graph. As
every subtree of each high-degree vertex is small, G◦ is an s-forest. Since each
connected component of G◦ contains at most one high-degree vertex, the third
property holds. Further, since any large small-degree connected component is not
connected to a high-degree vertex, the first property holds. The total number of
removed edges is at most |Vh| + 2|Vh| + (n/s + 2|Vh|) = εn. Thus, the second
property also holds.

To provide an oracle access to G◦ for an edge e = (v, w), we perform the BFS
from v and w. See the full version for the details. ∪≤

Since our construction of G◦ is deterministic and we remove at most εn edges,
the following corollary holds.

Corollary 3.2. Let G and H be two forests of n vertices, and G◦ and H ◦ be
the graphs obtained from G and H by the partitioning oracle with a parameter
ε
4 , respectively. If d(G,H) = 0, then d(G◦, H ◦) = 0 holds. If d(G,H) ⇒ εn, then
d(G◦, H ◦) ⇒ εn/2 holds. ∪≤

Thus, we can preprocess the graph using the partitioning oracle, and it is suf-
ficient to show that we can test isomorphism between two s-forests. We consider
s-bounded-degree forests and s-rooted forests separately. Therefore, we construct
a tester for the isomorphism of each corresponding tree in G◦ and H ◦. To test
isomorphism between s-bounded-degree forests, we use a technique from [10].
We will develop a technique to test isomorphism between s-rooted forests in G◦

and H ◦ under some conditions in the next section.
One technical issue of the partitioning oracle is that we cannot obtain the

exact degree degG′(v) of a vertex v in G◦ since degG(v) can be up to n. Instead
of computing the exact degree, we approximate the degree by randomly sampling
incident edges as follows: Choose i ⊂ [degG(v)] uniformly at random and apply
the alive-edge query to the i-th incident edge. For a parameter q ⇒ 1, repeat this
q times. Then, count the number of existing edges. Let c be this count. We use

the value c degG(v)
q as an approximation to degG′(v) and denote it by d̃egG′,q(v).

The standard argument using Chernoff’s bound gives the following lemma.

Lemma 3.3. Let G◦ be the graph obtained from a graph G by the partitioning or-
acle. For any δ, τ ⊂ (0, 1) and a vertex v, there exists a polynomial q = q3.3(δ, τ)

such that Pr[|d̃egG′,q(v) − degG′(v)| ⇔ δ degG(v)] ⇒ 1 − τ .

There is another issue of the partitioning oracle. If most parts of edges incident
to a high-degree vertex v (i.e., a vertex with degree more than s) are removed by

the partitioning oracle, the approximation d̃egG′,q(v) may have a considerably
large relative error. However, we can ensure that the number of such high-degree
vertices v is sufficiently small. To make the argument more formal, for an integer
R > s, we call a vertex v R-bad if R · max(degG′(v), 1) ⇔ degG(v). Otherwise,
we call v R-good. Note that an R-bad vertex must satisfy degG(v) ⇒ R > s.
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Thus, an R-bad vertex must be a high-degree vertex in G. Further, we call an
s-rooted tree R-bad (resp. R-good) if the root vertex is R-bad (resp. R-good).
Then, the number of vertices in R-bad s-rooted trees is bounded as follows.

Lemma 3.4. Let G◦ be the s-forest obtained from a graph G by the partitioning
oracle. For any R > s, the number of vertices in R-bad s-rooted trees of G◦ is at
most 4sn

R .

By Lemma 3.4, random vertex sampling does not pick up any R-bad vertex
with high probability if R is chosen sufficiently large. In Section 4, assuming that
every s-rooted tree is R-good in the input graph, we will construct a tester for
forest-isomorphism. In Section 5, combining Lemma 3.4 and the tester given in
Section 4, we will construct a tester for any s-forest.

For later use, we define auxiliary procedures on s-rooted trees. First, the
following lemma is useful.

Lemma 3.5. Given a vertex v ⊂ V (G◦) in an s-rooted tree T , there is an algo-
rithm that finds a root vertex root(T ) with query complexity O(poly(s)).

Proof. Perform a BFS in G◦ starting from the vertex v until we find a high-
degree vertex. The third property of Lemma 3.1 guarantees that we can find the
high-degree vertex and it is root(T ). ∪≤

Let T (s) = {T (1), T (2), . . . , T (t(s))} be the family of all rooted trees with at
most s vertices, where t(s) = |T (s)|. For an s-rooted tree T , let Freq(T ) be
the t(s)-dimensional vector whose i-th coordinate is the number of subtrees of
root(T ) isomorphic to T (i). As the root vertex uniquely exists in an s-rooted
tree T , there is a unique t(s)-dimensional vector corresponding to T .

Since the degree of a root vertex can be up to n, we cannot exactly compute
Freq(T ). Instead, we approximate Freq(T ) by randomly sampling subtrees in T .

Given the root vertex v of an s-rooted tree T , we can define a procedure F̃reqq(v)

to approximate Freq(T ). Due to limitations of space, we give the procedure F̃req
in the full version. Chernoff’s bound guarantees the following.

Lemma 3.6. For s ⇒ 1 and δ, τ ⊂ (0, 1), there exists a polynomial q = q3.6(s, δ, τ)

such that for any s-rooted tree T , |Freq(T )[i] − F̃reqq(root(T ))[i]| ⇔ δ degG(v) for
all i ⊂ [t(s)] with probability at least 1 − τ .

It is also useful to approximate the number of vertices in an s-rooted tree. For

an s-rooted tree T , we can define a procedure S̃ize that approximates |V (T )| by
randomly sampling subtrees of T and computing the number of vertices in the
subtrees. Here, if T is guaranteed to be R-good for some R > s, the following

holds. Again, we give the procedure S̃ize in the full version.

Lemma 3.7. For any s,R ⇒ 1 and δ, τ ⊂ (0, 1), there exists a polynomial q =

q3.7(s, δ, τ) such that, for any R-good s-rooted tree T , |S̃izeG′,q,R(root(T )) −
|V (T )|| ⇔ δ|V (T )| holds with probability at least 1 − τ . The expected number of

queries issued by the procedure S̃ize is O(poly(s,R, δ, τ)).
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4 When All Root Vertices Have Similar Degrees

In this section and the next section, we assume that we read the input graphs
G and H through the partitioning oracle. Thus, we are allowed to use alive-edge

queries and the procedures d̃eg, F̃req, and S̃ize. Further, we assume that s is a
constant that depends only on ε.

We consider the case in which the root of all components have similar degrees.
Formally, we assume that each component in G and H is R-good s-rooted tree
and that the degree of each s-rooted tree in G and H is greater than B and
at most γB. Here, B(> s) is an integer that can be up to O(n) and s, γ ⇒ 1
is an arbitrary constant. We call such a forest an R-good s-rooted forest with
root degrees in (B, γB]. In this section, we will show that there is a forest-
isomorphism tester for R-good s-rooted forest with root degrees in (B, γB] whose
query complexity is a polynomial in γ and R.

With the tester given in this section, we can construct a tester for the general
case as follows. After applying the partitioning oracle, the graph becomes a
disjoint union of an s-bounded-degree forest and an s-rooted forest. We partition
the s-rooted forest into several groups by the root degree. First, we ignore all
the R-bad s-rooted trees from the graph. Since the number of R-bad trees is
sufficiently small for a large R from Lemma 3.4, this does not affect so much.
Second, if deg(root(T )) is greater than O(γi) and at most O(γi+1), we consider
that a tree T is in the i-th group. Note that there are O(log n) groups. Then we
apply the isomorphism tester of this section to each group. If input graphs G and
H are isomorphic, the tester must return YES (isomorphic) for all the groups.
In contrast, if G and H are ε-far from isomorphic, there must exist a group such
that the tester returns NO (not isomorphic) for the group. Here, there is one
technical issue: The number of vertices in such a group might be different.

We resolve this issue. We assume that n := |V (G)| and n◦ := |V (H)| might
be slightly different and the algorithm does not know the exact values of n and
n◦ but know their approximations. Formally, we assume that our algorithm will
be given a value ñ ⇒ 1, an approximation to n and n◦, and η ⊂ (0, 1) with
ñ
n ,

ñ
n′ ⊂ [1 − η, 1].
We can prove the following lemma.

Lemma 4.1. Suppose that we are given ε◦ > 0, ñ ⇒ 1, γ ⇒ 1, R,B > s,
τ ⊂ (0, 1) and we can access s-forests G and H through the partitioning oracle,
where n = |V (G)| and n◦ = |V (H)| might be different. Then, there exists η =
η4.1(s, ε◦, γ, τ, R) > 0 with the following property. If G and H are R-good s-

rooted forests with root degrees in (B, γB] with ñ
n ,

ñ
n′ ⊂ [1 − η, 1], then there

exists an algorithm that tests if d(G,H) = 0 or d(G,H) ⇒ ε◦ñ with probability
at least 1− τ . Assuming that s is constant, the query complexity is a polynomial

in R, γ, ε◦, τ and does not depend on B, ñ. Further, denote by q
4.1
random(s, γ, ε◦, τ)

the number of random vertex queries the algorithm invokes. Then, q
4.1
random is a

polynomial in γ, ε◦, τ .
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Due to limitations of space, we provide the proof of Lemma 4.1 in the full
version. In this section, we write an overview of the proof.

Since Freq(T ) maps to a unique t(s)-dimensional vector corresponding to an s-
rooted tree T , there is a unique multiset of vectors corresponding to an s-rooted

forest G. For a t(s)-dimensional vector w ⊂ N
t(s)
<n , let ΨG[w] be the number of

s-rooted trees T in G such that Freq(T ) = w. Note that ΨG can be seen as the
sketch of G. Clearly, G is isomorphic to H if and only if ΨG[w] = ΨH [w] for all
w. We use this property to create a tester. Since it is impossible to compute ΨG

exactly, we resort to approximate it. We choose an integer k ⇒ 1, and divide
each axis of the t(s)-dimensional space into k segments to make kt(s) cells. We
then estimate the number of s-rooted trees in each cell. We call this estimation
the sketch of G. We focus on computing the sketch.

For an integer k ⇒ 1, we define intervals Ii = [ ñi
(1−α)k ,

ñ(i+1)
(1−α)k ) (i ⊂ N<k). Note

that, for every 0 ⇔ i ⇔ n − 1, there exists a unique interval Ij with i ⊂ Ij .

For a vector u ⊂ N
t(s)
<k , let Cell(u) be the corresponding cell formed by intervals

Iu[1], . . . , Iu[t(s)]. Further, for a vector w ⊂ [0, n]t(s), we define Round(w) = u,

where u ⊂ N
t(s)
<k is such that Cell(u) ∗ w.

For a vector u ⊂ N
t(s)
<k , we approximate the number of s-rooted trees T in G

with Freq(T ) ⊂ Cell(u) by the following algorithm ∅Sketch.

Algorithm 1. returns a map Φ : N
t(s)
<k ⊆ [0, n], given integers qloop, qfreq,

qsize,R,k, a real ñ and an R-good s-rooted forest G with root degrees in (B, γB]
through the partitioning oracle. Here, Φ(u) is an approximation to the number
of s-rooted trees T with Freq(T ) ⊂ Cell(u).

1: procedure ∅Sketchqloop ,qfreq,qsize,R,k(G)

2: Set Φ(u) = 0 for all u ∈ N
t(s)
<k

3: for j = 1, . . . , qloop do
4: Choose a vertex u ∈ V (G) uniformly at random
5: Perform a BFS from u to find a root vertex v.
6: u = Round(F̃reqqfreq (v))

7: Φ(u) = Φ(u) + 1/S̃izeG,qsize,R(v)

8: return ñ
qloop

Φ

To create a forest-isomorphism tester, we first compute the sketches of G and

H by the algorithm ∅Sketch, and then, we compute the minimum matching be-
tween the sketches. Here, the minimum matching is defined as the min-cost flow
of complete bipartite graphs where vertices correspond to the cells of the sketches
and the weight of an edge is the L1 distance between two cells of the sketches in
the t(s)-dimensional space. Since the L1 distance in the t(s)-dimensional space
corresponds to the number of different subtrees in s-rooted trees, we can prove
that the a minimum cost matching between the sketches is a good approxima-
tion to d(G,H) with high probability. Thus, it suffices to compute the sketches
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of G and H and the minimum cost matching between them. Note that we do not
have to make any query to G and H to compute the minimum cost matching.

5 General Case

In this section, we prove Theorem 1.1. Missing proofs and procedures of this
section are given in the full version. Again G and H denote the graphs given
through the partitioning oracle and s is constant. For an integer L ⇒ 1, we call
G1, . . . , GL ≥ G a partition of G if each Gi is a union of connected components
in G and G is a disjoint union of G1, . . . , GL. The following lemma allows us to
consider each part in the partition separately.

Lemma 5.1. Let L ⇒ 1 be an integer and G1, · · · , GL (resp. H1, · · · , HL) be
any partition of G (resp. H). Then, for any β1, · · · , βL ⇒ 0 summing up to 1,
the following holds: For any ε > 0, if d(G,H) ⇒ εn, there exists i ⊂ [L] such
that d(Gi, Hi) ⇒ βiεn holds.

To construct a tester for the isomorphism of s-forests, we first give a par-
tition of an s-forest and apply Lemma 5.1. Then we test the isomorphism of
each corresponding partition of G and H . That is, we check d(Gi, Hi) = 0 or
d(Gi, Hi) ⇒ βiεn for each i. Here, if d(G,H) = 0, all parts of the partition in G
and H are isomorphic, so all the tests must output YES (with high probability).
If d(G,H) ⇒ εn, there must be an index i where the test outputs NO. To provide
oracle accesses to Gi and Hi, we estimate the size of V (Gi) and V (Hi) by ran-
dom sampling. If they are sufficiently far, we immediately return NO. If they are
sufficiently small, we simply ignore Gi and Hi. Otherwise, we can provide the
oracle accesses to Gi and Hi that costs for each query at most poly(L) queries
to G and H . Using this access, we test whether d(Gi, Hi) ⇒ βiεn.

To provide a partition of an s-forest, we introduce a new notion. For α, γ ⇒ 1,
μ > 0, and a tree T , we say that T is on the (α, γ, μ)-boundary, if there exists an
integer i ⇒ 1 with 1−μ ⇔ deg(root(T ))/(αγi) ⇔ 1 +μ. We denote by Bλ,Δ,μ(G)
the number of vertices in the trees of G that are on the (α, γ, μ)-boundary. For
λ > 0, we call α (γ, μ, λ)-good with respect to G if Bλ,Δ,μ(G) < λn. We can
show that, if we choose α from [1, γ] at random, α is (γ, μ, λ)-good with high
probability.

Lemma 5.2. Suppose that α is chosen from [1, γ] uniformly at random. Then,
for γ ⇒ 2, μ ⊂ (0, 1/3), and λ ⊂ (0, 1), α is (γ, μ, λ)-good with respect to G with
probability at least 1 − 4Δμ

Λ .

We consider a partition of an s-forest G. Let α, γ, μ, and R be values chosen

later. Let G
[0]
s,λ,Δ,μ,R be the maximal s-bounded-degree forest in G and G

[1]
s,λ,Δ,μ,R

be the union of R-good s-rooted trees with root degree in (s, αγ] that are not on
the (α, γ, μ)-boundary in G. Similarly, for 2 ⇔ i ⇔ L, where L = ⊥logn/ log γ↓, let

G
[i]
s,λ,Δ,μ,R be the union of R-good s-rooted trees with root degree in (αγi−1, αγi]
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that are not on the (α, γ, μ)-boundary in G. Finally, let G
[L+1]
s,λ,Δ,μ,R be the re-

maining trees that are not assigned to any partition so far. That is, G[L+1] is
the union of trees that are R-bad or on the (α, γ, μ)-boundary in G. We omit

the subscript of G
[i]
s,λ,Δ,μ,R if it is clear from the context. Note that we can write

G = G[0] →G[1] → · · · →G[L+1]. We use the same notion for the other graph H .
We define a procedure that, given a vertex v ⊂ V (G), returns i with v ⊂ G[i] as

follows. Our procedure first determines if v is in an s-bounded-degree tree by per-
forming a BFS from v until we visit O(s) vertices. If we cannot find a high-degree

vertex, v ⊂ G[0]. Otherwise, for a parameter q ⇒ 1, we invoke d̃egq(root(v)) and
return an appropriate output. We call this procedure Whichq(v).

Here, the technical issue is that the procedure Which may output a wrong
value. We show that Which outputs the correct value with high probability for
any partition of G except for G[L+1] and that the size of G[L+1] is sufficiently
small.

Lemma 5.3. For any τ ⊂ (0, 1) and R ⇒ 1, there exists a polynomial q =
q5.3(γ, μ,R, τ) such that the procedure Whichq(v) outputs a correct value with

probability 1 − τ for v ⊂ V (G
[0]
s,λ,Δ,μ,R) → · · · → V (G

[L]
s,λ,Δ,μ,R).

Lemma 5.4. For any γ ⇒ 2 and λ ⊂ (0, 1), there exist R = O(s/λ), μ = O(λ/γ)

such that if α is chosen from [1, γ] uniformly at random, |V (G
[L+1]
s,λ,Δ,μ,R)| ⇔ λn

holds with probability 1 −O(1).

Using the procedure Which, we can approximate the number of vertices in G[i]

by random sampling. For i ⊂ N√L, we denote by Sizeqloop,qwhich
(G, i) the algo-

rithm that samples qloop vertices uniformly at random, and applies Whichqwhich

for each sampled vertex, and then approximates |V (G[i])|. By Chernoff’s bound,
we obtain the following lemma.

Lemma 5.5. For any δ, τ ⊂ (0, 1) and parameters α, γ, μ, and R, there exist
polynomials qloop = qloop5.5(δ, τ) and qwhich = qwhich5.5(δ, τ) such that the fol-

lowing holds: For any λ ⊂ (0, 1) with |V (G
[L+1]
s,λ,Δ,μ,R)| ⇔ λn, |Sizeqloop,qwhich

(G, i)−
|V (G

[i]
s,λ,Δ,μ,R)|| ⇔ (λ + δ)n with probability 1 − τ . ∪≤

Further, using the procedure Which, we can provide oracle accesses to G[i] for
i ⊂ Ni√L. Let Randomq(G, i) denote the procedure that repeats itself to pick up
a vertex v in G uniformly at random and invokes the procedure Whichq(v) and
returns v if the returned value of Which is i.

Lemma 5.6. For every δ, τ ⊂ (0, 1) and parameters α, γ, μ, and R, there exist
polynomials q = q5.6(δ, τ) and λ = λ5.6(δ, τ) such that the following holds
for every i ⊂ N√L: If |V (G[i])| ⇒ δn and |V (G[L+1])| ⇔ λn, the procedure
Randomq(G, i) outputs a vertex of G[i] uniformly at random by invoking the
procedure Whichq at most O(1/(δτ)) times with probability 1 − τ .

The sketch of the proof of Theorem 1.1 is as follows. As we mentioned, it
suffices to create an isomorphism tester between G[i] and H [i] for each i ⊂ N√L.
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First, set γ = 2s and choose α ⊂ [1, γ] uniformly at random. From Lemma 5.4,
|V (G[L+1])| and |V (H [L+1])| are small with high probability. Thus, we can apply
the procedures Which, Size and Random to the input graphs. From Lemmas 5.3,
5.5, and 5.6, these procedures output the correct value with sufficiently high
probability. Using the procedure Size, we can test if |V (G[i])| and |V (H [i])| are
large and sufficiently close. Then, we can test forest-isomorphism between G[i]

and H [i] (with high probability) by providing oracle accesses to G[i] and H [i]

through the procedure Random. For i = 0, we use a method proposed by [10]
with a little modification. For 1 ⇔ i ⇔ L, we use the method in Section 4. Here,
every parameter depends on polylog(n) assuming that s is constant. Thus, the
query complexity of our forest-isomorphism tester is polylog(n) in total. See the
full version for the detailed description of the tester for forest-isomorphism.

References

1. Alon, N., Fischer, E., Newman, I., Shapira, A.: A combinatorial characteriza-
tion of the testable graph properties: It’s all about regularity. SIAM Journal on
Computing 39(1), 143–167 (2009)

2. Alon, N., Kaufman, T., Krivelevich, M., Ron, D.: Testing triangle-freeness in gen-
eral graphs. SIAM Journal on Discrete Mathematics 22(2), 786–819 (2008)

3. Ben-Eliezer, I., Kaufman, T., Krivelevich, M., Ron, D.: Comparing the strength of
query types in property testing: the case of testing k-colorability. In: SODA 2008:
Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1213–1222 (2008)

4. Fischer, E., Matsliah, A.: Testing graph isomorphism. SIAM Journal on Computing
38(1), 207–225 (2008)

5. Goldreich, O.: Introduction to testing graph properties. In: Goldreich, O. (ed.)
Property Testing. LNCS, vol. 6390, pp. 105–141. Springer, Heidelberg (2010)

6. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to
learning and approximation. Journal of the ACM 45(4), 653–750 (1998)

7. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica
32(2), 302–343 (2002)

8. Hassidim, A., Kelner, J.A., Nguyen, H.N., Onak, K.: Local graph partitions for
approximation and testing. In: FOCS 2009: Proceedings of the 50th Annual IEEE
Symposium on Foundations of Computer Science, pp. 22–31 (2009)

9. Kaufman, T., Krivelevich, M., Ron, D.: Tight bounds for testing bipartiteness in
general graphs. SIAM Journal on Computing 33(6), 1441–1483 (2004)

10. Newman, I., Sohler, C.: Every property of hyperfinite graphs is testable. SIAM
Journal on Computing 42(3), 1095–1112 (2013)

11. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applica-
tions to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)

12. Tanigawa, S., Yoshida, Y.: Testing the supermodular-cut condition. Algorithmica,
1–11 (2013)



Parameterized Approximation Schemes

Using Graph Widthsθ

Michael Lampis

Research Institute for Mathematical Sciences (RIMS), Kyoto University
mlampis@kurims.kyoto-u.ac.jp

Abstract. Combining the techniques of approximation algorithms and
parameterized complexity has long been considered a promising research
area, but relatively few results are currently known. In this paper we
study the parameterized approximability of a number of problems which
are known to be hard to solve exactly when parameterized by treewidth
or clique-width. Our main contribution is to present a natural ran-
domized rounding technique that extends well-known ideas and can be
used for both of these widths. Applying this very generic technique
we obtain approximation schemes for a number of problems, evading
both polynomial-time inapproximability and parameterized intractabil-
ity bounds.

1 Introduction

Approximation algorithms and parameterized complexity are two of the most
popular ways of dealing with NP-hard optimization problems. Nevertheless, the
two sets of techniques are usually treated independently. It’s therefore a very
natural question whether combining the techniques of both theories can be used
to obtain algorithmic results which are out of reach for each one of them sepa-
rately. This has often been identified as a promising research field (see [17] for a
survey), but its development has so far been somewhat limited. The goal of this
paper is to add some results in this area by designing parameterized approxima-
tion schemes for problems which are both parameterized intractable (W-hard)
and hard to approximate in polynomial time (APX-hard).

The problems we will focus on are optimization problems on graphs of bounded
treewidth or clique-width. These two graph widths are of central importance to
parameterized complexity theory. At the same time, they play a significant role
in the design of approximation algorithms, since subroutines employing them are
often used as building blocks of larger algorithms. Therefore, understanding the
extent to which we can efficiently approximate problems which remain W-hard
for these widths is of potentially great importance from several points of view.

Let us begin by stating a result representative of the aims of this paper.
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Theorem 1 (Partial Statement).
There exists a randomized (1 + σ)-approximation algorithm for Max Cut

running in time (log n/σ)O(w)nO(1), where w is the input graph’s clique-width.

Max Cut is of course a problem of central importance in the contexts of
both approximability and parameterized complexity. It is APX-hard (so an ap-
proximation ratio of 1 + σ is probably impossible in polynomial time) and W-
hard parameterized by clique-width (so the fastest exact algorithm probably
needs time roughly nw). Our main point here is that using a parameterized
approximation approach we can evade these lower bounds, leading to a (1 + σ)-
approximation running in time only (log n)O(w), that is, an FPT approximation
scheme. More generally, the goal of this paper is to provide, in a uniform way,
similar approximation (or bicriteria approximation) schemes for a diverse set of
W-hard and APX-hard graph problems. The problems for which we will provide
algorithms are the following: Max Cut, Edge Dominating Set, Bounded
Degree Deletion, Capacitated Dominating Set, Capacitated Vertex
Cover, Equitable Coloring and Graph Balancing. For most of these
problems we are able to provide equally efficient algorithms for both treewidth
and clique-width (a detailed description of all results is given further below).

Paper Overview: In this paper we adopt a generic technique that is a variation
of the standard dynamic programming used for treewidth and clique-width. We
observe that for a number of problems which are parameterized intractable for
these widths, the hardness intuitively stems from the fact that large integers
need to be stored in the dynamic programming table. These integers are usually
calculated simply by adding previously calculated entries (all the problems listed
above fall into this general category, though for some this is not obvious). We
want to shrink the table, and thus speed up the algorithms, by storing these
integers approximately.

The basic idea we use is very natural. We fix a parameter τ > 0 and represent
all integers in {1, . . . , n} by rounding them to the closest integer power of (1+τ).
If τ is not too small (τ = λ( 1

logc n )) the natural dynamic programming table’s

size is dramatically reduced from nw to (logn)O(w). The obvious obstacle to this
approach, however, is that during the process of running a dynamic programming
algorithm on the approximate values the rounding errors will propagate and
potentially pile up to a large error. How can we keep the errors under control?

In this paper we suggest a very natural randomized rounding approach to
this problem. The main contribution is to show that this rounding idea can be
seamlessly incorporated into the standard dynamic programming techniques of
treewidth and clique-width to give efficient approximation schemes. In order to
make the transition from exact to approximate algorithms as cleanly as pos-
sible we separate the analysis into two parts. First, we introduce an abstract
model of computation, called Approximate Addition Trees, which captures the
essence of the rounding ideas we described. We fully analyze the approximation
performance of these Trees and prove some general approximation theorems.
Then, relying on this analysis we give a series of approximation algorithms using
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clique-width and treewidth. It’s worth stressing at this point that all the algo-
rithms we will present follow the standard dynamic programming mold that
should be very familiar to readers accustomed to graph widths. The important
difference is that their analysis, in addition to standard methods, also crucially
relies on our results on Approximate Addition Trees (which we can use as a
black box). Thus, by abstracting away the Addition Trees, our technique can be
viewed as a natural extension of well-known ideas. The hope is that this mod-
ularization will allow our technique to be easily reused and eventually become
part of the standard graph width toolkit.

Thus, what is left to describe is the workings of Approximate Addition Trees.
This is, expectedly, the most technical part of the paper. As we will see, there do
exist some important special cases where a complicated analysis can be avoided
(notably, when the input tree is balanced) and there is some value in these cases
since they can help make some algorithms deterministic. However, in order to
obtain the more interesting results of this paper we need an analysis of full
generality. In other words, we need to establish an approximation theorem that
works for all Addition Trees without making any special assumptions about their
structure. Our main technical contribution is that we do establish such a result
and this allows us to analyze all the algorithms of this paper in terms of Addition
Trees. We thus present a robust, unified technique that works for both treewidth
and clique-width (and potentially other similar graph widths), without relying
on any non-trivial width-specific properties.

Summary of Results: Let us now formally state the algorithmic results pre-
sented in this paper. Full problem definitions are given further below and in the
full version of this paper. In the following theorems, nO(1) factors are omitted
from the running times.

Theorem 1. Given an n-vertex graph G(V,E), a clique-width expression with
w labels, and an error parameter σ > 0, there exist randomized algorithms which,
with high probability, achieve the following:

– Produce a solution to Max Cut with size at least OPT
1+σ in time (logn/σ)O(w).

– Produce an approximate solution to Edge Dominating Set with size at
most (1 + σ)OPT in time (log n/σ)O(w).

– Given an integer k, either decide (correctly) that G does not admit an Equi-
table Coloring with k colors or produce a valid k-coloring where the ratio
of the sizes of any two color classes is at most (1+σ) in time (logn/σ)O(k)2kw.

– Given an integer Π find a set of vertices that is at most as large as the
optimal solution for Bounded Degree Deletion to degree Π and whose
deletion makes the maximum degree at most (1 + σ)Π, in time (logn/σ)O(w).

– Given a capacity for each vertex, find a Capacitated Dominating Set of
size at most OPT, such that all but at most σn vertices are dominated, in
time (logn/σ)O(w).

In addition, if instead of a clique-width expression we are given a tree decom-
position of width w, there exist deterministic algorithms, with the same running
times, achieving all the above.
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Theorem 2. Given an n-vertex graph G(V,E), a tree decomposition of width
w, and an error parameter σ > 0, there exist deterministic algorithms which
achieve the following:

– Produce an approximate solution with cost at most (1 + σ)OPT for Graph
Balancing, in time (logn)O(w).

– Given a capacity for each vertex, find a Capacitated Dominating Set (or
Capacitated Vertex Cover) of size at most OPT, such that no capacity
is violated by a factor of (1 + σ) or more, in time (log n)O(w).

All algorithms are given in Section 3 and in the full version of this paper.

Previous Work: Max Cut was shown to be W-hard when parameterized by
clique-width in [12]. The problem is known to be APX-hard in general [19]. In
Edge Dominating Set we want to select the smallest possible set of edges
such that all edges share an endpoint with a selected edge. This problem is also
APX-hard and W-hard for clique-width [12]. Let us also mention that all other
considered problems are both W-hard for treewidth and APX-hard in general
[11,23,9,2,8]. More details are given in the full version of this paper.

Very few FPT approximation schemes are currently known. For an overview
of the most important results see the survey by Marx [17]. The same paper gives
an FPT approximation scheme for Max Vertex Cover parameterized by the
size of the cover. This is extended in [22] to an FPT approximation scheme for
Max Cover. See also [5] for FPT approximation schemes for related covering
problems. Sum Edge Multicoloring is a rare example of a problem currently
known to admit an FPT approximation scheme parameterized by treewidth [16].

In this paper we focus on problems parameterized by treewidth or clique-
width. For an introduction to these notions see [4,7,10]. It was initially be-
lieved that problems solvable on trees are almost always FPT parameterized
by treewidth. Gradually, many exceptions were discovered. Most relevant to
our purposes are problems which are solvable in polynomial time for constant
treewidth, but not FPT. Some examples of such problems when parameterized
by treewidth (in addition to the problems we consider in this paper) are given
in the following papers: [1,15,18,11,20,21,13].

Preliminaries and Notation: We use boldface to denote vectors, for example
d. Sometimes a vector s ∈ Sk for S a set and k ∈ N will also be viewed as
a function from {1, . . . , k} (or some other convenient set of size k) to S, and
vice-versa.

We use standard graph theoretic notation. For an undirected graph G(V,E)
and X ⊆ V we denote by G[X ] the graph induced by X . We will use the
standard notion of “nice” tree decompositions (see the survey by Bodlaender and
Koster [4]). We will also use the notion of clique-width (see [7,10]). The set of
graphs of clique-width w is the set of vertex-labelled graphs with w labels which
can be constructed inductively using the following four operations: Introduce,
Union, Join, and Rename. When dealing with clique-width, we assume that
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a clique-width expression is given in the input. We view it as a rooted binary
tree where each node is labeled with its corresponding operation.

2 Approximate Addition Trees

In this section we describe an abstract model of computation which one may
naturally call Addition Trees. In such a Tree each node calculates a value that is
the sum of the values of its children. We also define an Approximate version of
these trees, where each node probabilistically rounds calculated values to integer
powers of (1 + τ), for some parameter τ > 0. These trees capture the rounding
scheme that will be the heart of the algorithms of the next section. Our goal is
to prove that the values of Approximate and Exact Addition Trees are almost
always very close, even if τ is not too small (we want τ = λ(1/ logc n)). We
require τ to be in this range, because in the end the algorithms of the next
section will run in time roughly (logn/τ)w. Thus, if we allow τ to become inverse
polynomial in n (which would make this section easy), we will get algorithms as
slow as the trivial exact ones.

Intuitively, there are two extreme cases to consider here. First, if a tree is bal-
anced (that is, it has logarithmic height), it is not hard to establish that rounding
errors cannot pile up too badly (Theorem 3). Somewhat surprisingly, this easy
case is already sufficient to obtain several non-trivial algorithmic results, because
tree decompositions can always be balanced reasonably well (more details are
given in the next section). However, to obtain the more interesting results of this
paper we need to deal with clique-width, where the input decomposition cannot
in general be balanced. Therefore, we have to deal with general Addition Trees.

Our proof strategy then is to move on to a second extreme case: caterpillars.
Here the height of the tree is large, but we know that one operand of each addi-
tion has no previously accumulated error. Despite this, this is actually a pretty
hard case. To see why, intuitively one can think of the accumulated error at each
level of the tree as a random variable, since the rounding performed on each step is
randomized. The error has some probability of increasing and some of decreasing,
depending on how we round, but it changes by at most a factor of (1 + τ) in each
step. So, if we look at its logarithm (with base (1+τ)) it can (randomly) increase or
decrease by at most 1. Thus, the process we are trying to analyze is akin to a mem-
oryless random walk on the real line. We want to prove that the end result of the
walk after n steps is with high probability contained in an area of size only roughly
1/τ = poly(logn). Such a statement cannot be shown with standard tools, such as
Chernoff bounds, because the result they give is too weak (they give concentration
in an area of size roughly

⊂
n). Instead, we need to use moment-generating func-

tions to derive a problem-specific concentration bound that takes into account our
algorithm’s tendency to “self-correct”. Because of this special tendency (Lemma
1), our random walk is much more strongly concentrated around its expectation
than usual random walks.

Thus, eventually we establish (in Lemma 2) that the approximation error is
small in the caterpillar case, with high probability. Once this has been shown we
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can extend the same ideas to prove a sufficiently good approximation theorem
for general trees by performing induction on the “balanced height” of the tree
(Theorem 4).

We remark that the only parts of this section needed to follow the results of
the next one are Definitions 1,2 and Theorems 3,4. Let us now proceed to give
full details.

Definition 1. An Addition Tree is a full rooted binary tree T where we associate
with each leaf l a non-negative integer input xl and with each node v a non-
negative integer value yv. The inputs are given with T . The value of each node
is calculated as follows:

1. For each leaf l we set yl := xl

2. For each internal node v with two children u1, u2 whose values have already
been calculated we set yv := yu1 + yu2 .

Definition 2. An Approximate Addition Tree with parameter τ is a full rooted
binary tree T where we associate with each leaf l a non-negative integer input
xl and with each node v a non-negative approximate value zv. The approximate
value of each node is calculated as follows:

1. For each leaf l we set zl := xl

2. For each internal node v with two children u1, u2 we set zv := zu1 → zu2 ,
where the → operation is defined below.

Let av := zu1 + zu2 . We will call av the initial approximate value of v.
We use → to denote the following operation: for two non-negative numbers

x1, x2 we define x1 → x2 := 0 if x1 = x2 = 0. Otherwise, select a real number
r ∈ (0, 1) uniformly at random and set x1 → x2 := (1 + τ)◦log(1+δ)(x1+x2)+r√.

Since it is not hard to see that for any node v for which yv = 0 an Ap-
proximate Addition Tree will also have zv = 0, we are only concerned with the
approximation error for nodes where yv ∧= 0. Therefore, in the remainder we
will implicitly assume that we are talking about a tree where for all v, yv > 0,
because sub-trees with value 0 can be ignored.

Definition 3. Let v be a node of an Addition Tree, yv its (positive) value and zv
its approximate value calculated if we view the tree as an Approximate Addition
Tree. Then the error βv is defined as βv := log(1+ε)

zv
yv
.

Informally, βv measures how many “(1 + τ) intervals” off our approximation
is from the correct interval.

Before we go on, let us make an easy observation that will be sufficient to
handle an important special case.

Theorem 3. If an Approximate Addition Tree has maximum depth h then for
all nodes v we always have |βv| ≥ h + 1. Therefore, if τ < σ

3h then for all v we
have max{ zv

yv
, yv

zv
} < 1 + σ.
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As a consequence of Theorem 3 we get that in trees of height O(log n) we can
set τ = Δ(1/ logn) and get error at most 1 + σ everywhere deterministically.

The main intuitive observation that we will use to give an approximation
guarantee can be summarized as follows: the process by which the initial ap-
proximation av is calculated is “self-correcting”.

Lemma 1. Consider an Approximate Addition Tree with parameter τ < 1
2 . Let

v be an internal node with two children u1, u2. If max{|βu1 |, |βu2 |} < 1
4ε then

| log(1+ε)
av

yu1+yu2
| ≥ max{|βu1 |, |βu2 |} − 1

20τpv|βu1 − βu2 |.
Informally, Lemma 1 states that the maximum error in a node tends to de-

crease by a value that is proportional to the absolute difference of the errors
of its two children. Lemma 1 will be our main tool in proving that with high
probability the values of an Approximate Addition Tree are not too far from
those of the corresponding exact tree. We will proceed by induction, starting
from a simple case of path-like trees (caterpillars).

Lemma 2. If T is a caterpillar and β ∈ ( 2≤
ε
, 1
4ε )we havePr [⇐v ∈ T : |βv| > β] ≥

2n2e−
λ
√

δ
20 .

After extending this to arbitrary trees, we are led to the main theorem of this
section

Theorem 4. Let T be an Approximate Addition Tree on n nodes with parameter
τ ∈ (0, 1

2 ). There exists a fixed constant C > 0 such that for all σ ∈ (0, 1
8 ) and

sufficiently large n, if τ < σ2

C log6 n
we have

Pr

[
⇐v ∈ T : max{zv

yv
,
yv
zv

} > 1 + σ

]
≥ n− logn

3 Approximation Schemes

We are now ready to use the results of the previous section to design some
approximation algorithms. As mentioned, we only need Definitions 1,2 and The-
orems 3, 4. Let us first describe the general technique.

An important property of all the problems we consider is that they admit an
exact dynamic program that takes time (roughly) nw. These dynamic programs
calculate a set of w integers on each node of the decomposition by adding pre-
viously calculated values or values read from the graph. The idea is to reuse
this dynamic program, but round all values to integer powers of (1 + τ) and
perform all additions with the → operation. Note that, we are in fact able to also
handle some other auxiliary operations besides addition (such as comparisons).
It will, however, be important that our dynamic programs avoid using subtrac-
tions (because then we lose the approximation guarantee) and part of our effort
is devoted to achieving this.

How do we analyze the approximation ratio of such an algorithm? On a high
level, the strategy is to inductively construct Addition Trees such that their
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Approximate version correspond to our algorithm’s table and their exact version
to actual solutions. We then argue that if our algorithm’s table has a large error,
we have a bad Approximate Addition Tree, which only happens with very low
probability.

What remains to say is what values we select for the parameter τ. Here we
have two choices. In the general case, we set τ to the value dictated by Theorem 4.
This works quite well essentially all the time, as we can guarantee that with high
probability the Addition Trees we consider during the analysis of our algorithm
will have almost correct values. We can thus obtain randomized approximation
schemes for both clique-width and treewidth with the promised running time of
roughly (log n/σ)O(w). This is the general technique we consider to be the main
contribution of this paper.

Nevertheless, as mentioned there exists an important special case where things
can become simpler. It is known that for any graph of treewidth w there exists a
tree decomposition of width O(w) and only logarithmic (in n) height [3]. Thus,
another approach available to us is to use this theorem to first balance the de-
composition and then rely on Theorem 3, instead of the more general Theorem
4. Unfortunately, this argument is specific to treewidth (similar balancing results
for clique-width are much more inefficient and would lead to an unreasonable
running time of roughly (log n)2

w

[6]). It also fails to speed up even the treewidth
algorithms much, because of the blow-up in w. Despite these shortcomings, we
still believe there may be some value in this treewidth-specific balancing trick
and mention it as an alternative approach because it allows us to get rid of ran-
domization in this case. To the best of our knowledge, this is the first application
of tree decomposition balancing theorems to approximation algorithms.

In the rest of this section we describe the algorithms for Max Cut and Edge
Dominating Set. Algorithms for Equitable Coloring, Capacitated Dom-
inating Set, Capacitated Vertex Cover, Bounded Degree Deletion,
and Graph Balancing are given in the full version of this paper.

3.1 Max Cut

In this section we attack the Max Cut problem parameterized by clique-width.
In Max Cut we are given a graph G(V,E) and are asked to find a partition of
V into L,R ⊆ V, L = V \ R such that the number of edges with exactly one
endpoint in L is maximized.

We will follow the straightforward dynamic program for this problem, as used
for example in [12]. The idea is to describe a partial solution by keeping track
of the intersection of each label set with L. The first difference is of course that
we will round all values to save time. The second (somewhat counter-intuitive)
difference is that for each label set we will keep track of the size of its intersection
with both L and R. In the exact program this would be wasteful, since one of
these two numbers can be calculated from the other, using the (known) size
of the whole label set. However, here we are trying to implement a dynamic
program that relies only on additions.
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Dynamic Program. As mentioned, we view the clique-width expression as a
rooted binary tree. First, define the set B := {0}⇒{(1+τ)j | j ∈ N}. Informally,
B is the set of rounded values that may appear in our table. Even though B
is infinite, whenever the algorithm produces an entry with value larger than
(1 + σ)n2 we simply drop that entry. It will not be hard to see that this will not
affect the analysis if all entries are within a (1 + σ) factor of being correct (then
nothing will be dropped). Observe that the size of B then becomes log(1+ε)(n

2) =
poly(logn/σ), if we set τ according to Theorem 4.

The dynamic programming table Di for a node i is a subset of Bw ×Bw ×B.
The informal meaning is that an entry (l, r, c) ∈ Di if and only if there exists a
partition of the subgraph of G represented by the sub-tree rooted at i into Li, Ri

such that: first, for all l ∈ {1, . . . , w} the number of vertices in Li (respectively
Ri) with label l is roughly l(l) (respectively r(l)); and second, the number of
edges with exactly one endpoint in Li is roughly c.

A dynamic programming algorithm can now be formulated in a straightfor-
ward way. It is easy to fill the table for initial nodes. For Rename and Union
nodes the exact dynamic program would perform some addition, which we now
replace with the → operation. For example, consider a Rename node with labels
l1 ∪ l2. For each entry (l, r, c) in the child’s table we create an entry (l′, r′, c)
in the current node as follows: we set l′(l1) := 0, l′(l2) := l(l1)→ l(l2) and l′ the
same as l for other labels to make the vector l′ of a new entry (similarly for r′).
In the same way, for a Union node, for each entry (l1, r1, c1) in the first child’s
table and for each entry (l2, r2, c2) in the second child’s table we construct an
entry (l1 → l2, r1 → r2, c1 → c2), where → is applied component-wise for vectors.

For Join nodes with labels l1, l2 we do something similar. For each entry
(l, r, c) in the child’s table construct a new vector with the same l, r and c⊆ :=
c→ (l(l1) · r(l2) + l(l2) · r(l1)). Note that if the elements of l, r are known with
error at most (1 + σ) then the second term of this addition is known with error
at most (1 + σ)2 ≤ 1 + 2σ.

Analysis. First, observe that because the running time of the algorithm is poly-
nomial in the size of the tables, the algorithm clearly achieves the running time
stated in Theorem 1. We only have to prove its approximation guarantee.

Any node i of the clique-width expression defines a subgraph Gi of G (the
graph produced by the sub-expression rooted at i). A partial solution is simply
a restriction of a solution L,R for G to the vertices of Gi. The signature of a
partial solution is a vector of 2w + 1 integers that would represent this solution
in an exact dynamic programming table. In this case, it contains the exact size
of the intersections of L,R with each label set and the size of the cut in Gi. To
keep things simpler, we will only be concerned with the 2w values that represent
the intersection. As mentioned, if we can get these right, the algorithm also gets
the size of the cut right within a factor of roughly (1 + 2σ).

Consider a partial solution and its signature. Our strategy is to inductively
define a mapping that gives for each such signature a collection of 2w Addi-
tion Trees. The exact results of these trees will be the values of the signature
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(that is, the sizes of the intersections of the two sets with each label). We will
then establish (by induction) that there exists an entry in our algorithm’s ta-
ble whose values follow the same distribution as those Trees, if they are viewed
as Approximate Addition Trees. It will follow that for every partial solution
there exists, with high probability, an entry with roughly the same values. The
converse statement can be shown with essentially the same ideas.

The above can clearly be done for initial nodes, where all values stored are 0
or 1, so our algorithm stores them exactly. The relevant Addition Trees are of
height 0. Assume inductively that we have established the correspondence up to
a certain height in the clique-width expression. Let us then consider a Rename
node i with labels l1 ∪ l2 and a child j. Consider a partial solution to Gi. This
partial solution has some corresponding partial solution in Gj . By the inductive
hypothesis, there exists an entry in (l, r, c) ∈ Dj corresponding to this solution.
In particular, there exist Approximate Addition Trees whose results have the
same distribution as l(l1) and l(l2) and whose exact values are the same as the
corresponding values in the partial solution to Gj . Consider the Tree obtained
from these by adding a new root and making the old roots its children. This
Tree now follows the same distribution as the value l′(l2) calculated by our
algorithm. Its exact value is the value we would get in the exact signature (since
the same was true for the sub-trees). Reasoning in the same way about the other
coordinates we have completed the inductive step in this case.

The cases of Join and Union nodes can be handled with similar inductive
arguments as above. We can thus establish that for any valid partial solution
signature there exists an entry of the table that approximately corresponds to
it. It is also not hard to use inductive reasoning to also establish the converse.
We now select the entry in the root’s table that has maximum c. With high
probability, it must correspond to a solution with approximately the same cut
size. Retracing the steps of the dynamic programming we can turn this entry
into an actual cut.

3.2 Edge Dominating Set

Let us now give a dynamic programming algorithm for Edge Dominating Set.
Here, things are a little trickier, because it’s not immediately obvious that using
subtractions can be avoided. We will use the following equivalent version of the
problem: we are looking for a minimum-size set of vertices S such that S is a
vertex cover of G and G[S] has a perfect matching. It is not hard to see that
this is the same problem (intuitively, S is the set of vertices incident on an edge
of the edge dominating set) because an optimal edge dominating set is also a
maximal matching.

We define the dynamic programming table Di for a node i as a subset of
(B ⇒ {F})w × Bw, where F is a special symbol. Let Gi be the corresponding
subgraph. Fix a solution to the problem in G, that is a vertex cover S and a
matching of its vertices M .

Informally, the intended meaning of an entry (s, c) ∈ Di is the following:
s tells us how many vertices we have selected in S from each label set (with
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s(l) = F meaning we have selected all of the set), while c tells us how many
of the selected vertices have already been matched. In the calculations below,
when we perform arithmetic operations on a value s(l) that is equal to F we
substitute it with the size of the set Vl of vertices with label l.

Let us now describe the algorithm. Initial nodes are easy. For Rename and
Union nodes we just have to add (component-wise) appropriate entries, taking
care to maintain F values if possible. The interesting case is Join nodes.

Let i be a join node with labels l1 ⇔ l2 and child j. For each entry (s, c) ∈ Dj

do the following. Let Vl1 , Vl2 be the set of vertices with label l1, l2 respectively in
Gi. If s(l1) ∧= F and s(l2) ∧= F then ignore this entry because this partial solution
is not a vertex cover of Gi. Otherwise, for each m ∈ {0, . . . ,min(|Vl1 |, |Vl2 |)}
calculate a vector cm which is identical to c except that cm(l1) = c(l1) → m
and cm(l2) = c(l2)→m. Informally, we are selecting how many of the join edges
will eventually be used in the matching M . If we have cm(l1) > (1 + σ)s(l1) or
cm(l2) > (1 + σ)s(l2) ignore cm. Otherwise, add (s, cm) to Di.

Once the root’s table has been calculated we select the entry (s, c) such that∑
l s(l) is minimized, among entries where c(l) ∗ s(l)/(1+σ). Retracing the steps

of the dynamic programming we then obtain a vertex cover S. In polynomial
time we can calculate a maximum matching in G[S]. This is our initial candidate
solution. If some vertex of S is unmatched we add one of the edges connecting
it to V \ S. We now have an edge dominating set.

We can again rely on an inductive analysis using Approximate Addition Trees,
as in the case of Max Cut, to prove that S has size close to optimal and we
have a set of edges M such that almost all vertices of S are incident to a unique
edge of M . The only point of difference is when solutions are dropped because
we are trying to select too many of the new edges in M . In this case, we leave
enough “slack” in our comparisons so that if a solution is erroneously dropped
we can extract an Approximate Addition Tree with high error, something that
can only happen with very low probability.
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Abstract. Fibonacci gate problems have severed as computation prim-
itives to solve other problems by holographic algorithm [5] and play an
important role in the dichotomy of exact counting for Holant and CSP
frameworks [6]. We generalize them to weighted cases and allow each ver-
tex function to have different parameters, which is a much boarder family
and #P-hard for exactly counting. We design a fully polynomial-time ap-
proximation scheme (FPTAS) for this generalization by correlation decay
technique. This is the first deterministic FPTAS for approximate count-
ing in the general Holant framework without a degree bound. We also
formally introduce holographic reduction in the study of approximate
counting and these weighted Fibonacci gate problems serve as computa-
tion primitives for approximate counting. Under holographic reduction,
we obtain FPTAS for other Holant problems and spin problems. One
important application is developing an FPTAS for a large range of ferro-
magnetic two-state spin systems. This is the first deterministic FPTAS
in the ferromagnetic range for two-state spin systems without a degree
bound. Besides these algorithms, we also develop several new tools and
techniques to establish the correlation decay property, which are appli-
cable in other problems.

1 Introduction

Holant is a refined framework for counting problems [5,6,8], which is more expres-
sive than previous frameworks such as counting constraint satisfaction problems
(CSP) in the sense that they can be simulated using Holant instances. In this pa-
per, we consider a generalization called weighted Holant problems. A weighted
Holant is an extension of a Holant problem where each edge e is assigned an ac-
tivity σe, and if it is chosen it contributes to the partition function a factor of σe.
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Given a graph G(V,E), a family of node functions F = {Fv|v ∈ V }, and edge
weights τ = {σe|e ∈ E}, the partition function for a weighted Holant instance
λ (G,F , τ) is the summation of the weights over all configurations Π : E →
{0, 1}, specifically the value of

∑
ε

(∏
e◦E σe (Π (e))

∏
v◦V Fv

(
Π|E(v)

))
. We use

Holant(F , τ) to denote the class of Holant problems where all functions are taken
fromF and all edge weights are taken from τ. For example, consider the Perfect
Matching problem on G. This problem corresponds to attaching the Exact-
One function on every vertex of G — for each 0-1 edge assignment, the product∏

v◦V Fv(Π |E(v)) evaluates to 1 when the assignment is a perfect matching, and
0 otherwise, thereby summing over all 0-1 edge assignments gives us the number
of perfect matchings in G. If we use the At-Most-One function at each vertex,
then we can count all matchings, including those that are not perfect.

A symmetric function F can be expressed by [f0, f1, . . . , fk], where fi is the
value of F on inputs of hamming weight i. The above mentioned Exact-One
and At-Most-One functions are both symmetric and can be expressed as
[0, 1, 0, 0, . . .] and [1, 1, 0, 0, . . .] respectively. A Fibonacci function F is a symmet-
ric function [f0, f1, . . . , fk], satisfying that fi = cfi−1 + fi−2 for some constant
c. For example, the parity function [a, b, a, b, . . .] is a special Fibonacci function
with c = 0. If there are no edge weights (or equivalently all the weights are equal
to 1) and all the node functions are Fibonacci functions with a same parame-
ter c, we have a polynomial time algorithm to compute the partition function
exactly [5]. These problems also form the base for a family of holographic algo-
rithms, where other interesting problems can be reduced to the Fibonacci gate
problems [5]. Furthermore, this family of functions is interesting not only because
of its tractability, but also because it essentially captures almost all tractable
Holant problems with all unary functions available [6,8].

If we allow edges to have non-trivial weights or each function to have dif-
ferent parameters in Fibonacci gates, then the exact counting problem becomes
#P-hard [6,8]. Nevertheless, it is interesting to study the problem in the approx-
imation setting. In contrast to the exact counting setting, the approximability
of Holant problem is much less understood. In this paper, we study approximate
counting for weighted Fibonacci gate problems.

Another closely related and well-studied model is spin systems. In this pa-
per, we focus on two-state spin systems. An instance of a spin system is a
graph G(V,E). A configuration Π : V → {0, 1} assigns every vertex one of the
two states. The contributions of local interactions between adjacent vertices are

quantified by a matrix A =

[
A0,0 A0,1

A1,0 A1,1

]
=

[
β 1
1 Δ

]
, where β, Δ ≥ 0. The partition

function is defined by ZA(G) =
∑

ε◦{0,1}V

∏
(u,v)◦E Aε(u),ε(v).

There has been a lot of studies on the approximability of the partition function
in terms of parameters β and Δ. The problem is exactly solvable in polynomial
time if βΔ = 1. When βΔ < 1, the system is called anti-ferromagnetic and
we have a complete understanding of its approximability: there is a uniqueness
boundary, above which there is an FPTAS [27,15,23,16] and below which it is
NP-hard [24,25,9].
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The story is different in ferromagnetic range βΔ > 1. Jerrum and Sinclair [13]
gave an FPRAS for Ising model (β = Δ > 1) based on Markov Chain Monte
Carlo (MCMC) method and lately Goldberg et al. extended that to all βΔ > 1
plane. However, these algorithms are all randomized. Can we design a deter-
ministic FPTAS for it as that for anti-ferromagnetic range? Indeed, this is an
interesting and important question in general and many effort has been made
for derandomizing MCMC based algorithms. For instance, there is an FPRAS
for counting matchings [12] but FPTAS is only known for graphs of bounded de-
gree [2]. The situation is similar in computing permanent of nonnegative matrix,
although an FPRAS is known [14], the current best deterministic algorithm can
only approximate the permanent with an exponential large factor [18]. To the
best of our knowledge, no deterministic FPTAS was previously known for two-
state spin systems in ferromagnetic range. In particular, the correlation decay
technique, the main tool to design FPTAS in anti-ferromagnetic range, cannot
directly apply.

1.1 Our Results

The main results of this paper are a number of FPTAS’s for computing the
partition function of different Holant problems and spin systems.

Weighted Fibonacci Gates. We design an FPTAS for weighted Fibonacci
gates when the parameters satisfy certain conditions. We have several theorems
to cover different ranges. In Theorem 1, we prove that for any fixed choice of
other parameters, we can design an FPTAS as long as the edge weights are close
enough to 1. This result demonstrates a smooth transition from the unweighted
case to weighted ones in terms of approximation.

Another interesting range is that we have an FPTAS for the whole range as
long as the Fibonacci parameter c is reasonably large (no less than a constant
1.17) and edge weights are no less than 1 (which means all the edges prefer to
be chosen) (Theorem 2). We also allow different nodes to have functions with
different parameter c, which contrasts the exact counting setting where a uniform
parameter on each node is crucial to have a polynomial time algorithm.

Ferromagnetic Two-State Spin Systems. We design an FPTAS for a large
range of ferromagnetic two state spin systems. This is the first deterministic
FPTAS in the ferromagnetic range for two-state spin systems without a degree
bound. To describe the tractable range, we present a monotonically increasing
function ∂ : [1,∞] → R with ∂ (1) = 1 and ∂ (x) ≤ x. We have an FPTAS for a

ferromagnetic spin system

[
β 1
1 Δ

]
as long as Δ ≤ ∂ (β) or β ≤ ∂ (Δ) (Theorem 4).

The exact formula of ∂ is complicated and we do not spend much effort to

optimize it. However, it already enjoys a nice property in that limx√+≤
Ω (x)
x = 1.

This means that although the range does not cover the Ising model (β = Δ), it
gets relatively close to that in infinity. We also have similar results for two-spin
system with external fields.
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OtherHolantProblems.We can extend our FPTAS to functions [f0, f1, . . . , fd]
with form fi+2 = afi+1 + bfi for a range of parameters. This is a much bigger
family than Fibonacci gates, since Fibonacci gates corresponds to b = 1.

1.2 Our Techniques

Our main approach for designing FPTAS’s is the correlation decay technique
introduced in [1] and [27]. While the general framework is standard, it is highly
non-trivial to design a recursive computational structure and especially to prove
the property of exponential correlation decay for a specific problem.

A powerful technique we use is to apply a potential function to amortize the de-
cay rate, which was introduced and used in many circumstances [22,15,23,16,20].
Besides this, to enrich the toolkit, we introduce several new techniques to design
and analysis the recursive computational structure. We believe that these tech-
niques can find their applications in other problems.

Working with Dangling Edges. The recursive computational structure for
spin problems usually relates a marginal probability of a vertex to that of its
neighbors. In Holant problems, we work with assignments and marginal proba-
bilities on edges. Since an edge has two ends, it has two sets of neighbors, which
complicates things a lot. In this paper, we instead work on instances with dan-
gling edges, that is, a half edge with neighbors only on one end, and then reduce
regular instances to dangling instances. This technique works for any Holant
problems and we believe that it is the right structure to work with in the Holant
framework. Indeed, the idea has later been successfully used in [17].

Computation Tree with Bounded Degrees. The correlation decay property
only directly implies an FPTAS for systems with bounded degrees. One exception
is the anti-ferromagnetic two-state spin systems, where a stronger notion of
computationally efficient correlation decay is introduced [15]. In this paper, we
also establish the computationally efficient correlation decay for systems with
unbounded degree, but via a different approach. Thanks to the unique property
of Fibonacci functions, we can decompose a node into several nodes with constant
degrees. Thus, at each step of our computation tree, we only involve constant
many sub-instances even if the degree of the original system is not bounded.

Bounding Range of Variables. After we get a recursion system, the main task
is to prove the correlation decay property. This is usually achieved by proving
that a certain amortized decay rate, which is a function of several variables,
is less than one for any choice of these variables in their domain. Thus if one
can prove a smaller domain for each vairable, the analysis becomes easier. Some
naive implementation of this idea already appeared in approximate counting of
coloring problems [10,20]. In this paper, we develop this idea much further. We
divide sub-instances involved in the computation tree into two classes: deep ones
for which we can get a much better estimation of their range and shallow ones
for which we can compute their value without error. Then we can either compute
the exact value or we can safely assume that it is within a smaller domain, which
enables us to prove the correlation decay property easier.
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Holographic Reduction. We formally introduce holographic reduction in the
study of approximate counting. We use weighted Fibonacci gate problems as
computational primitives for approximate counting and design holographic al-
gorithms for other problems based on them. In particular, we use the FPTAS for
Fibonacci gates to obtain an FPTAS for ferromagnetic two-state spin systems.
It is noteworthy that the correlation decay property does not generally hold for
ferromagnetic two-state spin systems. So we cannot do a similar argument to
get the FPTAS in the spin world directly. Moreover, the idea of holographic
reduction can apply to any Holant problems, which extends known counting
algorithms (both exact and approximate, both deterministic and randomized)
to a broader family of problems. Indeed, the other direction of holographic re-
duction is also used in our algorithm. We design an exact algorithm for shallow
sub-instances of Fibonacci instance by a holographic reduction to the spin world.

1.3 Related Works

Most previous studies of the Holant framework are for exact counting, and a
number of dichotomy theorems were proved [8,11,3]. Holographic reduction was
introduced by Valiant in holographic algorithms [26,4], which is later also used
to prove hardness result of counting problems [5,8,7].

For some special Holant problems such as counting (perfect) matchings, their
approximate versions are well studied [2,12,14]. In particular, [2] gave an FPTAS
to count matchings but only for graphs with bounded degrees. It is relatively less
studied in the general Holant framework in terms of approximate counting except
for two recent work: [28] studied general Holant problems but only for planar
graph instances with a bounded degree; [21] gives an FPRAS for several Holant
problems. Another well-known example is the “sub-graph world” in [13]. It is
indeed a weighted Holant problem with Fibonacci functions of c = 0, for which
an FPRAS was given. In that paper, holographic reduction was also implicitly
used, which extends the FPRAS to the Ising model.

Most previous study for FPTAS via correlation decay is on the spin systems. It
was extremely successful in the anti-ferromagnetic two-spin system [27,15,23,16].
It is also used in multi-spin systems [10,20].

2 Preliminaries

A weighted Holant instance λ = (G(V,E), {Fv|v ∈ V }, {σe|e ∈ E}) is a tuple.
G(V,E) is a graph. Fv is a function with arity dv: {0, 1}dv → R

+, where dv
is the degree of v and R

+ denotes non-negative real numbers. Edge weight σe

is a mapping {0, 1} → R
+. A configuration Π is a mapping E → {0, 1} and

gives a weight wα(Π) =
∏

e◦E σe(Π(e))
∏

v◦V Fv(Π |E(v)), where E(v) denotes
the incident edges of v. The counting problem on the instance λ is to compute
the partition function: Z(λ) =

∑
ε

(∏
e◦E σe(Π(e))

∏
v◦V Fv(Π |E(v))

)
.

We can represent each function Fv by a vector in (R+)2
dv

, or a tensor in
((R+)2)⊆dv . This is also called a signature. A symmetric function F can be
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expressed by [f0, f1, . . . , fk], where fj is the value of F on inputs of hamming
weight j. For example, the equality function is [1, 0, . . . , 0, 1]. Edge weight is a
unary function, which can be written as [σe(0), σe(1)]. Since we do not care about
global scale factor, we always normalize that σe(0) = 1 and use the notation
σe = σe(1) as a real number.

A Holant problem is parameterized by a set of functions F and edge weights
τ. We denote by Holant(F , τ) the following computation problem .

Definition 1. Given a set of functions F and edge weights τ, we denote by
Holant(F , τ) the following computation problem.
Input: A Holant instance λ = (G(V,E), {Fv |v ∈ V }, {σe|e ∈ E}), where Fv ∈
F and σe ∈ τ ;
Output: The partition function Z(λ).

The weights of configurations also give a distribution over all possible config-
urations:

Pα(Π) =
wα(Π)

Z(λ)
=

1

Z(λ)

∏

e◦E

σe(Π(e))
∏

v◦V

Fv(Π |E(v)).

This defines the marginal probability of each edge e0 ∈ E.

Pα(Π(e0) = 0) =

∑
ε:ε(e0)=0

(∏
e◦E σe(Π(e))

∏
v◦V Fv(Π |E(v))

)

Z(λ)
.

Similarly, we can define the marginal probability of a subset of edges. Let
E0 ⊂ E and e1, e2, . . . , e|E0| be an enumeration of the edges in E0. Then we
can define Π(E0) = Π(e1)Π(e2) · · ·Π(e|E0|) as a Boolean string of length |E0|. Let

φ ∈ {0, 1}|E0|, we define

Pα(Π(E0) = φ) =

∑
ε:ε(ei)=λi,i=1,2,...,|E0|

(∏
e◦E σe(Π(e))

∏
v◦V Fv(Π |E(v))

)

Z(λ)
.

We denote the partial summation as

Z(λ, Π(E0) = φ) =
∑

ε:ε(ei)=λi

(
∏

e◦E

σe(Π(e))
∏

v◦V

Fv(Π |E(v))

)

.

We define a dangling instance λD of Holant(F , τ) also as a tuple (G(V,E ∪
D), {Fv|v ∈ V }, {σe|e ∈ E}), where G(V,E ∪D) is a graph with dangling edges
D. A dangling edge can be viewed as a half edge, with one end attached to a
regular vertex in V and the other end dangling (not considered as a vertex). A
dangling instance λD is the same as a Holant instance except for these dangling
edges. In G(V,E ∪D) each node is assigned a function in F (we do not consider
“dangling” leaf nodes at the end of a dangling edge among these), each regular
edge in E is assigned a weight from τ and we always assume that there is no
weight on a dangling edge in this paper. A dangling instance can be also viewed
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as a regular instance by attaching a vertex with function [1, 1] at the dangling end
of each dangling edge. We can define the probability distribution and marginal
probabilities just as for regular instance. In particular, we shall use dangling
instance λe with single dangling edge e extensively in this paper. For that, we

define R(λe) = PΩe(ε(e)=1)
PΩe(ε(e)=0) .

3 Statement of Main Results

A symmetrical function [f0, f1, . . . , fd] is called a (generalized) Fibonacci func-
tion if there exists a constant c such that fi+2 = cfi+1+fi, where i = 0, 1, · · · , d−
2. We denote this family of function as Fc, the Fibonacci functions with param-
eter c. We use Fp,q

c to denote a subfamily of Fc such that fi+1 ≥ pfi and
fi+1 ≤ qfi for all i = 0, 1, · · · , d − 1. When the upper bound q is not given,
we simply write Fp

c . We use Fp,q
c1,c2 to denote

⋃
c1≥c≥c2

Fp,q
c . We use τΔ1,Δ2 to

denote the set of edge weights σe such that σ1 ≤ σe ≤ σ2.
Here is a list of FPTAS’s we get:

Theorem 1. For any c > 0 and p > 0, there exists σ1(p, c) < 1 and σ2(p, c) > 1
such that there is an FPTAS for Holant(Fp

c , τΔ1(p,c),Δ2(p,c)).

Theorem 2. Let p > 0. Then there is an FPTAS for Holant(Fp
1.17,+≤, τ1,+≤).

Theorem 3. Let σ > 0 and c ≥ 2.57. There is an FPTAS for

Holant(Fc/2,c+2/c
c , τΔ,+≤).

Under a holographic reduction with base

[
1 t
κ − t

Λ

]
, we have the following trans-

formation. Let σ > 0, κ ≥ 1, t(1 − σ) > 0, and |t| ≤ 1. Let β = 1+ΔΛ2

t(1−Δ) and

Δ = t(1+ΔΛ−2)
1−Δ . The two spin problem with edge function

[
β 1
1 Δ

]
and external

field μ is equivalent to Holant(FΛ− 1
ρ
, τΔ,Δ), where FΛ− 1

ρ
is a set of Fibonacci

functions with with parameter c = κ − 1
Λ and the one of arity n has form

fk = κk + μtn(−κ)−k. Through this reduction, we can transform Theorem 1-
3 to the following FPTAS for ferromagnetic two-state spin system .

Theorem 4. There is a continuous curve ∂ (β) defined on [1,+∞) such that

(1) ∂ (1) = 1; (2) 1 < ∂ (β) < β for all β > 1; and (3) limη√+≤
Ω (η)
η = 1.

There is an FPTAS for the two-state spin system with local interaction matrix[
β 1
1 Δ

]
and external field μ ≤ 1 if βΔ > 1 and Δ ≤ ∂ (β).

4 Computation Tree Recursion

In the exact polynomial time algorithm for Fibonacci gates without edge weights,
one crucial property of a set of Fibonacci functions with a fixed parameter is
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ηζ = 1

uniqueness threshold

Ω (η)

η

ζ

(0, 0)

1

1

Fig. 1. This figure illustrates the rough shape of Γ (·) when there is no external field. It
also includes anti-ferromagnetic range. Parameters (β, γ) admit FPTAS in green region
and hard to approximate in red region.

that it is closed when two nodes are connected together [5]. This is no longer
true if we have non-trivial edge weights or when different Fibonacci function
have different parameters. However, we can still use the special property of a
Fibonacci function to decompose a vertex, which is the key property for all
FPTAS algorithms in our paper.

Let λ = (G(V,E), {Fv |v ∈ V }, {σe|e ∈ E}) be an instance of Holant
(Fp,q

c1,c2 , τΔ1,Δ2), v ∈ V be a vertex of the instance with degree d1+d2 (d1, d2 ≥ 1)
and e1, e2, . . . , ed1+d2 be its incident edges. We can construct a new Holant in-
stance λ∪: λ∪ is the same as λ except that v is decomposed into two vertices
v∪, v∪∪. e1, e2, . . . , ed1 are connected to v∪ and ed1+1, ed1+2, . . . , ed1+d2 are con-
nected to v∪∪. There is a new edge e connecting v∪ and v∪∪. If the function on the
original v is [f0, f1, . . . , fd1+d2 ], a Fibonacci function with parameter c, then the
function on v∪ is [f0, f1, . . . , fd1] and the function on v∪∪ is [1, 0, 1, c . . .], also a
Fibonacci function with parameter c. The edge weight on the new edge e is 1.
The functions on all other nodes and edge weights on all other edges (except the
new e) remain the same as that in λ. We use the following notation to denote
this decomposition operation

λ∪ = D(λ, v, {e1, e2, . . . , ed1}, {ed1+1, ed1+2, . . . , ed1+d2}).

Using the special property of Fibonacci function, we have the following lemma.

Lemma 1. Let λ∪ = D(λ, v,E1, E2). Then Z(λ) = Z(λ∪) and for all e ∈ E,
Pα(Π(e) = 0) = Pα∈(Π(e) = 0).

Let λe be a dangling instance of Holant(Fp
c1,c2 , τΔ1,Δ2). Let v be the attaching

vertex of the dangling edge e and e1, e2, . . . , ed be other incident edges of v. We
compute R(λe) by smaller instances depending on d. If d = 0, then R(λe) can
be computed directly. If d = 1, we construct a smaller dangling instance λe1 by
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removing e0 and v from G and make e1 be the new dangling edge and remove
its weight.

R(λe) =
f1 + σe1f2R(λe1 )

f0 + σe1f1R(λe1 )
. (1)

If d ≥ 2, we use the above lemma to decompose the vertex v into v∪ and v∪∪

and let e and e1 connect to v∪∪ and the remaining edges connect to v∪. We use e∪

to denote the edge between v∪ and v∪∪. By removing e and v∪∪ from λ∪ , we get
a dangling instance λe∈,e1 with two dangling edges e∪, e1.

R(Ωe) =
Z(Ωe, σ(e) = 1)

Z(Ωe, σ(e) = 0)

=
λe1Z(Ωe∈,e1 , σ(e′e1) = 01) + Z(Ωe∈,e1 , σ(e′e1) = 10) + cλe1Z(Ωe∈,e1 , σ(e′e1) = 11)

Z(Ωe∈,e1 , σ(e′e1) = 00) + λe1Z(Ωe∈,e1 , σ(e′e1) = 11)

=
λe1PΓe∈,e1 (σ(e

′e1) = 01) + P
Γe∈,e1 (σ(e

′e1) = 10) + cλe1PΓe∈,e1 (σ(e
′e1) = 11)

P
Γe∈,e1 (σ(e

′e1) = 00) + λe1PΓe∈,e1 (σ(e
′e1) = 11)

.

In the above recursion, the marginal probability of the original instance is
written as that of smaller instances but with two dangling edges. In order to
continue the recursive process, we need to convert them into instances with single
dangling edge. This can be done by pinning one of the two dangling edges, or
just leaving one of the edges free (in which case the dangling end of the free edge
can be treated as a regular vertex with signature [1, 1]).

We use Pine,x(λ) to denote the new instance obtained by pinning the edge e
of the instance λ to x.

There are many choices in deciding which edge to pin, and to what state the
edge is pinned to. Each choice leads to different recursions and consequently
have an impact on the following analysis. Here we give an example which is used
in the proof of Theorem 1 and Theorem 3. In the proof of Theorem 2, we use a
different one.

Set λe∈ = Pine1,0(λe∈,e1), λe1 = Pine∈,0(λe∈,e1) and λ̃e1 = Pine∈,1(λe∈,e1).
By the definitions, we have Pαe∈ (Π(e∪) = 0) = Pαe∈,e1 (Π(e∪) = 0|Π(e1) = 0),
Pαe1 (Π(e1) = 0) = Pαe∈,e1 (Π(e1) = 0|Π(e∪) = 0), and Pα̃e1

(Π(e1) = 0) =
Pαe∈,e1 (Π(e1) = 0|Π(e∪) = 1). Given these relation and the fact that

Pαe∈,e1 (Π(e∪e1) = 00) + Pαe∈,e1 (Π(e∪e1) = 01)+

Pαe∈,e1 (Π(e∪e1) = 10) + Pαe∈,e1 (Π(e∪e1) = 11) = 1.

We can solve these marginal probabilities and substitute these into the above
recursion to get

R(λe) =
σe1R(λe1) + R(λe∈) + cσe1R(λe∈ )R(λ̃e1)

1 + σe1R(λe∈ )R(λ̃e1)
(2)
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If e∪ and e1 are in different connected components of λe∈,e1 , then the marginal
probability of e1 is independent of e∪ and as a result R(λ̃e1) = R(λe1). So in
this case, we have

R(λe) =
σe1R(λe1) + R(λe∈) + cσe1R(λe∈ )R(λe1)

1 + σe1R(λe∈ )R(λe1)
(3)

Starting from an dangling instance λe, we can compute R(λe) by one of (1),
(2) and (3) recursively. We note that if λe ∈ Holant(Fp,q

c1,c2 , τΔ1,Δ2), the instances
involved in the recursion are also in the same family. We define three functions
according to these three recursions:

h(x) =
f1 + λe1f2x

f0 + λe1f1x
, g(x, y, z) =

λe1y + x+ cλe1xz

1 + λe1xz
, ĝ(x, y) =

λe1y + x+ cλe1xy

1 + λe1xy
.

By expanding this recursion, we get a computation tree recursion to compute
R(λe). We need one more step to compute the marginal probability of an edge in
a regular instance. This can be done similarly and we have the following lemma.

Lemma 2. If we can α approximate R(λe) for any dangling instance λe of
Holant(Fp,q

c1,c2 , τΔ1,Δ2) in time poly(n, 1ε ), we can also α approximate the marginal
probability of any edge of a regular instance of Holant(Fp,q

c1,c2 , τΔ1,Δ2) in time

poly(n, 1ε ).

5 Algorithm

The procedure from marginal probabilities to partition function is rather stan-
dard and we have the following lemma.

Lemma 3. If for any α > 0 and any λe of Holant
(Fp,q

c1,c2 , τΔ1,Δ2

)
, we have a

deterministic algorithm to get P̂ in time poly
(
n, 1ε

)
such that |P̂ − Pαe(Π(e) =

0)| ≤ α, we have an FPTAS for Holant(Fp,q
c1,c2 , τΔ1,Δ2).

Before we use the computation tree recursion to compute the marginal prob-
ability, we need the following lemma to handle shallow instances separately. We
denote by SP (λe) the longest simple path containing e in G.

Lemma 4. Let L be a constant. We have a polynomial time algorithm to com-
pute R(λe) for all λe of Holant(Fp

c1,c2 , τΔ1,Δ2) with SP (λe) ≤ L.

The proof of the above Lemma uses holographic reduction to spin world and
makes use of the self-avoiding walk tree [27] for two-state spin systems. The
length of the longest simple path is the same as the depth of the self-avoiding
walk tree. See the full version for more details.

Now we give out formal procedure to estimate Pαe(Π(e) = 0). Since there is
a one to one relation between Pαe(Π(e) = 0) and R(λe), we can define our re-
cursion on R(λe), and at the final step we convert R(λe) back to Pα(Π(e) = 0).
Let bounds R1, R2 and depth L be obtained for the family of dangling instance
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in the sense that for any dangling instance with SP (λe) ≥ L, we have R(λe) ∈
[R1, R2]. Formally, for t ≥ 0, the quantity Rt(λe) is recursively defined as follows:

– If SP (λe) ≤ 2L, we compute Rt(λe) = R(λe) by Lemma 4.
– Else If t = 0, let R0(λe) = R1.
– Else If t > 0, use one of the recursion to get R̃t(λe) = ĝ(Rt−1(λe∈ ), Rt−1(λe1 )),

R̃t(λe) = h(Rt−1(λe1)), or R̃t(λe) = g(Rt−1(λe∈ ), Rt−1(λe1 ), Rt−1(λ̃e1).
Return the median of R1, R̃

t(λe), R2: Rt(λe) = Med(R1, R̃
t(λe), R2).

There are three possible recursions and we define four amortized decay rates:

φ1(x) =
χ(x)

∣
∣ dh
dx

∣
∣

χ(h(x))
, φ3(x, y) =

∣
∣
∣ ∂ĝ∂x

∣
∣
∣χ(x)

χ(ĝ(x, y))
, φ4(x, y) =

∣
∣
∣∂ĝ∂y

∣
∣
∣χ(y)

χ(ĝ(x, y))
,

φ2(x, y, z) =
1

χ(g(x, y, z))

(∣∣
∣∣
ζg

ζx

∣
∣
∣∣χ(x) +

∣
∣
∣∣
ζg

ζy

∣
∣
∣∣χ(y) +

∣
∣
∣∣
ζg

ζz

∣
∣
∣∣χ(z)

)
,

where χ(·) is a potential function.

Definition 2. We call a function χ : (0,+∞) → (0,+∞) nice if there is some
function f : [1,+∞) → (0,+∞) such that for any c ≥ 1 and x, y > 0 with
x
c ≤ y ≤ cx, we have Φ(x)

Φ(y) ≤ f(c).

Lemma 5. Let bounds R1, R2 and depth L be obtained for dangling instances of
Holant(Fp,q

c1,c2 , τΔ1,Δ2) such that for any dangling instance with SP (λe) ≥ L, we
have R(λe) ∈ [R1, R2]. If there exist a nice function χ(·) and a constant φ < 1
such that φ1(x) ≤ φ for all x ∈ [R1, R2], φ2(x, y, z) ≤ φ for all x, y, z ∈ [R1, R2],
φ3(x, y) ≤ φ for all x ∈ [R1, R2], and φ4(x, y) ≤ φ for all y ∈ [R1, R2]. Then
there is an FPTAS for Holant(Fp,q

c1,c2 , τΔ1,Δ2).

To obtain the FPTAS for the Fibonacci gates (Theorem 1-3), we make use of
this Lemma 5. In order to apply Lemma 5, we need to establish two things: the
bounds R1, R2 and the amortized decay rates. There two parts are technically
involved and omitted here due to space limitation. The complete proof can be
found in the full version of the current paper [19].
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Abstract. We study the following family of connectivity problems. For
a given λ-edge connected (multi) graph G = (V,E), a set of links L such
that G+L = (V,E ∪L) is (λ+1)-edge connected, and a positive integer
k, the questions are
Augmentation Problem: whether G can be augmented to a (λ+ 1)-

edge connected graph by adding at most k links from L; or
Deletion Problem: whether it is possible to preserve (λ+1)-edge con-

nectivity of graph G + L after deleting at least k links from L.
We obtain the following results.

– An 9k|V |O(1) time algorithm for a weighted version of the aug-
mentation problem. This improves over the previous best bound of
2O(k log k)|V |O(1) given by Marx and Vegh [ICALP 2013]. Let us re-
mark that even for λ = 1, the best known algorithm so far due to
Nagamochi [DAM 2003] runs in time 2O(k log k)|V |O(1).

– An 2O(k)|V |O(1) algorithm for the deletion problem thus establishing
that the problem is fixed-parameter tractable (FPT). Moreover, we
show that the problem admits a kernel with 12k vertices and 3k links
when the graph G has odd-connectivity and a kernel with O(k2)
vertices and O(k2) links when G has even-connectivity.

Our results are based on a novel connection between augmenting sets
and the Steiner Tree problem in an appropriately defined auxiliary
graph.

1 Introduction

In connectivity augmentation problems, the input is a (multi) graph and the
objective is to increase edge or vertex connectivity by adding the minimum
number (weight) of additional edges, called links. This problem was first studied
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by Eswaran and Tarjan [4] who showed that increasing the edge connectivity of a
given graph to 2 by adding minimum number of links (also called an augmenting
set) is polynomial time solvable. Subsequent work in [11,5] showed that this
problem is also polynomial time solvable for any given target value of edge
connectivity to be achieved. However, if the set of links is restricted, that is,
there are pairs of vertices in the graph which do not constitute a link, or if the
links have (non-identical) weights on them, then the problem of computing the
minimum size (or weight) augmenting set is NP-complete [4].

It is interesting to note that the vertex version of the problem is substantially
more difficult even when the set of links which can be added is unrestricted, and
is only known to be polynomial time for the special case when the connectivity
of the graph is required to increased by 1, with the general case still open [10].
Furthermore, the special case of edge connectivity augmentation where the ob-
jective is to increase the edge connectivity of a graph by 1 by adding edges from
a restricted set is also known to be NP-complete [6]. In this paper, we will fo-
cus on the parameterized complexity aspects of the problems, Weighted Edge
Connectivity Augmentation By One (w-Aug-One) and Deletion with
λ connectivity.

The first problem is defined as follows.

w-Aug-One Parameter: k
Input: Graph G = (V,E) which is λ-edge connected, set of links L, integer
k, weight function w on L, p ∈ R.
Question: Is there a link set F such that w(F ) ⊆ p, |F | ⊆ k and (V,E ⊂ F )
is λ + 1-edge connected?

Our second problem is

Deletion with λ connectivity Parameter: k.
Input: (G,L, k) where G is a λ-edge connected, L is a set of edges, called
links, G + L is (λ + 1)-edge connected, and k a positive integer.
Question: Is there a set of k links in L whose deletion from G+L maintains
(λ + 1)-edge connectivity?

The first parameterized algorithm for the connectivity augmentation problem
was considered by Nagamochi [9], who gave an 2O(k log k)|V |O(1) algorithm for
w-Aug-One in the case when the weights on the links are identical and λ is odd.
Guo and Uhlmann [7] gave a kernel with O(k2) vertices and links for the same
case. Most recently, Marx and Vegh [8] studied the problem in its full generality
and gave a kernel with O(k) vertices, O(k3) links and weights of (k6 log k) bit
integers. This as well as other previous results lead to an algorithm with running
time 2O(k log k)|V |O(1), even for unweighted version of the problem. In this paper,
we obtain the first single exponential algorithm for this problem. In particular,
we have the following theorem.

Theorem 1. w-Aug-One is solvable in time 9k|V |O(1).

Intuitively, Deletion with λ connectivity seems to be harder than aug-
mentation problems. For example, if we want to augment a tree T to a 2-edge
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connected graph, the number of links we have to add is at least half the number
of leaves of T . By handling degree two vertices in appropriate way, this almost
immediately brings us to a polynomial kernel. But when we want to delete links
from L in order to keep a minimum 2-edge connected supergraph of T , there is no
lower bounds on the number of deleted links, and this makes the problem much
harder. Similar difference can be observed for graphs of larger connectivity. Not
surprisingly, to solve Deletion with λ connectivity, we need completely
different ideas. However, we prove the following theorem.

Theorem 2. Deletion with λ connectivity is solvable in time 2O(k)|V |O(1).

In other words, we establish that Deletion with λ connectivity is FPT.
The next natural question following the establishment of parameterized tractabil-
ity of a problem is if this problem admits a “polynomial kernel”. That is, in polyno-
mial time can we construct an equivalent instance of size and parameter bounded
by a polynomial function in k? We answer this question affirmatively.

Theorem 3. Deletion with λ connectivity admits a kernel with 12k ver-
tices and 3k links for odd λ and a kernel with O(k2) vertices and O(k2) links for
even λ, where λ is the connectivity of the input graph G.

Our Approach. The result of Dinits et al. [2] allows us to assume without loss
of generality that for the w-Aug-One problem, λ = 1 and G is a tree or λ = 2
and G is a cactus graph. Similarly, we can assume for the Deletion with λ
connectivity problem that λ = 1 and G is a tree (we refer to this problem
as Tree Augmentation) or λ = 2 and G is a cactus graph (we refer to this
problem as Cactus Augmentation).

We then define an auxiliary graph which we call a link-terminal intersection
graph, corresponding to a given instance of the problem and show that aug-
menting sets for the given instance exactly correspond to Steiner trees in the
link-intersection graph for a specified set of terminals. This structural lemma
forms the backbone of both our FPT algorithms. In the case of the w-Aug-
One problem, the set of vertices in the input graph corresponding to leaves or
degree-2 vertices is chosen as the set of terminals for the auxiliary Steiner Tree
instance. However, the Steiner Tree problem is not FPT when parameterized
by the solution size. Thus, for our purposes we can only use those parameteri-
zation for which Steiner Tree is known to be FPT. In our context we use the
following known results about Steiner Tree: an algorithm with running time
2|T ||V (G)|O(1) [3], where T is the set of input terminals and an algorithm with
running time 2O(t)|V (G)|O(1) [1], where t is the treewidth of the input graph.
In the w-Aug-One problem, the number of links in any augmenting set is at
least half the number of leaves or degree-2 vertices in the input graph. We thus
obtain a Steiner Tree instance where the number of terminals is bounded
linearly in the parameter, following which we can invoke known results to give
an algorithm. However, the situation is much more complicated in the case of
the Deletion with λ connectivity problem. Here, we design preprocessing
rules based on several non-trivial structural lemmas regarding No instances of
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Table 1. The table gives a summary of our results, where the O∗() notation hides
polynomial factors. The constants hidden by the O(.) notation in the kernel sizes are
independent of λ.

Problem Name Algorithm Kernel

w-Aug-One O∗(9k) O(k) vertices and O(k3) links [8]

Deletion with λ connectivity (odd λ) O∗(8k) 12k vertices and 3k links

Deletion with λ connectivity (even λ) O∗(2O(k)) O(k2) vertices and O(k2) links

the problem. We then show that applying these preprocessing rules exhaustively
results in an equivalent instance where the lengths of the cycles in the graph
G \ L is bounded linearly in the parameter. In our final step, we show that this
property, along with those proved beforehand, translates to a linear bound on the
tree width of the link-terminal intersection graph, where it suffices to compute
an optimum Steiner tree. Finally, we combine these steps along with a known
algorithm for Steiner Tree on bounded tree width graphs to obtain our algorithm
for Deletion with λ connectivity. The techniques we use for the kernels
for Deletion with λ connectivity depend on the parity of the connectivity
λ. In the case when λ is odd, we construct an alternate auxiliary graph with
the set of links as the vertex set and prove two properties regarding this graph.
The first is that this graph has a constant degeneracy and the second is that
a vertex in this graph corresponds to an augmenting set in the input instance.
Combining these two properties, we are able to conclude that if the size of the
instance exceeds a certain constant factor of the parameter, then the input in-
stance is a Yes instance, thus obtaining a linear kernel. For the case when λ
is even, we introduce an additional preprocessing rule to the ones already used
and show that these rules together suffice to bound the size of a given instance
quadratically in the parameter.

2 Preliminaries

Definition 1. Given a graph G = (V,E), a spanning subgraph H of G is called
a cactus if it is 2-edge connected and every edge belongs to exactly one cycle.
Equivalently, H can be written as the union of a set C={C1, . . . , Cσ} where each
Ci is a cycle, the graph induced on their union is connected and every edge
in this graph belongs to exactly one cycle. Note that the subgraph H can have
multi-edges. A cycle of length 2 in a cactus is called a 2-circuit.

Definition 2. A set Z of t edges in a graph is called a t-cut if deleting the
edges of Z disconnects the graph and for every subset Z ◦ → Z, the graph remains
connected after deleting the edges in Z ◦.

The following observation is a consequence of the definition of a t-cut and will
be used crucially in several of our proofs.
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Observation 4. Every 1-cut of a tree is a bridge in a tree. The 2-cuts in a
cactus are contained in a cycle, i.e., if {e, f} is a 2-cut, then both the edges e
and f belong to the same cycle C of the cactus C.
Definition 3. We say that a link covers a bridge in a tree (2-cut in a cactus) if
the end points of the link are in distinct connected components obtained by delet-
ing the bridge (respectively 2-cut). Note that since every 2-cut is contained with
in a cycle, the vertices of the cycle will be in two distinct connected components.

Tree Decompositions. A tree decomposition of a graph G = (V,E) is a pair
(M,β) where M is a rooted tree and β : V (M) ∧ 2V , such that :

1.
⋃

t√V (M) β(t) = V .

2. For each edge (u, v) ∈ E, there is a t ∈ V (M) such that both u and v belong
to β(t).

3. For each v ∈ V , the nodes in the set {t ∈ V (M) | v ∈ β(t)} form a connected
subtree of M .

Let (M,β) be a tree decomposition of a graph G. The width of (M,β) is
max{|β(t)| − 1 | t ∈ V (M)}.

For ease of description, we reformulate the Deletion with λ connectivity
problem also as an augmentation problem as follows. Given an instance (G,L, k)
of Deletion with λ connectivity where G is λ edge-connected, the objective
is to find a set of |L|−k links to add to the graph G such that its edge connectivity
is λ + 1. We refer to the reformulated version as the m− k-Augmentation by
One problem. Here m = |L|. When G is a tree or cactus, we refer to it as
the m − k-Tree Augmentation or m − k-Cactus Augmentation problem
respectively. Due to space constraints, missing proofs have been moved to the
appended full version of the paper.

3 Cactus Augmentation and Steiner Trees

In the first subsection, we introduce link-intersection graphs and prove certain
properties of these graphs. In the following subsection, we prove our main struc-
tural result relating Steiner trees in these graphs and solutions for our problem.
This result will be a vital part of our algorithms.

3.1 Link-Intersection Graphs

Definition 4. Projection of a Link onto a Cactus. Consider a cactus C and
a link (u, v). Let a1, . . . , ar be the cut vertices of the cactus (other than u and
v) which lie on every u-v path in the cactus and let C1, . . . , Cr+1 be the cycles
which contain the segments u-a1, a1-a2,. . . , ar-v respectively of this path. Then,
we say that the pair < u, a1 > is the projection of the link (u, v) onto the cycle
C1, the pair < ar, v > is the projection of the link (u, v) onto the cycle Cr+1 and
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the pair < ai, ai+1 > is the projection of the link onto the cycle Ci+1. Note that
if u and v lie in the same cycle of the cactus, then the projection is simply the
pair < u, v >. If the pair < x, y > is a projection of a link onto a cycle of the
cactus, then we say that the link is projectively incident to x,y and this cycle
and a link (x, y) is said to be properly incident on x and y. We say that the
projection of a link e on to the cycle C is non-trivial if it is projectively incident
to exactly two vertices of the cycle.

Definition 5. Crossing Pairs. Consider distinct vertices x1, x2, y1, y2 which
lie on the same cycle in a cactus. We say that the pair < x1, y1 > crosses the
pair < x2, y2 > if any path from x2 to y2 contains exactly one of vertices from
{x1, y1} as an internal vertex. Observe that the crossing relation is symmetric
and hence we say that the pairs < x1, y1 > and < x2, y2 > are crossing. Let e
be a link that is incident (possibly projectively incident) on the vertices x1 and
y1 of the cycle, then we say the link e = (x1, y1) crosses the pair < x2, y2 >.
If both the pairs correspond to links e = (x1, y1) and f = (x2, y2), then we say
that the links e and f cross. A set L of links is said to be laminar if it does not
contain a pair of links which cross.

We now give an equivalent definition (to Definition 3) of covering 2-cuts using
the notion of crossing pairs. For ease of description, we will be working with this
definition from now on.

Definition 6. Covering a 2-cut. Let e = (a1, b1) and f = (a2, b2) be the edges
of a cycle C such that the vertices appear as a1, b1, a2, b2 in a fixed ordering of
the vertices of the cycle. Note that b1 can be the same as a2 and a1 can be the
same as b2. We say that the link d = (x, y) covers the 2-cut {e, f} if it satisfies
one of the following properties: (i) {x, y} = {a1, b1}, (ii) {x, y} = {a2, b2}, (iii)
the link d crosses one of the pairs < a1, a2 > or < b1, b2 >.

Observation 5. Let C be a cactus and let e be a link that covers the 2-cut formed
by consecutive edges incident to a vertex v on a cycle of the cactus. Then, the
link e is projectively incident to the vertex v.

Definition 7. Intersection Graph with Respect to a Cactus. Given a
graph G, a cactus C and the set L of links, we define the intersection graph
HC of the cactus as follows. We have a vertex for every link and the vertices
corresponding to 2 links e1 and e2 are adjacent if

– there is a vertex in the cactus to which both these links are projectively inci-
dent or

– there are crossing pairs < x1, y1 > and < x2, y2 > which are projections of
e1 and e2 respectively on the same cycle of the cactus.

We define the link-terminal intersection graph IC,L as the graph obtained
from HC by adding to it the vertex set of G (these new vertices are called ter-
minals and the other vertices, link-vertices) and making each vertex adjacent
to the vertices of HC which correspond to the links projectively incident to this
vertex.
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3.2 Relating Augmenting Sets to Steiner Trees

In the following lemma, we show the equivalence between solving our problem
and the Steiner Tree problem on the link-intersection graphs.

Lemma 1. Given a cactus C and a set L of links, consider the link-terminal
intersection graph IC,L of the cactus. Let T be the terminals in IC,L and let X
be the vertices in IC,L which correspond to degree-2 vertices in the cactus. Then,
a set S of links is an augmenting set for this cactus if and only if IC,L[S ⊂X ] is
connected.

Proof. (proof sketch) Consider the forward direction and let S be a set of links
which is an augmenting set for this cactus. We prove that every pair of link-
vertices in IC,L which correspond to a pair of links with a non-trivial projection
in a particular cycle C appear in the same connected component of IC,L[S ⊂ T ].
Observe that every vertex of X lies in a unique cycle and furthermore, there
must be a link in S properly incident on it. Since such a link must have a non-
trivial projection in this cycle, we conclude that every vertex in X which lie in
the same cycle of C are in the same connected component of IC,L[S ⊂ T ].

Now, since every cut vertex belongs to all cycles it is incident on, the link-
vertices corresponding to links projectively incident on these cycles and the
terminals corresponding to the vertices of these cycles belong to the same com-
ponent in IC,L[S ⊂ T ]. Since connectivity is an equivalence relation we can infer
that all the link-vertices of S which are incident on all cycles and all the terminals
are in the same component in IC,L[S ⊂ T ], thus proving the forward direction.

For the proof of the converse direction, we first show that if IC,L[S ⊂ X ] is
connected, then IC,L[S ⊂ T ] is also connected. The proof for this claim follows
from the fact that for any cut-vertex v in T \ X any path between 2 degree-2
vertices in the subcactus on either side of this cut-vertex in IC,L[S ⊂ T ] should
pass through a link-vertex incident on the terminal corresponding to this cut
vertex which proves the claim.

Now, suppose that S is not an augmenting set for the cactus and let e1, e2
be a 2-cut in a cycle of the cactus which is not covered by S. Then the link-
vertices from two components formed by this two cut are never adjacent in IC,L
by definition and they are disjoint. This will imply that the terminals will appear
in more than one component in IC,L. ≥⇐

4 Single Exponential Algorithms for m−k-Augmentation

The main objective of this section is to prove the following lemma.

Lemma 2. There is an algorithm for m− k Cactus Augmentation running
in time O≤(2O(k)).

For this, we give a set of preprocessing rules using which we will eventually
obtain a bound on the treewidth of the link-intersection graph.
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4.1 Bounding the Cycle Lengths and Tree-Width of the
Link-Intersection Graph

We give a set of polynomial time preprocessing rules, whose exhaustive applica-
tion enables us to prove the following lemma. Due to space constraints, we give
a full description of the reduction rules in the full version.

Lemma 3. There is a polynomial time algorithm that takes as an input an
instance (C,L, k) and either concludes that the given instance is a Yes instance
or returns an equivalent instance (C◦,L◦, k◦) such that every cycle in C has length
at most 67k and has at most 71k links projectively incident on it.

We now bound the treewidth of the link-intersection graph constructed from
instances returned by the above lemma.

Lemma 4. Consider an instance (C,L, k) returned by Lemma 3. Then, there is
an algorithm that in polynomial time either returns a tree-decomposition of IC,L
of width O(k) or correctly concludes that the given instance is a Yes instance.

Proof. Let IC,L = (V,E) and consider the rooted block tree of the given cactus
and let M be the tree whose vertices correspond to the cycles of the cactus and 2
vertices are adjacent if the block corresponding to one is the parent of the block
corresponding to the other in the rooted block tree. Let VM be the vertices of
M and for every v ∈ VM let Cv be the corresponding cycle in the cactus. We
now define the bags β : VM ∧ V as follows.

β(v) = {u ∈ V |u ∈ Cv or u ∈ L and u is projectively incident on Cv}

We claim that (M,β) is indeed a tree-decomposition of IC,L. Clearly, every link
and every terminal appear in some bag. Furthermore, for every terminal, there is
a bag which contains this terminal and all links which are projectively incident on
this terminal. Now, consider an edge in IC,L between 2 links. They are adjacent
because they are both projectively incident on some vertex in which case there
is a bag which contains both these links or they cross, which implies that they
are both projectively incident on some cycle, in which case the corresponding
bag contains both these vertices. Hence we conclude that every edge of IC,L is
contained in some bag. Finally, observe that any terminal appears only in those
bags whose corresponding cycles contain this terminal and they are by definition
connected. Similarly, a link only appears in those bags whose corresponding
cycles have a non-trivial projection of this link, which by definition form a path in
the tree M . This concludes the proof that (M,β) is indeed a tree decomposition
of IC,L.

By Lemma 3, we have that every cycle in the cactus has length at most 67k
and that the number of links projectively incident on a cycle is at most 71k.
Therefore, every cycle has at most 71k links incident on it implying that every
bag in the tree-decomposition has size at most 138k, thus concluding the proof
of the lemma. ≥⇐
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We are now ready to prove Lemma 2 by giving an algorithm for m−k Cactus
Augmentation as follows. We first apply Reduction Rules 1-5 on the given
instance and then use the algorithm of Lemma 4 to either conclude that the given
instance is a Yes instance or obtain a tree decomposition for the link-intersection
graph, whose width is bounded linearly in the parameter. By Lemma 1, it suffices
to compute a minimum Steiner tree in IC,L with the set of degree-2 vertices of
the cactus as the terminals. We then solve the problem by using the algorithm
for Steiner Tree given by [1] running in time O≤(2O(tw)), which translates to
an O≤(2O(k)) algorithm for m− k Cactus Augmentation.

Dinits et al. [2] showed that the general problem of m−k-augmentation by
one reduces in polynomial time either to m− k Cactus Augmentation or to
m− k Tree Augmentation without an increase in the parameter. Therefore,
Theorem 2 follows from Lemma 2 and Lemma 6 (proved in the next section).

5 Polynomial Kernels for Unweighted m − k-
Augmentation

5.1 A Linear Kernel for (m-k)-tree-Augmentation Problem

Definition 8. In a rooted tree, the depth of any node in a tree is the length of
the shortest path from the root the node. The depth of the root is 0 and the depth
of any other node is one greater than the depth of its parent. The depth of any
edge f = ab ∈ E(T ) is defined as depth(f) = min(depth(a), depth(b)). The depth
of a link e = xy ∈ L is the depth of the least common ancestor of x and y.

Definition 9. A graph is called 2-degenerate if all of its induced subgraphs have
a vertex of degree at most 2. An ordering π of the vertices of a graph H is called
a 2-degenerate ordering if for any vertex v = π(i), the degree of v in H [Vi] is at
most 2.

Lemma 5. Let (G, T, k) be the given instance of the problem, with the additional
property that every cut is covered by at least two links from L. Then there exists
an augmenting set for the tree T using at most ⇒2|L|/3∪ links.

Proof. We construct an auxiliary graph H whose vertex set is the set of links.
And the depth of a vertex in H is the same as the depth of the corresponding
link. The edge set is defined as follows. Let σE be an ordering of the edges
of the tree in the non-increasing order of their depths. We process the edges
according to this ordering. For an edge (a, b) in the tree, let Vab be the set
of vertices corresponding to the links covering the edge (a, b). If there exists
an edge between a pair of vertices in Vab, we do nothing. Otherwise Vab is an
independent set at this stage. Let ψab be an ordering of Vab in increasing order of
their depths. We put an edge between the first and the second vertex of the list,
i.e., (ψab(1), ψab(2)) ∈ E(H). We do this for all the edges of the tree, processing
each according to the list σE and obtain the graph H .

Note that for every edge(cut) in T , there exists an edge in H . Therefore it
is easy to see that a vertex cover of H corresponds to a set of links that covers
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all the edges(cuts) of T . Thus if there exists an independent set of size k in H ,
then there exists an augmenting set of size |L| − k for T . We complete the proof
by showing that the graph H we constructed is 2-degenerate, which implies the
presence of an independent size of size at least ≤|L|/3⇔ in H which in turn implies
an augmenting set of size at most |L| − ≤|L|/3⇔ = ⇒2|L|/3∪ for T .

Claim. The graph H is 2-degenerate.

Proof. Let φH be the ordering of the vertices of H in the increasing order of
their depths. We claim that this ordering is a 2-degenerate ordering. Suppose
not and let H [Vi] (The graph induced by the first i vertices in the ordering φH)
be an induced subgraph which has minimum degree greater than 2. Let e the
link corresponding to the vertex φH(i). Let the path covered by this link e = v
in T be P = {x, v1, v2, . . . , vr, y}. Let z be the least common ancestor of x and
y. Let some three of the links corresponding to the neighbours of φH(i) in H [Vi]
be f1, f2, f3. Note that all these links have depth at most as that of e since they
appeared before e in the ordering φH . Since all three links are adjacent to e in
H , they cover an edge in the path P . Combining the observations in the previous
2 sentences, we conclude that the least common ancestor of the endpoints of any
of these links is either z or is an ancestor of z and all three of them cover an edge
incident on z. Since there are only two edges of the path P incident on z, at least
two of the links in f1, f2, f3 have to cover one of these edges. Without loss of
generality assume that f1 and f2 cover the edge (z, vi) where vi is in the subpath
P ◦ of P between x and z. Since there are edges (e, f1) and (e, f2) in H , there are
two distinct edges, say (a, b) and (c, d) in the path P ◦ that are responsible for
the edges (e, f1) and (e, f2) in H respectively. Let the depth of (a, b) be greater
than that of (c, d). Then when we were building the graph H , we would have
added the edge (e, f1) to H when processing the edge (a, b). Observe that the
edge (c, d) is covered by both e and f1. Therefore, the edge (c, d) could not have
been responsible for the addition of the edge (e, f2) in H , a contradiction. Hence
we conclude that the graph H is 2-degenerate. ≥⇐

Given Lemma 5, if |L| ∗ 3k, then the given instance is a Yes instance.
Therefore, we may assume that |L| ⊆ 3k. Observe that the number of vertices
of the tree with a link incident on it is bounded by 2|L|. This set includes all
the leaves of the tree. Furthermore, the implies that the number of vertices of
the tree with degree at least 3 is also bounded by 2|L|. By short-circuiting every
degree-2 path in the tree with no links incident on the internal vertices (adding
an edge between the endpoints of the path and removing the internal vertices
of the path), we may assume that every degree-2 vertex in the tree has a link
incident on it. Therefore, we have that n ⊆ 4|L| = 12k. To conclude the proof
of the kernel, we need to convert any given instance into one with the property
assumed by the statement of Lemma 5. Observe that if a single link covers a
bridge in the tree, then this link must be part of every augmenting set and
hence we get an equivalent instance when we contract all edges covered by any
such link and removing this link, with no change in the number of links to be
excluded, k.
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Finally, we infer the following lemma from the bound of 3k on the link set.

Lemma 6. There is an algorithm for m− k Tree Augmentation running in
time O≤(8k).

5.2 A Quadratic Kernel for (m − k) Cactus Augmentation

By introducing a further reduction rule to go along with the ones introduced in
the previous section, we obtain the following result.

Lemma 7. Let (C,L, k) be an instance of m − k Cactus Augmentation.
There is a polynomial time algorithm that takes (C,L, k) as input and either
correctly concludes that this instance is a Yes instance or returns an equivalent
instance with O(k2) vertices and links.

Kernels for General m − k Augmentation. Given an instance of m − k-
Augmentation by One, we apply the algorithm of [2] and reduce it in poly-
nomial time to an equivalent instance of either m − k-Tree Augmentation
or m − k-Cactus Augmentation. We then apply the apply the appropriate
kernelization algorithm and obtain an equivalent kernelized instance (G,L, k) of
m− k-Tree Augmentation or m− k-Cactus Augmentation. In the former
case, make λ copies of each tree edge and in the latter case, make λ/2 copies of
each cactus edge and return the instance (G◦,L, k) where G◦ is the graph thus
constructed. This is an equivalent instance of m − k-Augmentation by One
which has the same number of vertices and links.

6 Improved Algorithms for k-Augmentation

Theorem 6. The Weighted Edge Connectivity Augmentation of a
Cactus problem can be solved in time O≤(9k).

Proof. Given an instance (G = (V,E), C,L, k), we construct the link-terminal
intersection graph IG. Let X be the vertices of IG which correspond to degree-2
vertices of C. By Lemma 1, we have that a set S of links is an augmenting set if
and only if IG[S ⊂X ] has a connected component containing X . Therefore, we
conclude that a min-cost augmenting set of size at most k exactly corresponds
to a min-cost Steiner tree of size at most k+ |X | in IG containing the set X . The
dynamic programming algorithm of Dreyfus and Wagner [3] can be modified to
compute the min-cost Steiner tree of size at most k in time O≤(3|X|). Since we
already know that any augmenting set of links has size at least |X |/2, we return
No if |X | > 2k. Hence, we may assume that |X | ⊆ 2k and therefore, we have an
algorithm for Min Cost augmentation of a cactus running in time O≤(9k). ≥⇐

Since the problem of augmenting a tree can be reduced to augmenting a cactus
simply by replacing every tree edge with a pair of parallel edges, we have the
following corollary.
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Corollary 1. The Weighted Edge Connectivity Augmentation of a
Tree problem can be solved in time O≤(9k).

Once again, using the result of Dinits et al. referred to in earlier sections,
w-Aug-One can, in polynomial time be reduced to Weighted Edge Con-
nectivity Augmentation of a Tree or Weighted Edge Connectivity
Augmentation of a Cactus depending on the parity of the connectivity of
the given graph, hence proving Theorem 1.
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Abstract. We give a bi-criteria approximation algorithm for the
Minimum Nonuniform Partitioning problem, recently introduced by
Krauthgamer, Naor, Schwartz and Talwar (2014). In this problem, we are
given a graph G = (V,E) on n vertices and k numbers ρ1, . . . , ρk. The goal
is to partition the graph into k disjoint sets P1, . . . , Pk satisfying |Pi| ≤ ρin
so as to minimize the number of edges cut by the partition. Our algorithm has
an approximation ratio of O(

√
log n log k) for general graphs, and an O(1)

approximation for graphs with excluded minors. This is an improvement upon
the O(log n) algorithm of Krauthgamer, Naor, Schwartz and Talwar (2014). Our
approximation ratio matches the best known ratio for the Minimum (Uniform)
k-Partitioning problem.

We extend our results to the case of “unrelated weights” and to the case of
“unrelated d-dimensional weights”. In the former case, different vertices may
have different weights and the weight of a vertex may depend on the set Pi the
vertex is assigned to. In the latter case, each vertex u has a d-dimensional weight
r(u, i) = (r1(u, i), . . . , rd(u, i)) if u is assigned to Pi. Each set Pi has a d-
dimensional capacity c(i) = (c1(i), . . . , cd(i)). The goal is to find a partition
such that

∑
u∈Pi

r(u, i) ≤ c(i) coordinate-wise.

1 Introduction

We study the Minimum Nonuniform Partitioning problem, which was recently proposed
by Krauthgamer, Naor, Schwartz and Talwar (2014). We are given a graph G = (V,E),
parameter k and k numbers (capacities) σ1, . . . , σk. Our goal is to partition the graph
G into k pieces (bins) P1, . . . , Pk satisfying capacity constraints |Pi| ∈ σin so as to
minimize the number of cut edges. The problem is a generalization of the Minimum
k-Partitioning problem studied by Krauthgamer, Naor, and Schwartz (2009), in which
all bins have equal capacity σi = 1/k.

The problem has many applications (see Krauthgamer et al. 2014). Consider an ex-
ample in cloud computing: Imagine that we need to distribute n computational tasks
– vertices of the graph – among k machines, each with capacity σin. Different tasks
communicate with each other. The amount of communication between tasks u and v
equals the weight of the edges between the corresponding vertices u and v. Our goal is
to distribute tasks among k machines subject to capacity constraints so as to minimize
the total amount of communication between machines.1

ε Supported by NSF CAREER award CCF-1150062 and NSF award IIS-1302662.
1 In this example, we need to solve a variant of the problem with edge weights.
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The problem is quite challenging. Krauthgamer et al. (2014) note that many exist-
ing techniques do not work for this problem. Particularly, it is not clear how to solve
this problem on tree graphs2 and consequently how to use Räcke’s (2008) tree decom-
position technique. Krauthgamer et al. (2014) give an O(log n) bi-criteria approxima-
tion algorithm for the problem: the algorithm finds a partition P1, . . . , Pk such that
|Pi| ∈ O(σin) for every i and the number of cut edges is O(log nOPT ). The al-
gorithm first solves a configuration linear program and then uses a new sophisticated
method to round the fractional solution.

In this paper, we present a rather simple SDP based O(
⊆
logn log k) bi-criteria ap-

proximation algorithm for the problem. We note that our approximation guarantee
matches that of the algorithm of Krauthgamer, Naor, and Schwartz (2009) for the the
Minimum k-Partitioning problem (which is a special case of Minimum Nonuniform
Partitioning, see above). Our algorithm uses a technique of “orthogonal separators” de-
veloped by Chlamtac, Makarychev, and Makarychev (2006) and later used by Bansal,
Feige, Krauthgamer, Makarychev, Nagarajan, Naor, and Schwartz (2011) for the Small
Set Expansion problem. Using orthogonal separators, it is relatively easy to get a distri-
bution over partitions {P1, . . . , Pk} such thatE[|Pi|] ∈ O(σin) for all i and the expected
number of cut edges isO(

√
logn log(1/σmin)OPT )where σmin = mini σi. The prob-

lem is that for some i, Pi may be much larger than its expected size. The algorithm
of Krauthgamer et al. (2014) solves a similar problem by first simplifying the instance
and then grouping parts Pi into “mega-buckets”. We propose a simpler fix: Roughly
speaking, if a set Pi contains too many vertices, we remove some of these vertices and
re-partition the removed vertices into k pieces again. Thus we ensure that all capacity
constraints are (approximately) satisfied. It turns out that every vertex gets removed a
constant number of times in expectation. Hence, the re-partitioning step increases the
number of cut edges only by a constant factor. Another problem is that 1/σmin may be
much larger than k. To deal with this problem, we transform the SDP solution (elimi-
nating “short” vectors) and redefine thresholds σi so that 1/σmin becomes O(k).

Our technique is quite robust and allows us to solve more general versions of the
problem, Nonuniform Graph Partitioning with unrelated weights and Nonuniform
Graph Partitioning with unrelated d-dimensional weights.

Minimum Nonuniform Graph Partitioning with unrelated weights captures the vari-
ant of the problem where we assign vertices (tasks/jobs) to unrelated machines and the
weight of a vertex (the size of the task/job) depends on the machine it is assigned to.

Definition 1.1 (Minimum Nonuniform Graph Partitioning with Unrelated
Weights). We are given a graph G = (V,E) on n vertices and a natural number
k ⊂ 2. Additionally, we are given k normalized measures μ1, . . . , μk on V (satisfying
μi(V ) = 1) and k numbers σ1, . . . , σk → (0, 1). Our goal is to partition the graph into
k pieces (bins) P1, . . . , Pk such that μi(Pi) ∈ σi so as to minimize the number of cut
edges. Some pieces Pi may be empty.

We will only consider instances of Minimum Nonuniform Graph Partitioning that
have a feasible solution. We give an Oε(

√
logn logmin(1/σmin, k)) bi-criteria ap-

proximation algorithm for the problem.

2 Our algorithm gives a constant factor bi-criteria approximation for trees.
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Theorem 1.1. For every τ > 0, there exists a randomized polynomial-time algorithm
that given an instance of Minimum Nonuniform Graph Partitioning with unrelated
weights finds a partition P1, . . . , Pk satisfying μi(Pi) ∈ 5(1 + τ)σi. The expected
cost of the solution is at most D × OPT , where OPT is the optimal value, D =
Oε(

√
logn logmin(1/σmin, k)) and σmin = mini σi. For graphs with excluded mi-

nors D = Oε(1).

Nonuniform Graph Partitioning with unrelated d-dimensional weights further gener-
alizes the problem. In this variant of the problem, we assume that we have d resources
(e.g. CPU speed, random access memory, disk space, network). Each piece Pi has cj(i)
units of resource j → {1, . . . , d}, and each vertex u requires rj(u, i) units of resource
j → {1, . . . , d} when it is assigned to piece Pi. We need to partition the graph so that
capacity constraints for all resources are satisfied. The d-dimensional version of Min-
imum (uniform) k-Partitioning was previously studied by Amir et al. (2014). In their
problem, all σi = 1/k are the same, and rj’s do not depend on i.

Definition 1.2 (Minimum Nonuniform Graph Partitioning with Unrelated
d-Dimensional Weights). We are given a graph G = (V,E) on n vertices. Addi-
tionally, we are given non-negative numbers cj(i) and rj(u, i) for i → {1, . . . , k},
j → {1, . . . , d}, u → V . Our goal is to find a partition of V into P1, . . . , Pk subject
to capacity constraints

∑
u∈V rj(u, i) ∈ cj(i) for every i and j so as to minimize the

number of cut edges.

We present a bi-criteria approximation algorithm for this problem.

Theorem 1.2. For every τ > 0, there exists a randomized polynomial-time algorithm
that given an instance of Minimum Nonuniform Graph Partitioning with unrelated d-
dimensional weights finds a partition P1, . . . , Pk satisfying

∑

v∈V

rj(v, i) ∈ 5d(1 + τ)cj(i) for every i and j.

The expected cost of the solution is at most D × OPT , where OPT is the optimal
value, D = Oε(

⊆
logn log k). For graphs with excluded minors D = Oε(1).

We note that this result is a simple corollary of Theorem 1.1 we let μ◦
i(u) =

maxj(rj(u, i)/cj(i)) and then apply our result to measures μi(u) = μ◦
i(u)/μ

◦
i(V )

(we describe the details in the full version of this paper (Makarychev and Makarychev,
2014, Appendix C)).

We remark that our algorithms work if edges in the graph have arbitrary positive
weights. However, for simplicity of exposition, we describe the algorithms for the set-
ting where all edge weights are equal to one. To deal with arbitrary edge weights, we
only need to change the SDP objective function.

Our paper strengthens the result of Krauthgamer et al. (2014) in two ways. First, it
improves the approximation factor from O(log n) to O(

⊆
log n log k). Second, it stud-

ies considerably more general variants of the problem, Minimum Nonuniform Parti-
tioning with unrelated weights and Minimum Nonuniform Partitioning with unrelated
d-dimensional weights. We believe that these variants are very natural. Indeed, one of
the main motivations for the Minimum Nonuniform Partitioning problem is its applica-
tions to scheduling and load balancing: in these applications, the goal is to assign tasks
to machines so as to minimize the total amount of communication between different
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machines, subject to capacity constraints. The constraints that we study in the paper are
very general and analogous to those that are often considered in the scheduling litera-
ture. We note that the method developed in Krauthgamer et al. (2014) does not handle
these more general variants of the problem.

2 Algorithm

SDP Relaxation. Our relaxation for the problem is based on the SDP relaxation for
the Small Set Expansion (SSE) problem of Bansal et al. (2011). We write the SSE re-
laxation for every cluster Pi and then add consistency constraints similar to constraints
used in Unique Games. For every vertex u and index i → {1, . . . , k}, we introduce a
vector ūi. In the integral solution, this vector is simply the indicator variable for the
event “u → Pi”. It is easy to see that in the integral case, the number of cut edges
equals (1). Indeed, if u and v lie in the same Pj , then ūi = v̄i for all i; if u lies in Pj∈

and v lies in Pj∈∈ (for j◦ ∧= j◦◦) then ≥ūi− v̄i≥2 = 1 for i → {j◦, j◦◦} and ≥ūi− v̄i≥2 = 0
for i /→ {j◦, j◦◦}. The SDP objective is to minimize (1).

We add constraint (2) saying that μi(Pi) ∈ σi. We further add spreading constraints
(4) from Bansal et al. (2011) (see also Louis and Makarychev (2014)). The spreading
constraints above are satisfied in the integral solution: If u /→ Pi, then ūi = 0 and both
sides of the inequality equal 0. If u → Pi, then the left hand side equals μi(Pi), and the
right hand side equals σi.

We write standard λ22-triangle inequalities (6) and (7). Finally, we add consistency
constraints. Every vertex u must be assigned to one and only one Pi, hence constraint
(5) is satisfied. We obtain the following SDP relaxation.

SDP Relaxation

min
1

2

k∑

i=1

∑

(u,v)∈E

≥ūi − v̄i≥2 (1)

subject to
∑

u∈V

≥ūi≥2μi(u) ∈ σi for all i → [k] (2)

∑

v∈V

⇐ūi, v̄i⇒μi(v) ∈ ≥ūi≥2σi (3)

for all u → V, i → [k] (4)
k∑

i=1

≥ūi≥2 = 1 for all u → V (5)

≥ūi − v̄i≥2 + ≥v̄i − w̄i≥2 ⊂ ≥ūi − w̄i≥2 for all u, v, w → V, i → [k] (6)

0 ∈ ⇐ūi, v̄i⇒ ∈ ≥ūi≥2 for all u, v → V, i → [k] (7)
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Small Set Expansion and Orthogonal Separators. Our algorithm uses a technique
called “orthogonal separators”. The notion of orthogonal separators was introduced in
Chlamtac, Makarychev, and Makarychev (2006), where it was used in an algorithm for
Unique Games. Later, Bansal et al. (2011) showed that the following holds. If the SDP
solution satisfies constraints (3), (4), (6), and (7), then for every τ → (0, 1), Π → (0, 1),
and i → [k], there exist a distortion Di = Oε(

√
logn log(1/(Πσi))), and a probability

distribution over subsets of V such that for a random set Si ∪ V (“orthogonal separa-
tor”) distributed according to this distribution, we have for β = 1/n,

– μi(Si) ∈ (1 + τ)σi (always);
– For all u, Pr(u → Si) → [(1 − Π)β≥ūi≥2, β≥ūi≥2];
– For all (u, v) → E, Pr(u → Si, v /→ Si) ∈ βDi · ≥ūi − v̄i≥2.

We let D = maxiDi. This statement was proved in Bansal et al. (2011) implicitly; for
completeness we prove it in the full version of this paper (Makarychev and Makarychev,
2014, Theorem A.1). For graphs with excluded minors and bounded genus graphs, D =
Oε(1).

Algorithm. Let us examine a somewhat naı̈ve algorithm for the problem inspired by
the algorithm of Bansal et al. (2011) for Small Set Expansion. We shall maintain the set
of active (yet unassigned) vertices A(t). Initially, all vertices are active, i.e. A(0) = V .
At every step t, we pick a random index i → {1, . . . , k} and sample an orthogonal
separator Si(t) as described above. We assign all active vertices from Si(t) to the bin
number i:

Pi(t+ 1) = Pi(t) ≤ (Si(t) ⇔ A(t)),

and mark all newly assigned vertices as inactive i.e., we let A(t + 1) = A(t) \ Si(t).
We stop when the set of active vertices A(t) is empty. We output the partition P =
{P1(T ), . . . , Pk(T )}, where T is the index of the last iteration.

We can show that the number of edges cut by the algorithm is at most O(D×OPT ),
where D is the distortion of orthogonal separators. Furthermore, the expected weight
of each Pi is O(σi). However, weights of some pieces may significantly deviate from
the expectation and may be much larger than σi. So we need to alter the algorithm to
guarantee that all sizes are bounded by O(σi) simultaneously. We face a problem similar
to the one Krauthgamer, Naor, Schwartz and Talwar (2014) had to solve in their paper.
Their solution is rather complex and does not seem to work in the weighted case. Here,
we propose a very simple fix for the naı̈ve algorithm we presented above. We shall store
vertices in every bin in layers. When we add new vertices to a bin at some iteration, we
put them in a new layer on top of already stored vertices. Now, if the weight of the bin
number i is greater than 5(1 + τ)σi, we remove bottom layers from this bin so that its
weight is at most 5(1 + τ)σi. Then we mark the removed vertices as active and jump
to the next iteration. It is clear that this algorithm always returns a solution satisfying
μi(Pi) ∈ 5(1 + τ)σi for all i. But now we need to prove that the algorithm terminates,
and that the expected number of cut edges is still bounded by O(D ×OPT ).

Before proceeding to the analysis, we describe the algorithm in detail.
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Algorithm for Nonuniform Partitioning with Unrelated Weights

Input: a graph G = (V,E) on n vertices; a positive integer k ∈ n; a sequence of
numbers σ1, . . . , σk → (0, 1) (with σ1 + · · · + σk ⊂ 1); weights μi : V ∗ R

+ (with
μi(V ) = 1).

Output: a partitioning of vertices into disjoint sets P1, . . . , Pk such that μi(Pi) ∈
5(1 + τ)σi.

– The algorithm maintains a partitioning of V into a set of active vertices A(t) and
k sets P1(t), . . . Pk(t), which we call bins. For every inactive vertex u /→ A(t), we
remember its depth in the bin it belongs to. We denote the depth by depthu(t). If
u → A(t), then we let depthu(t) =⊥.

– Initially, set A(0) = V ; and Pi(0) = ∅, depthu(t) =⊥ for all i; t = 0.
– while A(t) ∧= ∅

1. Pick an index i → {1, . . . , k} uniformly at random.
2. Sample an orthogonal separator Si(t) ∪ V with Π = τ/4 as described in

Section 2.
3. Store all active vertices from the set Si(t) in the bin number i. If μi(Pi(t) ≤

(Si(t) ⇔ A(t))) ∈ 5(1 + τ)σi, then simply add these vertices to Pi(t+ 1):

Pi(t+ 1) = Pi(t) ≤ (Si(t) ⇔ A(t)).

Otherwise, find the largest depth d such that μi(Pi(t+1)) ∈ 5(1+τ)σi, where

Pi(t+ 1) = {u → Pi(t) : depthu(t) ∈ d} ≤ (Si(t) ⇔A(t)).

In other words, add to the bin number i vertices from Si(t)⇔A(t) and remove
vertices from the bottom layers so that the weight of the bin is at most 5(1 +
τ)σi.

4. If we put at least one new vertex in the bin i at the current iteration, that is, if
A(t) ⇔ Si(t) ∧= ∅, then set the depth of all newly stored vertices to 1; increase
the depth of all other vertices in the bin i by 1.

5. Update the set of active vertices: let A(t+1) = V \⋃j Pj(t+1) and depthu(t+
1) =⊥ for u → A(t+ 1). Let t = t+ 1.

– Set T = t and return the partitioning P1(T ), . . . , Pk(T ).

Note that Step 3 is well defined. We can always find an index d such that μi(Pi(t+1)) ∈
5(1 + τ)σi, because for d = 0, we have Pi(t+ 1) = Si(t) ⇔A(t) and thus

μ(Pi(t+ 1)) = μi(Si(t) ⇔ A(t)) ∈ μi(Si(t)) ∈ (1 + τ)σi < 5(1 + τ)σi,

by the first property of orthogonal separators.

Analysis. We will first prove Theorem 2.1 that states that the algorithm has approxi-
mation factor D = Oε(

√
logn log(1/σmin)) on arbitrary graphs, and D = Oε(1) on
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graphs excluding a minor. Then we will show how to obtain D = Oε(
⊆
logn log k)

approximation on arbitrary graphs (see Appendix B in the full version of this paper
(Makarychev and Makarychev, 2014)). To this end, we will transform the SDP solution
and redefine measuresμi and capacities σi so that σmin ⊂ Π/k, then apply Theorem 2.1.
The new SDP solution will satisfy all SDP constraints except possibly for constraint (5);
it will however satisfy a relaxed constraint

k∑

i=1

≥ūi≥2 → [1− Π, 1] for all u → V. (5◦)

Thus in Theorem 2.1, we will assume only that the solution satisfies the SDP relaxation
with constraint (5) replaced by constraint (5◦).

Theorem 2.1. The algorithm returns a partitioning P1(T ), . . . , Pk(T ) satisfying
μi(Pi) ∈ 5(1 + τ)σi. The expected number of iterations of the algorithm is at most
E[T ] ∈ 4n2k + 1 and the expected number of cut edges is at most O(D × SDP ) =
O(D × OPT ), where D = Oε(

√
logn log(1/σmin)) is the distortion of orthogonal

separators; σmin = mini σi. If the graph has an excluded minor, then D = Oε(1) (the
constant depends on the excluded minor).

We assume only that the SDP solution given to the algorithm satisfies the SDP relax-
ation with constraint (5) replaced by constraint (5◦).

As we mentioned earlier, the algorithm always returns a valid partitioning. We need to
verify that the algorithm terminates in expected polynomial time, and that it produces
cuts of cost at most O(D×OPT ) (see also Remark C.1 in the full version of this paper
(Makarychev and Makarychev, 2014)).

The state of the algorithm at iteration t is determined by the sets A(t),
P1(t), . . . , Pk(t) and the depths of the elements. We denote the state by C(t) =
{A(t), P1(t), . . . , Pk(t), depth(t)}. Observe that the probability that the algorithm is in
the state C√ at iteration (t+ 1) is determined only by the state of the algorithm at itera-
tion t. It does not depend on t (given C(t)). So the states of the algorithm form a Markov
random chain. The number of possible states is finite (since the depth of every vertex is
bounded by n). To simplify the notation, we assume that for t ⊂ T , C(t) = C(T ). This
is consistent with the definition of the algorithm — if we did not stop the algorithm at
time T , it would simply idle, since A(t) = ∅, and thus Si(t) ⇔ A(t) = ∅ for t ⊂ T .

We are interested in the probability that an inactive vertex u which lies in the top
layer of one of the bins (i.e., u /→ A(t) and depthu(t) = 1) is removed from that bin
within m iterations. We let

f(m,u, C√) = Pr(↓t → [t0, t0 +m] s.t. u → A(t) | C(t0) = C√, depthu(t0) = 1).

That is, f(m,u, C√) is the probability that u is removed from the bin i at one of the
iterations t → [t0, t0 +m] given that at iteration t0 the state of the algorithm is C√ and
u is in the top layer of the bin i. Note that the probability above does not depend on t0
and thus f(m,u, C√) is well defined. We let

f(m) = max
u∈V

max
C∗

f(m,u, C√).
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Our fist lemma gives a bound on the expected number of steps on which a vertex u
is active in terms of f(m).

Lemma 2.1. For every possible state of the algorithm C√, every vertex u, and natural
number t0,

t0+m∑

t=t0

Pr(u → A(t) | C(t0) = C√) ∈ k

(1 − 2Π)β(1− f(m− 1))
. (8)

Proof. The left hand side of inequality (8) equals expected number (conditioned on
C(t0) = C√) of iterations t in the interval [t0, t0+m] at which u is active i.e., u → A(t).
Our goal is to upper bound this quantity.

Initially, at time t0, u is active or inactive. At every time t when u is active, u is
thrown in one of the bins Pi with probability at least (here, we use that the SDP solution
satisfies constraint (5◦))

1

k

k∑

i=1

(1− Π)β≥ūi≥2 ⊂ (1 − 2Π)β

k
.

So the expected number of iterations passed since u becomes active till u is stored in
one of the bins and thus becomes inactive is at most k/((1− 2Π)β).

Suppose that u is stored in a bin i at iteration t, then u → Pi(t+ 1) and depthu(t+
1) = 1. Thus, the probability that u is reactivated till iteration t0+m i.e., the probability
that for some Δ → [(t+1), t0 +m] ∪ [(t+1), (t+1)+ (m− 1)], u → A(Δ) is at most
f(m− 1). Consequently, the expected number of iterations t → [t0, t0 +m] at which u
is active is bounded by

k · 1
(1− 2Π)β

+
k · f(m)

(1− 2Π)β
+

k · f2(m)

(1− 2Π)β
+ · · · = k

(1 − 2Π)β(1− f(m))
.

We now show that f(m) ∈ 1/2 for all m.

Lemma 2.2. For all natural m, f(m) ∈ 1/2.

Proof. We prove this lemma by induction on m. For m = 0, the statement is trivial as
f(0) = 0.

Consider an arbitrary state C√, bin i√, vertex u, and iteration t0. Suppose that C(t0) =
C√, u → Pi∗(t0) and depthu(t0) = 1 i.e., u lies in the top layer in the bin i√. We need to
estimate the probability that u is removed from the bin i√ till iteration t0+m. The vertex
u is removed from the bin i√ if and only if at some iteration t → {t0, . . . , t0+m−1},u is
“pushed away” from the bin by new vertices (see Step 2 of the algorithm). This happens
only if the weight of vertices added to the bin i√ at iterations {t0, . . . , t0 +m− 1} plus
the weight of vertices in the first layer of the bin at iteration t0 exceeds 5(1+τ)σi. Since
the weight of vertices in the first layer is at most (1+ τ)σi, the weight of vertices added
to the bin i√ at iterations {t0, . . . , t0 +m− 1} must be greater than 4(1 + τ)σi∗ .

We compute the expected weight of vertices thrown in the bin i√ at iterations t →
{t0, . . . , t0 + m − 1}. Let us introduce some notation: M = {t0, . . . , t0 + m − 1};
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i(t) is the index i chosen by the algorithm at the iteration t. Let XM,i∗ be the weight of
vertices thrown in the bin i√ at iterations t → M . Then,

E
[
XM,i∗ | C(t0) = C√] = E

[ ∑

t∈M
s.t. i(t)=i∗

μi∗
(
Si∗(t) ⇔ A(t)

) | C(t0) = C√
]

(9)

=
∑

t∈M

∑

v∈V

Pr
(
i(t) = i√ and v → Si∗(t) ⇔ A(t) | C(t0) = C√)μi∗(v).

The event “i(t) = i√ and v → Si∗(t)” is independent from the event “v → A(t) and
C(t0) = C√”. Thus,

Pr
(
i(t) = i√ and v → Si∗(t) ⇔A(t) | C(t0) = C√)

= Pr
(
i(t) = i√ and v → Si∗(t)

) · Pr (v → A(t) | C(t0) = C√).

Since i(t) is chosen uniformly at random in {1, . . . , k}, we have Pr(i(t) = i√) = 1/k.
Then, by property 2 of orthogonal separators, Pr(v → Si∗(t) | i(t) = i√) ∈ β≥v̄i∗≥2.
We get

Pr
(
i(t) = i√ and v → Si∗(t) ⇔A(t) | C(t0) = C√) ∈

∈ β≥v̄i∗≥2
k

· Pr (v → A(t) | C(t0) = C√).

We now plug this expression in (9) and use Lemma 2.1,

E[XM,i∗ | C(t0) = C√] ∈
∑

v∈V

β≥v̄i∗≥2μi∗(v)

k
·
∑

t∈M

Pr
(
v → A(t) | C(t0) = C√)

∈
∑

v∈V

β≥v̄i∗≥2μi∗(v)

k
· k

(1− 2Π)β(1 − f(m− 1))

=
∑

v∈V

≥v̄i∗≥2μi∗(v)

(1− 2Π)(1− f(m− 1))
.

Finally, observe that 1 − f(m − 1) ⊂ 1/2 by the inductive hypothesis, and∑
v∈V ≥v̄i∗≥2μi∗(v) ∈ σi∗ by the SDP constraint (2). Hence, E[XM,i∗ | C(t0) =

C√] ∈ 2σi∗/(1− 2Π). By Markov’s inequality,

Pr
(
XM,i∗ ⊂ 4(1 + τ)σi∗

) ∈ 2σi∗

4(1− 2Π)(1 + τ)σi∗
∈ 1

2
,

since Π = τ/4. This concludes the proof.

As an immediate corollary of Lemmas 2.1 and 2.2, we get that for all u → V ,

≤∑

t=0

Pr(u → A(t)) = lim
m⊆≤

m∑

t=0

Pr(u → A(t)) ∈ 2k

(1 − 2Π)β
∈ 4k

β
. (10)
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Proof (Proof of Theorem 2.1). We now prove Theorem 2.1. We first bound the expected
running time. At every iteration of the algorithm t < T , the set A(t) is not empty.
Hence, using (10), we get

E[T ] ∈ E

[ ≤∑

t=0

|A(t)|
]
+ 1 =

∑

v∈V

≤∑

t=0

Pr(v → A(t)) + 1 ∈ n · 4k
β

+ 1 = 4kn2 + 1.

We now upper bound the expected size of the cut. For every edge (u, v) → E we
estimate the probability that (u, v) is cut. Suppose that (u, v) is cut. Then, u and v
belong to distinct sets Pi(T ). Consider the iteration t at which u and v are separated the
first time. A priori, there are two possible cases:

1. At iteration t, u and v are active, but only one of the vertices u or v is added to
some set Pi(t+ 1); the other vertex remains in the set A(t+ 1).

2. At iteration t, u and v are in some set Pi(t), but only one of the vertices u or v is
removed from the set Pi(t+ 1).

It is easy to see that, in fact, the second case is not possible, since if u and v were never
separated before iteration t, then u and v must have the same depth (i.e., depthu(t) =
depthv(t)) and thus u and v may be removed from the bin i only together.

Consider the first case, and assume that u → Pi(t)(t + 1) and v → A(t + 1). Here,
as in the proof of Lemma 2.2, we denote the index i chosen at iteration t by i(t). Since
u → Pi(t)(t+ 1) and v → A(t+ 1), we have u → Si(t)(t) and v /→ Si(t)(t). Write

Pr(u, v → A(t); u → Si(t)(t); v /→ Si(t)(t)) =

= Pr(u, v → A(t)) · Pr(u → Si(t)(t); v /→ Si(t)(t))

= Pr(u, v → A(t)) ·
k∑

i=1

Pr(u → Si(t); v /→ Si(t) | i(t) = i)

k
.

We replace Pr(u, v → A(t)) with Pr(u → A(t)) ⊂ Pr(u, v → A(t)), and then use the
inequality Pr(u → Si(t); v /→ Si(t)) ∈ βD ≥ūi − v̄i≥2, which follows from the third
property of orthogonal separators. We get

Pr(u, v → A(t); u → Si(t)(t); v /→ Si(t)(t)) ∈

∈ Pr(u → A(t)) ×
(1
k

k∑

i=1

βD ≥ūi − v̄i≥2
)
.

Thus, the probability that u and v are separated at iteration t is upper bounded by(
Pr(u → A(t)) + Pr(v → A(t))

)
×

(
1
k

∑k
i=1 βD ≥ūi − v̄i≥2

)
. The probability that

the edge (u, v) is cut (at some iteration) is at most

( ≤∑

t=0

Pr(u → A(t)) + Pr(v → A(t))
)
×
(1
k

k∑

i=1

βD ≥ūi − v̄i≥2
)
∈

∈ 8k

β

(1
k

k∑

i=1

βD ≥ūi − v̄i≥2
)
= 8

k∑

i=1

D ≥ūi − v̄i≥2.
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To bound the first term on the left hand side we used inequality (10). We get the desired
bound on the expected number of cut edges:

∑

(u,v)∈E

Pr((u, v) is cut) ∈ 8
∑

(u,v)∈E

k∑

i=1

D ≥ūi − v̄i≥2 = 16D · SDP,

where SDP is the SDP value.
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Abstract. Scheduling jobs with precedence constraints on a set of identical ma-
chines to minimize the total processing time (makespan) is a fundamental prob-
lem in combinatorial optimization. In practical settings such as cloud computing,
jobs are often malleable, i.e., can be processed on multiple machines simulta-
neously. The instantaneous processing rate of a job is a non-decreasing function
of the number of machines assigned to it (we call it the processing function).
Previous research has focused on practically relevant concave processing func-
tions, which obey the law of diminishing utility and generalize the classical (non-
malleable) problem. Our main result is a (2 + Δ)-approximation algorithm for
concave processing functions (for any Δ > 0), which is the best possible under
complexity theoretic assumptions. The approximation ratio improves to (1 + Δ)
for the interesting and practically relevant special case of power functions, i.e.,
pj(z) = cj · zε .

1 Introduction

In the precedence-constrained scheduling problem (we call it the PS problem), the goal
is to schedule a set of jobs with precedence constraints on a set of identical machines so
as to minimize the overall time for processing them (called the makespan). One of the
first results in approximation algorithms was a 2-approximation for this problem due to
Graham in 1966 [13]. On the negative side, this problem was shown to be NP-hard to
approximate to a ratio better than 4/3 by Lenstra and Rinnooy Kan in 1978 [19]. In spite
of substantial effort, the gap between these two bounds remained open for three decades.
Recently, Svensson [27] has provided strong evidence that improving Graham’s result
might in fact be impossible by showing that it is tight under certain complexity theoretic
assumptions.

A natural generalization of the PS problem considered in the literature is that of
malleable jobs, i.e., jobs that can be processed simultaneously on multiple machines.
This is particularly relevant in practice for domains such as cloud computing, operating
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systems, high performance computing, project management, etc. where a fixed set of
resources must be distributed among precedence-constrained tasks to complete them by
the earliest possible time. At any given time, the processing rate of a job is a function
of the number of machines assigned to it (we call it the processing function). The goal
is to produce a schedule of minimum makespan.

Formally, the input comprises a directed acyclic graph (DAG) G = (J,E), where
each vertex j ∈ J represents a job j and has a given size sj > 0. The arcs in E represent
the precedence constraints on the jobs, i.e., if (j1, j2) ∈ E, then job j1 has to be com-
pleted before job j2 can be processed. Let m denote the number of identical machines
on which these jobs have to be scheduled. We are also given processing functions for
the jobs pj : {0, 1, 2, . . . ,m} ⊆ R

+
0 that map the number of machines assigned to the

rate at which the job is processed. (Clearly, pj(0) = 0 for all processing functions.)
The output of the algorithm is a schedule A, which is represented by a continuum of

functions At(j) over time t > 0. At(j) represents the number of machines allocated to
job j at time t. The schedule must satisfy:

– Capacity constraints: For any time t ∈ (0,⊂), the number of allocated machines
at time t is at most m, i.e.,

∑
j∈J At(j) → m.

– Precedence constraints: For any arc (j1, j2) ∈ E and any time t ∈ (0,⊂), if
At(j2) > 0, then the job j1 must be finished by time t, i.e.

∫ t

0 pj1(At∈(j1))dt
◦ ∧

sj1 . Let the set of jobs that can be processed at a given time (i.e., all their predeces-
sors in G have been completely processed) be called the set of available jobs. Then,
the precedence constraints enforce that the schedule picks a subset of available jobs
to process at any given time.

The makespan (or length) of the schedule is defined as the time when all jobs finish
processing, i.e., σ(A) = sup{t :

∑
j∈J At(j) > 0}. The objective of the algorithm

is to minimize the makespan of the schedule. We call this the generalized precedence-
constrained scheduling or GPS problem.

Preemption. It is important to note that we allow preemption, i.e., at any point of time,
the remaining volume of an available job can be scheduled on any number of machines
independent of the history of where it was processed earlier. Therefore, our schedule
is defined simply by the number of machines allocated to a job at any given time, and
not by the identities of the machines themselves. This is a departure from the bulk of
the existing literature in precedence-constrained scheduling with malleable jobs, where
preemption is typically disallowed. However, our motivation for allowing preemption
comes from the fact that it is allowed in many application domains (such as scheduling
in cloud computing) and has been widely considered in the broader scheduling litera-
ture.

Processing Functions. Following [17, 22], we consider processing functions that are
(1) non-decreasing (assigning more machines does not decrease the rate of processing)
and (2) concave1 (the processing rate obeys the law of diminishing marginal utility
because of greater overhead in coordination, communication costs, etc. between the

1 We note that it is optimal to process an arbitrary available job on all machines simultaneously
if all processing functions are convex.
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machines processing a job).2 Note that concave processing functions generalize the
classical PS problem (pj(z) = 1 iff z ∧ 1 for all jobs j).

Integrality of Machines. The existing literature is divided between allowing fractional
allocation of machines to jobs (e.g. [22,23]) or enforcing integrality of machine alloca-
tions (e.g., [16,17,20]). Accordingly, the processing functions are defined on the entire
interval [0,m] or on the discrete values {0, 1, . . . ,m}. Since we allow job preemption,
a fractional assignment of machines to jobs can be realized by a round robin schedule
even if there is no inherent support in the application for jobs to share a machine. There-
fore, if the processing function is defined only on an integral domain, we extend it to
the continuous domain by linear interpolation between adjacent points. In the rest of the
paper, we will assume that the processing functions pj(.) are defined on the continuous
domain [0,m] and fractional schedules are valid.

Our Results. Our main result is a (2+τ)-approximation algorithm for the GPS problem
for concave processing functions. Note that this matches the best known bounds for the
PS problem.

Theorem 1.1. For any τ > 0, there is a deterministic algorithm GPSALGO for the
GPS problem that has an approximation factor of (2 + τ) for concave processing func-
tions.

We note that if preemption is disallowed, then the best approximation ratio known is
3.29 due to Jansen and Zhang [17].

In practice, a particularly relevant set of processing functions are power functions
(for examples of their practical importance, see, e.g., [22]), i.e., pj(z) = cj · zε for
cj > 0. We show that our algorithm is in fact optimal for this special case. (Note that
(1) power functions do not generalize the PS problem and (2) while the multiplier cj
can depend on the job, the exponent λ in the power functions has to be universal for our
analysis.)

Theorem 1.2. For any τ > 0, GPSALGO has an approximation factor of (1 + τ) if the
processing functions are power functions.

Our Techniques. It would be natural to try to extend the greedy approach of Graham’s
algorithm for the PS problem to our problem. The basic scheduling rule of Graham’s al-
gorithm is the following: if there is an idle machine and an available job that is currently
not being processed, then schedule this job on the machine. Note that this algorithm is
online in the sense that it can operate on an instance where a job is revealed only after it
becomes available. We categorically refute the possibility of extending this greedy ap-
proach to the GPS problem by giving a polynomial lower bound on the approximation
factor obtained by any online algorithm for the GPS problem.

Theorem 1.3. No online algorithm for the GPS problem can have a sub-polynomial
competitive ratio, even if all the processing functions are a fixed power function.

2 Other classes of processing functions have also been considered in the literature (see related
work), but monotonicity and concavity are two basic qualitative features of processing func-
tions in most applications.
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Instead, we employ an LP rounding approach (following the work of Chudak and
Shmoys [5] and Skutella [26]). In designing the LP relaxation, we introduce a variable
xja denoting the duration for which job j is processed simultaneously by a machines.
Then, the processing time for job j is Xj =

∑
a xja. The goal is then to minimize the

makespan T subject to the following constraints: (1) the total processing time of jobs on
any chain (maximal directed path in the precedence graph)

∑
j∈C Xj is a lower bound

on the makespan T ; (2) the total number of machine-hours for all jobs
∑

j

∑
a a ·xja is

a lower bound on mT ; and (3) the total processing volume for any single job
∑

a pj(a)·
xja is at least its size sj .

First, we solve our LP to obtain optimal values of xja’s. Next, we structure this solu-
tion by showing that xja = 0 for all except one value of a for each job j in an optimal
solution w.l.o.g. Let us call this value b√j . We now create a feasible schedule by using
the following simple rule: at any given time, we distribute the available jobs among all
the m machines in proportion to their values of b√j . The key property that we use in the
analysis is the following: (1) if there are too few available jobs (quantified by the sum of
b√j ’s of available jobs being less than m), then the non-decreasing property of the pro-
cessing function ensures that for every chain, at least one job is being processed faster
than in the LP solution, and (2) if there are too many available jobs (quantified by the
sum of b√j ’s of available jobs being greater than m), then the concavity of the processing
function ensures that remaining overall ratio of the job volumes and machine-hours is
decreasing at a faster rate than in the optimal LP solution. These two observations lead
to the conclusion that the makespan of the schedule is at most twice the LP objective.

For the class of power functions, i.e., pj(z) = cj · zε (we only consider λ ∈ [0, 1]
since otherwise, the function is convex for which we have already shown that there is
a simple optimal algorithm) our LP is exact (up to a factor of (1 + τ) for any τ > 0).
The main insight is that the special structure of power functions allows us to employ
simple linear algebraic inequalities to design a function that trades off the two cases
above. More precisely, we show that the gains/losses made by the algorithm over the
optimal LP solution for the processing time of chains are exactly compensated by the
losses/gains made by it over the LP solution for the overall number of machine-hours
in the two situations described above.

Related Work. The precedence-constrained scheduling problem with malleable jobs
has a long history in approximation algorithms. Du and Leung [6] showed that the
problem is NP-hard even for a small number of machines and gave optimal algorithms
if the precedence graph has special structure. Turek et al [28] considered the problem
of scheduling malleable tasks in the absence of precedence constraints and obtained
approximation algorithms for both the preemptive and non-preemptive situations. In the
presence of precedence constraints, several families of processing functions have been
considered. Our model was originally suggested by Prasanna and Musicus [22–24] and
subsequently used by Jansen and Zhang [17], who obtained as approximation factor
of 3.29 for the non-preemptive version of our problem. In some papers, the concavity
requirement is replaced by a weaker constraint that the size of the jobs increases as more
machines are assigned to it [16, 20]. For this model, the best known approximation
factor is 4.73 [16]. A third (more general) model that has been considered is that of
arbitrary speed up curves. Here, the processing rate not only depends on the number of
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assigned machines and the job being processed, but also on the stage of processing of a
job [8,9]. Most of the literature in this model is geared toward minimizing the flow-time
(rather than the makespan) (see e.g. [2,10,11]), including in the presence of precedence
constraints [25]. For a detailed survey on scheduling parallelizable jobs, the reader is
referred to [7].

Since the work of Graham, both upper bounds (particularly, the trailing o(1) factor in
the approximation ratio) (see, e.g., [12,18]) and lower bounds [19,27] for the PS prob-
lem have been extensively studied. Moreover, multiple variants of this problem have
been considered. This includes optimizing for other metrics such as completion time
(see, e.g., [1] and references contained therein), handling machines with non-identical
speeds [3, 5], dealing with online input (e.g., [15]), etc. For a more detailed history
of precedence constrained scheduling, the reader is referred to the surveys of Graham
et al [14] and Chen et al [4].

2 Linear Program

In this section, we give a linear programming relaxation for the problem. In the discrete
case, when the optimal solution allocates only an integral number of machines to each
jobs, we let A = {1, . . . ,m}. In the continuous case, when the number of machines can
be any real number from [0,m], We pick an Π > 0, and let A = {(1−Π)k ∈ [0,m] : k ∈
Z}. Now for every job j ∈ J and every value a ∈ A, we introduce a variable xja. In
the intended solution corresponding to the optimal solution of GPS, xja is equal to the
amount of time at which the number of machines used by the job j is between (1− Π)a
and a (in the discrete case, Π = 0). We let T be the makespan of the schedule. Our
goal is to minimize T . We write two constraints on T that are satisfied in the optimal
solution.

To write the first constraint, we consider an arbitrary chain of jobs C. All jobs j ∈ C
must be processed sequentially one after another. It takes at least

∑
a∈A xja amount of

time to finish job j. Thus, for every chain C,

T ∧
⎧

j∈C

⎧

a∈A

xja. (1)

To write the second constraint, we count the number of machine hours used by the
optimal solution. On one hand, every job j uses at least

∑
a∈A(1 − Π)axja machine

hours. So the total number of machine hours is lower bounded by
∑

j∈J

∑
a∈A(1 −

Π)axja. On the other hand, the number of machine hours is upper bounded by mT . So
we have

mT ∧
⎧

j∈J

⎧

a∈A

(1− Π)axja. (2)

To simplify notation, we let T̃ = T/(1 − Π). We finally add constraint (5) saying that
every job j is completed in the optimal solution. We obtain the following LP relaxation.
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minimize T̃ subject to
⎧

j∈C

⎧

a∈A

xja → T̃ for every chain C (3)

⎧

j∈J

⎧

a∈A

a xja → T̃m (4)

⎧

a∈A

xja pj(a) ∧ sj for every job j ∈ J (5)

xja ∧ 0 for all j ∈ J, a ∈ A (6)

Since the LP solution corresponding to the optimal solution satisfies all the con-
straints of the linear program, we have LP → OPT , where LP is the cost of the
optimal LP solution, and OPT is the cost of the optimal combinatorial solution.

This linear program has infinitely many variables and exponentially many constraints,
but using standard methods we can solve this linear program up to any precision (1+Π◦)
in polynomial-time. For details, the reader is referred to the full version of the paper [21].

3 Simplified LP Solution

It turns out, that every solution to the LP (3–6) can be converted to another simpler
solution in which for every job j one and only one xja is nonzero. Suppose x√

ja is the
optimal solution to the LP (3–6), define y√j ’s and b√j ’s as follows:

y√j =
⎧

a∈A

x√
ja; b√j =

1

y√j

⎧

a∈A

x√
jaa. (7)

Claim 1 Variables y√j and b√j satisfy the following constraints (similar to (3–5)):
⎧

j∈C

y√j → T̃ for every chain C (3◦)

⎧

j∈J

b√jy
√
j → T̃m (4◦)

y√j pj(b
√
j ) ∧ sj for every job j ∈ J (5◦)

Proof. For every chain C, we have
∑

j∈C y√j =
∑

j∈C

∑
a∈A x√

ja → T̃ . Then,

⎧

j∈J

b√jy
√
j =

⎧

j∈J

y√j · 1

y√j

⎧

a∈A

x√
ja =

⎧

j∈J

⎧

a∈A

x√
ja → T̃m.

Finally, for every j, we have y√j pj(b
√
j ) = y√j pj

⎨∑
a∈A x≤

jaa∑
a∈A x≤

ja

⎩
. Let βja =

x√
ja

⎢∑
a∈A x√

ja . Then,
∑

a∈A βja = 1 for every j. From concavity of the function
pj(·), we have

y√j pj(b
√
j ) = y√j pj

⎨⎧

a∈A

βjaa
⎩
∧ y√j

⎧

a∈A

βjapj(a) =
⎧

a∈A

x√
japj(a) ∧ sj .
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We can further assume that all constraints (5◦) are tight i.e., for every j, we have
y√j pj(b

√
j ) = sj . Indeed, if (5◦) is not tight for some j, then we can decrease y√j by

letting y√j = sj/pj(b
√
j ).

4 Algorithm

We now describe the approximation algorithm. We first solve the LP relaxation and
obtain a solution x√

ja. Using Claim 1, we convert this solution to the solution (y√j , b
√
j ) of

the simplified LP (3◦-5◦). We assume that all constraints (5◦) are tight (see above). Then
we start the “rounding” procedure.

We schedule jobs iteratively. In every iteration, we schedule the next batch of jobs in
the interval [t, t+Δt] and then advance time from t to t +Δt. Thus, at the beginning
of every iteration, we already have a schedule for the time interval [0, t]. For every
job j, we keep the remaining size of j in the variable s√j (t). Initially, s√j (0) = sj . We
also update the LP solution: we maintain variables y√j (t) that indicate the time required
by the remaining portion of job j if b√j machines are allotted to it. In other words, we
maintain the invariant:

y√j (t) · pj(b√j ) = s√j (t). (8)

Initially, y√j (0) = y√j . Hence, for t = 0, this invariant holds.
To schedule the next batch of jobs, we find all unfinished jobs that can be scheduled

now without violating precedence constraints. We call these available jobs. We denote
the set of all available jobs at time t by ∂(t). For every available job j ∈ ∂(t) we
compute

m√
j (t) = m · b√j∑

j∈Ω(t) b
√
j

.

We allocate m√
j (t) machines to job j for the time interval of length

Δt = min
j∈Ω(t)

s√j (t)
pj(m√

j (t))
.

Observe that the total number of machines we allocate is m. For all j ∈ ∂(j), we update
s√j (t+Δt) and y√j (t+Δt):

s√j (t+Δ) = s√j (t)− pj(m
√
j (t))Δt (9)

y√j (t+Δt) = y√j (t)−
pj(m

√
j (t))

pj(b√j )
Δt. (10)

Note that this maintains invariant (8). We set t = t + Δt and proceed to the next
iteration. The algorithm terminates when s√j (t) = 0 for all j.

5 Analysis

We now analyze the algorithm. First, observe that the algorithm correctly maintains
the remaining sizes s√j (t): at time t, the remaining size of the job j is indeed s√j (t).
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Note that all s√j (t) remain nonnegative (that is how we pick Δt). Moreover, at the end
of every iteration one of the available jobs, specifically, the job j◦ for which Δt =
s√j∈(t)/pj∈(m

√
j∈ (t)) (again see the definition of Δt), is completed, i.e., s√j∈ (t+Δt) = 0.

So the number of iterations of the algorithm is at most n, and the running time of the
algorithm is polynomial in n. Also, note that all y√j (t) are nonnegative by (8).

We now need to upper bound the makespan of the schedule produced by the algo-
rithm. We prove the following standard lemma.

Lemma 5.1. There exists a chain of jobs C√ such that at every point of time t one and
only one job from C√ is scheduled by the algorithm.

Proof. Consider the job j that finished last in the schedule generated by the algorithm.
We add this job to our chain. This job was not scheduled earlier because it depends
on some other job j◦ that finished just before j started. We add j◦ to our schedule as
well. We then pick the job j◦ depends on, and so on. We continue this process until we
encounter a job that does not depend on any other job. This job started at time t = 0.
Thus, the jobs in the constructed chain cover the time line from the beginning to the end
of the schedule.

We now show that for every t, the following inequality holds,
⎧

j∈C≤
y√j (t) +

1

m

⎧

j∈J

b√jy
√
j (t) → 2T̃ − t. (11)

Note that for t = 0, the inequality follows from (3◦) and (4◦). This inequality implies
that the makespan is at most 2T̃ → 2(1 + Π)T , since all y√j (t) are nonnegative and thus
the left hand side of (11) is nonnegative.

Lemma 5.2. Inequality (11) holds in the beginning and end of every iteration.

Proof. We assume that (11) holds at time t at the beginning of some iteration and prove
that (11) holds at time t+Δt at the end of this iteration. In an iteration, the RHS of (11)
decreases by Δt. Our goal is to show that one of the following happens in any iteration:

– Condition (a):
∑

j∈C≤ y√j (t) (the first term in the LHS of (11)) decreases by at
least Δt, or

– Condition (b): 1
m

∑
j∈J b√jy

√
j (t) (the second term in the LHS of (11)) decrease by

at least Δt.

Since both the terms in the LHS of (11) are non-increasing, the lemma follows.
By Lemma 5.1, the algorithm schedules exactly one job in the chain C√ in the time

interval [t, t+Δt]. We denote this job by j◦. By equation (10), we have

y√j∈ (t+Δt) = y√j∈(t)−
pj∈(m

√
j∈(t))

pj∈(b√j∈)
Δt = y√j∈(t)−

pj∈
⎨

mb≤
j∈∑

j∈Λ(t) b
≤
j

⎩

pj∈(b√j∈)
Δt.

Denote φ(t) =
∑

j∈Ω(t) b
√
j . Rewrite the expression above as follows:

y√j∈(t+Δt) = y√j∈(t)−
pj∈

⎨
b√j∈ ·m/φ(t)

⎩

pj∈ (b√j∈)
Δt. (12)
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Case 1: φ(t) → m: Since pj∈(·) is a non-decreasing function and φ(t) → m, we have
pj∈

⎣
b√j∈ ·m/φ(t)

⎛ ∧ pj∈(b
√
j∈ ). Using this fact in (12), we have
⎧

j∈C≤
y√j (t+Δt) →

⎧

j∈C≤
y√j (t)−Δt.

Therefore, condition (a) holds in this case.
Case 2: φ(t) ∧ m: We estimate the second term in the LHS of (11). Using (10), we
have

1

m

⎧

j∈Ω(t)

b√jy
√
j (t+Δt) =

1

m

⎧

j∈Ω(t)

b√j
⎨
y√j (t)−

pj
⎣
b√j m/φ(t)

⎛

pj(b√j )
Δt

⎩

=
1

m

⎧

j∈Ω(t)

b√jy
√
j (t)−

1

m

⎧

j∈Ω(t)

b√j
pj
⎣
b√j m/φ(t)

⎛

pj(b√j )
Δt.

Since φ(t) ∧ m, we have pj
⎣
b√j m/φ(t)

⎛ ∧ (m/φ(t)) · pj(b√j ), since pj(·) is a concave
function with pj(0) = 0. Thus,

1

m

⎧

j∈Ω(t)

b√jy
√
j · (t+Δt) → 1

m

⎧

j∈Ω(t)

b√jy
√
j (t)−

1

m

⎧

j∈Ω(t)

b√j
mpj(b

√
j )

φ(t)pj(b√j )
Δt

=
1

m

⎧

j∈Ω(t)

b√jy
√
j (t)−

⎧

j∈Ω(t)

b√j
φ(t)

Δt =
1

m

⎧

j∈Ω(t)

b√jy
√
j (t)−Δt,

where the last equation follows from the definition of φ(t). Therefore, condition (b)
holds in this case.

Combining the two cases, no matter whether φ(t) → m or φ(t) ∧ m,

⎧

j∈C≤
y√j (t+Δt) +

1

m

⎧

j∈J

b√jy
√
j (t+Δt) →

⎧

j∈C≤
y√j (t) +

1

m

⎧

j∈J

b√jy
√
j (t)−Δt.

This completes the proof.

6 Analysis for Power Functions

We now analyze the algorithm for power functions, i.e., pj(z) = cj · zε for some λ → 1
and constants cj > 0. Let κ = 1 − λ. We now show that for every t, the following
inequality holds:

⎝

⎞
⎧

j∈C≤
y√j (t)

⎠



α

·
⎝

⎞ 1

m

⎧

j∈J

b√jy
√
j (t)

⎠



ε

→ T̃ − t. (13)

Note that for t = 0, the inequality follows from (3◦) and (4◦). Inequality (13) implies
that the makespan is at most T̃ : all y√j (t) are nonnegative, hence the left hand side of

inequality (13) is also nonnegative, consequently t → T̃ . Our main technical tool will
be the following fact, which is an easy consequence of Hölder’s inequality.
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Fact 1. Suppose X,Y ∧ 0 and λ, κ ∈ [0, 1] such that λ + κ = 1. For any ΔX ∈
[0, X ], ΔY ∈ [0, Y ], define Δ

⎣
Xα · Y ε

⎛
= Xα ·Y ε−(X−ΔX)α ·(Y −ΔY )ε . Then,

Δ
⎣
Xα · Y ε

⎛ ∧ (ΔX)α · (ΔY )ε .

Proof. Define vectors f = ((X − ΔX)α, (ΔX)α) and g = ((Y − ΔY )ε , (ΔY )ε).
Then, by Hölder’s inequality, we have

≥f ,g⇐ → ⇒f⇒1/α⇒g⇒1/ε ∪ (X −ΔX)α · (Y −ΔY )ε +(ΔX)α · (ΔY )ε → Xα ·Y ε .

The lemma follows by rearranging terms.

Using this fact, we inductively prove that inequality (13) holds throughout the round-
ing algorithm.

Lemma 6.1. Inequality (13) holds at the beginning and end of every iteration.

Proof. We assume that (11) holds at time t at the beginning of some iteration and prove
that (11) holds at time t+Δt at the end of this iteration. By Lemma 5.1, the algorithm
schedules exactly one job in the chain C√ in the time interval [t, t+Δt]. We denote this
job by j◦. We have

y√j∈ (t+Δt) = y√j∈(t)−
pj∈(m

√
j∈(t))

pj∈(b√j∈)
Δt = y√j∈(t)−

pj∈
⎨

mb≤
j∈∑

j∈Λ(t) b
≤
j

⎩

pj∈(b√j∈)
Δt.

Denote φ(t) =
∑

j∈Ω(t) b
√
j . Rewrite the expression above as follows:

y√j∈(t+Δt) = y√j∈(t)−
pj∈

⎨
b√j∈ ·m/φ(t)

⎩

pj∈(b√j∈ )
Δt = y√j∈(t)−

(
m

φ(t)

)ε

Δt.

We estimate the second term in (13).

1

m

∑

j∈γ(t)

b∗jy
∗
j · (t+κt) =

1

m

∑

j∈γ(t)

b∗j
(
y∗
j (t)−

pj
(
b∗j m/σ(t)

)

pj(b∗j )
κt

)

=
1

m

∑

j∈γ(t)

b∗jy
∗
j (t)− 1

m

∑

j∈γ(t)

b∗j
pj
(
b∗j m/σ(t)

)

pj(b∗j )
κt =

1

m

∑

j∈γ(t)

b∗jy
∗
j (t)−

(
σ(t)

m

)δ

κt.

Using Fact 1, we have

κ

(( ∑

j∈C≤
y∗
j (t)

)δ

·
( 1

m

∑

j∈J

b∗jy
∗
j (t)

)ε
)
≥
(
κ
( ∑

j∈C≤
y∗
j (t)

))δ

·
(
κ
( 1

m

∑

j∈J

b∗jy
∗
j (t)

))ε

=

(( m

σ(t)

)ε

κt

)δ

·
((σ(t)

m

)δ

κt

)ε

= κt.

Note that when we move from time t to time t+Δt, the right hand side of (11) decreases
by Δt. This completes the proof.
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7 Lower Bound for Online Algorithms

In this section, we show that the GPS problem has a polynomial lower bound in the
online setting. Specifically, we show that even if pj(z) =

≤
z for all jobs j, the compet-

itive ratio of any online algorithm is at least α(n1/4), where n is the number of jobs.
Note that in this case our offline algorithm gives an almost exact solution ((1 + Π) ap-
proximation for arbitrary Π > 0). In the online model, a job is given to the algorithm
only once all the jobs it depends on are finished. So this result shows that any approxi-
mation algorithm should use the information about the future schedule and cannot make
the decision solely based on the set of currently available jobs.

We describe the strategy for the adversary. The adversary works in phases. In phase
i, she presents l independent jobs ui1, . . . , uil to the algorithm. These jobs depend on
the single job in the previous phase that has finished last. That is, if uiji is the job that
finished last in the phase i, then in the next phase (i + 1), all jobs u(i+1)s depend on
this job uiji . We assume that the number of machines is m = 1.

We lower bound the makespan of the schedule produced by the online algorithm. To
finish all l jobs given to the algorithm in one phase, we need to spend time at least

≤
l.

(The optimal way to allocate machines is to assign 1/l machines to each job.) Thus, the
total length of the schedule is at least k

≤
l.

Now consider the following solution. Initially, all jobs in the chain v1j1, v2j2 , . . . , vkjk
are scheduled sequentially (assigning 1 machine to each job). Once all jobs viji are fin-
ished, the remaining kl − k jobs are scheduled in parallel by assigning 1/(kl − l) ma-
chines to every job. The length of the schedule equals k +

≤
kl − k. The lower bound

now follows by setting k = l (note that n = kl). This lower bound can be extended to
randomized algorithms using standard techniques, which we omit for brevity.

We note that this lower bound is almost tight for pj(z) =
≤
z: any algorithm that

does not idle (i.e., which always allocates all available machines) has competitive ratio
at most

≤
n, since the maximum possible rate of processing all jobs is

≤
n (when we

process all n jobs in parallel) and the minimum possible rate is 1 (when we allocate all
machines to a single job).
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to Achieve the Optimal Success Probability
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Abstract. Quantum entanglement is known to provide a strong advan-
tage in many two-party distributed tasks. We investigate the question of
how much entanglement is needed to reach optimal performance. For the
first time we show that there exists a purely classical scenario for which
no finite amount of entanglement suffices. To this end we introduce a sim-
ple two-party nonlocal game H , inspired by a paradox of Lucien Hardy.
In our game each player has only two possible questions and can provide
answers in a countable set. We exhibit a sequence of strategies which
use entangled states in increasing dimension d and succeed with proba-
bility 1 − O(d−c) for some c ≥ 0.13. On the other hand, we show that
any strategy using an entangled state of local dimension d has success
probability at most 1 − Ω(d−2). In addition, we show that any strat-
egy restricted to producing answers in a set of cardinality at most d has
success probability at most 1−Ω(d−2).

Keywords: nonlocal game, value of the game, entanglement, dimension
witness.

1 Introduction

Entanglement plays a key role in quantum information processing. The almost
unnaturally strong correlations it implies were initially seen as a weird, if not
undesirable [10], feature of quantum mechanics. Yet more recently entanglement
is increasingly being thought of as a distributed resource that allows cooper-
ating parties to accomplish otherwise impossible tasks, such as unconditionally
secure cryptography [11], randomness certification [8,25] and expansion [29,9], or
classical communication with improved efficiency [2]. All these tasks are purely
classical scenarios in which the use of shared entanglement provides a strong
advantage. It is thus natural to ask how much of this new resource is needed in
order to achieve optimal performance. The question arises in areas such as quan-
tum Shannon theory [31], communication complexity [6], nonlocality [4], and
many others. Perhaps surprisingly, very few general results are known. Concrete
examples have been used to establish lower bounds on the amount of entangle-
ment required. Yet the problem of proving upper bounds is a recurrent sticking
point and few such bounds are known; two-player XOR games provide a rare
exception [7].

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 835–846, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014
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This unfortunate state of affairs has led to the question of whether such bounds
exist in principle. The question can be abstractly formulated as follows:

Given a classical distributed task T of complexity C, is it the case that T
can be completed with vanishing error probability using entangled states
of local dimension d(C), where d(C) ∈ Z

+ is a finite bound depending on
C only?

(σ)

The key aspect of this question is whether any fixed task T can be associated
a finite complexity in terms of its dependence on the use of entanglement. If
this cannot be done, we may consider a less demanding finite-precision variant
of the above question. That is, we could require to achieve T approximately,
within some finite precision τ, and allow d = d(C, τ) to depend on τ as well. (For
now we are purposefully leaving terms such as complexity, precision, etc., loosely
defined; they will be made more concrete in the coming paragraphs.)

We study both questions in the context of nonlocal games. In such games,
two separated parties are provided with questions x and y respectively, chosen
according to a pre-specified distribution λ(x, y). Without communicating they
must respectively provide answers a and b. The task T is to maximize the prob-
ability that their answers satisfy a pre-determined criterion V (a, b|x, y) = 1.
The entangled value, Π◦(G), of such a game G = (V, λ) is the largest success
probability achievable using finite-dimensional entangled states (see Section 2
for precise definitions). It is known that for any d ∈ Z

+ there exists a nonlocal
game for which any strategy attaining the optimal success probability requires
measurements on a shared state with local dimension at least d [1,30,3]. Thus the
upper bound d(C) on the entanglement needed cannot be a universal constant,
i.e., its value must depend on some measure of complexity of the game.

Our results. We introduce a nonlocal game H for which the answer to question
(σ) is negative. While Π◦(H) = 1, we show that this success probability can
only be achieved in the limit of strategies using entangled states of increasing
dimension. More precisely, the game H is such that for any τ > 0,

– H can be won with probability 1− τ using a shared state of local dimension
O(1/τ7.3...);

– any strategy that wins H with probability 1−τ uses a state of local dimension
β(1/

⊆
τ).

See Theorem 1 for a precise statement. The game H is inspired by Hardy’s
paradox [15,16]; it has two questions per party and countably infinite answer
sets (see Section 3.1 for a brief review of Hardy’s paradox, and Section 3.2 for
a complete description of the game). We also show that in order to win H with
probability 1 − τ the quantum players must use a strategy that assigns positive
probability to at least β(1/

⊆
τ) distinct answers per party (see Theorem 2).

Our result has some bearing on the computational complexity of computing
the entangled value Π◦(G) of a general nonlocal game G. If the input size is de-
fined to be the total number of questions and answers in G, then Π◦(G) is known
to be NP-hard to compute [17]. The problem is not known to be in NP however.
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In fact, no non-trivial upper bounds on its complexity are currently known—it
is even unknown whether it can be decided if Π◦(G) = 1. The only known de-
cidability result is for a related parameter Π◦

FV (G), the field-theoretic value of
G. Here the tensor-product condition on Alice’s and Bob’s strategy is relaxed to
a commutativity requirement (due to this relaxation, Π◦(G) ⊂ Π◦

FV (G) for any
game G). The parameter Π◦

FV is computable provided that the optimal commut-
ing strategy is finite-dimensional [30,23]. In such a case Π◦(G) = Π◦

FV (G) since
any finite-dimensional commuting strategy can be used to construct a tensor-
product strategy with the same success probability. Equality in the general case
would follow from a positive resolution of Tsirelson’s conjecture (see e.g. [12] for
a formulation and discussion of the conjecture).

Our results concerning the game H show that no a priori upper bound on the
dimension of optimal strategies exists for games with finite question and count-
able answer sets. Hence, in this case the “näıve” algorithm that computes Π◦(G)
by performing an exhaustive search over all possible strategies in increasing di-
mension (and to within increasing precision) will keep finding strategies with
increasing success probability. Of course, in practice one will be content with a
good approximation to Π◦(G). In this case one can interpret our result as plac-
ing a lower bound, depending on the desired approximation, on the dimension in
which the search must be performed. The game H can thus be used as a “dimen-
sion witness”, for any dimension: strategies achieving success probability at least
Π◦(H) − τ must necessarily use entanglement of local dimension d = β(1/

⊆
τ).

Examples of such constructions are already known [5,27,3], but they all require
game with increasing numbers of questions in order to witness increasing dimen-
sions. In particular, Slofstra [27] provides an n-question two-answer XOR game
Gn for which achieving Π◦(G) − τ requires dimension min(2σ(

√
n), β(τ−1/12)).

Briët et al. [3] provide an (1/τ)ε(1/Ω)-question two-answer XOR game GΩ for
which the dependence on τ is β(1/τ). To avoid having infinitely many possible
answers, we can limit our game to answers of length Δ = ∂(log 1/τ). This gives a
game Hα with two questions and poly(1/τ) answers. To win Hα with probability
Π◦(Hα) − τ, a state of dimension at least β(1/

⊆
τ) is needed (see Corollary 1).

Related Work. Prior to our work two examples of nonlocal games were known
for which the optimal success probability can only be approached in the limit
of infinite-dimensional shared entanglement. Leung et al. [21] consider a game
with quantum questions and answers, which has inspired Regev and Vidick [26]
to produce a game with quantum questions but classical answers. The latter
game has two possible 3 × 3-dimensional states as questions, and two possible
answers per player. Our game provides the first example with classical questions
and answers, thus resolving a question first formally asked in [23]. The same
question was also asked [30], but specifically for games with finite question and
answer sets. Although there is some numerical evidence that infinite-dimensional
entanglement may be needed in that case as well [24], the question remains tan-
talizingly open. Interestingly all of these examples, including the one presented
in this paper, have nearly-optimal strategies that seem to crucially rely on em-
bezzlement [18,28].



838 L. Mančinska and T. Vidick

Organization of the Paper. The remainder of the paper is organized as follows.
In Section 2 we formally define the classical and entangled values of a nonlo-
cal game. In Section 3 we review Hardy’s paradox, introduce the game H , and
show that the classical value of H is 3/4 while its entangled value equals 1. In
Section 4 we establish our main result by showing that restricting the dimen-
sion of shared entanglement bounds the achievable success probabilities away
from one (see Theorem 1). We also show that restricting the number of different
answers has the same effect (see Theorem 2). We conclude in Section 5.

2 Preliminaries

In this section we explain the terminology used to discuss one-round two-player
nonlocal games. A reader familiar with nonlocal games is encouraged to proceed
directly to the next section.

A two-party nonlocal game G consists of a probability distribution λ over a
set of the form IA ×IB, called the set of questions; sets of answers OA and OB ,
and a verification function V : OA ×OB × IA × IB → {0, 1}. We only consider
the case where the sets IA, IB are countable. With probability λ(x, y) the referee
sends the two players, traditionally called Alice and Bob, questions x ∈ IA and
y ∈ IB, respectively. Without communicating, the players must produce answers
a ∈ OA and b ∈ OB, respectively. They win if V (a, b, x, y) = V (a, b|x, y) = 1
and lose otherwise. Classical players can use shared randomness to enhance their
strategy while quantum players can use shared entanglement. The goal of the
players is to maximize their probability of winning. In case of classical players,
we call this probability the (classical) value of game G, denoted Π(G). In the
quantum case we call it the entangled value of G, denoted Π◦(G). Since quantum
players are at least as powerful as classical ones, Π(G) ⊂ Π◦(G) for any game G.

2.1 Classical Strategies and Value

Any classical strategy for a game G can be specified using a pair functions

φ : IA ×R → OA and κ : IB ×R → OB, (1)

where R consists of the possible values of shared randomness (which, without
loss of generality, also includes any private randomness). We define φ(x, r) to be
Alice’s answer on question x given that the shared randomness takes value r.
We define κ(y, r) similarly. If the shared randomness is distributed according to
α : R → [0, 1], then the classical value of the game is

Π(G) := sup
λ,Δ

Π(G|φ, κ) := sup
λ,Δ

∑

r

α(r)
∑

x,y

λ(x, y)V
(
φr(x), κr(y)|x, y

)
, (2)

where φr(x) := φ(x, r) and κr(y) := κ(y, r). Note that for any r ∈ R the pair
(φr, κr) specifies a deterministic strategy. Since Π(G|φ, κ) is a convex combina-
tion of Π(G|φr, κr), there exists some r ∈ R for which Π(G|φr, κr) ∧ Π(G|φ, κ).
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Therefore, it suffices to consider only deterministic strategies (φ, κ), i.e.,

Π(G) = sup
λ:IA≤OA
Δ:IB≤OB

∑

x,y

λ(x, y)V
(
φ(x), κ(y)|x, y). (3)

In the full version of this paper [22] we show that if a game either has finitely
many questions, or finitely many answers, then the classical value can always be
achieved exactly, i.e., the supremum in (3) can be replaced with a maximum.
We also give an example showing that this not always the case if both question
and answer sets are infinite.

2.2 Quantum Strategies and Value

A quantum strategy is specified by a finite-dimensional shared state |χ≥ ∈ C
dA ⇐

C
dB , a POVM Ax = {Ax

a : a ∈ OA} for every question x ∈ IA to Alice,
and a POVM By = {By

b : b ∈ OB} for every question y ∈ IB to Bob. Upon
receiving questions x and y, the parties measure their systems with POVMs Ax,
By respectively and answer with their respective measurement outcomes a and
b. The quantum value of the game is given by

Π◦(G) = sup
∑

x,y

λ(x, y)V (a, b|x, y)⇒χ|(Ax
a ⇐By

b

)|χ≥, (4)

where the supremum is taken over all finite-dimensional shared states |χ≥ and
sets of POVMs {Ax}x and {By}y.

3 Hardy’s Game

We introduce a nonlocal game that we call Hardy’s game, as it is based on
Hardy’s paradox [15,16]. We first describe the paradox, then the game we derive
from it, and end this section by exhibiting a sequence of good strategies for
quantum players of this game.

3.1 Hardy’s Paradox

Hardy’s paradox is a two-party experimental setup whose outcomes, as predicted
by quantum mechanics, cannot be reproduced by any local hidden variables
theory. The setup is noteworthy for being minimal in a sense that it involves
only two qubits, on which both of the parties perform two measurements with
two outcomes each. Our description of the setup roughly follows the explanations
given in [20].

Suppose Alice and Bob share a two-qubit state

|χ≥ :=
sin(ζ)|v⊆0, v⊆0≥ − cos(ζ)

(|v⊆0, v⊆1≥ + |v⊆1, v⊆0≥
)

√
1 + cos2(ζ)

, (5)
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where S ⊆ = {|v⊆0≥, |v⊆1≥} ∪ R
2 is any orthonormal basis and 0 < ζ < Λ

2 . Let
S = {|v0≥, |v1≥} ∪ R

2 be the basis obtained by rotating S ⊆ by angle 2ζ in the xz
plane of the Bloch sphere, i.e.,

|v0≥ = cos(ζ)|v⊆0≥ + sin(ζ)|v⊆1≥, (6)

|v1≥ = − sin(ζ)|v⊆0≥ + cos(ζ)|v⊆1≥. (7)

If Alice and Bob measure the state |χ≥ using the bases S or S ⊆ the following
conditions are satisfied (see also Figure 1):

(i) if both parties measure in S, the outcome pair (0, 0) occurs with probability
pη > 0 (see Equation (8) for an exact formula);

(ii) if one of the parties measures in S and the other in S ⊆, the outcome pair
(0, 0) never occurs;

(iii) if both parties measure in S ⊆, the outcome pair (1, 1) never occurs.

A = 0 B = 0

A⊆ = 1 B⊆ = 1

sometimes

never

sometimes

alwaysalw
ay

s

Fig. 1. (Color online.) Summary of correlations between the outcomes of Alice and
Bob’s measurements in Hardy’s setup. For instance, the arrow A = 0 → B√ = 1
marked “always” means that, if Alice measures her system in basis S (which she does
when her input is A), and Bob measures his system in basis S √ (which he does when
his input is B√), then whenever Alice obtains the outcome 0 Bob always obtains the
outcome 1.

To see that condition (i) is satisfied, we note that

pη := |⇒v0, v0|χ≥|2 =
cos4(ζ) sin2(ζ)

1 + cos2(ζ)
> 0 (8)

as 0 < ζ < λ. To verify the other two conditions one can check that ⇒v0, v⊆0|χ≥ =
0, ⇒v⊆0, v0|χ≥ = 0, and ⇒v⊆1, v⊆1|χ≥ = 0.

Any two-qubit state that is neither product nor maximally entangled can be
expressed in the form of Equation (5) for appropriately chosen basis S ⊆ and
angle ζ [16,14]. Therefore, almost any two-qubit state can be used to perform an
experiment whose outcomes will satisfy conditions (i)–(iii). Different values of ζ
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will result in different pη; one can verify that the maximum pη is 5
√
5−11
2 ≤ 0.09

and is attained at ζ = arccos
((√

5−1
2

)1/2)
< Λ

4 .
Local hidden variables theories cannot reproduce the predictions (i)–(iii) made

by quantum mechanics. Any such theory assigns definite outcomes (depending
only on the hidden variables) for each of the four measurements: A,A⊆, B and
B⊆. Condition (i) guarantees that for some setting of the hidden variables the
outcomes associated with A and B will both be 0. According to Condition (ii)
this implies that for the same setting of hidden variables the outcomes associated
with B⊆ and A⊆ must both be 1. This, however, contradicts Condition (iii).

3.2 A Nonlocal Game from Hardy’s Paradox

A different construction that is often used to disprove the existence of non-
contextual hidden variables theories are the so-called Kochen-Specker sets [13,19].
These sets can easily be turned into a nonlocal game with entangled value 1 and
classical value bounded away from 1 [7]. Hardy’s paradox in itself does not im-
mediately yield such a game; indeed it is not immediately clear how to express
condition (i) in the context of a nonlocal game. To accommodate with that con-
dition we propose the following nonlocal game that we call Hardy’s game and
denote as H .

In game H there are two questions per player: Alice’s question set is IA =
{A,A⊆}, Bob’s question set is IB = {B,B⊆}, and the questions are uniformly
distributed, i.e., λ(X,Y ) = 1

4 for all X ∈ IA, Y ∈ IB . The possible answers
for both parties are binary strings of arbitrary but finite length, i.e., OA,OB =
{0, 1}◦. The verification function V : OA ×OB ×IA ×IB → {0, 1} is defined by
V (a, b|X,Y ) = 1 if and only if all of the following conditions are satisfied.

1. The answer strings a and b have the same length, i.e., |a| = |b|.
2. If X = A and Y = B, then ai = bi = 0 for some position i ∈ [n], where

n := |a| = |b|.
3. For each position i ∈ [n]:

(a) if (X,Y ) = (A,B⊆) or (X,Y ) = (A⊆, B), then ai = 1 or bi = 1;
(b) if (X,Y ) = (A⊆, B⊆), then ai = 0 or bi = 0.

In the above, Condition 3 requires that each pair of answer bits (ai, bi) satisfies
the last two conditions in Hardy’s paradox. Condition 2 requires that for some i,
the pair (ai, bi) satisfies the first condition in Hardy’s paradox with certainty.

3.3 The Classical and Entangled Values

In this section we determine both the classical value and the entangled value of
Hardy’s game. We refer to the full version of this paper [22] for the proof of the
following lemma.

Lemma 1. The classical value of Hardy’s game is Π(H) = 3/4.
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Lemma 2. The entangled value of Hardy’s game is Π◦(H) = 1. Furthermore,
for any τ > 0 there exists a quantum strategy that succeeds with probability at
least 1 − τ using only answers of length Δ = ∂(log(1/τ)) and entangled state of

local dimension d = ∂(τ1/ log c) = ∂(1/τ7.35...), where c = 13−5
√
5

2 .

Proof. For each n ∈ N consider a strategy Sn in which players share n copies
of the state |χ≥ defined in Equation (5)), for some value of ζ. To produce an
n-bit answer string they measure each of the n copies in basis S = {|v0≥, |v1≥}
upon receiving an unprimed question and in basis S ⊆ (see Equation (7)) upon
receiving a primed question. To analyze the success probability of strategy Sn

recall the three conditions from Section 3.2. Since both players answer strings
of length n, Condition 1 is always satisfied. As discussed in Section 3.1, the
outcomes obtained by measuring |χ≥ in basis S and S ⊆ satisfy the conditions
from Hardy’s paradox. This implies that Alice’s and Bob’s answer bits (ai, bi)
always satisfy Condition 3. Finally, note that upon question (A,B) we have
ai = bi = 0 with probability pη (see Equation (8)). Hence, Condition 2 is satisfied

with probability 1 − (1 − pη)n. If ζ = arccos
((

5
√
5−1
2

)1/2)
, then Sn errs with

probability 1
4

(
13−5

√
5

2

)n
. Let c = 13−5

√
5

2 ≤ 0.91 < 1, fix any τ > 0 and consider

n =
⌈
log Ω
log c

⌉
= ∂(log(1/τ)). Then Sn errs with probability at most τ, answers

strings of length ∂(log(1/τ)) and uses entanglement of local dimension d = 2n =
∂(τ1/ log c).

4 Finite Strategies Do Not Achieve the Entangled Value

In this section we present our main result, that the entangled value Π◦(H) = 1
of Hardy’s game cannot be attained by any finite-dimensional strategy. We also
show that the same holds of strategies with bounded answer length (irrespective
of the dimension of the entangled state they are based on).

4.1 Strategies with Bounded Entanglement

Theorem 1. Let τ > 0, and let dA, dB be integers. Consider a strategy that wins
Hardy’s game with probability at least 1 − τ and uses an entangled state of local
dimensions dA, dB. Then min(dA, dB) ∧ 1/(24

⊆
τ). As a consequence, Hardy’s

game cannot be won with probability one using finite-dimensional entanglement.

We first give a key lemma with the following informal interpretation. Consider
any pair of answers (s, t) associated with Alice’s questions A and A⊆ respectively.
Then we can find a question Y ∈ {B,B⊆} for Bob such that for any u ∈ {0, 1}◦
the answer pair (s, u) is rejected upon question (A, Y ) or the answer pair (t, u) is
rejected upon question (A⊆, Y ). To state the lemma, first define the following sets:

S0 :=
{

(s, t) ∈ ({0, 1}◦)2 : |s| ⇔= |t|},
S1 :=

{
(s, t) ∈ ({0, 1}◦)2 : |s| = |t|, ∗i, si = 0 ⊥ ti = 1

}
,

S2 :=
{

(s, t) ∈ ({0, 1}◦)2 : |s| = |t|, ↓j (sj = 0 =⇒ tj = 0)
}
.
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Then ({0, 1}◦)2 is the disjoint union of S0, S1 and S2. In addition, for any
s, t ∈ {0, 1}◦ let

U ⊆
s := {v ∈ {0, 1}◦ : (s, v) is an invalid pair of answers on questions (A,B⊆)},

(9)
and let P ⊆

t be the set of answers v for Bob such that (t, v) is rejected upon question
(A⊆, B⊆). Similarly define Us and Pt as the sets of Bob’s answers corresponding
to rejected answer pairs for questions (A,B) and (A⊆, B) respectively.1

Lemma 3. For any (s, t) ∈ S0 it holds that Us ≺ Pt = U ⊆
s ≺ P ⊆

t = {0, 1}◦. For
any (s, t) ∈ S1 it holds that U ⊆

s ≺ P ⊆
t = {0, 1}◦. For any (s, t) ∈ S2 it holds that

Us ≺ Pt = {0, 1}◦.
Proof. Fix (s, t) ∈ ({0, 1}◦)2. Note that each of the three sets S0, S1 and S2

is invariant under joint permutation of the coordinates of s and t, so we may
assume without loss of generality that s = 0n1m for some n,m. To simplify
notation, we use “σ” to denote any element from {0, 1}. For example, we write
t = 02σ2 to mean t ∈ {0000, 0001, 0010, 0011}. We split our analysis into three
different cases.

Suppose (s, t) ∈ S0, so that t = σk for some k ⇔= n + m. To succeed upon
question (A⊆, B) and Alice’s answer t = σk, Bob must answer a string u that
has length k. On the other hand, to succeed upon (A,B) and Alice’s answer
s = 0n1m, Bob must answer a string u of length n+m. For any possible answer
u of length Δ, either Δ ⇔= n + m or Δ ⇔= k. The same reasoning applies if Bob’s
question is B instead of B⊆.

Next, suppose (s, t) ∈ S1, so that t = rσm for some r ∈ {0, 1}n \ {0}n. To
succeed upon question (A⊆, B⊆) and Alice’s answer t = rσm, Bob must answer a
string v that has zeros in the positions corresponding to the ones in the string r.
Since r ⇔= 0n, we have v ⇔= 1nσm. On the other hand, to succeed upon question
(A,B⊆) and Alice’s answer s = 0n1m, Bob must answer a string v = 1nσm. Hence
for any answer v of Bob’s, either the answer pair (s, v) is rejected upon question
(A,B⊆) or the answer pair (t, v) is rejected upon question (A⊆, B⊆). Thus we have
U ⊆
s ≺ P ⊆

t = {0, 1}◦.
Finally, suppose (s, t) ∈ S2, so that t = 0nσm. To succeed upon question

(A⊆, B) and Alice’s answer t = 0nσm, Bob must answer some u = 1nσm. On the
other hand, to succeed upon question (A,B) and Alice’s answer s = 0n1m, Bob
must answer a string u that contains a zero in the first n positions (so u ⇔= 1nσm).
Hence for any answer u of Bob’s, either the answer pair (s, u) is rejected upon
question (A,B) or the answer pair (t, u) is a rejected upon question (A⊆, B).
Thus we have Us ≺ Pt = {0, 1}◦.

Based on Lemma 3 one can already give a short proof for the fact that no finite
strategy can achieve success probability Π◦(H) = 1 in Hardy’s game. Proving the
dimension estimate stated in Theorem 1 requires a more quantitative argument
that can be found in the full version of this paper [22].

1 The letters P and U stand for the primed and unprimed questions for Alice.
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4.2 Strategies with Bounded Number of Answers

We now show that in order to succeed with higher and higher probability, quan-
tum players must use longer and longer answer strings. The proof of the following
theorem can be found in the full version of this paper [22].

Theorem 2. Let τ > 0, and let L be an integer. Consider a quantum strategy
that wins Hardy’s game with probability at least 1−τ and for which either Alice’s
or Bob’s answers always fall within a set of cardinality L. Then L ∧ 1/(16

⊆
τ).

We can use Hardy’s game to certify the dimension of an entangled state.
According to Theorem 1, if Alice and Bob succeed at Hardy’s game with high
probability, then they must possess an entangled state of high local dimension. In
practice it is not reasonable to test entanglement via a scheme involving infinitely
many outcomes. Therefore, we consider games Hα that are obtained from Hardy’s
game by limiting the parties to answer strings of length at most Δ ∈ N. For
an appropriately chosen Δ = ∂(log 1/τ), the game Hα has two questions and
poly(1/τ) answers per player; moreover Lemma 2 shows that Π◦(Hα) ∧ 1 − τ.
Now, as a direct consequence of Theorem 1 we obtain the following corollary.

Corollary 1. Let τ > 0 and let Δ = ∂(log 1/τ). Any strategy that wins Hα with
probability at least Π◦(Hα)− τ must use a state of dimension at least β(1/

⊆
τ).

5 Discussion and Open Problems

By exhibiting Hardy’s game we have shown that there exist two-party distributed
tasks with classical questions and answers for which no finite amount of entangle-
ment allows the parties to perform optimally. We have also exhibited an infinite
sequence of strategies, using entanglement of increasing dimension, which obtain
success probabilities that tend to the optimal Π◦(H) = 1. Each strategy in our
sequence produces answers of fixed length, increasing with the dimension of the
entangled state. We have showed that to some extent this is necessary: strate-
gies producing answers with bounded length succeed with probabilities that are
bounded away from one.

As long as one allows POVMs with an infinite number of outcomes there is a
meaningful limit to our sequence of strategies for Hardy’s game. The resulting
infinite-dimensional strategy uses an entangled state of the form

⊗≥
i=1 |χ≥, where

|χ≥ is a fixed two-qubit entangled state, and POVM elements take the form
Mx

a =
⊗≥

i=1 M
x
ai

. Here the dimension of the limiting strategy is uncountably
infinite. We leave as an open question the possibility that there could exist a
countably-infinite dimensional strategy with value 1 in Hardy’s game.

In general there are at least four possible scenarios for the achievability of the
entangled value of a nonlocal game:

1. Π◦(G) can be achieved using some finite-dimensional shared state;
2. a countably-infinite dimensional shared state |χ≥ =

∑≥
i,j=1 cij |i, j≥ is needed

to achieve Π◦(G);
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3. an uncountably-infinite dimensional shared state is needed to achieve Π◦(G);
4. there is no single strategy that succeeds with probability Π◦(G).

We provide an example of case (3). There are no known examples for cases (2)
and (4) and it would be interesting to know whether such games exist.

The most pressing question left open by our work is whether a finite-dimensio-
nal shared state is always sufficient to achieve Π◦(G) for games with finite ques-
tion and answer sets. As already mentioned in the introduction, there are nu-
merical results which suggest that this is not always the case [24]. It is also
interesting to investigate what kind of trade-offs may be required in terms of the
dimension of strategies which approach the optimum. In particular, are there any
general upper bounds on the dimension d sufficient to achieve value Π◦(G) − τ?
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Abstract. We study the (non-uniform) quantified constraint satisfac-
tion problem QCSP(H) as H ranges over semicomplete digraphs. We
obtain a complexity-theoretic trichotomy: QCSP(H) is either in P, is
NP-complete or is Pspace-complete. The largest part of our work is the
algebraic classification of precisely which semicompletes enjoy only es-
sentially unary polymorphisms, which is combinatorially interesting in
its own right.

1 Introduction

The quantified constraint satisfaction problem QCSP(B), for a fixed template
(structure) B, is a popular generalisation of the constraint satisfaction problem
CSP(B). In the latter, one asks if a primitive positive sentence (the existential
quantification of a conjunction of atoms) Φ is true on B, while in the former this
sentence may be positive Horn (where universal quantification is also permitted).
Much of the theoretical research into CSPs is in respect of a large complexity
classification project – it is conjectured that CSP(B) is always either in P or NP-
complete [11]. This dichotomy conjecture remains unsettled, although dichotomy
is now known on substantial classes (e.g. structures of size ∈ 3 [19,6] and smooth
digraphs [12,2]). Various methods, combinatorial (graph-theoretic), logical and
universal-algebraic have been brought to bear on this classification project, with
many remarkable consequences. A conjectured delineation for the dichotomy was
given in the algebraic language in [7].

Complexity classifications for QCSPs appear to be harder than for CSPs.
Indeed, a classification for QCSPs will give a fortiori a classification for CSPs (if
B ⊆K1 is the disjoint union of B with an isolated element, then QCSP(B ⊆K1)
and CSP(B) are polynomially equivalent). Just as CSP(B) is always in NP, so
QCSP(B) is always in Pspace. However, no overarching polychotomy has been
conjectured for the complexities of QCSP(B), as B ranges over finite structures,
but the only known complexities are P, NP-complete and Pspace-complete. It
seems plausible that these complexities are the only ones that can be so obtained
(for more on this see [9]).
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In this paper we study the complexity of QCSP(H), where H is a semicom-
plete digraph, i.e. an irreflexive graph so that for each distinct vertices xi and
xj at least one of xixj or xjxi (and possibly both) is in E(H). We prove that
each such problem is either in P, is NP-complete or is Pspace-complete. In some
respects, our paper is a companion to the classifications for partially reflexive
forests [16] and partially reflexive cycles [14], however our work here differs in
two important ways. Firstly, this classification is a complete trichotomy instead
of a partial classification between P and NP-hard. Secondly, this classification
uses the algebraic method to derive hardness results, whereas in [16,14] surjec-
tive polymorphisms appear only for tractability. Indeed, we believe our use of
the algebraic method here is the most complex so far for any QCSP trichotomy
complexity classification. The first published QCSP trichotomy appeared in (the
preprints of) [5] and used relatively straightforward application of the algebraic
method pioneered in the same paper. Subsequently, a combinatorial QCSP tri-
chotomy appeared, essentially for irreflexive pseudoforests, in [17]. The task to
unite [17,16,14], with the spirit of [10], to a QCSP trichotomy for partially re-
flexive pseudoforests, remains open-ended and ambitious. Two other notable
trichotomies have appeared in the QCSP literature in the form of [3] and [4],
though both are slightly unorthodox. The former deals with a variant of the
QCSP, which allows for relativisation of the universal quantifier, and the latter
deals with infinite equality languages.

Our work follows in the spirit of the CSP dichotomy for semicomplete digraphs
given long ago in [1]. What we uncover is that the semicompletes with at most
one cycle, whose CSPs are in P as per [1], beget QCSPs which remain in P.
However, of the semicompletes with more than one cycle, whose CSPs are NP-
complete, some produce QCSPs of maximal complexity while others remain no
more than NP-complete. Our classification is as follows.

Theorem 1. Let H be a semicomplete digraph.

– If H contains at most one cycle then QCSP(H) is in P, else
– H contains a source and a sink and QCSP(H) is NP-complete, else
– QCSP(H) is Pspace-complete.

The tractability results, membership for both P and NP, are relatively straight-
forward and date back to the last author’s 2006 Ph.D. [15]. The natural conjec-
ture was made (not in print) for the trichotomy but repeated efforts to settle
it combinatorially failed. The present work arose from a discussion in Dagstuhl
about two conjectures involving an algebraic approach, which had always been
deemed appropriate as semicomplete digraphs are cores for which all polymor-
phisms are surjective. The first of these conjectures sought to deal with a large
subclass of the semicompletes conjectured to be Pspace-complete, those with
neither source nor sink (termed smooth). If it could be proved that all polymor-
phisms of smooth semicompletes with multiple (i.e. more than one) cycles are
essentially unary, then it would be known from [5] that the corresponding QCSP
is Pspace-complete. The largest part of this paper is in proving this result. The
remaining cases are where there is more than only one cycle and no source (du-
ally resp., sink) but there is a sink (dually resp., source). Suppose then, w.l.o.g,
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that H+m is built from a smooth semicomplete with multiple cycles H by iter-
atively adding m sinks. Suppose Kn is the irreflexive n-clique and let K+m

n be
the same graph with m sinks iteratively added. The second Dagstuhl conjecture
held that, just as the polymorphisms Pol(H) should be contained in Pol(Kn), i.e.
be only essentially unary, perhaps Pol(H+m) should be contained in Pol(K+m

n ),
and that would be enough to prove Pspace-completeness for the corresponding
QCSP. This conjecture turned out to be false, but some substitute digraphs for
Kn in this position were found and so the complexity result follows nonetheless.

As previously stated, the bulk of our work is in proving all smooth semicom-
plete digraphs with multiple cycles have only essentially unary polymorphisms.
It is easy to see this is not true of any of the other semicompletes, for each of
which a simple ternary essential polymorphism (i.e. one that is not essentially
unary) may be given. Thus, we in fact give another, algebraic, classification.

Theorem 2. Let H be a semicomplete digraph. If H is smooth and not itself a
cycle, then H admits only essentially unary polymorphisms; otherwise H has an
essential polymorphism.

This may be seen as the first part of a larger research program, beginning with
semicomplete digraphs, which may continue eventually to larger classes. For ex-
ample, it is known precisely which smooth digraphs have a weak near unanimity
polymorphism [2] and which digraphs enjoy Mal’cev [8].

This paper is organised as follows. After the preliminaries we deal with upper
bounds and essential polymorphisms in Section 3. We then deal with the central
topic of those semicompletes which have only essentially unary polymorphisms
in Section 4. Finally, we deal with the remaining cases of source-without-sink and
sink-without-source in Section 5. For reasons of space most proofs are omitted.

2 Preliminaries

Let [n] := {1, . . . , n}. All graphs in what follows are directed, that is just a binary
relation on a set. We denote digraphs by G, H , etc. and their vertex and edge sets
by V (.) and E(.) (or ⊂, →; where ∧, ≥ indicates double edge), respectively,
where we might omit the (.) if this is clear. We switch rather freely between
postfix notations, such as xy ⇐ E, and infix notations such as x ⊂ y. If v ⇐ H ,
then v+ := {x ⇐ V (H) : vx ⇐ E(H)} and v− := {x ⇐ V (H) : xv ⇐ E(H)}.

A digraph H is semicomplete if it is irreflexive (loopless) and for any two
vertices i and j, at least one of ij and ji is an edge of H . If H never has both ij
and ji, then it is furthermore a tournament. For technical reasons we deny the
trivial tournament with a single vertex and no edges. The equivalence relation
of strong connectedness is defined in the usual way and its equivalence classes
will be called strong components. If the strong component has one element, it
is trivial, otherwise nontrivial. We start by noting that, just like in the case of
tournaments, in semicomplete graphs the strong components can be linearly or-
dered, so that there is an edge out of every vertex in a smaller strong component
into every vertex of a larger strong component (but never an edge going the
other way, obviously).
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The problems CSP(H) and QCSP(H) each take as input a sentence Φ, and
ask whether this sentence is true on H . For the former, the sentence involves the
existential quantification of a conjunction of atoms – primitive positive (pp) logic.
For the latter, the sentence involves the arbitrary quantification of a conjunction
of atoms – positive Horn (pH) logic. It is well-known, for finite H , that CSP(H)
and QCSP(H) are in NP and Pspace, respectively.

The direct product G ×H of two digraphs G and H has vertex set {(x, y) :
x ⇐ V (G), y ⇐ V (H)} and edge set {(x, u)(y, v) : x, y ⇐ V (G), u, v ⇐ V (H), xy ⇐
E(G), uv ⇐ E(H)}. Direct products are (up to isomorphism) associative and
commutative. The kth power Gk of a graph G is G × . . . × G (k times). A
homomorphism from a graph G to a graph H is a function h : G ⊂ H such
that, if xy ⇐ E(G), then h(x)h(y) ⇐ E(H). A k-ary polymorphism of a graph H
is a homomorphism from Hk to H . A polymorphism f is idempotent when, for
all x, f(x, . . . , x) = x. An operation f : Hk to H is termed essentially unary if
there is a unary operation g and co-ordinate i so that f(x1, . . . , xk) = g(xi). If
f is not essentially unary then we describe f as essential.

A digraph is a core if all of its endomorphisms are automorphisms. All finite
semicomplete digraphs are cores, for which all polymorphisms are surjective. For
cores it is well-known the constants are pp-definable up to automorphism. That
is, if Hc is H with all constants named, and H is a core, then CSP(H) and
CSP(Hc) are poly time equivalent; and the same applies to the QCSP. A similar
argument may be given in the algebraic language and the implication is that
we may as well assume all the polymorphisms of a semicomplete digraph H are
idempotent (because this is true for Hc which is actually the structure we will
be working on).

The now-celebrated algebraic approach to CSP rests on one half of a Galois
correspondence, where it is observed that the relations that are invariant un-
der (preserved by) the polymorphisms of H are precisely the relations that are
pp-definable in H . For QCSP, we obtain a similar characterisation substituting
surjective polymorphisms for polymorphisms and pH for pp. The consequence
of this is that if the polymorphisms (resp., surjective polymorphisms) of H are
contained as a subset of those of H ◦, then there is a poly time reduction from
CSP(H ◦) to CSP(H) (resp., QCSP(H ◦) to QCSP(H)); that is, the polymor-
phisms control the complexity.

If Φ is an input for QCSP(H) with quantifier-free part ϕ, then with this we
associate the digraph Dε whose vertices are variables of ϕ and edges are given
by the atoms in ϕ. If Φ is existential, i.e. also an input to CSP(H), then the
relationship between Φ and DΩ is that of canonical query to canonical database
[13].

In a digraph, a source (resp., sink) is a vertex with in-degree (resp. out-degree)
0. A digraph with no sources or sinks is called smooth. In a semicomplete graph,
a source s (resp., sink t) satisfies, for all x ⇒= s (resp., x ⇒= t), xs /⇐ E(H) and
sx ⇐ E(H) (resp., tx /⇐ E(H) and xt ⇐ E(H)). A digraph may have multiple
sources or sinks, but a semicomplete may have at most one of each. If H is a
digraph, then let H+j be H with, iteratively, j sinks added (i.e. each time we add
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a sink we make it forward-adjacent to each existing vertex). Let us label these
added sinks, in order, t1, . . . , tj (thus tj is the unique sink of H+j). Similarly, let
H−j be H with j sources added. When the j is omitted it is presumed to be 1.

We mention some special semicomplete graphs that will appear in the paper.
Kn is the irreflexive complete graph (clique) on vertex set [n]. For i ⇒= j ⇐ [n],
Kn has both edges ij and ji. DC3 is the directed 3-cycle. Let Tn be the transitive
tournament on [n] with the natural order < corresponding to the edge relation
(i.e. ij ⇐ E(Tn) iff i < j).

3 Complexity Upper Bounds and Essential
Polymorphisms

The main results of this section date back to the third author’s Ph.D. [15] (avail-
able from his website) and are presented there combinatorially and in much fuller
detail. The first is very straightforward.

Proposition 1. Let H be a digraph with both a source s and a sink t, then
QCSP(H) is in NP.

Proof. Let Φ be an input to QCSP(H) with quantifier-free part ϕ. Suppose ϕ
has an atom vivj so that Φ quantifies vi universally, then Φ is a no-instance since
ϕ will never be satisfied when vi is evaluated as t. Dually, we may assume ϕ has
no atom vivj so that Φ quantifies vj universally; and we find that Φ can not
contain universally quantified variables involved in atoms of ϕ. Thus, we may
ignore universally quantified variables and evaluate Φ as an input to CSP(H) in
NP.

We now turn our attention to the poly time cases.

Proposition 2. For all n ∪ 1, QCSP(Tn) is in P.

Proof. The ternary median function f(x, y, z) = med(x, y, z) is a polymorphism
of Tn which is a majority operation. The tractability of QCSP(Tn) follows from
[5].

It is well-known that QCSP(K2) and QCSP(DC3) admit a majority polymor-
phism and are therefore in P (see [5]). We are now interested in the semicomplete
graphs K+j

2 , K−j
2 , DC+j

3 and DC−j
3 (for j > 0). Proof of the following appears

in the appendix.

Proposition 3. For j ∪ 0, each of QCSP(K+j
2 ), QCSP(K−j

2 ), QCSP (DC+j
3 )

and QCSP(DC−j
3 ) are in P.

We now deal with the semicompletes that admit essential polymorphisms.

Proposition 4. If H is a semicomplete digraph with at most one cycle or a
source or a sink, then H admits an essential polymorphism.
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Proof. It was noted in the proof of Proposition 2 that the transitive tournaments
admit a median polymorphism. Afterwards it was noted further that K2 and
DC3 admit majority polymorphisms (and indeed the median may be used here).

Let H be a semicomplete digraph and recall H+ to be the same digraph with
a sink t added, to which all other vertices have a forward edge. Then H has the
polymorphism f(x, y, z) = x, unless (y = t or z = t) in which case f(x, y, z) = t.
It follows that semicompletes with sink admit an essential polymorphism. The
result for semicompletes with a source is symmetric and the result follows.

4 Semicompletes with Essentially Unary Polymorphisms

Theorem 3. Let H be a smooth semicomplete digraph with precisely two strong
components. Then all idempotent polymorphisms of H are projections.

Theorem 4. Let H be a smooth semicomplete digraph with two non-trivial
strong components. Then all idempotent polymorphisms of H are projections.

Theorem 5. Let H be a smooth semicomplete digraph with more than two
strong components. Then all idempotent polymorphisms of H are projections.

We sum these up in the following corollary.

Corollary 1. Let H be a smooth semicomplete digraph that is not strongly con-
nected. Then all idempotent polymorphisms of H are projections.

4.1 The Strongly Connected Case

Definition 1. A subset L ≤ V is nice if the induced subgraph on L is strongly
connected and all idempotent polymorphisms of G restrict to L as projections.

Lemma 1. Let L be a nice subset of V and let v be a vertex such that v+ ⇔L ⇒=
∗ ⇒= v− ⇔ L. Then L ⊥ {v} is nice.

Lemma 2. Let L = {a, b} be compatible with (i. e. closed under) the idempotent
polymorphisms of G and let a ⊂ b ⊂ a. If v ⇐ V \ L is such that v+ ⇔ L ⇒= ∗ ⇒=
v− ⇔ L and f is an n-ary idempotent polymorphism of G, then there exists i,
1 ∈ i ∈ n, such that on the subset {a, b, v} the restriction of f is equal to the ith
projection.

A congruence of a tournament (V,⊂) is an equivalence relation ρ on V such
that for all (x1, x2), (y1, y2) ⇐ ρ such that (x1, y1) /⇐ ρ, x1 ⊂ y1 iff x2 ⊂ y2. If ρ
is a congruence of the tournament T = (V,⊂), then the factor tournament T/ρ
is the tournament (V/ρ,→), where a/ρ → b/ρ iff a/ρ ⇒= b/ρ and a ⊂ b.

We also introduce the interval notation for a digraph G = ({a1, a2, . . . , an},⊂)
with the fixed Hamiltonian cycle a1 ⊂ a2 ⊂ . . . ⊂ an ⊂ a1: [ai, aj ] is the
set of all vertices that are traversed by shortest path starting at ai, ending
at aj and which uses only the directed edges of the Hamiltonian cycle. For
instance, [a2, a1] = {a1, a2, . . . , an}, while [a1, a2] = {a1, a2}. We also define
[ai, aj) := [ai, aj ] \ {aj}, (ai, aj] := [ai, aj ] \ {ai} and (ai, aj) := [ai, aj ] \ {ai, aj}.
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Definition 2. Let T = ({a1, . . . , an},⊂) be a strongly connected tournament
with the fixed Hamiltonian cycle C = a1 ⊂ a2 ⊂ . . . ⊂ an ⊂ a1, where n ∪ 3.
T is locally transitive with respect to the cycle C iff there exists a function
ϕT : {1, . . . , n} ⊂ {1, . . . , n} such that:

1. ϕT (i) ⇒⇐ {i− 1, i} and ϕT (1) ⇒⇐ {1, n},
2. a+i = (ai, aεT (i)] and
3. aεT (i+1) ⇐ [aεT (i), ai) and aεT (1) ⇐ [aεT (n), an).

In particular, since the locally transitive tournament T is semicomplete, we get
that aεT (i)+1 ⊂ ai and from the definition above follows that

(4) ai ⊂ ai+1, (ai+1 ⊂ aεT (i) or ai+1 = aεT (i)) and a+i \{ai+1} ↓ a+i+1

(where the addition here is modulo n, so n + 1 = 1). Note also that local tran-
sitivity depends on the fixed Hamiltonian cycle C. It is easy to construct five-
element Hamiltonian tournament which is locally transitive with respect to one
of its Hamiltonian cycles, but not with respect to another.

We will use the easier notation for a locally transitive tournament T when
the vertex set is {1, 2, . . . , n}, where we will understand, unless otherwise stated,
that the fixed Hamiltonian cycle is 1 ⊂ 2 ⊂ . . . ⊂ n ⊂ 1, and ai = i, so we will
have (ϕT (i) + 1) ⊂ i instead of aεT (i)+1 ⊂ ai et cetera.

Definition 3. A locally transitive tournament T = ({1, . . . , n},⊂) is regular iff
n = 2k + 1 for some positive integer k and for all 1 ∈ i < j ∈ 2k + 1, i ⊂ j iff
j−i ∈ k+1 (otherwise j ⊂ i). In other words, in the unique (up to isomorphism)
regular locally transitive tournament with 2k+1 vertices, ϕT (i) = i+k if i ∈ k+1,
and ϕT (i) = i− k − 1 if i > k + 1.

Lemma 3. Let T = ({1, . . . , n},⊂) be a locally transitive tournament such that
ϕT is a permutation of {1, . . . , n}. Then T is regular.

Definition 4. The semicomplete graph GT = (V,E) will be called a P-graph
parametrized by the locally transitive tournament T = ({1, . . . , n},⊂) if there
exists a partition ρ of the vertex set V into nonempty subsets A1, . . . , An such
that for all i ⇒= j and all a ⇐ Ai and b ⇐ Aj , ab ⇐ E iff i ⊂ j in T .

Theorem 6. Every idempotent polymorphism f of a P-graph GT parametrized
by the locally transitive tournament T is a projection, except when GT is the
3-cycle.

Lemma 4. Let G = (V,⊂) be a strongly connected semicomplete graph which
contains at least one 2-cycle. Then for each 2-cycle a ∧ b in G, the set {a, b}
is closed with respect to all idempotent polymorphisms of G and each binary
idempotent polymorphism of G restricted to {a, b} is a projection.

Definition 5. Let G = (V,⊂) be a strongly connected semicomplete graph. We
say that L splits G if ∗ ⇒= L � V is a subset with the following properties:
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1. {L,L+, L−} is a partition of V and
2. for any 2-cycle a ∧ b in G, {a, b} is contained in one of L, L− or L+.

Lemma 5. Let G = (V,⊂) be a strongly connected semicomplete graph which
is not a cycle. Let L0 be either a 2-cycle or a nice subset of V . Then either all
idempotent polymorphisms of G are projections, or there exists a subset L ≤ V
such that L splits G, L0 ≤ L and either the induced subgraph on L is a 2-cycle,
or L is nice.

Lemma 6. Let G = (V,⊂) be a strongly connected semicomplete graph which
is not a P -graph and let L split G. Then there exist vertices a0, a1, b0 ⇐ V such
that a1 ← a0 ⊂ b0 ⊂ a1 and that either

1. b0 ⇐ L− and a0, a1 are in the same strong component, or two consecutive
strong components, of the induced subgraph on L+, or

2. b0 ⇐ L+ and a0, a1 are in the same strong component, or two consecutive
strong components, of the induced subgraph on L−.

Lemma 7. If a strongly connected tournament G = (V,⊂) is not a P-graph
and for all v ⇐ V , all strong components of the induced subgraphs on v+ and on
v− are of sizes 1 or 3, then there is a 3-cycle a ⊂ b ⊂ c ⊂ a in G such that all
idempotent polymorphisms of G restrict to {a, b, c} as projections.

Theorem 7. A strongly connected semicomplete digraph which is not a cycle
has all its idempotent polymorphisms being projections.

Proof. We prove it by an induction on |V | = n. By Theorem 6, if G is a P-
graph, we are done, so we assume that G is not a P-graph. For n = 2 the only
semicomplete digraph must be a cycle. If n = 3 and G is not a cycle, then there
is a 2-cycle a ∧ b in G, and the third vertex c must satisfy either a ⊂ c ⊂ b or
b ⊂ c ⊂ a (possibly even both!), so by Lemma 4 and Lemma 2 all idempotent
polymorphisms are projections. Also, if n = 4, then G is a P-graph parametrized
by the 3-cycle if G is the only 4-element strongly connected tournament or in
the case when V = {a, b, c, d} has exactly one 2-cycle a ∧ b, c ⇐ {a, b}+ and
d ⇐ {a, b}−. Otherwise, from Lemmas 4, 2 and 1 follows that all idempotent
polymorphisms of G are projections.

Now assume that n > 4 and that the Theorem holds in all strongly connected
semicomplete graphs with fewer than n vertices. If there exists a 2-cycle a ∧ b,
then we set L0 = {a, b}. Otherwise, G is a tournament, and if there exists any
vertex v ⇐ V and a strong component L0 of the induced subgraph on v− or on
v+ such that |L0| > 3, then L0 is clearly pp-definable with constants in G, so L0

must be nice by the inductive assumption. Finally, if G is a tournament and for
all v ⇐ V all strong components of the induced subgraphs on v− and on v+ have
at most three elements, then by Lemma 7 follows that there is a three element
subset L0 which is nice.

Let L be a maximal nice subset of V such that L0 ≤ L. If L ⇒= V , then by
Lemma 5, L splits G. Now from Lemma 6 follows that either a strong component
L◦ of the induced subgraph on a+0 contains L⊥{a1, b0} (if (1) of Lemma 6 holds),
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or that a strong component L◦ of the induced subgraph on a−1 contains L⊥{a0, b0}
(if (2) of Lemma 6 holds). Either way, L◦ is pp-definable with constants in G,
L � L◦

� V and the induced subgraph on L◦ is strongly connected, so by the
inductive assumption L◦ is nice. This contradicts the assumed maximality of L.
So, the only alternative is L = V , but then the Theorem holds by niceness of L.

Our main complexity result now follows from [5].

Corollary 2. If H is a smooth semicomplete digraph with more than one cycle,
then QCSP(H) is Pspace-complete.

5 Remaining Semicomplete Digraphs

Recall Tn to be the transitive tournament on [n] with the natural order < cor-
responding to the edge relation. Let Tn be Tn with the extant edge E(1, n)
augmented by E(n, 1), i.e. this becomes a double-edge. Let K2√2 be the semi-
complete graph built from disjoint copies H1 and H2 of K2 with all edges added
from H1 to H2. More generally, let K2√1k√2 be the semicomplete graph built
from disjoint copies H1 and H2 of K2 with a transitive tournament Tk inbetween.

5.1 Some Pspace-hardness Results

Proposition 5. For each k > 0, QCSP(K2√2) and QCSP(K+
2√2) are Pspace-

complete.

Corollary 3. Let G = (V,⊂) be a finite digraph without loops. Let G contain
either

1. a copy of K2√2 such that a ∧ b ⊂ c ∧ d such that any automorphism of this
copy extends by the identity map to an automorphism of G and moreover,
a+ ⊥ b+ = V , or

2. a copy of K3, a ∧ b ∧ c ∧ a such that any permutation of {a, b, c} extends
by the identity map to an automorphism of G and moreover a+ ⊥ b+ =
a+ ⊥ c+ = b+ ⊥ c+ = V ,

then QCSP(G) is Pspace-complete.

Proposition 6. For n ∪ 3, both QCSP(Tn) and QCSP(T
+

n ) are Pspace-
complete.

Proposition 7. For any digraph H, QCSP(H+) and QCSP[≤/H](H
+) are

equivalent.

For H a subset of the domain of the structure H ◦, let QCSP[≤/H](H
◦) be the

variant of QCSP(H ◦) in which the existential variables are restricted to being
chosen from H .

Proposition 8. Let H be a digraph. For each j > 1 there exists a polytime
reduction from QCSP[≤/H](H

+) to QCSP(H+j).
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Corollary 4. For any digraph H and each j > 1, QCSP(H+) reduces to
QCSP(H+j).

Corollary 5. For each j > 0, QCSP(T
+j

n ) and QCSP(K+j
2√2) are both Pspace-

complete.

5.2 The Algebraic Part

Definition 6. Let G = (V,⊂) be a directed graph. We define the relation ≺G

on V by x ≺G y iff x− ↓ y−.

Proposition 9. Assume that G is semicomplete. Then ≺G is a partial order,
≺G has the largest element t iff t is a sink, and dually for least elements and
sources.

Lemma 8. Let G = (V,⊂) be a semicomplete graph without sources, but with
the sink t. Let f : V m ⊂ V be any idempotent mapping such that its restriction to
V \{t} is the first projection. f is a polymorphism of G iff for all b1, b2, . . . , bm ⇐
V , b1 ≺G f(b1, b2, . . . , bm).

Definition 7. Let G = (V,E) be a digraph. We define the partition of the vertex
set V into V G

min, V
G
max, V

G
both and V G

none so that all vertices in V G
max are minimal,

but not maximal, in the order ≺G, all vertices in V G
min are maximal, but not

minimal, in the order ≺G, all vertices in V G
both are both minimal and maximal in

the order ≺G, while vertices in V G
none are neither minimal nor maximal in the

order ≺G. When the digraph G is understood, we will omit the superscript G.

Definition 8. Let G = (V,E) be a digraph. We define the digraph S(G) =
(V,⊂) by:

1. For all x, y ⇐ Vmax ⊥ Vboth, x ∧ y,
2. For all x, y ⇐ Vmin, x ∧ y,
3. For all x, y ⇐ Vnone, x ⊂ y iff E(x, y).
4. For all x ⇐ Vmin and y ⇐ Vnone ⊥ Vmax, x ⊂ y, but ¬y ⊂ x,
5. For all x ⇐ Vnone and y ⇐ Vmax, x ⊂ y, but ¬y ⊂ x,
6. For all x ⇐ Vboth and y ⇐ Vnone ⊥ Vmin, x ⊂ y, but ¬y ⊂ x.

Proposition 10. V
S(G)
min = V G

min, V
S(G)
max = V G

max, V
S(G)
both = V G

both and V
S(G)
none =

V G
none. Consequently, S(S(G)) = S(G).

Proposition 11. A permutation α of the vertex set V of the digraph G = (V,⊂)
(more generally, universe A of a finite relational structure) is an automorphism
iff it is structure-preserving.

Lemma 9. The following statements hold for any digraph G:

1. Aut(G) ↓ Aut(V,≺G),
2. Aut(G) ↓ Aut(S(G)),
3. ≺G↓≺S(G) and
4. If G is smooth and semicomplete, then so is S(G).
5. If G is not a cycle and semicomplete, then neither is S(G).
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Corollary 6. Let G = (V,E) be a smooth semicomplete digraph which is not a
cycle. Then Pol(G+) ↓ Pol(S(G)+).

Definition 9. Let G = (V,E) be a digraph. We define the digraph L(G) on the
set V in the following way:

1. For all x ⇐ Vboth ⊥ Vmin and y ⇐ Vnone ⊥ Vmax, x ⊂ y, but ¬y ⊂ x,
2. For all x ⇐ Vnone and y ⇐ Vmax, x ⊂ y, but ¬y ⊂ x,
3. For all x, y ⇐ Vmin ⊥ Vboth, x ∧ y,
4. For all x, y ⇐ Vnone, x ⊂ y iff E(x, y),
5. For all x, y ⇐ Vmax, x ∧ y.

The next Lemma follows directly from Definition 9.

Lemma 10. Let G be a digraph. Either V = V G
both = V

L(G)
both , or V

L(G)
min = V G

both⊥
V G
min, V

L(G)
none = V G

none, V
L(G)
max = V G

max and V
L(G)
both = ∗.

Corollary 7. Let G = (V,E) be a smooth semicomplete digraph which is not a
cycle. Then Pol(S(G)+) ↓ Pol(L(G)+).

Theorem 8. Let G = (V,E) be a smooth semicomplete digraph which is not a
cycle. Then QCSP(G+j) is Pspace complete for all j > 0.

Corollary 8. If H is semicomplete with more than one cycle and either: 1.)
a sink but no source, or 2.) a source but no sink, then QCSP(H) is Pspace-
complete.

Proof. Case 1 is taken care of by Theorem 8 and Case 2 is symmetric.

6 Conclusion

We can now piece together proofs of our central theorems.

Proof (of Theorem 1). The cases in P follow from Propositions 2 and 3. The NP
upper bound follows from Proposition 1 and the NP lower bound follows from
[1]. All (finite-domain) QCSPs are in Pspace so, finally, the Pspace-hard cases
follow from Corollaries 2 and 8.

Proof (of Theorem 2). From Proposition 4 and Theorem 7.
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Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988,
pp. 342–352. Springer, Heidelberg (2006)

18. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
19. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of STOC

1978, pp. 216–226 (1978)



Fast Pseudorandomness

for Independence and Load Balancing�

(Extended Abstract)

Raghu Meka1, Omer Reingold1, Guy N. Rothblum1, and Ron D. Rothblum2

1 Microsoft Research
{meka,omer.reingold}@microsoft.com, rothblum@alum.mit.edu

2 Weizmann Institute of Science
ron.rothblum@weizmann.ac.il

Abstract. We provide new constructions of several fundamental pseu-
dorandom objects. Loosely speaking, these constructions obtain expo-
nential improvements in efficiency compared to previous constructions
with comparable randomness complexity. Our measure of efficiency is
the number of word operations, as captured by the well-established unit-
cost word RAM model. Our main results are the following:
1. A family of (1/n)-almost log n-wise independent Boolean hash

functions with O(log n) description length (or seed length) and
O(log log n) operations per evaluation.
Prior constructions with similar seed lengths required Θ(log n) op-
erations.

2. ε-biased sequences for ε = 1/poly(n) with seed length
O(log n log log n) and O((log log n)2) operations (to evaluate an out-
put bit or a block of up to log n consecutive bits).
Prior constructions achieve O(log n) seed length, but require
Θ(log n) operations. This construction implies pseudorandom gen-
erators with similar efficiency that fool classes such as low-degree
polynomials and read-once CNFs.

3. Hash functions for placing n balls in n bins such that with all but
probability 1/n the maximal load is O(log n/ log log n) (which is op-
timal), with seed-length O(log n log log n) and O((log log n)2) oper-
ations per evaluation.
The previously known construction with similar seed length required
Θ(log n log log n) operations. Indeed, our construction is an efficient
instantiation of that construction, due to Celis, Reingold, Segev and
Wieder (FOCS 2011).

These constructions are all simultaneously within log log n factors of
the optimal seed length, and within (log log n)2 factors of the optimal
computational efficiency.

1 Introduction

Randomness is a valuable resource in the theory and the practice of computing.
Designs of randomized data structures, algorithms, and protocols often assume

ε The full version is available on the authors’ homepages.

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 859–870, 2014.
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access to a truly random object, such as a random function or a sequence of
random bits. In many settings, however, these random objects must be replaced
with a succinct and efficiently computable explicit construction that mimics
some of their properties. For example, a pseudorandom bit generator, or a small
family of hash functions.

In this work, we are interested in fast and efficient constructions of pseudo-
random objects. Motivated by applications to data structures and algorithms,
we aim for efficiency in the (unit-cost) word RAM model. This model measures
complexity in terms of word operations, and is a (perhaps the) central model
in the theory and practice of data structure and algorithm design. Applica-
tions aside, the word-RAM complexity of pseudorandom objects is a founda-
tional question, and it has been explored in an important body of work (e.g.
[NN93, Sie04, CRSW13, Tho13]). We focus on three fundamental pseudoran-
dom objects: almost-independent hash functions, small-bias generators, and load
balancing hash functions. Loosely speaking, we obtain exponential efficiency im-
provements compared to the fastest known constructions for each of these ob-
jects, while maintaining (up to log log factors) the best seed length. We proceed
with an overview of our contributions and their relationship to prior works. A
more detailed discussion of the RAM model follows. We note that these results
have already found applications in subsequent recent works of Reingold, Roth-
blum and Weider [RRW14] and of Reingold and Vardi [RV14].

Limited Independence. Families of hash functions with limited independence are
central objects in the study of hashing and derandomization, and have many
applications to algorithms and data structures. Limited independence suffices
in many cases where fully random hash functions are used, and functions with
limited independence have the advantage of a much more succinct and space-
efficient representation. A hash family is said to be ε-almost k-wise independent
if for any k fixed inputs, their (joint) output distribution is ε-close to uniform (in
statistical distance, where the probability is over the choice of a function from
the family). The use of limited independence in computer science begins with
the seminal work of Carter and Wegman [CW79, WC81]. See also the survey of
Luby and Wigderson [LW05].

A particularly interesting parameter choice is that of (1/poly(n))-almost logn-
wise independent Boolean hash functions, which lend themselves to showing con-
centration bounds with polynomially small errors. For this setting of parameters,
known constructions achieve optimal seed length of O(log n) bits [NN93], but
computing these functions is expensive, and requires O(log n) word operations
(where the word length is O(log n)). Alternatively, Siegel [Sie04] and Thorup
[Tho13] propose functions with nΩ(1)-independence that can be evaluated in a
constant number of word operations, but use storage or key length nΩ(1) (for
functions with constant evaluation time, larger key length or storage is essential,
even for logarithmic output length and independence, by Siegel’s lower bound
[Sie04]). Our first result is a new construction of Boolean hash functions with
logarithmic seed length/storage and fast evaluation.
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Construction 1 (Fast Almost Independent Hash Family). We construct
a family of (1/poly(n))-almost logn-wise independent functions from {0, 1}w
to {0, 1}, with a O(log n)-bit seed, which can be evaluated in O(log logn) word
operations.

Moreover, for any m ∈ [logn], we construct a (1/poly(n))-almost ((logn)/m)-
wise independent family of hash functions from {0, 1}w to {0, 1}m, with a
O(log n)-bit seed, which can be evaluated in O(log logn) operations.

This construction follows from a new fast small-bias generator described be-
low. It achieves an exponential efficiency improvement over past work, while still
having optimal seed length / storage (up to constant factors). Moreover, it also
allows fast computation of m-bit outputs: as the output size increases to m > 1
bits, the independence guarantee decreases proportionally to (logn)/m.

It is interesting to compare our upper bound with the lower bound of Siegel
[Sie04] for computing k-wise independent hash functions. Siegel’s seminal cell-
probe lower bound shows that when hashing from a universe of size n to a
range of size 2m with m-bit long cells, to get k-wise independent hash functions
that can be evaluated in time t < k (t here is the number of cell probes), one
needs storage or key length Ω(k · n1/t) (this is the length of the hash key that
allows computation in t cell probes). Adapted to the RAM model, Siegel’s lower
bound says that to get logn-wise independent hash functions with logn output
length, even using logγ n time, requires large Ω(2log

1−γ n) storage. In contrast,
we focus on Boolean functions, and obtain both logarithmic seed length/storage
and O(log logn) time.

Small-Bias Generators. A pseudorandom generator maps a short random seed
into a longer output that is indistinguishable from the uniform distribution to
a certain class of tests (or distinguishers). A small-bias generator is one that
“fools” linear tests. Namely, G is an ε-biased generator if for every non-zero test
vector t, it holds that:

Pr
seed

[⊆t, G(seed)⊂ = 0] ∈ [1/2 − ε, 1/2 + ε] (1.1)

(the inner product is taken over GF(2)). The notion of ε-biased generators was
introduced by the seminal work of [NN93], who also gave the first construc-
tions of such generators. Since then, a rich sequence of works provided alterna-
tive constructions and related notions [AGHP92, AIK+90, RSW93], [AMN98,
EGL+98, AM95, BATS13]. Small-bias generators have found numerous applica-
tions throughout theoretical computer science, from derandomization [NN93], to
learning theory [AM95], to efficient low-degree tests and short PCPs [BFLS91,
FGL+96, BSGH+06]. In coding theoretic terms, they are equivalent to linear
error correcting codes over GF(2) where all codewords have relative Hamming
weight between (1−ε)/2 and (1+ε)/2 [NN93, AGHP92]. They are also an impor-
tant tool in finding explicit constructions, e.g. for graphs [Nao92, AR94, MW04],
two-source extractors [Raz05], and psuedorandom generators that fool low de-
gree polynomials [BV10, Lov09, Vio09] or Read-Once CNFs [GMR+12], and
many more.
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One especially important motivation for the study of small-bias generators,
is their application to the construction of almost k-wise independent hash func-
tions. For this application, [NN93] introduced the relaxed notion of (k, ε)-biased
generators, which are only required to fool linear tests of weight at most k (i.e.
vectors with at most k non-zero coordinates). Any (k, ε)-biased generator im-
mediately implies an (ε · 2k/2)-almost k-wise independent Boolean hash family.
Thus, to construct good almost k-wise independent hash functions, we need
a (k, ε)-biased generator with bias smaller than 2−k/2. Indeed, Construction 1
above is obtained by building a new fast (logn, poly(1/n))-biased generator,
whose output bits (and blocks) can be computed in few word operations.

Known constructions of ε-biased generators achieve asymptotically optimal
seed length of O(log(n/ε)) up to constant factors, [NN93, AGHP92]. Moreover,
[NN93] gave a generator with constant bias, where each of the output bits could
be computed using O(1) word operations. However, for smaller biases, e.g. bias
poly(1/n) (which is necessary for obtaining almost logn-wise independent hash
functions), known construction are not nearly so efficient. In particular, they
require O(log n) word operations for computing each output bit. This is true
even for the relaxed requirement of (logn, ε)-bias.

Construction 2 (ε-Biased Generator). We construct a (1/poly(n))-biased
generator G with seed length O(log n log logn), where each bit of G’s output can
be computed in O((log logn)2) word operations.

Construction 2 gives an exponential efficiency improvement over prior con-
structions, at the cost of a log logn blowup in the seed length. This is our most
technically elaborate construction. It utilizes almost logn-wise independent hash
families (see above), and load balancing hash families (see below).

Significant attention has been devoted to the circuit or arithmetic complex-
ity of computing ε-biased generators, yielding generators computable in circuit
classes such as NC0, AC0[→], or low-degree polynomials [CM01, GV04, AIK06,
MST06, HV06, Hea08, Shp09]. These works, like ours, contend with the funda-
mental question of efficiently computing pseudorandom objects. Our work, how-
ever, focuses on complexity in terms of running time in the word-RAM model,
a very different model (which is arguably more relevant for many applications
and prevalent architectures). Indeed, as noted above, the original work of Naor
and Naor [NN93] also considered the word-RAM model (see above). Another dif-
ference is in showing that word RAM running-time measure allows for efficient
constructions of a rich variety of pseudorandom objects. This is not the case if
we restrict locality or algebraic degree: for example, no generator of constant
degree or locality can have super-polynomial stretch [MST06].

Given the ubiquitous nature of ε-biased generators and almost k-wise inde-
pendent hash functions, we get similar improvements for several constructions
(see the full version for details):

– Efficient Pseudorandom Generators (PRGs) for low-degree polynomials over
GF(2): The works of [BV10, Lov09, Vio09] show that sum of small-bias
generators fool low-degree polynomials over GF(2). As a result we get very
efficient PRGs for this well-studied class of test functions.
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– Efficient PRGs for Read-Once CNFs: The work of [GMR+12] uses small-bias
generators to fool read-once CNFs and hence we get very efficient PRGs for
read-once CNFs.

Load Balancing. A fundamental fact in the analysis of randomized algorithms
is that if n items are hashed into n bins, using a truly random hash function,
then with high probability each bin contains at most O(log n/ log logn) items.
It is natural to try and construct succinct explicit functions that share this
important property. It is known that O(log n/ log log n)-wise independent hash
families (with logn output bits) have this property, but these require a large
O(log2 n/ log logn)-bit seed, and evaluation takes O(log n/ log logn) word op-
erations. Until recently no constructions with smaller seed length were known
(variants of this question were posed in [ADM+99, PPR07]). In recent work, Celis
et al. [CRSW13] construct a family with seed length O(log n log logn), obtaining
the first improvement over the seed length of a generic logn-wise independent
hash family. That construction did not improve the evaluation time, but they
also present a second construction, which supports evaluation in

∧
logn opera-

tions. While the seed length of this second construction increased to log3/2 n, it
was the first construction with a sub-polynomial seed that beat the evaluation
time of O(log n). Indeed, in light of Siegel’s lower bound [Sie04], this second
construction gives a separation between the number of operations needed to
compute load balancing and log n-wise independence.

In this work we obtain an exponential efficiency improvement (even with
respect to the second construction of [CRSW13]), while maintaining the best
known seed length (that of their first construction).

Construction 3 (Load-Balancing Hash Family). We construct a family of
load-balancing hash functions with seed length O(log n log logn), which can be
evaluated in O((log logn)2) word operations.

In fact, this is an instantiation of the [CRSW13] construction, using the fast
almost-independent hash functions of Construction 1. The efficient block com-
putation property of Construction 1 is essential for this instantiation.

The Unit-Cost Word RAM Model. Throughout this work, we consider the unit-
cost Word RAM model in which the elements are taken from a universe of size
u, and each element can be stored in a single word of length w = O(log u) bits.
Throughout this work we take the universe size to be poly(n) and the word
length to be O(log n) (the standard setting of parameters).

The unit cost RAM model has been the subject of much research, and is
considered the standard model for analyzing the efficiency of data structures
and hashing schemes; see, e.g., [DP08, Hag98, HMP01, Mil99, PP08] and the
references therein. In this model, it is assumed that a certain set of operations
on words come at unit cost (an abstraction for the set of instructions supported
by a CPU). This set of supported operations is an important part of the model,
both from a practical and from a foundational point of view. Indeed, for a given
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algorithm, its running time may vary greatly depending on the set of unit-cost
operations. We aim for a “minimal” model, and assume that the following (stan-
dard) operations can be executed in constant time on w-bit operands: bitwise
Boolean operations, parity, left and right bit shifts by an arbitrary number of
positions. We also assume constant-time addition, subtraction and multiplica-
tion over finite fields (we refer to these as field operations throughout). Our main
results are stated assuming support for field operations over GF(2w). Our con-
structions can also be instantiated over prime fields GF(p) (using addition and
multiplication only), at the cost of an additional O(log log n)-overhead. See the
full version for details on results over GF(p).

We elaborate on these two variants of supported field operations. Addition
and subtraction over any finite field, and multiplication over a prime field GF(p),
are all standard operations. Multiplication over GF(2w), which requires taking
the polynomial product modulo an irreducible polynomial, is used in a wide
range of applications (and implementations) including error correcting codes
[RS60, LRPP09, RCL+13] and cryptography [oSN01, Dwo07]. Notably, modern
processors provide (partial) support for multiplication over binary fields [GK12].

We avoid more complex (and non-standard) field operations such as division,
inversion, or exponentiation, which are considered to be expensive operations
(see, e.g., [Ram96], [And96] for two works working in the unit-cost Word RAM
model where special care is taken to avoid division). We note, however, that
if we allow such powerful unit-cost operations, then simpler and more efficient
solutions are known. For example, if we allow unit-cost exponentiation, then
the “powering construction” of [AGHP92] is a poly(1/n)-biased generator that
can be evaluated in O(1) time. A construction obtaining a poly(1/n)-biased
generator with O(log n) seed length, using O(1) divisions, was communicated to
us by Zuckerman [Zuc].

1.1 Overview of Constructions and Techniques

Our constructions combine both algebraic as well as combinatorial techniques
from the works of Naor and Naor [NN93] and Alon et al. [AGHP92], in ad-
dition to employing the load-balancing hash function construction of to Celis
et al. [CRSW13]. We start by constructing (almost) O(log n)-wise independent
Boolean hash functions, which can be used to construct hash functions for load
balancing. We then combine the two constructions (O(log n)-wise independence
and load balancing) to construct poly(1/n)-biased sequences. Thus, the O(log n)-
wise independent family is used both directly, and as part of the load balancing
construction. In other words, our construction can be viewed as going from ε-
bias (against logarithmically sparse tests) to load balancing, and back again to
(full-fledged) ε-bias.

Looking further “under the hood”, the starting point of our construction of
O(log n)-wise independence is one of the ε-bias constructions from [AGHP92].
In this respect, our construction can be viewed as transforming a (not efficient
enough) ε-biased generator to a more efficient O(log n)-wise independent hash
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family, and back again to a (still efficient) ε-biased generator. (See the full version
for an elaboration on this perspective.)

We proceed with a more detailed overview of constructions and techniques.
We begin with our construction of O(log n)-wise independence directly. As men-
tioned above, (almost) logn-wise independence follows from fooling (logarithmi-
cally) sparse linear tests.

(k, ε)-Biased Generator. We wish to construct a generator G which fools k-sparse
linear tests in the sense of satisfying Eq. (1.1) for vectors t which have at most
k non-zero coordinates. For m = O(k + log(n/ε)), the generator G stretches a
2m-bit seed1 to nm bits (alternatively, to n blocks of m output bits), where each
m-bit output block can be computed very efficiently. The construction uses the
field GF(2m).2 The generator’s seed consists of two field elements β, γ ∈ GF(2m),
and it outputs n field elements, or nm bits in total. We index these output
elements using an arbitrary subset A ≥ GF(2m) of size n. For α ∈ A, the α-th
output element is:

(G(β, γ))α
def
= γ ·

k−1∑

i=0

(αβ)i, (1.2)

and we treat each of these field elements as an m-bit block.

Fast Bit and Block Computation. The main advantage of this construction is that
the α-th block can be computed very efficiently, in O(log k) word operations (and
so can each individual output bit). The efficient computation procedure uses the
equality:

(G(β, γ))α = γ ·
k−1∑

i=0

(αβ)i = γ · (1 + (αβ)) ·
k
2−1∑

i=0

((αβ)2)i

= γ · (1+(αβ))·(1 + (αβ)2) ·
k
4−1∑

i=0

((αβ)4)i = . . .=γ ·
log k−1∏

j=0

(1+(αβ)2
j

)

(w.l.o.g. we take k to be a power of 2)3. This final product can be computed
using O(log k) operations on m-bit words: 2 log k + 1 multiplications and log k
additions.

1 If either k = Ω(log n) or n is polynomial in 1/ε then the seed-length is optimal up
to a constant factor. In general, though, the optimal dependence of the seed on n is
additive log log n. See the full version for details.

2 The construction can be revised, using a transformation due to Rao [Rao07], to use
instead the field GF(p) for some prime p. This incurs a log log n overhead in both
efficiency and seed length. See the full version for more details. As this generator is
the main building block we use, all other constructions in the paper can similarly be
made to work with operations over GF(p).

3 We can also write G(β, γ) = γ ·((αβ)k+1−1))/(αβ−1) and compute it using O(log k)
multiplications and one division. Here we try to avoid using divisions.
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One parameter range of particular interest is a (log n, poly(1/n))-biased gener-
ator. For this setting of parameters, each output block is of length O(log n), and
can be computed using O(log logn) word operations (on (log n)-bit words). As
discussed above, this generator immediately yields a poly(1/n)-almost logn-wise
independent Boolean hash family, where the hash functions can be evaluated in
O(log logn) time.

Proof of Pseudorandomness. We would like to prove that G is a (k, ε)-biased
generator. Namely that G produces a distribution over nm-bit strings that fools
k-sparse linear tests over GF(2). Towards this, we first show that when viewing
the output of G as n field elements of GF(2m), it fools any k-sparse linear
test over GF(2m). We then prove that every (k, ε)-biased generator for tests
over GF(2m) remains (k, ε)-biased when we interpret its output as bits. This is
proven by showing that a k-sparse linear test over GF(2) can be “simulated” by
a k-sparse linear test over GF(2m).

The direct proof that G is a (k, ε)-biased generator is fairly simple. Still we
describe the way we obtained the construction, as we hope that this approach
may find further applications. Our starting point is an ε-biased generator due to
[AGHP92] (slightly modified to generate ε-biased sequences over GF(2m) rather
than over GF(2)). By itself, the generator is not efficient enough (as most output
elements require Ω(logn) operations to evaluate). To improve construction’s
efficiency, we use a reduction due to [NN93] from ε-bias to (k, ε)-bias. This
reduction is used in [NN93] to reduce the seed length.4 Our goal is quite different:
we will use the reduction to improve efficiency, obtaining (k, ε)-biased sequences
that require log k operations (rather than logn). A priori, there is no reason to
expect the reduction to have this consequence, but a careful instantiation of the
reduction does work.

Almost k-Wise Independence and Load Balancing. The (logn, poly(1/n))-biased
generator obtained above directly implies a poly(1/n)-almost logn-wise inde-
pendent Boolean hash family, where functions in the family can be evaluated
in O(log logn) word operations. Moreover, because of the efficient block compu-
tation property, for every t ∈ {1, 2, 3, . . . logn}, we also get a poly(1/n)-almost
(logn/t)-wise independent hash family from [n] to {0, 1}t, where the functions
can be evaluated in O(log logn) word operations (we emphasize that this is the
cost to obtain all of the output bits simultaneously). For every such t, a hash
function h is described by two GF (2m) elements β and γ and hβ,γ(i) is defined
to be the t-long suffix of G(β, γ))αi , where αi is the i’th field element in A.

Such almost k-wise independent functions are used in [CRSW13] to construct
load-balancing hash functions. The [CRSW13] construction uses log logn such
hash functions (each of these hash functions is evaluated once). The w-th func-
tion, for w ∈ [log logn], is taken from a family that is (almost) O(log n/2w)-wise
independent with 2w-bit outputs. We instantiate their construction with our new

4 More specifically, the dependence on n in the seed of (k, ε)-biased sequences is better
than the dependence for ε-bias sequences.
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hash families, improving the evaluation time from Õ(logn) to O((log logn)2)
word operations. The seed length remains O(log n · log logn).

(Full-Fledged) ε-Biased Generator. Having used a (log n, poly(1/n))-biased gen-
erator to obtain fast load-balancing, we now use fast load-balancing (together
with the (logn, poly(1/n))-biased generator again) to obtain a fast full-fledged
ε-biased generator (for all tests, i.e. without any sparsity restriction). This part
of our construction is inspired by the combinatorial techniques of [NN93]. Spe-
cial care is needed to simultaneously preserve both the small error as well as
the efficient computation. To handle this we introduce a stronger notion of load
balancing we call “granular” load balancing, which may be of interest elsewhere.
See the full version for details.

1/poly(n)-biased generator
log n operations [AGHP92]

(log n, 1/poly(n))-biased generator
log log n operations

Load balancing hashing
(log log n)2 operations

1/poly(n)-biased generator
(log log n)2 operations

Fig. 1. Roadmap for the construction of the fast ε-biased generator
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Abstract. We study here the problem of determining the majority type
in an arbitrary connected network, each vertex of which has initially two
possible types (states). The vertices may have a few additional possible
states and can interact in pairs only if they share an edge. Any (popula-
tion) protocol is required to stabilize in the initial majority, i.e. its output
function must interpret the local state of each vertex so that each ver-
tex outputs the initial majority type. We first provide a protocol with 4
states per vertex that always computes the initial majority value, under
any fair scheduler. Under the uniform probabilistic scheduler of pairwise
interactions, we prove that our protocol stabilizes in expected polyno-
mial time for any network and is quite fast on the clique. As we prove,
this protocol is optimal, in the sense that there does not exist any popu-
lation protocol that always computes majority with fewer than 4 states
per vertex. However this does not rule out the existence of a protocol
with 3 states per vertex that is correct with high probability (whp). To
this end, we examine an elegant and very natural majority protocol with
3 states per vertex, introduced in [2] where its performance has been
analyzed for the clique graph. In particular, it determines the correct
initial majority type in the clique very fast and whp under the uniform
probabilistic scheduler. We study the performance of this protocol in
arbitrary networks. We prove that, when the two initial states are put
uniformly at random on the vertices, the protocol of [2] converges to the
initial majority with probability higher than the probability of converg-
ing to the initial minority. In contrast, we present an infinite family of
graphs, on which the protocol of [2] can fail, i.e. it can converge to the
initial minority type whp, even when the difference between the initial
majority and the initial minority is n−Θ(lnn). We also present another
infinite family of graphs in which the protocol of [2] takes an expected
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exponential time to converge. These two negative results build upon a
very positive result concerning the robustness of the protocol of [2] on the
clique, namely that if the initial minority is at most n

7
, the protocol fails

with exponentially small probability. Surprisingly, the resistance of the
clique to failure causes the failure in general graphs. Our techniques use
new domination and coupling arguments for suitably defined processes
whose dynamics capture the antagonism between the states involved.

1 Introduction

One of the most natural computational problems in many physical systems is
to compute the majority, i.e. to determine accurately which type of an element
of the system appears more frequently. For instance, the majority problem is
encountered in various settings such as in voting [8, 10], in epidemiology and
interacting particles systems [13], in diagnosis of multiprocessor systems [17], in
social networks [14,16] etc. In distributed computing, the majority problem is an
important and natural special case of the central problem of reaching consencus
within a system [6,12], where a number of processes have to agree on any single
data value (e.g. leader election [7]). In all these physical systems, some pairs
of elements may interact with each other while other pairs may not be able
to interact directly. This structure of the possible pairwise interactions between
elements of the system can be modeled by a network (i.e. graph), where elements
and possible interactions are represented by vertices and edges, respectively.

In order to solve the majority computation problem in a network, we first
need to make some assumptions on the underlying model of computation. Much
research has been done under the assumption that there exists a central author-
ity, as well as unlimited available memory and full information about the whole
network (see e.g. [5, 18]). However, in many real systems we do not have (or
we do not wish to have) such a powerful computational model. The weaker the
considered model of computation is (e.g. lack of central authority, partial or no
information about the system, lack of memory etc.), the more challenging the
majority computation becomes.

One of the ways to study distributed systems where agents may interact in
pairs and each individual agent is extremely limited (in fact, being equipped only
with a finite number of possible states) is by using population protocols [1, 3].
Then the complex behavior of the system emerges from the rules governing the
possible pairwise interactions of the agents. Population protocols have been de-
fined by analogy to population processes [11] in probability theory and have
already been used in various fields, such as in statistical physics, genetics, epi-
demiology, chemistry and biology [4].

In particular, population protocols are scalable, i.e. they work independently
of the size n of the underlying network (called the interaction graph) and the
value of n is not even known to the protocol. Furthermore they are anonymous,
i.e. there is only one transition function which is common to all entities/agents:
the result of an interaction of an agent u at state qu with an agent v at state
qv is the same regardless of the identity of u and v. The transition function
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of a population protocol only specifies the result of every possible interaction,
without specifying which pairs of agents interact or when they are chosen to
interact. Usually it is assumed that interactions between agents happen under
some kind of a fairness condition. For a survey we refer to [3].

In this direction, a very natural and simple population protocol for the major-
ity problem on the clique (i.e. the complete graph), where initially every vertex
has one of two possible types (states), has been introduced and analyzed in [2].
In particular, the protocol of [2] assigns only 3 possible states to every agent
(i.e. there is a 3 × 3 transition table capturing all possible interactions) and the
interactions between agents are dictated by a probabilistic scheduler (i.e. all pairs
have the same probability to interact at any step). Every vertex has an identity
v, but it is unaware of the identity of any other vertex, as well as of its own
identity. Although the underlying interaction graph in [2] is assumed to be a
clique, the authors distinguish in their protocol the agents u and v participating
in an interaction into an “initiator” and a “responder” of the interaction (when
agents u and v interact, each of them becomes initiator or responder with equal
probability). Their main result is that, if initially the difference between the
initial majority from the initial minority in the complete graph with n vertices
is σ(

∈
n logn), their protocol converges to the correct initial majority value in

O(n log n) time with high probability.
Most works on population and majority dynamics so far considered only two

entity types (e.g. the voter model [8], the Moran process [15]). The analysis of
population dynamics with more than two types is challenging. As an example
we refer to the model of [2], in which, although agents can have initially one of
only two types (red and green), the protocol itself allows every agent to be in
one among three different states (red, green and blank) at every subsequent time
point. Even though this model is quite simple, it is very hard to be analyzed.
Computing the majority with as few states as possible in the more general case,
where the interaction graph has an arbitrary structure (as opposed to the com-
plete graph that has been mainly considered so far) remained an open problem.

1.1 Our Contribution

In this paper we study the majority problem in an arbitrary underlying inter-
action graph G, where initially every vertex has two possible states (red and
green). We consider here the weakest and simplest possible model of computa-
tion. In particular, we assume the existence of no central authority and we allow
every vertex of G to have only a (small) constant number of available types (or
states). Although every vertex of G has a unique identity, no vertex is aware of
its own identity or the identity of any other vertex. Furthermore, although only
two adjacent vertices can interact, vertices of G do not even know to which other
vertices they are adjacent.

First, we focus on the problem of always computing the correct majority
value in an arbitrary (directed or undirected) interaction graph G, regardless
of how large the initial difference between the majority and the minority is.
In particular, assuming that the interacting pairs of vertices are chosen by an
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arbitrary fair scheduler, we derive matching lower and upper bounds on the
number of available states, for which there exists a population protocol that
always computes the correct majority value. For the lower bound, we prove that
there does not exist any population protocol that achieves this with at most 3
different states per vertex. On the other hand, for the matching upper bound we
provide a population protocol with 4 states per vertex, which always computes
the correct majority value, even if initially the difference between majority and
minority is 1. To the best of our knowledge, this is the first 4-state population
protocol that correctly computes the majority value in a two type population
on an arbitrary interaction graph. In particular, the 4-state majority protocol
proposed in [3] only works when the interaction graph is complete. Furthermore
we provide polynomial upper bounds on the expected time needed by our new
protocol to converge, and we show that in certain cases the running time is
O(n log n), i.e. the same as for the fast protocol of [2].

Second, we provide a detailed analysis of the 3-state protocol of [2] on an
arbitrary interaction graph G. Our first result in this direction is that, when
the two initial types (red and green) are distributed on the vertices of an ar-
bitrary graph G uniformly at random, the protocol of [2] will converge to the
initial majority with higher probability than to the initial minority. The proof
of this relies on a well known result in extremal combinatorics (in particular, on
Hall’s marriage Theorem). Furthermore we present an infinite family of graphs
{Gn}n◦N on which the protocol of [2] can fail (i.e. it can converge to the initial
minority) with high probability, even when the difference between the initial
majority and the initial minority is as large as n − τ(lnn). Then we present
another infinite family of graphs {G√

n}n◦N on which the protocol of [2] can take
an exponential expected number of steps to converge. In particular, this rules
out the possibility to use a Markov chain Monte-Carlo approach to approximate
the probability that the protocol of [2] converges to the correct majority value.

In order to prove our results on the classes {Gn}n◦N and {G√
n}n◦N, we first

proved the intermediate result that for any λ > 0, if the minority has size at
most (17 − λ)n in the complete graph with n vertices, then the protocol of [2]
converges to the initial minority with exponentially small probability. The latter
result shows that, although the performance of the protocol of [2] can drop
significantly when the interaction graph G is not the complete graph, it is quite
robust when G is the complete graph. Our proof concerning the robustness of
the protocol of [2] in the complete graph is novel and uses a non-trivial coupling
argument which can be of independent interest.

2 The Model and Notation

A population protocol consists of a finite set Q of states/types1, a finite set of
input symbols X , an input function Π : X ⊆ Q, a finite set of output symbols Y ,
an output function β : Q ⊆ Y , and a joint transition function Δ : Q×Q ⊆ Q×Q.

1 In the original formulation of population protocols these are called states, but we
chose to also use the term type to avoid confusion with the states in a Markov chain.
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If, for any pair of states q1, q2 ⊂ Q, Δ(qa, qb) = (q√a, q
√
b) implies that Δ(qb, qa) =

(q√b, q
√
a), then the population protocol is called symmetric. A population protocol

is executed by a fixed finite population of agents with types in Q. We assume
that each agent has an identity v ⊂ V , but agents are oblivious to their own
identity and to identities of agents they interact with.

Initially, each agent is assigned a type according to an input x : V ⊆ X
that maps agent identities to input symbols. In the general population protocol
model, agents are identified with the vertices of an interaction graph, whose
edges indicate the possible agent interactions that may take place. Here, an
interaction graph is a simple connected graph G (i.e. without loops or multiple
edges), which can be directed or undirected. A function C : V ⊆ Q is called a
configuration. We will say that the population protocol reaches configuration C
at time t if, for every agent v in the population, the state of v at time t is C(v).

In the original model, agents do not send messages or share memory; instead,
an interaction between two agents updates both of their types according to a
joint transition function (which can be also represented by a table). Interactions
between agents are planned by a scheduler under a general “fairness” condition;
the actual mechanism for choosing which agents interact is abstracted away.
The fairness condition states that for any two configurations C,C√, if C occurs
infinitely often and C√ is reachable from C, then C√ also occurs infinitely often.

In this paper, we consider a special case of a fair scheduler, namely the prob-
abilistic scheduler, which is defined on directed graphs as follows. During each
execution step, a directed edge (v, u) ⊂ E is chosen uniformly at random from E,
where v (i.e. the tail of (v, u)) is called the initiator and u (i.e. the head of (v, u))
is called the responder of the interaction. Then, agents v and u update their types
jointly according to Δ. In particular, if v is of type qv and u is of type qu, the type
of v (respectively u) becomes q√v (respectively q√u), where (q√v, q√u) = Δ(qv, qu). The
types of all other agents remain unchanged. The probabilistic scheduler is de-
fined on undirected graphs similarly, by replacing every undirected edge {v, u}
by the two directed edges (v, u) and (u, v). That is, in an undirected graph G, the
probabilistic scheduler selects first an undirected edge uniformly at random and
then it selects equiprobably one of its endpoint as the initiator. Note that a sym-
metric protocol does not distinguish between initiators and responders. Thus, if
the protocol is symmetric, the probabilistic scheduler on undirected graphs just
chooses at each execution step one undirected edge uniformly at random and
lets its endpoints interact according to the transition function.

Given the probabilistic scheduler, a population protocol computes a (possibly
partial) function g : XV ⊆ Y with error probability at most ∂, if for all x ⊂
g−1(Y ), the population eventually reaches a configuration C that satisfies the
following properties with probability at least 1 − ∂: (a) all agents agree on the
correct output, i.e. g(x) = β(C(v)) for all v ⊂ V and (b) this holds also for
every configuration reachable from C. A population protocol stably computes a
(possibly partial) function g : XV ⊆ Y if, for every fair scheduler, the population
eventually reaches a configuration C that satisfies both properties (a) and (b).
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Observation 1. If a symmetric population protocol stably computes a function
on an undirected interaction graph G, then it also stably computes the same
function on a directed interaction graph G√ that comes from G by assigning to
every edge of G one or two directions.

2.1 Majority with High Probability on the Clique

Angluin et al. [2] proposed a population protocol for computing majority with
high probability (whp) in the case where the interaction graph is a clique. Their
protocol uses just 3 types Q = {b, g, r}. For convenience, we will sometimes refer
to these types as the blank, green and red type respectively. The joint transition
function Δ is given by:

Δ(x, y) =

{
(x, x), if x = y or y = b
(x, b), if (x, y) ⊂ {(g, r), (r, g)}. (1)

One of the main results in [2] is that if the underlying interaction graph is a
clique Kn (i.e. the complete graph on n vertices) and interactions are planned ac-
cording to the above probabilistic scheduler, then with high probability 1 − o(1),
the above 3-type majority protocol converges to the initial majority value if the
initial difference between the majority and the minority is σ(

∈
n logn).

2.2 Representation

Using the probabilistic scheduler to plan agent interactions has the advantage
that we can describe evolution by using a discrete time Markov chain M. For
general interaction graphs, the state space S of M can have up to |V ||Q| states,
namely one for each configuration C : V ⊆ Q. Specifically for the model of [2], we
denote by Wt (respectively Rt and Gt) the set of agents in state b (respectively
r and g) at time t. Note that if the interaction graph has a high degree of
symmetry, then S can be reduced significantly. One such example is the clique
Kn, in which case we can describe a state of M by the tuple (|Rt|, |Gt|) (where
we have also used the fact that |Wt| = n− |Gt| − |Rt|).

3 At Least 4 Types Are Needed for Majority

Definition 1 (rank). For any population protocol P , denote by Q(P ) the set
of types used by P . Let Pg be a class of population protocols that stably compute
the function g. The rank of Pg is

R(Pg)
def
= min

P◦Pg

|Q(P )|. (2)

In this section, we prove that 3 states are not sufficient to stably compute the
majority function in any 2-type population and for any interaction graph.

Theorem 1. Let Pmajority be the class of population protocols that stably com-
pute the majority function in any 2-type population of agents and for any inter-
action graph. Then R(Pmajority) > 3.
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4 Computing Majority in Arbitrary Interaction Graphs

In this section we introduce a symmetric population protocol with 4 states (called
the ambassador protocol) which, given an arbitrary undirected graph G = (V,E)
as the underlying interaction graph of the population, stably computes the major-
ity of the types of the vertices of G (even if the majority differs only by one from
the minority). Assuming that the input symbols are g (for green) and r (for red),
the set of states in the ambassador protocol is Q = {(g, 0), (g, 1), (r, 0), (r, 1)}.
The input function Π is such that Π(g) = (g, 1) and Π(r) = (r, 1). The output
function β is such that β((g, i)) = g and β((r, i)) = r, where i ⊂ {0, 1}. Finally,
for simplicity of the presentation, we present the transition function Δ in the
form of a table in Figure 1.

u \ v (g, 0) (g, 1) (r, 0) (r, 1)

(g, 0) − ((g, 1), (g, 0)) − ((r, 1), (r, 0))

(g, 1) ((g, 0), (g, 1)) − ((g, 0), (g, 1)) ((g, 0), (r, 0))

(r, 0) − ((g, 1), (g, 0)) − ((r, 1), (r, 0))

(r, 1) ((r, 0), (r, 1)) ((r, 0), (g, 0)) ((r, 0), (r, 1)) −

Fig. 1. The transition matrix of the ambassador model

The transition matrix of Figure 1 can be interpreted as follows. Every row
and every column is labeled by a state of Q. The cell that belongs to the row
labeled with state q1 ⊂ Q and to the column labeled with state q2 ⊂ Q has
either the symbol “−” or an ordered pair of states (q√1, q

√
2) ⊂ Q×Q. In the cases

where this cell has the ordered pair (q√1, q√2), then Δ(q1, q2) = (q√1, q√2), otherwise
Δ(q1, q2) = (q1, q2). Note that the ambassador protocol is defined on undirected
interaction graphs, i.e. in every interaction there is no initiator or responder.
That is, whenever Δ(q1, q2) = (q√1, q

√
2) then Δ(q2, q1) = (q√2, q

√
1).

The main idea of the ambassador protocol can be described as follows. The
first component of the state of a vertex u denotes the color of u. That is, whenever
u is at state (q, i) (resp. (r, i)), where i ⊂ {0, 1}, this is interpreted as “u is
currently colored green (resp. red)”. Furthermore, if the second component of the
state of u is 1 (resp. 0), this is interpreted as “u has an ambassador” (resp. “u has
no ambassador”). Whenever two vertices u and v interact during the execution
of the protocol, a “battle” takes place between the colors of u and v, where the
“ambassadors” of u and v (whenever they exist) try to spread their own color
to the other vertex, in the following sense:

– Assume that u and v have different colors. If both u and v have an ambas-
sador, then they both keep their own colors in the next step, but both their
ambassadors disappear. If u has an ambassador and v has no ambassador,
then v takes the color of u in the next step and the ambassador now moves
from u to v. If both u and v have no ambassador then their state remains
the same at the next step.

– Assume that both u and v have the same color; then they both maintain
their color in the next step. If they both have (or if they both do not have)
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an ambassador, then their state remains the same at the next step. If one
of them (say u) has an ambassador and the other one (say v) does not have
one, then the ambassador moves from u to v.

The correctness of the ambassador protocol under the assumption of an arbi-
trary fair scheduler and its efficiency under the probabilistic scheduler is proved
in the next two theorems.

Theorem 2. Given any (un)directed graph, if there exists initially a majority,
then the 4-state ambassador protocol stably computes the initial majority value.

Theorem 3. Let G be an arbitrary connected undirected interaction graph with
n vertices. Assuming the probabilistic scheduler, if initially there are k red ver-
tices and φ →= k green vertices, then the expected time until the 4-state ambassador
protocol converges is O(n6). If, additionally, the interaction graph is the complete

graph Kn, then the expected time until the protocol converges is O
(

lnn
|k−ε|n

2
⎧
.

From Theorem 3, we can see that the running time of our 4-state protocol in
the case where the difference between the majority and the minority is τ(n) is
O(n lnn), which is comparable to the running time of the fast 3-state protocol
of [2].

5 The Model of Angluin et al. on Arbitrary Graphs

In this section, we provide a detailed analysis of the 3-state protocol of [2] on
arbitrary interaction graphs G. In particular, in Subsection 5.1, we present our
result concerning the random initial placement of individuals on the vertices of
the interaction graph. In Subsection 5.2, we prove our auxiliary result that, when
the minority is sufficiently small, the probability that the protocol of Angluin et
al. fails in computing the majority value is exponentially small. Although this
result shows the robustness of the protocol of [2] in the clique, we use it as an
intermediate step in proving in Subsection 5.3 that there exists a family of graphs
in which the protocol can fail with high probability. Finally, in Subsection 5.4,
we prove the existence of a family of graphs in which the protocol of [2] can take
an exponential expected number of steps to reach consensus.

5.1 Random Initial Placement

In the next theorem we provide a sufficient condition under which the majority
protocol described in [2] correctly identifies the initial majority with probability
at least 1

2 . This result is in wide contrast to the negative result of Subsection 5.3
(cf. Theorem 6), in which we highlight a case where the majority protocol of [2]
fails with high probability. The proof of the next theorem is based on Hall’s
marriage Theorem (cf. chapter 5, [9]):

Theorem 4. For any strongly connected directed graph G, if the initial assign-
ment of individuals to the vertices of G is random, then the majority protocol
described in [2] correctly identifies the initial majority with probability at least 1

2 .
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5.2 Clique

By the discussion in Subsection 2.2, the state space of the Markov chain M
describing the evolution of the protocol at time t contains tuples of the form
(|Rt|, |Gt|), where Rt (resp. Gt) is the set of vertices of type r (resp. g) at
time t. In particular, in this subsection we are interested in upper bounding
Pr{absorption at (n, 0)|initially at (∂n, n− ∂n)}. The core of our proof lies in the
definition of two discrete time processes W and C that “filter” the information
from the original Markov chain M.

Definition 2 (The Blank Process W). This process keeps track of the number

of blank vertices over time, i.e. W(t)
def
= ∧# vertices of type b at time t≥.

For convenience, we will use the following notation to describe transitions of
M: We will write g ⊆ r to describe a transition of the form (x, y) ⊆ (x−1, y), for
some x, y ⊂ {1, 2, . . . , n}. More specifically, g ⊆ r is used to describe a transition
where a directed edge (v, u) is chosen by the scheduler, v is of type g, and u is of
type r. Similarly, we will use r ⊆ g for transitions of the form (x, y) ⊆ (x, y−1),
g ⊆ b for transitions of the form (x, y) ⊆ (x, y + 1) and r ⊆ b for transitions
of the form (x, y) ⊆ (x + 1, y). We note that the state of M at any time t can
be fully described by the initial state and by a sequence of transitions among
{g ⊆ r, r ⊆ g, g ⊆ b, r ⊆ b}.

Definition 3 (The Contest Process C). Transitions of M are paired recur-
sively, starting from time 0 as follows: Every transition that increases the number
of blanks is paired with the earliest subsequent transition that decreases the num-
ber of blanks and is not paired yet. 2 For an arbitrary time t, we denote by κ(t)
(or just κ for short) the number of pairs until time t. The Contest Process C is
defined over the time scale κ , where C(0) = |R0| and for κ = 1, 2, . . . ,

C(κ) =

⎨
⎩

⎢

C(κ − 1) + 1, if the κ-th pair is (r ⊆ g, r ⊆ b),
C(κ − 1) − 1, if the κ-th pair is (g ⊆ r, g ⊆ b) and
C(κ − 1), otherwise.

(3)

Notice that the processes W and C are dependent. As a matter of fact, C is not
even defined using the same time scale as W and M (to indicate this, we have
used the convention that t is the time variable for processes M,W , while κ is
the time variable for process C). However, observe that if we initially begin with
no blanks (i.e. |R0|+ |G0| = n hence W(0) = 0), then whenever W decreases its
value, we have a transition step of C.

Lemma 1 (Relating C and M). For any T ⊂ N, denote by C|T the value of C
given only states M(t), t = 0, 1, . . . , T (i.e. given the history of M up to time T ).
Then, C|T ⇐ |RT | for any T ⊂ N. Furthermore, if C|T = 0, then all vertices are
of type g.

2 We assume that the pairing concerns only transitions that change the state of M. In
particular, transitions of the form b → r, b → g, b → b, g → g and r → r are ignored
in this pairing as irrelevant.
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Lemmas 2 and 3 below concern the domination of processes W and C by
appropriate birth-death processes and are used in the proof of Theorem 5.

Lemma 2 (Domination of W). Let α, χ, ζ ⊂ {1, . . . , n− 1}, with α < χ. Let
also BW be a birth-death process, which has state space SBW = {S0, . . . , Sn}, with
Sn an absorbing state and transition probability matrix P , with P (Si, Si+1) = 1

for all i ⊂ {0, . . . , α}⇒{χ, . . . , n−1}, P (Si,Si+1)
P (Si,Si−1)

= 2Ω
α for all i ⊂ {α+1, . . . , χ−1}

and P (Si, Si) = Pr(W(t) = i|W(t − 1) = i), for all t ⇐ 1 and for all i ⊂ {α +
1, . . . , χ−1}. Then, given that the vertices of type r are at most ζ, the process W
is stochastically dominated by BW in the following sense: Pr(W(t) > x|W(0) =
0) ∪ Pr(BW(t) ⊂ ⇒y>xSy|BW(0) = S0), for any time t and x ⊂ {0, . . . , n}.
Lemma 3 (Domination of C). Let χ, ζ be positive integers, with χ+ζ < n. Let
also BC be a birth-death process, which has state space SBC = {T0, . . . , Tn}, with
T0, Tn absorbing states and transition probability matrix Q, with Q(Ti, Ti+1) = 1

for all i ⊂ {ζ, . . . , n − 1}, Q(Ti,Ti+1)
Q(Ti,Ti−1)

= Ω
n−λ−Ω for all i ⊂ {1, . . . , ζ − 1} and

Q(Ti, Ti) = Pr(C(κ) = i|C(κ−1) = i), for all κ ⇐ 1 and for all i ⊂ {1, . . . , ζ−1}.
Then, given that the vertices of type b are at most χ, the process C is stochastically
dominated by BC in the following sense: Pr(C(κ) > x|C(0) = |R0|) ∪ Pr(BC(κ) ⊂
⇒y>xTy|BC(0) = |R0|), for any κ and x ⊂ {0, . . . , n}.

The main Theorem of this subsection is stated below.

Theorem 5. Let ∂ < 1
7 . For large enough n, starting from ∂n agents of type r

and (1 − ∂)n agents of type g on the clique Kn, the probability that the clique
eventually contains only agents of type r is at most e−Δ(n).

We note here that the upper bound on ∂ in the statement of Theorem 5 is only
used to facilitate exposition of our arguments in the proof. We claim that this
upper bound can be increased further by using the same proof ideas, but that
we cannot reach arbitrarily close to 1

2 . However, we conjecture that the constant
∂ in Theorem 5 can be as as large as 1

2 − ∂√, where ∂√ > 0 is a small constant. We
also conjecture that starting from a single agent of type r on the clique Kn, the
probability that the clique eventually contains only agents of type r is at least
e−Δ(n).

5.3 Minority Domination

Consider the lollipop graph, which consists of a complete graph Kn1 on n1

vertices, among which vertex v is connected to the leftmost vertex u of a line
graph Ln2 on n2 vertices, with n1 +n2 = n. In this subsection we prove that the
protocol of [2] may fail with high probability in the lollipop graph.

Theorem 6. Consider a lollipop graph on n vertices, which consists of a com-
plete graph Kn1 on n1 ⇐ 100 lnn vertices, among which vertex v is connected
to the leftmost vertex u of a line graph Ln2 on n2 = n − n1 vertices. Suppose
that initially vertex v and all vertices in Ln2 are of type r, while all vertices in
Kn1\{v} are of type g. Then with high probability, eventually only vertices of
type g will remain in the graph.
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The proof builds upon the proof of Theorem 5 and also uses the following fact:
given a line graph Lm, in which the leftmost vertex is of type g and all other
m − 1 vertices are of type r, the probability that the protocol of [2] eventually
reaches a configuration in which all vertices are of type g is 1

2(m−1) . For the proof

of Theorem 6, we define stochastic processes W √ and C√ as the processes W and
C from Subsection 5.2, but concerning the clique Kn1 . These processes take into
account only transitions involving either edges that belong to the clique or the
directed edge (u, v). We note that Lemma 1 continues to hold for the modified
process C√ with only one modification (because of the existence of the edge {v, u})
concerning its second part: T must satisfy C√|T = 0 and C√|T−1 > 0 in order to
be able to deduce that Kn1 has only vertices of type g.

5.4 Expected Exponential Time to Absorption

In this subsection we prove that the protocol of [2] can take an expected expo-
nential time of steps to reach consensus in the case where the underlying graph
consists of two disjoint cliques on n1 and n2 vertices each with a single edge be-
tween them (see Figure 2(a)). The main part of the proof is dedicated in proving
an upper bound on the expected number of steps needed for the protocol to
reach consensus in the case of a directed graph H , consisting of a single clique
Kn1 and a vertex v outside the clique, which is connected to a vertex u of the
clique with a directed edge (v, u) (see Figure 2(b)). In particular, similarly to
Subsection 5.3, we define stochastic processes W √√ and C√√ as the processes W
and C from Subsection 5.2, but concerning the clique Kn1 . We then prove suit-
ably modified versions of Lemmas 2 and 3 and we apply results on birth-death
processes.

v uKn1
Kn2

(a)

v uKn1

(b)

Fig. 2. (a) An interaction graph G with 2 disjoint Kn1 and Kn2 , connected with a
single edge {u, v}. (b) The graph H consisting of a clique Kn1 with an arc (u, v).

Theorem 7. Let G be an interaction graph on n vertices, which consists of 2
disjoint cliques on n1 and n2 vertices each and a single edge between them (see
Figure 2(a)). Suppose that initially, all vertices in the Kn1 clique are of type g,
while all vertices in the Kn2 clique are of type r. Then the majority protocol
of [2] needs an expected exponential number of steps to reach consensus.
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Abstract. An oblivious subspace embedding (OSE) for some ε, δ ⇒ (0, 1/3)
and d ≤ m ≤ n is a distribution D over Rm×n such that

P
Π∼D

(∈x ⇒ W, (1− ε)∪x∪2 ≤ ∪Πx∪2 ≤ (1 + ε)∪x∪2) ← 1− δ

for any linear subspace W ⊂ R
n of dimension d. We prove any OSE with

δ < 1/3 has m = Ω((d+log(1/δ))/ε2), which is optimal. Furthermore, if
every Π in the support of D is sparse, having at most s non-zero entries
per column, we show tradeoff lower bounds between m and s.

1 Introduction

A subspace embedding for some σ > 0 and linear subspace W is a matrix τ s.t.

∈x ⊆ W, (1 − σ)⊂x⊂2 → ⊂τx⊂2 → (1 + σ)⊂x⊂2.

An oblivious subspace embedding (OSE) for some σ, λ ⊆ (0, 1/3) and d → m → n
is a distribution D over R

m×n s.t. for any d-dimensional subspace W ∧ R
n

P
Π∈D

(∈x ⊆ W, (1 − σ)⊂x⊂2 → ⊂τx⊂2 → (1 + σ)⊂x⊂2) ≥ 1 − λ. (1)

That is, for any linear subspace W ∧ R
n of bounded dimension, a random τ

drawn according to D is a subspace embedding for W with good probability.
OSE’s were first introduced in [17] and have since been used to provide fast

approximate randomized algorithms for numerical linear algebra problems such
as least squares regression [5,12,14,17], low rank approximation [4,5,14,17], min-
imum margin hyperplane and minimum enclosing ball [16], and approximating
leverage scores [11]. For example, consider the least squares regression problem:
given A ⊆ R

n×d, b ⊆ R
n, compute

x◦ = argminx√Rd ⊂Ax− b⊂2.

The optimal solution x◦ is such that Ax◦ is the projection of b onto the column
span of A. Thus by computing the singular value decomposition (SVD) A =

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 883–894, 2014.
c≤ Springer-Verlag Berlin Heidelberg 2014
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UΠV T where U ⊆ R
n×r, V ⊆ R

d×r have orthonormal columns and Π ⊆ R
r×r

is a diagonal matrix containing the non-zero singular values of A (here r is
the rank of A), we can set x◦ = V Π−1UT b so that Ax◦ = UUT b as desired.
Given that the SVD can be approximated in time Õ(ndω−1)1 [7, Section 6.2]
where β < 2.373 . . . is the exponent of square matrix multiplication [20], we can
solve the least squares regression problem in this time bound. We note [7] only
discusses computing the SVD of d× d square matrices in time Õ(dω). However,
this can be extended to n × d rectangular matrices A = UΠV T in the stated
time by (1) computing the QR decomposition A = QR in time O(ndω−1) [7,
Section 4.1], then (2) computing the SVD of the square matrix R in time Õ(dω).

A simple argument [5, Theorem 13] then shows that if one instead computes

x̃ = argminx√Rd ⊂τAx−τb⊂2
for some subspace embedding τ for the (d+ 1)-dimensional subspace spanned b
and the columns of A, then ⊂Ax̃− b⊂2 → (1 +O(σ))⊂Ax◦ − b⊂2, i.e. x̃ serves as a
near-optimal solution to the original regression problem. The running time then
becomes Õ(mdω−1), which can be a large savings for m ⇐ n, plus the time to
compute τA and τb and the time to find τ .

It is known that a random gaussian matrix with m = O((d + log(1/λ))/σ2)
is an OSE (see for example the net argument in [5]). While this leads to small
m, and furthermore τ is oblivious to A, b so that its computation is “for free”,
the time to compute τA is Õ(mndω−2), which is worse than solving the original
least squares problem. Sarlós constructed an OSE D, based on the fast Johnson-
Lindenstrauss transform of Ailon and Chazelle [1], with the properties that (1)
m = Õ(d/σ2), and (2) for any vector y ⊆ R

n and τ in the support of D, τy
can be computed in time O(n log n). This implies an approximate least squares
regression algorithm running in time O(nd log n) + Õ(dω/σ2).

A recent line of work sought to improve the O(nd log n) term above to a
quantity that depends only on the sparsity of the matrix A as opposed to its
ambient dimension. The works [5,12,14] give an OSE with m = O(d2/σ2) where
every τ in the support of the OSE has only s = 1 non-zero entry per column. The
work [14] also showed how to achieve m = O(d1+γ/σ2), s = poly(1/Δ)/σ for any
constant Δ > 0. Using these OSE’s together with other optimizations (for details
see [5, Theorems 13, 19]), these works imply approximate regression algorithms
running in time O(nnz(A) + (d3 log d)/σ2) (the s = 1 case), or Oγ(nnz(A) +
dω+γ/σ2) or Oγ((nnz(A) + d2) log(1/σ) + dω+γ) (the case of larger s).

As seen above we now have several upper bounds, though our understand-
ing of lower bounds for the OSE problem is lacking. Any subspace embedding,
and thus any OSE, must have m ≥ d since otherwise some non-zero vector in
the subspace will be in the kernel of τ and thus not have its norm preserved.
Furthermore, it quite readily follows from the works [10,13] that any OSE must
have m = ∂(min{n, log(d/λ)/σ2}) (see Corollary 1). Thus the best known lower
bound to date is m = ∂(min{n, d+σ−2 log(d/λ)}), while the best upper bound is
m = O(min{n, (d+log(1/λ))/σ2}) (the OSE supported only on the n×n identity

1 We say g = Õ(f) when g = O(f · polylog(f)).



Lower Bounds for Oblivious Subspace Embeddings 885

matrix is indeed an OSE with σ = λ = 0). If one is willing to introduce the very
slight restriction that n = ∂(d log(nd)/σ) (the log(nd) term ideally should not
appear on the right hand side), then a streaming regression lower bound of [4]
implies the improved lower bound m = ∂(d/σ). We remark that although many
problems (regression [17], low-rank approximation [17], approximating leverage
scores [11], and k-means clustering [3]) can make use of OSE’s with distortion
1+σ0 for some constant σ0 to achieve (1+σ)-approximation to the final problem,
this is not always true. For example, in [2] Andoni and Nguy˜̂en give a one-pass
streaming algorithm for φ1 heavy hitters of the eigenvalues of a real symmetric
matrix updated in the turnstile streaming model. That is, σ, κ ⊆ (0, 1/2) are
given up front, and A ⊆ R

n×n receives updates of the form “add/subtract value
v to entry (i, j) of A”. At the end of a sequence of updates, we would like to
output the eigenvalues of A with multiplicative error 1 + σ and additive error

σ2κS
1/φ
1 (A) + |α1/φ|, where αk is the kth largest eigenvalue of A in magnitude,

and Sk
1 (A) is the sum of magnitudes of all but the top k eigenvalues. Their

solution is to maintain τAτT in the stream, with τ ⊆ R
m×n satisfying two

properties: (1) being an σ-subspace embedding for a particular subspace of di-
mension 1/κ, and (2) being an O(1)-subspace embedding for at most n different
m/q-dimensional subspaces simultaneously (which can be achieved by setting
λ < 1/n and performing a union bound) for any desired q → m; the space com-
plexity though increases polynomially with q. Thus it is important to understand
the required dependence on σ since it affects the setting of m for (1), which then
also affects (2), which directly translates into the final space complexity.

Our contribution I: We show for any σ, λ ⊆ (0, 1
3 ), any OSE with distortion 1 + σ

and error probability λ has m = ∂(min{n, (d+ log(1/λ))/σ2}), which is optimal.

We also make progress in understanding the tradeoff between m and s. The
work [15] observed via a simple reduction to nonuniform balls and bins that any
OSE with s = 1 must have m = ∂(d2). Also recall the upper bound of [14] of
m = O(d1+γ/σ2), s = poly(1/Δ)/σ for any constant Δ > 0.

Our contribution II: We show that for λ a fixed constant and n > 100d2, any
OSE with m = o(σ2d2) must have s = ∂(1/σ). Thus a phase transition exists
between sparsity s = 1 and super-constant sparsity somewhere around m being
d2. We also show that for m < d1+γ and Δ ⊆ ((10 log log d)/(χ log d), χ/4) and
2/(σΔ) < d1−α, for any constant χ > 0, it must hold that s = ∂(χ/(σΔ)). Thus
the s = poly(1/Δ)/σ dependence of [14] is correct (although our lower bound
requires m < d1+γ as opposed to m < d1+γ/σ2).

Note as mentioned above for eigenvalue heavy hitters, (2) requires τ ⊆ R
m×n

to be a subspace embedding for dimension m/q, and the space increases poly-
nomially with q. Thus if τ has at most 1/Δ non-zero entries per column, then
q must be dΩ(γ), which translates into dΩ(γ) multiplicatively increased space
complexity for that algorithm.
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Our proof in the first contribution follows Yao’s minimax principle combined
with concentration arguments and Cauchy’s interlacing theorem. Our proof in
the second contribution uses a bound for nonuniform balls and bins and the
simple fact that for any distribution over unit vectors, two i.i.d. samples are not
negatively correlated in expectation.

1.1 Notation

We often abbreviate “orthonormal” as o.n. We let On×d denote the set of n× d
real matrices with o.n. columns. For a linear subspace W ⇒ R

n, we let projW :
R

n ∪ W denote the projection operator onto W . That is, if the columns of U
form an o.n. basis for W , then projWx = UUTx. In the case that A is a matrix,
we let projA denote the projection onto the column span of A. Throughout this
document, unless otherwise specified all norms ⊂ · ⊂ are φ2 ∪ φ2 operator norms
in the case of matrix argument, and φ2 norms for vector arguments. The norm
⊂A⊂F denotes Frobenius norm, i.e. (

∑
i,j A

2
i,j)

1/2. For a matrix A, ζ(A) denotes
the condition number of A, i.e. the ratio of the largest to smallest singular value.
We use [n] for integer n to denote {1, . . . , n}. We use A � B to denote A → CB
for some absolute constant C, and similarly for A � B.

2 Dimension Lower Bound

Let U ⊆ On×d be such that the columns of U form an o.n. basis for a d-
dimensional linear subspace W . Then the condition in Eq. (1) is equivalent to
all singular values of τU lying in the interval [1− σ, 1 + σ]. Thus for any such U
an OSE has ζ(τU) → 1 + σ with probability 1 − λ over the randomness of τ .
Thus D being an OSE implies the condition

∈U ⊆ On×d
P

Π∈D
(ζ(τU) > 1 + σ) < λ (2)

We now show a lower bound for m in any distribution D satisfying Eq. (2)
with λ < 1/3. Our proof will use a couple lemmas. The first is quite similar to the
Johnson-Lindenstrauss lemma itself. Without the appearance of the matrix D,
it would follow from the analyses in [6,9] using Gaussian symmetry. The proof
uses the Hanson-Wright inequality [8] and is omitted in this version.

Lemma 1. Let u be a unit vector drawn at random from Sn−1, and let E ∧ R
n

be an m-dimensional linear subspace for some 1 → m → n. Let D ⊆ R
n×n be

a diagonal matrix with smallest singular value σmin and largest singular value
σmax. Then for any 0 < σ < 1

P
u

(
⊂projEDu⊂2 /⊆ (σ̃2 ± σσ2

max) · m
n

)
� e−Ω(ε2m)

for some σmin → σ̃ → σmax.
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The next lemma follows from Cauchy’s interlacing theorem [18, Exercise 1.3.14]:

Lemma 2. Suppose A ⊆ R
n×m, A⊆ ⊆ R

(n+1)×m such that n + 1 → m and the
first n rows of A,A⊆ agree. Then the singular values of A,A⊆ interlace. That is,
if the singular values of A are σ1, . . . , σn and those of A⊆ are β1, . . . , βn+1,

β1 → σ1 → β2 → σ2 → . . . → βn → σn → βn+1.

Lastly, we need the following corollary of [10, Theorem 9]. A proof is omitted
in this version. A similar conclusion can be obtained using [13], but requiring
the assumption that d < n1−γ for some constant Δ > 0.

Corollary 1. Any OSE D over Rm×n must have m = ∂(min{n, σ−2 log(d/λ)}).

Now we prove the main theorem of this section.

Theorem 1. Let D be any OSE with σ, λ < 1/3. Then m = ∂(min{n, d/σ2}).

Proof. We assume d/σ2 → cn for some constant c > 0. Our proof uses Yao’s
minimax principle. Thus we must construct a distribution Uhard such that

P
U∈Uhard

(ζ(τ0U) > 1 + σ) < λ. (3)

cannot hold for any τ0 ⊆ R
m×n which does not satisfy m = ∂(d/σ2). The

particular Uhard we choose is as follows: we let the d columns of U be inde-
pendently drawn uniform random vectors from the sphere, post-processed using
Gram-Schmidt to be orthonormal. That is, the columns of U are an o.n. basis
for a random d-dimensional linear subspace of Rn.

Let τ0 = LDWT be the singular value decomposition (SVD) of τ0, i.e.
L ⊆ Om×n,W ⊆ On×n, and D is n× n with Di,i ≥ 0 for all 1 → i → m, and all
other entries of D are 0. Note that WTU is distributed identically as U , which
is identically distributed as W ⊆U where W ⊆ is an n × n block diagonal matrix
with two blocks. The upper-left block of W ⊆ is a random rotation M ⊆ Om×m

according to Haar measure. The bottom-right block of W ⊆ is the (n−m)×(n−m)
identity matrix. Thus it is equivalent to analyze the singular values of the matrix
LDW ⊆U . Also note that left multiplication by L does not alter singular values,
and the singular values of DW ⊆U and D⊆MATU are identical, where A is the
n×m matrix whose columns are e1, . . . , em. Also D⊆ is an m×m diagonal matrix
with D⊆

i,i = Di,i. Thus we wish to show that if m is sufficiently small, then

P
M∈Om×m,U∈Uhard

(
ζ(D⊆MATU) > 1 + σ

)
>

1

3
(4)

Henceforth in this proof we assume for the sake of contradiction that m →
c · min{d/σ2, n} for some small positive constant c > 0. Also note that we may
assume by Corollary 1 that m = ∂(min{n, σ−2 log(d/λ)}).

Assume that with probability strictly larger than 2/3 over the choice of U , we
can find unit vectors z1, z2 so that ⊂ATUz1⊂/⊂ATUz2⊂ > 1+σ. Now suppose we
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have such z1, z2. Define y1 = ATUz1/⊂ATUz1⊂, y2 = ATUz2/⊂ATUz2⊂. Then
a random M ⊆ Om×m has the same distribution as M ⊆T , where M ⊆ is i.i.d.
as M , and T can be any distribution over Om×m, so we write M = M ⊆T . T
may even depend on U , since M ⊆U will then still be independent of U and a
random rotation (according to Haar measure). Let T be the m × m identity
matrix with probability 1/2, and Ry1,y2 with probability 1/2 where Ry1,y2 is the
reflection across the bisector of y1, y2 in the plane containing these two vectors,
so that Ry1,y2y1 = y2, Ry1,y2y2 = y1. Now note that for any fixed choice of M ⊆

it must be the case that ⊂D⊆M ⊆y1⊂ ≥ ⊂D⊆M ⊆y2⊂ or ⊂D⊆M ⊆y2⊂ ≥ ⊂D⊆M ⊆y1⊂.
Thus ⊂D⊆M ⊆Ty1⊂ ≥ ⊂D⊆M ⊆Ty2⊂ occurs with probability 1/2 over T , and the
reverse inequality occurs with probability 1/2. Thus for this fixed U for which
we found such z1, z2, over the randomness of M ⊆, T we have ζ(D⊆MATU) ≥
⊂D⊆MATUz1⊂/⊂D⊆MATUz2⊂ is greater than 1+σ with probability at least 1/2.
Since such z1, z2 exist with probability larger than 2/3 over choice of U , we have
established Eq. (4). It just remains to establish the existence of such z1, z2.

Let the columns of U be u1, . . . , ud, and define ũi = ATui, Ũ = ATU . Let U−d

be the n×(d−1) matrix whose columns are u1, . . . , ud−1, and let Ũ−d = ATU−d.
Write A = A≥ +A∪, where the columns of A≥ are the projections of the columns
of A onto the column span of U−d, i.e. A≥ = U−dU

T
−dA. Then

⊂A≥⊂2F = ⊂U−dU
T
−dA⊂2F = ⊂Ũ−d⊂2F =

d−1∑

i=1

m∑

r=1

(ui
r)

2. (5)

By Lemma 1 with D = I and E = span(e1, . . . , em), followed by a union
bound over the d− 1 columns of U−d, the right hand side of Eq. (5) is between
(1−C1σ)(d−1)m/n and (1+C1σ)(d−1)m/n with probability at least 1−C(d−
1) · e−C∈C1ε

2m over the choice of U . This is 1 − d−Ω(1) for C1 > 0 sufficiently
large since m = ∂(σ−2 log d). Now, if ζ(Ũ) > 1 + σ then z1, z2 with the desired
properties exist. Suppose for the sake of contradiction that both ζ(Ũ) → 1 + σ
and (1 − C1σ)(d − 1)m/n → ⊂Ũ−d⊂2F → (1 + C1σ)(d − 1)m/n. Since the squared
Frobenius norm is the sum of squared singular values, and since ζ(Ũ−d) → ζ(Ũ)
due to Lemma 2, all the singular values of Ũ−d, and hence A≥, are between (1−
C2σ)

√
m/n and (1+C2σ)

√
m/n. Then by the Pythagorean theorem the singular

values of A∪ are in the interval [
√

1 − (1 + C2σ)2m/n,
√

1 − (1 − C2σ)2m/n] ⇒
[1 − (1 + C3σ)m/n, 1 − (1 − C3σ)m/n].

Since the singular values of Ũ and ŨT are the same, it suffices to show ζ(ŨT ) >
1 + σ. For this we exhibit two unit vectors x1, x2 with ⊂ŨTx1⊂/⊂ŨTx2⊂ > 1 + σ.
Let B ⊆ Om×d−1 have columns forming an o.n. basis for the column span of
AATU−d. Since B has o.n. columns and ud is orthogonal to colspan(U−d),

⊂projŨ−d
ũd⊂ = ⊂BBTATud⊂ = ⊂BTATud⊂ = ⊂BT (A∪)Tud⊂.

Let (A∪)T = CΛET be the SVD, where C ⊆ R
m×m, Λ ⊆ R

m×m, E ⊆ R
n×m.

As usual C,E have o.n. columns, and Λ is diagonal with all entries in [1 − (1 +
C3σ)m/n, 1 − (1 − C3σ)m/n]. Condition on U−d. The columns of E form an
o.n. basis for the column space of A∪, which is some m-dimensional subspace
of the (n − d + 1)-dimensional orthogonal complement of the column space of



Lower Bounds for Oblivious Subspace Embeddings 889

U−d. Meanwhile ud is a uniformly random unit vector drawn from this orthogonal
complement, and thus ⊂ETud⊂2 ⊆ [(1−C4σ)

2m/(n−d+1), (1+C4σ)
2m/(n−d+

1)] ∧ [(1−C5σ)m/n, (1+C5σ)m/n] with probability 1−d−Ω(1) by Lemma 1 and
the fact that d → σn and m = ∂(σ−2 log d). Note also that ⊂ΛETud⊂ = ⊂ũd⊂ =
(1±C6σ)

√
m/n with probability 1−d−Ω(1) since Λ has bounded singular values.

Also note ETu/⊂ETu⊂ is uniformly random in Sm−1, and also BTC has or-
thonormal rows since BTCCTB = BTB = I, and thus again by Lemma 1
with E being the row space of BTC and D = Λ, we have ⊂BTCΛETu⊂ =
Θ(⊂ETu⊂ ·√d/m) = Θ(

√
d/n) with probability 1 − e−Ω(d).

We first note that by Lemma 2 and our assumption on the singular values of
Ũ−d, ŨT has smallest singular value at most (1 + C2σ)

√
m/n. We then set x2

to be a unit vector such that ⊂ŨTx2⊂ → (1 + C2σ)
√
m/n.

It just remains to construct x1 so that ⊂ŨTx1⊂ > (1 + σ)(1 + C2σ)
√
m/n. To

construct x1 we split into two cases:

Case 1 (m → cd/σ): When n = ∂(d log(nd)/σ), this case is ruled out by a
regression lower bound of [4]. However, since we make no such assumption on n,
we provide our own different analysis. This is omitted in this version.

Case 2 (cd/σ → m → cd/σ2): We show we can choose x1 of unit norm so that
⊂ŨTx1⊂2 ≥ (1 − C8σ)m/n + C9

≤
md/n for some constants C8, C9. The details

are omitted in this version. Now note that for m < cd/σ2, the right hand side is
at least (1 + 10(C2 + 1)σ)2m/n and thus ⊂ŨTx1⊂ ≥ (1 + 10(C2 + 1)σ)

√
m/n. �

Remark 1. There is an alternate way to obtain the above result in a similar
fashion. Consider the distribution of n× d matrices U with i.i.d. N(0, 1/n) en-
tries. Let V ΠWT = U be the SVD of U . Let Uhard be the distribution of the
aforementioned matrix V . By Bai-Yin theorem, with high probability, the sin-
gular values of U are bounded by 1 ± O(σ). Therefore, if ζ(τV ) < 1 + σ then
ζ(τU) < 1 + O(σ) with high probability. Thus, for contradiction, assume that
PV∈Uhard

(ζ(τV ) > 1 + σ) < λ. Then P(ζ(τU) > 1 + O(σ)) < 2λ. Proceed
through the above proof verbatim with the new matrix U to the step where we
need to show the existence of z1, z2 such that ⊂ATUz1⊂/⊂ATUz2⊂ > 1 + ∂(σ)
with probability at least 2/3. Note that ATU is an m×d matrix with i.i.d. Gaus-
sian entries. Thus, existence of z1, z2 follows from showing that if m = O(d/σ2),
then the condition number of an m × d random Gaussian matrix is at least
1 + ∂(σ) with probability at least 2/3. This step in principle can be established
via the Marchenko-Pastur law. We choose to include the above elementary self-
contained proof instead of this similar approach.

3 Sparsity Lower Bound

In this section, we consider the trade-off between m, the number of columns
of the embedding matrix τ , and s, the number of non-zeroes per column of
τ . In this section, we only consider the case n ≥ 100d2. By Yao’s minimax
principle, we only need to argue about the performance of a fixed matrix τ over
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a distribution over U . Let the distribution of the columns of U be d i.i.d. random
standard basis vectors in R

n. With probability at least 99/100, the columns of
U are distinct and form a valid orthonormal basis for a d dimensional subspace
of Rn. If τ succeeds on this distribution of U conditioned on the fact that the
columns of U are orthonormal with probability at least 99/100, then it succeeds
in the original distribution with probability at least 98/100. In section 3.1, we
show a lower bound on s in terms of σ, whenever the number of columns m is
much smaller than σ2d2. In section 3.2, we show a lower bound on s in terms of
m, for a fixed σ = 1/2. Finally, in section 3.3, we show a lower bound on s in
terms of both σ and m, when they are both sufficiently small.

3.1 Lower Bound in Terms of ε

Theorem 2. If n ≥ 100d2 and m → σ2d(d− 1)/32, then s = ∂(1/σ).

First we need a few simple lemmas.

Lemma 3. Let P be a distribution over finite dimensional vectors of norm at
most 1 and u and v be independent samples from P. Then E ⇔u, v∗ ≥ 0.

Proof. Let {ui}i and {vi}i be the coordinates of u and v. We have E ⇔u, v∗ =∑
i Euivi =

∑
i(E ui)(E vi) =

∑
i(Eui)

2 ≥ 0. �

Lemma 4. Let X be a random variable bounded by 1 and EX ≥ 0. Then for
any 0 < λ < 1, we have P(X → −λ) → 1/(1 + λ).

Proof. We prove the contrapositive. If P(X → −λ) > 1/(1 + λ), then EX →
−λ P(X → −λ) + P(X > −λ) < −λ/(1 + λ) + 1 − 1/(1 + λ) = 0. �
Proof (of Theorem 2). Let ui be the i column of τU , ri and zi be the index and
the value of the coordinate of the maximum absolute value of ui, and vi be ui

with the coordinate at position ri removed. Let p2j−1(respectively, p2j) be the
fractions columns of τ whose entry of maximum absolute value is on row j and
is positive (respectively, negative). Let Ci,j be the indicator variable indicating

whether ri = rj and zi and zj are of the same sign. Let E = EC1,2 =
∑2m

i=1 p
2
i .

Let C =
∑

i<j≤d Ci,j . We have

EC =
d(d− 1)

2

2m∑

i=1

p2i ≥ d(d− 1)

4m
≥ 8σ−2

If i1, i2, i3, i4 are distinct then Ci1,i2 , Ci3,i4 are independent. If the pairs (i1, i2)
and (i3, i4) share one index then P(Ci1,i2 = 1⊥Ci3,i4 = 1) =

∑
i p

3
i and P(Ci1,i2 =

1 ⊥ Ci3,i4 = 0) =
∑

i p
2
i (1 − pi). Thus for this case,

E(Ci1,i2 − E])(Ci3,i4 − E]) = (1 − 2
∑

i

p2i +
∑

i

p3i )E2

− 2(1 − E)E
∑

i

p2i (1 − pi) + (1 − E)2
∑

i

p3i
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= E2 − 2E3 + E2
∑

i

p3i − (2E − 2E2)(E −
∑

i

p3i )

+ (1 − 2E + E2)
∑

i

p3i

=
∑

i

p3i − E2 →
(
∑

i

p2i

)3/2

The last inequality uses that the φ3 norm is at most the φ2 norm. We have

Var[C]=
d(d− 1)

2
Var[C1,2]+d(d− 1)(d− 2)E(Ci1,i2−ECi1,i2)(Ci1,i3 − ECi1,i3)

→ EC + (2EC)3/2 → 4(EC)3/2

Above we used Var[C1,2] → EC1,2 and d(d−1)(d−2) → (d(d−1))3/2. Therefore,

P(C → (EC)/2) → 4 Var[C]

(EC)2
→ O

(√
m

d(d− 1)

)
.

Thus, with probability at least 1−O(σ), we have C ≥ 4σ−2. We now argue that
there exist 1/σ pairwise-disjoint pairs (ai, bi) such that rai = rbi and zai and
zbi are of the same sign. Indeed, let d2j−1 (respectively, d2j) be the number of
ui’s with ri = j and zi being positive (respectively, negative). Wlog, assume
that d1, . . . , dt are all the di’s that are at least 2. We can always get at least∑t

i=1(di − 1)/2 disjoint pairs. We have

t∑

i=1

(di − 1)/2 ≥ 1

2

(
t∑

i=1

di(di − 1)/2

)1/2

=
C1/2

2
≥ σ−1

For each pair (ai, bi), by Lemmas 3 and 4, P[⇔vai , vbi∗ → −σ] → 1
1+ε and these

events for different i’s are independent so with probability at least 1 − (1 +
σ)−1/ε ≥ 1− eε/2−1, there exists some i such that ⇔vai , vbi∗ > −σ. For τ to be a
subspace embedding for the column span of U , it must be the case, for all i, that
⊂ui⊂ = ⊂τUei⊂ ≥ 1 − σ. We have |zi| ≥ s−1/2⊂ui⊂ ≥ s−1/2(1 − σ) ∈i. Therefore,
⇔uai , ubi∗ ≥ s−1(1 − σ)2 − σ. We have

∥
∥
∥
∥τU

(
1≤
2

(eai + ebi)

)∥∥
∥
∥

2

=
1

2
⊂uai⊂2 +

1

2
⊂ubi⊂2 + ⇔uai , ubi∗

≥ (1 − σ)2(1 + s−1) − σ

However, ⊂τU⊂ → 1 + σ so s ≥ (1 − σ)2/(5σ). �

3.2 Lower Bound in Terms of m

Theorem 3. For n ≥ 100d2, 20 log log d
log d < Δ < 1/12 and σ = 1/2, if m → d1+γ ,

then s = ∂(1/Δ).
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Proof. We first prove a standard bound for a certain balls and bins problem.
The proof is included for completeness.

Lemma 5. Let χ be a constant in (0, 1). Consider the problem of throwing d
balls independently and uniformly at random at m → d1+γ bins with 10 log log d

α log d <

Δ < 1/12. With probability at least 99/100, at least d1−α/2 bins have load at
least χ/(2Δ).

Proof. Let Xi be the indicator r.v. for bin i having t = χ/(2Δ) balls, and

X
def
=

∑
i Xi. Then

EX1 =

(
d

t

)
m−t(1 − 1/m)d−t ≥

(
d

tm

)t

e−1 ≥ d−α

Thus, EX ≥ d1−α. Because Xi’s are negatively correlated,

Var[X ] →
∑

i

Var[Xi] = n(EX1 − (EX1)2) → EX.

By Chebyshev’s inequality, P[X → d1−α/2] → 4Var[X]
(EX)2 → 4dα−1. Thus, w.p.

1 − 4dα−1, there exist d1−α/2 bins with at least χ/(2Δ) balls. �
Next we prove a slightly weaker bound for the non-uniform version.

Lemma 6. Consider the problem of throwing d balls independently at m → d1+γ

bins. In each throw, bin i receives the ball with probability pi. With probability at
least 99/100, there exist d1−α/2 disjoint groups of balls of size χ/(4Δ) each such
that all balls in the same group land in the same bin.

Proof. The following procedure is inspired by the alias method, a constant
time algorithm for sampling from a given discrete distribution (see e.g. [19]).
We define a set of m virtual bins with equal probabilities of receiving a ball as
follows. The following invariant is maintained: in the ith step, there are m− i+1
values p1, . . . , pm−i+1 satisfying

∑
j pj = (m−i+1)/m. In the ith step, we create

the ith virtual bin as follows. Pick the smallest pj and the largest pk. Notice that
pj → 1/m → pk. Form a new virtual bin from pj and 1/m− pj probability mass
from pk. Remove pj from the collection and replace pk with pk + pj − 1/m.

By Lemma 5, there exist d1−α/2 virtual bins receiving at least χ/(2Δ) balls.
Since each virtual bin receives probability mass from at most 2 bins, there exist
d1−α/2 groups of balls of size at least χ/(4Δ) such that all balls in the same
group land in the same bin. �

Finally we use the above bound for balls and bins to prove the lower bound.
Let pi be the fraction of columns of τ whose coordinate of largest absolute value
is on row i. By Lemma 6, there exist a row i and χ/(4Δ) columns of τU such that
the coordinates of maximum absolute value of those columns all lie on row i. τ is
a subspace embedding for the column span of U only if ⊂τUej⊂ ⊆ [1/2, 3/2] ∈j.
The columns of τU are s sparse so for any column of τU , the largest absolute
value of its coordinates is at least s−1/2/2. Therefore, ⊂eTi τU⊂2 ≥ χ/(16Δs).
Because ⊂τU⊂ → 3/2, it must be the case that s = ∂(χ/Δ). �
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3.3 Combining Both Types of Lower Bounds

Theorem 4. For n ≥ 100d2, m < d1+γ , χ ⊆ (0, 1), 10 log log d
α log d < Δ < χ/4,

0 < σ < 1/2, and 2/(σΔ) < d1−α, we must have s = ∂(χ/(σΔ)).

Proof. Let ui be the i column of τU , ri and zi be the index and the value
of the coordinate of the maximum absolute value of ui, and vi be ui with
the coordinate at position ri removed. Fix t = χ/(4Δ). Let p2i−1 (respec-
tively, p2i) be the fractions of columns of τ whose largest entry is on row
i and positive (respectively, negative). By Lemma 6, there exist d1−α/2 dis-
joint groups of t columns of τU such that the columns in the same group
have the entries with maximum absolute values on the same row. Consider
one such group G = {ui1 , . . . , uit}. By Lemma 3 and linearity of expecta-
tion, E

∑
ui,uj√G,i
=j ⇔vi, vj∗ ≥ 0. Furthermore,

∑
ui,uj√G,i
=j⇔vi, vj∗ → t(t − 1).

Thus, by Lemma 4, P(
∑

ui,uj√G,i
=j ⇔vi, vj∗ → −t(t − 1)(σΔ)) → 1
1+εγ . This

event happens independently for different groups, so with probability at least
1 − (1 + σΔ)−1/(εγ) ≥ 1 − eεγ/2−1, there exists a group G such that

∑

ui,uj√G,i
=j

⇔vi, vj∗ > −t(t− 1)(σΔ)

The matrix τ is a subspace embedding for the column span of U only if for all
i, we have ⊂ui⊂ = |τUei⊂ ≥ (1 − σ). We have |zi| ≥ s−1/2⊂ui⊂ ≥ s−1/2(1 − σ).
Thus,

∑
ui,uj√G,i
=j⇔ui, uj∗ ≥ t(t− 1)((1 − σ)2s−1 − σΔ). We have

∥
∥
∥
∥
∥
τU

(
1≤
t

(
∑

i:ui√G

ei

))∥
∥
∥
∥
∥

2

≥ (1 − σ)2 +
2

t

(
t

2

)
((1 − σ)2s−1 − σΔ)

≥ (1 − σ)2(1 + (t− 1)s−1) − χσ/4

Because ⊂τU⊂ → 1 + σ, we must have s ≥ (α/γ−4)(1−ε)2

(16+α)ε . �
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Abstract. We study Input Indistinguishable Computation (IIC), a se-
curity notion proposed by Micali, Pass, and Rosen in [14] and recently
considered also by Garg, Goyal, Jain and Sahai in [9]. IIC aims at gen-
eralizing the notion of a Witness Indistinguishable (WI) proof system
to general two-party functionalities and in its concurrent version (cIIC)
also considers security against man-in-the-middle (MiM) attacks.

In this paper, we focus on the proof system functionality and compare
IIC with two other security notions for proof systems: WI and Non-
Malleability (NM). We address the following two questions.
1. Since IIC is a generalization of WI from proof systems to general

2PC, are all WI proofs also IIC secure?
2. Are cIIC proofs also NM?

We show, somewhat surprisingly, that both answers to the above ques-
tions are negative. Indeed, we show that there exists a WI proof system
that is not IIC secure. We then show that a large class of WI proof
systems, including the classical Blum’s proof system for NP, are concur-
rently secure in the IIC sense. This answers the second question in the
negative, since Blum’s proofs are known to be malleable.

The consequence of our results is three-fold. 1) IIC is a too stringent
notion and this leaves the possibility of security notions weaker than
IIC with a satisfying level of security. 2) For important functionalities,
such as the proof system functionality, classical constructions like Blum’s
protocol are cIIC secure. 3) cIIC security should be carefully evaluated
when used as a security guarantee to model real-world concurrent attacks
to protocols, as our results show that cIIC security does not guarantee
non-malleability of proof systems. In contrast, standard simulation-based
security [5,2] and concurrent non-malleable WI (a game-based security
notion introduced by [15,16]) are secure against MiM attacks (the latter
even in constant rounds).

1 Introduction

Proof systems were introduced in [12] and their security was defined using the
simulation paradigm through the notion of Zero Knowledge (ZK). Witness Indis-
tinguishability (WI1) introduced by Feige and Shamir [8] is instead a game-based
� Work partially done while visiting University of California at Los Angeles.
1 We will use WI to mean both witness indistinguishability and indistinguishable.
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security notion for proof systems requiring that the adversarial verifier be not
able to distinguish which of two given witnesses has been used by the prover. WI
is easily seen to be implied by ZK and, under plausible complexity assumptions,
there exist WI proof systems that are not ZK [6].

It was later observed that ZK is not preserved if more sophisticated attacks
are considered. Dwork et al. [7] initiated the study of security under concurrent
composition. That is, the adversarial verifier can play multiple concurrent ses-
sions keeping control over the scheduling of the messages. It is easy to see that
ZK is not closed under concurrent composition whereas WI is.

In a man-in-the-middle (MiM) attack an adversary A acts as a verifier in-
teracting with a honest prover and, at the same time, as a prover interacting
with a honest verifier. Security against MiM attacks is called non-malleability [5].
Concurrency and MiM can be combined by considering an adversary playing as
prover and verifier in multiple sessions. Formalizing security under such attacks
in the simulation paradigm gives the notion of concurrent non-malleable ZK [2]
(cNMZK) and guarantees non-transferability of proofs. The existence of a cN-
MZK protocol in the plain model with sub-logarithmic round complexity is a
major open problem. Ostrovsky et al. [15,16] proposed a game-based security
notion for proof systems, concurrent non-malleable WI (cNMWI), that implies
security against concurrent MiM attacks. cNMWI guarantees non-transferability
of proofs and is achievable in constant rounds, avoiding the complications of the
simulation paradigm. Proofs (rather than arguments) have been achieved in [4].

Beyond Proof Systems: Concurrently-Secure 2PC. Security of two-part compu-
tation (2PC) has been traditionally formalized within the simulation paradigm.
When concurrent attacks are considered though a series of impossibility results
hinted at the fact that this notion might be too stringent. Indeed, Lindell [13]
proved that concurrently secure 2PC can not be achieved for several interest-
ing functionalities. This first impossibility result relied on the use of adaptive
inputs through concurrent executions of protocols for some specific functionali-
ties. The result has been then strengthened to the static input case by [2], and
later broader impossibility results have been proved in [1,11].

Input-Indistinguishable Computation. Given the above limitations of simulation-
based notions capturing security against concurrent MiM attacks, Micali et
al. [14] proposed a game-based notion. Informally, the notion of Input Indistin-
guishability Computation (IIC, in short) tries to formalize the following security
goal for 2PC: suppose there is more than one input for player P1 that is consis-
tent with the output obtained by player P2; then, even a malicious P2 cannot
distinguish which of the possible consistent inputs has been actually used by P1
in an execution. This is very similar in flavor to what WI requires from a proof
system. The notion of IIC can be extended by considering the concurrent setting,
where several sessions can be concurrently played and the adversary is allowed
to play different roles in different sessions. The goal of cIIC is to guarantee that
the output of the honest players in some sessions is not affected by the inputs
used by honest players in other sessions, and this must hold for all inputs of
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the honest players that would produce the same outputs in those other sessions.
The goal of the adversary is to play concurrently in different sessions to create
correlations among their inputs/outputs.

Interestingly, in [14] it is first shown that IIC is not closed under concurrent
composition. In particular, this is proved by showing a successful concurrent MiM
attack on a protocol implementing the coin-flipping functionality. In the same
paper [14], by building on top of some powerful non-malleable subprotocols, the
authors showed a constant-round cIIC protocol for any two-party functionality.
This is a major result since for the first time a meaningful security notion is shown
to be feasible in the concurrent setting without relying on set-up assumptions.

The Recent Work of Garg et al. [9]. Very recently, Garg, Goyal, Jain and Sa-
hai [9]2 gave a different notion of IIC with a simulation-based flavor, that we
refer to as sIIC. Their notion also applies to randomized functionalities and
is therefore more general. The proposed definition however is unsatisfactory if
there exists a “splitting input” as discussed in [14]. Then [9] proposed another
formulation referred to as exdIIC, that implies both IIC and sIIC. Of course the
concepts of sIIC and exdIIC are naturally extended to the concurrent setting.

IIC: The Impact on Proof Systems. IIC is of major importance for the following
two reasons: a) there are several popular computations as the Millionaire Prob-
lem, where the goal is simply to keep the input hidden among all other possible
inputs that produce the same output, and IIC seems to be sufficient to achieve
such a type of security; b) constant-round cIIC for any 2-party functionality
has been achieved, while the same result under the standard simulation-based
notion of secure computation is impossible to achieve, regardless of the round
complexity. cIIC is therefore an appealing security notion to model security un-
der concurrent composition in the plain model.

In this work we will focus on relations among IIC and two well-studied security
notions for proof systems: WI and NM. The reason is two-fold. First, IIC has
been proposed as a generalization of WI. Second, a MiM attacks to a protocol
implementing the coin-flipping functionality proved that IIC is not closed under
concurrent MiM attacks. Ignoring details of definitions one would expect at least
one of the following two implications be true.

1. Since IIC is a generalization of WI to general two-party functionalities when
the proof system functionality is taken into account then IIC and WI should
coincide. In other words, every WI proof system should be IIC secure and
any IIC-secure proof system should be WI.

2. Since a cIIC-secure protocol must defeat some forms of MiM attacks, then
any cIIC-secure proof system should be non-malleable too.

1.1 Our Results

In this paper we analyze IIC-security in proof systems. Indeed IIC has been
defined with the goal of lifting up the notion of WI from the proof system
2 When referring to [9], we will actually refer to the full version available at [10].
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functionality to general 2-party functionalities. Therefore any subtlety in IIC
for the proof system functionality is potentially reflected on many other 2-party
functionality (in particular to the functionalities that are similar to the proof
system functionality). We embark on the task of finding answers to the above
two questions that try to relate IIC to WI and non-malleable of proof systems.

We show that there exists a non-conversation-based3 WI system that does not
enjoy IIC. This is indeed surprising since the notion of IIC has been introduced
to generalize the notion of WI to any other 2-party functionality, and thus one
should expect that WI proofs of knowledge be IIC secure too. We then show
that most of WI proofs of knowledge found in the literature are also secure in
the IIC sense for the proof-system functionality even under concurrent composi-
tion. Specifically, this holds for conversation-based proofs, therefore contradicting
the second claim. Indeed this class of WI proofs of knowledge contains several
malleable protocols such as Blum’s protocol.

We consider the notions of sIIC and exdIIC proposed in [9] and show that in
contrast to IIC, every WI PoK is also sIIC. Of course since exdIIC implies IIC,
there exists a (non-conversation-based) WI PoK that is not exdIIC secure. We
will also prove that any conversation-based WI PoK is also exdIIC secure.

Consequences. In addition to the conceptual relevance of showing somewhat
unexpected relations among security notions, our results have the following three
consequences in applications of IIC.

First, IIC does not generalize WI but only a stronger form of it. The impact of
this is that it is still possible to give a weaker definition of IIC that still captures
the desired flavor, but that is easier to achieve. sIIC goes in this direction.

Second, there are important functionalities (e.g., the proof system function-
ality) such that classic constructions (e.g., Blum’s protocol) are already cIIC se-
cure. Therefore depending on the functionality in question, cIIC-security could
come for free, without resorting to the general and inefficient (based on the use
of expensive non-malleable subprotocols) constructions shown in previous work.

Third, when relying on cIIC for some 2-party functionalities, the actual mean-
ing of cIIC for the given functionality should be carefully evaluated. Indeed
while simulation-based secure 2PC provides strong enough guarantees, the se-
curity of cIIC can be unsatisfying. Such a decreased security does not depend
on the fact that non-transferability of proofs requires simulation. Indeed, for the
case of proof systems, it is still possible to obtain non-malleability (i.e., non-
transferability of proofs) under an indistinguishability notion (e.g., NMWI [15]).
We show that the formulation of cIIC does not give such a guarantee.

2 Definitions

A polynomial-time relation R is a relation for which it is possible to verify in
time polynomial in |x| whether R(x, w) = 1. We consider NP-languages L and
3 In a conversation-based proof the transcript identifies the common instance x and

with overwhelming probability whether the verifier accepted or rejected.



On Input Indistinguishable Proof Systems 899

denote by RL the corresponding polynomial-time relation such that x ∈ L if and
only if there exists w such that RL(x, w) = 1. We call such a w a valid witness
for x ∈ L and denote by WL(x) the set of valid witnesses for x ∈ L. We slightly
abuse notation and, whenever L is clear from the context, we simply write W (x)
instead of WL(x). For sequences X = (x1, · · · , xm) and W = (w1, · · · , wm), by
the writing “W ∈ W (X)” we mean that wi ∈ W (xi) for i = 1, · · · , m.

For a language L we will denote by Lm
n the set of sequences of m elements of

L each of length at most n. A negligible function ν(k) is a function such that for
any constant c < 0 and for all sufficiently large k, ν(k) < kc.

We stress that we will always refer to polynomial-time adversaries, therefore
when we say proof systems or PoK, we actually refer to arguments.

We will use the standard definitions of proof system, WI and and the definition
of IIC given in [14].

3 Input Indistinguishability vs WI

In this section we consider the notion of IIC [14] for the proof system functional-
ity and compare it with the notion of a WI proof system [8]. While it is trivial to
see from the definitions that any IIC proof is also WI, we show that the opposite
implication does not hold.

We first show that a large class of WI proof systems (that includes all WI
proof systems in the literature) also enjoys cIIC. However we will also show that
this does not hold for all WI proof systems. The above large class consists of
all WI proofs of knowledge that are conversation-based; that is, one can guess
the output of the verifier (that is, whether the verifier accepts) by looking at
the transcript of the protocol and, possibly, running in super-polynomial time.
It is easy to see that all WI proof systems in the literature enjoy this property
even in a very stringent sense, since the sole transcript is usually sufficient to
efficiently guess whether the verifier accepts.

In this section, we denote the prover P by P1 and the verifier V by P2 in order
to keep notation consistent with [14].

The Proof System Functionality FL
PK. The input of (the prover) P1 for func-

tionality FL
PK for NP language L consists of a pair (x, y) whereas (the verifier)

P2 has in input only x. The output f1 of P1 in FL
PK((x, y), x) is defined as

f1((x, y), x) = ⊥ (i.e., P1 does not get any output); output f2 of P2 instead is de-
fined as f2((x, y), x) = 1 if y is a valid NP witness for x ∈ L; and f2((x, y), x) = 0,
otherwise.

Notice that FL
PK is defined with the two players having common input x.

Whenever L is clear from the context, we will simply write FPK.

Remark 1. One could think of using a different definition for the ideal function-
ality of a proof system where prover and verifier can have different statements as
input. With such a different definition, then it happens that even the standard
zero-knowledge PoK of Blum (e.g., sequential repetition of the classical 3-round
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protocol with a 1-bit challenge) would not be a secure instantiation (in the classi-
cal 2PC sense) of such a proof system functionality. The reason is that with such
a functionality, the input statement x of the prover should remain private when
playing with a V ∗ that runs on input a statement x≡ different from x. Instead
in Blum’s protocol the statement proven by the prover is not private at all. In
general implementing such a functionality could require techniques/assumptions
taken from general 2-party computation. Therefore we find such a definition of
an ideal functionality less intuitive than the one that we use in the paper and
that follows in spirit the formulation of [12].

Conversation-Based WI Proofs. We say that a WI proof is conversation-based if,
given a transcript of the protocol it is possible to identify the common instance x
and to compute with overwhelming probability the output of the honest verifier.
We stress that no time bound is imposed on the decision procedure. All standard
WI proofs (including Blum’s protocol [3]) are in this category.

3.1 Conversation-Based WI ⇒ IIC

In this section we prove that all conversation-based WI proof systems with per-
fect completeness are also cIIC for the proof system functionality FPK. Thus,
following Definition 1 and 2 of [14], we exhibit, for any conversation-based WI
proof, a first-party and second-party implicit input functions IN1, IN2 that fulfill
all requirements of IIC.

Defining the Implicit-Input Functions for FPK. We remind the reader that,
according to the definition of IIC, implicit-input functions are not necessarily
efficiently computable.

IN1: Let View∗
1(e) be the full view of P ∗

1 of an execution e of (P ∗
1 , P2) (this

includes the private coins and the input of P ∗
1 ). For each session i of e, the

output of IN1 on input View∗
1(e) is defined as follows.

If OUTPUTi
1(e) = 1 and the verifier P2 accepted the proof (this can be decided

because of the conversation-based property), then IN1 outputs a pair consisting
of the instance x that is obtained fromView∗

1(e) (as it is the i-th common input),
and the lexicographically first witness y for x ∈ L. Instead, IN1 outputs ⊥ for
all sessions i in which OUTPUTi

1(e) = 0 or the verifier P2 did not accept the proof
(again, this is can be decided using the conversation-based property).
IN2: Let View∗

2(e) be the full view of P ∗
2 of an execution e of (P1, P ∗

2 ).
For each session i of e, if OUTPUTi

2(e) = 1, IN2 on input View∗
2(e) outputs

the statement x that is obtained from View∗
2(e) since it is the i-th common

input, and outputs ⊥ otherwise.

First of all, notice that IN1 and IN2 are implicit functions (i.e., they both
output ⊥ in case of aborts).
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Completeness. For any session i, Prob
[

P1(Viewi
1(e)) = f1((xi, yi), xi)

]
= 1 and

Prob
[

P2(Viewi
2(e)) = f2((xi, yi), xi)

]
= 1. Indeed, for the former, notice that

f1 always outputs ⊥, and honest prover P1 never outputs a value different than
⊥; for the latter, notice that P2 outputs precisely a bit denoting accept or reject
and this coincides with the output of f2. The perfect completeness property of
the WI proof is required to prover the IIC completeness.

Implicit Computation. Let P ∗
2 be the adversary. W Prob

[
P1(Viewi

1(e)) = ⊥
]

=
1 in session i, and also f1((xi, yi), x∗

i ) = ⊥ where x∗
i = is the i-th compo-

nent of the output of IN2(View∗
2(e)). Here notice that regardless of the value of

OUTPUTi
1(e), both P1(Viewi

1(e)) = ⊥ and f1((xi, yi), x∗
i ) are always equal to ⊥.

Let P ∗
1 be the adversary. If OUTPUTi

2 is false then Prob
[

P2(Viewi
2(e)) = ⊥

]
=

1 since the output delivery message of the i session is not in the view of e. In
case OUTPUTi

2 is true, we have that the i-th component (xi, y∗
i ) of the output of

IN1(View∗
1(e)), is a valid theorem-witness pair for the i-th component xi of the

input of P2 in the i-th session, only if P2 gives in output 1. Therefore the implicit
function IN1 always outputs a value that makes the evaluation of f2 consistent
with the output of P2

4.

Input Indistinguishability and Independence. We next show that for any ad-
versary P ∗

2 it holds that {EXPTP1,P ∗
2 ((x,y1), (x,y2),x; 1n)} is indistinguishable

from {EXPTP1,P ∗
2 ((x,y2), (x,y1),x; 1n)}.

Indeed, the input function IN2 selects xi from View∗
2(e) independently of the

other inputs. Since those other inputs are the only differences between the two
experiments we have that by the WI of the views, the outputs (x∗,View∗

2(e)) of
both experiments are computationally indistinguishable.

Let us now consider adversary P ∗
1 . In this case we have that,

since the verifier has as input only x, both experiments correspond to
{EXPTP ∗

1 ,P2((x,y),x,x; 1n)}. The input function IN1 defined above selects the
instance-witness pair (xi, yi) for the i-session from the view of the i-th execution
independently of the witness that has been actually used (as long as the tran-
script is accepting), since IN1 considers the first witness in lexicographic order.
Therefore both experiments produce the same output (y∗,View∗

1(e)).

From Fixed Roles to a General Adversarial Behavior. Notice that in the discus-
sion above, we have considered a fixed-role adversay only; that is, an adversary
that either plays the role of the prover in all sessions or it plays the role of
verifier. Intuitively, we used the following two facts: 1) when the adversary is
a verifier, it has as input only x and the output by EXPT is a tuple of pairs
(y,View), one for each session, where y is actually independent of the witness
used by the prover, and View is a witness indistinguishable transcript; 2) when
the adversary is a prover, the honest verifier has no private input and thus the
two experiments EXPT of the definition collapse in one experiment only, so that
indistinguishability of the output is trivial.
4 The fact that IN1 uses the conversation-based property is critical. Indeed we will

exploit this to show that there exists a WI proof system that does not enjoy IIC.
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In general, the adversary could play a man-in-the-middle attack; that is, it
could play the role of the prover in some sessions and the role of the verifier in
other sessions. We next argue that the above analysis still works. Indeed, based
on the two possible sequences of inputs of the honest provers, we have that:

1) in the sessions where the adversary played as verifier, the output of EXPT
contains witnesses unrelated to the ones used by honest provers and views that
do not allow one to distinguish which witness has been used; 2) in the sessions
where the adversary played as prover, we will have statements and views that
again can only vary according to the sequence of witnesses used by honest provers
in other sessions, which in turn means that, by the witness indistinguishability
of those proofs, these views are indistinguishable as well.

Thus we proved the following theorem.

Theorem 1. Any conversation-based WI proof system for an NP language L is
IIC (even under concurrent composition) for FL

PK.

3.2 WI �⇒ IIC for FPK

Here, we show that there exist WI proof systems that do not enjoy IIC.

Theorem 2. There exists a WI proof system Π for NP language L that is not
IIC for functionality FL

PK.

Proof. Consider the classical proof system pBLUM that consists of parallel ex-
ecutions of Blum’s protocol for the NP-complete language of the Hamiltonian
graphs [3]. More precisely, in the first round of pBLUM with security parameter
k and input graph G, the prover selects k random permutations π1, . . . , πk, com-
putes graphs G1, . . . , Gk where Gi = πi(G) and sends the commitments of the
adjacency matrices of the k graphs. The verifier picks random bits b1, . . . , bk and
sends them to the verifier. Finally, for each i for which bi = 0, the prover opens
all the commitments of the adjacency matrix of Gi and sends πi; instead, for
each i for which bi = 1, the prover opens the commitments of the adjacency ma-
trix of Gi that correspond to edges in a Hamiltonian cycle. The verifier accepts
if and only if all the k answers obtained are correct.

It is easy to see that pBLUM is a WI proof system with perfect completeness
and negligible (in k) soundness error for the language of the Hamiltonian graphs.
Also, pBLUM is conversation-based since the final decision of the verifier is solely
based on the transcript.

To prove Theorem 2, we artificially modify pBLUM by requiring the honest
verifier V to randomly select j ∈ {1, . . . , k} and to neglect the answer of the
prover in the j-th parallel execution in deciding whether to accept or not. The
resulting protocol, mBLUM, enjoys perfect completeness and negligible sound-
ness error and is still WI. However, mBLUM is not conversation-based. Indeed, a
malicious prover P ∗ could use a string s hardwired in its code to decide to play
wrongly in exactly one of the k parallel executions while playing honestly in the
remaining ones. Notice that the honest verifier for mBLUM will accept the proof
of P ∗ with non-negligible probability 1/k. Indeed, it will accept exactly when
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the randomly selected parallel execution of the protocol corresponds to the one
specified by s. Therefore, by looking at the transcript one can not guess and
be correct with overwhelming probability if the honest verifier accepted or not.
Notice that this holds unconditionally, even when the private input and coins of
the prover are known.

Formally, assume that the instance is x and the witness is y. We have that the
Implicit Computation property does now hold when P ∗

1 is the above adversarial
prover and P2 is the above honest verifier. Indeed in the above execution it
happens that P2(View1

2) = 1 with probability 1/k and P2(View1
2) = 0 with

probability 1 − 1/k. The probability is over (a subset of) the private coins of
P2 that are independent from the transcript. Therefore to satisfy the Implicit
Computation property one should have an implicit function IN1 that on input
View∗

1 guesses with overwhelming probability the output of P2. However, View∗
1

does not contain the private coins used by P2 to discard one of the parallel
executions of Blum’s protocol, therefore any implicit function IN1 fails with
non-negligible probability5.

The existence of a WI proof system that is not IIC proves that IIC is a
generalization to general functionalities of some special forms of WI only.

4 Simulation-Based IIC: sIIC and exdIIC

Here we study some relations among WI, IIC and sIIC and exdIIC [10]. We stress
that even though we focus on the proof-system functionality, it is expected that
our results extend to several other functionalities.

We next briefly review the notions of sIIC and exdIIC and refer the reader to
Definition 5 and Definition 7 of [10] for formal definitions.

Classical (simulation-based) concurrently-secure 2PC requires the existence of
a simulator S for every real-world adversary A so that the views of the adversary
in the real world and in the ideal world are indistinguishable. Roughly speaking,
sIIC (called IIC in [10]) relaxes this requirement by allowing the simulator S to
depend also on the pair of input vectors of the honest party and by only requiring
that the distributions of the outputs of the two party to be indistinguishable. The
definition of extended Input Indistinguishable Computation (exdIIC, for short)
strengthens the notion of sIIC by requiring indistinguishability between the ideal
and real world of the pair consisting of the output of the parties (so far, it is
similar to sIIC) and the input of the adversary which for the real world is defined
by means of an implicit function IN that extracts the input from the view. For
further details on sIIC and exdIIC, see Definition 5 and Definition 7 of [10].

5 Indeed even in case one can have a randomized implicit function IN1 that with
probability 1 − 1/k outputs ⊥, it would work against the above P ∗

1 , but it would fail
against another adversary P ∗∗

1 that just plays as honest prover and always convinces
the verifier.
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4.1 WI and IIC vs sIIC

Theorem 3. Any WI PoK for an NP language L is sIIC for FL
PK.

Proof. First of all remember that in the definition of [9], the simulator can be
different for different pairs of inputs obtained by the honest player.

When the real-world prover is honest, the simulator plays as verifier in the
ideal world and simulates a prover against the malicious verifier. The simulator
internally has two witnesses (sIIC allows a different simulator for each pair of
inputs for the honest player) for the theorem corresponding to the input state-
ment and picks one of them to be used with the malicious verifier, playing then
the protocol of the honest prover.

When the real-world verifier is honest, the simulator plays as prover in the
ideal world and simulates a verifier against the malicious prover. Since the honest
player (i.e., the verifier) has no witness, the simulator will have no witness as
well. However the PoK property guarantees that the simulator can extract a
witness from the malicious prover and can then play it in the ideal world.

It is easy to see that if the output of the ideal-world experiment differs form
the one of the real world, one can easily break the WI of the proof system.
Indeed notice that for the sessions where the simulator is an ideal-world verifier,
the only deviation with respect to the real world consists in the fact that the
simulator might use a different witness. For the sessions where the simulator is
a real-world verifier, the only deviation with respect to the real world consists
in the fact that the simulator has to extract a witness from P ∗ in order to play
it in the ideal world. The PoK property guarantees that this can be done.

Notice that rewinding the adversary in the concurrent setting is often danger-
ous and can blow up the running time of the simulator. Nevertheless, since here
the simulator rewinds only the malicious prover, there is no issue with its run-
ning time. The reason is that rewinds are related to extractions and can therefore
be done sequentially, applying the extractor to the final transcript. During each
extraction, there are no rewinds related to other sessions.

4.2 WI and IIC vs exdIIC

With the purpose of having a definition that also captures the security goals
of IIC, Garg et al. in [9] defined exdIIC and proved that it implies both IIC
of [14] and sIIC. One might think that exdIIC is a strengthening of IIC that
requires stronger security properties (indeed it is a simulation-based notion) and
it could be possible that several protocols that are IIC are not exdIIC. We show
that for the proof system functionality this is not the case as we prove that any
conversation-based WI PoK is also secure in the exdIIC sense.

Theorem 4. Any conversation-based WI PoK for NP language L is exdIIC for
functionality FL

PK.

Proof. The definition of exdIIC considers the indistinguishability of ideal and
real world experiments also including 1) in the distribution of the ideal-world
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experiment, the inputs sent by the adversary to the trusted party and 2) in
the distribution of the real-world experiment, the outputs of implicit functions
IN1, IN2 on inputs the views of the adversaries.

The proof given for the case of sIIC is not sufficient here because we need to
define implicit functions first, and then we must make sure that the inputs sent
by the simulator to the ideal functionality are consistent with the outputs of the
implicit functions.

Since the honest verifier of a PoK runs on input just the statement of the the-
orems, the implicit function IN2 can just output the list of theorems (accepting
or not) belonging to the view received in input. Therefore the only problem is
to define the implicit function IN1 that receives as input the view of the adver-
sarial prover. Our choice is to have IN1 to output, for each theorem in the view
received in input, the first valid witness in lexicographic order provided that the
transcript of the session is accepting6, otherwise it will output ⊥.

In order to have that the inputs sent to the functionality by the ideal-world
adversary be consistent with the output of IN1 we consider a simulator that first
runs internally as verifier against the real-world adversary and checks if it gets
a convincing proof. If this is the case, the simulator send to the functionality
the witness that it has hardwired in its code. Notice that since in the definition
of [9] there is a simulator for any pair of inputs, we have that there always exists
a simulator that contains hardwired in its code the first witness in lexicographic
order corresponding to the theorem specified in the input of the prover.

The case of an ideal-world adversarial verifier is simpler. As soon as a proof
starts the simulator sends the theorem to the ideal functionality, and if it gets
as output 1, it runs internally the honest prover procedure using the witness
that it has hardwired in its code. If instead it receives 0, it just sends and abort
message to the real-world adversarial verifier (the same things is of course done
by a prover when the theorem to be proved is different from the one expected by
the verifier). As for the case of sIIC, this proposed simulation is indistinguishable
by the WI of the underlying proof system. Therefore the theorem holds.

It is worthy to notice the point in which the above theorem would fail in
case of non-conversation based WI proof systems. Indeed we have that IN1 could
output a witness even when the verifier, because of his private coins, does not
accept that transcript. Therefore in the real-world experiment, the verifier would
output 0 while the output of IN1 would be a witness. Then in the ideal-world
experiment the simulator would be required to send the same witness, which of
course allows the honest verifier of the ideal world to obtain 1 as output. This
would clearly make ideal and real worlds distinguishable.
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Abstract. Leakage-proof hardware tokens have been used to achieve
a large number of cryptographic tasks recently. But in real life, due to
various physical attacks, it is extremely difficult to construct hardware
devices that are guaranteed to be leakage-proof. In this paper, we study
the feasibility of general two-party computation using leaky hardware
tokens.

Our main result is a completeness theorem that shows that every
non-trivial leaky two-party functionality can be used for general secure
computation. In fact, the protocol we construct is non-interactive and
unconditionally secure. There are no restrictions on the leakage functions
associated with the token, except that it does not render the tokens
trivial, by revealing its entire secrets to the adversary.

1 Introduction

Hardware tokens have received considerable attention in recent years ( [1,3,4,6,
7, 9–11, 14, 17, 18, 20, 22, 24, 29, 33, 34], to name a few). In earlier works, specific
hardware devices were used to achieve specific cryptographic tasks. Later on,
as the potential of hardware devices was better understood, general hardware
tokens were used to achieve general tasks. For example, in [20], among other
things, the authors show feasibility of an unconditional, non-interactive UC
protocol for general functionalities, using stateful hardware tokens.

In all these works, the hardware-tokens used are considered to be leakage-
proof: there is a function f associated with the token (programmed with an
input from the party creating the token) such that a party who receives it can
only access the input/output behaviour of f(·), and cannot learn anything else
about the input already programmed into it.

Although theoretically clean, in practice it is difficult to construct hardware
devices that are truly leakage-proof. In particular, once the hardware device is in
the adversary’s possession, it can be subjected to physical attacks, like measuring
power consumption, that can reveal secret information. (See, for example, [5,28,
35] and references therein, for various physical attacks.) Given that hardware
devices cannot be guaranteed to be leakage-proof in real life, the natural question
that arises is whether we can use such leaky tokens to achieve cryptographic tasks.

In this paper, we study the feasibility of using such leaky tokens for construct-
ing general secure two-party computation protocols. Our focus is on theoretical
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feasibility and not practical efficiency, and we consider information-theoretic
security. We think of a leaky token as a hardware one-time implementation of a
two-party functionality f(·, ·). The sender of the token chooses an input x and
creates such a token. The receiver can query the token with input y, at which
point the token outputs f(x, y). To model leakage, the adversary is allowed to ask
a (possibly randomized) “leakage query” L ∈ L, where L is a class of allowable
leakage functions. To this, the token responds with the leakage L(x). Once the
token is accessed (using a legitimate input or a leakage function), it loses all
information about x.

We point out a few aspects of our leakage model. On the positive side, the
leakage functions are unrestricted (computationally unbounded, randomized,
communicating arbitrary amount of information), and we prove the best possible
result in that, unless a leakage function that completely reveals the functionality
of the token is available to the adversary (in which case the hardware could
as well be replaced with plain messages), the tokens can be used for secure
evaluation of any function. On the other hand, we model the leakage function as
acting on a single token at a time. But we do allow the adversary to adaptively
choose the leakage function for each token, based on the information gathered
from previously accessed tokens. Also, our leakage is one-time. We leave it for
future work to consider models of multi-round leakage and joint leakage which
would allow the adversary to, among other things, leak correlated information
from multiple tokens.

Our Results. We construct a non-interactive, unconditionally secure general
two-party secure computation protocol in the leaky token hybrid model.
Instead of using leaky tokens which implement specific functionalities, we prove
the following general completeness theorem: every non-trivial leaky two-party
functionality is complete for unconditionally secure two-party computation. A
two-party functionality is called “trivial” if there is a leakage function in the
allowable leakage class that exhausts all the entropy from a token that was
initialized with a uniformly chosen sender’s input. Otherwise, the functionality
is called non-trivial.

Related Work. There has been a long line of work on leakage resilient primitives,
for example [12, 23, 32] and several more recent works. We mention just a few
of them which are more relevant to our setting. Hardware leakage has been
theoretically modeled and studied in several works including [15, 21, 23]; these
works consider a model with no protected parts (or tokens), but with significantly
restricted leakage functions. The study of leakage resilience for interactive
protocols was initiated in [13], which constructed secure multi-party computation
protocols using leaky tokens, but relying on computational assumptions. The
problem of tamperable tokens was raised in [8], who showed that certain token
functions are naturally resistant to certain restricted classes of tampering, or
can be encoded to become so; this is applicable only when the tampering or
leakage function applied to the token is from a well-behaved class. Hardware
tokens have also been used to construct One Time Programs (OTP). An OTP
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for a function f allows a party to evaluate f on a single input x chosen by
the party dynamically. OTPs are typically implemented as a package containing
some software along with some hardware tokens. OTPs were introduced in [18].
In [20], OTPs were used to construct an unconditionally secure non-interactive
protocol for two-party computation.

On the question of completeness of functionalities, building on his earlier
results [25, 26], in 2000, Kilian [27] presented an elegant protocol relying on
Nash equilibrium, to show that any non-trivial asymmetric functionality is
complete for security against malicious adversaries; later, [30,31] provide further
completeness results. The protocols presented in these works are all interactive.
A non-interactive completeness theorem for non-trivial functionalities was first
shown in [2]. However, all off these results are in the non-leaky model. Our
theorem can be seen as a generalization of the completeness of non-trivial
asymmetric functionalities [2, 27] to the leaky setting.

1.1 Technical Overview

Our goal is to use leaky tokens to construct a non-interactive, unconditionally
secure two-party protocol for general functionalities. In [20], the authors
construct such a protocol in the One Time Memory (OTM) hybrid model,
which was introduced in [18]. The OTM functionality is a two-party functionality
which, on input a pair of bits (b0, b1) from the sender and a bit c from the receiver,
returns bc to the receiver. That is, an OTM behaves like an implementation of
Oblivious Transfer (OT), but with the following crucial difference: in OT, after
the receiver specifies its input bit and receives its output bc, the sender gets an
acknowledgment that the receiver has received its output. However, in OTM, no
such acknowledgment is sent to the sender (for more on the consequences of this
crucial difference, see [18] and Section 4.2 in [20]). In light of the construction
given in [20], to achieve our goal, it is sufficient to realize the OTM functionality
using leaky tokens.

We consider a token to be a one-time evaluable implementation of a
deterministic, constant-sized function f of two variables, into which one variable
has been programmed. A user can evaluate the token only once, on any
input of its choice. But, we allow an adversarial user to adaptively specify
leakage functions for each token (which can be randomized and computationally
unbounded), in lieu of feeding it a valid input. We shall show that any such
token is complete for token-based non-interactive secure computation, as long as
none of the allowed leakage functions fully reveals the information programmed
into the token. Here, completeness means that any function that takes inputs
from two parties and provides output to only one of them (the receiver) can be
securely implemented using a token-based non-interactive protocol, even if the
receiver is malicious and can leak from the tokens, adaptively. (The sender could
be malicious as well.)

Technically, the work most relevant to ours is a recent result of [2]. There,
a similar result is shown when there is no leakage from the tokens; also, a
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deterministic extraction procedure given there turns out to be useful for us.
But handling arbitrary leakage presents several new technical challenges.

As a simple example, consider the following kind of token. It implements 1-
out-of-m string OTM: i.e., the receiver can obtain one of m strings that are
programmed into the token. It also permits a simple leakage function, which
allows a corrupt receiver to learn m − 1 out of the m strings. If m = 2 this
function is the same as 1-out-of-2 OTM. But, for m ≥ 3, can such a token be
used to implement (non-leaky) 1-out-of-2 bit OTM?

It can in fact be argued that such a functionality, when implemented by
a trusted third party, cannot be used to obtain OTM, even using interactive
protocols! Suppose there is such an OTM protocol. Since the sender should not
learn the receiver’s input, the receiver will be able to run two simultaneous
executions of this protocol, with two different inputs, while producing the same
view for the sender; if the two executions have two different inputs to a 1-
out-of-m OTM session, the receiver will use the leakage facility to learn both
the inputs (since it is allowed to learn m − 1 ≥ 2 inputs). This would enable
the receiver to complete both executions and learn both inputs of the sender,
contradicting the security of the protocol. However, the token model differs from
the standard hybrid model in a crucial way. In the standard hybrid model, both
the parties learn about when each session is initiated as well as when the outputs
are delivered in each session. In contrast, in the token model, the sender does
not learn at what point — and in particular, in what order — the various tokens
are accessed by the receiver.

This leads us to the following simple protocol for OTM based on this token.
The sender sends two tokens for 1-out-of-m string OTM. Each of the m strings
in the first token, contains a random bit; in addition, the first of these m strings
contains a pointer to (i.e., the index of) one of the m strings in the next token.
Similarly, the second token contains m random bits, and in addition the first bit
is bundled with a pointer to one of the m strings. The random bit in the first
token that is pointed to by the second token is used to mask the sender’s first
input; similarly, the second input is masked by the random bit in the second
token that is pointed to by the first token. The masked values are sent along
with the tokens. An honest receiver who wants to access the first input would
open the pointer stored in the second token first, and find out the position in
the first token where the mask bit is. Note that the order in which the receiver
opens the two tokens reveals its input, but this remains hidden from the sender.

Now, in this protocol, a malicious receiver needs to access (using a leakage
function) one of the two tokens at first; in doing so, it can learn up to m − 1
strings in that token. But with probability 1/m, the one string that it leaves
out is the one that is pointed to by the other token. Thus, with probability at
least 1/m, the receiver learns only one of the two inputs of the sender. This
uncertainty can be amplified by using the XOR of many such bits as the mask,
to obtain a statistically secure bit OTM protocol.

The above class of functions and leakage are quite well-behaved. But in
general, the leakage can be randomized, and comes from an infinite class of
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possible functions. Our main contribution is to show that, in spite of this, any
token with non-trivializing leakage can be used to implement the above well-
behaved class of functions and leakage. Our protocol is oblivious to the class of
leakage functions (but does depend on the function f).1

The basic idea behind our protocol for implementing (leaky) 1-out-of-m OTM
is similar to (but more sophisticated than) that of the 1-out-of-2 OT protocol
in [2]. As in the OTM protocol there, roughly, our goal is to force the adversary
to suffer a small amount of uncertainty about one of the inputs of the sender,
and then amplify this uncertainty using many executions combined using a
deterministic extraction strategy, which takes a sum of (small degree) products.
(Standard randomized extraction is not applicable in this setting since the
adversary can see the seed before it accesses the tokens, and hence the seed
is not independent of the entropy source.) But an additional challenge in our
setting is that all of the leakage functions available to the adversary are not
available to a honest receiver. We need to translate this arbitrary gap between
the power of the adversary and the honest receiver to that between the two in
the leaky 1-out-of-m OTM functionality.

Another technical difference between the setting of [2] and ours is the
following: when there is no leakage present (as in [2]), the non-triviality
requirement on f implies that there are two specific inputs for the receiver which
are “undominated” such that a secure protocol can be designed by ignoring the
other inputs for f . That is, the honest receivers can be required to feed only one
of these two inputs to f . In contrast, when leakage functions (even deterministic
ones) are present, this is no more the case. This is exemplified by the leaky
1-out-of-m OTM itself: if the honest receiver is restricted to using only m − 1
of the possible m inputs, then a leakage function would let a malicious receiver
learn all the relevant secrets from the tokens, and then run the protocol with
different inputs. Thus, in our case it is important that the honest receiver uses
its entire domain of inputs.

Our solution involves a collection of m maps from the range of the function f
to Zp (for an appropriately chosen p), where m is the number of inputs to f that
an honest receiver has. The tokens from the sender are grouped into “bundles” of
2m tokens each, two for each map. Within a bundle, the output from a token is
meant to be mapped to Zp using the map associated with that token, and then
multiplied together. (The deterministic extraction in our case involves adding
together the products from each bundle, modulo p.)

The non-triviality of the function given the leakage function family guarantees
that for every admissible leakage function L, there is some y such that
H(f(X, y)|L(X)) is lowerbounded by a constant. Suppose ŷ be the y in a
bundle for which this uncertainty is accumulated the most. The maps above
are chosen in such a way that a fraction of this uncertainty will be preserved
in the product corresponding to ŷ, while for every other y, at least with a

1 For setting concrete parameters, one would need a concrete bound on the value of
the entropy parameter measuring the non-triviality of the function in the presence
of leakage.
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constant probability, its corresponding product will become fixed to 0. Thus,
even given the product corresponding to all other y’s (which is fixed to 0 with
some probability), there is some uncertainty in the product corresponding to ŷ.
Finally, for each y, the products from all the bundles are summed together to
extract a mask corresponding to y. The above property of the maps ensures that,
for some ŷ, the extracted value is close to uniformly random, even conditioned
on the extracted values corresponding to the other m− 1 y’s.

2 Preliminaries

Protocols and Security. We follow standard definitions of protocol execution
and security as specified in [19] and [16]. We will use FOTM to denote the OTM
functionality of [18, 20]. We will also use a generalization of OTM to the case
of 1-out-of-m OTM, where the sender holds m inputs (instead of 2), out of
which the receiver selects one. The reason we focus on the One Time Memory
functionality is because of the following theorem:

Theorem 1 ( [20],Theorem 13). Let f(x, y) be a non-reactive, sender-
oblivious, polynomial-time computable two-party functionality. Then there exists
an efficient, statistically UC-secure non-interactive protocol which realizes f in
the FOTM-hybrid model.

Modeling Leakage. Let f : X×Y → Z be a constant-size deterministic function.
Let L be a set of possibly randomized leakage functions. To model leakage, we
define the token functionality F (f,L). The functionality receives x ∈ X from the
sender. An honest receiver sends y ∈ Y to F (f,L) and obtains f(x, y). A malicious
receiver, on the other hand, may query F (f,L) with a leakage function L ∈ L and
obtain L(x). If L is a randomized leakage function, L(x) specifies a distribution,
and the ideal functionality samples w ← L(x) and returns it to the receiver. For
conciseness of notation, for randomized leakage functions L, we will use L(x) to
also mean a sample from that distribution.

Functionality F(f,L):

– On receiving the message (input, sid, Pj , x) from party Pi, store the tuple (Pi, Pj , sid,
x) and send (received, Pi, sid) to party Pj . Ignore all input messages from Pi with
session id sid.

– Honest Query. On receiving (output, sid, Pi, y) from party Pj , if no tuple of the
form (Pi, Pj , sid, x) exists, do nothing. Else, send (output, sid, Pi, f(x, y)) to party
Pj , and delete the tuple (Pi, Pj , sid, x).

– Leaky Query. On receiving (leak, sid, Pi, L) from party Pj , if L /⇒ L or no tuple of
the form (Pi, Pj , sid, x) exists, do nothing. Else, send (leak, sid, Pi, L(x)) to party
Pj , and delete the tuple (Pi, Pj , sid, x).
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It is clear that no security is possible if the adversary is allowed arbitrary
leakage queries. For example, if the adversary is allowed to ask the identity map
as its leakage query, then it learns x and renders the functionality ‘trivial’. To
avoid this, we restrict the adversary to use only those leakage queries that leave
some uncertainty in the output corresponding to some Bob’s input y ∈ Y. This
is formalized below.

Definition 1. Let f : X×Y → Z be a constant-size deterministic function, and
let L be a set of functions with domain X. Let X be the uniform distribution
on X. Then, the token functionality F (f,L) is called non-trivial if there exists a
constant c > 0 such that

min
L◦L

max
y◦Y

H(f(X, y) | L(X)) ≥ c.

Amplifying Uncertainty. In our proofs, we will consider random variables
that have constant uncertainty conditioned on the adversary’s view. To amplify
this uncertainty, we will take the sum of an appropriate number of such random
variables. To this end, the following generalization of a lemma from [2] will be
useful.

Lemma 1. Let p be a fixed prime number. For any positive integer N , let
X1, · · · , XN be N independent random variables over the alphabet Zp, such that
for some constant σ > 0, for all i ∈ [N ], for all z ∈ Z

N
p , Pr[Xi = z] < 1 − σ.

Then the statistical distance between the distribution of
∑N

i=1 Xi (summation in
Zp) and the uniform distribution over Zp is negligible in N .

3 Leaky-OTM from Leaky Tokens

In this section we show how to use any non-trivial leaky token to implement

a functionality F̃ (m)
OTM described below. Here, the parameter m is equal to the

number of inputs for (honest) Bob to the token. We leave out from the notation

of F̃ (m)
OTM a parameter d specifying the length of the “messages” that Alice gives

as input to F̃ (m)
OTM. d can be set to any constant in our following construction, by

choosing the parameter p ≥ 2d.

Functionality F̃(m)
OTM:

– When Bob is honest: function as a 1-out-of-m (string) OTM. i.e., accept m
strings, each d bits long, (x1, · · · , xm) from Alice, and an index i ⇒ [m] from Bob.
Output xi to Bob.

– When Bob is corrupt: function as (m− 1)-out-of-m OTM. Here, Alice’s input
is the same as above; Bob can input any set S ∅ [m] and receive {xj |j ⇒ S} as
output.

Let F be any non-trivial leaky token functionality, with m inputs for (honest)

Bob. The idea behind our protocol for F̃ (m)
OTM is a generalization of an earlier
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protocol for OTM from non-trivial (non-leaky) tokens [2]. The main complication
in allowing leakage is that honest Bob does not have access to all the inputs an
adversarial Bob can have. In particular, unlike in [2], it is not true that we can
find two “undominated” inputs for Bob. Indeed, restricting to any strict subset
of the m inputs can render the function trivial in the presence of the leakage
functions. This complicates our construction when m > 2. (When m = 2, one
could use the protocol in [2], but our protocol does not become identical to that
in [2] if we set m = 2.)

While the protocol in [2] considered tokens in bundles of two, we shall use
bundles of size 2m. Further, unlike in that protocol where the same set of maps
were used in all tokens to map Bob’s (input, output) pairs to elements in a field,
we use m different sets of maps for the 2m tokens in the bundle, to map these
pairs to Zp (for a large enough prime constant p). We give the formal description
of the protocol below, and defer the proof of security to the full version.

Set up: Let F = (f,L) be a non-trivial leaky functionality evaluating a function
f : X× Y ≤ Zp for some prime p2 and allowing a set of leakage functions L such that
for all L ⇒ L, miny∈Y H(f(X, y)|L(X)) > c for some constant c, where X is uniformly
distributed over X.

Alice can send tokens for F with an input x ⇒ X of her choice. An honest Bob can
evaluate the token once with y ⇒ Y of his choice to obtain f(x, y). Let m = |Y | be the
number of inputs for (honest) Bob. An adversarial Bob can evaluate L(x) for a leakage
function L ⇒ L of his choice.
Output Maps: Define m maps M1, · · · ,Mm, of the form Mi : Y×Zp ≤ Zp as follows.
Fix an arbitrary input x∗ ⇒ X, and let z∗j = f(x∗, yj). For i = 1 to m and j = 1 to m,
define

Mi(yj , z) =

{
z − z∗j + 1 if j = i,

z − z∗j if j ∈= i

This ensures that for each i, j, Mi(yj , ·) is a permutation over Zp, and for each yi, there

is a map (namely Mi) such that Mi(yi, f(x
∗, yi)) = 1 but Mi(yj , f(x

∗, yj)) = 0 for all

j ∈= i.

Alice’s program: Alice’s input is m elements in Zp, (s1, · · · , sm).

1. Alice carries out the following computations:
• For Δ = 1 to κ, for i = 1 to m and t ⇒ {1, 2}:

• Pick xε,i,t ∪ X.
• For j = 1 to m, let Rj

ε,i,t = Mi(yj , f(xε,i,t, yj)).
• For j = 1 to m:

• Let R
j
ε = σm

i=1σ
2
t=1R

j
ε,i,t.

• let rj =
∑Γ

ε=1 R
j
ε .

• For j = 1 to m, let zj = sj + rj .
2. Alice creates several F-tokens with the following inputs:

• Tokens labeled (Δ, i, t) for Δ ⇒ [κ], i ⇒ [m], t ⇒ {1, 2}, with inputs xε,i,t.

2 W.l.o.g, the output alphabet can be considered Zp by choosing a prime p such that
for each y ⇒ Y, |{f(x, y)|x ⇒ X}| ← p.
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• m�log p→ more tokens to “communicate” the bits of (z1, · · · , zm): in a token to
send a bit 0, use input x̂0, and in a token to send a bit 1, use input x̂1, where
x̂0 and x̂1 are such that f(x̂0, y∗) ∈= f(x̂1, y∗) for some y∗.

Bob’s program: Bob’s input is an index c ⇒ [m].

1. Bob accesses the F-tokens sent by Alice with the following inputs:
• For the tokens labeled (Δ, i, t) for Δ ⇒ [κ], i ⇒ [m], t ⇒ {1, 2}, use input yc to

obtain an output zε,i,t = f(xε,i,t, yc).
• Use input y∗ in the remaining tokens to learn (z1, · · · , zm) (or just zc).

2. For all (Δ, i, t) let Rc
ε,i,t = Mi(yc, zε,i,t); let R

c
ε = σm

i=1σ
2
t=1R

c
ε,i,t.

3. Let rc =
∑Γ

ε=1 R
c
ε. Then output sc = zc − rc.

4 OTM from Leaky-OTM

Suppose Alice and Bob parties have access to parallel copies of F̃ (m)
OTM, for some

constant m. If m = 2, F̃ (m)
OTM is the same as OTM. In this section we show

how to implement OTM non-interactively, using parallel copies of F̃ (m)
OTM and a

single message from Alice to Bob, even when m ≥ 3. The protocol uses the
deterministic extraction strategy of [2]. The protocol crucially relies on the fact

that Alice does not learn when Bob accesses various copies of F̃ (m)
OTM (which

are implemented using tokens). Correspondingly, Alice never learns when Bob
accesses the OTM that is being implemented.

Overview. Firstly, note that implementing OTM using F̃ (m)
OTM tokens (for m ≥ 3)

is in fact impossible using a non-interactive protocol in which the order in which
Bob accesses the token is not adaptive: Bob could mentally run two executions
with two different values for his choice bits. Each execution would require the

honest Bob to access at most one out of m positions in each F̃ (m)
OTM instance. But

an adversarial Bob can access m− 1 ≥ 2 positions in each instance. Thus he can
complete both executions successfully, and learn both inputs of Alice. (A similar

argument can be used to rule out implementing OTM in F̃ (m)
OTM-hybrid is used

where Alice learns when Bob accesses an F̃ (m)
OTM instance, even if interaction is

allowed, as long as Bob is computationally unbounded.)
So necessarily we shall need to rely on Bob being able to access the tokens

adaptively, and in different order. This leads us to the following basic idea
underlying our construction. Alice’s inputs are hidden in two tokens, at random
positions. In addition, the first token (in a fixed position) contains a pointer to
the position in the second token where an input is hidden; similarly, the second
token (in a fixed position) has a pointer to the position in the first token that
holds the other input. To access the first input, Bob first opens the second token
at the fixed position, to recover a pointer to the first token, and then accesses
the first token to recover the input stored in that position from the first token.
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Similarly, if Bob wants to access the second input, he should first open the first
token, recover a pointer that tells him which position in the second token he
should access, and then open the second token at that position.

A malicious Bob must first open one of the two tokens. When he opens one
token, and recovers m − 1 positions, there is a 1/m probability that the one
position that he did not access is the one containing Alice’s input in that token.
This gives us a weak form of OTM, in which, with some probability, Bob learns
at most one secret.

To amplify this to a full-fledged OTM using a non-interactive protocol, we
use an deterministic extraction technique devloped in [2] (see the protocol in
Section 3.1). A degree 2 function is used to combine the several individual secrets
to form a random mask that is then used to mask the actual input of Alice. We
give the formal description of the protocol below, and defer the proof of security
to the full version.

Alice’s program: Alice’s input is two bits s0, s1.

1. Alice carries out the following computations:
• For i = 1 to κ,

• pick x0
i , x

1
i ∪ [m] and for each j = 1 to m, pick b0i,j , b

1
i,j ∪ {0, 1}.

• let a0
i,1 = (x0

i , b
0
i,1) and a1

i,1 = (x1
i , b

1
i,1); for j = 2 to m, let a0

i,j = (0, b0i,j)
and a1

i,1 = (0, b1i,j); for j = 2 to m.
• let R0

i = b0i,x1
i
and R1

i = b1i,x0
i
.

• Let r0 =
∑Γ

i=1 R
0
i and r1 =

∑Γ
i=1 R

1
i (summation in Z2).

• Let z0 = s0 + r0 and z1 = s1 + r1.
2. Alice invokes, in parallel, several copies of F̃(m)

OTM with the following inputs:

• Sessions labeled (i, β) ⇒ [κ]× {0, 1} with input (aγ
i,1, . . . , a

γ
i,m).

• Another session of F̃(m)
OTM to “communicate” the bits (z0, z1): Alice can use

(z0, z1, 0, · · · , 0) as her input in this session. (An adversary may receive both
these bits, if m ≥ 3.)

Bob’s program: Bob’s input is a choice bit b.

1. Bob invokes the same copies of F as Alice with the following inputs:
– For i = 1 to κ,

• If b = 0, first access the session numbered (i, 1) with input 1, and obtain
x1
i , and then access the session numbered (i, 0) with input x1

i to obtain
the bit R0

i .
• If b = 1, first access session (i, 0) with input 1, recover x0

i and then access
the session (i, 1) with input x0

i to recover R1
i .

– Recover zb from the last session of F̃(m)
OTM, using b as input.

2. After all sessions of F̃(m)
OTM are completed, compute rb =

∑Γ
i=1 R

b
i , and sb = zb − rb

(all operations in Z2). Output sb.
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Abstract. The exact computation of the number of distinct elements
(frequency moment F0) is a fundamental problem in the study of data
streaming algorithms. We denote the length of the stream by n where
each symbol is drawn from a universe of size m. While it is well known
that the moments F0, F1, F2 can be approximated by efficient streaming
algorithms [1], it is easy to see that exact computation of F0, F2 requires
space Ω(m). In previous work, Cormode et al. [9] therefore considered a
model where the data stream is also processed by a powerful helper, who
provides an interactive proof of the result. They gave such protocols with
a polylogarithmic number of rounds of communication between helper
and verifier for all functions in NC. This number of rounds (O(log2 m)
in the case of F0) can quickly make such protocols impractical.

Cormode et al. also gave a protocol with logm+1 rounds for the exact
computation of F0 where the space complexity is O

(
logm log n+ log2 m

)

but the total communication O (
√
n logm (log n+ logm)). They man-

aged to give logm round protocols with polylog(m,n) complexity for
many other interesting problems including F2, Inner product and Range-
sum, but computing F0 exactly with polylogarithmic space and commu-
nication and O(logm) rounds remained open.

In this work, we give a streaming interactive proto-
col with logm rounds for exact computation of F0 using
O (logm ( log n+ logm log logm )) bits of space and the communi-
cation is O

(
logm

(
log n+ log3 m(log logm)2

))
. The update time of the

verifier per symbol received is O(log2 m).

1 Introduction

In a seminal work [1], Alon, Matias and Szegedy studied the space complexity
of both approximating the frequency moments of a data stream and computing
them exactly. Streaming algorithms are usually designed to handle large data
sets, and the algorithm should be able to process each data element with small
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time overhead, and should have small working space as well. For instance one
of the striking results of Alon et al. is that the second frequency moment F2

can be approximated up to constant factors arbitrarily close to 1 using only
O(log n + logm) space by a randomized algorithm, where m is the size of the
universe and n is the stream length. The interested reader is referred to the
survey by Muthukrishnan [21].

It is known that the frequency moments Fj for integer j > 2 are hard to
even approximate by any streaming algorithm, i.e., any streaming algorithm
giving a good approximation must have large space. Motivated by this and the
paradigm of cloud computing, one can study a new model where a helper/prover
is introduced. The hope is that while some problems require a lot of space to
solve by an unassisted streaming algorithm, a helper who is not space restricted
(and sees the stream in the same way as the verifier) might not only be able to
compute the result, but be able to convince the client/verifier of the correctness
of that result by providing an interactive proof, that can be verified by the
client using small space only. In the past few years, there have been numerous
papers [5–9] considering this idea.

Thus we have the following scenario: both the prover and client observe the
stream. The client, who is unable to store the data, computes some sketch of
the data within his space restrictions. The prover, having no space restriction,
can store the entire data, compute the answer, and send it to the client. But
the prover may not be honest, e.g. the prover may have financial incentives
to not provide the correct answer. The client uses the sketch of the data to
reject wrong claims with high probability. The prover can be thought of as an
internet company which offers cloud computing services and operates huge data
warehouses. The only formal restriction on the prover is that he cannot predict
the future parts of the stream. From now on, we refer to the client as the verifier.

Besides providing upper bounds one can also show lower bounds on the model
of prover assisted data streaming algorithms. Data streaming protocols can be
simulated by Arthur-Merlin communication protocols, where Merlin is the prover
and the data stream input is split across some players, who together constitute
the verifier Arthur. Arthur-Merlin communication complexity was first intro-
duced by Babai, Frankl and Simon [3] and was studied in greater detail by
Klauck [15, 16]. These lower bounds have been used by Chakrabarti et al. [5]
to give non-trivial lower bounds on approximating and computing exactly the
k-th frequency moments for large enough k, in the setting where the proof pro-
vided is noninteractive, i.e., the prover provides an “annotation” to the data
stream that is then verified without further interaction. Unfortunately analyz-
ing model of interactive proofs with many rounds between prover and verifier
in communication complexity seems to be out of reach for current techniques in
communication complexity.

One of the fundamental problems in data streaming is to compute the number
of distinct elements in a data stream, which is the zeroth frequency moment and
is denoted by F0. This problem has many application in areas such as query
optimization, IP routing, and data mining [14]. By a simple reduction from the
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disjointness function [23], it is easy to get a lower bound of σ(m) (assuming
m = τ(n)) on the streaming complexity of computing F0 exactly without a
prover. If we require exact computation of F0 and sublinear verifier space, we
have to look at the prover-verifier model.

By appealing to Klauck’s [15] result on the MA complexity of disjointness,
there is a lower bound on hv = σ(m) to compute F0 exactly in the online MA
model as defined in [5], where h is the help cost and v is the space used by
the streaming algorithm. Cormode et al. [9] gave interactive streaming protocols
with logm rounds for various interesting problems like frequency moments, the
Index function and computing Inner Products. They also gave a general pur-
pose protocol that computes every function in NC with polylogarithmic space,
communication and rounds. For the case of exactly computing F0, the general
purpose protocol uses O(log2 m) rounds, which can very quickly become im-
practical. Hence the authors also describe a protocol using only logm rounds,
where the help cost (i.e., communication) is not polylogarithmic in m and n. We
improve their protocol so that both the communication h and the space v are
polylogarithmic in m and n, while using only logm rounds of interaction.

1.1 Previous Work

Let m be the universe size and n be the length of the stream. Although we
later state our complexity results in terms of m and n, in this subsection, for
simplicity, we assume m and n are roughly of the same order of magnitude, i.e.
m = poly(n) following the previous works in [8, 9]. We note that the authors
of [8, 9] stated the complexity of their protocols in terms of machine words, but
in this work, all complexities are stated in bits. It is known that approximating
F0 up to a (1±λ) multiplicative factor can be done in O(λ−2+logm) space using
randomization, which is optimal as well [14].

Goldwasser, Kalai and Rothblum [11] proposed a delegation general pur-
pose interactive protocol for log-space uniform NC circuits. Their protocol was
presented formally in the streaming setting by Cormode, Mitzenmacher, and
Thaler [8]. We state their results below for easy reference.

Fact 1. [Theorem 3.1 from [8]]
Let f be a function over an arbitrary field F that can be computed by a family of
O(log S(n))-space uniform arithmetic circuits(over F) of fan-in 2, size S(n) and
depth d(n). Then in the streaming model with a prover, there is a protocol which
requires O(d(n) log S(n)) rounds such that the verifier needs O (logS(n) log |F|)
bits of space and the total communication between the prover and the verifier is
O (d(n) logS(n) log |F|).

As a result of Fact 1, if we use the general purpose interactive protocol of [11]
to compute F0 exactly, it will require σ(log2 m) rounds of interaction between the
prover and verifier. Cormode, Mitzenmacher, and Thaler [8] gave an alternative
interactive protocol for F0 based on linearization, whereby the prover is more
efficient in terms of running time. Their protocol requires log2 m rounds where
the verifier’s space is O(log2 m) bits and the total communication is O(log3 m).
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As far as we know, the only interactive protocol which uses logm rounds to
compute F0 is given in [9]. We note that the results stated in [9] assumed that
m = n. Restating the complexity of the F0 protocol in [9] in terms of m and n,
the space of the verifier is O

(
logm logn + log2 m

)
and the total communication

is O (
∈
n logm (logn + logm)) [18]. Compared to the other protocols (e.g. F2 and

Index) given in [9], the total communication is not polylogarithmic in m and n.
We briefly explain why the communication blows up to Õ(

∈
n) in Section 1.2.

Chakrabarti et al. [5, 7] studied the situation in which the prover provides a
(lengthy) annotation/proof to the verifier after the data stream has ended. The
verifier processes the annotation in a streaming fashion. This corresponds to
randomized checking of noninteractive proofs (in the theory of interactive proofs,
such systems are called Merlin Arthur games). For the exact computation of F0

in this model, the help cost, h and the verifier’s space, v are both O(m2/3 logm).
In other related work, Gur and Raz [12] gave a Arthur-Merlin-Arthur(AMA)

streaming protocol for computing F0 exactly with both h and v being ⎧O(
∈
m)

(where ⎧O hides a polylog(m,n) factor). Klauck and Prakash [17] studied a re-
stricted interactive model where the communication between the prover and
verifier has to end once the stream is already seen. Very recently, Chakrabarti et
al. [6] presented constant-rounds streaming interactive protocols with logarith-
mic complexity for several query problems, including the well studied INDEX
problem.

1.2 Previous Results and Our Techniques

First, we briefly describe why the protocol of [9] for computing F0 fails to have
total communication polylogarithmic in m and n. It is easy to see that F0 =⎨m

i=1 h (fi) where fi := |{j | aj = i}| and h : N ⊆ {0, 1} is given by h(0) = 0
and h(x) = 1 for 1 ⊂ x ⊂ n. Since h depends on n + 1 points, the degree
the polynomial h̃, obtained via interpolation, is at most n, where h̃ agree with
h on {0, 1, · · · , n}. If one was to naively apply the famous sum-check protocol
of Lund et al. [20], the degree of the polynomial communicated at each round
would be O(n). This is even worse than the trivial protocol in which the prover
either sends the frequency vector f := (f1, · · · , fm) or the sorted stream, with
a cost of Õ (min(m,n)). Since the proof is just a sorted stream, its correctness
can be checked by standard fingerprinting techniques as described in [17]. One
obvious way to rectify this would be to reduce the degree of the polynomial
to be communicated at each round. One way to reduce the degree of h̃ is to
remove all heavy hitters from the stream, so that the degree of h̃ can be made
small (because h(x) may take any value for large x), which in turn means that
the communication will be low. The heavy hitter protocol in [9] however uses
a lot of communication just to identify all the heavy hitters, which causes the
communication cost in their protocol to be high. In this work, we also reduce
the degree of the polynomial to be communicated at each round. But instead of
removing the heavy hitters, we write F0 as a different formula. Such an approach
was first used by Gur and Raz [12] to obtain an AMA-protocol for exact F0. Here,
the main technical point is to replace the OR function on n variables (which has
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high degree) with a approximating polynomial over a smaller finite field Fq,
so that this new polynomial has low degree. Such approximating polynomials
were first constructed in [24,25] to prove circuit lower bounds. The degree of the
approximating polynomial p : Fn

q ⊆ Fq depends on q. But choosing q to be small
forces us to work inside the field Fq, and the arithmetic will be correct modulo q.
Hence, F0 will be calculated modulo q. Note that we cannot choose q > m as the
approximating polynomial degree will be larger than m. By choosing the first
logm primes, we can compute F0 modulo these logm many primes with the help
and verifier’s cost being polylogarithmic in m and n (see Lemma 3). This does
not increase the number of rounds because all these executions can be done in
parallel. The exact value of F0 can be reconstructed by the Chinese Remainder
Theorem. As a result of decreasing the degree of the polynomial, our protocol
no longer has perfect completeness. By parallel repetition, the probability that
a honest prover succeeds can be made close to 1.

We now compare our results with previously known non-interactive and inter-
active protocols that compute F0 exactly. For comparison purposes, we assume
that m = τ(n). The results are collected in Table 1. We note that if we fix the
number of rounds to logm, our work improves the total communication from

O
(∈

m log2 m
)

to O
⎩

log4 m (log logm)
2
⎢

, while only increasing the the veri-

fier’s space by a multiplicative factor of log logm. For practical purposes, the
authors in [9] argue that the number of rounds in the general purpose construc-
tion of [11], which is σ(log2 m), may be large enough to be offputting. All the
other protocols Cormode et al. [9] devised only require logm rounds. In an ar-
ticle in Forbes [10] in 2013, it was reported that the National Security Agency’s
data center in Utah will reportedly be capable of storing a yottabyte of data.
For a yottabyte-sized input, this corresponds to about 80 rounds of interaction if
one uses a protocol with logm rounds. For a protocol with log2 m rounds, more
than 6000 rounds of interaction are needed.

Recently, Chakrabarti et al. [6] designed a streaming interactive protocol for
the Index function with two messages1 where both space and communication are
O(log n log logn). Previous work gave a ⎧O(

∈
n) protocol in the this online MA

model [5], whereas in [9], a logn round interactive protocol with O(log n log logn)
space and communication is given. Since for the INDEX function, there is a two
message protocol requiring only O(log n log logn) space and communication, one
may ask whether a similar kind of protocol is possible for F0 or other frequency
moments. It is however easy to see that for k →= 1, the k-th frequency moment,
Fk is as hard as the Disjointness function. In any online communication protocol
for the Disjointness function with 2 and 3 messages, there is a lower bound of
σ(n1/2) and σ(n1/3) respectively [6]. Hence, it is not possible to compute F0

exactly using only 1, 2 or 3 messages with communication and space polyloga-
rithmic in m and n. How about using a constant number of r messages, where

1 The first message is from the verifier to the prover and this message depends on
the stream and the verifier’s private randomness. The second message is from the
prover to the verifier, which depends on the stream and the message received from
the verifier.
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r ∧ 4, to get communication and space polylogarithmic in m and n? It is be-
lieved that this is not possible: due to the recent results in [6], if Disjointness
on n bits can be solved with a constant number of rounds and polylogarithmic
complexity in the online one-way communication model, then the (ordinary)
AM communication complexity of Disjointness will also be polylog(n), which is
unlikely, since Disjointness is the generic co-NP complete problem in communi-
cation complexity [3]. Hence, constant round protocols (r ∧ 4) for Fk(k →= 1)
with polylogarithmic complexity probably do not exist, but the current tech-
niques in communication complexity (i.e., providing strong lower bound on the
AM communication complexity of Disjointness) are not sufficient to prove this.

Table 1. Comparison of our protocol to previous protocols for computing the exact
number of distinct elements in a data stream. The results are stated for the case where
m = θ(n). The space and the total communication bounds are stated asymptotically.

Paper Space Total Communication Number of Rounds

[5] m2/3 logm m2/3 logm 1

[8] log2 m log3 m log2 m

[9] log2 m
∈
m log2 m logm

This work log2 m log logm log4 m (log logm)
2

logm

2 Preliminaries

In this section, we define the model of streaming computations with a helper/
prover and introduce basic notations from coding theory. The reader is referred
to the full version [18] for a detailed discussion of the streaming model with a
prover.

2.1 Data Streaming Model

The input is given as a data stream Π = ≥a1, . . . , an⇐ of elements from a uni-
verse {1, . . . ,m}. The ai are sometimes referred to as symbols. In our model we
consider two parties, the prover, and the verifier. Both parties are able to access
the data stream one element at a time, consecutively, and synchronously, i.e., no
party can look into the future with respect to the other one.

Definition 1. After the stream ends, both the prover P and verifier V exchange
some messages between each other. We denote the output of V on input Π, given
prover P and V’s private randomness R, by out(V ,P ,R, Π). During any phase
of the interaction, V can output ⇒ if V is not convinced that P’s claim is valid.
We say P is a valid prover if for all streams Π,

PrR [out(V ,P ,R, Π) = f(Π)] ∧ 1 − λc.
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We say V is a valid verifier for f if there is at least one valid prover P, and for
all provers P ◦ and all streams Π,

PrR [out(V ,P ,R, Π) /∪ {f(Π),⇒}] ⊂ λs.

λc and λs are known as the completeness error and soundness error respectively.
In this work, we take λc = λs = 1

3 . By standard boosting techniques, these
probabilities can be made arbitrary close to 1 [2].

Definition 2. We say there is a (h, v) streaming interactive protocol (SIP) with
r rounds that computes f , if there is a valid verifier V for f such that:

1. V has only access to O(v) bits of working memory.
2. There is a valid prover P for V such that P and V exchange at most 2r

messages in total, and the sum of the length of all messages is O(h) bits.

2.2 Coding Theory

A q-ary linear code C of length n is a linear subspace of Fn
q , where q is some

prime power. If C has dimension k and minimum distance d, then we call it
a [n, k, d]q code. Justesen codes [13] is a class of codes with constant alphabet
size and they have constant relative distance and rate. It is known that Justesen
codes are locally logspace constructible (see Lemma 3.3 of [19]). For more details
of standard definitions in coding theory, the reader is referred to [26].

3 Our Results

For each j ∪ [m] and i ∪ [n], we define βi : [m] ⊆ {0, 1} such that βi(j) = 1 ≤
ai = j. We can also interpret each βi : {0, 1}logm ⊆ {0, 1} by associating each
j ∪ [m] with its binary expansion. It is easy to see that

F0 =
m⎣

j=1

⎛
n⎝

i=1

βi(j)

⎞

=
⎣

x1√{0,1}
· · ·

⎣

xd√{0,1}
OR (β(x1, · · · , xd))

where d = logm, β : {0, 1}d ⊆ {0, 1}n is

β(x1, · · · , xd) := (β1(x1, · · · , xd), · · · , βn(x1, · · · , xd)) .

and OR : {0, 1}n ⊆ {0, 1} is the OR function on n variables.
Following the ideas of [20], we consider the low degree extension of βi over a

larger field. Let q be a prime and Δ an integer to be determined later. We extend
the domain of βi from Fd

2 to Fd
qλ . For 1 ⊂ i ⊂ n and 1 ⊂ k ⊂ d, we denote the

kth bit of the binary expansion of ai by a
(k)
i . The extension ⎧βi : Fd

qλ ⊆ Fqλ is
given by

⎧βi(x1, · · · , xd) :=
d⎠

j=1

[⎩
2a

(j)
i − 1

⎢
xj +

⎩
1 − a

(j)
i

⎢]
. (1)
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Note that ⎧βi(x1, · · · , xd) = βi(x1, · · · , xd) for all x ∪ Fd
2. Similarly, define ⎧β :

Fd
qλ ⊆ Fn

qλ in the natural way:

⎧β(x1, · · · , xd) := (β̃1(x1, · · · , xd), · · · , β̃n(x1, · · · , xd)) .

With this notation,

F0 =
⎣

x1√{0,1}
· · ·

⎣

xd√{0,1}
OR (⎧β(x1, · · · , xd)) . (2)

Running the sum-check protocol naively to (2) would require the prover to send a
degree n polynomial at each round. We replace the OR function in (2) with a low
degree polynomial which approximates the OR function with high probability.
This idea was first introduced in [22, 25] and was also used in [12] to obtain an
AMA protocol for exact F0.

Lemma 1. Using O(L logn) bits of randomness, we can construct a polynomial
p : Fn

q ⊆ Fq of individual degree at most L(q−1), such that for every x ∪ {0, 1}d,

Pr [p (⎧β(x1, · · · , xd)) = OR (⎧β(x1, · · · , xd))] ∧ 1 − 1

6m logm
,

where L is the least integer such that

(
2

3

)L

⊂ 1

6m logm
. (3)

Proof. Start with a [∂n, n, 1
3∂n]q-linear code C, where ∂ > 1 is a constant to be

chosen such that C exist. Let G be the generator matrix of C. Choose uniformly
at random φ1, · · · , φL ∪ [∂n] where L is the least integer that satisfies (3) and
define

p(x1, · · · , xn) := 1 −
L⎠

i=1

[
1 − ((Gx)εi )

q−1
]
.

It is easy to see that the individual degree of p is at most L(q−1). By properties
of the code C, for any x ∪ {0, 1}n,

Pr
ε1,··· ,εL

[

p(x) →=
⎝

i

xi

]

⊂
(

2

3

)L

⊂ 1

6m logm
.

⇔∗
Since Fqλ can be viewed as a vector space over Fq, we can view p : Fn

q ⊆ Fq

as ⎧p : Fn
qλ ⊆ Fqλ , by applying p componentwise. By the union bound, the

probability that

Pr



F0 (mod q) =
⎣

x1√{0,1}
· · ·

⎣

xd√{0,1}
⎧p (⎧β(x1, · · · , xd))



 ∧ 1 − 1

6 logm
.
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We first give a interactive protocol to compute F0 (mod q) with high prob-
ability. Let q ⊂ 2 logm log logm + 2 be a prime and Δ be the smallest integer
such that qΩ−1 ∧ 6Ld logm. Before observing the stream, the prover and veri-
fier agree on the code C as in Lemma 1. The verifier chooses O(L log n) random
bits to define the polynomial ⎧p and sends this randomness to the prover. The
verifier chooses randomly r ∪ Fd

qλ and computes ⎧p (⎧β(r1, · · · , rd)) in a stream-

ing fashion. In the full version [18], we illustrate how the verifier can compute
⎧p (⎧β(r1, · · · , rd)) given a one-pass over the stream without storing the whole
input.

After the stream ends, the verification protocol proceeds in d rounds to com-
pute F0 (mod q) with probability at least 1 − 1

6 logm . In the first round, the

prover sends a polynomial g1(X1) which is claimed to be

g1(X1) =
⎣

x2√{0,1}
· · ·

⎣

xd√{0,1}
⎧p (β̃1 (X1, x2, · · · , xd) , · · · , β̃n (X1, x2 · · · , xd)) .

The polynomial g1(X1) has degree L(q−1) which can be described in O(Lq log qΩ)
bits. The verifier need not store g1(X1) but just need to compute g1(r1), g1(0)
and g1(1), which can be done in a streaming fashion. Note that if the prover is
honest, then

F0 (mod q) = g1(0) + g1(1). (4)

In round 2 ⊂ j ⊂ d− 1, the verifier sends rj−1 to the prover who then sends the
polynomial gj(Xj), which is claimed to be

gj(Xj) =
⎣

xj+1√{0,1}
· · ·

⎣

xd√{0,1}
⎧p(β̃1 (r1, · · · , rj−1, Xj, xj+1, · · · , xd) , · · ·

· · · ,β̃n (r1, · · · , rj−1, Xj, xj+1, · · · , xd))

The verifier computes gj(rj), gj(0) and gj(1) and proceeds to the next round
only if the degree of gj is at most L(q − 1) and

gj−1(rj−1) = gj(0) + gj(1).

In the final round, the verifier sends rd−1 to the prover who then sends the
polynomial gd(Xd), which is claimed to be

gd(Xd) = ⎧p (β̃1 (r1, · · · , rd−1, Xd) , · · · , β̃n (r1, · · · , rd−1, Xd)) .

The verifier only accepts that (4) is computed correctly if gd is of the correct
degree, gd−1(rd−1) = gd(0) + gd(1) and gd(rd) = ⎧p (⎧β(r1, · · · , rd)).

Lemma 2. In the case of the honest prover, the verifier will accept the wrong
value of F0 (mod q) with probability at most 1

6 logm . If

⎣

x1√{0,1}
· · ·

⎣

xd√{0,1}
⎧p (⎧β(x1, · · · , xd))
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correctly represents F0 (mod q) and if the prover cheats by sending some polyno-
mial which does not need the requirements of the protocol, the verifier will accept

with probability at most L(q−1)d
qλ

.

The proof of Lemma 2 can be found in the full version [18].

Analysis of Space and Communication. We now analyse the space needed
by the verifier and the total communication between the prover and verifier over
the logm rounds to verify F0 (mod q). First, let us look at the space complex-
ity of the verifier. He needs to store φ1, · · · , φL which will take O(logm logn)
bits of space. With O(logm log logm) bits of space, the verifier can compute
⎧p (⎧β(r1, · · · , rd)) when observing the stream. Note during the interaction with
the prover after the stream ends, at each round 1 ⊂ j ⊂ d, the verifier need not
store the polynomial gj(Xj) but only need to evaluate gj at a constant number of
points. Hence, the space complexity of the verifier is O ( logm [ logn + log logm ])
bits.

We now bound the total communication between the prover and verifier.
The verifier needs to communicate φ1, · · · , φL and r1, · · · , rd−1 to the prover,
with cost O(logm logn) and O(logm log logm) respectively. The prover, who
needs to send g1(X1), · · · , gd(Xd), uses O(dLq log qΩ) = O(q · log2 m log logm)
bits to communicate all these polynomials. Hence, the total communication is
O ( logm (logn + q logm log logm)) bits. We summarize our result below.

Lemma 3. There exist an (h, v) SIP with logm rounds with
h = logm (log n + q logm log logm) and v = logm ( logn + log logm ) that com-
putes F0 (mod q), where the completeness error is 1

6 logm and the soundness

error 1
3 logm for any prime q ⊂ 2 logm log logm + 2.

Computing F0 Exactly. Lemma 3 gives us an streaming interactive protocol
to verify the correctness of F0 (mod q) with high probability for any prime
q ⊂ 2 logm log logm + 2. Now, we show how the prover can verify F0 with high
probability. Let Q = {q1, · · · , qlogm} be the first logm primes. Note that qlogm ⊂
2 logm log logm + 2 for all m ∧ 2 [4] and

∏logm
i=1 qi > m. The verifier computes

F0 (mod qi) for i = 1, · · · , logm. Note that this can be done in parallel and will
cause the working space of the verifier and the total communication to increase,
but the number of rounds is still logm. By using the Chinese remainder theorem,
the verifier can compute F0 exactly given F0 (mod qi) for i = 1, · · · , logm.
By the union bound, the completeness and soundness error are 1/6 and 1/3
respectively.

In the preprocessing phase (even before seeing the data), the verifier and
prover agree on a constant ∂ > 0 such that the linear code Ci := [∂n, n, 13 ∂n]qi
exists for all 1 ⊂ i ⊂ logm. Note that the same φ1, · · · , φL can be used to
define the polynomial ⎧pi : Fn

qλi
⊆ Fqλi

for each 1 ⊂ i ⊂ logm. For each 1 ⊂
i ⊂ logm, the verifier needs to choose uniformly at random r(i) ∪ Fd

qλi
and

compute ⎧p
(
⎧β
(
r(i)

))
. This can be done in space O

(
log2 m log logm

)
. Hence, the

total space used by the verifier is O(logm ( log n + logm log logm )).
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To bound the total communication, we need the following fact: Let pn be the
nth prime, then it is known [4] that

⎨n
i=1 pi = κ(n2 logn) for all n ∧ 2. Hence,

the total communication is O
(
logm logn + log4 m(log logm)2

)
.

Running Time of the Verifier. First, we analyse the processing time of each
symbol seen in the stream. We suppose it takes unit time to add and multiply two
field elements from Fqλ . For each symbol ak seen, the verifier needs to compute

β̃k

(
r(q)

)
where r(q) ∪ Fd

qλ for each q ∪ Q. From (1), it is easy to see that the

verifier needs O(d) = O(logm) time to compute β̃k

(
r(q)

)
for each q ∪ Q. Hence

the total time taken by the verifier to process each symbol is O(log2 m). We
state our main theorem below.

Theorem 1. There exist an (h, v) SIP with logm rounds with h = logm(
logn + log3 m(log logm)2

)
and v = logm ( logn + logm log logm ) that com-

putes F0 exactly, where the completeness and soundness error are 1/6 and 1/3
respectively. The update time for the verifier per symbol received is O(log2 m).
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Abstract. The width measure treedepth, also known as vertex ranking,
centered coloring and elimination tree height, is a well-established notion
which has recently seen a resurgence of interest. We present an algorithm
which—given as input an n-vertex graph, a tree decomposition of width
w, and an integer t—decides whether the input graph has treedepth at
most t in time 2O(wt)·n. We use this to construct further algorithms which
do not require a tree decomposition as part of their input: A simple algo-
rithm which decides treedepth in linear time for a fixed t, thus answering
an open question posed by Ossona de Mendez and Nešetřil as to whether
such an algorithm exists, a fast algorithm with running time 2O(t2) · n
and an algorithm for chordal graphs with running time 2O(t log t) · n.

Keywords: treedepth, vertex ranking, centered coloring, width mea-
sures, parameterized algorithms.

1 Introduction

The notion of treedepth has been introduced several times in the literature under
different names. It seems that it was first formally studied by Pothen who used
the term minimum elimination tree [19]; Katchalski et al. [12] who used the
name ordered colorings; Bodlaender et al. in [1] under the term vertex ranking.
More recently, Ossona de Mendez and Nešetřil brought the same concept to the
limelight in the guise of treedepth in their book Sparsity [18].

There are several equivalent definitions of this term. One of the most intuitive
characterizations of treedepth is via the degeneracy of the graph: a graph class
has bounded treedepth if and only if the class is degenerate and there exists a
constant l (that depends on the class) such that no graph from the class has an
induced path of length at least l (Theorem 13.3 in [18]). That is, the condition
that a graph has bounded treedepth imposes a slightly stronger restriction than
just bounding the degeneracy of the graph. A particularly simple definition of
treedepth is via the notion of vertex rankings. A t-ranking of a graph G = (V, E)
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is a vertex coloring c : V ≥ {1, . . . , t} such that for any two vertices of the same
color, any path connecting them has a vertex with a higher color. The minimum
value of t for which such a coloring exists is the treedepth or the vertex ranking
number of the graph. We denote the treedepth of a graph G by td(G). The
vertex ranking number finds applications in sparse matrix factorization [9,13,15]
and VLSI layout problems [14]. This notion also has important connections to
the structure of sparse graphs. As Ossona de Mendez and Nešetřil show, a very
general class of sparse graphs, the so-called graphs of bounded expansion, can
be decomposed into pieces of bounded treedepth [17].

Formally, the Treedepth problem is to decide, given a graph G and an inte-
ger t, whether G has treedepth at most t. This decision problem is NP-complete
even on co-bipartite graphs [1,19]. On trees, the problem can be decided in linear
time [22]. Treedepth can be computed in polynomial time on permutation, cir-
cular permutation, interval, circular-arc, trapezoid graphs and cocomparability
graphs of bounded dimension [6]. It is, however, NP-hard on chordal graphs [7].
The best-known approximation algorithm is due to Bodlaender et. al. [3] and
has approximation ratio O(log2 n), where n is the number of vertices in the
graph. The best-known exact algorithm is due to Fomin, Giannopoulou and
Pilipczuk [10] and runs in time O∗(1.9602n). For practical applications, several
simple heuristics exist. One such heuristic is to find a balanced vertex separa-
tor, assign each vertex of the separator a distinct color and then recurse on the
remaining components. This method shows that n-vertex planar graphs have a
treedepth of O(

≤
n). There are several good heuristics for obtaining balanced sep-

arators and some of the most practically useful ones rely on spectral techniques
(see, for instance [20,23]).

Fixed-parameter tractability with the solution size as parameter follows di-
rectly from the fact that graphs of bounded treedepth are minor-closed. Then
by the celebrated Graph Minors Theorem of Robertson and Seymour, graphs of
treedepth t are characterized by a finite set of forbidden minors and whether a
forbidden minor is present in an n-vertex graph can be tested in time O(f(h) ·
n3) [21], where h is the number of vertices in the forbidden minor and f some re-
cursive function. In their textbook Sparsity [18], Ossona de Mendez and Nešetřil
point out that the property of having treedepth at most t is MSO-expressible
for every fixed t and thus by Courcelle’s theorem and the fact that graphs of
bounded treedepth have bounded treewidth, the Treedepth problem can be
decided in linear time. They propose the following problem: Is there a simple
linear time algorithm to check td(G) � t for fixed t? Bodlaender et. al. in [1]
provide a dynamic programming algorithm that takes as input a graph G and
a tree decomposition of G of width w, and decides whether G has treedepth at
most t in time1 2O(w2t) ·n2. In this paper we present a linear time algorithm that
decides whether td(G) � t in time 2O(wt) · n, improving both the dependence
on w and n. If indeed td(G) � t, then the algorithm also constructs a treedepth

1 The running time stated in [1] is polynomial time for a fixed t and w, but an analysis
in these parameters is straightforward. From a personal communication [4], it seems
that the running time can be improved to 2O(w2t)n.
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decomposition within this time. That a better dynamic programming algorithm
can be achieved using treedepth leads us to believe that representing the ranking
of the vertices as a tree might be algorithmically helpful in other cases.

We can then easily extend this result to get a simple algorithm, which runs
in time 22O(t) · n, and, using a 5-approximation for treewidth by Bodlaender
et. al. [2], an algorithm that runs in time 2O(t2) · n.

2 Preliminaries

We use standard graph-theoretic notation (see [8] for any undefined terminology,
in particular tree decompositions). All our graphs are finite and simple. Given
a graph G, we use V (G) and E(G) to denote its vertex and edge sets. For
convenience we assume that V (G) is a totally ordered set, and use uv instead of
{u, v} to denote the edges of G. For X ⊆ V (G), we let G[X ] denote the subgraph
of G induced by X . Given an edge e = uv of a graph G, we let G/e denote the
graph obtained from G by contracting the edge e, which amounts to deleting
the endpoints of e, introducing a new vertex wuv, and making it adjacent to all
vertices in (N(u) ∪ N(v)) \ {u, v}. For an edge e = uv, by contracting v into
u, we mean contracting e and renaming the vertex wuv by u. For a function
f : X ≥ Y and a set X ≡ ⊆ X we will define f(X ≡) = {f(x) | x ∈ X ≡}. A rooted
graph G = (V, E, r) is a graph with the specified universal vertex r ∈ V (G)
which is connected to every other vertex of G. A rooted tree is a tree with a
specially designated node known as the root. Let T be a rooted tree with root r
and let x ∈ V (T ). Then an ancestor of x is any node a �= x on the path from r to
x. Similarly a descendant of x is any node d �= x on a path from x to a leaf of T .
A rooted forest is a disjoint union of rooted trees. Whenever we refer to a forest
we will mean a rooted forest. For a node x in a tree T of a forest, the depth of x
is the number of vertices in the path from the root of T to x (thus the depth of
the root is one). The height of a forest is the maximum depth of a node of the
forest, a forest with a single node therefore has height one. The closure clos(F ) of
a forest F is the graph G = (

⋃
T∼F V (T ), E = {xy | x is an ancestor of y in F}).

Let x be a node of a tree T and let S be all the descendants of x in T . Then the
subtree of T rooted at x, denoted by Tx, is the subtree of T induced by the node
set S ∪ {x} with root x. Furthermore if C is a set of children of x in T and the
set S≡ contains all descendants of nodes of C in T , the tree denoted by TC

x , is
the subtree of T induced by the node set S≡ ∪ C ∪ {x} with root x. The height
of a node x of a tree T is the height of Tx.

A treedepth decomposition of a graph G is a pair (F, ψ), where F is a rooted
forest and ψ : V (G) ≥ V (F ) in an injective mapping such that if uv ∈ E(G)
then either ψ(u) is an ancestor of ψ(v) or vice versa. Whenever we deal with
treedepth decompositions in this paper, the mapping ψ will usually be implicit
as we will have V (G) ⊆ V (F ). The treedepth td(G) of a graph G is then the
minimum height of any treedepth decomposition of G.

A treedepth decomposition of a graph is not unique. One can always add extra
vertices to a treedepth decomposition without increasing its height. We introduce
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the notion of trivially improvable treedepth decomposition to differentiate between
treedepth decomposition that have such unnecessary nodes and those who do not.

Definition 1 (Trivially Improvable Treedepth Decompositions). A tree-
depth decomposition T of a graph G is trivially improvable if V (G) ∅ V (T ).

We will also extensively use a special kind of treedepth decomposition that we
will call nice treedepth decomposition. This notion is similar to that of minimal
trees introduced in [10].

Definition 2 (Nice Treedepth Decomposition). A treedepth decomposi-
tion T of G is nice if T is not trivially improvable and for every node x ∈ V (T ),
the subgraph of G induced by the nodes in Tx is connected.

Every graph admits a nice treedepth decomposition of minimal height. A proof
of this fact is provided in the appendix.

3 Dynamic Programming Algorithm

In this section we present an algorithm that takes as input a graph G, a tree de-
composition T of G of width w, and an integer t, and decides whether td(G) � t
in time 2O(wt) · n. For yes-instances, the algorithm can be modified to output
a treedepth decomposition by backtracking. Later we will show how this algo-
rithm can easily be used to achieve the three claimed results. The algorithm is a
dynamic programming algorithm whose tables contain so-called partial decompo-
sitions for every bag of the tree decomposition. Each partial decomposition will
correspond to a number of treedepth decompositions of that portion of the graph
that was already processed during the dynamic programming. Those partial de-
compositions just store a minimally necessary amount of information about the
implicitly constructed treedepth decompositions: The structure of subtrees of a
treedepth decomposition that contain no vertex of the current bag is irrelevant
for the remaining computation and thus such subtrees can be represented by a
single number, namely their height. To retain the information about ancestor
relationships between the already processed vertices, we maintain a single tree
per partial decomposition. It turns out that for this purpose, it suffices to only
store trees whose leaves are all contained in the current bag. Formally a partial
decomposition is defined as follows.

Definition 3 (Partial Decomposition). A partial decomposition is a triple
(F, X, h), where F is a forest of rooted trees with X ⊆ V (F ) and h : V (F ) ≥ N

+

is a height function which obeys the property that for nodes x, y ∈ V (F ) with x
an ancestor of y, h(x) > h(y). Let R be the set of all roots in F . The height of
(F, X, h) is maxx∼R h(x).

It is important for the running time of our algorithm that the table sizes are
small. We achieve this by introducing a notion of equivalency and subsequently
only store one partial decomposition of every equivalence class.
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Definition 4 (Partial Decomposition Equivalency). Two partial decompo-
sitions (F1, X1, h1) and (F2, X2, h2) are equivalent if and only if X1 = X2 and
there exists a bijective function ψ : V (F1) ≥ V (F2) such that the following holds:
The function ψ is an isomorphism between F1 and F2. For all x ∈ X1, ψ(x) = x,
that is, ψ is the identity map when restricted to the set X1. For every node v in
the forest F1, h1(v) = h2(ψ(v)).

Clearly two equivalent partial decompositions have the same height. We will
keep a representative for each equivalence class during the dynamic programming.
These partial decompositions will represent all pertinent treedepth decomposi-
tions of the portions of the graph seen so far. The way in which we will connect
treedepth decompositions to partial decompositions will be based on the follow-
ing operation.

Definition 5 (Restriction of a Partial Decomposition). The restriction
of a partial decomposition (F, X, h) to X ≡ ⊆ X is the partial decomposition
(F ≡, X ≡, h≡), where F ≡ is obtained by iteratively deleting the leaves of the forest F
that are not in X ≡. The height function h≡ is the restriction of h to V (F ≡).

As we move from the leaves to the root of the tree decomposition the concept
of a topological generalization will provide a relationship between the previous
table of partial decompositions and the new ones we compute by enforcing that
the predecessor relationship is maintained.

Definition 6 (Topological Generalization). Let F1, F2 be rooted forests and
let X be a set of vertices such that X ⊆ V (F1) ∩ V (F2). We say F1 topologically
generalizes F2 under X if there exists an injective mapping f : V (F2) ≥ V (F1)
where f |X = id and for any node x ∈ V (F2) and an ancestor y of x, f(y)
is an ancestor of f(x) in F1. We say that a partial decomposition (F1, X1, h1)
topologically generalizes a partial decomposition (F2, X2, h2) if X2 ⊆ X1 and F1
topologically generalizes F2 under X2.

This definition does not capture the relation between the respective height
functions that we want when dealing with partial decompositions. We therefore
introduce the following notion of compatibility.

Definition 7 (Compatible Height Functions). Let (F, X, h) be a partial
decomposition and (F ≡, X ≡, h≡), X ≡ ⊆ X such that F generalizes F ≡ topologically
as witnessed by the mapping f : V (F ≡) ≥ V (F ). We say that h is compatible
with h≡ under f if for every node z ∈ F with children C in F it holds that

h(z) =

{
max{1 + maxc∼C h(c), h≡(f−1(z))} if f−1(z) exists
1 + maxc∼C h(c) otherwise

where we define the maximum over the empty set to be zero. Note that for every
f, h≡ there always exists exactly one compatible height function which can easily
be constructed via a bottom-up computation on F .



936 F. Reidl et al.

We will also show that it suffices to work on rooted graphs (i.e. a graph
with a universal vertex r). This will significantly simplify both the algorithms
and the proof of correctness, as we then may assume that a minimal treedepth
decomposition has r as its root. As a consequence, we only need to consider
treedepth decompositions that are trees. The main algorithm is as follows:

Algorithm 1. The input is a graph G, an integer t, and a tree decomposition
T of G. Add a universal node r to the graph and create a new tree decomposition
T ≡ where r has been added to every bag and a bag containing just r is added as
a child to every leaf. Call Algorithm 2 on (G, r), t + 1, T ≡ and the root bag of
T ≡ and return true only if it does not return the empty set.

Algorithm 2. treedepth-rec
Input: A rooted graph G = (V,E, r), an integer t and a nice tree decomposition

T of G containing r in every bag and a bag X of T .
Output: A set R of partial decompositions.

1 R = ∅;
2 if X is a leaf then
3 r = the only vertex contained in X;
4 F = a tree consisting of just the node r;
5 h is a function which is only defined for r and h(r) = 1;
6 R = {(F, {r}, h)};
7 else if X is a forget bag then
8 u = forgotten vertex;
9 X ′ = the child of X;

10 R′ = treedepth-rec(G, t, T ,X ′);
11 R = forget(R′,X ′, u);
12 else if X is an introduce bag then
13 u = introduced vertex;
14 X ′ = the child of X;
15 R′ = treedepth-rec(G, t, T ,X ′);
16 R = introt(R′,X ′, u, G);
17 else if X is a join bag then
18 {X1,X2} = the set of children of X;
19 R1 = treedepth-rec(G, t, T ,X1);
20 R2 = treedepth-rec(G, t, T ,X2);
21 R = joint(X,R1, R2, G);
22 return R;

In the above algorithm, the introduce, forget, and join bags refer, of course, to
the bags in a nice tree decomposition, the definition of which has been omitted
due to space constraints (refer to [8] for formal definitions). The definitions of
functions forget, intro and join used in Algorithm 2 follow. We use the same
variable names as in said algorithm for the sake of consistency.



Faster Parameterized Treedepth-Algorithm 937

Definition 8 (Forgetting a Vertex from a Partial Decomposition). Let
G be a graph, let X ≡ ⊆ V (G) and let R≡ be a set of partial decompositions on the
set X ≡. Let further u ∈ X ≡ be a vertex.

The result of the forget operation on u denoted by forget(R≡, X ≡, u) is defined
as a set R of pairwise non-equivalent partial decompositions of height at most t
with the following property: for every partial decomposition (F ≡, X ≡, h≡) ∈ R≡, the
restriction of (F ≡, X ≡, h≡) to X ≡ \ {u} is equivalent to some partial decomposition
contained in R.

Note that the set R is not unique and that it contains only non-equivalent
partial decompositions. Further, it is easy to see that it can be computed by
taking restrictions to X ≡ \ {u} of every single partial decomposition in R≡ and
adding it to R if no equivalent partial decomposition is already present.

The introduce operation is somewhat more involved. Given a set R≡ of partial
decompositions of the form (F ≡, X ≡, h≡) where X ≡ ⊆ V (G), the result of introduc-
ing u ∈ V (G) \ X ≡ is again a set R of partial decompositions. The broad outline
of this step is the following (a complete description can be found in Definition 9):

1. Guess every forest F that complies with certain conditions.
2. Find a partial decomposition (F ≡, X ≡, h≡) ∈ R≡ such that F topologically

generalizes F ≡. If no such partial decomposition exists, discard F .
3. Otherwise, create for every function f that witnesses F topologically gener-

alizing F ≡ a partial decomposition of the form (F, X = X ≡ ∪ {u}, h) where h
meets certain additional requirements.

4. Add (F, X, h) to R if its height is smaller than t and there is no equivalent
partial decomposition already contained in R.

Definition 9 (Vertex Introduction into a Partial Decomposition). Let
G = (V, E, r) be a rooted graph, let X ≡ ⊆ V (G) and let R≡ be a set of partial
decompositions. For a vertex u ∈ V (G) \ X ≡ and an integer t, the result of the
introduction operation on u denoted by introt(R≡, X ≡, u, G) is defined to be a
set R of pairwise non-equivalent partial decompositions of height at most t with
the following properties.

For every (F ≡, X ≡, h≡) ∈ R≡ and every tree F with the following properties
(i) r is the root of F ;
(ii) X ⊆ V (F );
(iii) All leaves of F are in X;
(iv) E(G[X ]) ⊆ E(clos(F )[X ]).

and for every surjective f : V (F ≡) ≥ V (F ) \ {u} which witnesses that F topo-
logically generalizes F ≡ on X \ {u}, the set R contains a partial decomposition
that is equivalent to (F, X, h) where h is the height function compatible with h≡

under f .

The join operation looks for partial decomposition in a similar fashion as the
introduce operations, with the added difficulty that it has to find two partial
decompositions in the previous tables which are both topologically generalized
at the same time.
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Definition 10 (Joining Partial Decompositions). Let G = (V, E, r) be a
rooted graph. Let R1 and R2 be two sets of partial decompositions on X ⊆ V (G).
Let t be an integer. The result of the join operation denoted by joint(X, R1, R2, G)
is a set R of pairwise non-equivalent partial decompositions of height at most t
with the following properties.

For every (F1, X, h1) ∈ R1 and (F2, X, h2) ∈ R2 and every tree F with the
following properties (i) r is the root of F ; (ii) X ⊆ V (F ); (iii) All leaves of
F are in X; (iv) E(G[X ]) ⊆ E(clos(F )[X ]); and for every pair of functions
f1 : V (F1) ≥ V (F ), f2 : V (F2) ≥ V (F ) with

(i) fi witnesses that F topologically generalizes Fi on X, i ∈ {1, 2}
(ii) f1(F1) ∩ f2(F2) = X
(iii) f1(F1) ∪ f2(F2) = V (F )

the set R contains a partial decomposition equivalent to (F, X, h), with the fol-
lowing height function h: Given the height functions ĥ1, ĥ2 for F such that ĥi is
the height function compatible with hi under fi for i ∈ {1, 2}, the function h is
defined as h(z) = max{ĥ1(z), ĥ2(z)} for every z ∈ V (F ).

Again we can compute the set R for a join by guessing every locally feasible
tree F and trying to generating every partial decomposition from it that meets
the above conditions.

We claim that this algorithm correctly decides, given an n-vertex graph G and
a tree decomposition of width at most w, whether G has treedepth at most t in
time 2O(wt) · n. A sketch of the proof follows, the complete proof can be found
in the appendix.

4 Proof Sketch

We will say that a partial decomposition (F, X, h) represents the treedepth de-
composition T if it is a restriction of (T, V (T ), heightT ) on X . Notice that then
the height of the partial decomposition equals the height of the treedepth decom-
positions it represents. We will call a partial decomposition which represents a
treedepth decomposition T a restriction of T . The proof works by showing the
following statements consecutively. This proof has been omitted due to lack of
space.

1. Every graph admits a nice treedepth decomposition of height td(G).
2. It is sufficient to work with rooted graphs that allow an optimal nice treedepth

decomposition whose root is the root of graph.
3. For every nice treedepth decomposition T of the graph, our tables contain a

restriction of T (Lemma 1).
4. Every partial decomposition contained in the table is a restriction of a

treedepth decomposition of the graph (Lemma 2).

All the partial decompositions in our tables will be restrictions on the contents
of a bag. We will provide a short sketch of the proof of the main Lemmas 1 and 2.
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Lemma 1. Let Algorithm 2 be called on (G, t, T , X), where G is a graph rooted
at r, the remaining parameters t, T , X are as described in the algorithm. Then
for every nice treedepth decomposition T of height at most t (that is rooted at r)
of G[V (TX)], the set R returned by the algorithm contains a restriction of T to
the set X.

Proof sketch. Since the forget case is rather simple we will omit it here.
We show that in the introduce case, the introduced vertex u can only be in

a restricted number of positions in a nice treedepth decomposition: the vertex
u can only be adjacent to vertices present in the current bag X and the edges
present there must be contained in the closure of the guessed tree F . That the
remaining edges are covered by all treedepth decompositions represented by a
guessed restriction is proved analogously to the join case outlined below.

Let us now look at this last case: Let T be a nice treedepth decomposition of
G[V (TX)]. We show that if (F, X, h) is the restriction of T to X our previous
tables must contain partial decompositions (F1, X, h1) and (F2, X, h2) such that
F is a topological generalization of F1 and F2. We do this by first converting
T to nice treedepth decompositions T1 and T2 of G[V (TX1)] and G[V (TX2)].
By induction we assume that R1 and R2 contain a restriction of T1 and T2
respectively. Let these be (F1, X, h1) and (F2, X, h2). We show that by the way
we computed T1 and T2, the tree F will topologically generalize F1 and F2, thus
we add a partial decomposition (F, X, h) to the result set of the join operation.
Finally we prove that the height function h correctly reflects the height of T
when computed from h1 and h2. This uses the fact that since T is nice and X
is a separator, a subtree of T1 or T2 must be a single subtree in T , or else this
subtree would contradict the niceness properties. 
�

Lemma 1 is not sufficient for the correctness of the algorithm, as the restric-
tions computed in the dynamic programming might not all correspond to actual
treedepth decompositions. This part of the correctness proof is handled in the
following lemma.

Lemma 2. Let Algorithm 2 be called on (G, t, T , X), where G is a graph rooted
at r, the remaining parameters t, T , X are as described in the algorithm. Then
every member of R returned by the algorithm is a restriction of a treedepth
decomposition of G[V (TX)] to X.

Proof sketch. We will only sketch the proof for the join case. Assume that we add
a partial decomposition (F, X, h) to the table because F topologically generalizes
F1 and F2. By induction we assume that (F1, X, h1) ∈ R1 and (F2, X, h2) ∈
R2 are restrictions of treedepth decompositions T1 and T2 of G[V (TX1 )] and
G[V (TX2 )] respectively. We show we can construct a treedepth decomposition T
of the graph G[V (TX)] from (F1, X, h1), (F2, X, h2), T1 and T2 such that (F, X, h)
is a restriction of it. 
�

We then show that there is a treedepth decompositions of depth t of the graph
G only if the call from Algorithm 1 to Algorithm 2 does not return the empty
set. Finally we prove the running time by simple counting arguments on partial
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decompositions. The only properties we use to show that there are at most 2O(tw)

entries in the tables is that the height function of a partial decomposition must
increase monotonically, that they are all restrictions on the contents of a bag of
the tree decomposition and that we do not keep two equivalent ones. Thus we
will arrive at the following theorem.

Theorem 1. Let G be a graph of size n and t an integer. Given a tree decompo-
sition of G of width w, one can decide in time and space 2O(wt) ·n whether G has
treedepth at most t and if so, output a treedepth decomposition of that height.

5 Algorithms Parameterized by Treedepth

Simple Algorithm. We can now use Theorem 1 to answer the problem posed
by Ossona de Mendez and Nešetřil in [18]:

Is there a simple linear time algorithm to check td(G) � t for fixed t? Is there
a simple linear time algorithm to compute a rooted forest Y of height t such
that G ⊆ clos(Y ) (provided that such a rooted forest exists)?

The problem is motivated by the fact that treedepth—being a minor-closed
property—can be expressed in monadic second order logic and thus one can
employ Courcelle’s theorem [5] to compute the treedepth of a graph of bounded
treewidth in linear time. The above problem is motivated by the fact that the
running time of this approach is unclear. More specifically, the standard proof
of Courcelle’s involves creating a tree-automaton whose size cannot be bounded
by any elementary function in the formula size unless P=NP [11]. The algorithm
presented in Chapter 3 can be extended to give a much more direct and simpler
algorithm.

Theorem 2. There is an algorithm that takes a graph G and a parameter t
as input, and decides whether the treedepth of G is at most t in time and space
22O(t) ·n. If this is indeed the case, the algorithm outputs a treedepth decomposition
of depth at most t.

Proof. A DFS of graph with treedepth at most t has height at most 2t and easily
converts to a path decomposition of width at most 2t [18]. An algorithm which
first computes this path decomposition and then runs Algorithm 1 on it fulfills
the requirements of the lemma. 
�

Fast Algorithm. The algorithm from Section 3 can be adapted to obtain an
algorithm with a running time that is better than 22O(t) ·n. Instead of computing
a treedepth decomposition using DFS, we use an approximation algorithm for
the treewidth of a graph. Recently, a 5-approximation for treewidth was devel-
oped which runs in single exponential time [2]. This, together with the fact that
tw(G) � td(G), gives us all we need.

Theorem 3. Deciding whether a graph G with n vertices has td(G) � t and con-
structing a treedepth decomposition of that height can be done in time 2O(t2) · n.
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Proof. First use the 5-approximation for treewidth ([2]) and check whether the
tree decomposition it outputs has width < 5t. This takes time 2O(tw(G)) ·n. Since
tw(G) � td(G), this is actually 2O(td(G)) · n. If tw(G) > 5t then td(G) > t and
we say “no”; otherwise, run Algorithm 1 on this tree decomposition. The running
time of this call will be 2O(t·5t) · n = 2O(t2) · n. 
�

For chordal graphs we can make use of the fact that the clique tree of a chordal
graph can be converted into a nice tree decomposition whose bags induce cliques.
Since the presence of a complete subgraph on more than t vertices implies that
the treedepth is larger than t, the width of the clique tree and thus the treewidth
is bounded by t for non-trivial instances. It then turns out that during the dy-
namic programming, the partial restrictions must necessarily be simple paths
instead of forests: the vertices of each bag must all lie on a single path in order
for their closure to form a clique. As the number of such restrictions is signifi-
cantly lower, a simple modification to the algorithm (generating only paths as
candidates for restrictions during join and introduce) yields a running time of
2O(t log t)n.

6 Conclusions and Further Research

We provide a simple and self contained algorithm, i.e. an algorithm which does
not rely on any other complex results, which decides whether a graph has
treedepth at most t in time linear in the input size for every fixed t. This answers
an open question posed in [18]. We also provide an explicit algorithm to decide
the treedepth or construct a minimal treedepth decomposition of a given graph
in time 2O(t2)n.

A natural question that arises is whether there exists a constant-factor approx-
imation algorithm for the Treedepth problem that runs in single-exponential
time. Such an algorithm would remove the dependency of our algorithm from
the treewidth-approximation algorithm (hoping that a direct approximation of
treedepth would be simpler).

On the topic of width-measures, it still remains open whether graphs of low
treedepth admit fast algorithms that are impossible on graphs of low pathwidth.
This is motivated further by the fact that the construction proving lower bounds
on graphs of bounded pathwidth clearly contain very long paths and thus have
high treedepth [16]. Proving similar bounds for graphs of bounded treedepth
would be equally insightful.

References

1. Bodlaender, H.L., Deogun, J.S., Jansen, K., Kloks, T., Kratsch, D., Müller, H.,
Tuza, Z.: Rankings of graphs. SIAM Journal of Discrete Mathematics 11(1), 168–
181 (1998)

2. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: A O(ck n) 5-approximation algorithm for treewidth. CoRR,
abs/1304.6321 (2013)



942 F. Reidl et al.

3. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algo-
rithms 18(2), 238–255 (1995)

4. Bodlaender, H.L., Kratsch, D.: Personal communication (2014)
5. Courcelle, B.: The Monadic Second-Order Theory of Graphs. I. Recognizable Sets

of Finite graphs. Information and Computation 85, 12–75 (1990)
6. Deogun, J.S., Kloks, T., Kratsch, D., Müller, H.: On vertex ranking for permuta-

tions and other graphs. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS
1994. LNCS, vol. 775, pp. 747–758. Springer, Heidelberg (1994)

7. Dereniowski, D., Nadolski, A.: Vertex rankings of chordal graphs and weighted
trees. Information Processing Letters 98, 96–100 (2006)

8. Diestel, R.: Graph Theory, 4th edn. Springer, Heidelberg (2010)
9. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear

equations. ACM Transactions on Mathematical Software 9, 302–325 (1983)
10. Fomin, F.V., Giannopoulou, A.C., Pilipczuk, M.: Computing tree-depth faster than

2n . In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 137–149.
Springer, Heidelberg (2013)

11. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic
revisited. Annals of Pure and Applied Logic 130(1-3), 3–31 (2004)

12. Katchalski, M., McCuaig, W., Seager, S.: Ordered colourings. Discrete Mathemat-
ics 142(1-3), 141–154 (1995)

13. Kaya, K., Uçar, B.: Constructing elimination trees for sparse unsymmetric matrices.
SIAM Journal on Matrix Analysis and Applications 34(2), 345–354 (2013)

14. Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: FOCS, pp. 270–281
(1980)

15. Liu, J.W.H.: The role of elimination trees in sparse factorization. SIAM Journal
on Matrix Analysis and Applications 11(1), 134–172 (1990)

16. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs on bounded
treewidth are probably optimal. In: Randall, D. (ed.) Proc. of 22nd SODA, pp.
777–789. SIAM (2011)

17. Nešetřil, J., Ossona de Mendez, P.: Grad and classes with bounded expansion I.
Decompositions. European Journal of Combinatorics 29(3), 760–776 (2008)

18. Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms.
Algorithms and Combinatorics, vol. 28. Springer, Heidelberg (2012)

19. Pothen, A.: The complexity of optimal elimination trees. Technical Report CS-88-
13, Pennsylvannia State University (1988)

20. Pothen, A., Simon, H.D., Liou, K.-P.: Partitioning sparse matrices with eigenvec-
tors of graphs. SIAM Journal of Matrix Analysis and Applications 11(3), 430–452
(1990)

21. Robertson, N., Seymour, P.D.: Graph minors XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B 63, 65–110 (1995)

22. Schäffer, A.A.: Optimal node ranking of trees in linear time. Information Processing
Letters 33(2), 91–96 (1989)

23. Spielman, D.A., Teng, S.-H.: Spectral partitioning works: Planar graphs and finite
element meshes. In: FOCS, pp. 96–105 (1996)



Pseudorandom Graphs in Data Structures

Omer Reingold1, Ron D. Rothblum2, and Udi Wieder1

1 Microsoft Research
omer.reingold@microsoft.com

2 Weizmann Institute
ron.rothblum@weizmann.ac.il, uwieder@microsoft.com

Abstract. We prove that the hash functions required for several data
structure applications could be instantiated using the hash functions of
Celis et al. (SIAM J. Comput., 2013). These functions simultaneously
enjoy short description length as well as fast evaluation time. The appli-
cations we consider are: (1) Cuckoo Hashing, (2) Cuckoo Hashing with
Stash and (3) the Power of Two Choices paradigm for load balancing.
Our analysis relies on a notion of sparse pseudorandom graphs that are
similar to random graphs in having no large connected component and
no dense subgraph. Such graphs may be of independent interest. Relat-
ing pseudorandom graphs to the two-choice paradigm relies on a very
simple new proof we give (at the price of somewhat worse parameters).

1 Introduction

A common assumption in the design of data structures is the availability of
perfectly random hash functions, functions that are assumed to require no space
to store and take unit time to compute. A large body of work is dedicated to
the removal of this assumption by designing constructive and explicit families
of functions with well defined properties. In this paper we show that the family
of functions put forth by Celis et al. [CRSW13] can be used for variants of
Cuckoo Hashing, and could also be used to place balls into bins in the “power
of two choices” scheme. A function from this class can be represented using
O(log n log logn) bits and evaluated in O((log log n)2) operations in a unit-RAM
model. In both cases this is the first construction where the description length
is lower than O(log2 n) which is the bound obtained by logn-wise independent
functions. The analysis is done by showing that a random graph built using these
functions shares structural properties with truly random graphs, a result that
could have more applications and be of independent interest.

Cuckoo Hashing: In the dictionary problem the goal is to build a data structure
that represents a set S of size n taken from a universe U . The data structure
should support look-ups, as well as updates. In an influential work, Pagh and
Rodler [PR04] constructed a dictionary, referred to as cuckoo hashing which has
worst case constant lookup time, amortized expected constant update time, and
uses slightly more than 2n words for storing n elements. Additional attractive

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 943–954, 2014.
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features of cuckoo hashing are that no dynamic memory allocation is performed
(except for when the tables have to be resized), and the lookup procedure queries
only two memory entries which are independent and can be queried in parallel.

Cuckoo hashing uses two tables T1 and T2, each consisting of r ∈ (1+σ)n words
for some small constant σ > 0, and two hash functions h, g : U ⊆ {0, . . . , r− 1}.
An element x ⊂ U is stored either in entry h(x) of table T1 or in entry g(x)
of table T2, but never in both. The lookup procedure is straightforward: when
given an element x ⊂ U , query the two possible memory entries in which x
may be stored. For insertions, Pagh and Rodler [PR04] suggested the “cuckoo
approach”, kicking other elements out until every element has its own “nest”.
Insertion is shown to run in expected constant time and w.h.p no more than
O(log n) time when the functions h and g are truly random, that is, they sample
an element in [r] uniformly and independently.

Random graphs: A random graph G(m,n) over m nodes is obtained by sampling
uniformly and independently n unordered pairs of nodes.1 The sampling is done
without replacement so we allow multiple edges and self loops. When the graph
is sparse, i.e. when n < (1 − σ)m/2 for some σ > 0, it is known that G(m,n) is
likely to have some distinctive properties: connected components are small and
each connected component is sparse (we leave for now the exact definition of
sparseness). These properties had been used in the analysis of Cuckoo Hashing
in a natural way.

To analyze cuckoo hashing, let G be a graph with (1 + σ)2n nodes, associated
with the locations of the two tables T1, T2. For each item x in the set S that
is represented by the data structure, add an edge (h(x), g(x)) (the graph as de-
scribed here is bipartite, but this makes little difference in the analysis). Now it
is not hard to observe that insertion succeeds as long as each connected compo-
nent in G has at most one cycle. Pagh and Rodler proved that this is indeed the
case w.h.p in this parameter regime. Furthermore, the expected and worst-case
sizes of a connected component determine the expected and worst-case insertion
time.

It follows that one way to prove that a specific (explicit) family of hash func-
tions H could be used for cuckoo hashing is to show that the graph obtained by
sampling h, g and constructing G as above has the same structural properties as
a random graph. The goal is that the family H be as small as possible (so that
the description length of each function is short) and that the functions be easy
to evaluate. In this paper we show how to instantiate this approach with the
function of [CRSW13]. We also find a surprising application for it to the power
of two-choice paradigm.

1 We use a non-standard notation where m denotes the number of nodes and n the
number of edges for sake of consistency with the applications to data structures
described below.
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The power of two choices: In the Greedy[d] process (sometimes called the d-
choice process), balls are placed sequentially into d bins with the following rule:
each ball is placed by uniformly and independently sampling d bins and assigning
the ball to the least loaded of the d bins. We are interested in the load, measured
in number of balls, of the most loaded bin. The case d = 1, when balls are placed
uniformly at random in the bins, is well understood. When n balls are thrown,
the bin with the largest number of balls will have τ(log n/ log logn) balls w.h.p.
In an influential paper Azar et al. [ABKU99] showed that when d > 1 and n
balls are thrown the maximum load is log logn/ log d + O(1) w.h.p. The proof
in [ABKU99] uses an inductive argument which relies on the assumption of full
randomness.

1.1 Previous Work

A natural explicit family of functions that is useful in many applications is that
of logn-wise (almost) independent functions. These are functions where every
logn evaluations are (almost) uniformly distributed. A logn-wise independent
family could be represented using O(log2 n) bits, say by specifying the coeffi-
cients of a degree log n polynomial, and naively could be evaluated in O(log n)
time. Recently, Meka et al. [MRRR13] constructed a family of log(n)-wise almost
independent Boolean hash function that can be evaluated in O(log logn) time.

Intuitively it is clear why O(log n)-independence should suffice for Cuckoo
Hashing; the connected components of G(m,n) are of logarithmic size, so in some
sense all the ‘interesting’ events occur over a logarithmic number of variables.
Indeed, the proof in [PR04] carefully counts subgraphs of a certain type (long
paths and large trees) and eliminates them one by one using a union bound. Such
an approach could be transformed almost as-is to handle log n-wise independent
functions.

A similar result for the ‘power of two’ case is not so straightforward, the proof
in [ABKU99] uses an inductive argument that relies on the assumption of full
randomness. A different proof was discovered by Vöcking’ [Vöc03] which uses
a construct called ‘witness trees’. These are essentially labeled subgraphs of a
naturally defined random graph. Vöcking’s goal was to analyze a variant of the
process called GoLeft, but as a byproduct he implicitly showed that O(log n)-
wise independent functions could be used. We show a different and much simpler
way of using random graphs to prove this result - albeit with a larger constant
in front of the log logn term.

It is natural to ask whether one can construct a family of hash functions that
improves both the time to evaluate a function and the space complexity (i.e.,
the description length). Ideally we would like functions that can be represented
by O(log n) bits and evaluated in O(1) time in the unit RAM model. It is worth
mentioning that there exist important data structures for which such functions
are known. A notable example is that of the linear probing data structure where
Pagh et.al. [PPR11] show that any 5-wise independent hash function suffices.
Mitzenmacher and Vadhan [MV08] showed that pairwise independent functions
could be used for Cuckoo Hashing, providing the keys themselves come with
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sufficient entropy. For arbitrary input it is not known whether there exists a
constant k such that any k-wise independent construct could be used for Cuckoo
Hashing or balls-into-bins, and this remains an interesting open problem.

There is an impressive body of literature presenting functions with a running
time of O(1), at the expense of the space complexity. Starting with Siegel [Sie04],
and continuing with e.g. Dietzfelbinger and Woelfel [DW03], Woelfel [Woe06],
Patrascu and Thorup [PT12] and Thorup [Tho13]. All these solutions need nσ(1)

bits of space to represent a function. In this paper we are more concerned with the
space complexity. Can we construct a family of functions where a function can
be represented using o(log2 n) bits? A step in this direction is the load-balancing
functions of [CRSW13] which are the starting point of our work.

1.2 Our Contributions

Our main contribution is to show that the family of functions put forth in
[CRSW13] (henceforth, the CRSW hash functions) can be used for cuckoo hash-
ing and for the power of two choices. The space needed to represent a func-
tion is O(log n log logn) bits, so these functions constitute the only family we
are aware of that suffices for these applications with space complexity lower
than that of logn-wise independence. Additionally, it was recently shown by
Meka et al. [MRRR13] that hash function from this family can be evaluated
efficiently, in O((log logn)2) time.

Our analysis is done by proving that the random graph derived by this family
has structural properties similar to those of a truly random graph; a result that
may find further applications.

Let U be a universe of size poly(n) and let H be a family of functions from
U ⊆ V . Every set S → U and pair of functions h, g ⊂ H that are sampled
uniformly and independently from H, define a graph whose node set is V and
with the edge set {(h(x), g(x)) : x ⊂ S}. Our main result is that if H is the
CRSW hash function family, |S| = n and |V | = O(n), then the graph G has the
following two properties:

– Small Components: For every v ⊂ V , let C(v) be the connected component
of v in G. Then the expected size of C(v) is O(1), and is O(log n) w.h.p.

– Sparse Components: W.h.p the number of edges in C(v) is bounded by
2|C(v)| (where 2 is an arbitrary constant that can be made as close to 1 as
we like).

As alluded to before, these two properties underlie the analysis of cuckoo
hashing and could be used to prove double logarithmic bounds on the load of
Greedy[d]. We show that H can be used for the following data structures.

1. Cuckoo Hashing: A cuckoo hashing scheme with O(n) memory cells and
two items per bucket. The idea to allow more than one item in a memory cell
is due to Diezfelbinger and Weidling [DW07]. They show that this approach
increases the memory utility of the scheme. We note that we do not match
the space efficiency obtained with fully random functions and observe that
it is not known whether log n-wise independent function obtain it either.
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2. Cuckoo Hashing with Stash: One drawback of cuckoo hashing is that
with some fixed polynomially small probability an insertion operation might
fail. Kirsch et al. showed in [KMW09] that allocating a special location in
memory (stash) which may hold any data item and is searched on every look-
up, indeed reduces the failure probability significantly, even when the stash
is of constant size. Aumüller et al. [ADW12] show that O(log n)-wise inde-
pendent functions would work in this case. Our functions also benefit from
the use of stash, that is, using only a constant size stash, we can guarantee
an arbitrarily small polynomial probability of failure.

3. The Power of Two Choices: when n balls are placed in n bins using
two random functions from H, the maximum load is O(log logn) w.h.p. We
observe that we lose a constant factor over truly random functions in which
case the load is log logn + O(1). On the plus side our proof is remarkably
simple (and of course also holds for the truly random case). Our simple idea
is as follows: assume that instead of throwing n balls to n bins we throw n/10
balls. Now consider the graph with n vertices (corresponding to the bins) and
n/10 edges (where an edge corresponding to a ball is adjacent to the two bins
it can land at). The observation is that this graph is now sparse enough (or
in other words, is in the sub-critical regime) and can have the pseudorandom
properties of no large connected component and no dense subgraph. A very
simple argument, based on the ‘witness trees’ of Vöcking’ [Vöc03] implies an
O(log logn) load. We finally give a simple reduction from the case of n balls
to n bins to the case of n/10 balls to n bins. The reduction also increases the
maximum load by a constant factor (in fact this is where the main loss in
parameters comes from). It is interesting to note that while the parameters
are a bit weaker the final result is a bit stronger in the additional power
it gives the adversary: the result holds even if (after the hash functions are
made public) the adversary has full control over the order in which the balls
arrive in each batch of n/10 balls.

1.3 Main Technical Ideas for the Pseudorandom Graphs

We sketch the main idea behind the CRSW functions. Each function maps an
item from U to [n], so the output is logn bits long, but it is often convenient
to think of the output as one of n bins. The function h is obtained by sam-
pling d = τ(log logn) different functions and concatenating their output so that
h(x) = h1(x) ∧ h2(x) ∧ · · · ∧ hd(x), where ∧ denotes concatenation. Each hi is a
ki-independent function with an output length of λi bits, such that

∑
λi = logn.

It was shown in [CRSW13] that parameters could be chosen so that the total
memory needed to represent h is log n log logn bits. The main idea is that as
i increases the independence also increases (exponentially), so k1 = O(1) while
kd = O(log n). On the other hand, the output λi decreases with i, so that the
space needed to represent the function remains small.

As shown in [CRSW13], the key property that these functions enjoy is that
they are ‘balancing’. Let S → U be a set of size n. Fix some j ≥ d and consider
the first j functions h1, ..., hj . Their output is concatenated to produce a string
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of
∑

i◦j λi bits. The guarantee is that w.h.p h distributes the n values of S across

these 2
∑

i∈j εi values as well as a random function. In particular, when j = d we
get that the most heavily loaded of the n bins receives at most O(log n/ log logn)
items (which was the main result of [CRSW13]).

How can we use this property to argue on the structure of graphs? Our goal is
to show that certain types of subgraphs are not likely to occur. Specifically, we
want to exclude logarithmically large trees and dense subgraphs. As each of these
graphs have at most O(log n) edges, we could select h and g to be O(log n)-wise
independent and rule out the existence of each specific graph. If the parameters
are set correctly, a union bound over all possible “bad” graphs would give the
desired result. However, when we sample h and g from the CRSW family of
functions then we only have logn wise independence for a short suffix of these
functions output, which is insufficient for this analysis.

Instead, we apply the following strategy. Consider h as in the CRSW functions.
It is the concatenation of h1 . . . hd. Assume we want to rule out bad graphs
with t edges (where t is O(log n) but can also be as small as a constant). Let
j < d be minimal such that hj+1 . . . hd are all at least t-wise independent. Let
λ√ =

∑
i◦j λi, so λ√ is the length of the concatenated output of the first j functions.

We can take the vertices of G and collapse every 2j
′

vertices which share the
same prefix of length j√ into one ‘super vertex’. Now, the load balancing property
tells us that the degree of each of these super vertices should be close to its
expectation. We show that such load balancing is all we need from h1, . . . , hj .
Now hj+1 . . . hd are not only independent of h1, . . . , hj but also have sufficient
independence for us to complete the proof.

Organization. In Section 2 we show how the CRSW hash functions can be used to
produce graphs with strong random-like properties. In Section 3 we describe our
applications to cuckoo hashing. Finally, in Section 4 we describe our applications
to the power of two choice. We refer the reader to the full version for standard
definitions (e.g., limited independence and tail inequalities) and an overview of
the CRSW hash function.

2 Pseudorandom Graphs

Fix n ≥ m ≥ u such that m is a power of two and m = Πn for some sufficiently
large fixed constant Π > 1. We consider graphs that are constructed by taking
two hash functions and adding edges that correspond to evaluations of the hash
functions in the following natural way:

Definition 2.1. Let h, g : [u] ⊆ {0, . . . ,m−1} be functions and let S ⇐ [u] be a

set of size n. We define the (multi-)graph Gh,g(S)
def
=

({0, . . . ,m− 1}, E)
, where

E
def
= {(h(x), g(x)) : x ⊂ S}.
Let HCRSW be the CRSW hash function family (see the full version for the

precise definition). We show that for every S ⇐ [u], with high probability, a
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random graph Gh,g(S), where h and g are chosen at random from HCRSW, does
not contain any large connected subgraphs nor small connected subgraphs that
are “dense”. This is formalized by Theorems 2.2 and 2.3 below. In addition, we
prove in Theorem 2.4 that in expectation each connected component has constant
size.

Theorem 2.2. For every constant c1 > 0 and for any sufficiently large constant
c3 > 0, there exists a suitable setting of constants for HCRSW such that for every
S ⇐ [u], with probability 1 − n−c1 over the choice of h, g ⊂R HCRSW, the graph
Gh,g(S) does not contain a connected subgraph of size greater than c3 logn.

Theorem 2.3. For every constant c2 > 0 there exists a suitable setting of con-
stants for HCRSW such that for every S ⇐ [u], with probability 1 − O(1/n) over
the choice of h, g ⊂R HCRSW, for every connected subgraph (V,E) of the graph
Gh,g(S) it holds that |E| < (1 + c2) · |V |.
Theorem 2.4. There exists a suitable setting of constants for HCRSW such that
for every S ⇐ [u] and for every x ⊂ S, the expected size of the connected compo-
nent that contains x (in Gh,g(S)) is O(1).

Remark. In the theorem statements, by a suitable setting of constants for HCRSW,
we mean that we can set the constants so that the ki’s and d are sufficiently large
and so that the βi’s are sufficiently small. In particular, we can set the constants
so that all three theorems hold simultaneously.

To prove Theorems 2.2 to 2.4 we will consider appropriate connected graphs
(that are either too large or too dense) and bound the probability that they
appear in Gh,g(S). The theorems follow by taking a union bound over all such
graphs.

In order to bound the probability that a particular connected graph (V,E)
appears in Gh,g(S) we consider blocks of roughly m1/|E| consecutive vertices in
Gh,g(S). Observe that vertices in each such block all have the same (1− 1/|E|) ·
log(m)-bit prefix and therefore, by the load balancing guarantee of HCRSW (for
the appropriate prefix length), the number of edges that are connected to each
block is roughly n1/|E| (i.e., as it should be if the functions were truly random).
Moreover, the internal edges inside each block depend only on the log(m)/|E|-
bit suffix of the functions, which are |E|-wise (almost) independent. Since we
consider events that involve at most |E| items, we can treat this internal mapping
inside the blocks as though it were fully random. These two properties allow us
to bound the probability that connected graphs (V,E) that are either too big
(i.e., |V | = Δ(logn)) or too dense (e.g., |E| > 2|V |). See the full version for the
proofs of Theorems 2.2 to 2.4.

3 Cuckoo Hashing

Let n ≥ m ≥ u and Π > 1 be as in Section 2. We consider a variant of cuckoo
hashing where (as usual) we want to store n items in m = Πn bins, but each
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bin can contain two items (in contrast to “vanilla” cuckoo hashing in which each
bin holds at most one ball). As in vanilla cuckoo hashing, two hash functions
h, g : [u] ⊆ [m] are chosen at random and each item x is stored either in bin
h(x) or bin g(x). The hash functions h and g are chosen at random from the
collection HCRSW.

At any given point, if the data structure contains the items S ⇐ [u], we
can consider the cuckoo graph Gh,g(S). Recall that this graph contains an edge
(h(x), g(x)) for every x ⊂ S. We view the graph as being directed where edges
are directed from h(x) to g(x) if x is contained in the bin h(x).

We define the insertion procedure as follows. To insert an element x, we start
a depth first search (DFS) starting at h(x) on the (directed) cuckoo graph. When
taking a step on edge (h(y), g(y)) we switch the orientation of the edge, which
corresponds to moving the item, say, from h(y) to g(y). Once we reach a vertex
that has out-degree less than two, we stop the process (since the current item
can be stored in the bin that corresponds to this vertex while maintaining a load
of at most two items).

Theorem 3.1. There exists a setting of parameters for HCRSW such that for
every subset S ⇐ [u] of size n, if we choose h, g ⊂R HCRSW then, the items in S
can be allocated to m bins such that:

1. Every item x ⊂ S is contained either in the bin h(x) or g(x).
2. Each bin holds at most two items.
3. With probability 1−O(1/n) the insertion procedure takes time O(log n), and

the expected insertion time is O(1).

Proof. Items 1 and 2 above follow directly from the construction. We proceed
to prove that item 3 holds.

Let c3 be a sufficiently large constant. We say that the graph Gh,g(S) is good if
it contains no connected subgraph (V,E) such that |V | ∈ c3 logn or |E| ∈ 3

2 |V |.
By Theorem 2.2 and Theorem 2.3, the graph Gh,g(S) is good, with probability
1 −O(1/n) (over the choice of h, g ⊂R HCRSW).

Claim 3.2. Let S ⇐ [u] be a set of n items and suppose that the graph Gh,g(S)
is good. Then there is a vertex v in the connected component of h(x) in the
directed cuckoo graph with out-degree less than 2.

Proof. Suppose that some of the items have been allocated and let x ⊂ S be
an item that has not yet been allocated. Let Gu = Gh,g(S) be the undirected
cuckoo graph and let Gd be the directed cuckoo graph, where edges are directed
from the bin that holds an item to the bin that does not (if an item has not yet
been allocated then the corresponding edge does not appear in Gd). Let V be
the connected component in Gu to which h(x) belongs and suppose that each
vertex in V has degree 3 (in Gu). Hence, the total number of edges in V is at
least 3

2 |V |, in contradiction to Gh,g(S) being good.
Hence, there exists a vertex v in the connected component of h(x) (in Gu)

with degree at most 2. If v has out-degree less than 2 in Gd then we are done.
Otherwise (i.e., if v has out-degree exactly 2 in Gd), we remove v and recursively
apply the argument to the induced subgraph. ⇒∪
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Hence, with probability 1 − O(1/n) the connected component of h(x) in the
directed cuckoo graph has a vertex with degree less than 2 (and the graph is
good) and so the insertion time is at most the time for the DFS to go over the
entire connected component. Since each connected component has size at most
O(log n) with O(log n) edges, we obtain the worst case guarantee.

We proceed to prove that insertion takes expected time O(1). Let Ix be the
insertion time of x and let Cx be the size of the connected component that
contains x (both Ix and Cx are random variables).

E[Ix] = Pr[Gh,g(S) good] · E[Ix|Gh,g(S) good] + Pr[Gh,g(S) not good] · E[Ix|Gh,g(S) not good]

◦ Pr[Gh,g(S) good] · E[Ix|Gh,g(S) good] + O(1/n) ·O(n)

= Pr[Gh,g(S) good] · O(E[Cx|Gh,g(S) good]) + O(1)

◦ O(E[Cx]) + O(1)

= O(1)

where the first inequality follows from the fact that connected component of
x has (in the very worst case) O(n) vertices and edges and the last inequality
follows from Theorem 2.4. ⇒∪

3.1 Cuckoo Hashing with Constant Size Stash

Theorem 3.1 shows that the probability for a “failure” (i.e., insertion that takes
super logarithmic time) when using our variant of cuckoo hashing is at most
O(1/n2). For some applications it is useful to obtain a probability of error that
is inversely proportional to an arbitrarily large polynomial.

The same problem affects standard cuckoo hashing (with one item per bin
and totally random functions). Kirsch et al. [KMW09] suggested to solve this
problem by introducing a stash in which items may also be stored. The idea of
[KMW09] is that if insertion takes more than logarithmic time, then the item
is stored in the stash (for further details, see [KMW09]). To check whether an
item x ⊂ [u] is the data structure, one simply checks if x is contained in h(x),
g(x), or in the (constant size) stash.

In this section we show that one can decrease the error probability to be
inversely proportional to an arbitrary polynomial using a constant size stash
also in our variant of cuckoo hashing (i.e., with two items per bin and using the
[CRSW13] hash functions).

Theorem 3.3. For every c1 > 0, there exists a constant s > 0 and a setting of
parameters for HCRSW such that for every subset S ⇐ [u] of size n, if we choose
h, g ⊂R HCRSW then, the items in S can be allocated to m bins and a stash of
size s such that:

1. Every item x ⊂ S is contained either in the bin h(x) or g(x), or in the stash.
2. Each bin holds at most two items.
3. With probability 1 − n−c1 insertion takes time O(log n), and the expected

insertion time is O(1).

See the full version for the proof of Theorem 3.3.
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4 Two Choice Hashing

Let n ≥ m ≥ u and Π be as in Section 2. In this section we consider a data
structure that holds n items in m = Πn bins, where each bin may hold multiple
items. Later, in Section 4.1 we consider the classical setting where we wish to
store m items (rather than just n < m items) in the m bins.

To store the item, two hash functions h, g : [u] ⊆ [m] are chosen at random
from the collection HCRSW and each item x is stored either in bin h(x) or bin
g(x). When inserting, we simply insert x into the least loaded of the two bins
h(x) and g(x) (while breaking ties by favoring, say, the bin h(x)).

As discussed in the introduction, we rely on the witness trees approach of
[Vöc03], though we manage to significantly simplify the proof (at the price of
somewhat worse parameters).

Lemma 4.1. For every constant σ > 0, there exists a setting of parameters
for HCRSW such that, with probability 1 − O(1/n), each bin contains less than
(1 + σ) log logn items.

Proof. Suppose that we are storing a set S of n items. Let Gd be the directed
graph on m vertices, where each vertex corresponds to a bin and each edge
corresponds to an item in the following way: for every item x ⊂ S we have an
edge directed from h(x) to g(x) (resp., from g(x) to h(x)) if the item is stored
in bin h(x) (resp., g(x)). Note that the undirected version of Gd corresponds to
the graph Gh,g(S) (see Theorem 2.1). We will show that if x generates a load
of Δ(log logn), then the connected component (V,E) of Gh,g(S) to which the
edge (h(x), g(x)) belongs to must be either large or dense. Since n is sufficiently
smaller than m, these events were shown in Section 2 to occur with only small
probability.

Fix c1 = 2, let c2 > 0 be a sufficiently small constant (that depends on σ) and
let c3 > 0 be sufficiently large so that Theorem 2.2 and Theorem 2.3 hold with

respect to c1, c2 and c3. Let λ
def
= (1 + σ) log logn. We consider the event that

there exists a bin i ⊂ [m] with λ items and bound the probability for this event.
Consider the last item x that was inserted into bin i and suppose without loss
of generality that h(x) = i (the case that g(x) = i is completely symmetric). We
iteratively mark vertices and edges in Gd by the following process.

Initially we mark only the vertex h(x) and none of the edges. Next we mark
the vertex g(x) and the edge (h(x), g(x)). Observe that the bin g(x) contains at
least λ − 1 (unmarked) items (since otherwise x would have been inserted into
g(x)), and therefore the vertex g(x) is connected to at least λ − 1 unmarked
edges. We mark the vertex g(x). Note that each marked vertex is now connected
to at least λ − 1 unmarked edges. We proceed iteratively, where at iteration
i each marked vertex (i.e., bin) has λ − i unmarked neighbors (i.e., items) and
in the next iteration we mark all edges that correspond to (λ−i)-th ball that was
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inserted into each of the marked bins. Let Vi be the marked vertices in iteration
i and let Ei be the marked edges in iteration i. Then,

|V0| = 1

|E0| = 0

|Ei+1| = |Ei| + |Vi|
for every i ⊂ [λ] (where the last equality follows from the fact that each edge is
marked at most once and at iteration i we mark Vi new edges).

We now show that if each of the graphs (Vi, Ei) is not dense (an event that
by Theorem 2.3 happens with high probability) then the last graph (Vε, Eε) has
size exponential in λ. Since λ = Δ(log logn), we obtain a connected component
in Gh,g(S) with Δ(log n) size (an event that by Theorem 2.2 only happens with
small probability). We proceed to the actual proof.

By Theorems 2.2 and 2.3, with probability 1−O(1/n) all connected subgraphs
of Gh,g(S) are not dense nor large. In particular, |Vε| ≥ c3 logn and for every
i ⊂ {0, . . . , λ} it holds that |Ei| ≥ (1 + c2)|Vi|. Hence, |Eε| ∈ |Eε−1| + |Vε−1| ∈
2+c2
1+c2

· |Eε−1| ∈ · · · ∈
(

2+c2
1+c2

)ε−1

and so the size of the last subgraph is:

|Vε| ∈ 1

1 + c2
· |Eε| ∈ 1

1 + c2
·
(

2 + c2
1 + c2

)ε−1

> c3 log n

where the last inequality follows by setting c2 to be sufficiently small. Since such
a connected subgraph of size c3 logn only appears with probability O(1/n), we
conclude that the probability that there exists a bin with more than λ items is
at most O(1/n). ⇒∪

4.1 m Items in m Bins

We first consider a slight generalization of Theorem 4.1 (that follows directly
from Theorem 4.1).

Corollary 4.2. Suppose that initially each of the m bins contains at most k
items and then we add n items following the two choice paradigm, with respect
to functions h, g ⊂R HCRSW. Then, with probability 1−O(1/n), each bin contains
less than k + O(log logn) items.

Proof. By induction. Suppose that after the t-th insertion the load of each bin i
is at most k+ bi, where bi denotes the load of bin i after the t-th insertion in the
original process (i.e., when all bins are initially empty). Now insert the (t+1)-th
item, which is hashed to bins i and j. Assume that originally (i.e., when bins
are initially empty) the item is stored in bin i. Hence, bi ≥ bj. If the item is still
stored in i when the bins are first loaded with (at most) k items each then the
induction trivially holds. On the other hand, if the item is stored in bin j then
the load of j is smaller than bi+k ≥ bj +k and therefore even after this insertion
the load is at most k + bj (i.e., only k more than in the original process). ⇒∪
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By partitioning the m items into Π sets of m/Π balls each and applying
Theorem 4.2 on each set iteratively (thereby increasing the load by an additive
O(log logn) factor on each iteration), we obtain the following theorem:

Theorem 4.3. Suppose that we hash a set S ⇐ [u] of m items into m bins
following the two choice paradigm with respect to h, g ⊂R HCRSW. Then, with
probability 1 −O(1/n), each bin contains less than O(log logn) items.

Acknowledgments. We thank the anonymous reviewers for useful comments
and for pointing out an error that appeared in a previous version.
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Abstract. We give new and simple combinatorial proofs of almost-
periodicity results for sumsets of sets with small doubling in the spirit
of Croot and Sisask [7], whose almost-periodicity lemma has had far-
reaching implications in additive combinatorics. We provide an alterna-
tive point of view which relies only on Chernoff’s bound for sampling,
and avoids the need for Lp-norm estimates used in the original proof of
Croot and Sisask.

We demonstrate the usefulness of our new approach by showing that
one can easily deduce from it two significant recent results proved using
Croot and Sisask almost-periodicity – the quasipolynomial Bogolyubov-
Ruzsa lemma due to Sanders [22] and a result on large subspaces con-
tained in sumsets of dense sets due to Croot, Laba and Sisask [6].

We then turn to algorithmic applications, and show that our approach
allows for almost-periodicity proofs to be converted in a natural way
to probabilistic algorithms that decide membership in almost-periodic
sumsets of dense subsets of Fn

2 . Exploiting this, we give a new algorithmic
version of the quasipolynomial Bogolyubov-Ruzsa lemma.

Together with the results by the last two authors [27], this implies an
algorithmic version of the quadratic Goldreich-Levin theorem in which
the number of terms in the quadratic Fourier decomposition of a given
function, as well as the running time of the algorithm, are quasipolyno-
mial in the error parameter ε. The algorithmic version of the quasipolyno-
mial Bogolyubov-Ruzsa lemma also implies an improvement in running
time and performance of the self-corrector for the Reed-Muller code of
order 2 at distance 1/2− ε in [27].
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1 Introduction

When Croot and Sisask introduced “A probabilistic technique for finding almost-
periods of convolutions” in 2009 [7], it created quite a splash in the additive
combinatorics community. Roughly speaking, their main result says that if A ∈
F
n
2 is a set whose sumset A+A = {a+a◦ : a, a◦ ⊆ A} is small, then there exists a

dense set X such that the convolution 1A ⊂ 1A(·) of the indicator function of A
with itself, and its translates 1A⊂1A(·+x) for x ⊆ X , are almost indistinguishable
in the L2 and higher Lp norms. This set X may then be referred to as the set
of “almost periods”.

The two main combinatorial applications of the above technique were the
proof of the quasipolynomial Bogolyubov-Ruzsa lemma due to Sanders [22] and
a result saying that sumsets of dense sets contain large subspaces due to Croot,
ffLaba and Sisask [6]. Both applications made crucial use of the Lp-norm estimates
of Croot and Sisask, where p was taken to be very large (a function of the density
σ of the set A ∈ F

n
2 under investigation, such as logσ−1).

Our main result is a simple combinatorial proof of almost-periodicity results
in the spirit of Croot and Sisask that proceeds entirely without recourse to
Lp-norms, instead only relying on the Chernoff bound for sampling. This is
in contrast to Croot and Sisask’s approach which obtained Lp-norm estimates
using a simple sampling technique combined with tailbounds for a multinomial
distribution, which Sanders replaced by the Marcinkiewicz-Zygmund inequality.
It is our hope that this proof will appeal to a larger part of the theoretical
computer science community than the currently existing ones, thereby increasing
the likelihood of further novel applications of the almost-periodicity techniques.

We prove our almost-periodicity results in Section 4. We stress that our
almost-periodicity approach works for arbitrary abelian groups, but for simplic-
ity we state our results only over F

n
2 . We illustrate the use of our new approach

by presenting simplified combinatorial proofs of known additive combinatorics
results as well as new algorithmic applications. Due to space limitations both
the combinatorial and the algorithmic applications are omitted. Let us describe
these in more detail.

1.1 Combinatorial Applications

The quasipolynomial Bogolyubov-Ruzsa lemma. In its original form, the
Bogolyubov-Ruzsa lemma states that if A ∈ F

n
2 is a set of density σ, then

4A := A + A + A + A contains a subspace of codimension at most 2σ−2. One
of the first applications Croot and Sisask gave of their new technique was a
quasipolynomial Bogolyubov-Ruzsa lemma, which asserted that 4A contains it-
erated sumsets, of density at least 2−O(log4(1/ε)) inside F

n
2 . It was quickly recog-

nized by Sanders [22] that the latter result could be boot-strapped, using a little
Fourier analysis, to a quasipolynomial version of the Bogolyubov-Ruzsa lemma
in which the codimension of the subspace that is found within 4A is at most
O(log4(σ−1)).
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This result has important implications for the bounds in Freiman’s theorem,
which describes the structure of sets with small sumsets [20], and to the in-
verse theorem for the Gowers U3 norm [21,16]. It is also a crucial ingredient in
Sanders’s groundbreaking upper bound of C(log logN)5N/ logN for the size of
a subset of {1, . . . , N} not containing any 3-term arithmetic progressions [24].
An improvement to O(log(1/σ)) of the bound on the codimension of the sub-
space which is contained in 4A implies the polynomial Freiman-Ruzsa conjecture
in additive combinatorics, which has found several applications to complexity
theory so far [2,1,3]. See the survey of Green [14] for more information on the
polynomial Freiman-Ruzsa conjecture and its combinatorial applications.

Sumsets of Dense Sets Contain Large Subspaces. Our second combinatorial ap-
plication concerns the problem of finding large subspaces within sumsets of a
dense set. Green [14] had shown that if A ∈ F

n
2 has density σ, then A + A con-

tains a subspace of dimension τ(σ2n). This was improved by Sanders who proved
in [23] using a Fourier-iteration lemma that this subspace must be of dimension
at least τ(σn). Croot, ffLaba and Sisask [6], who addressed the more general prob-
lem in the integers, asking for long arithmetic progressions in sumsets of dense
sets, remarked that a slightly worse bound of the form τ

(
ε

log3(1/ε)
n
)

follows

implicitly from their techniques. Due to space limitations this part is omitted
from this version, but can be found in the full-length version.

1.2 Algorithmic Applications

An advantage of our sampling-based almost-periodicity proofs is that they can
be turned into algorithms that decide membership in almost-periodic sumsets of
dense subsets of Fn

2 in a rather natural way. In particular, using our new tech-
niques we present in an algorithmic version of the quasipolynomial Bogolyubov-
Ruzsa lemma. This is an algorithm which runs in time polynomial in n and
quasipolynomial in 1/σ, which, given an oracle access to an indicator function
of a set A of density at least σ inside F

n
2 , finds, with high probability, a basis to

a subspace V ∈ 4A of codimension O(log4(1/σ)).
The main problem we encounter when converting our almost-periodicity proofs

into such an algorithm is that our combinatorial proofs produce large subsets of
F
n
2 of size exponential in n. Since we are interested in an algorithm which runs

in time polynomial in n, we cannot afford to store these sets or compute with
them explicitly. Instead, we develop probabilistic procedures to efficiently test
membership in such sets. We elaborate on these procedures in Section 2.

Combined with the results of [27], the algorithmic version of the quasipolyno-
mial Bogolyubov-Ruzsa lemma implies an improvement in the running time and
performance guarantee of a self-correction procedure for the Reed-Muller code
of order 2 at distance 1/2 − λ, given in [27]. This in turn leads to an improved
quadratic Goldreich-Levin theorem in which the running time of the algorithm,
as well as the number of terms in the quadratic Fourier decomposition of a
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given function, are quasipolynomial in the error parameter λ. We discuss these
applications below.

One major difficulty we faced when trying to deduce the above applications
from the algorithmic version of the quasipolynomial Bogolyubov-Ruzsa lemma,
encountered already in [27], was that the individual subroutines in these applica-
tions, which correspond to algorithmic versions of theorems in additive combina-
torics, are probabilistic in nature. Since they are applied in sequence, this means
that the input for the next subroutine comes with a certain amount of noise,
and it is therefore necessary to prove robust algorithmic versions of the theorems
from additive combinatorics. This applies in particular to the quasipolynomial
Bogolyubov-Ruzsa lemma, of which we prove such a robust version.

An improved self-corrector for the Reed-Muller code of order 2. A central in-
gredient in the quadratic Goldreich-Levin theorem of [27] is a self-correction
procedure for the Reed-Muller code of order 2 at distance 1/2 − λ. More pre-
cisely, the authors present a procedure which runs in time polynomial in n and
exponential in 1/λ, which given a function f : Fn

2 → {−1, 1} of distance at most
1/2 − λ from a quadratic phase (−1)q (which is a codeword of the Reed-Muller
code of order 2), finds a quadratic phase (−1)q

∈
which has distance at most

1/2 − Π(λ) from f for Π(λ) = exp(−1/λ).
This self-correction procedure is essentially an algorithmic version of the proof

of the inverse theorem for the U3 norm [21,16], which states that if a bounded
function f has large U3 norm, then it correlates with a quadratic phase. As
stated above, the Bogolyubov-Ruzsa lemma is crucial in the proof of the inverse
theorem, and hence plugging our new algorithmic proof of the quasipolynomial
Bogolyubov-Ruzsa lemma into the self-correction procedure of [27] we improve
the running time of the procedure, as well as the parameter Π, to depend only
quasipolynomially on 1/λ.

We remark that the list decoding radius of the Reed-Muller code of order 2 is
1/4 [10,9], and hence at distance 1/2−λ one cannot expect to find all codewords
of distance 1/2− λ from a given codeword. Instead our self-correction procedure
(as well as that of [27]) returns only a single codeword that correlates with the
original codeword.

An improved quadratic Goldreich-Levin theorem. As mentioned above, the self-
correction procedure for the Reed-Muller code of order 2 at distance 1/2 − λ
plays a substantial role in the work on quadratic decomposition theorems by the
last two authors. The aim of such theorems is to decompose any bounded func-
tion f : Fn

2 → C as a sum g + h, where g is quadratically uniform, in the sense
that the Gowers U3 norm ∧g∧U3 is small, and h is quadratically structured, in
the sense that it is a bounded sum of quadratic phases. These types of decom-
positions constitute a higher-order analogue of classical Fourier decompositions,
and they have found several number-theoretic applications [4,12,13,11,17]. Such
decomposition theorems had previously been obtained in an abstract and non-
constructive way (either using a form of the Hahn-Banach theorem [13], or a
so-called energy increment approach [15]).
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From a computer science perspective, it is a natural question to ask whether
such a decomposition could be computed efficiently. In [27], the authors gave a
probabilistic algorithm that, given any function f : Fn

2 → C, would with high
probability compute, in time polynomial in n and exponential in 1/λ, a quadratic
decomposition for that function with a specified U3 error λ, in which the number
of quadratic terms is exponential in 1/λ. This essentially amounts to computing
a “quadratic Fourier decomposition” for f , and was therefore termed a quadratic
Goldreich-Levin theorem in analogy with the well-known linear case [8].

The quadratic Goldreich-Levin algorithm consists of two parts: a deterministic
part which is able to construct the quadratically structured part of f under the
assumption that we have an algorithm which provides some quadratic phase
function that f correlates with (if there is no such phase function, we just set
g = f). The algorithm for finding a quadratic phase function, which constitutes
the second part of the overall algorithm, is basically the self-correction procedure
for the Reed-Muller code of order 2 at distance 1/2 − λ described above. Using
our improved self-correction procedure we improve the running time, as well as
the number of terms that are obtained in the final quadratic decomposition, to
depend only quasipolynomially in the uniformity parameter λ.

2 Techniques

2.1 Sampling-Based Proofs of Almost-Periodicity Results

The following is the precise statement of the original almost-periodicity lemma
of Croot and Sisask (Proposition 1.3 in [7]). Since it is valid for general abelian
groups G, it is written in multiplicative notation. For a pair of functions f, g :
F
n
2 → C, their convolution is defined by f ⊂ g(x) = Ey√F

n
2
f(y)g(x− y).

Proposition 1 (Croot-Sisask Lemma, Lp Local Version). Let λ > 0 and
let m ≥ 1 be an integer. Let G be an abelian group and let A,B ∈ G be finite
subsets such that |B · A| ⇐ K|B|. Then there is a set X ∈ A of size |X | ≥
|A|/(2K)50m/Ω such that for each x ⊆ XX−1,

∧1A ⊂ 1B(yx) − 1A ⊂ 1B(y)∧2m2m ⇐ max{λm|AB||B|m, ∧1A ⊂ 1B∧mm}λm|B|m.

It is known that Lp bounds and Chernoff’s inequality are, in a certain sense,
equivalent. Specifically, a random variable X obeys a Chernoff-type tail bound
of the form

P[|X | ≥ t∧X∧2] ⇐ C exp(−τ(t2))

if and only if its Lp-norm satisfies

∧X∧p ⇐ C
⇒
p∧X∧2

for all p ⊆ [2,∪), the latter representing a Khinchine-type inequality (from which
Marcinkiewicz-Zygmund can be derived). For a proof of this statement we refer
the reader to the excellent lecture notes by Sanders [25].
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Thus it is natural to ask whether one could formulate an ’Lp-norm free’
almost-periodicity statement that suffices for applications and whether such a
statement could be proven without recourse to Lp-norms. In Section 4.1 we an-
swer this question in the affirmative by proving Proposition 2 below. We stress
again that this proposition holds over any abelian group, but for simplicity we
state it only for the special case of Fn

2 .
To state Proposition 2 we start with fixing some notation. For a subset A ∈

F
n
2 we let 1A denote the indicator function of A and μA denote the function

1A · (2n/|A|). For two real numbers σ, β we write σ ≤Ω β to denote |σ− β| ⇐ λ
and if |σ−β| > λ we write σ ⇔≤Ω β. Given subsets A,B ∗ F

n
2 , define the measure

of additive containment ΔA≤B : Fn
2 → [0, 1] by

ΔA≤B(y) := P
a√A

[y + a ⊆ B] =
|(y + A) ⊥B|

|A| = μA ⊂ 1B(y), (1)

for each y ⊆ F
n
2 . Notice that ΔA≤B(y) = 1 when y + A ∈ B and ΔA≤B(y) = 0

when (y + A) ⊥B = ↓.

Proposition 2 (Almost-Periodicity of Sumsets). If A ∗ F
n
2 satisfies |2A| ⇐

K|A|, then for every integer t and set B ∈ F
n
2 there exists a set X with the fol-

lowing properties.

1. The set X is contained in an affine shift of A.
2. The size of X is at least |A|/(2Kt−1).
3. For all x ⊆ X and for all subsets S ∈ F

n
2 ,

P
y√S

[ΔA≤B(y) ≤2Ω ΔA≤B(y + x)] ≥ 1 − 8
|A + B|

|S| · exp
(−2λ2t

)
. (2)

Our proof differs from the original proof of Croot and Sisask in that it
disposes of Lp-norms and tail bounds for a multinomial distribution (or the
Marcinkiewicz-Zygmund inequality), and replaces them with sampling argu-
ments relying on the Chernoff-Hoeffding bound.

We now sketch the proof. To obtain X we replace ΔA≤B by an estimator
function computed by taking a sequence of t independent random samples dis-
tributed uniformly over A. Denoting the sample sequence by a = (a1, . . . , at),
we estimate ΔA≤B(y) by the fraction of ai ⊆ a satisfying y + ai ⊆ B. Denote the
estimator function corresponding to a by Δ̂a. Fixing y, the Chernoff-Hoeffding
bound says that the probability that Δ̂a(y) differs from ΔA≤B(y) by more than
λ, i.e., the probability of the event “ΔA≤B(y) ⇔≤Ω Δ̂a(y)” when a = (a1, . . . , at) is
distributed uniformly over At, is at most exp

(−τ
(
λ2t

))
.

The key observation in the construction of the set X is that there are many
pairs of good estimator sequences a = (a1, . . . , at), â = (â1, . . . , ât) for which
there exists a “special” element x ⊆ F

n
2 such that â = x + a, where x + a :=

(x+ a1, . . . , x+ at). Such x are called “special” for the following reason. We say
y is “good” if both of the following conditions hold,

ΔA≤B(y) ≤Ω Δ̂â(y) and ΔA≤B(y + x) ≤Ω Δ̂a(y + x). (3)
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Now if â = x + a, then we have

Δ̂â(y) = Δ̂â(y + x + x) = Δ̂â+x(y + x) = Δ̂a(y + x),

and combining this with (3) implies that for “good” y we have ΔA≤B(y) ≤2Ω

ΔA≤B(y +x). Thus, to prove the proposition we only need to bound from below
the number of “special” elements x, which is done based on the assumption that
A has small doubling.

For applications, one would like a version of almost-periodicity in which the
set X is replaced with a subspace. It was observed by Sanders [22] that such
a version could be deduced from Proposition 1 above using Fourier analysis
arguments. In Section 4.2 we use Sanders’s approach to deduce such a version
also from our Proposition 2. We now turn to describing the techniques used in
our algorithmic version of almost-periodicity results.

2.2 Algorithmic Versions of Almost-Periodicity Results

With a view to algorithmic applications, we prove an algorithmic version of our
almost-periodicity results. As previously noted, the main difficulty in obtaining
such an algorithmic version is that the combinatorial proofs of these results use
the description of large subsets of Fn

2 , whose size is exponential in n. Since we
are interested in an algorithm which runs in time polynomial in n we do not
have time to describe and inspect these sets as a whole. Instead, we use random
sampling methods to decide efficiently membership in such sets.

For instance, one of the first issues we need to deal with is that for our
algorithmic applications we need to compute the measure ΔA≤2A(y) = Pa√A[a+
y ⊆ 2A]. In order to compute this measure algorithmically one has to have access
to the indicator function for the sumset 2A, whereas we only have oracle access
to the indicator function of A. In order to deal with this, we observe that an
element y ⊆ F

n
2 satisfies a + y ⊆ 2A if and only if 1A ⊂ 1A(a + y) > 0, and that

the latter quantity can be estimated using sampling. In order to handle possible
error in the estimation of 1A ⊂ 1A(a + y) > 0 we need to make some further
modifications in the combinatorial proof.

Another core issue that we need to deal with is how to efficiently find the
set X of almost periods. In the combinatorial proof the existence of the set
X is shown in a non-constructive way using the pigeonhole principle. In order
to find the set X in a constructive manner we prove that for a random string
â = (a1, . . . , at) ⊆ (Fn

2 )t many translates â+x := (a1+x, . . . , at+x) of â, as well
as â itself, will be good estimator sequences. In particular, one can take the set X
to be the set of all x ⊆ F

n
2 such that â+x is a good estimator sequence. For this

one needs an efficient procedure for testing whether a given sequence is a good
estimator sequence, and we obtain such a procedure using the above-mentioned
idea for estimating ΔA≤2A(y).

Finally, in our combinatorial proof we show that X can be approximated by
a subspace V using Fourier analysis. It follows that in order to find the subspace
V , it suffices to inspect the large Fourier coefficients of 1X . This can be done
efficiently using the (standard) Goldreich-Levin theorem.
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3 Preliminaries

In this section we fix our notation and collect some results that we shall
use throughout the paper. Fundamental to our approach will be the following
Chernoff-type tail bound for sampling [26].

Lemma 1 (Hoeffding Bound for Sampling). If X is a random variable with
|X| ⇐ 1 and μ̂ is the empirical average obtained from t samples, then

P [|E [X] − μ̂| > ∂] ⇐ 2 exp(−2∂2t).

Throughout the paper we shall make use of the discrete Fourier transform,
which we define as follows. For f : Fn

2 → C, let

f̂(t) = Ex√F
n
2
f(x)(−1)x·t

for any t ⊆ F̂n
2 = F

n
2 , where Ex√Fn

2
simply stands for the normalized sum

2−n
∑

x√F
n
2

and x · t =
∑n

i=1 xiti for a pair of vectors x = (x1, . . . , xn), t =

(t1, . . . , tn) ⊆ F
n
2 . The inversion formula states that

f(x) =
∑

t√F
n
2

f̂(t)(−1)x·t

for all x ⊆ F
n
2 , and Parseval’s identity takes the form

Ex√Fn
2
f(x)g(x) =

∑

t√F
n
2

f̂(t)ĝ(t),

for any two functions f, g : Fn
2 → C. Finally, the convolution of two such func-

tions is defined by
f ⊂ g(x) = Ey√Fn

2
f(y)g(x− y),

and the fact that the Fourier transform diagonlizes the convolution operator is
expressed via the idenity

∅f ⊂ g(t) = f̂(t)ĝ(t),

which holds for all t ⊆ F
n
2 .

The set of large Fourier coefficients determines the value of a function to a
significant extent, and for many arguments it is important to be able to estimate
its size and determine its structure. For a function f : Fn

2 → C, let

Specα(f) = {t ⊆ F
n
2 : |f̂(t)| ≥ Δ∧f∧1}. (4)

For a subset A ∈ F
n
2 we let 1A denote the indicator function of A and μA

denote the function 1A · (2n/|A|) so that Ex√F
n
2
[μA(x)] = 1. In the special case

where f = 1A for a subset A ∈ F
n
2 of density σ, Parseval’s identity tells us that

|Specα(1A)| ⇐ Δ−2 · σ−1. A more precise result is known: Chang’s theorem [5]
states that Specα(1A) is in fact contained in a subspace of dimension at most
CΔ−2 logσ−1.
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Theorem 1 (Chang’s Theorem). Let Δ ⊆ (0, 1] and A ∈ F
n
2 . Then there is a

subspace V of Fn
2 such that Specα(1A) ∈ V and

dim
(
V
) ⇐ 8

log(2n/|A|)
Δ2

.

For an elegant recent proof of this result using entropy, see Impagliazzo et al.
[18].

Finally, for two real numbers σ, β we write σ ≤Ω β to denote |σ− β| ⇐ λ and
if |σ− β| > λ we write σ ⇔≤Ω β. All logarithms in this paper are taken to base 2.

4 Sampling-Based Proofs of Almost-Periodicity Results

4.1 Croot-Sisask Almost-Periodicity

By an inductive application of Proposition 2 (using the triangle inequality and
the union bound), one can prove the following iterated version.

Corollary 1 (Almost-Periodicity of Sumsets, Iterated). If A ∗ F
n
2 satis-

fies |2A| ⇐ K|A|, then for every integer t and set B ∈ F
n
2 , there exists a set X

with the following properties.

1. The set X is contained in an affine shift of A.
2. The size of X is at least |A|/(2Kt−1).
3. For all x1, . . . , xλ ⊆ X and for all subsets S ∈ F

n
2 ,

P
y√S

[ΔA≤B(y) ≤2Ωλ ΔA≤B(y + x1 + . . . + xλ)] ≥ 1− 8φ
|A + B|

|S| · exp
(−2λ2t

)
.

(5)

4.2 Almost-Periodicity Over a Subspace

For applications one would like a version of Proposition 2 in which the set X of
periods is in fact a subspace. It was observed by Sanders [22] that one can use
iterated almost-periodicity statements such as Corollary 1, combined with some
Fourier analysis, to obtain such a subspace. Here we use Sanders’s argument to
deduce the following statement from Corollary 1.

Corollary 2 (Almost-Periodicity of Sumsets Over a Subspace). If A ∗
F
n
2 is a subset of density σ, then for every integer t and set B ∈ F

n
2 there exists a

subspace V of codimension codim(V ) ⇐ 32 log(2/σt) with the following property.
For every v ⊆ V , for all subsets S ∈ F

n
2 and for every λ, Π > 0 and integer φ,

P
y√S

[ΔA≤B(y) ≤Ω∈ ΔA≤B(y + v)] ≥ 1 − 16
φ

Π

|A + B|
|S| · exp

(−2λ2t
)
, (6)

where λ◦ = 4λφ + 2Π + 2−λ
√|B|/|A|.
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The proof of the quasipolynomial Bogolyubov-Ruzsa lemma follows easily
from the above corollary, and the result of Croot, Laba and Sisask on the exis-
tence of subspaces in sumsets of dense sets follows easily from a refinement of the
above corollary. Note that for the proof of Corollary 2 we need the stronger as-
sumption that A has density at least σ in F

n
2 , instead of the doubling hypothesis

|2A| ⇐ K|A|.
The idea of the proof of Corollary 2 is the following. Let X be the subset

guaranteed by Corollary 1 for K = 1/σ, and define the subspace V as V =
Spec1/2(X)⊆ (see Section 3 for the definition of Specα). The intuition is that if

X were a subspace then Spec1/2(X) = V ⊆, and hence V = X . Thus V serves
as an “approximate subspace” for X . Since A is dense in F

n
2 , by Corollary 1 we

also have that X is dense in F
n
2 and hence Chang’s theorem (Theorem 1) implies

that the subspace V is also dense in F
n
2 (this is the only place where we need

the stronger assumption on the density of A).
In order to show that (6) holds we first show, using Corollary 1, a simple

averaging argument and the triangle inequality, that for most y ⊆ S,

E
x1,...,xε√X

[ΔA≤B(y + x1 + . . . + xλ)] ≤2Ωλ+Δ ΔA≤B(y) . (7)

Similarly, for all v ⊆ V and for most y ⊆ S,

E
x1,...,xε√X

[ΔA≤B(y + v + x1 + . . . + xλ)] ≤2Ωλ+Δ ΔA≤B(y + v) . (8)

We then use Fourier analysis, following Sanders’s argument closely, to show
that for all y ⊆ F

n
2 ,

E
x1,...,xε√X

[ΔA≤B(y + x1 + . . . + xλ)]

≤
2−ε

⇒
|B|/|A| E

x1,...,xε√X
[ΔA≤B(y + v + x1 + . . . + xλ)] , (9)

where v is again an arbitrary element of V . The final conclusion follows from (7),
(8) and (9) using the union bound and the triangle inequality. We first establish
(7) and (8) using Markov’s inequality.

Lemma 2. Let λ, κ > 0, and let A,B,X, S ∈ F
n
2 be such that for all x1, . . . , xλ ⊆

X,
P

y√S
[ΔA≤B(y) ≤Ω ΔA≤B(y + x1 + . . . + xλ)] ≥ 1 − κ .

Then for every Π > 0 we have that

P
y√S

[
ΔA≤B(y) ≤Ω+Δ E

x1,...,xε√X
[ΔA≤B(y + x1 + . . . + xλ)]

]
≥ 1 − κ/Π .

The next lemma establishes (9).

Lemma 3. Let X ∈ F
n
2 , and let V ∈ Spec1/2(X)⊆. Then for all y ⊆ F

n
2 and

v ⊆ V ,

E
x1,...,xε√X

[ΔA≤B(y + x1 + . . . + xλ)] ≤Ω∈∈ E
x1,...,xε√X

[ΔA≤B(y+v +x1 +. . .+ xλ)] ,

(10)
where λ◦◦ = 2−λ

√|B|/|A|.
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An application of Chang’s theorem now proves Corollary 2.
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The Mondshein Sequence�

Jens M. Schmidt

TU Ilmenau

Abstract. Canonical orderings [STOC’88, FOCS’92] have been used as
a key tool in graph drawing, graph encoding and visibility representations
for the last decades. We study a far-reaching generalization of canonical
orderings to non-planar graphs that was published by Lee Mondshein in
a PhD-thesis at M.I.T. as early as 1971.

Mondshein proposed to order the vertices of a graph in a sequence such
that, for any i, the vertices from 1 to i induce essentially a 2-connected
graph while the remaining vertices from i + 1 to n induce a connected
graph. Mondshein’s sequence generalizes canonical orderings and became
later and independently known under the name non-separating ear de-
composition. Currently, the best known algorithm for computing this
sequence achieves a running time of O(nm); the main open problem in
Mondshein’s and follow-up work is to improve this running time to a
subquadratic time.

In this paper, we present the first algorithm that computes a Mond-
shein sequence in time and space O(m), improving the previous best
running time by a factor of n. In addition, we illustrate the impact of
this result by deducing linear-time algorithms for several other problems,
for which the previous best running times have been quadratic.

In particular, we show how to compute three independent spanning
trees in a 3-connected graph in linear time, improving a result of Cheriyan
and Maheshwari [J. Algorithms 9(4)]. Secondly, we improve the pre-
processing time for the output-sensitive data structure by Di Battista,
Tamassia and Vismara [Algorithmica 23(4)] that reports three inter-
nally disjoint paths between any given vertex pair from O(n2) to O(m).
Thirdly, we improve the computation of 3-partitioning of a 3-connected
graph to linear time. Finally, we show how a very simple linear-time
planarity test can be derived once a Mondshein sequence is computed.

1 Introduction

Canonical orderings are a fundamental tool used in graph drawing, graph encod-
ing and visibility representations; we refer to [1] for a wealth of applications. For
maximal planar graphs, canonical orderings were first introduced by de Frays-
seix, Pach and Pollack [6,7] in 1988. Kant then generalized canonical orderings
to arbitrary 3-connected planar graphs [12,13].

Surprisingly, the concept of canonical orderings can be traced back much fur-
ther, namely to a long-forgotten PhD-thesis at M.I.T. by Lee F. Mondshein [15]
� This research was partly done at Max Planck Institute for Informatics, Saarbrücken.

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 967–978, 2014.
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in 1971. In fact, Mondshein proposed a sequence that generalizes canonical or-
derings to non-planar graphs, hence making them applicable to arbitrary 3-
connected graphs. Mondshein’s sequence was, independently and in a different
notation, found later by Cheriyan and Maheshwari [4] under the name non-
separating ear decompositions.

Computationally, it is an intriguing question how fast a Mondshein sequence
can be computed. Mondshein himself gave an involved algorithm with running
time O(m2). Cheriyan showed that it is possible to achieve a running time of
O(nm) by using a theorem of Tutte that proves the existence of non-separating
cycles in 3-connected graphs [20]. Both works (see [15, p 1.2] and [4, p. 532])
state as main open problem, whether it is possible to compute a Mondshein
sequence in subquadratic time.

We present the first algorithm that computes a Mondshein sequence in time
and space O(m), hence solving the above 40-year-old problem. The interest in
such a computational result stems from the fact that 3-connected graphs play a
crucial role in algorithmic graph theory; we illustrate this in four direct applica-
tions by giving linear-time (and hence optimal) algorithms for several problems,
for two of which the previous best running times have been quadratic.

In particular, we show how to compute three independent spanning trees in
a 3-connected graph in linear time, improving a result of Cheriyan and Mahesh-
wari [4]. Second, we improve the preprocessing time from O(n2) to O(m) for
a data structure by Di Battista, Tamassia and Vismara [8] that reports three
internally disjoint paths in a 3-connected graph between any given vertex pair
in time O(ν), where ν is the total length of these paths. Finally, we illustrate the
usefulness of Mondshein’s sequence by giving a very simple linear-time planarity
test, once a Mondshein sequence is computed.

We start by giving an overview of Mondshein’s work and its connection to
canonical orderings and non-separating ear decompositions in Section 3. Sec-
tion 4 sketches the main ideas for our linear-time algorithm that computes a
Mondshein sequence. Section 5 covers four applications of this linear-time algo-
rithm.

2 Preliminaries

We use standard graph-theoretic terminology and assume that all graphs are
simple.

Definition 1 ([14,23]). An ear decomposition of a 2-connected graph G = (V, E)
is a sequence (P0, P1, . . . , Pk) of subgraphs of G that partition E such that P0
is a cycle and every Pi, 1 ∈ i ∈ k, is a path that intersects P0 ≥ · · · ≥ Pi−1 in
exactly its end points. Each Pi is called an ear. An ear is short if it is an edge
and long otherwise.

According to Whitney [23], every ear decomposition has exactly m − n + 1
ears. For any i, let Gi = P0 ≥ · · · ≥ Pi and Vi := V − V (Gi). We write Gi to
denote the graph induced by Vi. We observe that Gi does not necessarily contain
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all edges in E − E(Gi); in particular, there may be short ears in E − E(Gi) that
have both of their endpoints in Gi.

For a path P and two vertices x and y in P , let P [x, y] be the subpath in P
from x to y. A path with endpoints v and w is called a vw-path. A vertex x in a
vw-path P is an inner vertex of P if x /≤ {v, w}. For convenience, every vertex
in a cycle is an inner vertex of that cycle.

The set of inner vertices of an ear P is denoted as inner(P ). The inner vertex
sets of the ears in an ear decomposition of G play a special role, as they partition
V (G). Every vertex of G is contained in exactly one long ear as inner vertex.
This gives readily the following characterization of Vi.

Observation 2. For every i, Vi is the union of the inner vertices of all long
ears Pj with j > i.

We will compare vertices and edges of G by their first occurrence in a fixed
ear decomposition.

Definition 3. Let D = (P0, P1, . . . , Pm−n) be an ear decomposition of G. For
an edge e ≤ G, let birthD(e) be the index i such that Pi contains e. For a vertex
v ≤ G, let birthD(v) be the minimal i such that Pi contains v (thus, PbirthD(v) is
the ear containing v as an inner vertex). Whenever D is clear from the context,
we will omit D.

Clearly, for every vertex v, the ear Pbirth(v) is long, as it contains v as an inner
vertex.

3 Generalizing Canonical Orderings

We give a compact rephrasing of canonical orderings in terms of non-separating
ear decompositions. This will allow for an easier comparison of a canonical order-
ing and its generalization to non-planar graphs, as the latter is also based on ear
decompositions. We assume that the input graphs are 3-connected and, when
talking about canonical orderings, planar. It is well-known that maximal pla-
nar graphs, which were considered in [6], form a subclass of 3-connected graphs
(apart from the triangle-graph).

Definition 4. An ear decomposition is non-separating if, for 0 ∈ i ∈ m − n,
every inner vertex of Pi has a neighbor in Gi unless Gi = ⊆.

The name non-separating refers to the following helpful property.

Lemma 5. In a non-separating ear decomposition D, Gi is connected for every
i.

Proof. Let u be an inner vertex of the last long ear in D. If Gi = ⊆, the claim
is true. Otherwise, consider any vertex x in Gi. In order to show connectedness,
we exhibit a path from x to u in Gi. If x is an inner vertex of Pbirth(u), this path
is just the path Pbirth(u)[x, u]. Otherwise, birth(x) < birth(u). Then x has a
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neighbor in Gbirth(x), since D is non-separating, and, according to Observation 2,
this neighbor is an inner vertex of some ear Pj with j > birth(x). Applying
induction on j gives the desired path to u. �

A plane graph is a graph that is embedded into the plane. In particular, a
plane graph has a fixed outer face. We define canonical orderings as special
non-separating ear decompositions.

Definition 6 (canonical ordering). Let G be a 3-connected plane graph having
the edges tr and ru in its outer face. A canonical ordering with respect to tr
and ru is an ear decomposition D of G such that
1. tr ≤ P0,
2. Pbirth(u) is the last long ear, contains u as its only inner vertex and does not

contain ru, and
3. D is non-separating.

The original definition of canonical orderings by Kant [13] states several addi-
tional properties, all of which can be deduced from the ones given in Definition 6.
E.g., it is easy to see for every i that the outer face Ci of Gi forms a cycle con-
taining tr.

The fact that D is non-separating plays a key role for both canonical order-
ings and their generalization to non-planar graphs. E.g., for canonical orderings,
Lemma 5 implies that the plane graph G can be constructed from P0 by succes-
sively inserting the ears of D to only one dedicated face of the current embedding,
a routine that is heavily applied in graph drawing and embedding problems.

Our definition of canonical orderings uses planarity only in one place: tr ≥ ru
is assumed to be part of the outer face of G. Note that the essential art of this
assumption is that tr ≥ ru is part of some face of G, as we can always choose an
embedding for G having this face as outer face. By dropping this assumption,
our definition of canonical orderings can be readily generalized to non-planar
graphs: We merely require tr and ru to be edges in the graph.

This is in fact equivalent to the definition Mondshein used 1971 to define
a (2,1)-sequence [15, Def. 2.2.1], but which he gave in the notation of a spe-
cial vertex ordering. This vertex ordering actually refines the partial order
inner(P0), . . . , inner(Pm−n) by enforcing an order on the inner vertices of each
path according to their occurrence on that path (in any direction). For concise-
ness, we will instead stick to the following short ear-based definition, which is
similar to the one given in [4] but does not need additional degree-constraints.

Definition 7 ([15,4]). Let G be a graph with an edge ru. A Mondshein sequence
avoiding ru (see Figure 3a) is an ear decomposition D of G such that
1. r ≤ P0,
2. Pbirth(u) is the last long ear, contains u as its only inner vertex and does not

contain ru, and
3. D is non-separating.

An ear decomposition D that satisfies Conditions 1 and 2 is said to avoid
ru. Put simply, this forces ru to be “added last” in D, i.e., strictly after the
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last long ear Pbirth(u) has been added. Note that Definition 7 implies u /≤ P0, as
Pbirth(u) contains only one inner vertex. As a direct consequence of this and the
fact that D is non-separating, G must have minimum degree 3 in order to have
a Mondshein sequence. Mondshein proved that every 3-connected graph has a
Mondshein sequence. In fact, also the converse is true.

Theorem 8. [4,24] Let ru ≤ E(G). Then G is 3-connected if and only if G has
a Mondshein sequence avoiding ru.

We state two additional facts about Mondshein sequences. Since we replaced
the assumption that tr ≥ ru is in the outer face of G with the very small as-
sumption that ru is an edge of G (which does not assume anything about t at
all), it is natural to ask how we can extract t (and thus, a canonical ordering)
from a Mondshein sequence when G is plane. We choose t as any neighbor of r
in P0. Since P0 is non-separating and the non-separating cycles of a 3-connected
plane graph are precisely its faces [20], this satisfies Definition 6 and leads to the
following observation.

Observation 9. Let D be a Mondshein sequence avoiding ru of a planar graph
G and let t be a neighbor of r in P0. Then D is a canonical ordering of the
planar embedding of G whose outer face contains tr ≥ ru.

Once having a Mondshein sequence, we can aim for a slightly stronger struc-
ture. A chord of an ear Pi is an edge in G that joins two non-adjacent vertices
of Pi. Let a Mondshein sequence be induced if P0 is induced in G and every ear
Pi ∪= P0 has no chord in G, except possibly the chord joining the endpoints of
Pi. The following lemma shows that we can always expect Mondshein sequences
that are induced. We omit the proof.

Lemma 10. Every Mondshein sequence can be transformed to an induced Mond-
shein sequence in linear time.

4 Computing a Mondshein Sequence

Mondshein gave an involved algorithm [15] that computes his sequence in time
O(m2). Independently, Cheriyan and Maheshwari gave an algorithm that runs in
time O(nm) and which is based on a theorem of Tutte. At the heart of our linear-
time algorithm is the following classical construction sequence for 3-connected
graphs due to Barnette and Grünbaum [2] and Tutte [21, Thms. 12.64 and 12.65].

Definition 11. The following operations on simple graphs are BG-operations
(see Figure 1).
(a) vertex-vertex-addition: Add an edge between two distinct non-adjacent ver-

tices
(b) edge-vertex-addition: Subdivide an edge ab, a ∪= b, by a vertex v and add

the edge vw for a vertex w /≤ {a, b}
(c) edge-edge-addition: Subdivide two distinct edges by vertices v and w, respec-

tively, and add the edge vw
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(a) vertex-vertex-addition (b) edge-vertex-addition (c) edge-edge-addition

Fig. 1. BG-operations

Theorem 12 ([2,21]). A graph is 3-connected if and only if it can be constructed
from K4 using BG-operations.

Hence, applying an BG-operation on a 3-connected graphs preserves it to
be simple and 3-connected. Let a BG-sequence of a 3-connected graph G be a
sequence of BG-operations that constructs G from K4. It has been shown that
such a BG-sequence can be computed efficiently.

Theorem 13 ([17, Thms. 6.(2) and 52]). A BG-sequence of a 3-connected graph
can be computed in time O(m).

The outline of our algorithm is as follows. We start with a Mondshein sequence
of K4, which is easily obtained, and compute a BG-sequence of our 3-connected
input graph by using Theorem 13. The crucial part is now a careful analysis that
a Mondshein sequence of a 3-connected graph G can be modified to one of G∗,
where G∗ is obtained from G by applying a BG-operation.

This last step is the main technical contribution of this paper and depends
on the various positions in the sequence in which the vertices and edges that are
involved in the BG-operation can occur. We will prove that there is always a
modification that is local in the sense that the only long ears that are modified
are the ones containing a vertex that is involved in the BG-operation.

Lemma 14 (Path Replacement Lemma). Let G be a 3-connected graph with
an edge ru. Let D = (P0, P1, . . . , Pm−n) be a Mondshein sequence avoiding ru
of G. Let G∗ be obtained from G by applying a single BG-operation Ω and let
ru∗ be the edge of G∗ corresponding to ru. Then a Mondshein sequence D∗ of G∗

avoiding ru∗ can be computed from D using only constantly many constant-time
modifications.

However, the complete description of these modifications goes beyond the
scope of this extended abstract. We will therefore state precise modifications
only for the very first cases of vertex-vertex- and edge-vertex-additions and omit
everything else.

We need some notation for describing the modifications. Let vw be the edge
that was added by Ω such that, if applicable, v subdivides ab ≤ E(G) and
w subdivides cd ≤ E(G). Then the edge ru∗ of G∗ that corresponds to ru in
G is either ru, rv or rw. Whenever we consider the edge ab or cd, e.g. in a
statement about birth(ab), we assume that Ω subdivides ab, respectively, cd.
W.l.o.g., we further assume that birth(a) ∈ birth(b), birth(c) ∈ birth(d) and
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birth(d) ∈ birth(b). If not stated otherwise, the birth-operator refers always to
D in this section. Let S ⊆ {av, vb, vw, cw, wd} be the set of new edges in G∗.

We state the detailed replacement scheme that plays a key-role in proving the
above Path Replacement Lemma.

Lemma 15. There is a Mondshein sequence D∗ = (P ∗
0, P ∗

1, . . . , P ∗
m−n+1) of G∗

avoiding ru (respectively, rv or rw if Ω subdivides ru) that can be obtained from
D by performing the following four modifications:
M1) replacing the long ear Pbirth(b) with 1 ∈ i ∈ 3 consecutive long ears P ∗

b1
,

P ∗
b2

and P ∗
b3
, each of which consists of edges in Pbirth(b) ≥ S (for notational

convenience, we assume that all three ears exist such that P ∗
bj

:= P ∗
bi

for
every j > i)

M2) if Pbirth(cd) is long and birth(d) < birth(b), replacing Pbirth(cd) with the
long ear P ∗

cwd that is obtained from Pbirth(cd) by subdividing cd with w (in
particular, birth(cd) = birth(d) < birth(b) in this case)

M3) if Pbirth(ab) is short, deleting or replacing Pbirth(ab) with an edge in
{va, vb, vw}; if Pbirth(cd) is short, deleting or replacing Pbirth(cd) with an
edge in {wc, wd}

M4) possibly adding vw as new last ear.

In particular, D∗ can be constructed from D as follows (Figure 2 determines the
new ears P ∗

b1
–P ∗

b3
in M1).

(1) Ω is a vertex-vertex-addition
Obtain D∗ from D by adding the new ear vw at the end.

(2) Ω is an edge-vertex-addition
(a) birth(b) = birth(ab)

Let a∗ and b∗ be the endpoints of Pbirth(b) such that a∗ is closer to a than
to b on Pbirth(b) (a∗ may be a, but b∗ ∪= b).
(i) w /≤ Gbirth(b) ε birth(w) > birth(b)

Obtain D∗ from D by subdividing ab ⊆ Pbirth(b) with v and adding
the new ear vw at the end.

(ii) w ≤ Gbirth(b) − Pbirth(b) ε birth(w) < birth(b) and w /≤ {a∗, b∗}
Let Z be the path obtained from Pbirth(b) by replacing ab with
av ≥ vb. Let Z1 be the a∗w-path in Z ≥ vw. Obtain D∗ from D by
replacing Pbirth(b) with the two ears Z1 and Z[v, b∗] in that order.

(iii) w ≤ Pbirth(b) ε birth(w) = birth(b) or w ≤ {a∗, b∗}
Let Z be obtained from Pbirth(b) by replacing ab with av ≥ vb. Let
Z2 be the vw-path in Z (if birth(b) = 0, Z is a cycle and there
are two vw-paths; we then choose one that does not contain r as
an inner vertex). Let Z1 be obtained from Z by replacing Z2 with
the edge vw. Obtain D∗ from D by replacing Pbirth(b) with the two
ears Z1 and Z2 in that order.

We omit a concise proof of the correctness of Lemma 15 and, thus, of the
Path Replacement Lemma 14. Applying Lemma 14 iteratively for each operation
in a BG-sequence gives immediately a linear-time algorithm for constructing
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Case (1) Case (2ai) Case (2aii) Case (2aiii)

Case (2bi) Case (2biiA) Case (2biiB) Case (2biiC)

Fig. 2. Cases (1) and first subcases of (2) of Lemma 15. Black vertices are endpoints
of ears that are contained in Gbirth(b). The dashed paths depict (parts of) the ears in
D′.

a Mondshein sequence, as each step can be computed in constant time. We
conclude the following theorem.

Theorem 16. Given an edge ru of a 3-connected graph G, a Mondshein se-
quence of G avoiding ru can be computed in time O(m).

We now discuss four applications where Theorem 16 leads immediately to
linear-time solutions. For three of these problems only quadratic algorithms have
been known.

5 Applications

Application 1: Independent Spanning Trees
Let k spanning trees of a graph be independent if they all have the same root
vertex r and, for every vertex x ∪= r, the paths from r to x in the k spanning trees
are internally disjoint (i.e., vertex-disjoint except for their endpoints). The fol-
lowing conjecture from 1988 due to Itai and Rodeh [11] has received considerable
attention in graph theory throughout the past decades.

Conjecture (Independent Spanning Tree Conjecture [11]). Every k-connected
graph contains k independent spanning trees.

The conjecture has been proven for k ∈ 2 [11], k = 3 [4,24] and k = 4 [5],
with running times O(m), O(n2) and O(n3), respectively, for computing the
corresponding independent spanning trees. For k ≥ 5, the conjecture is open.
For planar graphs, the conjecture has been proven by Huck [10].

We show how to compute three independent spanning trees in linear time,
using an idea of [4]. This improves the previous best running time by a factor
of n. It may seem tempting to compute the spanning trees directly and without
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using a Mondshein sequence, e.g. by local replacements in an induction over
BG-operations or inverse contractions. However, without additional structure it
can be proven that this is bound to fail.

Compute a Mondshein sequence avoiding ru, as described in Theorem 16.
Choose r as the common root vertex of the three spanning trees and let x ∪= r
be an arbitrary vertex.

First, we show how to obtain two internally disjoint paths from x to r that
are both contained in the subgraph Gbirth(x). An st-numbering Θ is an ordering
v1 < · · · < vn of the vertices of a graph such that s = v1, t = vn, and every other
vertex has both a higher-numbered and a lower-numbered neighbor. Let Θ be
consistent to a Mondshein sequence if Θ is an st-numbering for every graph Gi,
0 ∈ i ∈ m − n. Let t ∪= u be a neighbor of r in P0. A consistent tr-numbering
Θ can be easily computed in linear time [3]. According to Θ, we can start with
x and iteratively traverse to a higher-numbered and lower-numbered neighbor,
respectively, without leaving Gbirth(x). This gives two internally disjoint paths
from x to r and t; the path to t is then extended to the desired path ending at r
by appending the edge tr. The traversed edges of this procedure for every x ∪= r
give the first two independent spanning trees T1 and T2.

(a) A Mondshein sequence of a
non-planar 3-connected graph G.

(b) Three independent spanning trees
in G (vertex numbers depict a consis-
tent st-numbering).

Fig. 3.

We construct the third independent spanning tree. Since a Mondshein se-
quence is non-separating, we can start with any vertex x ∪= r, traverse to a
neighbor in Gbirth(x) and iterate this procedure until we end at u. The traversed
edges of this procedure for every x ∪= r form a tree that is rooted at u and that
can be extended to a spanning tree T3 that is rooted at r by adding the edge
ur. T3 is independent from T1 and T2, as, for every x ∪= r, the path from x to u
intersects Gbirth(x) only in x.



976 J.M. Schmidt

Application 2: Output-Sensitive Reporting of Disjoint Paths
Given two vertices x and y of an arbitrary graph, a k-path query reports k
internally disjoint paths between x and y or outputs that these do not exist.
Di Battista, Tamassia and Vismara [8] give data structures that answer k-path
queries for k ∈ 3. A key feature of these data structures is that every k-path
query has an output-sensitive running time, i.e., a running time of O(ν) if the
total length of the reported paths is ν (and running time O(1) if the paths do
not exist). The preprocessing time of these data structures is O(m) for k ∈ 2
and O(n2) for k = 3.

For k = 3, Di Battista et al. show how the input graph can be restricted to be
3-connected using a standard decomposition. For every 3-connected graph we can
compute a Mondshein sequence, which allows us to compute three independent
spanning trees T1–T3 in a linear preprocessing time, as shown in Application 1.
If x or y is the root r of T1–T3, this gives a straight-forward output-sensitive
data structure that answers 3-path queries: we just store T1–T3 and extract one
path from each tree per query.

In order to extend these queries to k-path queries between arbitrary vertices
x and y, [8] gives a case distinction that shows that the desired paths can be
efficiently found in the union of the six paths in T1–T3 that join x with r and
y with r. This case distinction can be used for the desired output-sensitive re-
porting in time O(ν) without changing the preprocessing. We conclude a linear
preprocessing time for all k-path queries with k ∈ 3.

Application 3: Planarity Testing
We give a conceptually very simple planarity test based on Mondshein’s sequence
for any 3-connected graph G in time O(n).

The 3-connectivity requirement is not really crucial, as the planarity of G can
be reduced to the planarity of all 3-connected components of G, which in turn are
computed as a side-product for the BG-sequence in Theorem 13; alternatively,
one can use standard algorithms [9,16] for reducing G to be 3-connected. We
compute an induced Mondshein sequence D avoiding an arbitrary edge ru in
time O(n). Let t be a neighbor of r in P0.

We start with a planar embedding M0 of P0 and assume with Observation 9
w.l.o.g. that the last vertex u will be embedded in the outer face. We will first
ignore short ears. Step by step, we attempt to augment Mi with the next long
ear Pj in D in order to construct a planar embedding Mj of Gj .

Once the current embedding Mi contains u, we have added all the vertices of G
and are done. Otherwise, u is contained in Gi, according to Definition 6.2. Then
Gi contains a path from each inner vertex of Pj to u, according to Lemma 5.
Since u is contained in the outer face of the final embedding, adding the long ear
Pj to Mi can preserve planarity only when it is embedded into the outer face
f of Mi. Thus, we only have to check that both endpoints of Pj are contained
in f (this is easy to test by maintaining the vertices of the current outer face).
If yes, we embed Pj into f . Otherwise, we output “not planar”; if desired, a
Kuratowski-subdivision can then be extracted in linear time.



The Mondshein Sequence 977

Until now we ignored short ears, but have already constructed a planar em-
bedding M ∗ of a spanning subgraph of G. In order to test whether the addition
of the short ears to M ∗ can make the embedding non-planar, we pass through
the construction of M ∗ once more, this time adding short ears. Whenever a long
ear Pj is embedded, we test whether all short ears that join a vertex of inner(Pj)
with a vertex of Gj−1 can be embedded while preserving a planar embedding.
Note that if D is a canonical ordering of M , Gj−1 must be 2-connected and the
outer face of Gj−1 must be a cycle, according to [19, Corollary 1.3]. The last
fact allows for an easy test whether adding the short ears preserves a planar
embedding.

Application 4 (Bonus Application): The k-partitioning problem
At the time of submission, the author was pointed to the following problem.
Given vertices v1, . . . , vk of a graph G and natural numbers n1, . . . , nk with
n1 + · · · + nk = n, find a partition of V into sets V1, . . . , Vk with |Vi| = ni for
every i such that every set Vi induces a connected graph in G.

For general graphs, this problem is NP-hard even for k = 2. However, for
3-connected graphs, the 3-partitioning problem can be solved in linear time if
the input graph is planar . As suggested in [22], this problem (as well as a re-
lated extension) can be solved directly, once a non-separating ear decomposition
has been computed. For planar graphs, we can thus use the (well-established)
canonical ordering instead, which simplifies previous algorithms considerably.

More importantly, the fastest algorithm for the 3-partitioning problem in ar-
bitrary 3-connected graphs runs in time O(n2) [18]. Combining a Mondshein
sequence through with a simple assignment of the vertices on ears to V1, V2 and
V3 (as shown in [22]) gives the first O(m) algorithm for this problem.

Acknowledgments. I wish to thank Joseph Cheriyan for valuable hints and
helpfully providing a scan of his PhD-thesis, the anonymous person who drew
my attention to Lee F. Mondshein’s work, and the anonymous reviewer that
pointed me to the k-partitioning problem.
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Abstract. We give a new proof for the fact that the expected gap be-
tween the maximum load and the average load in the two-choice process
is bounded by (1 + o(1)) log log n, irrespective of the number of balls
thrown. The original proof of this surprising result, due to Berenbrink
et al. in [2], uses tools from Markov chain theory, and a sophisticated
induction proof involving computer-aided calculations. We provide a sig-
nificantly simpler and more elementary proof. The new technique allows
us to generalize the result and derive new and often tight bounds for the
case of weighted balls. The simplification comes at a cost of larger lower
order terms and a weaker tail bound for the probability of deviating from
the expectation.

1 Introduction

Balls-and-Bins processes are a name for randomized allocations processes, typi-
cally used to model the performance of hashing or more general load balancing
schemes. Suppose there are m balls (think items) to be thrown into n bins (think
hash buckets). We want a simple process that will keep the loads balanced, while
allowing quick decentralized lookup. One of the simplest such process is the Balls-
and-Bins process where balls are placed sequentially via some simple randomized
allocation process, and not moved once placed. There are other approaches to
the problem that we will not discuss here. A significant body of work had been
amassed on the analysis of simple and natural versions of these Balls-and-Bins
processes. In this work we present a simpler analysis for the heavily loaded case
for many of these processes.

In the Greedy[d] process (sometimes called the d-choice process), balls are
placed sequentially into n bins with the following rule: Each ball is placed by
uniformly and independently sampling d bins and assigning the ball to the least
loaded of the d bins1. In this paper we are interested in the gap of the allocation,
which is the difference between the number of balls in the heaviest bin, and the
average. The case d = 1, when balls are placed uniformly at random in the
bins, is well understood. In particular when n balls are thrown, the bin with
the largest number of balls will have σ(log n/ log log n) balls w.h.p. Since the

1 Assume for simplicity and w.l.o.g that ties are broken according to some fixed or-
dering of the bins.
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c∈ Springer-Verlag Berlin Heidelberg 2014
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average is 1, asymptotically this is also the gap. If m ∈ n balls are thrown the
heaviest bin will have m/n + σ(

√
m logn/n) balls w.h.p. [10]. In other words

Gap(m) = σ(
√

m logn/n) w.h.p.
In an influential paper Azar et al. [1] showed that when n balls are thrown

and d > 1 the gap2 is log logn/ log d + O(1) w.h.p. The case d = 2 is implicitly
shown in Karp et al. [5]. The proof by Azar et al. uses a simple but clever
induction; in our proof here we take the same approach. The proof in [1] breaks
down once the number of balls is super-linear in the number of bins. Two other
approaches to prove this result, namely, using differential equations or witness
trees, also fail when the number of balls is large (see for example the survey [6]).
A breakthrough was achieved by Berenbrink et al. in [2]:

Theorem 1 ([2]). For every c > 0 there is a τ = τ(c) so that for any given
m ⊆ N,

Pr[Gap(m) ⊂ log logn

log d
+ τ] → n−c

Thus the additive gap remains at log logn even after m ∈ n balls are thrown!
Contrast this with the one choice case in which the gap diverges with the number
of balls. At a (very) high level their approach was the following: first they show
that the gap after m balls are thrown is distributed similarly to the gap after
only poly(n) balls are thrown. This is done by bounding the mixing time of an
underlying Markov chain. The second step is to extend the induction technique
of [1] to the case of poly(n) balls. This turns out to be a major technical chal-
lenge which involves four inductive invariants and computer-aided calculations.
Furthermore, whenever the model is tweaked, this technically difficult part of
the proof needs to be redone, making such changes challenging. As such, finding
a simpler proof has remained an interesting open problem [8].

1.1 Our Contributions

In this paper we present a simple proof for a bound similar to that of Theorem 1.

Theorem 2. For any m, the expected gap between maximum and average of
Greedy[d] is at most log logn

log d +O(log log logn). Moreover for an absolute constant
c,

Pr[Gap(m) >
log logn

log d
+ c log log logn] → c(log logn)−4

Our proof builds on the layered induction approach of Azar et al. [1]. The
basic approach bounds the number of bins containing at least h balls, by using
an induction on h. This approach runs into several issues when trying to go
beyond O(n) balls, the most crucial of these is establishing the base case for
the induction: When the number of balls is n it trivially holds that the number

2 Unless otherwise stated, all logs in this paper are base 2.
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of bins that received at least 2 balls is at most n/2. When m >> n there is
no straightforward argument to claim that the number of bins with load above
the average is at most n/2. We show that the potential function approach of [9]
allows us to surmount these hurdles: the bound from the potential function lets
us restrict ourselves to the last Õ(n logn) balls, and also gives us a suitable base
case for the layered induction.

Our proof is relatively short and accessible. This simplicity comes at a price.
Our bound is slightly weaker than Theorem 1, it has larger lower order terms
and a weaker tail bound on the probability of deviation from expectation.

On the positive side the simple proof structure allows for easier generalization.
We obtain bounds on similar processes without much added difficulty. These in-
clude a bound on Vöcking’s Left[d] process (also shown in [2]) which we present in
Section 4, as well as tight bounds on processes with weighted balls, which were pre-
viously unknown. For instance suppose that each ball has a weight sampled uni-
formly from the set {1, 2}. in Section 3, we show that the gap is 2 log logn up to
lower order terms. This improves on the previously best known bound of O(log n).
We also show lower bounds for the weighted case that match our upper bounds for
several interesting distributions. In particular, for the case of weights in {1, 2}, we
show that the upper bound of 2 log logn is tight up to lower order terms.

Another way to characterize the d-choice process is by defining the probability
a ball is placed in one of the i heaviest bins (at the time when it is placed) to be
exactly (i/n)d. We remark that using this characterization, there is no need to
assume that d is a natural number. While the process is algorithmically simpler
to describe when d is an integer, natural cases arise in which d is not an integer,
c.f. [13]. Our approach, being based on layered induction, naturally extends to
this setting for any d > 1.

2 The Main Proof

We define the normalized load vector Xt to be an n dimensional vector where Xt
i

is the difference between the load of the i’th bin after tn balls are thrown and the
average t, (so that a load of a bin can be negative and

∑
Xi = 0). We also assume

without loss of generality that the vector is sorted so that Xt
1 ⊂ Xt

2 ⊂ ... ⊂ Xt
n.

We will consider a Markov chain with state space Xt, where one step of the
chain consists of throwing n balls according to the d-choice scheme and then
sorting and normalizing the load vector.

The main tool we use is the following Theorem proven in [9].

Theorem 3 ([9]). For every d > 1 there exist positive constants a and b such
that for all n and all t,

E

[
∑

i

exp
(
a|Xt

i |
)
]

→ bn.

Let Gt def
= Xt

1 denote the gap between maximum and average when sampling
from Xt. Applying Markov’s inequality to Theorem 3 implies the following:
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Lemma 1. For any t, any c ⊂ 0, Pr[Gt ⊂ c logn
a ] → bn

nc . Thus for every c there
is a τ = τ(c) such that Pr[Gt ⊂ τ log n] → n−c.

We remark that Theorem 3 is a statement about the absolute values of the
Xt

i ’s and thus a version of Lemma 1 holds also for the gap between the minimum
and the average. This bound is tight up to constant factors: the lightest bin
indeed trails the average by a logarithmic number of balls (see e.g. [9]). The
challenge is therefore to use a different technique to “sharpen” the bound on the
gap between maximum and average. We do this next by showing that if the gap
is indeed bounded by logn, then after additional n logn balls are thrown the
gap is reduced to log logn.

The crucial lemma, that we present next, says that if the gap at time t is L,
then after throwing another nL balls, the gap becomes log logn+O(logL) with
probability close to 1. Roughly speaking, our approach is to apply the lemma
twice, first with L = O(log n) taken from Theorem 3. This reduces the bound to
O(log logn). A second application of the lemma with L = O(log logn) implies
Theorem 2. While Theorem 2 holds for any d > 1, for ease of exposition we
assume in the following that d = 2. Generalizing for any d > 1 requires nothing
more than choosing the constants appropriately and is done in the full version
of the paper.

Lemma 2. There is a universal constant τ such that the following holds: for
any t, λ, L such that 1 → λ → L → n

1
4 and Pr[Gt ⊂ L] → 1

2 ,

Pr[Gt+L ⊂ log logn + λ + τ] → Pr[Gt ⊂ L] +
16bL3

exp(aλ)
+

1

n2
,

where a, b are the constants froms Theorem 3.

Intuition: We use the layered induction technique: For a specific ball to in-
crease the number of balls in a bin from i to i + 1, it must pick two bins that
already contain at least i balls. If we assume inductively that the fraction of bins
with at least i balls when this ball is placed is at most Πi, then this probability is
at most Π2

i and thus there are (on expectation) at most nLΠ2
i bins with load at

least i+ 1. Roughly speaking this implies that Πi+1 ∧ LΠ2
i . While the Πi’s are a

function of time, they are monotonically increasing and using the final Πi value
would give us an upper bound on the probability of increase. The main challenge
is to obtain a base case for the induction. Theorem 3 provides us with such a
base case, for bins with λ more balls than the average in Xt+L. For simplicity, the
reader may think of L as O(log n) and λ as O(log log n). With these parameters
Theorem 3 implies that the fraction of bins with load at least λ = O(log logn)
(at time t + L) is at most 1

4 logn , so the Π’s shrink in each induction step even
though n logn balls are thrown. As mentioned above, we will use the lemma a
second time for L = O(log logn) and λ = O(log log logn).

Proof (Lemma 2). We sample an allocation Xt and let Gt be its gap. Now take
an additional L steps of the Markov chain to obtain Xt+L, in other words, an
additional nL balls are thrown by the 2-choice process. For brevity, we will use
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Fig. 1. Black balls are in X, nL white balls are thrown to obtain X ′

X,G,X ◦, G◦ to denote Xt, Gt, Xt+L, Gt+L respectively. We condition on G < L
and we prove the bound for G◦. Let L◦ = log logn + λ + τ. Observe that:

Pr[G◦ ⊂ L◦] → Pr[G◦ ⊂ L◦ | G < L] + Pr[G ⊂ L] (1)

It thus suffices to prove that Pr[G◦ ⊂ L◦ | G < L] → 16bL3

exp(aσ) + 1
n2 . We do this

using a layered induction similar to the one in [1].
Let βi be the fraction of bins with normalized load at least i in X ◦ (i.e.

containing t + L + i balls or more), we will define a series of numbers Πi such
that βi → Πi with high probability. To convert an expectation bound to a high
probability bound, we will use a Chernoff-Hoeffding tail bound as long as Πin is
large enough (at least logn). The case for larger i will be handled separately.

By Theorem 3 and along with the assumption Pr[G < L] ⊂ 1
2 , Markov’s

inequality implies that,

Pr[βσ ⊂ 1

8L3
| G < L] → 16bL3

exp(aλ)
. (2)

We will set Πσ = 1
8L3 as the base of the layered induction. We next define the

series Πi.
Let i√ = λ + log logn. Recall that we set Πσ = 1

8L3 . For i = λ, . . . , i√ − 1
we set Πi+1 = max(2LΠ2

i , 18 logn/n). It is easy to check that Πi∈ = 18 logn/n.
Indeed suppsose that the truncation does not come into play until i√. Then the
recurrence

log Πσ = −3 log(2L),

log Πi+1 = 2 logΠi + log(2L)

solves to log Πσ+k = (log 2L)(−3 ·2k +(2k−1)) so that log Πi∈ = log Πσ+log logn →
(log 2L)(−2 logn). This is at most −2 logn as L ⊂ 1 so that Πi∈ → 1

n2 which is
smaller than the truncation threshold, contradicting the assumption.
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The inductive step is encapsulated in the next lemma. The proof is an expec-
tation computation, followed by an application of the Chernoff-Hoeffding bound.
Let B(n, p) denote a binomially distributed variable with parameters n and p.

Lemma 3. For i ⊆ [λ, i√ − 1], we have Pr[βi+1 > Πi+1 | βi → Πi, G < L] → 1
n3 .

Proof. For convenience, let the balls existing in X be black, and let the new nL
balls thrown be white. We define the height of a ball to be the load of the bin
in which it was placed relative to X ◦, that is, if the ball was the k’th ball to be
placed in the bin, the ball’s height is defined to be k − (t + L). Notice that the
conditioning that G < L implies that all the black balls have a negative height.
We use μi to denote the number of white balls with height ⊂ i. Thus for any
i ⊂ 0, we have βin → μi and thus it suffices to bound μi.

For a ball to have a height of at least i + 1, it should pick two bins that have
load at least i when the ball is placed, and hence at least as much in X ◦. Thus
the probability that a ball has height at least i+1 is at most β2i → Π2

i → Πi+1/2L
under our conditioning. Since we place nL balls, the number of balls with height
at least i+1 is dominated by a B(nL, Πi+1/2L) random variable. Chernoff bounds
(e.g. Theorem 1.1 in [4]) imply that the probability that Pr[B(n, p) ⊂ 2np] →
exp(−np/3). Thus

Pr[βi ⊂ Π2
i+1 | βi → Πi] → Pr[B(nL, Πi+1/2L) ⊂ Πi+1n]

→ exp(−Πi+1n/6)

→ 1/n3.

since Πi+1n ⊂ 18 logn. ≥⇐
It remains to bound the number of balls with height ⊂ i√. To this end we

condition on βi∈ → Πi∈ , and let H be the set of bins of height at least i√ in X ◦.
Once a bin reaches this height, an additional ball falls in it with probability at
most (2Πi∈n + 1)/n2. The probability that any specific bin in H gets at least
4 balls after reaching height i√ is then at most Pr[B(nL, (2Πi∈n + 1)/n2) ⊂ 4].
Recalling that Pr[B(n, p) ⊂ k] → (

n
k

)
pk → (enp/k)k. Using this estimate and

applying a union bound over the bins in H , we conclude that

Pr[βi∈+4 > 0 | βi∈ → Πi∈ , G < L] → (18 logn) × (eL(32 logn + 1)/4n)4)

→ 1

2n2
, (3)

as long as n exceeds an absolute constant n0. On the other hand, Lemma 1
already implies that for n → n0, Lemma 2 holds with τ = O(log n0) so that this
assumption is without loss of generality.
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Finally a union bound using (2) and Lemma 3 and (3), we get that

Pr[βi∈+4 > 0 | G < L]

→ Pr[βσ ⊂ Πσ | G < L] +

i∈−1∑

i=σ

Pr[βi+1 > Πi+1 | βi → Πi, G < L]

+ Pr[βi∈+4 > 0 | βi∈ → Πi∈ , G < L]

→ 16bL3

exp(aλ)
+

log logn

n3
+

1

2n2

→ 16bL3

exp(aλ)
+

1

n2
.

This concludes the proof of Lemma 2. ≥⇐

Lemma 2 allows us to bound Pr[Gt+L ⊂ log logn + O(logL)] by Pr[Gt ⊂
L] + 1

poly(L) . Since Pr[Gt ⊂ O(log n)] is small, we can conclude that

Pr[Gt+O(log n) ⊂ O(log logn)] is small. Another application of the lemma, now
with L = O(log logn) then gives that Pr[Gt+O(log n)+O(log logn) ⊂ log logn +
O(log log logn)] is small. We formalize these corollaries next.

Corollary 1. There is a universal constant τ such that for any t ⊂ (12 logn)/a,
Pr[Gt ⊂ (5 + 10

a ) · log logn + τ] → 2
n2 + 1

log4 n
.

Proof. Set L = 12 logn/a, and use Lemma 1 to bound Pr[Gt−L ⊂ L]. Set λ =
log(16bL3 log4 n)/a in Lemma 2 to derive the result. ≥⇐

Corollary 2. There are universal constants τ, Δ such that for any t ⊂ ∂(logn),
Pr[Gt ⊂ log logn + Δ log log logn + τ] → 3

n2 + 1
log4 n

+ 1
(log logn)4 .

Proof. Set L = log(16b(12 logn
a )3 log4 n)/a = 7 log logn

a + Oa,b(1) and use Corol-
lary 1 to bound Pr[Gt−L ⊂ L]. Set λ = log(16bL3(log logn)4)/a to derive the
result. ≥⇐

This proves that with probability (1 − o(1)), the gap is at most log logn +
o(log log n). We can also use Lemma 2 to upper bound the expected gap. Towards
this end, we prove slight generalizations of the above corollaries:

Corollary 3. There is a universal constant τ such that for any k ⊂ 0, t ⊂
(12 logn)/a, Pr[Gt ⊂ (5 + 10

a ) · log logn + k + τ] → 2
n2 + exp(−ak)

log4 n
.

Proof. Set L = 12 logn/a, and use Lemma 1 to bound Pr[Gt−L ⊂ L]. Set λ =
k + log(16bL3 log4 n)/a to derive the result. ≥⇐

Corollary 4. There are universal constants τ, Δ such that for any k ⊂ 0, t ⊂
∂(logn), Pr[Gt ⊂ log logn + Δ log log logn + k + τ] → 3

n2 + 1
log4 n

+ exp(−ak)
(log log n)4 .
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Proof. Set L = log(16b(12 logn
a )3 log4 n)/a = 7 log logn

a + Oa,b(1) and use Corol-
lary 3 with k=0 to bound Pr[Gt−L ⊂ L]. Set λ = k + log(16bL3(log logn)4)/a to
derive the result. ≥⇐
Using the above results, we can now prove

Corollary 5. There are universal constants τ, Δ such that for t ⊂ ∂(logn)
E[Gt] → log logn + Δ log log logn + τ.

Proof. Let λ1 = log logn+Δ log log logn+ τ1 for Δ, τ1 from Corollary 4, and let
λ2 = (5 + 10

a ) · log logn + τ2 for τ2 from Corollary 3. Finally, let λ3 = 12 logn/a.
We bound

E[Gt] → λ1 +

∫ σ2

σ1

Pr[Gt ⊂ x] dx +

∫ σ3

σ2

Pr[Gt ⊂ x] dx +

∫ ≤

σ3

Pr[Gt ⊂ x] dx

Each of the three integrals are bounded by constants, using Corollaries 4 and
3 and Lemma 1 respectively. ≥⇐

All that remains to prove the d = 2 case of Theorem 2 is to show that the
lower bound condition on t is unnecessary.

Lemma 4. For t ⊂ t◦, Gt′ is stochastically dominated by Gt. Thus E[Gt′ ] →
E[Gt] and for every k, Pr[Gt′ ⊂ k] → Pr[Gt ⊂ k].

Proof (sketch). We use the notion of majorization, which is a variant of stochas-
tic dominance. See for example [1] for definitions. Observe that trivially X0 is
majorized by Xt−t′ . Now throw nt◦ balls with a standard coupling and get that
Xt′ is majorized by Xt. By definition this implies the stochastic dominance of
the maximum and the bounds on the expectation and the tail follow.

3 The Weighted Case

So far we assumed all balls are identical. Often balls-and-bins processes model
scenarios where items are of heterogenous size. A natural way to extend the
model is to assign weights to the balls drawn from some distribution. We use the
model proposed in [11] and also used in [9]. Every ball comes with a weight W
independently sampled from a non-negative weight distribution W . The weight
of a bin is the sum of weights of balls assigned to it. The gap is now defined as the
difference between the weight of the heaviest bin and the average bin. We observe
that by multiplying all weights by the appropriate constant we can normalize
the distribution so that E[W ] = 1. In [11] it is shown that if W has a bounded
second moment and satisfies some additional mild smoothness condition, then
the expected gap does not depend on the number of balls. However, no explicit
bounds on the gap are shown. In [9] it is shown that if W satisfies E[exp(φW )] <
⇒ for some φ > 0, then the gap is bounded by O(log n) (with φ effecting the
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hidden constant in O notation). For some distributions, such as the exponential
distribution, this bound is tight. A bound of O(log n) does not necessarily remain
tight as the distribution becomes more concentrated.

Consider for example the case where the size of each ball is drawn uniformly
from {1, 2}. Previous techniques such as [2] fail to prove an O(log log n) bound in
this case, and the best bound prior to this work is the O(log n) via the potential
function argument of [9].

The fact that Theorem 3 holds means that the techniques of this paper can
be applied. The modifications needed are straightforward. The layered induction
argument works as is, with the only change being that we go up in steps of size
two instead of one. This shows a bound of 2 log logn + O(log log logn) for this
distribution, which we soon show is tight up to lower order terms.

Generalizing the argument, for a weight distribution W with a bounded ex-
ponential moment generating function, let M be the smallest value such that
Pr[W ⊂ M ] → 1

n logn(log logn)5 (the constant 5 here is somewhat arbitrary, and

will only affect the probability of the gap exceeding the desired bound). Then
carrying out a proof analogous to Lemma 2, with step size M gives a bound of
M(log logn+O(log log logn)) with probability (1− 3

(log logn)4 ). This follows since

by the definition of M , the probability that any of the last O(n logn) exceeds
size M is O( 1

(log log n)5 ), and conditioning on this event the proof goes through

unchanged except for the fact that we go up in increments of M .
Indeed, when we use the lemma with L = O(log n), the base of the induction

as before gives us for λ = O(log logn), the fraction of bins with load at least
λ is at most 1

L3 . By the argument in Lemma 3, no more than ΠiL+1n balls
will fall in bins that already have at least this load. Since we condition on the
O(n log n) white balls being of size at most M , the number of bins of load λ+M
is at most ΠiL+1n. Continuing in this fashion, with step size M in each step of
the induction, we get that there are at most O(log n) bins of load larger than
O(log logn)+M log2 logn. Finally, as before, we can complete the argument with
an additional overhead of O(M) as each of these bins is unlikely to get more than
a constant number of balls. Finally, a second application of the Lemma gives us
the claimed bound.

We next instantiate this bound for some specific distributions. As remarked
above, for an exponential or a geometric distribution, the gap is σ(log n) and this
induction approach will not help us prove a better bound. Consider a half-normal
weight distribution with mean 1 (i.e. W is the absolute value of an N(0, ε

2 )
random variable. Then M =

∪
κerf−1(1 − 1

n logn(log logn)5 ) = σ(
∪

logn). This

gives a bound of O(
∪

logn log logn) instead of O(log n) that we get from [9]. On
the other hand, as we show in the next section, a lower bound of α(

∪
logn) is

easily proved.
Similarly, if the weight distribution is uniform in [a, b], normalizing the ex-

pectation to 1 makes b = 2 − a → 2. An upper bound of b log logn → 2 log logn
follows immediately.

We note that Lemma 4 does not hold when balls are weighted (c.f [11],[3]).
As a result this proof leaves a “hole” between n and n logn. It proves the bound



988 K. Talwar and U. Wieder

on the gap when O(n) or α(n logn) balls are thrown but does not cover for
example σ(n

∪
logn) balls.

Lower Bounds. If weights are drawn uniformly from {1, 2} one might hope the
maximum load to be 3/2 log logn + O(1). It is true that n/2 balls of weight 2
already cause a gap of 2 log logn but one hopes that the balls of weight 1 would
reduce this gap. Our first lower bound shows that this intuition is not correct
and that the maximum load is indeed 2 log log−O(1).

Theorem 4. Suppose that the weight distribution W satisfies Pr[W ⊂ s] ⊂ χ
for some s ⊂ 1, χ > 0 and E[W ] = 1. For large enough n, for every m ⊂ n/χ, the
gap of Greedy[d] is at least s(log logn/ log d) −O(s) with constant probability.

A similar lower bound is proven in [1] for the case m = n and uniform weights.
In the uniform case, majorization (similar to Lemma 4) extends the lower bound
to any m > n. The same could not be said in the weighted case. For the m = n
case the weighted case is almost as simple as a variable change in the proof of
[1]. The extension to all m ⊂ n is done, similarly to the upper bound, by using
Theorem 3 to provide a base case for the inductive argument.

Proof. It is convenient to think of time m as time 0 and count both load and
time with respect to the m’th ball, so when we say a bin has load i in time t it
actually means it has load w(m)/n + i at time m + t, where w(m) is the total
weight of the first m balls. The bound will be proven for time m + n/χ which is
time n/χ in our notation. Intuitively, in this amount of time we will see about n
balls of weight at least s which would cause the maximum load to increase by
s(log logn − O(1)). The average however would increase only by O(1Ω ) = O(s),
hence the gap would be at least s log logn−O(s).

We follow the notation set in [6], with appropriate changes. The variable
βj(t) indicates the number of bins with load in [(j − 1)s,⇒) at time t. We will
set a series of numbers τi and times ti (to be specified later) and an event
Fi := {βi(ti) ⊂ τi}. For the base case of the induction we set τ0 = n/ log2 n and
t0 = 0. We observe that Theorem 3 implies that for large enough n, Pr[β0(0) ⊂
τ0] ⊂ 1 − 1/n2, so F0 occurs with high probability. Indeed Theorem 3 implies
that for the normalized load vector, |Xt|≤ → c logn for an absolute constant c. If
half the Xt

i ’s are at least −s, we are already done. If not then then
∑

i:Xt
i<−s |Xt

i |
is at least ns

2 . Thus the sum
∑

i:Xt
i⊆0 |Xt

i | =
∑

i:Xt
i<0 |Xt

i | ⊂ ns
2 . The bound on

|Xt|≤ then implies that at least ns/c logn Xt
i ’s are non-negative. Since s ⊂ 1,

the base case is proved.
Our goal is to show that Pr[Fi+1|Fi] is large. To this end, we define ti =

(1 − 2−i)nΩ and the range Ri :=
[
(1 − 2−i)nΩ , (1 − 2−(i+1))nΩ

]
. Finally fix an

i > 0 and for t ⊆ Ri define the binary random variable

Zt = 1 iff ball t pushes load of a bin above is or β(i+1)(t− 1) ⊂ τi+1.

As long as β(i+1)(t−1) < τi+1 it holds that for Zt = 1 it suffices that a ball of
weight at least s is placed in a bin of load h ⊆ [s(i−1), si). Conditioned on Fi, the
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probability of that is at least χ
(
(αi

n )d − (αi+1

n )d
) ⊂ Ωαd

i

2nd since we will set τi+1 →
τi/2. Denote pi :=

Ωαd
i

2nd and by B(n, p) a variable distributed according to the Bi-

nomial distribution. We have: Pr
[∑

i≥Ri
Zi → k | Fi

] → Pr
[
B
(

n
Ω2i+1 , pi

) → k
]
.

We continue exactly as in [6] by choosing τi+1 =
αd
i

2i+3nd−1 . Now Chernoff bounds

imply that as long as npi

Ω2i+1 ⊂ 17 logn it holds that Pr
[
B
(

n
Ω2i+1 , pi

) → τi+1

]
=

o(1/n2). The tail inequality holds as long as i → log logn/ log d−O(1), at which
point the load had increased by s(log logn/ log d)−O(s). The average increased
by at most 4/χ → 4s with probability 3/4, and the theorem follows. ≥⇐
We note that the uniform distribution on {1, 2} (when normalized by a factor
of 2

3 ) satisfies the conditions of this Theorem with s = 2, χ = 1
2 . Thus the gap is

2 log logn−O(1).
Another, rather trivial lower bound applies to distributions with heavier tails.

Theorem 5. Let W be a weight distribution with EW∪W [W ] = 1. Let M be
such that PrW∪W [W ⊂ M ] ⊂ 1

n . Then for any allocation scheme, the gap is at
least M −O(1) with constant probability.

Proof. After throwing n balls, the probability that we do not see a ball of weight
M or more is at most (1 − 1

n )n → 1
2 . Moreover, by Markov’s, the average is at

most 4 except with probability 1
4 . Thus with probability at least 1

4 , the maximum
is at least M and the average is at most 4. ≥⇐

We note that this implies an α(logn) lower bound for an exponential distri-
bution, and an α(

∪
logn) lower bound for the half normal distribution.

4 The Left[d] Scheme

Next we sketch a tight bound for Vöcking’s Left[d] process [12]. The result had
been shown in [2], though there they had to redo large sections of the proof,
while here we only require minor changes. Recall that in Left[d], the bins are
partitioned into d sets of n/d bins each (we assume n is divisible by d). When
placing a ball, one bin is sampled uniformly from each set and the ball is placed
in the least loaded of the d bins. The surprising feature of this process is that
ties are broken according to a fixed ordering of the sets (we think of the sets
as ordered from left to right and ties are broken “to the left”, hence the name
of the scheme). Surprisingly, the gap now drops from log logn

log d to log log n
d lnλd

where

ζd = limk→≤(Fd(k))
1
k ⊆ [1.61, 2) is the base of the order d Fibonacci number.

The key ingredient in the proof is Theorem 3 from [9]. The exponential po-
tential function is Schur-Convex and therefore the theorem holds for any pro-
cess which is majorized by the Greedy[d] process. It is indeed the case that
Vöcking’s Left[d] process [12] is majorized by Greedy[d] (see the proof in [2]).
All that remains is to prove the analog of Lemma 2. For this we follow the anal-
ysis of Mitzenmacher and Vöcking in [7]. Let Xjd+k be the number of bins of



990 K. Talwar and U. Wieder

load at least j from the k’th set, and set xi = Xi/n. It is easy to verify that

E[xi|x<i] → dd
∏i−1

j=i−d xj . From here the proof is similar to that of Lemma 2
and is left as an exercise.

5 Discussion

An interesting corollary from Theorem 3 is that the Markov chain Xt has a sta-
tionary distribution and that the bounds hold also for the stationary distribution
itself. In that sense, while in [2] the mixing of the chain was used to show that
the interesting events happen at the beginning, and thus an induction on the
first poly(n) suffices, in our technique we look directly at the distant ”future”
and argue on the stationary distribution itself. When balls are unweighted a ma-
jorization based argument shows that moving closer in time can only improve
the bounds on the gap (this is Lemma 4). Unfortunately, a similar Lemma does
not hold when balls are weighted (see [3]), so we need to specify the time periods
we look at. Indeed, while our results hold when considering a large number of
balls, we curiously have a ’hole’ for a number of balls that is smaller than n logn.
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Abstract. In this paper, we analyze several variants of a simple method
for generating prime numbers with fewer random bits. To generate a
prime p less than x, the basic idea is to fix a constant q ⇒ x1−ε, pick
a uniformly random a < q coprime to q, and choose p of the form a +
t · q, where only t is updated if the primality test fails. We prove that
variants of this approach provide prime generation algorithms requiring
few random bits and whose output distribution is close to uniform, under
less and less expensive assumptions: first a relatively strong conjecture
by H. Montgomery, made precise by Friedlander and Granville; then the
Extended Riemann Hypothesis; and finally fully unconditionally using
the Barban–Davenport–Halberstam theorem.

We argue that this approach has a number of desirable properties
compared to previous algorithms. In particular:
– it uses much fewer random bits than both the “trivial algorithm”

(testing random numbers less than x for primality) and Maurer’s
almost uniform prime generation algorithm;

– the distance of its output distribution to uniform can be made arbi-
trarily small, unlike algorithms like PRIMEINC (studied by Brandt
and Damg̊ard), which we show exhibit significant biases;

– all quality measures (number of primality tests, output entropy, ran-
domness, etc.) can be obtained under very standard conjectures or
even unconditionally, whereas most previous nontrivial algorithms
can only be proved based on stronger, less standard assumptions
like the Hardy–Littlewood prime tuple conjecture.

Keywords: Number Theory, Cryptography, Prime Number Generation.

1 Introduction

There are several ways in which we could assess the quality of a random prime
generation algorithm, such as its speed (time complexity), its accuracy (the
probability that it outputs numbers that are in fact composite), its statistical
properties (the regularity of the output distribution), and the number of bits
of randomness it consumes to produce a prime number (as good randomness is
crucial to key generation and not easy to come by [9]).

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 991–1002, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014
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In a number of works in the literature, cryptographers have proposed faster
prime generation algorithms [4,3,16,15] or algorithms providing a proof that the
generated numbers are indeed prime numbers [17,18,19].

A number of these works also prove lower bounds on the entropy of the dis-
tribution of prime numbers they generate, usually based on very strong conjec-
tures on the regularity of prime numbers, such as the prime r-tuple conjecture
of Hardy–Littlewood [13]. However, such bounds on the entropy do not ensure
that the resulting distribution is statistically close to the uniform distribution:
for example, they do not preclude the existence of efficient distinguishers from
the uniform distribution, which can indeed be shown to exist in most cases.

But some cryptographic protocols (including most schemes based on the
Strong RSA assumption, such as Cramer–Shoup signatures [5]) specifically re-
quire uniformly distributed prime numbers for the security proofs to go through.

Moreover, some cryptographers, like Maurer [17], have argued that even for
more common uses of prime number generation, like RSA key generation, one
should preferably generate primes that are almost uniform, so as to avoid biases
in the RSA moduli N themselves, even if it is not immediately clear how such
biases can help an adversary trying to factor N . This view is counterbalanced by
results of Mihăilescu [20] stating in particular that, provided the biases are not
too large (a condition that is satisfied by the algorithms with large output en-
tropy mentioned above, if the conjectures used to establish those entropy bounds
hold), then, asymptotically, they can give at most a polynomial advantage to an
adversary trying to factor N . This makes the problem of uniformity in prime
number generation somewhat comparable to the problem of tightness in security
reductions.

To the authors’ knowledge, the only known prime generation algorithms for
which the statistical distance to the uniform distribution can be bounded are the
one proposed by Maurer [17,18] on the one hand, and the trivial algorithm (viz.
pick a random odd integer in the desired interval, return it if it is prime, and
try again otherwise) on the other hand. The output distribution of the trivial
algorithm is exactly uniform (or at least statistically close, once one accounts for
the compositeness probability of the underlying randomized primality checking
algorithm), and the same can be said for at least some variants of Maurer’s
algorithm, but both of those algorithms have the drawback of consuming a very
large amount of random bits.

By contrast, the PRIMEINC algorithm studied by Brandt and Damg̊ard [3]
(basically, pick a random number and increase it until a prime is found) only
consumes roughly as many random bits as the size of the output primes, but
we can show that its output distribution, even if it can be shown to have high
entropy if the prime r-tuple conjecture holds, is also provably quite far from
uniform, as we demonstrate in the full version of this paper [10]. It is likely
that most algorithms that proceed deterministically beyond an initial random
choice, including those of Joye, Paillier and Vaudenay [16,15], exhibit similar
distributional biases.
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The goal of this paper is to achieve in some sense the best of both worlds:
construct a prime generation algorithm that consumes much fewer random bits
than the trivial algorithm while being efficient and having an output distribution
that is provably close to the uniform one.

We present such an algorithm in §3: to generate a prime p, the basic idea
is to fix a constant q ∈ x1−ε, pick a uniformly random a < q coprime to q,
and choose p of the form a + t · q, where only t is updated if the primality
test fails. We prove that variants of this approach provide prime generation
algorithms requiring few random bits and whose output distribution is close
to uniform, under less and less expensive assumptions: first a relatively strong
conjecture by H. L. Montgomery, made precise by Friedlander and Granville;
then the Extended Riemann Hypothesis; and finally fully unconditionally using
the Barban–Davenport–Halberstam theorem.

2 Preliminaries

2.1 Regularity Measures of Finite Probability Distributions

In this subsection, we give some definitions on distances between random vari-
ables and the uniform distribution on a finite set. We also provide some relations
which will be useful to bound the entropy of our prime generation algorithms.
These results can be found in [24].

Definition (Entropy and Statistical Distance). Let X and Y be two ran-
dom variables on a finite set S. The statistical distance between them is defined
as the σ1 norm:1

τ1(X ;Y ) =
∑

s◦S

∣
∣
∣Pr[X = s] − Pr[Y = s]

∣
∣
∣.

We simply denote by τ1(X) the statistical distance between X and the uniform
distribution on S:

τ1(X) =
∑

s◦S

∣∣
∣Pr[X = s] − 1

|S|
∣∣
∣,

and say that X is statistically close to uniform when τ1(X) is negligible.2

The squared Euclidean imbalance of X is the square of the σ2 norm between
X and the uniform distribution on the same set:

τ2
2(X) =

∑

s◦S

∣
∣∣Pr[X = s] − 1/|S|

∣
∣∣
2

.

1 An alternate definition frequently found in the literature differs from this one by a
constant factor 1/2. That constant factor is irrelevant for our purposes.

2 For this to be well-defined, we of course need a family of random variables on in-
creasingly large sets S. Usual abuses of language apply.
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We also define the collision probability of X as:

λ(X) =
∑

s◦S

Pr[X = s]2,

and the collision entropy (also known as the Rényi entropy) of X is then H2(X) =
− log2 λ(X). Finally, the min-entropy of X is H√(X) = − log2 Π(X), where
Π(X) = maxs◦S(Pr[X = s]).

Lemma A. Suppose X is a random variable of a finite set S. The quantities
defined above satisfy the following relations:

Π(X)2 ⊆ λ(X) = 1/|S| + τ2
2(X) ⊆ Π(X) ⊆ 1/|S| + τ1(X), (1)

τ1(X) ⊆ τ2(X)
√
|S|. (2)

2.2 Prime Numbers in Arithmetic Progressions

All algorithms proposed in this paper are based on the key idea that, for any given
integer q > 1, prime numbers are essentially equidistributed among invertible
classes modulo q. The first formalization of that idea is de la Vallée Poussin’s
prime number theorem for arithmetic progressions [8], which states that for any
fixed q > 1 and any a coprime to q, the number β(x; q, a) of prime numbers
p ⊆ x such that p ⊂ a (mod q) satisfies:

β(x; q, a) ∈
x≤+√

β(x)

Δ(q)
. (3)

De la Vallée Poussin established that estimate for constant q, but it is be-
lieved to hold uniformly in a very large range for q. In fact, H. L. Montgomery
conjectured [21,22] that for any ∂ > 0:3

∣∣
∣
∣β(x; q, a) − β(x)

Δ(q)

∣∣
∣
∣ →ε (x/q)1/2+ε

(
q < x, (a, q) = 1

)
,

which would imply that (3) holds uniformly for q → x/ log2+ε x. However, Fried-
lander and Granville showed [11] that conjecture to be overly optimistic, and
proposed the following corrected estimate.

Conjecture B (Friedlander–Granville–Montgomery). For q < x, (a, q) = 1 and
all ∂ > 0, we have:

∣
∣∣
∣β(x; q, a) − β(x)

Δ(q)

∣
∣∣
∣ →ε (x/q)1/2 · xε.

In particular, the estimate (3) holds uniformly for q → x1−3ε.

3 As is usual in analytic number theory and related subjects, we use the notations
f(u) ≤ g(u) and f(u) = O

(
g(u)

)
interchangeably. A subscripted variable on ≤ or

O means that the implied constant depends only on that variable.
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That conjecture is much more precise than what can be proved using current
techniques, however. The best unconditional result of the same form is the Siegel–
Walfisz theorem [26], which only implies that (3) holds in the much smaller range
q → (log x)A (for any A > 0).

Stronger estimates can be established assuming the Extended Riemann Hy-
pothesis (i.e. the Riemann Hypothesis for L-functions of Dirichlet characters),
which gives [6, p. 125]:

∣
∣
∣
∣β(x; q, a) − β(x)

Δ(q)

∣
∣
∣
∣ → x1/2 log x

(
q < x, (a, q) = 1

)
.

This implies (3) in the range q → x1/2/ log2+ε x, which is again much smaller
than the one from Conjecture B. The range can be extended using averaging,
however. The previous result under ERH is actually deduced from estimates
on the character sums β(x, φ) =

∑
p⊆x φ(p) for nontrivial Dirichlet characters

φ mod q, and more careful character sum arguments allowed Turán to obtain
the following theorem.

Theorem C (Turán [25]). The Extended Riemann Hypothesis implies that for
all q < x:

∑

a◦(Z/qZ)∗

∣
∣
∣∣β(x; q, a) − β(x)

Δ(q)

∣
∣
∣∣

2

→ x(log x)2

where the implied constant is absolute.

That estimate is nontrivial in the large range q → x/ log4+ε, and implies that
(3) holds for all q in that range and almost all a ∧ (Z/qZ)≥.

Averaging over the modulus as well, it is possible to obtain fully unconditional
estimates valid in a similarly wide range: this is a result due to Barban [2] and
Davenport and Halberstam [7]. We will use the following formulation due to
Gallagher [12], as stated in [6, Ch. 29].

Theorem D (Barban–Davenport–Halberstam). For any fixed A > 0 and
any Q such that x(log x)−A < Q < x, we have:

∑

q⊆Q

∑

a◦(Z/qZ)∗

∣
∣
∣∣β(x; q, a) − β(x)

Δ(q)

∣
∣
∣∣

2

→A
xQ

log x
.

Finally, we will also need a few classical facts regarding Euler’s totient function
(for example, [14, Th. 328 & 330]).

Lemma E. The following asymptotic estimates hold:

Δ(q) ≥ q

log log q
, (4)

κ(x) :=
∑

q⊆x

Δ(q) =
3x2

β2
+ O(x log x). (5)
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Algorithm 1. Our basic algorithm

1: Fix q ⇒ x1−ε

2: a
$∈ (Z/qZ)∗ Δ considered as an element of {1, . . . , q − 1}

3: repeat forever

4: t
$∈ {0, . . . , ∪x−a

q
←}

5: p ∈ a+ t · q
6: if p is prime then return p
7: end repeat

3 Close-to-Uniform Prime Number Generation with
Fewer Random Bits

3.1 Basic Algorithm

A simple method to construct obviously uniformly distributed prime numbers
up to x is to pick random numbers in {1, . . . , ⇐x⇒} and retry until a prime is
found. However, this method consumes log2 x bits of randomness per iteration
(not counting the amount of randomness consumed by primality testing), and
hence an expected amount of (log x)2/ log 2 bits of randomness to produce a
prime, which is quite large.

As mentioned in the introduction, we propose the following algorithm to gen-
erate almost uniform primes while consuming fewer random bits: first fix an
integer

q ∪ x1−ε (6)

and pick a random a ∧ (Z/qZ)≥. Then, search for prime numbers ⊆ x of the
form p = a + t · q. This method, described as Algorithm 1, only consumes
log2 t = ∂ log2 x bits of randomness per iteration, and the probability of success

at each iteration is ∈ π(x;q,a)
x/q . Assuming that Conjecture B is true, which ensure

that (3) holds in the range (6), this probability is about q/
(
Δ(q) log x

)
, and the

algorithm should thus consume roughly:

∂ · Δ(q)

q
· (log x)2

log 2
(7)

bits of randomness on average: much less than the trivial algorihm. Moreover,
we can also show, under the same assumption, that the output distribution is
statistically close to uniform and has close to maximal entropy.

We establish those results in §3.2, and show in §3.3 that Turán’s theorem
can be used to obtain nearly the same results under the Extended Riemann
Hypothesis. ERH is not sufficient to prove that Algorithm 1 terminates almost
surely, or to bound the expectation of the number of random bits it consumes,
due to the possibly large contribution of negligibly few values of a. We can avoid
these problems by modifying the algorithm slightly, as discussed in §3.4. Finally,
in §3.5, we show that unconditional results of the same type can be obtained



Close to Uniform Prime Number Generation with Fewer Random Bits 997

using the Barban–Davenport–Halberstam theorem, for another slightly different
variant of the algorithm.

Before turning to these analyses, let us make a couple of remarks on Algo-
rithm 1. First, note that one is free to choose q in any convenient way in the
range (6). For example, one could choose q as the largest power of 2 less than
x1−ε, so as to make Step 2 very easy. It is preferable, however, to choose q as a
(small multiple of a) primorial, to minimize the ratio Δ(q)/q, making it as small
as ∪ 1/ log log q ∈ 1/ log log x; this makes the expected number of iterations and
the expected amount (7) of consumed randomness substantially smaller. In that
case, Step 2 becomes slightly more complicated, but this is of no consequence.

Indeed, our second observation is that Step 2 is always negligible in terms of
running time and consumed randomness compared to the primality testing loop
that follows. Indeed, even the trivial implementation (namely, pick a random
a ∧ {0, . . . , q − 1} and try again if gcd(a, q) ≤= 1) requires q/Δ(q) → log log q
iterations on average. It is thus obviously much faster than the primality testing
loop, and consumes → log x log log x bits of randomness, which is negligible
compared to (7). Furthermore, an actual implementation would take advantage
of the known factorization of q and use a unit generation algorithm such as the
one proposed by Joye and Paillier [15], which we can show requires only O(1)
iterations on average.

Finally, while we will not discuss the details of the primality test of Step 6, and
shall pretend that it returns exact results (as the AKS algorithm [1] would, for
example), we note that it is fine (and in practice preferable) to use a probabilistic
compositeness test such as Miller–Rabin [23] instead, provided that the number
of rounds is set sufficiently large as to make the error probability negligible.
Indeed, the output distribution of our algorithm then stays statistically close to
uniform, and the number of iterations is never larger.

3.2 Analysis under the Friedlander–Granville–Montgomery
Conjecture

As mentioned above, it is straightforward to deduce from the Friedlander–
Granville–Montgomery conjecture that Algorithm 1 terminates almost surely,
and to bound its expected number of iterations and amount of consumed ran-
domness.

Theorem 3.2.1. Assume that Conjecture B holds. Then Algorithm 1 termi-
nates almost surely, requires (1 + o(1))Δ(q)/q · log x iterations of the main loop

on average, and consumes
(
∂+o(1)

) · ϕ(q)
q · (log x)2

log 2 bits of randomness on average.

Proof. Indeed, fix q ∪ x1−ε. Conjecture B implies, uniformly over a ∧ (Z/qZ)≥:

∣
∣
∣
∣β(x; q, a) − β(x)

Δ(q)

∣
∣
∣
∣ → (x/q)1/2 · xε/4 ∪ x3ε/4,
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which is negligible compared to β(x)/Δ(q) ≥ xε/ logx. As a result, we get
β(x; q, a) = (1 + o(1))β(x)/Δ(q) = (1 + o(1))/Δ(q) · x/ log x uniformly over a,
and the success probability of the main loop becomes:

β(x; q, a)

1 + ⇐x−a
q ⇒ =

q

Δ(q)
· 1 + o(1)

log x

which implies the stated results immediately. ⇔∗
Now let X be the output distribution of Algorithm 1, i.e. the distribution on

the set of prime numbers ⊆ x such that Algorithm 1 outputs a prime p with
probability exactly Pr[X = p]. Clearly, we have, for all (a, q) = 1 and all t such
that a + t · q ⊆ x is prime:

Pr[X = a + t · q] =
1

Δ(q)
· 1

β(x; q, a)
.

As a result, the squared Euclidean imbalance of X is:

τ2
2(X) =

∑

a◦(Z/qZ)∗

∑

a+tq⊆x prime

∣
∣
∣Pr[X = a + tq] − 1

β(x)

∣
∣
∣
2

+
∑

p|q

1

β(x)2

=
∑

a◦(Z/qZ)∗
β(x; q, a)

∣
∣
∣

1

Δ(q)
· 1

β(x; q, a)
− 1

β(x)

∣
∣
∣
2

+
∑

p|q

1

β(x)2

=
1

β(x)2

∑

a◦(Z/qZ)∗

1

β(x; q, a)

∣
∣
∣β(x; q, a) − β(x)

Δ(q)

∣
∣
∣
2

+
∑

p|q

1

β(x)2

→ 1

β(x)2

∑

a◦(Z/qZ)∗

log x

xε
· x3ε/2 → log3 x

x2
· Δ(q)xε/2 → log3 x

x1+ε/2
→ 1

x1+ε/3
.

We can then deduce the following.

Theorem 3.2.2. Assume that Conjecture B holds. Then the output distribution
of Algorithm 1 is statistically close to uniform, and its collision entropy is only
negligibly smaller than that of the uniform distribution.

Proof. Indeed, by (2), the statistical distance to the uniform distribution satis-
fies:

τ1(X) ⊆ τ2(X)
√
β(x) → 1

x1/2+ε/6

√
x

log x
→ x−ε/6,

which is negligible. Moreover, the collision probability is:

λ(X) =
1

β(x)
+ τ2

2(X) =
1

β(x)

(
1 + O

( β(x)

x1+ε/3

))
=

1

β(x)

(
1 + o

(
x−ε/3

))
.

Hence:

H2(X) = log2
(
β(x)

) − log2
(
1 + o(x−ε/3)

)
= (H2)max − o(x−ε/3)

as required. ⇔∗
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3.3 Analysis under the Extended Riemann Hypothesis

Assume the Extended Riemann Hypothesis, and denote by α the fraction of all
possible choices of a ∧ (Z/qZ)≥ such that the error term E(x; q, a) :=

∣
∣β(x; q, a)−

β(x)/Δ(q)
∣
∣ satisfies E(x; q, a) > x3ε/4. Then, Turán’s theorem asserts that:

∑

a◦(Z/qZ)∗
E(x; q, a)2 → x(log x)2,

and the left-hand side is greater or equal to αΔ(q) · x3ε/2 by definition of α. As
a result, we get:

α → x1−3ε/2(log x)2

Δ(q)
→ (log x)2 log log x

xε/2

and hence α is negligible. Therefore, for all except at most a negligible fraction of
choices of a ∧ (Z/qZ)≥, we obtain that E(x; q, a) ⊆ x3ε/4, and since β(x)/Δ(q) ≥
xε/ logx, this implies β(x; q, a) = (1 + o(1))β(x)/Δ(q) as before. As a result,
under ERH, we obtain an analogue of Theorem 3.2.1 valid with overwhelming
probability on the choice of a.

Theorem 3.3.1. Assume ERH holds. Then Algorithm 1 terminates with over-
whelming probability. Moreover, except for a negligible fraction of choices of the
class a mod q, it requires (1 + o(1))Δ(q)/q · log x iterations of the main loop on

average, and consumes
(
∂ + o(1)

) · ϕ(q)
q · (log x)2

log 2 bits of randomness on average.

Moreover, in the full version of this paper [10], using Turán’s theorem and the
Cauchy–Schwarz inequality, we also establish under ERH alone the following
analogue of Theorem 3.2.2, regarding the output distribution of the algorithm.

Theorem 3.3.2. Assume ERH holds. Then the output distribution of Algo-
rithm 1 is statistically close to uniform, and its collision entropy is no more
than O(log log x) bits smaller than that of the uniform distribution.

3.4 Achieving Almost Sure Termination under ERH

Theorem 3.3.1 above is somewhat unsatisfactory, as we have to ignore a negligible
but possibly nonzero fraction of all values a mod q to obtain a bound on the
average number of iterations and on the randomness consumed by Algorithm 1
under ERH. But this is unavoidable for that algorithm: as mentioned above, it
is not known whether ERH implies that for q ∪ x1−ε, all a ∧ (Z/qZ)≥ satisfy
β(x; q, a) ≤= 0. And if an a exists such that β(x; q, a) = 0, the choice of that a in
Step 2 of Algorithm 1, however unlikely, is a case of non-termination: as a result,
the existence of such an a prevents any nontrivial bound on average running
time or average randomness.

We propose to circumvent that problem by falling back to the trivial algorithm
(pick a random p < x, check whether it is prime and try again if not) in case too
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Algorithm 2. A variant which terminates almost surely under ERH

1: Fix q ⇒ x1−ε

2: a
$∈ (Z/qZ)∗ Δ considered as an element of {1, . . . , q − 1}

3: repeat T = log2 x times

4: t
$∈ {0, . . . , ∪x−a

q
←}

5: p ∈ a+ t · q
6: if p is prime then return p
7: end repeat
8: repeat forever

9: p
$∈ {1, . . . , ∪x←}

10: if p is prime then return p
11: end repeat

many iterations of the main loop have been carried out. This variant is presented
as Algorithm 2.

Clearly, since Algorithm 2 is the same as Algorithm 1 except for the possible
fallback to the trivial algorithm, which has a perfectly uniform output distribu-
tion, the output distribution of the variant is at least as close to uniform as the
original algorithm. In other words, the analogue of Theorem 3.3.2 holds, with
the same proof.

Theorem 3.4.1. Assume ERH holds. Then the output distribution of Algo-
rithm 2 is statistically close to uniform, and its collision entropy is no more
than O(log log x) bits smaller than that of the uniform distribution.

Moreover, as claimed above, we can obtain the following stronger analogue of
Theorem 3.3.1, proved in the full version of this paper [10].

Theorem 3.4.2. Assume ERH holds. Then Algorithm 2 terminates almost
surely, requires (1 + o(1))Δ(q)/q · log x iterations of the main loop on average,

and consumes
(
∂ + o(1)

) · ϕ(q)
q · (log x)2

log 2 bits of randomness on average.

3.5 An Unconditional Algorithm

Finally, we propose yet another variant of our algorithm for which both almost
sure termination and uniformity bounds can be established unconditionally. The
idea is to no longer use a fixed modulus q, but to pick it uniformly at random
instead in the range {1, . . . , Q} where Q ∪ x(log x)−A; uniformity bounds can
then be deduced from the Barban–Davenport–Halberstam theorem. Unfortu-
nately, since Q is only polynomially smaller than x, we can no longer prove that
the output distribution is statistically close to uniform: the statistical distance is
polynomially small instead, with an arbitrarily large exponent depending only on
the constant A. On the other hand, termination is obtained as before by falling
back to the trivial algorithm after a while, and since q is often very close to x,
we get an even better bound on the number of consumed random bits. Details
are provided in the full version of this paper [10].
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4 Comparison with other Prime Number Generation
Algorithms

In the full version of this paper [10], we present a detailed discussion of how our
method compares with other prime number generation algorithms, and specifi-
cally Brandt and Damg̊ard’s PRIMEINC [3] as well as Maurer’s algorithm [17,18].
Our main observations are as follows.

– Brandt and Damg̊ard analyze their PRIMEINC algorithm and prove a lower
bound on its output entropy under the prime r-tuple conjecture of Hardy
and Littlewood. We show, however, that if that conjecture holds, then the
output distribution of PRIMEINC is quite far from uniform. The statistical
distance τ1 satisfies τ1 > 0.86 + o(1).

– On the other hand, Maurer’s algorithm has an output distribution that is
arguably close to uniform (although it is somewhat difficult to quantify how
close), but it consumes a large amount of random bits. In particular, we prove
that it consumes at least c(log x)2 random bits for some absolute constant
c > 0, so about as many as the trivial algorithm. Compared to our method,
however, it has the significant advantage of producing primality certificates.
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Abstract. Given a two-player one-round game G with value val(G) =
(1− η), how quickly does the value decay under parallel repetition? If G
is a projection game, then it is known that we can guarantee val(G⊗n) ⇒
(1 − η2)ε(n), and that this is optimal. An important question is under
what conditions can we guarantee that strong parallel repetition holds,
i.e. val(G⊗) ⇒ (1− η)ε(n)?

In this work, we show a strong parallel repetition theorem for the case
when G’s constraint graph has low threshold rank. In particular, for any
k ≤ 2, if σk is the k-th largest singular value of G’s constraint graph,
then we show that

val(G⊗n) ⇒
(

1−
√

1− σ2
k

k
· η

)ε(n)

.

This improves and generalizes upon the work of [RR12], who showed a
strong parallel repetition theorem for the case when G’s constraint graph
is an expander.

1 Introduction

A two-prover one-round game G is given by two sets of questions U, V , a dis-
tribution on U × V , a set of possible answers Σ and a set of predicates Π =
{πu,v}u∈U,v∈V . A verifier samples a pair of questions (u, v) according to the
given distribtion, and gives u to the first prover and v is given to the second
prover. The provers respond with answers f(u), g(v) ∈ Σ. The verifier accepts
the answers if they satisfy the predicate πu,v(f(u), g(v)) associated to the pair
of questions (u, v). The value of the game, denoted by val(G), is defined to the
maximum probability with which the provers can make the verifier accept.

We say G is a projection game if for every predicate πu,v and every β ∈ Σ,
there is at most one α ∈ Σ such that πu,v(α, β) is satisfied. The constraint
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graph of G is the bipartite graph H with vertex set U ⊆ V corresponding to the
distribution of questions. See Section 2 for the precise definitions.

Perhaps the most fundamental result in the area of two-prover one-round
games is the parallel repetition theorem of Raz [Raz98]. In its version for pro-
jection games by Rao [Rao11], it states:

Theorem 1. Let G be a projection game. If val(G) ⊂ 1 − η, then val(G√n) ⊂
(1 − η2)ε(n).

Stated contrapositively, if val(G√n) → (1 − η)n, then val(G) → 1 − O(
∧
η).

Naively, one would expect a faster rate of decay: that is, if val(G) ⊂ 1 − η, then
val(G√n) should satisfy val(G√n) ⊂ (1 − η)ε(n). A parallel repetition bound of
this form is known as strong parallel repetition, and it was open whether a strong
parallel repetition theorem was true in general for projection games, or even for
interesting restricted classes of games (e.g. Unique Games; see [FKO07]), until
Raz [Raz11] showed that strong parallel repetition fails on the so-called Odd
Cycle Game. In particular, he showed that val(G√n) for the Odd Cycle Game
matches exactly the upper bound given in Theorem 1.

One interesting subclass not covered by the Odd Cycle Game is the class of
expanding games. This is the class of two-player one-round games G in which
the constraint graph of G is an expander. This is an interesting class of two-
player one-round games which appears frequently in the hardness of approxi-
mation literature (see [AKK+08] and [SS07] for example). Following the papers
of [AKK+08] and [BRR+09], which proved strong parallel repetition theorems
for certain special cases of expanding games, Raz and Rosen [RR12] showed the
following strong parallel repetition theorem for expanding projection games:

Theorem 2. Let G be a projection game, and let σ2 be the second largest sin-
gular value of G’s constraint graph. If val(G) ⊂ (1 − η), then val(G√n) ⊂
(1 − (1 − σ2)2 · η)ε(n).

In particular, if σ2 is a constant, then val(G√n) decays like (1 − η)ε(n). This
result motivates a natural question, for which we need the following defintion.

Definition 1. Let G be a two-prover one-round game with constraint graph H.
Suppose the singular values of H are σ1 → σ2 → . . . → 0. Then the τ-threshold
rank of G is the number of singular values σi of H for which σi → τ .

Thus, at a high level, a graph with low threshold rank is one whose k-th largest
singular value σk is bounded away from 1, where k is small (say, a constant).
It is natural to ask if a strong parallel repetition theorem hold for graphs with
low threshold rank?

1.1 Parallel Repetition and Cheeger’s Inequality

In this work, we answer this question using the new parallel repetition framework
of [DS14]. They study a relaxation to the value of the game, called val+(G),
which, roughly speaking, is the best value achieved on the game by a distribution
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over “fractional assignments”. These “fractional assignments” are required to
collectively look like a valid assignment, but individually they may look very
different than a valid assignment. This relaxation val+(G) enjoys several nice
analytic properties: for example, it upper-bounds val(G), and it is multiplicative
under parallel repetition. From here, they give a new proof of Theorem 1 using
the following three-step process:

1. Supposing val(G√n) → (1− η)n, then val+(G) → (1 − η). This gives a distri-
bution of “fractional assignments” with “fractional value” at least (1 − η).

2. Round fractional assignments to a 0/1-assignments using Cheeger rounding.
3. Combine these 0/1-assignments into a single 0/1 assignment using the cor-

related sampling approach of [BHH+08].

Supposing that val(G√n) → (1− η)n, then this will produce a solution to G with
value (1 −O(

∧
η)).

This proof has revealed a strong connection between the parallel repetition
theorem and Cheeger’s inequality. We begin with some necessary definitions.
Given a d-regular graph H = (V,E), the conductance of a set S ≥ V is

φ(S) =
|E(S, S)|

d · min{|S|, |S|} ,

where E(S, S) is the set of edges in H which cross from S to S. The conductance
of H is defined to be φ(H) := minS≤V (φ(S)). Cheeger’s inequality states:

Cheeger’s Inequality. Given a graph H = (V,E), let λ2 be the second-smallest
eigenvalue of its normalized Laplacian. Then

λ2

2
⊂ φ(G) ⊂

√
2λ2.

The upper-bound φ(G) ⊂ ∧
2λ2 is shown by taking the second-largest eigen-

vector v2, which has a “fractional conductance” of λ2, and using a rounding
algorithm (which we refer to as Cheeger rounding) to produce a set S of con-
ductance at most

∧
2λ2. This is the same rounding used in step 2 of the parallel

repetition proof, and is the reason that we can only prove val(G) → (1 −∧
η) if

val+(G) → (1 − η). In both Cheeger’s inequality and in the parallel repetition
theorem, we “lose a square root” for the same reason.

Thus, to prove a strong parallel repetition theorem, it seems we need a
“strong” Cheeger’s inequality, one that rounds vectors of “fractional conduc-
tance” η to sets of conductance O(η). Many recent works have shown how to
modify/improve Cheeger’s inequality to account for the higher eigenvalues of
the graph (for example, see [LOGT12] and [LRTV12]). One of these is indeed
a “strong” Cheeger’s inequality for the case when the graph has low threshold
rank [KLL+13]:

Theorem 3. Given a graph H = (V,E), let 0 = λ1 ⊂ λ2 ⊂ · · · ⊂ λ|V | be the
eigenvalues of its normalized Laplacian. Then for every k → 2,

φ(H) ⊂ O(k) · λ2∧
λk

.
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In particular, if λk is large for a constant k (in other words, if H has low threshold
rank), then an eigenvector of H with eigenvalue λ2 can be rounded into a cut of
sparsity ⇐ λ2. This theorem gives hope for a strong parallel repetition theorem
for the low threshold rank case.

1.2 Our Results

We may now state our main theorem.

Theorem 4. Let G be a biregular projection game, and let its constraint graph
have singular values 1 = σ1 → σ2 → . . . → σ|V |. For any k → 2, if val(G) ⊂ (1−η),
then

val(G√n) ⊂
(

1 −
√

1 − σ2
k

k
· η

)ε(n)

.

At a high level, our proof of this comes from combining Theorem 3 with the
parallel repetition framework of [DS14]. However, the interface between these
two isn’t clean, and some care must be taken in combining them. Furthermore,
we can’t just apply Theorem 3 all at once; instead, we have to wait to apply
its various components at the appropriate time (at a high level, this is because
whereas the normal Cheeger rounding preservers marginals, this higher-order
Cheeger rounding only approximately preserves marginals).

In addition, we give another proof of strong parallel repetition for the special
case of expanding games. We show that

val(G√n) ⊂ (
1 − (1 − σ2

2) · η)ε(n)
.

This is stronger than the bound from [RR12], though it is weaker than the k = 2
case of Theorem 4. However, the proof is much simpler. Independently, David
Steurer [Ste13] also proved a strong parallel repetition theorem for expanding
games in the framework of [DS14].

1.3 Tightness of Our Results

The dependence on k in Theorem 4 is tight, as certified by the Odd Cycle Game.
Let k → 0, and set m := 2k + 1. Let Gm = (Vm, Em) be the cycle on m

vertices. In the Odd Cycle Game, the two players P1 and P2 try to convince
the verifier that the graph Gm is 2-colorable. Formally, each player Pi is given
as questions the vertices in Vm, and verifier expects answers b1, b2 ∈ {0, 1}. The
constraints are distributed as follows:

– With probability 1/2, both players are given a random vertex v ∈ Vm. The
constraint is that b1 = b2.

– With probability 1/2, an edge (v1, v2) ∈ Em is selected uniformly at random;
P1 is given v1, and P2 is given v2. The constraint is that b1 ⇒= b2.

It is easy to see that val(G) = 1 − 1
2m . In [Raz11], Raz lower bounded the value

of G under parallel repetition:
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Theorem 5. For large enough n, val(G√n) → (
1 − 1

m2

)O(n)
.

Let us now calculate the bound our Theorem 4 gives for the Odd Cycle Game.
The constraint graph of the Odd Cycle Game is w/prob. 1/2 the identity map-
ping and w/prob. 1/2 a random step on the cycle graph. As the cycle graph has
eigenvalues cos(2πk/m) for each k ∈ {0, . . . ,m−1} (see, for example, [Tre11]) the
constraint graph of the Odd Cycle Game has singular values 1/2+cos(2πk/m)/2
for each k ∈ {0, . . . ,m − 1}. For small values of k, this means that the k-th

largest singular value of the constraint graph is ⇐ 1 − (
k
m

)2
. Plugging this into

our Theorem 4, we see that it gives val(G√n) ⊂ (
1 − 1

m2

)ε(n)
, exactly matching

Theorem 5.

2 Preliminaries

2.1 Two-Prover One-Round Games

A two-prover one-round game G consists of a bipartite graph H = (U, V,E)
(known as the constraint graph) and a set Σ of answers (or labels). We will
reserve α ∈ Σ to refer to labels on the U side and β ∈ Σ to refer to labels on the
V side. Each edge (u, v) ∈ E is associated with a predicate πuv : Σ×Σ ∪ {0, 1}.
We will write (u, v) ≤ E to denote that the edge (u, v) is sampled uniformly at
random from E. The game, with two provers P1 and P2, is played as follows:

- Sample (u, v) ≤ E. Give u to P1 and v to P2.
- Receive answers α from P1 and β from P2. Accept iff πuv(α, β) = 1.

We can associate the responses of player P1 with an assignment f : U ∪ Σ and
the responses of player P2 with an assignment g : V ∪ Σ. This gives us our
main definition:

Definition 2. Given a two-prover one-round game G, the value of two assign-
ments f : U ∪ Σ and g : V ∪ Σ is val(f, g;G) := Pr(u,v)⊆E [πuv(f(u), g(v)) =
1]. The value of the game G is val(G) := maxf,g val(f, g;G).

Rather than focusing on general two-player one-round games, we will focus on
the special case of biregular projection games. G is saidf to be a projection game
if for every predicate πuv and every β ∈ Σ, there is at most one α ∈ Σ such that
πuv(α, β) = 1. G is biregular if its constraint graph H = (U, V,E) is biregular,
i.e. if each vertex u ∈ U has the same degree dU , and each vertex v ∈ V has the
same degree dV . Given two two-prover one-round games G1 and G2, we denote
the parallel repetition of G1 and G2 by G1⇔G2. This is the two-prover one-round
game which is played as follows:

1. Sample (u1, v1) ≤ G1 and (u2, v2) ≤ G2.
2. Give question (u1, u2) to P1 and (v1, v2) to P2.
3. Receive answers (α1, α2) and (β1, β2).
4. Accept iff πu1v1(α1, β1) = πu2v2(α2, β2) = 1.

We will write G√k to denote the k-fold parallel repetition of G with itself.
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2.2 Vectors

Definition 3. Given an index set J , a vector is a function f : J ∪ R.

Vectors in this paper will be indexed in one of three ways: either by vertices
v ∈ V , by labels β ∈ Σ, or by vertex/label pairs (v, β) ∈ V × Σ. Given two
vectors f, g : J ∪ R, their inner product is defined as:

∗f, g⊥ :=
∑

x∈J
f(x) · g(x) = f≥g.

(We note that this differs from the way [DS14] defines their inner products.
There, inner products between vectors with index set V or V ×Σ use an expec-
tation over v ≤ V rather than a summation.) We will also define the 2-norm of
a vector as: ↓f↓ :=

√∗f, f⊥.
The following types of vectors will be especially important for us in this paper.

Definition 4. As above, given a vertex set V and a label set Σ, an assignment
is a function f : V ∪ Σ. We will associate with this assignment the vector
f : V ×Σ ∪ R (which we will also call an assignment) for which

f(v, β) :=

{
1∧
|V | if f(v) = β,

0 otherwise.

A partial assignment is a vector f : V × Σ ∪
{

0, 1∧
|V |

}
in which for each

v ∈ V , f(v, β) is nonzero for at most one β ∈ Σ. a fractional assignment is a
vector f : V ×Σ ∪ R

∪0 in which for each v ∈ V , f(v, β) is nonzero for at most
one β ∈ Σ.

Fractional assignments admit the following decomposition, which we will use
repeatedly:

Fact 6. Suppose g : V × Σ ∪ R is a fractional assignment. Then we can write
g(v, β) = h(v) · I(v, β), where h : V ∪ R

∪0 and I : V × Σ ∪ {0, 1} is a 0/1-
indicator. For convenience, we will require that for each v ∈ V , there exists a
β ∈ Σ such that I(v, β) = 1.

It is also easy to see that ↓h↓2 = ↓g↓2.
Definition 5. Given f : V × Σ ∪ R and a vertex v ∈ V , we will write f(v, ·)
for the vector mapping Σ ∪ R which, on input β ∈ Σ, outputs f(v, β).

2.3 The Projection Game Operator

Let G be a two-prover one-round game with constraint graph H = (U, V,E). As
before, we will write dU for the degree of the U vertices and dV for the degree of
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the V vertices. We will associate with G and H a pair of matrices which allow
us to analyze the parallel repetition of our games via linear algebra.

To H we associate the |U | × |V | matrix (also named H) defined as

Hu,v :=

{ 1√
dU ·dV

if u ≤ v,

0 otherwise.

This is just the normalized adjacency matrix of H . To G we associate the |U ×
Σ| × |V ×Σ| matrix (also named G) defined as

G(u,Ω),(v,α) :=

{ 1√
dU ·dV

if u ≤ v and πu,v(α, β) = 1,

0 otherwise.

This is the projection game operator. The matrix we use for H is a natural
choice, and the next proposition shows that the definition of the G matrix is
natural as well.

Proposition 1. Suppose f and g are assignments. Then ∗f,Gg⊥ = f≥Gg =
val(f, g;G).

A primary focus for us in this paper will be the constraint graph H and its
spectrum. For this, we use the singular value decomposition.

Singular Value Decomposition. Suppose the rank of H is d. Then we can
write

H =

d∑

i=1

σi · li · r≥i . (1)

Here, σ1 → . . . → σd → 0 are the singular values of H, l1, . . . , ld are an or-
thonormal set of vectors called the left-singular vectors, and r1, . . . , rd are an
orthonormal set of vectors called the right-singular vectors. Furthermore, the
li’s are of type U ∪ R, and the ri’s are of type V ∪ R.

Fact 7. If G (equivalently, H) is biregular, then σi ∈ [0, 1] for all i ∈ {1, . . . , d}.
In addition, σ1 = 1, l1 =

(
1∧
|U| , . . . ,

1∧
|U|

)
, and r1 =

(
1∧
|V | , . . . ,

1∧
|V |

)
.

One of our main uses for G and H is to project assignments “on the V side”
to assignments “on the U side”. For a vector g : V × Σ ∪ R, this involves
projecting it to the vector (Gg) of type U × Σ ∪ R, which is specified by the
equation

(Gg)(u, α) =
1∧

dU · dV
∑

v⊆u

∑

α:λuv(Ω,α)=1

g(v, β).

The following proposition shows that this is a reasonable way to project g “to
the U side”.

Proposition 2. Suppose g is a fractional assignment. Then

(Gg)(u, α) =
1∧
U

Pr
v⊆u

[πuv(α, g(v)) = 1] .
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For a vector h : V ∪ R, its projection is the vector (Hh) of type U ∪ R, which
is specified by the equation

(Hh)(u) =
1∧

dU · dV
∑

v⊆u

h(v).

We will now introduce some simplifying notation. Fix adjacent vertices u and
v. Write Gu←v for the |Σ| × |Σ| matrix defined as

(Gu←v)Ω,α :=

{
1 if πu,v(α, β) = 1,
0 otherwise.

Recalling the g(v, ·) notation from Definition 5, we have that

(Gu←vg(v, ·)) (α) =
∑

α:λuv(α)=Ω

g(v, β).

Using this, we can rewrite the action of the projection game operator G on g as
follows:

Proposition 3. (Gg)(u, α) = 1√
dU ·dV

∑
v⊆u (Gu←vg(v, ·)) (α).

Given a vector g : V ×Σ ∪ R, we will be especially interested in the quadratic
form ↓Gg↓2. By Proposition 3, we can write this as

↓Gg↓2 =
1

dU · dV
∑

u∈U

∑

v1,v2⊆u

∗Gu←v1g(v1, ·), Gu←v2g(v2, ·)⊥. (2)

We can use this expression to show that G is norm reducing on fractional as-
signments.

Proposition 4. Suppose g : V × Σ ∪ R is a fractional assignment. Then
↓Gg↓2 ⊂ ↓g↓2.
Proposition 5. Let g : V × Σ ∪ R

∪0 be a nonnegative fractional assignment,
and define h and I as in Fact 6. Then ↓Hh↓2 → ↓Gg↓2.

So as not to conflict with the notation for the indicator I from Fact 6, we will
write Id for the identity operator.

2.4 Projection Games Relaxation

The paper of [DS14] introduced a convenient relaxation for val(G). Before we
state what it is, let us begin with a definition.

Definition 6. A finite measure space is a finite set Ω along with a measure
μ : Ω ∪ R

∪0 on that set. Typically, we will keep the set explicit while the
measure will be implicit. Given a quantity q : Ω ∪ R, we define the expectation
with respect to Ω as

E
Δ⊆ε

[q(ω)] =
∑

Δ∈ε

μ(ω) · q(ω).

We note that μ need not be a probability measure, i.e.
∑

Δ∈ε μ(ω) need not be 1.
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maximize val+(f, g) := E
γ∼ε

∈fγ, Ggγ∪
subject to fγ and gγ are fractional assignments for all ω ← Ω

E
γ∼ε

‖fγ(u, ·)‖2 ⇒ 1

|U | →u

E
γ∼ε

‖gγ(v, ·)‖2 ⇒ 1

|V | →v

Now, we can specify the relaxation.
Let val+(G) denote the value of the relaxation. The following proposition is

implicit in [DS14]

Proposition 6. For a bipartite projection game G, val(G√n) ⊂ val+(G)n/2.

We also need the following lemma which is a combination of Claim 2.1 and
Lemma 3.1 in [DS14]

Lemma 1. Suppose val(G√n) → (1− η)n. Then there exists a fractional assign-
ment g such that ↓Gg↓2 → 1 − 2η and ↓g↓ = 1.

3 Parallel Repetition for Low Threshold Rank Graphs

In this section, we prove the following theorem.

Theorem 8. Let G be a biregular projection game with constraint graph H =
(U, V,E). For k → 2, let σk be H’s k-th singular value. If S = (f, g,Ω) is a
solution to the projection games relaxation with val+(S) → 1 − η, then

val(G) → 1 − 64kη
√

1 − σ2
k

.

Combining this with Proposition 6 yields our main theorem. We now prove
Theorem 8.

Proof (of Theorem 8). As val+(S) is monotically increasing in f and g, we can
assume that

E
Δ⊆ε

↓fΔ↓2 = E
Δ⊆ε

↓gΔ↓2 = 1.

In particular, this means that for each u ∈ U and v ∈ V ,

E
Δ⊆ε

↓fΔ(u, ·)↓2 =
1

|U | and E
Δ⊆ε

↓gΔ(v, ·)↓2 =
1

|V | .

We begin our proof by focusing in on g.

Proposition 7. EΔ⊆ε ↓GgΔ↓2 → 1 − 2η.
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Proof. By Cauchy-Schwarz,

1 − η ⊂ E
Δ⊆ε

∗fΔ, GgΔ⊥ ⊂ E
Δ
↓fΔ↓ · ↓GgΔ↓ ⊂ EΔ ↓fΔ↓2 + EΔ ↓GgΔ↓2

2
.

Since EΔ ↓fΔ↓2 = 1, this inequality is satisfied only if E ↓GgΔ↓2 → 1 − 2η.

Our next step is to convert g into a distribution on partial assignments (see
Definition 4). We will need the following definition.

Definition 7. A partial assignment distribution (g′Δ, Ω
′) is a finite measure

space Ω′ and a partial assignment g′Δ, for each ω ∈ Ω′.

The next lemma shows that it is indeed possible to convert g into a partial
assignment distribution, the one caveat being that EΔ⊆ε′ ↓Gg′Δ↓2 is large only
in relation to EΔ⊆ε′ ↓g′Δ↓2.

Lemma 2. There is a partial assignment distribution (g′Δ, Ω′) with

E
Δ⊆ε′

↓Gg′Δ↓2 → E
Δ⊆ε′

↓g′Δ↓2 −
4η

√
1 − σ2

k

.

Furthermore, 1
8k · 1

|V | ⊂ EΔ⊆ε′ ↓g′Δ(v, ·)↓2, for each v ∈ V .

With (g′Δ, Ω′) in hand, the rest of the proof will closely follow the proof of
Lemma 5.5 from [DS14]. The main difference is that EΔ⊆ε′ ↓Gg′Δ↓2 is guaranteed
to be large only in relation to EΔ⊆ε′ ↓g′Δ↓2, and not just in isolation. However,
we have the guarantee that g′Δ assigns each v ∈ V a value a nonnegligible fraction
of the time (i.e. with measure at least 1

8k ). This fact will allow us to extract a
good assignment from (g′Δ, Ω′).

Lemma 3. There exists an assignment A : V × Σ ∪
{

0, 1∧
|V |

}
such that

↓GA↓2 → 1 − 64kη
√

1 − σ2
k

.

We defer the proof of this lemma to the full version. The proof is largely based
on the proof of Lemma 5.5 in [DS14]. There, they use the correlated sampling
approach of [BHH+08] to combine the various g′Δs into a single assignment.

Finally, we can show an assignment (f,A) for which ∗f,GA⊥ is large. This is
because

↓GA↓2 = ∗GA,GA⊥ ⊂ max
f

∗f,GA⊥ ⊂ val(G),

where the max is taken over assignments to U . Thus, ↓GA↓2 is a lower bound
on the value of G, and we are done.

Acknowledgments. We would like to thank David Steurer for helpful discus-
sions.
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Sparser Random 3-SAT Refutation Algorithms

and the Interpolation Problem�

(Extended Abstract)

Iddo Tzameretσσ

The Institute for Interdisciplinary Information Sciences (IIIS)
Tsinghua University, Beijing

Abstract. We formalize a combinatorial principle, called the 3XOR
principle, due to Feige, Kim and Ofek [12], as a family of unsatisfiable
propositional formulas for which refutations of small size in any propo-
sitional proof system that possesses the feasible interpolation property
imply an efficient deterministic refutation algorithm for random 3SAT
with n variables and Ω(n1.4) clauses. Such small size refutations would
improve the state of the art (with respect to the clause density) efficient
refutation algorithm, which works only for Ω(n1.5) many clauses [13].

We demonstrate polynomial-size refutations of the 3XOR principle
in resolution operating with disjunctions of quadratic equations with
small integer coefficients, denoted R(quad); this is a weak extension of
cutting planes with small coefficients. We show that R(quad) is weakly
automatizable iff R(lin) is weakly automatizable, where R(lin) is similar
to R(quad) but with linear instead of quadratic equations (introduced in
[25]). This reduces the problem of refuting random 3CNF with n variables
and Ω(n1.4) clauses to the interpolation problem of R(quad) and to the
weak automatizability of R(lin).

1 Introduction

In the well known random 3-SAT model one usually considers a distribution on
formulas in conjunctive normal form (CNF) with m clauses and three literals
each, where each clause is chosen independently with repetitions out of all pos-
sible 23 ·(n3

)
clauses with n variables (cf. [1]). The clause density of such a 3CNF

is m/n. When m is greater than cn for sufficiently large c, that is, when the
clause density is greater than c, it is known (and easily proved for e.g. c ∈ 5.2)
that with high probability a random 3CNF is unsatisfiable.

A refutation algorithm for random kCNFs is an algorithm that re-
ceives a kCNF (with sufficiently large clause density) and outputs either
“unsatisfiable” or “don’t know”; if the algorithm answers “unsatisfiable”

ε The full version is available at: http://arxiv.org/abs/1305.0948
εε Supported in part by the National Basic Research Program of China Grant

2011CBA00300, 2011CBA00301, the National Natural Science Foundation of
P. R. China; Grants 61033001, 61061130540, 61073174, 61373002.

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 1015–1026, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014

http://arxiv.org/abs/1305.0948
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then the kCNF is required to be indeed unsatisfiable; moreover, the algorithm
should output “unsatisfiable” with high probability (namely, with probability
1 − o(1) over the input kCNFs).

We can view the problem of determining the complexity of (deterministic)
refutation algorithms as an average-case version of the P vs. coNP problem:
a polynomial-time refutation algorithm for random kCNFs (for a small enough
clause density) can be interpreted as showing that “P = coNP in the average-
case”; while a polynomial-time nondeterministic refutation algorithm (again,
for a small enough clause density) can be interpreted as “NP = coNP in the
average-case”.

Refutation algorithms for random kCNFs were investigated in Goerdt and
Krivelevich [15] and subsequent works by Goerdt and Lanka [16], Friedman,
Goerdt and Krivelevich [14], Feige and Ofek [13], Feige [11] and Coja-Oghlan
et al. [8] (among other works). For random 3CNFs, the best (with respect to
the clause density) polynomial-time refutation algorithm to date works for for-
mulas with at least σ(n1.5) clauses [13]. On the other hand, Feige, Kim and
Ofek [12] considered efficient nondeterministic refutation algorithms; namely,
short witnesses for unsatisfiability of 3CNFs that can be checked for correctness
in polynomial-time. They established the current best (again, with respect to
the clause density) efficient, alas nondeterministic, refutation procedure: they
showed that with probability converging to 1 a random 3CNF with n variables
and σ(n1.4) clauses has a witness of size polynomial in n.

Since the current state of the art random 3CNF refutation algorithm works
for σ(n1.5) clauses, while the best nondeterministic refutation algorithm works
already for O(n1.4), determining whether a deterministic polynomial-time (or
even a quasipolynomial-time) refutation algorithm for random 3CNFs with n
variables and σ(n1.4) clauses exists is to a certain extent the frontier open prob-
lem in the area of efficient refutation algorithms.

1.1 Results

In this work we reduce the problem of devising an efficient deterministic refu-
tation algorithm for random 3CNFs with σ(n1.4) clauses to the interpolation
problem in propositional proof complexity. For a refutation system P , the in-
terpolation problem for P is the problem that asks, given a P-refutation of an
unsatisfiable formula A(x, y) ⊆ B(x, z), for x, y, z mutually disjoint sets of vari-
ables, and an assignment τ for x, to return 0 or 1, such that if the answer is 0
then A(τ, y) is unsatisfiable and if the answer is 1 then B(τ, z) is unsatisfiable.
If the interpolation problem for a refutation system P is solvable in time T (n)
we say that P has interpolation in time T (n).1 When T (n) is a polynomial we
say that P has feasible interpolation. The notion of feasible interpolation was
proposed in [18] and developed further in [27,6,19].

1 We do not distinguish in this paper between proofs and refutations: proof systems
prove tautologies and refutation systems refute unsatisfiable formulas (or, equiva-
lently prove the negation of unsatisfiable formulas).
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We present a family of unsatisfiable propositional formulas, denoted λn and
called the 3XOR principle formulas, expressing a combinatorial principle, such
that for any given refutation system P that admits short refutations of λn, solv-
ing efficiently the interpolation problem for P provides an efficient deterministic
refutation algorithm for random 3CNFs with σ(n1.4) clauses. In other words,
we have the following:

Theorem 1. If there exists a propositional proof system P that has interpola-
tion in time T (n) and that admits s(n)-size refutations of λn, then there is a
deterministic refutation algorithm for random 3CNF formulas with n variables
and σ(n1.4) clauses that runs in time T (s(n)). In particular, if P has feasible
interpolation and admits polynomial-size refutations of λn then the refutation
algorithm runs in polynomial-time.

The argument is based on the following: we show that the computationally
hard part of the Feige, Kim and Ofek nondeterministic refutation algorithm
(namely, the part we do not know how to efficiently compute deterministically)
corresponds to a disjoint NP-pair. Informally, the pair (A,B) of disjoint NP
sets is the following: A is the set of 3CNFs that have a certain combinatorial
property, that is, they contain a collection of sufficiently many inconsistent even
k-tuples, as defined by Feige et al. (see Definition 2); and B is the set of 3CNFs
with m clauses for which there exists an assignment that satisfies more than
m− Π clauses as 3XORs (for Π a certain function of the number of variables n).

Theorem 1 then follows from the known relation between disjoint NP-pairs
and feasible interpolation [26,24]: in short, if A and B are two disjoint NP sets
and A(x, y) and B(x, z) are the two polynomial-size Boolean formulas corre-
sponding to A and B, respectively (i.e., for all x, there exists a short y such
that A(x, y) = 1 iff x ⊂ A; and similarly for B), then short refutations of
A(x, y) ⊆ B(x, z) imply a polynomial-size algorithm that separates A from B.
For more on the relation between disjoint NP-pairs and propositional proof
complexity see, e.g., [24,3].

In general, we observe that every efficient refutation algorithm (deterministic
or not) corresponds directly to a disjoint NP-pair as follows: every efficient
refutation algorithm is based on some property P of CNFs that can be witnessed
(or better, found) in polynomial-time. Thus, every efficient refutation algorithm
corresponds to a family of formulas P (x) →¬SAT(x), expressing that if the input
CNF has the property P then x is unsatisfiable; thus, P (x) and SAT(x) are two
disjoint NP predicates. In the case of the refutation algorithm of Feige, Kim
and Ofek, P (x) expresses simply that the 3CNF x has the Feige et al. witness.
However, the disjoint NP-pair (A,B) we work with is not of this type. Namely,
A is not the predicate P (x) for the full Feige, Kim and Ofek witnesses, rather
a specific combinatorial predicate (mentioned above) that is only one ingredient
in the definition of the Feige et al. witness; and B is not SAT(x). This saves us
the trouble to formalize and prove in a weak propositional proof system the full
Feige et al. argument (such a formalization was done recently in [22]; see Sec. 1.2
for a comparison with [22]).
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In the second part of this paper we reduce the problem of determinizing the
Feige et al. nondeterministic refutation algorithm to the interpolation problem of
a concrete and apparently weak refutation system. Specifically, we demonstrate
polynomial-size refutations for λn in a refutation system denoted R(quad) that
extends both cutting planes with small coefficients2 (cf. [9,6,23]) and Res(2)
(for any natural k, the system Res(k) is resolution that operates with kDNFs
instead of clauses, introduced by Kraj́ıček [20]). We note also that R(quad) is a
subsystem of TC0-Frege.

An R(quad) refutation (see full version [28] for the definition) over the vari-
ables {x1, . . . , xn} operates with disjunctions of quadratic equations, where each
quadratic equation is of the form:

∑

i,j◦[n]

cijxixj +
∑

i◦[n]

cixi + c0 = a,

in which all ci, cij and a are integers written in unary. The system R(quad) has
the following derivation rule, which can be viewed as a generalized resolution
rule: from two disjunctions of quadratic equations

∨
i Li ∧ (L = a) and

∨
j Lj ∧

(L√ = b) one can derive:
∨

i

Li ∧
∨

j

Lj ∧ (L − L√ = a− b).

We also add axioms that force our variables to be 0, 1. An R(quad) refutation
of an unsatisfiable set S of disjunctions of quadratic equations is a sequence
of disjunctions of quadratic equations (called proof-lines) that terminates with
1 = 0, and such that every proof-line is either an axiom, or appears in S, or is
derived from previous lines by the derivation rules.

We show the following:

Theorem 2. R(quad) admits polynomial-size refutations of the 3XOR principle
formulas λn.

This polynomial upper bound on the refutation size of the 3XOR principle is
non-trivial because the encoding of the 3XOR formula is complicated in itself
and further the refutation system is very restrictive.

By Theorem 1, we get the reduction from determinizing Feige et al. work to
the interpolation problem for R(quad). In other words:

Corollary 1. If R(quad) has feasible interpolation then there is a deterministic
polynomial-time refutation algorithm for random 3CNFs with n variables and
σ(n1.4) clauses.

Next we reduce the problem of determinizing the Feige et al. refutation algo-
rithm to the weak automatizability of a weaker system than R(quad), namely
R(lin), as explained in what follows.

2 A refutation in cutting planes with small coefficients is a restriction of cutting planes
in which all intermediate inequalities are required to have coefficients bounded in
value by a polynomial in n, where n is the size of the formula to be refuted (see [6]).



Sparser Random 3-SAT Refutation Algorithms and Interpolation 1019

The concept of automatizability, introduced by Bonet, Pitassi and Raz [7]
(following the work of [21]), is central to proof-search algorithms. The proof-
search problem for a refutation system P asks, given an unsatisfiable formula β ,
to find a P-refutation of β . A refutation system P is automatizable if for any
unsatisfiable β the proof-search problem for P is solvable in time polynomial in
the smallest P-refutation of β (or equivalently, if there exists a polynomial-time
algorithm that on input β and a number m in unary, outputs a P-refutation of
β of size at most m, in case such a refutation exists). Following Atserias and
Bonet [3], we say that a refutation system P is weakly automatizable if there
exists an automatizable refutation system P √ that polynomially simulates P .
Note that if P is not automatizable, it does not necessarily follow that also P √

is not automatizable. Hence, from the perspective of proof-search algorithms,
weak automatizability is a more natural notion than automatizability (see [24]
on this).

In [25], the system R(lin) was introduced which is similar to R(quad), ex-
cept that all equations are linear instead of quadratic. In other words, R(lin) is
resolution over linear equations with small coefficients. We show the following:

Theorem 3. R(quad) is weakly automatizable iff R(lin) is weakly automatiz-
able.

The proof of this theorem follows a similar argument to Pudlák [24]. Since weak
automatizability of a proof system implies that the proof system has feasible
interpolation [7,24], we obtain the following:

Corollary 2. If R(lin) is weakly automatizable then there is a deterministic
refutation algorithm for random 3CNFs with n variables and σ(n1.4) clauses.

1.2 Consequences and Relations to Previous Work

The key point of this work is the relation between constructing an efficient
refutation algorithm for the clause density σ(n0.4) and proving upper bounds in
weak enough propositional proof systems for the 3XOR principle (namely, proof
systems possessing feasible interpolation); as well as establishing such upper
bounds in relatively weak proof systems.

There are two ways to view our results: either as (i) proposing an approach to
improve the current state of the art in refutation algorithms via proof complexity
upper bounds; or conversely as (ii) providing a new kind of important computa-
tional consequences that will follow from feasible interpolation and weak autom-
atizability of weak proof systems. Indeed, the consequence that we provide is of a
different kind from the group of important recently discovered algorithmic-game-
theoretic consequences shown by Atserias and Maneva [4], Huang and Pitassi [17]
and Beckmann, Pudlák and Thapen [5]. In what follows we explain these two
views in more details.

(i) Our results show that by proving that R(quad) has feasible interpolation
or by demonstrating a short refutation of the 3XOR principle in some refutation
system that admits feasible interpolation, one can advance the state of the art
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in refutation algorithms. We can hope that if feasible interpolation of R(quad)
does not hold, perhaps interpolation in quasipolynomial-time holds (either for
R(quad) or for any other system admitting short refutations of the 3XOR princi-
ple), which would already improve exponentially the running time of the current
best deterministic refutation algorithm for 3CNFs with σ(n1.4) clauses, since

the current algorithm works in time 2O(n0.2 logn) [12].
As mentioned above, R(quad) is a common extension of Res(2) and cutting

planes with small coefficients (though it is apparently not the weakest such com-
mon extension because already R(lin) polynomially simulates both Res(2) and
cutting planes with small coefficients). Whether Res(2) has feasible interpolation
(let alone, interpolation in quasi-polynomial time) is open and there is no con-
clusive evidence for or against it. Note that by Atserias and Bonet [3], Res(2)
has feasible interpolation iff resolution is weakly automatizable. However this
does not necessarily constitute strong evidence against the feasible interpolation
of Res(2), because the question of whether resolution is weakly automatizable is
itself open, and there is no strong evidence ruling out a positive answer to this
question.3 Similarly, there is no strong evidence that rules out the possibility
that cutting planes is weakly automatizable.

(ii) Even if our suggested approach is not expected to lead to an improve-
ment in refutation algorithms, it is still interesting in the following sense. The
fact that R(quad) has short refutations of the 3XOR principle provides new evi-
dence that (weak extensions of) Res(2) and cutting planes with small coefficients
may not have feasible interpolation, or at least that it would be highly non-trivial
to prove they do have feasible interpolation; the reason for this is that estab-
lishing feasible interpolation for such proof systems would entail quite strong
algorithmic consequences, namely, a highly non-trivial improvement in refuta-
tion algorithms. This algorithmic consequence adds to other recently discovered
and important algorithmic-game-theoretic consequences that would follow from
feasible interpolation of weak proof systems.

Specifically, in recent years several groups of researchers discovered connections
between feasible interpolation and weak automatizability of small depth Frege sys-
tems to certain game-theoretic algorithms: Atserias and Maneva [4] showed that
solving mean payoff games is reducible to the weak automatizability of depth-2
Frege (equivalently, Res(n)) systems and to the feasible interpolation of depth-
3 Frege systems (actually, depth-3 Frege where the bottom fan-in of formulas is
at most two). Subsequently, Huang and Pitassi [17] showed that if depth-3 Frege
system is weakly automatizable, then simple stochastic games are solvable in poly-
nomial time. Finally, Beckmann, Pudlák and Thapen [5] showed that weak autom-
atizability of resolution implies a polynomial-time algorithm for the parity game.

Comparison with Müller and Tzameret [22]. In [22] a polynomial-size TC0-
Frege proof of the correctness of the Feige et al. witnesses was shown. However

3 It is known that, based on reasonable hardness assumptions from parameterized
complexity, resolution is not automatizable by Alekhnovich and Razborov [2], which
is, as the name indicates, a stronger property than weak automatizability.
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the goal of [22] was different from the current paper. In [22] the goal was to
construct short propositional refutations for random 3CNFs (with sufficiently
small clause density). Accordingly, the connection to the interpolation problem
was not made in [22]; and further, it is known by [7] that TC0-Frege does not
admit feasible interpolation (under cryptographical assumptions). On the other
hand, the current paper aims to demonstrate that certain short refutations will
have algorithmic consequences (for refutation algorithms). Indeed, since we are
not interested here to prove the correctness of the full Feige et al. witnesses,
we are isolating the computationally hard part of the witnesses from the easy
(polytime computable) parts, and formalize the former part (i.e., the 3XOR
principle) as a propositional formula in a way that is suitable for the reduction
to the interpolation problem.

One advantage of this work over [22] is that Theorem 2 gives a more concrete
logical characterization of parts of the Feige et al. witnesses (because the proofs in
[22] were conducted indirectly, via a general translation from first-order proofs
in bounded arithmetic), and this characterization is possibly tighter (because
R(quad) is apparently strictly weaker than TC0-Frege).

Organization of the extended abstract. In the preliminaries we review some
necessary background from proof complexity and refutation algorithms. In Sec. 3
we describe the connection between feasible interpolation and refutations algo-
rithms. Due to lack of space, readers who wish to read the full details involved in the
short R(quad) refutations of the 3XOR principle, as well as the reduction to weak
automatizability of R(lin), are referred to the full version available on-line [28].

2 Preliminaries

We usually assume that a 3CNF has n variables X = {x1, . . . , xn} and m clauses.

2.1 Disjoint NP-pairs and Feasible Interpolation of Propositional
Proofs

A disjoint NP-pair is simply a pair of languages in NP that are disjoint. Let
L,N be a disjoint NP-pair such that R(x, y) is the corresponding relation for L
and Q(x, z) is the corresponding relation for N ; namely, there exists polynomials
p, q such that R(x, y) and Q(x, z) are polynomial-time relations where x ⊂ L iff
≥y, |y| ⇐ p(|x|) ⊆R(x, y) = true and x ⊂ N iff ≥z, |z| ⇐ q(|x|) ⊆Q(x, z) = true.

Since both polynomial-time relations R(x, y) and Q(x, z) can be converted
into a family of polynomial-size Boolean circuits, they can be written as a family
of polynomial-size (in n) CNF formulas. Thus, let An(x, y) be a polynomial-size
CNF in the variables x = (x1, . . . , xn) and y = (y1, . . . , yε), that is true iff
R(x, y) is true, and let Bn(x, z) be a polynomial-size CNF in the variables x
and z = (z1, . . . , zm), that is true iff Q(x, z) is true (for some Π,m that are
polynomial in n). For every n ⊂ N, we define the following unsatisfiable CNF
formula in three mutually disjoint vectors of variables x, y, z:

Fn := An(x, y) ⊆Bn(x, z). (1)
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Note that because y and z are disjoint vectors of variables and An(x, y)⊆Bn(x, z)
is unsatisfiable, it must be that given any x ⊂ {0, 1}n, either An(x, y) or Bn(x, z)
is unsatisfiable (or both).

A propositional proof system P is a polynomial-time relation V (Δ, β) such that
for every propositional formula β , β is a tautology iff there exists a binary string
Δ with V (Δ, β) = true. A propositional proof system P polynomially-simulates
another propositional proof system Q if there is a polynomial-time computable
function f that maps Q-proofs to P-proofs of the same tautologies.

Consider a family of unsatisfiable formulas Fn := An(x, y) ⊆ Bn(x, z), i ⊂ N,
in mutually disjoint vectors of variables, as in (1). We say that the Boolean
function f(x) is the interpolant of Fn if for every n and every assignment τ to
x:

f(τ) = 1 =⇒ An(τ, y) is unsatisfiable; and
f(τ) = 0 =⇒ Bn(τ, z) is unsatisfiable.

(2)

Note that L (as defined above) is precisely the set of those assignments τ for
which A(τ, y) is satisfiable, and N is precisely the set of those assignments τ
for which B(τ, z) is satisfiable, and L and N are disjoint by assumption, and so
f(x) separates L from N .

Definition 1 (Interpolation Property). A propositional proof system P is
said to have the interpolation property in time T (n) if the existence of a size s(n)
P-refutation of a family Fn as in (1) above implies the existence of an algorithm
computing f(x) in T (s(n)) time. When a proof system P has the interpolation
property in time poly(n) we say that P has the feasible interpolation property,
or simply that P has feasible interpolation.

Definition 2 (Inconsistent Even k-tuple (Feige et al. [12]). An even k-
tuple is a tuple of k many 3-clauses in which every variable appears an even
number of times. An inconsistent even k-tuple is an even k-tuple in which the
total number of negative literals is odd.

Note that for any even k-tuple, k must be an even number (since by assump-
tion the total number of variable occurrences 3k is even). The following is the
combinatorial principle, due to Feige et al. [12] that we consider in this work:

The 3XOR Principle 1. Let K be a 3CNF over the variables X. Let S be t
inconsistent even k-tuples from K, such that every clause from K appears in at
most d inconsistent even k-tuples in S. Then, given any Boolean assignment to
the variables X, the number of clauses in K that are unsatisfied by the assignment
as 3XOR is at least ∪t/d≤.

The correctness of the 3XOR principle follows directly from the following
proposition (the proof of which follows by counting modulo 2) and the fact that
every clause in K appears in at most d even k-tuples in S:

Proposition 1 ([12]). For any inconsistent even k-tuple (over the variables X)
and any Boolean assignment A to X, there must be a clause in the k-tuple that
is unsatisfied as 3XOR.
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3 From Short Proofs to Refutation Algorithms
In this section we demonstrate that polynomial-size proofs of (encodings of the)
3XOR principle in a proof system that has the feasible interpolation property
yield deterministic polynomial-time refutation algorithms for random 3CNF for-
mulas with σ(n1.4) clauses.

3.1 The Witness for Unsatisfiability

The Feige, Kim and Ofek nondeterministic refutation algorithm [12] is based
on the existence of a polynomial-size witness of unsatisfiability for most 3CNF
formulas with sufficiently large clause to variable ratio. The witness has several
parts, but as already observed in [12], apart from the t inconsistent even k-
tuples (Def. 2), all the other parts of the witness are known to be computable
in polynomial-time. In what follows we define the witnesses for unsatisfiability.

Let K be a 3CNF with n variables x1, . . . , xn and m clauses. The imbalance
of a variable xi is the absolute value of the difference between the number of its
positive occurrences and the number of its negative occurrences. The imbalance
of K is the sum over the imbalances of all variables, in K, denoted I(K). We
define M(K) to be an n× n rational matrix M as follows: let i, j ⊂ [n], and let
d be the number of clauses in K where xi and xj appear with different signs
and s be the number of clauses where xi and xj appear with the same sign.
Then Mij := 1

2 (d − s). In other words, for each clause in K in which xi and
xj appear with the same sign we add 1

2 to Mij and for each clause in K in
which xi and xj appear with different signs we subtract 1

2 from Mij . Let ∂ be a
rational approximation of the biggest eigenvalue of M(K). We shall assume that
the additive error of the approximation is 1/nc for a constant c independent of
n; i.e., |∂− ∂√| ⇐ 1/nc, for ∂√ the biggest eigenvalue of M(K); see [22].

Definition 3 (FKO Witness). Given a 3CNF K, the FKO witness for the
unsatisfiability of K is defined to be the following collection:

1. the imbalance I(K);
2. the matrix M(K) and the (polynomially good) rational approximation ∂ of

its largest eigenvalue;
3. a collection S consisting of t < n2 inconsistent even k-tuples such that every

clause in K appears in at most d many even k-tuples, for some positive
natural k;

4. the inequality t > d·(I(K)+Ωn)
2 + o(1) holds.

(The o(1) above stands for a specific rational number b/nc, for c and b constants
independent of n).

Theorem 4 ([12]). There are constants c0, c1 such that for a random 3CNF K
with n variables and σ(n1.4) clauses, with probability converging to 1 as n tends
to infinity there exist natural numbers k, t, d such that t = σ(n1.4) and

k ⇐ c0 · n0.2 and t < n2 and d ⇐ c1 · n0.2, (3)

and K has a witness for unsatisfiability as in Definition 3.
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Inspecting the argument in [12], it is not hard to see that it is sufficient to
replace part 3 in the witness with a witness for the following:

3’. No assignment can satisfy more than m− ∪t/d≤− 1 clauses in K as
3XORs.

Therefore, since I(K), M(K) and ∂ are all polynomial-time computable (see
[12] for this), in order to determinize the nondeterministic refutation algorithm
of [12] it is sufficient to provide an algorithm that almost surely determines
(correctly) that part 3’ above holds (when also t and d are such that part 4 in
the witness holds). In other words, in order to construct an efficient refutation
algorithm for random 3CNFs (with σ(n1.4) clauses) it is sufficient to have a
deterministic algorithm A that on every input 3CNF (and for t and d such
that part 4 in the witness holds) answers either “condition 3’ is correct”
or “don’t know”, such that A is never wrong (i.e., if it says “condition 3’ is

correct” then condition 3’ holds) and with probability 1 − o(1) over the input
3CNFs A answers “condition 3’ is correct”. Note that we do not need to
actually find the Feige et al. witness nor do we need to decide if it exists or not (it
is possible that condition 3’ holds but condition 3 does not, meaning that there
is no Feige et al. witness). The relation between unsatisfiability and bounding
the number of clauses that can be satisfied as 3XOR in a 3CNF was introduced
by Feige in [10] (and used in [13] as well as in [12]).

3.2 The Disjoint NP-pair Corresponding to the 3XOR Principle

We define the corresponding 3XOR principle disjoint NP-pair as the pair of
languages (L,N), where k, t, d are natural numbers given in unary:

L := {⇔X, k, t, d∗ ∣∣ X is a 3CNF with n variables and Equation (3) holds

for k, t, d and there exist t inconsistent even k-tuples such that

each clause of X appears in no more than d many k-tuples},

N :=
{⇔X, k, t, d∗ ∣∣ X is a 3CNF with n variables and m clauses and

Equation (3) holds for k, t, d and there exists an assignment

that satisfies at least m− ∪t/d≤ clauses in X as 3XOR
}
.

It is easy to verify that both L and N are indeed NP sets and that, by the
3XOR principle, L ⊥N = ↓.

Using the same notation as in Section 2.1, we denote by R(x, y) and Q(x, z)
the polynomial-time relations for L and N, respectively. Further, for every n ⊂
N, there exists an unsatisfiable CNF formula in three mutually disjoint sets of
variables x, y, z:

λn := An(x, y) ⊆Bn(x, z), (4)

where An(x, y) and Bn(x, z) are the CNF formulas expressing that R(x, y) and
Q(x, z) are true for x of length n, respectively.
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Theorem 1. Assume that there exists a propositional proof system that has
interpolation in time T (n) and that admits size s(n) refutations of λn. Then,
there is a deterministic refutation algorithm for random 3CNF formulas with
σ(n1.4) clauses running in time T (s(n)).

Proof. By the assumption, and by the definition of the feasible interpolation
property, there exists a deterministic polynomial-time interpolant algorithm A
that on input a 3CNF K and three natural numbers k, t, d given in unary, if
A(K, k, t, d) = 1 then ⇔K, k, t, d∗ �⊂ L and if A(K, k, t, d) = 0 then ⇔K, k, t, d∗ �⊂ N .

The desired refutation algorithm works as follows: it receives the 3CNF K and
for each 3-tuple of natural numbers ⇔k, t, d∗ for which Equation (3) holds it runs
A(K, k, t, d). Note there are only O(n3) such 3-tuples. If for one of these runs
A(K, k, t, d) = 0 then we know that ⇔K, k, t, d∗ �⊂ N ; in this case we check (in
polynomial-time) that the inequality in Part 4 of the FKO witness (Definition 3)
holds, and if it does, we answer “unsatisfiable”. Otherwise, we answer “don’t
know”.

The correctness of this algorithm stems from the following two points:
(i) If we answered “unsatisfiable”, then there exist k, t, d such that
⇔K, k, t, d∗ �⊂ N and Part 4 in the FKO witness holds, and so Condition 3’ (from
Section 3.1) is correct, and hence, by the discussion in 3.1, K is unsatisfiable.

(ii) For almost all 3CNFs we will answer “unsatisfiable”. This is because
almost all of them will have an FKO witness (by Theorem 4), which means that
⇔K, k, t, d∗ ⊂ L for some choice of t < n2, d, k (in the prescribed ranges) and
hence the interpolant algorithm A must output 0 in at least one of these cases
(because A(K, k, t, d) = 1 means that ⇔K, k, t, d∗ �⊂ L).

Acknowledgments. I wish to thank Jan Kraj́ıček for very useful comments
related to this work as well as Albert Atserias and Neil Thapen for useful related
discussions. Thanks also to the anonymous reviewers who helped a lot to improve
the exposition.
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Abstract. We extend the line of research initiated by Fortnow and Kli-
vans [6] that studies the relationship between efficient learning algorithms
and circuit lower bounds. In [6], it was shown that if a Boolean circuit
class C has an efficient deterministic exact learning algorithm, (i.e. an
algorithm that uses membership and equivalence queries) then EXPNP ⇒≤
P/poly[C]1. Recently, in [14] EXPNP was replaced by DTIME(nε(1)). Yet
for the models of randomized exact learning or Valiant’s PAC learning,
the best result so far is a lower bound against BPEXP (the exponential-
time analogue of BPP). In this paper, we derive stronger lower bounds
as well as some other consequences from randomized exact learning and
PAC learning algorithms, answering an open question posed in [6] and
[14]. In particular, we show that

1. If a Boolean circuit class C has an efficient randomized exact
learning algorithm or an efficient PAC learning algorithm2 then
BPTIME(nε(1))/1 ⇒≤ P/poly[C].

2. If a Boolean circuit class C has an efficient randomized exact learn-
ing algorithm then no strong pseudo-random generators exist in
P/poly[C].

We note that in both cases the learning algorithms need not be proper3.
The extra bit of advice comes to accommodate the need to keep the
promise of bounded away probabilities of acceptance and rejection. The
exact same problem arises when trying to prove lower bounds for BPTIME
or MA [3,7,16,20]. It has been an open problem to remove this bit. We
suggest an approach to settle this problem in our case. Finally, we slightly
improve the result of [5] by showing a subclass of MAEXP that requires
super-polynomial circuits. Our results combine and extend some of the
techniques previously used in [6,14] and [20].

Γ Research partially supported by NSF Award CCF 0832797. Full version available at
http://eccc.hpi-web.de/report/2014/058/.

1 P/poly[C] stands for the class of all languages that can be computed by polynomial-
size circuits from the class C.

2 In fact, our result hold even for a more general model of PAC learning with mem-
bership queries.

3 A learning algorithm is proper if it outputs a hypothesis from the class it learns.
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1 Introduction

Revealing a hidden function from a set of examples is a natural and basic prob-
lem. As in any other problem, identifying the obstacles along your trail is a
fundamental task in achieving your goal. In this paper, we continue to iden-
tify the obstacles to efficient learnability following the line of research initiated
by Fortnow and Klivans [6]. Several results [23,13,15,8] exhibit a two-way con-
nection between learning and cryptography: basing the hardness of learning on
cryptography and constructing cryptographic primitives based on hardness of
learning. In this paper we identify the obstacles in the form of circuit lower
bounds and relationships between complexity classes.

Angluin’s model of Exact Learning [2] consists of a (computationally bounded)
learner and a (all-powerful) teacher. The learner’s goal is to output a target
function f from a given function class C. To do so, the learner is allowed to query
the value f(x̄) on any input x̄ (membership query). In addition, the learner is also

allowed to propose a hypothesis f̂ and ask the teacher whether it is equivalent
to f (equivalence query). If this is indeed the case, the learner has achieved his
goal. Otherwise, the teacher presents the learner with a counterexample ā for
which f(ā) ∈= f̂(ā). We say that a function class C is exactly learnable if there
exists a learner which given any f ⊆ C, in time polynomial in n and |f | (the size

of f in the representation scheme) outputs a hypothesis f̂ such that f(x̄) = f̂(x̄)
for all x̄, using membership and equivalence queries. In the randomized Exact
Learning model the learner is allowed to toss coins and, given any f ⊆ C, it
must output a correct hypothesis, with high probability. We say that a class C
is exactly learnable with high probability (w.h.p) if there exists a learner which

given any f ⊆ C, in time polynomial in n and |f | w.h.p outputs a hypothesis f̂

such that f(x̄) = f̂(x̄) for all x̄, using membership and equivalence queries.
In Valiants PAC learning model [23], we (again) have a (computationally

bounded) learner that is given a set of samples of the form (x̄, f(x̄)) from some
fixed function f ⊆ C, where x̄ is chosen according to some unknown distribution
D. Given ε > 0 and δ > 0, the learner’s goal is to output, with probability 1− ε
a hypothesis f̂ such that f̂ is a 1− δ close to f under D. We say that a function
class C is PAC learnable if there exists a learner which given any f ⊆ C, ε > 0 and
δ > 0 in time polynomial in n, 1/ε, 1/δ, |f | outputs a hypothesis as required. In a
more general model, the learner is allowed membership queries (as in the exact
learning model). In this case, we say that C is PAC learnable with membership
queries.

A learning algorithm is said to be proper if it outputs a hypothesis from
the class it learns. It is known [1] that both randomized and exact learners
can be used to obtain a PAC learner with membership queries. Thus, hard-
ness results for the PAC learning model entail hardness results for the random-
ized exact learning model. In [6], Fortnow and Klivans have shown that if a
Boolean circuit class C has an efficient deterministic exact learning algorithm,
then EXPNP ∈⊂ P/poly[C]. Subsequently, Harkins and Hitchcock [10] removed the
NP oracle replacing EXPNP by EXP, using techniques from resource bounded
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measure. Further improvement was shown in [14] where EXPNP was replaced by
DTIME(nε(1)) using simpler, diagonalization type of techniques. However, given
an efficient randomized exact learning algorithm or a PAC learner, the above
techniques fail to produce a hard function. Indeed, the best known result so
far [6,14] is a lower bound against BPEXP (the exponential-time analogue of
BPP), therefore leaving an open question for improvement. In this paper we de-
rive stronger (matching) lower bounds as well as some other consequences from
randomized exact learning and PAC learning algorithms, answering the open
question.

1.1 Our Results

In this section we go briefly over our results comparing them with the previous
ones. We now present the first result of the paper, which gives lower bounds
against BPTIME(nε(1))/1 and PromiseBPTIME(nε(1)) assuming an efficient ran-
domized exact learner or an efficient PAC learner with queries. We note that the
learning algorithm need not be proper. .

Theorem 1. Let C be a circuit class. If C is exactly learnable w.h.p or is PAC
learnable with membership queries, then BPTIME(nε(1))/1 ∈⊂ P/poly[C] and
PromiseBPTIME(nε(1)) ∈⊂ P/poly[C].

This matches the recent result of [14], where a lower bound against DTIME(nε(1))
was produced assuming a deterministic efficient learner. In fact, the results of
[14] also imply fixed polynomial-size circuit lower bounds against P. That is, for
each k, P ∈⊂ SIZE(nk)[C], where SIZE(nk)[C] stands for languages accepted by
size O(nk) circuits from the class C. We match this result as well.

Theorem 2. Let C be a circuit class. If C is exactly learnable w.h.p or is PAC
learnable with membership queries, then for any k → 1: BPP/1 ∈⊂ SIZE(nk)[C]
and PromiseBPP ∈⊂ SIZE(nk)[C].

Next, we show that efficient randomized exact learner for a circuit class C
gives rise to a P/poly-natural property useful against P/poly[C]. Following the
celebrated result of Razborov & Rudich [19] (and its extensions) this implies
that no strong pseudo-random generators exist in P/poly[C]. For the case of
C = P/poly or even a smaller class of TC0 of constant-depth threshold functions
such an outcome is very unlikely [18]. Again, the learning algorithm need not be
proper.

Theorem 3. Let C be a circuit class. If C is exactly learnable w.h.p then no
strong pseudo-random generators exist in P/poly[C].

In a similar fashion to the previous lower bounds and hierarchy theorems for
the “bounded” probabilistic classes [3,7,16] and MA [20] we require an extra bit
of advice to keep the promise of bounded away probabilities. It has been an
open problem to remove this bit. We suggest an approach to settle this problem
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by trying to “unkeep” the promise using fixed oracles. More specifically, recall
that BPP = PPromiseBPP = PCA 4. That is, a language L is in BPP iff it can
be decided by a P machine with an oracle to CA. Note, thought, that for some
queries the answer of the CA oracle can be arbitrary (e.g. for balanced circuits).
We eliminate the need of an advice bit for the cases when oracle is fixed.

Theorem 4. Let O be an oracle consistent with CA. That is, O accepts circuit
from CAY ES and rejects circuit from CANO. Let C be a circuit class. If C is
exactly learnable w.h.p or is PAC learnable with membership queries, then for
any k → 1: PO ∈⊂ SIZE(nk)[C].

In [20], Santhanam proved lowers bounds for MA/1 unconditionally. In fact,
our conditional results use several techniques from this paper (partially described
in Section 1.2). Applying the same idea unconditionally and recalling that MA =
NPPromiseBPP = NPCA (see e.g. [9]) we obtain the following (unconditional) result:

Theorem 5. Let O be an oracle consistent with CA. That is, O accepts circuit
from CAY ES and rejects circuit from CANO. Then for any k → 1: NPO ∈⊂
SIZE(nk).

The smallest complexity class for which unconditional super-polynomial lower
bounds are known is MAEXP [5,17]. We show that this is still true for a subclass
of MAEXP, as MAEXP = NEXPPromiseBPP. Due to space limitation the proof of
this theorem is omitted.

Theorem 6. There exists a language LA ⊆ PromiseBPP s.t. NEXPLA ∈⊂ P/poly.

1.2 Our Techniques and Ideas

We now describe our main techniques and ideas.

Learning a “Conveniently Hard” Language. As in various previous pa-
pers dealing with conditional and unconditional lower bounds [11,12,6,20,14], we
require a “conveniently hard” language L. That is, a language L that possesses
some “nice” structural properies (downward self-reducibility, self-testability and
self-correctability) and yet can be used to compute a “hard” function (for a
formal definition see Definition 6). The “nice” properties of L make it easily
learnable given an efficient learner. More specifically, they allow answering the
learner’s queries efficiently. We now describe the idea in a nutshell. We combine
several techniques from [11,6,20,14] and extend them.

Given an efficient learner for a circuit class C, the idea is to learn a non-
uniform circuit C ⊆ C for L and then use C to compute the hard function within
L. This puts a hard function in BPP and, obviously, can be carried out only if L
is computable by a small-sized family of circuits in C. Similar idea appeared in

4 CA (Circuit Approximation) is the natural PromiseBPP-complete problem CAY ES ={
C

∣
∣ Prā∈{0,1}n [C(ā) = 1] ∈ 3/4

}
andCANO =

{
C

∣
∣ Prā∈{0,1}n [C(ā) = 1] ∪ 1/4

}
.
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[11]. The other option is that L requires large circuits from C. At this point, the
approach taken in [6,14] is to combine both hardness results into a single lower
bound. This results in a lower bound against BPEXP. We take the approach
suggested in [20]: learn a padded version of L. Intuitively, padding allows us to
increase the input size and thus allowing more learning time, without actually
increasing the “real” size of the input. We try different amounts of padding until
the learner has “enough running time” to learn L. Note, that the learning algo-
rithm is guaranteed to succeed w.h.p only given enough running time/samples.
Consequently, when executed prior to reaching the “right” amount of padding
the acceptance/rejection probabilities of the algorithm can be arbitrarily close
to half. Yet in order to remain within the framework of BPP, the algorithm must
keep the promise of bounded away acceptance and rejection probabilities. The
solution of [7,16,20] was to add one bit of advice indicating whether or not we
have reached the necessarily amount of padding. To finish the argument, we show
that small circuits for a sufficiently padded version of L imply small circuits for
L itself.

(un)Keeping the Promise. For the sake of simplicity, we describe here the
intuition behind removing the advice from MA/1. We follow along the lines of
the previous section with one change: instead of using the learning algorithm to
a learn a non-uniform circuit C for L, we “guess” it. Next, we need to verify that
C indeed computes L via a probabilistic procedure referred to as “self-testability”
(Property 2 Definition 6). This procedure can detect an error in C only if C if “far
enough” from L. Thus, we are dealing with an oracle call to PromiseBPP, which
can replaced by an oracle call to CA. However, the answer of the oracle is unde-
fined for circuits that are “close” to L but not equal L. We suggest to circum-
vent this problem by replacing an oracle call to CA with a fixed oracle O that is
consistent with CA. Given a fixed oracle O every call has a defined answer. Re-
peating the previous reasoning we establish a hard language in NPO. Yet, for each
O it might be a different language. Our glint of hope comes come from the fol-
lowing relation, which follows from the definition of NPPromiseBPP (see e.g. [4]):

MA = NPPromiseBPP Ω
=

⋂

O is consistent with CA

NPO. If one could show that a hard

language in each of the NPO terms on the RHS implies a hard language in their
intersection, we would be done. We formalize this approach in Section 5.

1.3 Organization

We start by some basic definitions and notation in Section 2. In Section 3 we
give our main result showing that efficient randomized learning algorithms entail
circuit lower bounds, proving Theorems 1 and 2. In Section 4 we prove Theorem
3 show that for several circuit classes the very existence of efficient randomized
exact learning algorithm “bumps” into the natural barier of Razborov & Rudich.
In Section 5 we propose an approach for removing the extra bit of advice. Finally,
we discuss some open questions in Section 6.
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2 Preliminaries

Definition 1 (Functions, Circuits, Languages). In this paper we deal with
Boolean functions, that is f : {0, 1}n ∧ {0, 1}. Let f, g : {0, 1}n ∧ {0, 1}. We

define the relative distance Δ(f, g)
Ω
= Prā◦{0,1}n [f(ā) ∈= g(ā)]. For ε → 0, we say

that f is ε-close to g if Δ(f, g) ≥ ε, otherwise we say that f is ε-far from g. Let
L ⊂ {0, 1}√ be a language. We denote by L|n the set of the strings of length n
in L. We say that L has circuits of size a(n) and denote it by L ⊆ SIZE(a(n))
if for every n → 1 L|n can be computed by a Boolean circuit of size O(a(n)).
A circuit class C is a subset of all Boolean circuits (e.g. circuits with AND,OR
and NOT gates, AC0,ACC,TC0,NC2 etc.). We assume that the representation in
C is chosen in way that a size s circuit can be described using poly(s) bits. In
addition, given a circuit C ⊆ C of size s the circuit C|xi=b is also in C and of
size at most s, when C|xi=b is the circuit resulting from C by fixing the variable
xi to the bit b ⊆ {0, 1}. We denote by SIZE(a(n))[C] the set of languages having
circuits of size O(a(n)) from the class C.
A Promise Problem is a relaxation of a language. Formally:

Definition 2 (Promise Problems). Π = (ΠY ES , ΠNO) is a promise problem
if ΠY ES ⇐ ΠNO = ⇒. We say that a language O is consistent with Π iff x ⊆
ΠY ES =∪ x ⊆ O and x ⊆ ΠNO =∪ x ∈⊆ O. The containment of O outside of
ΠY ES ·≤ΠNO can be arbitrary.

Let Π be a promise problem and let M be a deterministic (resp. nondetermin-
istic) polynomial-time Turing machine with an oracle access to Π . Consider a
(oracle) language O consistent with Π . By definition (see e.g. [4]), M ’s language
should not depend on the answers of the oracle when a query q ∈⊆ ΠY ES ·≤ΠNO

is made. Consequently, Pα ⊂ PO (resp. NPα ⊂ NPO). It turns out that the
following holds as well, and in fact can be considered as an alternative definition
for classes of languages computed by Turing machines with oracles to promise
problems.

Definition 3 (Promise Problems as Oracles)

Pα (resp. NPα)
Ω
=

⋂

O is consistent with α

PO (resp. NPO)

For more details and discussion see e.g. [4].

Definition 4 (Lower Bounds for Promise Problems). Let C be a circuit
class and f(n) be a function. Then Π ∈⊆ SIZE(f(n)) ⇔∪ ∗O consistent with
Π: O ∈⊆ SIZE(f(n)).

Definition 5 (Complexity Classes). A language L is in BPP if there exists
a polynomial-time machine M(x, r) such that: x ⊆ L =∪ Prr[M(x, r) = 1] →
3/4, x ∈⊆ L =∪ Prr[M(x, r) = 1] ≥ 1/4. A language L ⊆ BPP/1 if in addition
the machine requires an auxiliary advice bit bn for each input of length n. We
note that given the complement advice bit b̄n the machine is not guaranteed to
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preform correctly. In particular, given b̄n as the advice bit there is no promise for
bounded away acceptance and rejection probabilities. Other standard complexity
classes include: P,PSPACE,RP,NP,MA.

For the core of our proofs we require a conveniently hard language. Intu-
itively, it is language that has “nice” structural properies and yet can be used
to compute functions that require “large” circuits. It is not hard to see that
every conveniently hard language is computable in PSPACE. In [22] a conve-
niently hard PSPACE-complete language was constructed via arithmezation of
the proof that PSPACE = IP [21]. In their construction, all the “nice” structural
properties follow from the properties of low-degree polynomials and of TQBF.
The Embedded Hardness (Part 4) is due to the fact that given a circuit class C,
in DSPACE(poly(s)) one can diagonalize against all the circuits of size s from
C, thus obtaining a language that can not be computed by any size s circuit.
Formally:

Definition 6. We say that a language L is conveniently hard if it satisfies:

1. Downward Self-Reducibility: we say that a language L is downward-self-
reducible if there is a deterministic polynomial-time algorithm COMPUTE
such that for all n → 1: COMPUTEL|n−1 = L|n.

2. Self-Testability: we say that a language L is self-testable if there is a prob-
abilistic polynomial-time algorithm TEST such that for any Boolean function
f : {0, 1}n ∧ {0, 1}:
– If f = L|n then Pr[TESTf = 1] = 1.
– If Δ(f, L|n) > 1/n then Pr[TESTf = 1] ≥ 2−10n.

3. Self-Correctability: we say that a language L is self-correctable if there
is a probabilistic polynomial-time algorithm CORRECT such that, for any
Boolean function f : {0, 1}n ∧ {0, 1} it holds that if Δ(f, L|n) ≥ 1/n then
for all x̄ ⊆ {0, 1}n: Pr[CORRECTf (x̄) ∈= L|n(x̄)] ≥ 2−10n.

4. Embedded Hardness: we say that a language L has an Embedded Hard-
ness if for every circuit class C and k → 1: PL ∈⊂ SIZE(nk)[C].

The following is immediate from the definition:

Observation 1. Let C be an n-variate circuit of size s such that Δ(C,L|n) ≥
1/n. Then there exists an n-variate circuit C≤ of size poly(s, n) such that
Δ(C,L|n) = 0. Moreover, C≤ can be obtained from C in polynomial time w.h.p.

3 Lower Bounds from Randomized Learning Algorithms

In this section we prove Theorems 1 and 2. Let L be the conveniently hard
PSPACE-complete language of [22]. Following and extending definitions from
[20] we define padded versions of L. For simplicity, throughout the section we
fix a circuit class C. We will assume w.l.o.g that P ⊂ P/poly[C] (otherwise there
is nothing to prove). As L ⊆ PSPACE ⊂ EXP, by a translation argument there

exists d → 1 such that L ⊆ SIZE(2n
d

).
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Definition 7 (Padded Languages)
For r → 1 let s(r) denote the size of the smallest circuit from C that computes L|r.
By the preceding discussion s(r) is well-defined and in particular s(r) = O(2r

d

).
Let t(w) : N ∧ N be a constructible function. We define the padded version of L:

L≤
t(·) =


⎧⎧⎨

⎧⎧⎩
1mx

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢

1) m is power of 2.

2) r
Ω
= |x| ≥ m.

3) x ⊆ L.
4) s(r) ≥ t(m).

⎣
⎧⎧⎛

⎧⎧⎝

Remark: Condition 4 can be restated as: there exists a circuit of size t(m)
that computes L|r. In addition, observe that for L≤

t(·) each input has a unique
interpretation.

The main property of the padded languages is that sufficiently small circuits
for L≤

t(·) can be used to construct small circuits for L.

Lemma 1. Let k → 1 and t(w) = Ω(w2k). Suppose L≤
t(·) ⊆ SIZE(nk). Then

s(r) = O(r2k).

Proof. For n → 1 let C≤
n be a circuit for L≤

t(·)|n. Let r → 1. We will now construct

a circuit that computes L|r. Take m to be a minimal power of 2 such that
r ≥ m and s(r) ≥ t(m). As t(w) = Ω(w2k), we have that t(m) → α · m2k, for
some α > 0. Hence, it must be the case that m ≥ 2 · α−1/2k · s(r)1/2k + 2r.
Now, set n = r + m and consider the circuit C̃ resulting from C≤

n when we
hardwire the lower m bits of the input to 1m. By definition, C̃ computes L|r
and there exists β > 0 such that C̃ is of size at most β · nk = β · (r + m)k ≥
β · (3r+2 ·α−1/2k ·s(r)1/2k)k ≥ β · ⊥α · 6k ·rk ·⎞s(r). By recalling the definition

of s(r) we get that s(r) ≥ γ · rk ·⎞s(r) which implies s(r) = O(r2k).

We now give the main result of this section.

Proof (of Theorem 2). Let A be a PAC learner for C. Fix k. Consider two cases.

Case 1: L ⊆ P/poly[C]. We will show that PL ⊂ BPP and hence
BPP ∈⊂ SIZE(nk)[C]. For this purpose will use A to learn circuits for L
and then apply Property 4 of Definition 6 as follows:

– Begin with a lookup table C̃1 = C1 for L|1.
– For i → 2, invoke A with ε = 1/i3 and δ = 1/i to learn a circuit C̃i of size

s(i) for L|i.
– Given a membership query for L|i invoke COMPUTE using Ci−1(x).

– Set Ci
Ω
= CORRECTC̃i

Analysis. We claim that Ci computes L|i with probability at least 1 − 2−10i.
By induction on i. Basis i = 1 is clear. Now assume that hypothesis holds for i.
By definition, w.h.p A will output C̃i+1 to be 1/i close to L|i using Property 1
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of Definition 6 to answer membership queries. By Property 3 Ci+1 will compute
L|i+1 with probability at least 1−2−10(i+1). The total number of steps is poly(i)
while each has an exponential probability error. Hence, for each i: Ci ↓ L|i w.h.p.

Running Time. Given an input of size n we learn the corresponding circuits
of sizes s(1), . . . , s(n) which is poly(n) by assumption. In addition, all the algo-
rithms are polynomial-time.

Case 2: L ∈⊆ P/poly[C]. Set t(w) = w2k. We show that L≤
t(·) ⊆ BPP/1 and

conclude that in this case L≤
t(·) ∈⊆ SIZE(nk)[C]. We follow the learning scheme

described in the previous case to learn circuits for L with two changes: first,
since each input of L≤

t(·) has a unique interpretation, we could use the advice bit

to determine whether s(r) ≥ t(m). If the advice bit is 0, we reject. Otherwise,
we carry on with flow of the scheme barring a second change: invoke A to learn
circuits C̃ of size t(m) and use the resulting circuit Cr to decide if x ⊆ L. Now,
suppose that L≤

t(·) ⊆ SIZE(nk). By Lemma 1 we get that s(r) = O(r2k), which

contradicts the fact that L ∈⊆ P/poly[C].

The proof of Theorem 1 is essentially the same. We leave it as an exer-
cise for the reader. To complete the picture, recall that a randomized exact
learner can be used to obtain a PAC learner with membership queries [1] and ob-
serve that BPTIME (t(n)) /1 ∈⊆ SIZE (f(n)) implies that PromiseBPTIME (t(n)) ∈⊆
SIZE (f(n)) by adding the advice to the input.

4 Natural Property from Learning

We now describe the approach in more details. First, we recall some related
definitions from [19].

Definition 8. Let P be a property of Boolean functions. That is, a subset of all
Boolean functions. Let Γ,Λ be complexity classes. We say that P is Γ -natural
with density δn if there is a property P√ ⊂ P such that the following holds: (i)
Constructivity: given a function f by its truth table, f ⊆ P√ can be decided in
Γ . (ii) Largeness: for all n, P√ contains at least a δn fraction of all n-variate
Boolean functions. We say that P is useful against Λ if for every family of
Boolean functions {fn}n⊆1 ⊂ P there are infinitely many n-s such that fn ∈⊆ Λ.

The main results of [19] (and its extensions) states as follows:

Lemma 2 ([19] and Extensions). Let C be a circuit class. If there exists a
P/poly-natural property with density 2−O(n) that is useful against P/poly[C] then
no strong pseudo-random generators exist in P/poly[C].

We show that we can turn an efficient randomized exact learner A for a circuit
class C into a P/poly-natural property useful against C. First, we amplify the er-
ror probability and get a P/poly algorithm A≤

s which succeeds in learning all the
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function computable by size s circuits from C. Next, we define the property P as
the set of all functions on which A≤

s fails. For an appropriate choice of s the prop-
erty is useful against P/poly[C]. Moreover, observe that if A≤

s succeeds learning a
function f then f must have a small circuit. A simple counting argument shows
that the majority of Boolean functions require large circuits, thus A≤

s succeeds
only a small fraction of functions. Note that since the counting argument is valid
for any circuit class, the learning algorithm A need not be proper. Due to space
limitation we omit the formal proof of Theorem 3 from this version.

5 Towards Better Lower Bounds by Unkeeping Promises

The extra bit of advice in Theorems 1 and 2 as well as in the result of [20]
(lower bounds for MA/1) comes to accommodate the need to keep the promise
of bounded away probabilities of acceptance and rejection required for the
“bounded” probabilistic classes. As in other cases, removing this bit is an open
problem. In this section we suggest an approach how to settle this problem in
the case of conditional and unconditional lower bounds. As previously, we will
use the conveniently hard PSPACE-complete language L of [22].

We raise the question whether lower bounds are preserved under consistency.
More specifically, given a promise problem Π our hope is that one could show
that the existence of hard language in each PO (or NPO) implies an existence
hard language in their intersection, when O runs over all the consistent with Π
languages. We now give a formal treatment to this intuition.

Definition 9. Let C be a circuit class. We say that a promise problem Π is deter-
ministically (resp. nondeterministically) compact w.r.t. C if: Pα (resp. NPα) ⊂
SIZE(f(n))[C] =∪ ∃O consistent with Π s.t. PO (resp. NPO) ⊂ SIZE(f(n)O(1))
[C].

Note that the promise problems that are languages are trivially compact
for all circuit classes in both settings. We can extend the definition to classes
of promise problems requiring compactness for each problem in the class. We
now give the proofs starting with the conditional case. Recall that CA is
the natural PromiseBPP-complete problem of Circuit Approximation defined

as CA
Ω
= (CAY ES ,CANO) where (CAY ES = {C | Δ(C, 0̄) → 3/4},CANO =

{C | Δ(C, 0̄) ≥ 1/4}).

Lemma 3. Let C be a circuit class. Suppose that PromiseBPP is deterministi-
cally compact w.r.t. C. If C is PAC learnable with membership queries, then for
any k → 1: BPP ∈⊂ SIZE(nk)[C].

Proof. Fix k → 1 and assume for a contradiction that BPP ⊂ SIZE(nk)[C].
As PCA ⊂ BPP, from compactness there exists k≤ → 1 and a language O
consistent with CA such that PO ⊂ SIZE(nk∈

)[C]. By Theorem 2 there exists
Π ⊆ PromiseBPP such that Π ∈⊆ SIZE(nk∈

)[C]. Since CA is a PromiseBPP-
complete language there exists a polynomial-time function g : Π ∧ CA such
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that: x ⊆ ΠY ES =∪ g(x) ⊆ CAY ES , x ⊆ ΠNO =∪ g(x) ⊆ CANO. Let us

define O≤ Ω
= {x | g(x) ⊆ O }. First, observe that O≤ ⊆ PO. Next, we claim that

O≤ is consistent with Π . That is: x ⊆ ΠY ES =∪ g(x) ⊆ CAY ES ⊂ O =∪
x ⊆ O≤, x ⊆ ΠNO =∪ g(x) ⊆ CANO ⊂ Ō =∪ x ∈⊆ O≤. Recalling Definition 4,
O≤ ∈⊆ SIZE(nk∈

)[C] thus leading to a contradiction.

The unconditional case is slightly more involved. We refer the reader to the full
version of the paper.

6 Discussion and Open Questions

In this paper we show that efficient randomized learning algorithms imply circuit
lower bounds against BPTIME(nε(1))/1, and some other hardness results. This
(almost) solves the main open problem posed in [6] and [14], and matches the
corresponding result of [14] that deterministic learning algorithms imply circuit
lower bounds against DTIME(nε(1)). We would like to point out that those con-
ditional lower bounds are nearly-optimal if we treat the learning algorithms as
black-boxes. More specifically, all the above results only assume an existence of
an efficient learning algorithm, which is invoked as a black-box regardless of the
class C it learns. Consequently, the obtained lowers bounds are of form “C is
learnable =∪ Γ ∈⊂ P/poly[C]” for every circuit class C and some complexity
class Γ . Given that, we cannot expect to obtain conditional lower bounds of the
form: “P or BPP/1 ∈⊂ P/poly[C]” since P ⊂ BPP/1 ⊂ P/poly (i.e. when C is the
class of all Boolean circuits with AND,OR and NOT gates). We refer to this
as the “black-box barrier”. This barrier can be seen as an analog of the rela-
tivization barrier for proving lower bounds. So, one open question is to derive
lower bounds of the form “P or BPP ∈⊂ P/poly[C]” from an efficient learning
algorithm for some specific families of circuit classes. In the light of the above,
such a conditional lower bound will have to exercise a non black-box technique.

The other open question is, naturally, to remove the extra bit of advice
appearing in both conditional and the unconditional bounds. We hope that the
approach described in Section 5 will be a step in the right direction.
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Abstract. We study certificates in static data structures. In the cell-
probe model, certificates are the cell probes which can uniquely identify
the answer to the query. As a natural notion of nondeterministic cell
probes, lower bounds for certificates in data structures immediately im-
ply deterministic cell-probe lower bounds. In spite of this extra power
brought by nondeterminism, we prove that two widely used tools for cell-
probe lower bounds: richness lemma of Miltersen et al. [9] and direct-sum
richness lemma of Pǎtraşcu and Thorup [15], both hold for certificates
in data structures with even better parameters. Applying these lemmas
and adopting existing reductions, we obtain certificate lower bounds for a
variety of static data structure problems. These certificate lower bounds
are at least as good as the highest known cell-probe lower bounds for
the respective problems. In particular, for approximate near neighbor
(ANN) problem in Hamming distance, our lower bound improves the
state of the art. When the space is strictly linear, our lower bound for
ANN in d-dimensional Hamming space becomes t = Δ(d), which along
with the recent breakthrough for polynomial evaluation of Larsen [7], are
the only two t = Δ(d) lower bounds ever proved for any problems in the
cell-probe model.

1 Introduction

In static data structure problems, a database is preprocessed to form a table
according to certain encoding scheme, and upon each query to the database,
an algorithm (decision tree) answers the query by adaptively probing the table
cells. The complexity of this process is captured by the cell-probe model for
static data structures. Solutions in this model are called cell-probing schemes.

The cell-probe model plays a central role in studying data structure lower
bounds. The existing cell-probe lower bounds for static data structure problems
can be classified into the following three categories according to the techniques
they use and the highest possible lower bounds supported by these techniques:

– Lower bounds implied by asymmetric communication complexity: Classic
techniques introduced in the seminal work of Miltersen et al. [9] see a cell-
probing scheme as a communication protocol between the query algorithm

ε The full version of this paper can be found on http://arxiv.org/abs/1404.5743
εε Supported by NSFC grants 61272081, 61003023 and 61321491.
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and the table, and the cell-probe lower bounds are implied by the asymmetric
communication complexity lower bounds which are proved by the richness
lemma or round eliminations. In the usual setting that both query and data
items are points from a d-dimensional space, the highest time lower bound

that can be proved in this way is t = σ
(

d
log s

)
with a table of s cells. This

bound is a barrier for the technique, because a matching upper bound can
always be achieved by communication protocols.

– Lower bounds proved by self-reduction using direct-sum properties: The sem-
inal works of Pǎtraşcu and Thorup [14, 15] introduce a very smart idea
of many-to-one self-reductions, using which and by exploiting the direct-
sum nature of problems, higher lower bounds can be proved for a near-
linear space. The highest lower bounds that can be proved in this way is
t = σ

(
d/log sw

n

)
with a table of s cells each containing w bits. Such lower

bounds grow differently with near-linear space and polynomial space, which
is indistinguishable in the communication model.

– Higher lower bounds for linear space: A recent breakthrough of Larsen [7]
uses a technique refined from the cell sampling technique of Panigrahy et
al. [10,11] to prove an even higher lower bound for the polynomial evaluation
problem. This lower bound behaves as t = σ(d) when the space is strictly
linear. This separates for the first time between the cell-probe complexity
with linear and near-linear spaces, and also achieves the highest cell-probe
lower bound ever known for any data structure problems.

In this paper, we consider an even stronger model: certificates in static data
structures. A query to a database is said to have certificate of size t if the answer
to the query can be uniquely identified by the contents of t cells in the table.
This very natural notion represents the nondeterministic computation in cell-
probe model and is certainly a lower bound to the complexity of deterministic
cell-probing schemes. This nondeterministic model has been explicitly considered
before in a previous work [18] of one of the authors of the current paper.

Surprisingly, in spite of the seemingly extra power brought by the nonde-
terminism, the highest cell-probe lower bound to date is in fact a certificate
lower bound [7]. Indeed, we conjecture that for typical data structure problems,
especially those hard problems, the complexity of certifying the answer should
dominate that of computing the answer.1 This belief has been partially justified
in [18] by showing that a random static data structure problem is hard nonde-
terministically. In this paper, we further support this conjecture by showing that
several mainstream techniques for cell-probe lower bounds in fact can imply as
good or even higher certificate lower bounds.

1 Interestingly, the only known exception to this conjecture is the predecessor search
problem whose cell-probe complexity is a mild super-constant while the queries can
be easily certified with constant cells in a sorted table.
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Table 1. Certificate lower bounds proved in this paper

problem
certificate lower bound

proved here
highest known

cell-probe lower bound

bit-vector retrieval t = Δ
(

m logn
log s

)
not known

lopsided set disjointness (LSD) t = Δ
(

m logn
log s

)
t = Δ

(
m log n
log s

)
[1, 9,13]

approximate near neighbor (ANN)
in Hamming space

t = Δ
(
d/ log sw

nd

)√
t = Δ

(
d/ log sw

n

)ε
[10,15]

partial match (PM) t = Δ
(
d/ log sw

n

)ε
t = Δ

(
d/ log sw

n

)ε
[10,15]

3-ANN in κ∗ t = Δ
(
d/ log sw

n

)ε
t = Δ

(
d/ log sw

n

)ε
[15]

reachability oracle
2D stabbing

4D range reporting
t = Δ

(
log n/ log sw

n

)ε
t = Δ

(
log n/ log sw

n

)ε
[13]

2D range counting t = Δ
(
log n/ log sw

n

)ε
t = Δ

(
log n/ log sw

n

)ε
[12,13]

approximate distance oracle t = Δ
(

log n
Γ log(s log n/n)

)ε

t = Δ
(

log n
Γ log(s log n/n)

)ε

[16]

σ: lower bound which grows differently with near-linear and polynomial space;
�: lower bound which grows differently with linear, near-linear, and polynomial space.

1.1 Our Contributions

We make the following contributions:

1. We prove a richness lemma for certificates in data structures, which improves
the classic richness lemma for asymmetric communication complexity of Mil-
tersen et al. [9] in two ways: (1) when applied to prove data structure lower
bounds, our richness lemma implies lower bounds for a stronger nondeter-
ministic model; and (2) our richness lemma achieves better parameters than
the classic richness lemma and may imply higher lower bounds.

2. We give a scheme for proving certificate lower bounds using a similar direct-
sum based self-reduction of Pǎtraşcu and Thorup [15]. The certificate lower
bounds obtained from our scheme is at least as good as before when the
space is near-linear or polynomial. And for strictly linear space, our technique
may support superior lower bounds, which was impossible for the direct-sum
based techniques before.

3. By applying these techniques, adopting the existing reductions, and modify-
ing the reductions in the communication model to be model-independent, we
prove certificate lower bounds for a variety of static data structure problems,
listed in Table 1. All these certificate lower bounds are at least as good as
the highest known cell-probe lower bounds for the respective problems. And
for approximate near neighbor (ANN), our t = σ

(
d/ log sw

nd

)
lower bound

improves the state of the art. When the space sw = O(nd) is strictly linear,
our lower bound for ANN becomes t = σ(d), which along with the recent
breakthrough for polynomial evaluation [7], are the only two t = σ(d) lower
bounds ever proved for any problems in the cell-probe model.
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1.2 Related Work

The richness lemma, along with the round elimination lemma, for asymmetric
communication complexity was introduced in [9]. The richness lemma was later
widely used, for example in [2, 3, 6, 8], to prove lower bounds for high dimen-
sional geometric problems, e.g. nearest neighbor search. In [1, 13], a generalized
version of richness lemma was proved to imply lower bounds for (Monte Carlo)
randomized data structures. A direct-sum richness theorem was first proved in
the conference version of [15]. Similar but less involved many-to-one reductions
were used in [13] and [16] for proving lower bounds for certain graph oracles.

The idea of cell sampling was implicitly used in [12] and independently in [10].
This novel technique was later fully developed in [11] for high dimensional ge-
ometric problems and in [7] for polynomial evaluation. The lower bound in [7]
actually holds for nondeterministic cell probes, i.e. certificates. The nondeter-
ministic cell-probe complexity was studied for dynamic data structure problems
in [4] and for static data structure problems in [18].

2 Certificates in Data Structures

A data structure problem is a function f : X × Y ∈ Z with two domains X
and Y . We call each x ⊆ X a query and each y ⊆ Y a database, and f(x, y) ⊆ Z
specifies the result of query x on database y. A code T : Y ∈ τs with an
alphabet τ = {0, 1}w transforms each database y ⊆ Y to a table Ty = T (y) of
s cells each containing w bits. We use [s] = {1, 2, . . . , s} to denote the set of
indices of cells, and for each i ⊆ [s], we use Ty(i) to denote the content of the
i-th cell of table Ty.

A data structure problem is said to have (s, w, t)-certificates, if any database
can be stored in a table of s cells each containing w bits, so that the result of
each query can be uniquely determined by contents of at most t cells. Formally,
we have the following definition.

Definition 1. A data structure problem f : X×Y ∈ Z is said to have (s, w, t)-
certificates, if there exists a code T : Y ∈ τs with an alphabet τ = {0, 1}w, such
that for any query x ⊆ X and any database y ⊆ Y , there exists a subset P ⊂ [s] of
cells with |P | = t, such that for any database y◦ ⊆ Y , we have f(x, y◦) = f(x, y)
if Ty′(i) = Ty(i) for all i ⊆ P .

Because certificates represent nondeterministic computation in data struc-
tures, it is obvious that it has stronger computational power than cell-probing
schemes.

Proposition 2. For any data structure problem f , if there is a cell-probing
scheme storing every database in s cells each containing w bits and answering
every query within t cell-probes, then f has (s, w, t)-certificates.

In the full version [17], we state the equivalent formulations of data structure
certificates as proof systems and certificates in decision trees of partial functions.
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3 The Richness Lemma

From now on, we focus on the decision problems where the output is either 0
or 1. A data structure problem f : X × Y ∈ {0, 1} can be naturally treated as
an |X | × |Y | matrix whose rows are indexed by queries x ⊆ X and columns are
indexed by data y ⊆ Y . The entry at the x-th row and y-th column is f(x, y).
For λ ⊆ {0, 1}, we say f has a monochromatic λ-rectangle of size k × Π if there
is a combinatorial rectangle A × B with A ⊂ X,B ⊂ Y, |A| = k and |B| = Π,
such that f(x, y) = λ for all (x, y) ⊆ A×B. A matrix f is said to be (u, v)-rich
if at least v columns contain at least u 1-entries. The following richness lemma
for cell-probing schemes is introduced in [9].

Lemma 3 (Richness Lemma [9]). Let f be a (u, v)-rich problem. If f has
an (s, w, t)-cell-probing scheme, then f contains a monochromatic 1-rectangle of
size u

2t log s × v
2wt+t log s .

In [9], the richness lemma is proved for asymmetric communication protocols. A
communication protocol between two parties Alice and Bob is called an [A,B]-
protocol if Alice sends Bob at most A bits and Bob sends Alice at most B bits
in total in the worst-case. The richness lemma states that existence of [A,B]-
protocol for a (u, v)-rich problem f implies a submatrix of dimension u

2A × v
2A+B

containing only 1-entries. An (s, w, t)-cell-probing scheme can imply an [A,B]-
protocol with A = t log s and B = wt, so the above richness lemma for the
cell-probing schemes follows.

3.1 Richness Lemma for Certificates

We prove a richness result for data structure certificates, with even a better
reliance on parameters.

Lemma 4 (Richness Lemma for Data Structure Certificates). Let f be
a (u, v)-rich problem. If f has (s, w, t)-certificates, then f contains a monochro-
matic 1-rectangle of size u

(s
t)

× v

(s
t)2wt

.

Remark. Note that we always have log
(
s
t

)
= t log s

t + O(t) → t log s. The bound
in Lemma 4 is at least as good as the bound in classic richness lemma, even
though now it is proved for nondeterministic computation. When s and t are
close to each other, the bound in Lemma 4 is substantially better than that of
classic richness lemma. Later in Section 4, this extra gain is used in direct-sum
reductions introduced in [15] to achieve better time lower bounds for linear or
near-linear space which match or improve state of the art. It is quite shocking
to see all these achieved through a very basic reduction to the 1-probe case to
be introduced later.

The classic richness lemma for asymmetric communication protocol is proved
by a halving argument. Due to determinism of communication protocols (and
cell-probing schemes), the combinatorial rectangle obtained from halving the
universe are disjoint. This disjointness no longer holds for the rectangles obtained
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from certificates because of nondeterminism. We resolve this issue by exploiting
combinatorial structures of rectangles obtained from data structure certificates.

The following preparation lemma is a generalization of the averaging principle.

Lemma 5. Let P1,P2, . . . ,Pr ∧ 2V be partitions of V satisfying |Pi| → k for

every 1 → i → k. There must exist a y ⊆ V such that |Pi(y)| ≥ |V |
rk for all

1 → i → r, where Pi(y) denotes the partition block B ⊆ Pi containing y.

Proof. The lemma is proved by the probabilistic method. Let y be uniformly
chosen from V . Fix an arbitrary order of partition blocks for each partition Pi.
Let wij be the cardinality of the j-th block in Pi. Obviously the probability of
Pi(y) being the j-th block in Pi is

wij

|V | . By union bound, the probability that

|Pi(y)| < w is bounded by
∑

j:wij<w
wij

|V | < |{j : wij < w}| w
|V | . Since |Pi| → k,

for every i there are at most k many such j satisfying that wij < w, thus

Pr
[
|Pi(y)| < |V |

rk

]
< k · |V |/rk

|V | = 1
r . Applying union bound again for all Pi, we

have Pr
[
⇐1 → i → r, |Pi(y)| < |V |

rk

]
< 1, which means there exists a y ⊆ V such

that |Pi(y)| ≥ |V |
rk for all 1 → i → r.

We first prove the richness lemma for the 1-probe case.

Lemma 6. Let f be a (u, v)-rich problem. If f has (s, w, 1)-certificates, then f
contains a monochromatic 1-rectangle of size u

s × v
s·2w .

Proof. Let T : Y ∈ τs where τ = {0, 1}w be the code in the (s, w, 1)-certificates
for f . Let V ⊂ Y denote the set of v columns of f that each contains at least u 1-
entries. For each cell 1 → i → s, an equivalence relation ⇒i on databases in V can
be naturally defined as follows: for any y, y◦ ⊆ V , y ⇒i y

◦ if Ty(i) = Ty′(i), that
is, if databases y and y◦ look same in the i-th cell. Let Pi denote the partition
induced by the equivalence relation ⇒i. Each partition Pi classifies the databases
in V according to the content of the i-th cell. Obviously |Pi| → 2w, because the
content of a cell can have at most |τ| = 2w possibilities, and we also have
Pi(y) = {y◦ ⊆ V | Ty′(i) = Ty(i)} being the set of databases indistinguishable
from y by looking at the i-th cell, where Pi(y) denotes the partition block B ⊆ Pi

containing y. By Lemma 5, there always exists a bad database y ⊆ V such that

|Pi(y)| ≥ |V |
s·2w = v

s·2w for all 1 → i → s.
For each database y ⊆ V , let X1(y) = {x ⊆ X | f(x, y) = 1} denote the

set of positive queries on database y, and for a subset A ⊂ V of databases,
let X1(A) =

⋂
y√A X1(y) denote the set of queries which are positive on all

databases in A. Note that X1(y) and X1(A) are the respective 1-preimages of
Boolean functions f(·, y) and

∧
y√A f(·, y). By definition, it is easy to see that

X1(A) ×A is a monochromatic 1-rectangle for any A ⊂ V .

Claim: For any y ⊆ V , it holds that X1(y) =
⋃

1≤i≤s X1(Pi(y)).
It is easy to see the direction

⋃
1≤i≤s X1(Pi(y)) ⊂ X1(y) holds because

X1(A) ⊂ X1(y) for any A containing y and clearly y ⊆ Pi(y). So we only need to
prove the other direction. Since f has (s, w, 1)-certificates, for any positive query
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x on database y (i.e. any x ⊆ X1(y)), there is a cell i such that all databases y◦

indistinguishable from y by looking at the i-th cell (i.e. all y◦ ⊆ Pi(y)) answer
the query x positively (i.e. f(x, y◦) = f(x, y) = 1), which gives x ⊆ X1(Pi(y))
by definition of X1(A). This proves the direction X1(y) ⊂ ⋃

i√[s] X1(Pi(y)).

Consider the bad database y ⊆ V satisfying |Pi(y)| ≥ |V |
s·2w = v

s·2w for all
1 → i → s. Due to the above claim, we have

u → |X1(y)| =

∣∣
∣
∣
∣
∣

⋃

1≤i≤s

X1(Pi(y))

∣∣
∣
∣
∣
∣
→

∑

1≤i≤s

|X1(Pi(y))| .

By averaging principle, there exists a cell i such that |X1(Pi(y))| ≥ u
s . This gives

us a monochromatic 1-rectangle X1(Pi(y)) × Pi(y) of size at least u
s × v

s·2w .

The richness lemma for general case can be derived from the 1-probe case by
a one-line reduction.

Lemma 7. If a data structure problem f has (s, w, t)-certificates, then f has((
s
t

)
, wt, 1

)
-certificates.

Proof. Store every t-combination of cells with a new table of
(
s
t

)
cells each of

w · t bits.

In the full version [17] we apply Lemma 4 to prove certificate lower bounds
for bit-vector retrieval problem and lopsided set disjointness problem.

4 Direct-Sum Richness Lemma

In this section, we prove a richness lemma for certificates using direct-sum prop-
erty of data structure problems. Such a lemma was introduced in [15] for cell-
probing schemes, which is used to prove some highest known cell-probe lower
bounds with near-linear spaces.

Consider a vector of problems f̄ = (f1, . . . , fk) where every fi : X×Y ∈ {0, 1}
is defined on the same domain X × Y . Let

⊕k
f̄ : ([k] ×X) × Y k ∈ {0, 1} be a

problem defined as follows:
⊕k

f̄((i, x), ȳ) = fi(x, yi) for every (i, x) ⊆ [k] ×X
and every ȳ = (y1, y2, . . . , yk) ⊆ Y k. In particular, for a problem f we denote⊕k

f =
⊕k

f̄ where f̄ is a tuple of k copies of problem f .

Lemma 8 (Direct-Sum Richness Lemma for Certificates). Let f̄ =
(f1, f2 . . . fk) be a vector of problems such that for each i = 1, 2, . . . , k, we have

fi : X×Y ∈ {0, 1} and fi is (β|X |, Δ|Y |)-rich. If problem ⊕k f̄ has (s, w, t)-
certificates for a t → s

k , then there exists a 1 → i → k such that fi contains a

monochromatic 1-rectangle of size εO(1) |X|
2O(t log s

kt
) × ΩO(1)|Y |

2O(wt+t log s
kt

) .

Remark 1. The direct-sum richness lemma proved in [15] is for asymmetric
communication protocols as well as cell-probing schemes, and gives a rectangle

size of εO(1)|X|
2O(t log s

k
) × ΩO(1)|Y |

2O(wt+t log s
k

) . Our direct-sum richness lemma has a better

rectangle bound. This improvement may support stronger lower bounds which
separate between linear and near-linear spaces.
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Remark 2. A key idea to apply this direct sum based lower bound scheme is to
exploit the extra power gained by the model from solving k problem instances in
parallel. In [15], this is achieved by seeing cell probes as communications between
query algorithm and table, and t-round adaptive cell probes for answering k
parallel queries can be expressed in t log

(
s
k

)
bits instead of naively kt log s bits.

For our direct-sum richness lemma for certificates, in contrast, we will see (in
Lemma 9) that unlike communications, the parallel simulation of certificates
does not give us any extra gain, however, in our case all extra gains are provided
by the improved bound in Lemma 4, the richness lemma for certificates. Indeed,
all our extra gains by “parallelism” are offered by the one-line reduction in
Lemma 7, which basically says that the certificates for k instances of a problem
can be expressed in log

(
s
kt

)
bits, even better than the t log

(
s
k

)
-bit bound for

communications. Giving up adaptivity is essential to this improvement on the
power of parallelism, so that all kt cells can be chosen at once which gives the
log

(
s
kt

)
-bit bound: we are now not even parallel over instances, but also parallel

over time.

The idea of proving Lemma 8 can be concluded as: (1) reducing the problem⊕k
f̄ from a direct-product problem

∧k
f̄ whose richness and monochromatic

rectangles can be easily translated between
∧k

f̄ and subproblems fi; and (2)
applying Lemma 4, the richness lemma for certificates, to obtain large monochro-
matic rectangles for the direct-product problem.

We first define a direct-product operation on vector of problems. For f̄ =
(f1, . . . , fk) with fi : X × Y ∈ {0, 1} for every 1 → i → k, let

∧k
f̄ : Xk × Y k ∈

{0, 1} be a direct-product problem defined as:
∧k

f̄(x̄, ȳ) =
∏

i fi(xi, yi) for every
x̄ = (x1, . . . , xk) and every ȳ = (y1, . . . , yk).

Lemma 9. For any f̄ = (f1, . . . , fk), if
⊕k

f̄ has (s, w, t)-certificates for a

t → s
k , then

∧k
f̄ has (s, w, kt)-certificates.

Proof. Suppose that T : Y k ∈ τs with τ = {0, 1}w is the code used to encode

databases to tables in the (s, w, t)-certificates of
⊕k

f̄ . For problem
∧k

f̄ , we

use the same code T to prepare table. And for each input (x̄, ȳ) of problem
∧k

f̄
where x̄ = (x1, . . . , xk) and ȳ = (y1, . . . , yk), suppose that for each 1 → i → k,
Pi ∧ [s] with |Pi| = t is the set of t cells in table Tȳ to uniquely identify the

value of
⊕k

f̄((i, xi), ȳ), then let P = P1 ∪ P2 ∪ · · · ∪ Pk so that |P | → kt. It is
easy to verify that the set P of at most kt cells in Tȳ uniquely identifies the value

of
∧k

f̄(x̄, ȳ) =
∧

1≤i≤k

(⊕k
f̄((i, xi), ȳ)

)
because it contains all cells which can

uniquely identify the value of
⊕k

f̄((i, xi), ȳ) for every 1 → i → k. Therefore,

problem
∧k f̄ has (s, w, kt)-certificates.

The following two lemmas are from [15]. These lemmas give easy translations
of richness and monochromatic rectangles between the direct-product problem∧k

f̄ and subproblems fi.
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Lemma 10 (Pǎtraşcu and Thorup [15]). For problem vector f̄ =
(f1, f2 . . . fk), if fi : X×Y ∈ {0, 1} is (β|X |, Δ|Y |)-rich for every 1 → i → k,

then
∧k f̄ is ((β|X |)k, (Δ|Y |)k)-rich.

Lemma 11 (Pǎtraşcu and Thorup [15]). For any f̄ = (f1, . . . , fk) with

fi : X×Y ∈ {0, 1} for every 1 → i → k, if
∧k

f̄ contains a monochromatic
1-rectangle of size (β|X |)k × (Δ|Y |)k, then there exists a 1 → i → k such that fi
contains a monochromatic 1-rectangle of size (β)3|X | × (Δ)3|Y |.

The direct-sum richness lemma can be easily proved by combining the above
lemmas with the richness lemma for certificates.

Proof (Proof of Lemma 8). If
⊕k f̄ has (s, w, t)-certificates, then by Lemma 9,

the direct-product problem
∧k

f̄ has (s, w, kt)-certificates. Since every fi in

f̄ = (f1, f2, . . . , fk) is (β|X |, Δ|Y |)-rich, by Lemma 10 we have that
∧k

f̄
is ((β|X |)k, (Δ|Y |)k)-rich. Applying Lemma 4, the richness lemma for certifi-

cates, problem
∧k

f̄ has a 1-rectangle of size (ε|X|)k
( s
kt)

× (Ω|Y |)k
( s
kt)2kwt

. Then due to

Lemma 11, we have a problem fi who contains a monochromatic 1-rectangle of

size εO(1) |X|
2O(t log s

kt
) × ΩO(1)|Y |

2O(wt+t log s
kt

) .

4.1 Applications

We then apply the direct-sum richness lemma to prove lower bounds for two im-
portant high dimensional problems: approximate near neighbor (ANN) in ham-
ming space and partial match (PM).

– For ANN in d-dimensional hamming space, we prove a t = σ(d/ log sw
nd )

lower bound for (s, w, t)-certificates. The highest known cell-probing scheme
lower bound for the problem is t = σ(d/ log sw

n ). In a super-linear space,
our certificate lower bound matches the highest known lower bound for cell-
probing scheme; and for linear space, our lower bound becomes t = σ(d),
which gives a strict improvement, and also matches the highest cell-probe
lower bound ever known for any problem (which has only been achieved for
polynomial evaluation [7]).

– For d-dimensional PM, we prove a t = σ(d/ log sw
n ) lower bound for (s, w, t)-

certificates, which matches the highest known cell-probing scheme lower
bound for the problem in [15].

Approximate Near Neighbor (ANN). The near neighbor problem NNd
n in

a d-dimensional metric space is defined as follows: a database y contains n points
from a d-dimensional metric space, for any query point x from the same space
and a distance threshold ∂, the problem asks whether there is a point in database
y within distance ∂ from x. The approximate near neighbor problem ANNα,λ,d

n

is similarly defined, except upon a query x to a database y, answering “yes” if
there is a point in database y within distance ∂ from x and “no” if all points in
y are φ∂-far away from x (and answering arbitrarily if otherwise).
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We first prove a lower bound for ANNα,λ,d
n in Hamming space X = {0, 1}d,

where for any two points x, x◦ ⊆ X the distance between them is given by
Hamming distance h(x, x◦).

The richness and monochromatic rectangles of ANNα,λ,n
n were analyzed in [8].

Claim 12 (Claim 10 and 11 in [8]). There is a ∂ → d such that ANNα,λ,d
n is

(2d−1, 2nd)-rich and ANNα,λ,d
n does not contain a 1-rectangle of size 2d−d/(169λ2)×

2nd−nd/(32λ2).

A model-independent self-reduction of ANN was constructed in [15].

Claim 13 (Theorem 6 in [15]). For D = d/(1 + 5φ) ≥ logn, N < n and
k = n/N , there exist two functions κX , κY such that κX (and κY ) maps each

query (x, i) (and database ȳ) of
⊕k

ANNα,λ,D
N to a query x◦ (and database y◦)

of ANNα,λ,d
n and it holds that

⊕k
ANNα,λ,D

N ((x, i), ȳ) = ANNα,λ,d
n (x◦, y◦).

We then prove the following certificate lower bound for ANN.

Theorem 14. For ANNα,λ,d
n in d-dimensional Hamming space, assuming d ≥

(1 + 5φ) logn, there exists a ∂, such that if ANNα,λ,d
n has (s, w, t)-certificates,

then t = σ
(

d
λ3 /log swλ3

nd

)
.

Proof. Due to the model-independent reduction from
⊕k

ANNα,λ,D
N to ANNα,λ,d

n

of Claim 13, existence of (s, w, t)-certificates for ANNα,λ,d
n implies the existence

of (s, w, t)-certificates for
⊕k

ANNα,λ,D
N .

Note that for problem ANNα,λ,D
N , the size of query domain is |X | = 2D,

and the size of data domain is |Y | = 2ND, so applying Claim 12, the problem

is (|X |/2, |Y |)-rich. Assuming that t → s
k , by Lemma 8, ANNα,λ,D

N contains a

1-rectangle of size 2D/2O(t log s
kt ) × 2ND/2O(wt+t log s

kt ). Due to Claim 12, and

by a calculation, we have either t = σ
(

D
λ2 / log s

kt

)
or t = σ

(
ND
λ2 /w

)
. We

then choose N = w. Note that such choice of N may violate the assumption
t → s

k (that is, N ≥ tn
s ) only when it implies an even higher lower bound

t > sw
n . With this choice of N = w, the bound t = σ

(
D
λ2 / log s

kt

)
is the smaller

one in the two branches. Substituting D = d/(1 + 5φ) and k = n/N we have

t = σ
(

d
λ3 / log sN

nt

)
= σ

(
d
λ3 / log sw

nt

)
. Multiplying both side by a α = sw

nd gives

us α · φ3 = σ
(
Δd
t / log Δd

t

)
. Assuming α◦ = Δd

t , we have Δ′
logΔ′ = O(αφ3). The

function f(x) = x
log x is increasing for x > 1, so we have α◦ = O(αφ3 log(αφ3)),

which gives us the lower bound t = σ
(

d
λ3 /log swλ3

nd

)
.

For general space, when points are still from the Hamming cube {0, 1}d, for
any two points x, x◦ ⊆ {0, 1}d, the Hamming distance h(x, x◦) = ≤x − x◦≤1 =
≤x− x◦≤22. And by setting φ = 1, we have the following corollary for exact near
neighbor.
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Corollary 15. There exists a constant C such that for problem NNd
n with Ham-

ming distance, Manhattan norm Π1 or Euclidean norm Π2, assuming d ≥ C logn,
if NNd

n has (s, w, t)-certificates, then t = σ(d/log sw
nd ).

Partial Match. The partial match problem is another fundamental high-
dimensional problem. The d-dimensional partial match problem PMd

n is defined
as follows: a database y contains n strings from {0, 1}d, for any query pattern
x ⊆ {0, 1, ⇔}d, the problem asks whether there is a string z in database y match-
ing pattern x, in such a way that xi = zi for all i ⊆ [d] that xi ∗= ⇔.

Theorem 16. Assuming d ≥ 2 logn, if problem PMd
n has (s, w, t)-certificates

for a w = dO(1), then t = σ
(
d/log sd

n

)
.

The proof of this theorem is in the full version [17].
It is well known that partial match can be reduced to 3-approximate near

neighbor in Π⊆-norm by a very simple reduction [5]. We write 3-ANNα,d
n for

ANNα,3,d
n .

Theorem 17. Assuming d ≥ 2 logn, there is a ∂ such that if 3-ANNα,d
n in

Π⊆-norm has (s, w, t)-certificates for a w = dO(1), then t = σ(d/log sd
n ).

Proof. We have the following model-independent reduction. For each query pat-
tern x of partial match, we make the following transformation to each coordinate:
0 ∈ − 1

2 ; ⇔ ∈ 1
2 ; 1 ∈ 3

2 . For a string in database the Π⊆-distance is 1
2 if it matches

pattern x and 3
2 if otherwise.

5 Lower Bounds Implied by Lopsided Set Disjointness

It is observed in [13] that a variety of cell-probe lower bounds can be deduced
from the communication complexity of one problem, the lopsided set disjointness
(LSD). In [16], the communication complexity of LSD is also used to prove the
cell-probe lower bound for approximate distance oracle.

In this section, we modify these communication-based reductions to make
them model-independent. A consequence of this is a list of certificate lower
bounds as shown in Table 1 for: 2-Blocked-LSD, reachability oracle, 2D stabbing,
2D range counting, 4D range reporting, and approximate distance oracle.

The rest of this section can be found in the full version [17].

Acknowledgment. We are deeply grateful to Kasper Green Larsen for helpful
discussions about lower bound techniques in cell-probe model.
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Abstract. Given an implicit n×n matrix A with oracle access xTAx for
any x ∈ R

n, we study the query complexity of randomized algorithms for
estimating the trace of the matrix. This problem has many applications
in quantum physics, machine learning, and pattern matching. Two met-
rics are commonly used for evaluating the estimators: i) variance; ii) a
high probability multiplicative-approximation guarantee. Almost all the
known estimators are of the form 1

k

∑k
i=1 x

T
i Axi for xi ∈ R

n being i.i.d.
for some special distribution.

Our main results are summarized as follows:

1. We give an exact characterization of the minimum variance unbiased
estimator in the broad class of linear nonadaptive estimators (which
subsumes all the existing known estimators).

2. We also consider the query complexity lower bounds for any (possi-
bly nonlinear and adaptive) estimators:

(a) We show that any estimator requires Δ(1/κ) queries to have a
guarantee of variance at most κ.

(b) We show that any estimator requires Δ( 1
ε2

log 1
Γ
) to achieve a

(1± κ)-multiplicative approximation guarantee with probability
at least 1− σ.

Both above lower bounds are asymptotically tight.

As a corollary, we also resolve a conjecture in the seminal work of
Avron and Toledo (Journal of the ACM 2011) regarding the sample
complexity of the Gaussian Estimator.

1 Introduction

Given an n×n matrix A = {Aij}1∈i∈n,1∈j∈n, we study the problem of estimating
its trace

trace(A) =

n∑

i=1

Aii
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with a randomized algorithm that can query fA(x) = xTAx for any x ∈ R
n. The

goal is to minimize the number of queries used to achieve certain type of accuracy
guarantee, such as the variance of the estimate or a multiplicative approximation
(which holds with high probability). Finding an estimator that achieves such an
accuracy guarantee with few queries has several applications. For example, this
problem is well studied in the subject of lattice quantum chromodynamics, since
such queries are physically feasible and can be used to efficiently estimate the
trace of a function of a large matrix f(A). Such an estimator can also be used
as a building block for many other applications including solving least-squares
problems [Hut89], computing the number of triangles in a graph [Avr10, Tso08],
and string pattern matching [ACD01, AGW13].

This problem has been well studied in the literature. All of the previously an-
alyzed estimators are of the form 1

k

∑k
i=1 x

T
i Axi for x1, x2, . . . , xk ∈ R

n; nearly
all take x1, x2, . . . , xk to be independent and identically distributed (i.i.d.) from
some well designed distribution. For example, in [Hut89], the author just takes
each query to be a random vector whose entries are i.i.d. Rademacher random
variables (i.e., each coordinate is a uniformly random sample from {−1, 1});
we call this the Rademacher estimator. There are also several other alternative
distributions on x1, x2, . . . , xk, such as drawing each query from a multivariate
normal distribution [SR97]; we call this the Gaussian estimator. Here, the coor-
dinates of each vectors are i.i.d. Gaussian random variables. The work of [IE04]
considers the case where only one query is allowed, but that query can be a unit
vector in C

n. Other estimators occur in [DS93, Wan94]. Recent work by [AT11],
the authors propose several new estimators such as the unit vector estimator,
normalized Rayleigh-quotient trace estimator, and the mixed unit vector esti-
mator. One estimator that does not use i.i.d. queries is due to [RKA13]; in
that work, the authors propose querying random standard basis vectors without
replacement.

To characterize the performance of an estimator, perhaps the most natural
metric is the variance of the estimator. It is known that the Gaussian estimator
has variance 2⊆A⊆2F and the random Rademacher vector estimator has variance

2(⊆A⊆2F − ∑n
i=1 A

2
ii), where ⊆A⊆F =

⎧
trace(ATA) is the Frobenius norm. In

recent work by Avron and Toledo [AT11], it is suggested that the notion of a
multiplicative approximation guarantee might be a better success metric of an
estimator than the variance. Formally, we say an estimator is an (σ, τ)-estimator
if it outputs an estimate in the interval ((1 − σ)trace(A), (1 + σ)trace(A)) with
probability at least 1 − τ. It should be noted that some assumptions on the
matrices need to be made to have a valid (σ, τ)-estimator, as it is impossible to
achieve any multiplicative approximation when the matrix could have a trace of
0. A natural choice is to assume that A comes from the class of symmetric positive
semidefinite (SPD) matrices. For a SPD matrix, the authors in [AT11] prove
that the Gaussian estimator with k = O( 1

ε2 log(1Ω )) queries to the oracle is an
(σ, τ)-estimator. It was recently shown in [RKA13] that the random Rademacher
vector estimator is also an (σ, τ)-estimator with the same sample complexity.
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An open problem asked in [AT11] is the following: does the Gaussian estimator
require λ( 1

ε2 log(1Ω )) in order to be an (σ, τ)-estimator? The authors showed that
this number of queries suffices and conjectured that their analysis of the Gaussian
estimator is tight with supporting evidence from empirical experiments. The
paper gives some intuition on how to show an λ( 1

ε2 ) lower bound. The authors
suggested that the difficulty of turning this argument into a formal proof is that
“current bounds [on the Π2 cumulative distribution function] are too complex to
provide a useful lower bound”. Regarding lower bounds for trace estimators, we
note the related work of [LNW14], which considers the problem of sketching the
nuclear norms of A using bilinear sketches (which can be viewed as nonadaptive
queries of the form xTAy). The problem is similar to estimating trace when the
underlying matrix is positive semidefinite.

All of the above mentioned estimators (with one exception in [RKA13]) use
independent identically distributed queries from some special distributions, and
the output is a linear combination of the query results. On the other hand, we
view an estimator as a randomized algorithm, so we can choose any distribution
over the queries, and the output can be any (possibly randomized) function of the
results of the queries. Given the success of the previously mentioned estimators,
it is natural to ask whether these extensions are helpful. For example, can we get
a significantly better estimator with a non i.i.d. distribution? Can we do better
with adaptive queries? Can we do better with a nonlinear combination of the
query results?

In this paper, we make progress on answering above questions and under-
standing the optimal query complexity for randomized trace estimators. Below
is an informal summary of our results.

1. Among all the linear nonadaptive trace estimators (which subsumes all the
existing trace estimators), we prove that the “random k orthogonal vector”
estimator is the minimum variance estimator. The distribution on the queries
is not i.i.d., and we are unable to find an occurrence of this estimator in the
literature regarding trace estimators.

2. We also prove two asymptotically optimal lower bounds for any (possibly
adaptive and possibly nonlinear) estimator.

(a) We show that every trace estimator requires λ(1/σ) queries to have a
guarantee that the variance of the estimator is at most σ.

(b) We show that every (σ, τ)-estimator requires λ( 1
ε2 log 1

Ω ) queries.

As a simple corollary, our result also confirms the above mentioned conjecture
in [AT11] (as well as the tightness of the analysis of the Rademacher estimator
in [RKA13]). Notice our result is a much stronger statement: the original con-
jectured lower bound is only for an estimator that returns a linear combination
of i.i.d. Gaussian queries; we prove the lower bound holds for any estimator.
Our lower bound also suggests that adaptiveness as well as nonlinearity will not
help asymptotically as all these lower bounds are matched by the nonadaptive
Gaussian estimator. On the other hand, our upper bound suggests that the exact
minimum variance estimator might not use i.i.d. queries.
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1.1 Problem Definitions

Definition 1 (Estimator for the Trace). A trace estimator is a possibly
randomized algorithm that, given query access to an oracle fA(·) for an unknown
n× n matrix A, makes a sequence of k queries x1, x2, . . . , xk ∈ R

n to the oracle
and receives fA(x1), fA(x2), . . . , fA(xk). The output of the estimator is a real
number h(A) determined by the queries and the answers to the queries (and
possibly uses randomness).

Definition 2 (Nonadaptive Linear Unbiased Trace Estimator). We say
a trace estimator is nonadaptive if the distribution of xi is not dependent on
fA(x1), fA(x2), . . . , fA(xi−1). A trace estimator is linear if we sample from
a distribution over k queries as well as their weights: (x1, x2, . . . , xk), and
(w1, w2, . . . , wk), and output

∑
wifA(xi). In addition, a linear trace estimator

is unbiased if

E
w1,w2,...,wn,x1,x2,...,xn

[

n∑

i=1

wifA(xi)] = trace(A)

Without loss of generality, we can assume that all the queries in a linear
estimator are of unit length, where the actual lengths of the queries are absorbed
by the weights.

The most natural measure of quality of an estimator is its variance. There is a
large body of work on the existence of and finding a minimum variance unbiased
estimator. Such an estimator has a strong guarantee; it is the estimator for which
the variance is minimized for all possible values of the parameter to estimate.
In general, finding such an estimator is quite difficult. It is easy to see that the
variance depends on the scale of the matrix. To normalize, we assume that the
Frobenius norm of the matrix is fixed.

Definition 3. We define the variance of a trace estimator as the worst case of
variance over all matrices with Frobenius norm 1. To be specific, given a matrix
A let us define Var(A, h) = E[(h(A) − trace(A))2], then

Var(h) = sup
√A√2

F=1

Var(A, h).

If the variance of an estimator h is at most τ, we say that h is a τ-variance
estimator.

Given an unbiased estimator class, the minimum variance unbiased estimator
has the minimum variance among all the (unbiased) estimators in the class.

Another natural accuracy guarantee for a trace estimator is the notion of
(σ, τ)-estimator that is introduced in [AT11].

Definition 4 ((σ, τ)-estimator). A trace estimator h is said to be an (σ, τ)-
estimator of the trace if, for every matrix A, we have that |trace(A) − h(A)| ⊂
σ · trace(A) with probability at least 1 − τ.
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We stress that both Definitions 3 and 4 involve worst case estimates over
the choice of the matrix, and the randomness only comes from the internal
randomness of the estimator.

Definition 5 (Random Gaussian Matrix and Random Orthogonal
Matrix).

– We call a vector g ∈ R
n a random Gaussian vector if each coordinate is

sampled independently from N(0, 1).
– We call an n × n matrix G a random Gaussian matrix if its entries are

sampled independently from N(0, 1).
– We call an n× n matrix U a random orthogonal matrix if it is drawn from

the distribution whose probability measure is the Haar measure on the group
of orthogonal matrices; specifically, it is the unique probability measure that
is invariant under orthogonal transformations.

– We call k vectors x1, x2, . . . , xk ∈ R
n k random orthogonal unit vectors if

they are chosen as k row vectors of a random orthogonal matrix.

We note that one way to generate a random orthogonal matrix is to generate
a random Gaussian matrix and perform Gram-Schmidt orthonormalization on
its rows.

1.2 Main Results

Our main results are the following:

Theorem 1. Among all linear nonadaptive unbiased trace estimators, the min-
imum variance unbiased estimator that makes k queries is achieved by sampling
k random orthogonal unit vectors (see Definition 5) x1, x2, . . . , xk and outputting
n
k

∑
i fA(xi).

Theorem 2. Any trace estimator with variance σ requires λ(1/σ) queries.

Theorem 3. Any (σ, τ)-estimator for the trace requires λ( 1
ε2 log(1Ω )) queries,

even if the unknown matrix is known to be positive semidefinite.

The bounds in Theorem 2 and 3 are tight: both bounds can be asymptotically
matched by the Gaussian estimator and the uniform Rademacher vector estima-
tor.

1.3 Proof Techniques Overview

All of our results crucially use a powerful yet simple trick, which we call sym-
metrization. The heart of this trick lies in the fact that the trace of a matrix is
unchanged under similarity transformations; trace(A) = trace(UTAU) for every
A and orthogonal U . If we have a nonadaptive estimator with query distribution
(x1, x2, . . . , xk) → P and an orthogonal matrix U , using the queries distributed
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as (Ux1, Ux2, . . . , Uxk) should not be too different in terms of worst-case behav-
ior. (We have to be more careful with adaptive estimators, which we discuss in
Section 2.) Thus, applying symmetrization to a nonadaptive estimator yields a
nonadaptive estimator where it draws queries as in the original estimator, but
transforms the queries using a random orthogonal transformation. This “sym-
metrizes” the estimator. We prove that the performance of the estimator never
decreases when symmetrization is applied, so we can exclusively consider sym-
metrized estimators.

In order to characterize the minimum variance linear nonadaptive unbiased
estimator, we notice that after the symmetrization, the distribution over queries
for any such estimator is defined by a distribution over the pairwise angles of
the k queries. We then show that the queries should be taken to be orthogonal
with certainty in order to minimize variance.

As for the lower bounds for adaptive and nonlinear estimators, the sym-
metrization also plays an important role. Consider the problem of proving a
query lower bound for (σ, τ)-approximation: the most common approach of prov-
ing such a lower bound is to use Yao’s minimax principle. To apply this principle,
we would need to construct two distributions of matrices such that the distribu-
tions cannot be distinguished after making a number of queries, even though the
traces of the matrices are very different in the two distributions. There are sev-
eral technical difficulties in applying the minimax principle directly here. First of
all, the query space is Rn, so it is unclear whether one can assert that there exists
a sufficiently generalized minimax principle to handle this case. Second, even if
one can apply a suitable version of minimax principle, we do not have general
techniques of analyzing the distribution of k adaptive queries, especially when
the queries involve real numbers and thus the algorithm might have infinitely
many branches.

We overcome the above two barriers and avoid using a minimax principle
entirely by applying symmetrization. One nice property of the symmetrization
process is that a symmetrized estimator outputs the same distribution of results
on all matrices with the same diagonalization. In the proof we carefully construct
two distributions of matrices with the same diagonalization in each distribution,
while the traces are different for different distributions. Each distribution is
simply the “orbit” of a single diagonal matrix D; the support consists of all
matrices similar to D. Using the symmetrization, it suffices to show that we can
not distinguish these two distributions of matrices by k adaptive queries, as it is
equivalent to distinguish two diagonal matrices for symmetrized trace estimators.
The argument for achieving a lower bound for adaptive estimators is more subtle.
Roughly speaking, we show that due to the structure of symmetrized estimators,
we define a stronger query model such that adaptive estimators behave the same
as the nonadaptive estimators while we achieve the same lower bound, even with
the stronger query model.
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1.4 Organization

In section 2, we introduce the idea of symmetrization. We prove Theorem 1 in
section 3. Due to the space constraint, proofs of Theorem 2 and Theorem 3 are
omitted, and they are included in our full version.

2 Symmetrization of an Estimator

In this section, we introduce the idea of symmetrization of an estimator which is
a crucial element of all our remaining proofs. We first define the rotation of an
estimator, which we will denote hU for an n×n orthogonal matrix U . Intuitively,
the construction of hU is such that hU emulates the behavior of h on a rotated
version of the matrix A. More specifically, hU makes queries in the following
way:

– Letting q1 be a random variable whose distribution is the same as the first
query of h, the distribution of the first query of hU is the same as the random
variable Uq1.

– Given queries Uq1, Uq2, . . . , Uqj−1 made by hU so far with responses
t1, t2, . . . , tj−1, the distribution of the jth query of hU has the same dis-
tribution as Uqj , where qj is distributed the same as the jth query that h
makes, given queries q1, q2, . . . , qj−1 with responses t1, t2, . . . , tj−1.

In the case that h is a nonadaptive estimator, the queries of hU are just
Ux1, Ux2, . . . , Uxk, where x1, x2, . . . , xk is a set of queries from the distribution
of queries that h makes.

Lemma 1. For any estimator h and orthogonal matrix U ,

– Var(hU ) = Var(h).
– h is an (σ, τ)-approximation estimator if and only if hU is also an (σ, τ)-

estimator.

Proof. We know that given a matrix A, the behavior of hU is the same as h on
estimating UTAU . On the other hand, we know that trace(UTAU) = trace(A)
and ⊆A⊆F = ⊆UTAU⊆F . Therefore, the variance of hU on A is the same as the
variance of h on UTAU . Now suppose h is an (σ, τ)-estimator. We know that the
approximation guarantee of hU on A is the same as h on UTAU . Therefore, we
know that with probability at least (1 − τ), the estimator hU ’s output is within

⎨
(1 − σ)trace(UTAU), (1 + σ)trace(UTAU)

⎩
=((1 − σ)trace(A), (1 + σ)trace(A)) .

Definition 6 (Averaging Estimators over a Distribution). Suppose we
have a collection of estimators H, for any probability distribution P on H, we
define hH,P as the following estimator:

1. Randomly sample an estimator h → P .
2. Output according to the estimation of h.
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Lemma 2. Averaging a collection of estimators cannot increase variance or
weaken an (σ, τ)-guarantee. Specifically:

– If all the estimators H are unbiased and have variance at most c, then hH,P ’s
variance is also at most c.

– If all the estimators in H are (σ, τ)-estimators, then hH,P is also an (σ, τ)-
estimator.

Proof. For the first, we apply the law of total variance conditioned on the draw
of h → P :

Var [hH,P ] = E
h≤P

[Var [h]] + Var
h≤P

[E[h]]

The second term above is 0, since all estimators in H are unbiased. Since
Var [h] ⊂ c for every h ∈ H , Eh≤P [Var [h]] ⊂ c as well.

For the second claim, assuming that

Pr[h(A) ∈ ((1 − σ)trace(A), (1 + σ)trace(A))] ∧ 1 − τ

for each h ∈ H , we have

Pr[hH,P (A) ∈ ((1 − σ)trace(A), (1 + σ)trace(A))] ∧
inf
h⊆H

Pr[h(A) ∈ ((1 − σ)trace(A), (1 + σ)trace(A))] ∧ 1 − τ.

Definition 7 (Symmetrization of a Trace Estimator). Given an estimator
h, we define the symmetrization hsym of h to be the estimator where we

1. sample a random orthogonal matrix U (see definition 5), and
2. use hU to estimate the trace.

We say an estimator is symmetric if it is equivalent to the symmetrization of
some estimator.

By Lemma 1 and Lemma 2, we know that hsym’s variance as well as its (σ, τ)-
approximation is always no worse than h. Therefore, without loss of generality,
we can always assume that the optimal estimator is symmetric.

One nice property of the symmetric estimator is that it has the same perfor-
mance on all matrices with the same diagonalization.

Lemma 3. Given a symmetrized estimator hsym, its variance and approxima-
tion guarantee is the same for any matrix A and UTAU for any orthogonal
matrix U .

Proof. Given any matrix A, we know that the variance of hsym is
EU1 [Var(h, UT

1 AU1)] and the variance of hsym on the matrix UTAU is
EU1 [Var(h, (U1U)TAU1U)]. We know that U1U is also is a “uniformly” ran-
dom orthogonal matrix. Therefore, hsym has the same estimation variance on A
and UTAU .
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Similarly, for the approximation guarantee, suppose hsym is an (σ, τ)-estimator,
which means that

E
U1

⎢
Pr

⎨
h(UT

1 AU1) ∈ ((1 − σ)trace(A), (1 + σ)trace(A))
⎩⎣ ∧ 1 − τ.

We know that for the matrix A≥ = UAU , UT
1 A≥U1 = UT

1 UTAUU1 has the same
distribution as UT

1 AU1. Therefore,

E
U1

⎢
Pr

⎨
h(UT

1 AU1) ∈ ((1 − σ)trace(A), (1 + σ)trace(A))
⎩⎣

= E
U1

⎢
Pr

⎨
h(UT

1 A≥U1) ∈ ((1 − σ)trace(A≥), (1 + σ)trace(A≥))
⎩⎣

3 Optimal Linear Nonadaptive Estimator

Without loss of generality, we can assume that the optimal estimator is sym-
metric. For a symmetric nonadaptive estimator, we can think of x1, x2, . . . , xk

as generated by the following process.

– Sample a configuration β = {βij}1∈i<j∈k from some distribution Pα .
For each configuration β, there is a corresponding weight vector wλ =
(wλ

1 , w
λ
2 , . . . , w

λ
k).

– Generate x1, x2, . . . , xk by drawing k random unit vectors conditioned on the
angle between xi, xj being βij for all i < j. (This can be done efficiently.)

– Output
∑k

i=1 w
λ
i fA(xi).

The proof of Theorem 1 consists of two steps. First we will show that we can
set all of the angles (deterministically) to be Δ

2 without increasing the variance,
so we can assume that the queries are orthogonal. In the second step, we will
then show that the optimal way of assigning weight is to (deterministically) set
each weight to be n

k .
We first prove that we can replace the queries x1, x2, . . . , xk by k random

orthogonal unit vectors without increasing the variance.

Lemma 4. Let y1, y2, . . . , yk be k randomly orthogonal unit vectors. We have
that

Var

⎛
k∑

i=1

wλ
i fA(yi)

⎝

⊂ Var

⎛
k∑

i=1

wλ
i fA(xi)

⎝

(1)

Proof. It is easy to see that the marginal distribution on each xi is the same as
the marginal distribution on yi. Therefore, we have that

E
λ,y1,...,yk

⎞
k∑

i=1

wλ
i fA(yi)

⎠

= E
x1,...,xk,λ

⎞
k∑

i=1

wλ
i fA(xi)

⎠

= trace(A)

This implies that
∑k

i=1 w
λ
i fA(yi) is also an unbiased estimator.
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Since both estimators have the same expectation, in order to show (1), it
suffices to prove that

E
λ,x1,...,xn




⎛

k∑

i=1

wλ
i fA(xi)

⎝2


 ∧ E
λ,y1,...,yn




⎛

k∑

i=1

wλ
i fA(yi)

⎝2


 (2)

By the process of generating x1, x2, . . . , xk, we know that the marginal distri-
bution of xi is independent of β and equal to the marginal distribution of yi.
Therefore, in order to prove (2), it suffices to prove that for any i and j, we have

E
λ,xi,xj

[wλ
iw

λ
j fA(xi)fA(xj)] ∧ E

λ
[wλ

iw
λ
j ] E

yi,yj

[fA(yi)fA(yj)] (3)

To compare Eλ,xi,xj [wλ
iw

λ
j fA(xi)fA(xj)] and Eλ[wλ

iw
λ
j ]Eyi,yj [fA(yi)fA(yj)],

we note that the marginal distribution on the pair (xi, xj) is equivalent to draw-
ing xi, xj from the following process:

1. Draw β → Pα.
2. Set xi = yi and xj = yi cos βij + yj sin βij

It is easy to check that the joint distribution on xi and xj has the same distri-
bution as two random unit vectors with angle βij .

Therefore,

E
λ,xi,xj

[wλ
iw

λ
j fA(xi)fA(xj)]

= E
λ,yi,yj

[wλ
iw

λ
j y

T
i Ayi(cos βij · yi + sin βij · yj)TA(cos βij · yi + sin βij · yj)]

= E
λ

[wλ
iw

λ
j cos2 βij ]E

yi

[yTi Ayi · yTi Ayi] + E
λ

[wλ
iw

λ
j sin2 βij ] E

yi,yj

[yTi Ayiy
T
j Ayj ]

+ E
λ

[wλ
iw

λ
j sin βij cos βij ] E

yi,yj

[yTi Ayiy
T
i Ayj + yTi Ayiy

T
j Ayi] (4)

In order to simplify the above expression, we first claim that

E
yi,yj

[yTi Ayiy
T
i Ayj + yTi Ayiy

T
j Ayi] = 0.

To see this, note that yj is a random unit vector orthogonal to yi. Although
yi, yj are dependent, conditioned on any fixed realization of yi, the distribution
on yj is symmetric about 0; yj has the same distribution as −yj .

In addition, using Cauchy-Schwarz and the fact that yi and yj have the same
distribution, we have that

E
yi

[(yTi Ayi)
2] =

√
E
yi

[(yTi Ayi)
2]E

yj

[(yTj Ayj)
2] ∧ E

yi,yj

[yTj Ayj · yTi Ayi].

Therefore, we have that

(4) ∧ E
λ

[wλ
iw

λ
j cos2 β] E

yi,yj

[yTj Ayj · yTi Ayi] + E
λ

[wλ
iw

λ
j sin2 β] E

yi,yj

[yTi Ayiy
T
j Ayj ]

= E
λ

[wλ
iw

λ
j ] · E

yi,yj

[yTj Ayj · yTi Ayi]

which proves (3), completing the proof of Lemma 4.
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Now that we can assume that the queries are mutually orthogonal, we can
view this as an estimator with randomized weights wλ

i for β → Pα. Below we will
use the random variable wi to denote wλ

i as β is independent from y1, y2, . . . , yk.

Lemma 5. Let (y1, . . . , yk) be k random orthogonal unit vectors. Then the es-

timator h =
∑k

i=1 wifA(yi) has minimum variance when w1 = w2 = · · · = wk =
n/k.

Proof. First we must have E[
∑k

i=1 wi] = n to make the estimator unbiased, since
E[fA(yi)] = 1

n trace(A). Also,

E




⎛

k∑

i=1

wi

⎝2


 = E

⎞
k∑

i=1

w2
i

⎠

+ 2 · E



∑

1∈i<j∈k

wiwj



 ∧ n2

Minimizing the variance is equivalent to minimizing

E
w,y





⎛
k∑

i=1

wifA(yi)

⎝2




=

k∑

i=1

E[fA(yi)
2]E[w2

i ] + 2 ·
∑

1∈i<j∈k

E[fA(yi)fA(yj)] ·E[wiwj ]

= E

⎞
k∑

i=1

w2
i

⎠

E[f2
A(y1)] +



E




⎛

k∑

i=1

wi

⎝2


−E

⎞
k∑

i=1

w2
i

⎠

E[fA(y1)fA(y2)]

∧ n2

k
E[fA(y1)2] +

(
n2 − n2

k

)
E[fA(y1)fA(y2)]

= E





⎛
k∑

i=1

n

k
fA(yi)

⎝2




Equality holds for w1 = · · · = wk = n/k, completing the proof.

Combining Lemma 4 and Lemma 5, the minimum variance linear nonadaptive
unbiased estimator making k queries is

∑k
i=1

n
k fA(yi), where y1, y2, . . . , yk is

a collection of random orthogonal unit vectors. This completes the proof of
Theorem 1.

Acknowledgement. The second author is grateful for Yi Li and Siu-On Chan
for helpful discussions.
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Faster Separators for Shallow Minor-Free Graphs

via Dynamic Approximate Distance Oracles
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Abstract. Plotkin, Rao, and Smith (SODA’97) showed that any graph
with m edges and n vertices that excludes Kh as a depthO(Δ log n)-minor
has a separator of size O(n/Δ+Δh2 log n) and that such a separator can be
found in O(mn/Δ) time. A time bound of O(m+n2+ε/Δ) for any constant
κ > 0 was later given (W., FOCS’11) which is an improvement for non-
sparse graphs. We give three new algorithms. The first two have the
same separator size (the second having a slightly larger dependency on h)
and running time O(poly(h)Δn1+ε) and O(poly(h)(

⇒
Δn1+ε+n2+ε/Δ3/2)),

respectively. The former is significantly faster than previous bounds for
small h and Δ. Our third algorithm has running time O(poly(h)

⇒
Δn1+ε).

It finds a separator of size O(n/Δ) + Õ(poly(h)Δ
⇒
n)1 which is no worse

than previous bounds when h is fixed and Δ = Õ(n1/4). A main tool
in obtaining our results is a decremental approximate distance oracle of
Roditty and Zwick.

1 Introduction

Given an undirected graph with a non-negative vertex weight function, a sep-
arator of G is a subset of vertices whose removal partitions G into connected
components none of which contain more than a c-fraction of the total vertex
weight of the graph, where c < 1 is a constant. Clearly, any graph contains a
separator (the entire vertex set). The goal is to find separators of small size.

A celebrated theorem of Lipton and Tarjan [4] states that every planar graph
of size n has an O(

∈
n)-size separator which can be found in linear time. Alon,

Seymour, and Thomas [1] generalized this to minor-free graphs.
In this paper we study the bigger class of shallow minor-free graphs. A depth

σ-minor of a graph is a minor where every vertex corresponds to a contracted
subgraph of radius at most σ. This class was introduced by Plotkin, Rao, and
Smith [6]. They gave applications of these graphs to, e.g., geometry. Shallow
minors are used to distinguish between somewhere and nowhere dense graphs [5].

Plotkin, Rao, and Smith showed that an n-vertex graph excluding Kh as a
depth O(σ logn)-minor has a separator of size O(n/σ + σh2 logn). They gave an
algorithm with O(mn/σ) running time which either outputs a depth O(σ logn)-
minor or a separator of size O(n/σ + h2σ logn). For non-sparse graphs, running

1 We use Õ-notation instead of O-notation when suppressing polylogarithmic factors.

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 1063–1074, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014
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time was improved to O(n2+σ/σ) for an arbitrarily small constant τ > 0 with
only a constant-factor increase (depending on τ) in the separator size [11].

We give three new algorithms to find separators in shallow minor-free graphs.
The first achieves the same separator size as in [6] but with a running time of
O(hσm1+σ + h2n logn) for an arbitrarily small constant τ > 0. For small h and
σ, this is near-linear time and a significant improvement over the near-quadratic
time in [11]. It is possible to replace m by n in the time bound if we allow the
algorithm to reject if there exists a shallow minor without actually outputting
such a minor. Our second algorithm achieves essentially the same separator size
in time O(poly(h)(

∈
σn1+σ + n2+σ/σ3/2)). The special case σ =

∈
n gives the

same time bound for minor-free graphs as in [11]. Our third algorithm is the
fastest, achieving a running time of O(poly(h)

∈
σn1+σ). It finds a separator of

size O(n/σ) + Õ(poly(h)σ
∈
n) which is no worse than the size achieved in [6]

when σ = Õ(n1/4). A main tool to achieve these new time bounds is a novel
application of a dynamic approximate distance oracle of Roditty and Zwick [8].
We believe this connection is interesting in itself and should further motivate
the study of dynamic distance oracles, an area which has only recently received
attention from the research community.

The organization of the paper is as follows. We first give basic definitions,
notation, and results in Section 2. Then we give a generic algorithm in Section 3
which is quite similar to that of Plotkin, Rao, and Smith. All our algorithms are
implementations of this generic algorithms. Then our three algorithms are given
in Sections 4, 5, and 6, respectively. Finally, we conclude in Section 7. Some
details are omitted due to space constraints and will appear in a full version.

2 Preliminaries

We consider undirected graphs only. For a graph G, V (G) resp. E(G) denotes
the vertex set resp. edge set of G and for a subset X of V , G[X ] is the subgraph
of G induced by X . Connected components are referred to simply as components.
For vertices u, v ⊆ V , dG(u, v) denotes the shortest path distance between u and
v in G. This definition is extended to edge-weighted graps.

Consider a graph G = (V,E,w : V ⊂ R) with a non-negative vertex weight
function w. For any subset X of V , let w(X) =

∑
v◦X w(v). A separator of

G is a subset S of V such that for each component C of G[V \ S] we have
w(C) → cw(V ), for some constant c < 1.

Given graphs G and H , H is a minor of G if H can be obtained from a
subgraph of G by edge contractions. Otherwise, we say that G is H-minor-free
or that G excludes H as a minor. If H is a minor of G such that the subgraphs
of G corresponding to vertices of H have radius at most σ, H is a minor of
depth σ. If not, G excludes H as a minor of depth σ. We only consider complete
excluded minors, i.e., H is of the form Kh. For our application, this is without
loss of generality since if G excludes a minor H (of some depth), it also excludes
Kh as a minor (of some depth), where h = |V (H)|; furthermore, our bounds
only have small polynomial dependency on the size of the excluded minor.
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For integers h ∧ 1 and σ ∧ 0, let Gh,ε denote the set of graphs that exclude
Kh as a minor of depth σ. We have the following simple lemma

Lemma 1. For any h, Gh,0 ≥ Gh,1 ≥ Gh,2 ≥ . . ..

An essential tool in our algorithms is a decremental approximate distance oracle
of Roditty and Zwick which can report approximate distances for close vertex
pairs [8]. The following lemma states the performance of this oracle.

Lemma 2. Let k, d ⊆ N and let G be a given graph with integer edge weights
and with m edges and n vertices. There is a data structure of size O(m+n1+1/k)
which can be maintained under edge deletions in G in O(dmn1/k) total expected
time such that after each edge deletion, for any vertices u, v in G, an estimate
d̃G(u, v) of the shortest path distance dG(u, v) can be reported in O(k) time sat-
isfying the following: If dG(u, v) → d then dG(u, v) → d̃G(u, v) → (2k−1)dG(u, v)
and if dG(u, v) > d then dG(u, v) → d̃G(u, v). A uv-path achieving this distance
estimate can be reported in constant time per vertex, starting from either u or v.

The last part of the lemma is not stated in [8] but it follows immediately from the
observation that the oracle maintains cluster structures (see definition in [10])
and paths can be traversed in constant time per vertex using these.

3 A Generic Algorithm

All of our algorithms are implementations of the same generic algorithm (except
the algorithm in Section 5 which implements a slight variant) and we refer to it
as genericalg(G = (V,E,w : V ⊂ R), h, σ); see pseudocode in Figure 1. It is
similar to that of Plotkin, Rao, and Smith [6] but with some subtle differences
that we come back to later. We refer to [6] for a less compact description. Subsets
V √, M , Vr , B, and A of V are maintained where initially V √ = V and M = Vr =
B = A = ⇐ 2. The algorithm attempts to form a separator of G in a number of
iterations of the while-loop in lines 2–17. Set M is the union of vertex sets of
trees and M denotes the set of these trees. At any given time, the size p of M
is at most h and the trees of M form the minor Kp of depth O(σ log n) in G.
At the beginning of each iteration, trees that are no longer incident to V √ in G
are removed from M (lines 4–5). Set A is monotonically growing and consists
at any given time of the vertices that previously belonged to M but have since
been removed from this set. Set V √ is a monotonically shrinking set and consists
of vertices yet to be processed. The algorithm terminates if each component of
G[V √] has vertex weight at most 2

3w(V ).
In the following, let λ = 2⇒σ lnn∪. In each iteration, the algorithm attempts

to find a tree T in G[V \ A] which is rooted at an arbitrary u ⊆ V √, has radius
at most Cλ for a constant C ∧ 1, and is incident in G to all trees in M. If such
a tree is found, the trees in M≤ {T } form the minor Kp+1 of depth O(σ log n)
in G. In this case, T is added to M. If p + 1 = h, the algorithm outputs the

2 Here we use a similar naming convention as in [6].
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Algorithm genericalg(G = (V,E,w : V ≤ R), h, Δ)

1. initialize V ′ = V , M = M = Vr = B = A = ∈, and σ = 2∪Δ lnn←
2. while there is a component X of G[V ′] with w(X) > 2

3
w(V ) and |M| < h

3. update V ′ to X and move any remaining components to Vr

4. for each T ∈ M that is not incident to V ′ in G
5. M → M\ {T}, M → M \ V (T ), Vr → Vr ∪ V (T ), A → A ∪ V (T )
6. let u be any vertex in V ′

7. if a tree T is identified in G[V \ (M ∪A)] rooted at u, with radius ≤ Cσ,
(for some constant C ≥ 1) and incident in G to all trees in M

8. update M → M∪ {T}, M → M ∪ V (T ), and V ′ → V ′ \ V (T )
9. else // it is assumed that v can be found in line 10
10. pick a v ∈ V ′ which is incident in G to M such that dG[V ′](u, v) > σ
11. letting w be any of u and v, start growing a BFS tree in G[V ′] from w
12. for each BFS layer N explored
13. let S be the set of vertices explored in all layers so far
14. let S′ be the set of smaller vertex weight among S and V ′ \ (S \N)
15. if |N | ≤ |S′|/Δ
16 update B → B ∪N , Vr → Vr ∪ S′ \N , and V ′ → V ′ \ S′

17 terminate the BFS
18. if |M| = h then output M as a Kh-minor of G of depth O(Δ log n)
19. else output M ∪B as a separator of G

Fig. 1. A generic algorithm for either finding a separator or reporting Kh as a depth
O(Δ log n)-minor in a vertex-weighted graph G = (V,E,w) where n = |V |

p + 1 trees found as they constitute a certificate that G contains Kh as a minor
of depth O(σ logn).

Suppose such a tree T could not be found. Then it is assumed in line 10
that a vertex v ⊆ V √ incident in G to M exists such that dG[V ′](u, v) > λ. (this
assumption holds for the algorithm in [6] with C = 1 since in this case there is a
tree T √ ⊆ M such that for any v ⊆ V √ incident to T √ in G, dG[V \A](u, v) > Cλ.)
Then either u or v is picked; call it w. A BFS tree is grown from w in G[V √]
until some layer N is small compared to S and V √ \ (S \ N), where S is the
set of vertices explored so far. More precisely, the process stops if |N | → |S√|/σ,
where S√ is the set of smaller vertex weight among S and V √ \S. Using the same
analysis as in [6], such a layer N will eventually be found. For assume otherwise.
Since dG[V ′](u, v) > λ, more than λ layers are explored by the BFS. For each
layer explored, either |S| grows by at least a factor of 1 + 1/σ or |V √ \ (S \ N)|
is reduced by at least a factor of 1 + 1/σ. Since (1 + 1/σ)Ω/2 ∧ n, after λ layers,
either S contains at least n vertices or V √ \ (S \N) contains less than 1 vertex,
which is a contradiction.

Correctness: To prove correctness of the generic algorithm (under the assump-
tion stated in line 9), note that the output in line 18 is indeed a Kh-minor of
depth O(σ log n). We need to show that in line 19, M ≤ B is a separator. It is
easy to see that V √ is disjoint from Vr ≤M ≤ B during the algorithm. Consider
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the final iteration of the while-loop. At the beginning of line 7, w(V √) > 2
3w(V )

so w(Vr) < w(V )/3. If line 8 is executed then all vertices that are removed from
V √ are added to the set output in line 19. If lines 10–17 are executed then let
W √ > 2

3w(V ) be the vertex weight of V √ just before executing line 10 and let
Wr be the vertex weight of Vr just after executing line 17. By definition of S√,
Wr → (w(V ) − W √) + W √/2 = w(V ) − W √/2 < 2

3w(V ). Since this is the final
iteration, we also have that each component of G[V √] has vertex weight less than
2
3w(V ) at the end of the iteration. Hence, M ≤B is a separator of G in line 19.

The main difference between the above generic algorithm and that in [6] is
that the former searches for a tree in G[V \ (M ≤ A)] and allows M to overlap
with B and Vr whereas the latter does not maintain A and instead searches for a
tree in G[V √], ensuring that (V √,M, Vr, B) is a partition of V . This difference will
be important for our algorithm in Section 6. Unlike [6], we also allow constant
C in line 7 in order to facilitate the use of approximate distances.

It is easy to see that if each tree added to M in line 5 of genericalg(G =
(V,E), h, σ) contains at most s vertices and if a separator is output in line 19,
its size is O(hs + n/σ). Note that if a tree T exists in line 7 of genericalg(G =
(V,E), h, σ), we may pick it such that its size is O(hσ logn). This then gives a
separator of size O(h2σ logn + n/σ), matching that in [6]. For our algorithm in
Section 6, we will need to allow a bigger size of each tree T . This will increase
the size of the separator but only for large values of σ.

4 A Fast Separator Theorem via Distance Oracles

For the description of our first algorithm, it will prove useful to regard M as
consisting of exactly h − 1 trees at any given time; this is done by permitting
trees with empty vertex sets. Each tree of M is assigned a unique index between
1 and h− 1 and we let Ti denote the tree with index i. From the moment a tree
is added to M until it leaves M or the algorithm terminates, the index of that
tree is fixed. We refer to the trees of M with non-empty vertex sets as proper
trees. Each of them will have diameter O(σ logn) and size O(σh logn). Thus, the
size of the separator output in line 19 is O(h2σ logn + n/σ).

For 1 → i → h− 1, we maintain a decremental approximate distance oracle Di

satisfying the conditions in Lemma 2 with k = ⇒1/τ∪ and d = 4kλ. Denote by
V √
i the set (V \ (M ≤ A)) ≤ V (Ti). At any point, Di is an approximate distance

oracle for the graph with vertex set V and containing all edges of G[V √
i ] except

those with both endpoints in Ti that do not belong to Ti. We denote this graph
by G√

i = (V,E√
i). Note that the vertex set is fixed to V since Di does not support

vertex deletions.

4.1 Identifying a Tree of Small Diameter

Now, consider an iteration of the while-loop of genericalg. To determine whether
to execute line 8 or lines 10–17, we do as follows. Assume that at least one tree inM
is proper (otherwise, a tree satisfying the conditions in line 7 can easily be found)
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and let imin be the smallest index of such a tree. Pick u as any vertex of V √ incident
in G to Timin . For each proper Ti ⊆ M with i > imin and for each v ⊆ V (Ti), we
query Di for a distance estimate from u to v in G√

i. Let vi ⊆ V (Ti) be a vertex v
achieving a minimum estimate and denote this estimate by Π̃i. In the following, we
consider the following two possible cases:

1. Π̃i → d for all i > imin for which Ti is proper,

2. Π̃i > d for some i > imin for which Ti is proper.

We will show how a tree satisfying the conditions in line 7 can be found if
we are in case 1 and that a vertex v satisfying the conditions in line 10 can be
found if we are in case 2.

Assume case 1 first. We traverse the approximate uvi-path from u until reach-
ing the first vertex which is incident in G to Ti. Note that the subpath traversed
is contained in G[V \ (M ≤A)]. By Lemma 2, each traversal takes O(d) time and
since each approximate distance query can be done in O(1) time, vi is found in
O(|V (Ti)|) = O(hd) time. Summing over all i, we obtain in O(h2d) time a tree
T in G[V \ (M ≤ A)] rooted at u of radius at most d = 4kλ and of size O(hd)
which is incident in G to each proper tree of M (T is in the union of the paths
traversed). This tree satisfies the conditions in line 7 with C = 4k. We may
assume that T contains at least d vertices; if not, grow it by adding additional
incident vertices to it from V \ (M ≤A) while keeping the radius at most d.

Having found T , we check if there is an index available for T in M, i.e., an
index i between 1 and h− 1 such that Ti is not proper. If there is no such index,
G has Kh as a minor of depth O(σ logn) and the algorithm outputs T and the
collection of proper trees in M as a certificate of this. Otherwise, Ti is set to
T , thereby adding it to M and making it proper, and V (T ) is removed from V √

and added to M . This update may cause some other proper trees Tj ⊆ M to
no longer be incident to V √ in G and each of these trees need to be moved from
M to Vr in the next iteration (if any). For this to happen for such a tree Tj ,
each edge of G√

j incident to Tj must either belong to Tj or be incident to the set
V √√ of vertices that will be removed from V √ in line 3 of the next iteration. Note
that since V √ is a monotonically decreasing set, we can afford to visit the set E√√

of edges of G which are incident to V √√ and mark them. Now for each proper
Tj, j ⇔= i, we visit all its vertices and check if it has any incident non-tree edges
in E√

j which are not marked; this takes O(|Tj | + |E√√|) = O(hd + |E√√|) time. If
there is no such vertex, V (Tj) is moved from M to Vr and Tj is updated to be
an empty tree in M. Over all j, this takes O(h2d+h|E√√|) time. The latter term
is paid for by initially putting h credits on each edge of E.

To update the approximate distance oracles accordingly, consider first moving
V (T ) = V (Ti) from V √ to M . This amounts to deleting from G√

j all edges incident
to V (Ti), for each j ⇔= i. From Di, we need to delete edges with both endpoints
in Ti that do not belong to Ti. We identify these by simply visiting all edges
incident to Ti since this can be paid for by the removal of V (Ti) from V √. For
a tree Tj whose vertex set needs to be moved from M to Vr, we update Dj by
deleting all edges incident to V (Tj).
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By Lemma 2, total time to maintain all h−1 distance oracles is O(hdmn1/k) =
O(hσmnσ logn). Since each tree removed from V √ has size β(d), total additional
time for the above is O(hm + (n/d)h2d) = O(hm + h2n).

4.2 Identifying a Small Separator for Distant Vertex Pairs

The following lemma considers case 2 above.

Lemma 3. With the above definitions, suppose Π̃i > d for some i > imin where
Ti is proper. Then the shortest path distance in G[V √] from u to any vertex of
V √ incident in G to Ti is at least d/(2k − 1) − 1.

Proof. Let wi be a vertex of V √ incident in G to a vertex vi in Ti and assume
for contradiction that dG[V ′](u,wi) < d/(2k − 1) − 1. We have

dG′
i
(u, vi) → dG′

i
(u,wi) + 1 → dG[V ′](u,wi) + 1 < d/(2k − 1)

so Π̃i > d > (2k − 1)dG′
i
(u, vi). By Lemma 2, dG′

i
(u, vi) > d, contradicting that

dG′
i
(u, vi) < d/(2k − 1) → d.

Let i be an index satisfying Lemma 3. The lemma shows that if we are in case 2
above, the condition in line 10 holds since for any vertex v ⊆ V √ incident in G to
Ti, dG[V ′](u, v) > d/(2k− 1)− 1 = 4kλ/(2k− 1)− 1 > λ. Such a vertex v can be
found in O(|Ti|) = O(hd) time. We now describe how to efficiently execute lines
10–17. Since we are free to perform a BFS from u or from v, we perform both
of these searches in parallel. More precisely, one edge is visited by the BFS from
u, then one edge by the BFS from v, and so on. When the condition in line 15
is satisfied for either of them, both searches terminate.

To analyze the running time, observe that when the BFS procedures termi-
nate, each has visited at most λ−1 = d/(4k)−1 layers. By Lemma 3, Eu∗Ev = ⇐
where Eu resp. Ev denotes the set of edges explored by the BFS from u resp. v.
Let U be the vertex set moved from V √ to Vr ≤B after the BFS procedures from
u and v terminate and let t denote the BFS time for exploring Eu and Ev. Since
|Eu| = |Ev| ± 1, we have that t = O(|Eu|) as well as t = O(|Ev|). Since either
Eu ⊥ E(G[U ]) or Ev ⊥ E(G[U ]), we get t = O(|E(G[U ])|). Hence, the removal
of U from V √ can pay for t so total BFS time over all iterations is O(m).

As for case 1 above, we move a tree Tj from M to Vr if Tj is no longer
incident in G to V √ in line 3 of the next iteration. Letting V √√ and E√√ be defined
as above, we mark all edges of G incident to V √√ and then for each proper Tj

check in O(|Tj |) time whether G√
j has any non-marked edges incident to Tj that

do not belong to Tj . This takes O(|E√√|+ h2d) time over all j. Since V √√ has size
β(σ), this is O(m + (n/σ)h2d) = O(m + n lognh2) over all iterations.

We can now conclude this section with our first main result.

Theorem 1. Given a graph G with m edges and n vertices and given h, σ ⊆ N

and τ > 0, there is an algorithm with O(hσm1+σ +h2n logn) running time which
either gives a certificate of Kh as a depth O(σ log n)-minor in G or outputs a
separator of G of size O(h2σ logn + n/σ).
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In the next section, we show that when σ = β(nσ) then m = O(poly(h)n). Hence,
in this case, our algorithm can be modified to initially check if G exceeds this
edge bound and if so reject and halt. This combined with Theorem 1 gives the
first result in the abstract.

5 Speed-Up Using Bootstrapping and Spanners

In this section, we speed up the result in Theorem 1 for large σ using a boot-
strapping technique presented in [11]. Note that the running time in Theorem 1
grows with σ. The idea for the speed-up is to apply the theorem for a smaller
depth than σ (which is possible by Lemma 1) to obtain large separators fast and
to use these separators to build a compact representation of certain subgraphs of
G which can be used to give a fast implementation of genericalg for the actual
depth σ. To simplify our bounds, we assume here and in the next section that
h = O(1) and σ = β(nσ) for an arbitrarily small τ > 0. The actual dependency
on h is a low-degree polynomial and for smaller values of σ, we can apply our
first algorithm. We have omitted the details for our second algorithm due to
space constraints and since the technique is basically the same as in [11]. The
performance of our second algorithm is stated in the following theorem.

Theorem 2. Given a graph G with n vertices and given h, σ ⊆ N with h = O(1)
and σ = β(nσ) for constant τ > 0, there is an algorithm with O(n1+σ

∈
σ +

n2+σ/σ3/2) running time which either correctly reports that G contains Kh as a
depth O(σ logn)-minor or outputs a separator of G of size O(σ log n + n/σ).

6 Combining Spanners and Distance Oracles

Our third and final algorithm combines techniques from the other two. The
overall idea is to maintain decremental distance oracles as in the first algorithm
but for a graph of sublinear size consisting of spanners as in the second algorithm.
However, there are several obstacles that we need to overcome to handle this,
most notably that maintaining a sublinear-size graph representation require edge
insertions in addition to deletions, something that the oracles do not support.

First, we give some definitions and results that we needed for the second
algorithm (more details to appear in the full version). For a connected graph
G = (V,E), a cluster (of G) is a connected subgraph of G. A clustering (of G) is
a collection C of clusters of G whose edge sets form a partition of E. A boundary
vertex of a cluster C ⊆ C is a vertex that C shares with other clusters in C. All
other vertices of C are interior vertices of C. For a subgraph C√ of C, we let ΠC√

denote the set of boundary vertices of C contained in C√ and we refer to them
as the boundary vertices of C√ (w.r.t. C).

Let n be the number of vertices of G. For a parameter r > 0, an r-clustering
(of G) is a clustering with clusters having a total of Õ(n/

∈
r) boundary vertices

(counted with multiplicity) and each containing at most r vertices and Õ(
∈
r)

boundary vertices. The total vertex size of clusters in an r-clustering is n +
Õ(n/

∈
r) and the number of clusters is Õ(n/

∈
r).
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Lemma 4. Let G be a vertex-weighted graph with m edges and n vertices, let
h, σ ⊆ N and 0 < τ < 1 where h and τ are constants and where σ = O(

∈
n) and

σ = β(nσ). For any parameter r ⊆ (C logn, σ] for a sufficiently large constant C,
there is an algorithm with O(

∈
rm1+σ) running time that either gives a certificate

that G contains Kh as a depth O(σ log n)-minor or outputs an r-clustering of G.

Corollary 1. Let τ > 0 be a constant. For any h = O(1) and σ = β(nσ), any
n-vertex graph excluding Kh as a depth σ-minor has only O(n) edges.

Lemma 5. For an σ-clustering C, ∑C◦C |C||ΠC|,∑C◦C |ΠC|3 = Õ(n
∈
σ).

For a cluster C and a subset B of ΠC, consider the complete undirected graph
DB(C) with vertex set B. Each edge (u, v) in DB(C) has weight equal to the
weight of a shortest path in C between u and v that does not contain any
other vertices of ΠC. We call DB(C) the dense distance graph of C (w.r.t. B).
We have dDB(C)(u, v) = dC(u, v) for all u, v ⊆ B. Our algorithm maintains a
compact approximate representation of dense distance graphs using a spanner
construction for general graphs; For stretch Π ∧ 1, a Π-spanner of a graph is a
subgraph that preserves all shortest path distances up to a factor of Π.

Lemma 6. Let H be an undirected graph with nonnegative edge weights. For
any constant 0 < τ → 1, a (1/τ)-spanner of H of size O(|V (H)|1+2σ) can be
constructed in linear time.

Now, we give our third and final algorithm. It starts by checking whether
G is sparse. If not, it rejects and halts (Corollary 1). Otherwise, the set Vα

of vertices of degree larger than some value Δ are removed. This set has size
O(n/Δ) and will be added as separator vertices in the end. As we show below,
the separator found for the remaining graph will have size O(n/l) + Õ(σ2Δ) so
we pick Δ =

∈
n/σ to get a separator for the full graph of size O(n/σ)+ Õ(

∈
nσ).

Note that this is not an asymptotic increase over the separator size in [6] when
σ = Õ(n1/4). We will give an efficient implementation of algorithm genericalg

to find such a separator in time O(n1+σ
∈
σ).

6.1 Mini Clusters

In the following, we let G denote the graph after the removal of high-degree
vertices. Then the degree of G is bounded by Δ =

∈
n/σ. We start by computing

an σ-clustering C√ of G. From this, we will obtain a more refined set of mini
clusters. Let C be a cluster of C√. In the following, we describe how mini clusters
associated with C are formed.

For each interior vertex w of C, let Cw be the subgraph of C reachable from
w using paths in which no interior vertices belong to ΠC. Let C√

1 be the set of
subgraphs obtained this way over all C ⊆ C√. Notice that they are connected and
intersect only in boundary vertices of C. We form the subset C1 of C√

1 consisting
of those subgraphs Cw such that there is a pair of distinct vertices b1, b2 ⊆ ΠCw

where dCw (b1, b2) is smallest among all subgraphs of C√
1 that have a path between
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b1 and b2; here we we resolve ties by regarding the path with smaller minimum
index of an interior vertex (for some arbitrary fixed assignment of indices to V )
as the shortest one. We say that (b1, b2) is associated with Cw. Note that any
pair of boundary vertices is associated with at most one subgraph of C1.

Let C2 be the set of edges e such that e has both endpoints in ΠC for some
C ⊆ C√. We regard each edge of C2 as a graph. Let C = C1 ≤C2 be the set of mini
clusters. Note that C is a clustering.

Lemma 7. With the above definitions, if G excludes Kh as a depth O(σ logn)-
minor, the total number of boundary vertices (counted with multiplicity) of mini
clusters of a cluster C ⊆ C√ is O(|ΠC| log |ΠC|).
Proof. First, note that each subgraph of each cluster is sparse. If not, it would
mean that it does not exclude Kh as a minor [3,9] and hence (since its vertex size
is at most σ) that G does not exclude Kh as a minor of depth σ− 1 = O(σ log n).

Let C1(C) resp. C2(C) be the set of mini clusters of C1 resp. C2 belonging to C.
Note that the union of mini clusters of C2(C) is a subgraph of C with vertex set
contained in ΠC. Since any subgraph of C is sparse, so is this union so the total
number of boundary vertices of mini clusters in C2(C) is 2|C2(C)| = O(|ΠC|).

It remains to bound the total number of boundary vertices of mini clusters
in C1(C). Consider such mini cluster C√ and let w be an interior vertex of C√.
Growing a BFS tree from w in C√, backtracking once a boundary vertex is
reached, we get a spanning tree of C√ where each boundary vertex is a leaf.
The star with center w and with ΠC√ as the set of leaves is a minor of C√ as
it can be obtained from this spanning tree using edge contractions. For i =
1, . . . , ⇒log |ΠC|∪, let Si be the set of stars with between 2i−1 and 2i leaves over
all mini clusters of C1(C) and let si = |Si|. The lemma will follow if we can show
that

∑
1≤i≤⊆log |λC|≥ si2

i = O(|ΠC| log |ΠC|).
Since mini clusters of C1(C) intersect only in boundary vertices, the union

of stars in any set Si is a minor of C and hence excludes Kh as a minor. In
particular, this union is sparse so si2

i → c(si + |ΠC|), for some constant c inde-
pendent of i. Hence, there is a constant I such that si2

i → 2c|ΠC| for all i ∧ I,
implying that

∑
i∪I si2

i = O(|ΠC| log |ΠC|). For i < I, consider a star S ⊆ Si

and let CS be the mini cluster that yielded S in the procedure above. There is
a pair of distinct leaves b1 and b2 of S such that (b1, b2) is associated with CS .
Note that there is a path from b1 to b2 in CS such that no interior vertex of
this path belongs to any other mini cluster. Thus, picking such a pair for each
S ⊆ Si and regarding it as an edge, we obtain a minor H of C with vertex set
contained in ΠC. Since H excludes Kh as a minor (otherwise C would not), we
get si2

i → si2
I = |E(H)|2I = O(|ΠC|).

Combining this lemma with Lemma 5 and the definition of σ-clustering, we get
the following corollary.

Corollary 2. With the set C of mini clusters defined above, if G excludes Kh as
a depth O(σ logn)-minor,

∑
C◦C |ΠC| = Õ(n/

∈
σ) and

∑
C◦C |C||ΠC| = Õ(n

∈
σ).

Our algorithm will reject and halt if the bounds of Corollary do not hold as then
G contains Kh as a depth O(σ logn)-minor.
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6.2 Implementing the Generic Algorithm

The implementation of genericalg is in many ways similar to our first algo-
rithm so we only highlight the differences here. Let S be the graph consist-
ing of the union of spanners S(C) over all mini clusters C ⊆ C, where the
stretch is chosen to be 6/τ. We maintain data structures Di for 1 → i → h − 1
with d of order σ lnn in Lemma 2 and stretch 6/τ and each structure is initial-
ized with graph S. By Lemma 2 and Corollary 2, this takes O(|E(S)|1+σ/3σ) =
Õ((n/

∈
σ)(1+σ/3)(1+σ/3)σ) = O(n1+σ

∈
σ) time over all deletions. We will use these

structures to identify trees in G[V \ (M ≤A)]. Note that the stretch of the paths
obtained from the structures is 36/τ2 = O(1).

A problem with this approach is that G[V \ (M ≤ A)] may contain parts of
mini clusters of C. Approximate paths in a part of a mini cluster C might not
be represented by a subgraph of S(C) but each structure Di only supports edge
deletions, not insertions. We handle this by requiring the following invariant: for
any mini cluster C, if V (C) ∗ V \ (M ≤A) ⇔= ⇐ then V (C) ⊥ V \ (M ≤A). If we
can maintain this invariant, at any point, distances in G[V \ (M ≤ A)] between
boundary vertices of C can be approximated in a union of spanners of a subset
of the mini clusters in C. Hence these distances can be approximated by the
structures Di if we delete all edges of S(C) from them whenever a mini cluster
C leaves G[V \ (M ≤ A)].

In a given iteration, if a tree T is found (line 7) by a data structure Di, it
consists of edges from spanners S(C). By precomputing shortest path trees from
each boundary vertex of each mini cluster (which can be done in Õ(n

∈
σ) time

by Corollary 2), we can identify the edges of G that are contained in T in time
proportional to their number. Now, to ensure the invariant, we expand T into the
mini clusters it intersects. More precisely, for each mini cluster C ⊆ C for which
V (T )∗ ΠC ⇔= ⇐, we expand T to include all interior vertices of C but no vertices
in ΠC that do not already belong to T . This is possible since by definition of
mini clusters, there is a spanning tree of C in which every boundary vertex of
C is a leaf. This tree expansion ensures the invariant but it comes at a cost of a
worse separator size guarantee since trees of the final set M may be larger than
in our first algorithm. Consider one such tree. It was obtained by expanding a
tree T of size O(σ log n) into the mini clusters of C it intersects. By our degree
bound, each vertex of T is contained in at most Δ mini clusters each having size
O(σ). Hence, each tree in M has size O(σ2Δ logn) = O(σ

∈
n logn).

We have shown how trees are efficiently found in our implementation of
genericalg. Lines 10–17 are implemented exactly as for the first algorithm,
where we do BFS in parallel in G[V √] from two vertices that are far apart. Note
that when these lines are executed, no updates are made to M ≤A (vertices may
be removed from M if they are no longer incident to V √ but in that case they are
added to A) so our data structures Di do not require updates here. The total
time for lines 10–17 is O(m + n logn) as for our first algorithm. We can now
conclude with our final main result.

Theorem 3. Given a graph G with n vertices and given h, σ ⊆ N with h = O(1),
there is an algorithm with O(n1+σ

∈
σ) running time which either correctly reports
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that G contains Kh as a depth O(σ logn)-minor or outputs a separator of G of
size O(n/σ) + Õ(σ

∈
n).

7 Concluding Remarks

We gave three new algorithms to find separators of shallow-minor free graphs.
For small-depth minors, a speed-up in running time of almost a linear factor
is achieved compared to previous algorithms while still giving separators of the
same size. A main idea was an application of a dynamic approximate distance
oracle of Roditty and Zwick for general graphs. We believe our speed-ups should
give improved algorithms for static graph problems such as shortest paths and
maximum matching since one of the bottlenecks for many separator-based algo-
rithms is finding a good separator. For instance, a faster separator theorem for
minor-free graphs led to several improved static graph algorithms [11].

Can our bounds be improved further? Nothing suggests that the dependencies
on σ in our time bounds are natural. The bottleneck is the dynamic distance
oracle of Roditty and Zwick. Any improvement of that result would give a speed-
up of our algorithms as well.
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Abstract. We study the strong spatial mixing (decay of correlation)
property of proper q-colorings of random graph G(n, d/n) with a fixed d.
The strong spatial mixing of coloring and related models have been ex-
tensively studied on graphs with bounded maximum degree. However, for
typical classes of graphs with bounded average degree, such as G(n, d/n),
an easy counterexample shows that colorings do not exhibit strong spatial
mixing with high probability. Nevertheless, we show that for q ≥ αd+ β
with α > 2 and sufficiently large β = O(1), with high probability proper
q-colorings of random graph G(n, d/n) exhibit strong spatial mixing with
respect to an arbitrarily fixed vertex. This is the first strong spatial mix-
ing result for colorings of graphs with unbounded maximum degree. Our
analysis of strong spatial mixing establishes a block-wise correlation de-
cay instead of the standard point-wise decay, which may be of interest
by itself, especially for graphs with unbounded degree.

1 Introduction

A proper q-coloring of a graph G is an assignment of q colors {1, 2, . . . , q} to
the vertices so that adjacent vertices receive different colors. Each coloring cor-
responds to a configuration in the q-state zero-temperature antiferromagnetic
Potts model. The uniform probability space, known as the Gibbs measure, of
proper q-colorings of the graph, receives extensive studies from both Theoretical
Computer Science and Statistical Physics.

An important question concerned with the Gibbs measure is about the mixing
rate of Glauber dynamics, usually formulated as: on graphs with maximum de-
gree d, assuming q ∈ σd+τ, the lower bounds for σ and τ to guarantee rapidly
mixing of the Glauber dynamics over proper q-colorings. (See [9] for a survey.)

Recently, much attention has been focused on the spatial mixing (correlation
decay) aspect of the Gibbs measure, which is concerned with the case where
the site-to-boundary correlations in the Gibbs measure decay exponentially to
zero with distance. In Statistical Physics, spatial mixing implies the uniqueness
of infinite-volume Gibbs measure. The notion of strong spatial mixing was in-
troduced in Theoretical Computer Science by Weitz [18]. Here, the exponential
decay of site-to-boundary correlations is required to hold even conditioning on
an arbitrarily fixed boundary. Strong spatial mixing is interesting to Computer
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Science because it may imply efficient approximation algorithms for counting
and sampling. This implication was fully understood for two-state spin sys-
tems. For multi-state spin systems such as coloring, this algorithmic implica-
tion of strong spatial mixing is only known for special classes of graphs, such
as neighborhood-amenable (slow-growing) graphs [13]. Strong spatial mixing of
proper q-coloring has been proved for classes of degree-bounded graphs, includ-
ing regular trees [12], lattices graphs [13], and finally the general degree-bounded
triangle-free graphs [11], all with the same σ > σ◦ bound where σ◦ = 1.763... is
the unique solution to xx = e.

All these temporal and spatial mixing results are established for graphs with
bounded maximum degree. It is then natural to ask what happens for classes of
graphs with bounded average degree. A natural model for the “typical” graphs
with bounded average degree d is the Erdös-Rényi random graph G(n, d/n). In
this model, the Gibbs measure of proper q-colorings becomes more complicated
because the maximum degree is unbounded and the decision of colorability is
nontrivial. Nevertheless, it was discovered in [5] that for G(n, d/n) the rapid
mixing of (block) Glauber dynamics over the proper q-colorings can be guaran-
teed by a q = O(log log n/ log log logn), much smaller than the maximum degree
of G(n, d/n). This upper bound on the number of colors was later reduced to a
constant q = poly(d) in [8] and independently in [15, 16], and very recently to a
linear q ∈ σd + τ with σ = 5.5 in [7].

On the spatial mixing side, the strong spatial mixing of the models which
are simpler than coloring has been studied on random graph G(n, d/n), or other
classes of graphs with bounded average degree. Recently in [17], such average-
degree based strong spatial mixing is established for the independent sets of
graphs with bounded connective constant. Since G(n, d/n) has connective con-
stant ⊆ d with high probability, this result is naturally translated to G(n, d/n).

It is then an important open question to ask about the conditions for the
spatial mixing of colorings of graphs with bounded average degree. The following
simple example shows that this can be very hard to achieve: Consider a long
path of λ vertices, each adjacent to q− 2 isolated vertices, where q is the number
of colors. When the path is sufficiently long, the connective constant of this
graph can be arbitrarily close to 1. However, colors of those isolated vertices can
be properly fixed to make the remaining path effectively a 2-coloring instance,
which certainly has long-range correlation, refuting the existence of strong spatial
mixing.

More devastatingly, it is easy to see that for any constant q, with high prob-
ability the random graph G(n, d/n) contains a path of length λ = Π(log n) in
which every vertex has degree q − 2. As in the above example, even in a weaker
sense of site-to-site correlation which was considered in [13], this forbids the
strong spatial mixing up to a distance Π(log n). Meanwhile, it is well known
that the diameter of G(n, d/n) is O(log n) with high probability. So the strong
spatial mixing of colorings of random graph G(n, d/n) cannot hold except for a
narrow range of distances in Π(log n).
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In this case, inspired by the studies of spatial mixing in rooted trees, where
only the decay of correlation to the root is considered, we propose to study the
strong spatial mixing with respect to a fixed vertex, instead of all vertices.

Assumption 1. We make following assumptions:

– d > 1 is fixed, and q ∈ σd + τ for σ > 2 and sufficiently large τ = O(1)
(τ ∈ 23 is fine);

– v ⊂ V is arbitrarily fixed and G = (V,E) is a random graph drawn from
G(n, d/n), where n is sufficiently large.

Note that vertex v is fixed independently of the sampling of random graph.
With these assumptions we prove the following theorem.

Theorem 2. Let q, v and G satisfy Assumption 1, and t(n) = β(1) an arbitrary
super-constant function. With high probability, G is q-colorable and the following
holds: for any region R → V containing v, whose vertex boundary is ΔR, for
any feasible colorings ∂, φ ⊂ [q]εR partially specified on ΔR which differ only at
vertices that are at least t(n) distance away from v in G, for some constants
C1, C2 > 0 depending only on d and q, it holds that

|Pr[c(v) = x | ∂] − Pr[c(v) = x | φ ]| ∧ C1 exp(−C2 · dist(v,κ)),

for a uniform random proper q-coloring c of G and any x ⊂ [q], where κ → ΔR
is the vertex set on which ∂ and φ differ, and dist(v,κ) denotes the shortest
distance in G between v and any vertex in κ.

This is the first strong spatial mixing result for colorings of graphs with un-
bounded maximum degree. Our technique is developed upon the error function
method introduced in [11], which uses a cleverly designed error function to mea-
sure the discrepancy of marginal distributions, and the strong spatial mixing is
implied by an exponential decay of errors measured by this function.

In all existing techniques for strong spatial mixing of colorings, when the
degree of a vertex is unbounded, a multiplicative factor of ≥ is contributed to
the decay of correlation, which unavoidably ruins the decay. However, in the
real case for colorings of graphs with unbounded degree, a large-degree vertex
may at most locally “freeze” the coloring, rather than nullify the existing decay
of correlation. This limitation on the effect of large-degree vertex has not been
addressed by any existing techniques for spatial mixing.

We address this issue by considering a block-wise correlation decay, so that
within a block the coloring might be “frozen”, but between blocks, the decay
of correlation is as in that between vertices in the degree-bounded case. This
analysis of block-wise correlation decay can be seen as a spatial analog to the
block dynamics over colorings of random graphs, and is the first time that such
an idea is used in the analysis of spatial mixing.

Related Work. As one of the most important random CSP, the decision problem
of coloring sparse random graphs has been extensively studied, e.g. in [1, 3].
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Monte Carlo algorithms for sampling random coloring in sparse random graphs
were studied in [4,7,8,15,16], and in [6], a non-Monte-Carlo algorithm was given
for the same problem which uses less colors but has worse error dependency than
the Monte-Carlo algorithms. In [10,14] the correlation decay on computation tree
for coloring was studied which implies FPTAS for counting coloring.

2 Preliminaries

Graph coloring. Let G = (V,E) be an undirected graph. For each vertex v ⊂ V ,
let dG(v) denote the degree of v. For any u, v ⊂ V , let distG(u, v) denote the
distance between u and v in G; and for any vertex sets S, T ⇐ V , let distG(u, S) =
minv√S distG(u, v) and distG(S, T ) = minu√S,v√T distG(u, v). The subscripts can
be omitted if graph G is assumed in context. For any vertex set S → V , we use
ΔS = {v ⇒⊂ S | uv ⊂ E, u ⊂ S} to denote the vertex boundary of S, and use
αS = {uv ⊂ E | u ⊂ S, v ⇒⊂ S} to denote the edge boundary of S.

We consider the list-coloring problem, which is a generalization of q-coloring
problem. Let q > 0 be a finite integer, a pair (G,L) is called a list-coloring
instance if G = (V,E) is an undirected graph, and L = (L(v) : v ⊂ V ) is a
sequence of lists where for each vertex v ⊂ V , L(v) ⇐ [q] is a list of colors from
[q] = {1, 2, . . . , q} associated with vertex v. A ∂ ⊂ [q]V is a proper coloring of
(G,L) if ∂(v) ⊂ L(v) for every vertex v ⊂ V and no two adjacent vertices in
G are assigned with the same color by ∂. A list-coloring instance (G,L) is said
to be feasible or colorable if there exists a proper coloring of (G,L). A coloring
can also be partially specified on a subset of vertices in G. For S ⇐ V , let
L(S) = {∂ ⊂ [q]S | ∪v ⊂ V, ∂(v) ⊂ L(v)} denote the set of all possible colorings
(not necessarily proper) of the vertices in S. A coloring ∂ ⊂ L(S) partially
specified on a subset S ⇐ V of vertices is said to be feasible if there is a proper
coloring φ of (G,L) such that ∂ and φ are consistent over set S. A coloring
∂ ⊂ L(S) partially specified on a subset S ⇐ V of vertices is said to be proper or
locally feasible if ∂ is a proper coloring of (G[S],LS) where G[S] is the subgraph
of G induced by S and LS = (L(v) : v ⊂ S) denotes the sequence L of lists
restricted on set S of vertices. For any S ⇐ V , we use L◦(S) to denote the set
of proper colorings of S.

When L(v) = [q] for all vertices v ⊂ V , a list-coloring instance (G,L) becomes
an instance for q-coloring, which we denote as (G, [q]).

Self-avoiding Walk (SAW) Tree. Given a graph G(V,E) and a vertex v ⊂ V ,
a tree T rooted by v can be naturally constructed from all self-avoiding walks
starting from v so that each walk corresponds to a vertex in T , and each walk p
is the parent of walks (p, u) where u ⊂ V is a vertex. We use TSAW(G, v) = T to
denote this tree constructed as above, and call it a self-avoiding walk tree (SAW)
of graph G.

Gibbs Measure and Strong Spatial Mixing. A feasible list-coloring instance (G,L)
gives rise to a natural probability distribution μ = μG,L, which is the uniform dis-
tribution over all proper list-colorings. This distribution μ is also called the Gibbs
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measure of list-colorings. We also a notation of PG,L(event(c)) = Pr[event(c)] to
evaluate probability of an event defined on a uniform random proper coloring c
of (G,L). Let B → V and χ → V . For any feasible coloring ∂ ⊂ L(χ) partially
specified on vertex set χ, we use μΩ

B = μΩ
G,L,B to denote the marginal distribu-

tion over colorings of vertices in B conditioning on that the coloring of vertices
in χ is as specified by ∂. And when B = {v}, we write μΩ

v = μΩ
G,L,v = μΩ

G,L,{v}.

The list-coloring instance (G,L) in the subscripts can be omitted if it is assumed
in context. Formally, for a uniformly random proper coloring c of (G,L), we have

∪x ⊂ L(v), μΩ
v (x) = PG,L(c(v) = x | ∂),

∪ζ ⊂ L(B), μΩ
B(ζ) = PG,L(c(B) = ζ | ∂).

The notion strong spatial mixing is introduced in [18,19] for independent sets
and extended to colorings in [11, 13].

Definition 3 (Strong Spatial Mixing). The Gibbs measure on proper q-
colorings of a family G of finite graphs exhibits strong spatial mixing (SSM)
if there exist constants C1, C2 > 0 such that for any graph G(V,E) ⊂ G, any
v ⊂ V, χ ⇐ V , and any two feasible q-colorings ∂, φ ⊂ [q]α, we have

≤μΩ
v − μλ

v≤TV ∧ C1 exp(−C2dist(v,κ)),

where κ ⇐ χ is the subset on which ∂ and φ differ, and ≤ · ≤TV is the total
variation distance.

When the exponential bound relies on dist(v, χ) instead of dist(v,κ), the defi-
nition becomes weak spatial mixing (WSM). The difference is SSM requires the
exponential correlation decay continues to hold even conditioning on the coloring
of a subset χ \κ of vertices being arbitrarily (but feasibly) specified.

Random graph model. The Erdös-Rényi random graph G(n, p) is the graph with
n vertices V and random edges E where for each pair {u, v}, the edge uv is chosen
independently with probability p. We consider G(n, d/n) with fixed d > 1.

We say an event occurs with high probability (w.h.p.) if the probability of the
event is 1 − o(1).

3 Correlation Decay along Self-avoiding Walks

In this section, we analyze the propagation of errors between marginal distribu-
tions measured by a special norm introduced in [11] in general degree-unbounded
graphs. Throughout this section, we assume (G,L) to be a list-coloring instance
with G = (V,E) and L = (L(v) : v ⊂ V ) where each L(v) ⇐ [q].

The following error function is introduced in [11].

Definition 4 (Error Function). Let μ1 : Ω ⇔ [0, 1] and μ2 : Ω ⇔ [0, 1] be
two probability measures over the same sample space Ω. We define

E(μ1, μ2) = max
x,y√Δ

(
log

(
μ1(x)

μ2(x)

)
− log

(
μ1(y)

μ2(y)

))
,

with the convention that 0/0 = 1 and ≥−≥ = 0.
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We assume (G,L) to be feasible so that for vertex set B → V and feasible
colorings ∂, φ ⊂ L(χ) of vertex set χ → V , the marginal probabilities μΩ

B and μλ
B

are well-defined. The strong spatial mixing is proved by establishing a propaga-
tion of errors E(μΩ

B, μ
λ
B). Note that unlike in bounded-degree graphs, in general

the value of E(μΩ
B , μ

λ
B) can be infinite, which occurs when the possibility of a

particular coloring of B is changed by conditioning on ∂ and φ . This is avoided
when a vertex cut with certain “permissive” property separating B from the
boundary. The following proposition is proved in the full version.

Proposition 5. If there is a S → V \ (B ∗ χ) such that |L(v)| > d(v) + 1 for
every v ⊂ S and removing S disconnects B and χ, then E(μΩ

B , μ
λ
B) is finite for

any feasible colorings ∂, φ ⊂ L(χ).

This motivates the following definition of permissive vertex and vertex set.

Definition 6. Given a list-coloring instance (G,L), a vertex v is said to be
permissive in (G,L) if for all neighbors u of v and u = v, it holds that |L(u)| >
d(u) + 1. A set S of vertices is said to be permissive if all vertices in S are
permissive.

Let T = TSAW(G, v) be the self-avoiding walk tree of graph G expanded from
vertex v. Recall that every vertex u in T can be naturally identified (many-to-
one) with the vertex in G at which the corresponding self-avoiding walk ends
(which we also denote by the same letter u).

Definition 7. Given a list-coloring instance (G,L), let v ⊂ V , T = TSAW(G, v),
and S a set of vertices in T . Suppose that the root v has m children v1, v2, . . . , vm
in T and for i = 1, 2 . . . ,m, let Ti denote the subtree rooted by vi. The quantity
ET,L,S is recursively defined as follows

ET,L,S =

⎧
⎨⎩

⎨⎢

m⎣

i=1

α (vi) · ETi,L,S if v ⇒⊂ S,

3q if v ⊂ S,

where α(u) is a piecewise function defined as that for any vertex u in T ,

α(u) =

⎛
1

|L(u)|)−dG(u)−1 if |L(u)| > dG(u) + 1,

1 otherwise,

where dG(v) is the degree in the original graph G instead of the degree in SAW-
tree T .

In particular, when (G,L) is a q-coloring instance (G, [q]), we denote this
quantity as ET,[q],S.

To state the main theorem of this section, we need one more definition.

Definition 8. Let G = (V,E), v ⊂ V , κ → V , and T = TSAW(G, v). A set S of
vertices in T is a cutset in T for v and κ if: (1) no vertex in S is identified to
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v or any vertex u with dist(u,κ) < 2 by TSAW(G, v); and (2) any self-avoiding
walk from v to a vertex in κ must intersect S in T . A cutset S in T for v
and κ is said to be permissive in (G,L) if every vertex in S is identified with a
permissive vertex in (G,L) by TSAW(G, v).

The following theorem is the main theorem of this section, which bounds the
error function E(μΩ

v , μ
λ
v) by the ET,L,S defined in Definition 7 when there is a

good cutset in the SAW tree.

Theorem 9. Let (G,L) be a feasible list-coloring instance where G = (V,E)
and L = (L(v) ⇐ [q] : v ⊂ V ). Let v ⊂ V , χ → V and κ ⇐ χ be arbitrary, and
T = TSAW(G, v). If there is a permissive cutset S in T for v and κ, then for
any feasible colorings ∂, φ ⊂ L(χ) which differ only on κ, it holds that

E(μΩ
v , μ

λ
v) ∧ ET,L,S .

This theorem is implied by the following weak spatial mixing version of the
theorem.

Lemma 10. Let (G,L) be a feasible list-coloring instance where G = (V,E)
and L = (L(v) ⇐ [q] : v ⊂ V ). Let v ⊂ V and κ ⇐ χ be arbitrary, and
T = TSAW(G, v). If there is a permissive cutset S in T for v and κ, then for
any feasible colorings ∂, φ ⊂ L(κ), it holds that

E(μΩ
v , μ

λ
v) ∧ ET,L,S .

The implication from Lemma 10 to Theorem 9 is quite standard, whose proof
is in the full version. It now remains to prove Lemma 10.

3.1 The Block-Wise Correlation Decay

Now our task is to prove Lemma 10. This is done by establishing the decay of
E(μΩ

B , μ
λ
B) along walks among blocks B with the following good property.

Definition 11. Given a list-coloring instance (G,L), a vertex set B ⇐ V is a
permissive block around v in (G,L) if v ⊂ B and |L(u)| > dG(u) + 1 for every
vertex u in the vertex boundary ΔB.

For permissive blocks B, a coloring of B is globally feasible if and only if it is
locally feasible (i.e. proper on B).

Lemma 12. Let κ → V and B → V a permissive block such that dist(B,κ) ∈ 2.
Then for any feasible coloring ∂ ⊂ L(κ), for any coloring ζ ⊂ L(B), it holds
that μΩ

B(ζ) > 0 if and only if ζ is proper on B.

Proof. Let S = ΔB. Note that with dist(B,κ) ∈ 2 and S must be a vertex cut
separating B and κ. Then the lemma can be proved by the same argument as
in the proof of Proposition 5.
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Notations. We now define some notations which are used throughout this sec-
tion. Let B → V be a permissive block in a feasible list-coloring instance (G,L).
Let αB = {uw ⊂ E | u ⊂ B and w ⇒⊂ B} be the edge boundary of B. We
enumerate these boundary edges as αB = {e1, e2, . . . , em}. For i = 1, 2, . . . ,m,
we assume ei = uivi where ui ⊂ B and vi ⇒⊂ B. Note that in this notation
more than one ui or vi may refer to the same vertex in G. Let GB = G[V \ B]
be the subgraph of G induced by vertex set V \ B. For a coloring ζ ⊂ L(B)
and 1 ∧ i ∧ m, we denote ζi = ζ(ui). For 1 ∧ i ∧ m and ζ, ρ ⊂ L(B), let
Li,j,Λ,η = (L≤(v) : v ⊂ V \B) be obtained from L by removing the color ζk from
the list L(vk) for all k < i and removing the color ρk from the list L(vk) for all
k > i (if any of these lists do not contain the respective color then no change is
made to them).

With this notation, the following lemma (proved in the full version) generalizes
a recursion introduced in [11] for bounded-degree graphs to general graphs.

Lemma 13. Let (G,L) be a feasible list-coloring instance, B → V a permissive
block with edge boundary αB = {e1, e2, . . . , em} where ei = uivi for each i =
1, 2, . . . ,m, and ζ, ρ ⊂ L◦(B) any two proper colorings of B. For every 1 ∧ i ∧ m,

– if a vertex u ⇒⊂ B is permissive in (G,L), then it is permissive in the new
instance (GB,Li,Λ,η);

– the new instance (GB ,Li,Λ,η) is feasible.

For any feasible coloring ∂ ⊂ L(κ) of a vertex set κ → V with dist(B,κ) ∈ 2,
we have

PG,L(c(B) = ζ | ∂)

PG,L(c(B) = ρ | ∂)
=

m⎝

i=1

1 − PGB ,Li,π,ρ(c(vi) = ζi | ∂)

1 − PGB ,Li,π,ρ(c(vi) = ρi | ∂)
.

The following marginal bounds are standard and are proved in full version.

Lemma 14. Given a feasible list-coloring instance (G,L), if vertex v has |L(v)|>
d(v) + 1 and v ⇒⊂ κ, then for any feasible coloring ∂ ⊂ L(κ) and any x ⊂ L(v), we
have

PG,L(c(v) = x | ∂) ∧ 1

|L(v)| − d(v)
.

If vertex v is permissive in (G,L) and dist(v,κ) ∈ 2, then for any feasible
coloring ∂ ⊂ L(κ) and any x ⊂ L(v), we have

PG,L(c(v) = x | ∂) ∈ 1

|L(v)|2d(v) .

The recursion in Lemma 13 can imply the following bound for the block-
wise decay of error function E(μΩ

v , μ
λ
v). The proof generalizes the analysis of the

point-wise decay in degree-bounded graphs in [11], and is put to the full version.

Lemma 15. Let (G,L) be a feasible list-coloring instance, v ⊂ V and B → V
a permissive block around v with edge boundary αB = {e1, e2, . . . , em} where
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ei = uivi for each i = 1, 2, . . . ,m. Let κ → V be a vertex set with dist(B,κ) ∈ 2,
and ∂, φ ⊂ L(κ) any two feasible colorings of κ. Assume ζ, ρ ⊂ L◦(B) to be two
proper colorings of B achieving the maximum in the error function:

E(μΩ
B, μ

λ
B) = max

Λ,η√L∗(B)

(
log

(
μΩ
B(ζ)

μλ
B(ζ)

)
− log

(
μΩ
B(ρ)

μλ
B(ρ)

))
.

It holds that

E(μΩ
v , μ

λ
v) ∧

m⎣

i=1

1

|L(vi)| − d(vi) − 1
· E(μΩ

i , μ
λ
i ),

where μΩ
i = μΩ

GB ,Li,π,ρ,vi
and μλ

i = μλ
GB ,Li,π,ρ,vi

are the respective marginal dis-
tributions of coloring of vertex vi conditioning on ∂ and φ in the new list-coloring
instance (GB ,Li,Λ,η).

With the above block-wise decay, we are now ready to prove Lemma 10, which
implies Theorem 9.

Proof (Proof of Lemma 10). Given a feasible list-coloring instance (G,L) and a
vertex v, let T = TSAW(G, v) and S a permissive cutset in T separating v and
κ. We consider the following procedure:

1. Let B be the minimal permissive block around v with edge boundary αB =
{e1, e2, . . . , em}, where ei = uivi for i = 1, 2, . . . ,m (note that more than
one ui or vi may refer to the same vertex). By Lemma 15, we have

E(μΩ
v , μ

λ
v) ∧

m⎣

i=1

1

|L(vi)| − d(vi) − 1
· E(μΩ

i , μ
λ
i ), (1)

where μΩ
i = μΩ

GB ,Li,π,ρ,vi
and μλ

i = μλ
GB ,Li,π,ρ,vi

are the respective marginal

distributions at vi in the new list-coloring instance (GB,Li,Λ,η) for the ζ, ρ ⊂
L◦(B) defined in Lemma 15. By Lemma 13, all these new list-coloring in-
stances are feasible.

2. We identify each vi with a distinct self-avoiding walk in G from v to vi
through only vertices in B and approaching vi via the edge ei = uivi. Such
self-avoiding walk must exist or otherwise B is not minimal. If there are
more than one such self-avoiding walk for a vi, choose an arbitrary one to
identify vi with. We use wi to denote this walk to vi.
Note that along every such self-avoiding walk wi from v to vi, all vertices u
except v and vi must have |L(u)| ∧ d(u) + 1 in (G,L) or otherwise B is not
minimal. Thus by Definition 7, in quantity ET,L,S , along every walk wi from
v to vi, at each intermediate vertex u ⇒⊂ {v, vi}, only a factor of α(u) = 1 is
multiplied in ET,L,S , so we have

ET,L,S ∈
m⎣

i=1

1

|L(vi)| − d(vi) − 1
ETwi

,L,S, (2)

where Twi denotes the subtree of the SAW tree T rooted by the self-avoiding
walk wi.
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3. For each 1 ∧ i ∧ m, if the self-avoiding walk wi corresponds to a vertex in
the permissive cutset S in the SAW tree T , then vi itself must be permissive
in (G,L) and dist(vi, κ) ∈ 2, both of which continue to hold in the new

instance (GB ,Li,Λ,η). By Lemma 14, we have μΩ
i (x), μλ

i (x) ⊂
⎞

1
q2q−2 ,

1
2

⎠
for

any x ⊂ L(vi), thus

E (μΩ
i , μ

λ
i ) ∧ 2 (ln q + q ln 2) ∧ 3q; (3)

and if otherwise, wi is not in S in the SAW tree T , we repeat from the first
step for vertex vi in the new instance (GB,Li,Λ,η).

We can then apply an induction to prove that E(μΩ
v , μ

λ
v) ∧ ET,L,S , with (3) as

basis, and (1) and (2) as induction step. We only need to clarify that each appli-
cation of (1) creates new instances (GB ,Li,Λ,η), while ET,L,S is defined using only
the original instance (G,L). This will not cause any issue because by Lemma 13,
every new instance (GB,Li,Λ,η) created during this procedure must be feasible.
Moreover, the operation the new instance (GB ,Li,Λ,η) applying on (G,L) never
makes any vertex less permissive, and never increases the multiplicative factor

1
|L(vi)|−d(vi)−1 in the recursion.

4 Strong Spatial Mixing on Random Graphs

In this section, we prove Theorem 2, the strong spatial mixing of q-coloring of
random graph G(n, d/n) with respect to a fixed vertex. The theorem is proved
by applying Theorem 9 to random graph G(n, d/n). The following lemma states
the existing with high probability of a good permissive cutset in the self-avoiding
walk tree of a random graph G(n, d/n). The proof is in the full version.

Lemma 16. Let d > 1, q ∈ σd + τ for σ > 2 and τ ∈ 23, and t(n) = β(1)
an arbitrary super-constant function. Let v ⊂ V be arbitrarily fixed and G =
(V,E) a random graph draw from G(n, d/n). The following event holds with
high probability: for any t(n) ∧ t ∧ lnn

ln d and any vertex set κ → V satisfying
distG(v,κ) > 2t, there exists a permissive cutset S in T = TSAW(G, v) for v and
κ such that t ∧ distT (v, u) < 2t for all vertices u ⊂ S.

We then observe that the quantity ET,L,S decays fast on average. The proof
is also in the full version.

Lemma 17. Let fq(x) be a piecewise function defined as

fq(x) =

⎛
1

q−x−1 if x ∧ q − 2,

1 otherwise.

Let X be a random variable distributed according to binomial distribution B(n, d
n )

where d = o(n). For q ∈ 2d + 4, it holds that E [fq(X)] < 1
d .

We then prove a strong spatial mixing theorem with the norm of error function
E(μΩ

v , μ
λ
v).
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Lemma 18. Let d > 1, q ∈ σd + τ for σ > 2 and τ ∈ 23, and t(n) = β(1) an
arbitrary super-constant function. Let v ⊂ V be arbitrarily fixed and G = (V,E) a
random graph draw from G(n, d/n). There exist constants C1, C2 > 0 depending
only on d and q such that with high probability G is q-colorable and

E(μΩ
v , μ

λ
v) ∧ C1 exp(−C2dist(v,κ))

for any feasible q-colorings ∂, φ ⊂ [q]α partially specified on a subset χ → V of
vertices, such that ∂ and φ differ only on a subset κ ⇐ χ with dist(v,κ) ∈ t(n).

Proof (Sketch of Proof). We only give a sketch of the proof. The detailed proof
is given in the full version.

Fix v ⊂ V . Let T = TSAW(G, v) be the self-avoiding walk tree of G. Fix an
arbitrary t(n) ∧ t ∧ lnn

ln d . Consider Et = maxS ET,[q],S where the maximum is
taken over all vertex set S in T satisfying t ∧ distT (v, u) < 2t for all u ⊂ S. By
enumerating all self-avoiding walks P = (v, v1, . . . , vk) from v to a vertex vk ⊂ S,
we have

E [Et] ∧ 3q

2t−1⎣

k=t

dk · E
[

k⎝

i=1

fq(dG(vi))

∣
∣
∣
∣ P = (v, v1, . . . , vk) is a path

]

,

where the function fq(x) is as defined in Lemma 17. We then calculate the expec-
tations. Fix a tuple P = (v, v1, . . . , vk). We construct an independent sequence

whose product dominates the
∏k

i=1 fq(dG(vi)).
Conditioning on P = (v, v1, . . . , vk) being a path in G. Let X1, X2, . . . , Xk

be such that each Xi is the number of edges between vi and vertices in V \
{v1, . . . , vk}; and let Y be the number of edges between vertices in {v1, . . . , vk}
except for the edges in the path P = (v, v1, . . . , vk). Then X1, X2, . . . , Xk, Y are
mutually independent binomial random variables, and for each vi in the path we
have dG(vi) = Xi + 2 + Yi for some Y1 + Y2 + · · · + Yk = 2Y .

Due to the property of function fq(x) we can bound that

k⎝

i=1

fq(dG(vi)) =
k⎝

i=1

fq(Xi + 2 + Yi) ∧ 4Y
k⎝

i=1

fq−2(Xi).

Since X1, X2, . . . , Xk, Y are mutually independent conditioning on P is a path,

E

[
k⎝

i=1

fq(dG(vi))

∣
∣
∣
∣ P is a path

]

∧ E

[

4Y
k⎝

i=1

fq−2(Xi)

]

∧ E
[
4Y

]
E [fq−2(X)]

k
,

where E [fq−2(X)] can be upper bounded by Lemma 17, and E
[
4Y

]
by the

binomial theorem. Then a calculation gives

E [Et] ∧ 3q

2t−1⎣

k=t

E

[
k⎝

i=1

fq(dG(vi))

∣
∣
∣
∣ P is a path

]

∧ exp (−Ω(t)) .

By Markov’s inequality and union bound, with high probability we have Et ∧
exp (−Ω(t)) for all t(n) ∧ t ∧ lnn

ln d .
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By [1], w.h.p. G is q-colorable. By Lemma 16, w.h.p. we have good permissive
cutset S satisfying the conditions in Lemma 16, which by Theorem 9, implies
that E(μΩ

v , μ
λ
v) ∧ ET,[q],S ∧ Et ∧ exp (−Ω(t)). By [2], w.h.p. the diameter of G

is in O( ln n
ln d ), thus we can choose t = Π(dist(v,κ)) with a t(n) ∧ t ∧ lnn

ln d , which
gives us E(μΩ

v , μ
λ
v) ∧ exp (−Ω(dist(v,κ))).

With Lemma 18, the proof of Theorem 2 is immediate, which is in the full
version.
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Briët, Jop I-259
Bringmann, Karl I-247
Brzozowski, Janusz II-1
Bulteau, Laurent I-174
Bundala, Daniel II-86

Cai, Jin-Yi I-271
Canonne, Clément I-283
Cerone, Andrea II-98
Cervelle, Julien II-74
Chailloux, André I-296
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