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Abstract. In this paper we introduce a variant of membrane systems
with elementary division and without charges. We allow only elementary
division where the resulting membranes are identical; we refer to this
using the biological term symmetric division. We prove that this model
characterises P and introduce logspace uniform families. This result char-
acterises the power of a class of membrane systems that fall under the
so-called P conjecture for membrane systems.

1 Introduction

The P-conjecture states that recogniser membranes systems with division rules
(active membranes [6]), but without charges, characterise P. This was shown
for a restriction of the model: without dissolution rules [4]. However, it has
been shown that systems with dissolution rules and non-elementary division
characterise PSPACE [2,9]. In this setting, using dissolution rules allows us to
jump from P to PSPACE. As a step towards finding a bound (upper or lower)
on systems with only elementary division rules, we propose a new restriction,
and show that it has an upper bound of P.

Our restriction insists that the two membranes that result from an elementary
division rule must be identical. This models mitosis, the biological process of cell
division [1] and we refer to it using the biological term “symmetric division”.
We refer to division where the two resulting daughter cells are different by the
biological term “asymmetric division”. In nature asymmetric division occurs, for
example, in stem cells as a way to achieve cell differentiation.

Since our model is uniform via polynomial time deterministic Turing ma-
chines, it trivially has a lower bound of P. However, we introduce logspace
uniformity for this model and then prove a P lower bound. All recogniser mem-
brane systems with division rules are upper bounded by PSPACE [9]. In this
paper we show that systems with symmetric elementary division and without
charges are upper bounded by P. From an algorithmic point of view, this result
allows one to write a polynomial time algorithm that models certain membrane
systems which use exponential numbers of membranes and objects.
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2 Preliminaries

In this section we define membrane systems and complexity classes. These defini-
tions are from Păun [6,7], and Sośık and Rodŕıguez-Patón [9]. We also introduce
the notion of logspace uniformity for membrane systems. We give a P lower
bound for the model that is the main focus of this paper.

2.1 Recogniser Membrane Systems

Active membranes systems are membrane systems with membrane division rules.
Division rules can either only act on elementary membranes, or else on both
elementary and non-elementary membranes. An elementary membrane is one
which does not contain other membranes (a leaf node, in tree terminology).
In Definition 1 we make a new distinction between two types of elementary
division rules. When we refer to symmetric division (es) we mean division where
the resulting two child membranes are identical. When the two child membranes
are not identical we refer to the rule as being asymmetric (e).

Definition 1. An active membrane system without charges using elementary
division is a tuple Π = (V, H, μ, w1, . . . , wm, R) where,

1. m > 1 the initial number of membranes;
2. V is the alphabet of objects;
3. H is the finite set of labels for the membranes;
4. μ is a membrane structure, consisting of m membranes, labelled with ele-

ments of H;
5. w1, . . . , wm are strings over V , describing the multisets of objects placed in

the m regions of μ.
6. R is a finite set of developmental rules, of the following forms:

(a) [ a → v ]h,
for h ∈ H, a ∈ V, v ∈ V ∗

(b) a[h ]h → [h b ]h,
for h ∈ H, a, b ∈ V

(c) [h a ]h → [h ]h b,
for h ∈ H, a, b ∈ V

(d) [h a ]h → b,
for h ∈ H, a, b ∈ V

(es) [h a ]h → [h b ]h [h b ]h,
for h ∈ H, a, b ∈ V

(e) [h a ]h → [h b ]h [h c ]h,
for h ∈ H, a, b, c ∈ V .

These rules are applied according to the following principles:

– All the rules are applied in maximally parallel manner. That is, in one step,
one object of a membrane is used by at most one rule (chosen in a non-
deterministic way), but any object which can evolve by one rule of any form,
must evolve.
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– If at the same time a membrane labelled with h is divided by a rule of type
(e) or (es) and there are objects in this membrane which evolve by means
of rules of type (a), then we suppose that first the evolution rules of type
(a) are used, and then the division is produced. This process takes only one
step.

– The rules associated with membranes labelled with h are used for membranes
with that label. At one step, a membrane can be the subject of only one rule
of types (b)-(e).

In this paper we study the language recognising variant of membrane systems
which solves decision problems. A distinguished region contains, at the beginning
of the computation, an input — a description of an instance of a problem. The
result of the computation (a solution to the instance) is “yes” if a distinguished
object yes is expelled during the computation, otherwise the result is “no”. Such
a membrane system is called deterministic if for each input a unique sequence of
configurations exists. A membrane system is called confluent if it always halts
and, starting from the same initial configuration, it always gives the same result,
either always “yes” or always “no”. Therefore, given a fixed initial configuration,
a confluent membrane system non-deterministically chooses from one from a
number of valid configuration sequences and rule applications but all of them
must lead to the same result.

2.2 Complexity Classes

Complexity classes have been defined for membrane systems [8]. Consider a
decision problem X , i.e. a set of instances {x1, x2, . . .} over some finite alphabet
such that to each xi there is an unique answer “yes” or “no”. We consider a
family of membrane systems to solve a decision problem if each instance of the
problem is solved by some class member.

We denote by |xi| the size of any instance xi ∈ X .

Definition 2 (Polynomial uniform families of membrane systems). Let
D be a class of membrane systems and let f : N → N be a total function. The
class of problems solved by uniform families of membrane systems of type D in
time f , denoted by MCD(f), contains all problems X such that:

– There exists auniform family ofmembrane systems,ΠX = (ΠX(1); ΠX(2); . . .)
of typeD: each ΠX(n) is constructable by a deterministic Turing machine with
input n and in time that is polynomial of n.

– Each ΠX(n) is sound: ΠX(n) starting with an input (encoded by a deter-
ministic Turing machine in polynomial time) x ∈ X of size n expels out a
distinguished object yes if an only if the answer to x is “yes”.

– Each ΠX(n) is confluent: all computations of ΠX(n) with the same input x
of size n give the same result; either always “yes” or else always “no”.

– ΠX is f -efficient: ΠX(n) always halts in at most f(n) steps.

Polynomial Semi-uniform families of membrane systems ΠX = (ΠX(x1);
ΠX(x2); . . .) whose members ΠX(xi) are constructable by a deterministic Tur-
ing machine with input xi in a polynomial time with respect to |xi|. In this case,
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for each instance of X we have a special membrane system which therefore does
not need an input. The resulting class of problems is denoted by MCS

D(f). Ob-
viously, MCD(f) ⊆ MCS

D(f) for a given class D and a complexity [3] function
f .

We denote by

PMCD =
⋃

k∈N

MCD(O(nk)), PMCS
D =

⋃

k∈N

MCS
D(O(nk))

the class of problems solvable by uniform (respectively semi-uniform) families of
membrane systems in polynomial time. We denote by AM the classes of mem-
brane systems with active membranes. We denote by EAM the classes of mem-
brane systems with active membranes and only elementary membrane division.
We denote by AM0

−a (respectively, AM0
+a) the class of all recogniser membrane

systems with active membranes without charges and without asymmetric divi-
sion (respectively, with asymmetric division). We denote by PMCS

EAM0
−a

the
classes of problems solvable by semi-uniform families of membrane systems in
polynomial time with no charges and only symmetric elementary division. We
let poly(n) be the set of polynomial complexity functions of n.

2.3 (Semi-)Uniformity Via logspace Turing Machines

In Theorem 2 we prove that PMCS
EAM0

−a
has a P upper bound. When we use

(semi-)uniform families constructed in polynomial time by deterministic Turing
machines we trivially have a P lower bound. However, to ensure that the mem-
brane system itself is able to solve any problem in P, and is not benefiting from

and

t

1
t

0
f

input input

T [t ] → [t T ],
[t T ] → λ,
F [f ] → [fF ],
[f F ] → λ,
[and 1 ] → [and ]T ,
[and 0 ] → [and ]F .

or

f
0

f
1

t

input input

F [f ] → [f F ],
[f F ] → λ,
T [t ] → [tT ],
[t T ] → λ,
[or 0 ] → [or ]F ,
[or 1 ] → [or ]T .

Fig. 1. AND and OR gadgets which can be nested together to simulate a circuit. The
input is either a T, F, or a nested series of gadget membranes. A NOT gate membrane
can be made with the rules [not T ] → [not ]F , [not F ] → [not ]T .
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preprocessing by the output of the encoding Turing machine or family generat-
ing Turing machine, we restrict both of these machines to be logspace Turing
machines.

In the following theorem it is understood that PMCS
EAM0

−a
is logspace

uniform.

Theorem 1. P ⊆ PMCS
EAM0

−a

Proof. A logspace Turing machine encodes an instance of the Circuit Value
problem (CVP) [5] as a PMCS

EAM0
−a

membrane system using the gadgets shown
in Figure 1. The resulting membrane system directly solves the instance of CVP
in polynomial time. ��
The main result of this paper, Theorem 2, holds for both logspace and polynomial
families of PMCS

EAM0
−a

.

3 An Upper Bound on PMCS
EAM0

−a

In this section we give an upper bound of P on the membrane class PMCS
EAM0

−a
.

We provide a random access machine (RAM) algorithm that simulates this class
using a polynomial number of registers of polynomial length, in polynomial time.
We begin with an important definition followed by informal description of our
contribution.

Definition 3 (Equivilance class of membranes). An equivalence class of
membranes is a multiset of membranes where: each membrane shares a sin-
gle parent, each has the same label, and each has identical contents. Further,
only membranes without children can be elements of an equivalence class of size
greater than one; each membrane with one or more children has its own equiva-
lence class of size one.

Throughout the paper, when we say that a membrane system has |E| equivalence
classes, we mean that |E| is the minimum number of equivalence classes that
includes all membranes of the system.

While it is possible for a computation path of PMCS
EAM0

−a
to use an ex-

ponential number of equivalence classes, our analysis guarantees that there is
another, equally valid, computation path that uses at most a polynomial num-
ber of equivalence classes. Our algorithm finds this path in polynomial time.
Moreover, via our algorithm, after a single timestep the increase in the number
of equivalence classes is never greater than |E0||V |, the product of the number
of initial equivalence classes and the number of object types in the system. Since
the system is confluent, our chosen computation path is just as valid to follow
as any alternative path.
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In Section 3.2 we prove that by using our algorithm:

– Type (a) rules do not increase the number of equivalence classes since the
rule has the same effect on each membrane of a given equivalence class.

– Type (c) rules do not increase the number of equivalence classes since ob-
jects exit all child membranes for the parent membrane (which is already an
equivalence class with one membrane).

– Type (d) rules do not increase the number of equivalence classes since the
rule is applied to all membranes in the equivalence class. The contents and
child membranes are transfered to the parent (already an equivalence class).

– Type (es) rules do not increase the number of equivalence classes, only the
number of membranes in the existing equivalence classes simply increase.

Type (b) rules require a more detailed explanation. In Section 3.3 we show that
there is a deterministic polynomial sequential time algorithm that finds a com-
putation path that uses only a polynomial number of equivalence classes.

Our RAM algorithm operates on a number of registers that can be thought
of as a data structure (see Section 3.1). The data structure stores the state of
the membrane system at each timestep. It compresses the amount of informa-
tion to be stored by storing equivalence classes instead of explicitly storing all
membranes. Each equivalence class contains the number of membranes in the
class, a reference to each of the distinct objects in one of those membranes, and
the number of copies of that distinct object. Type (a) rules could therefore pro-
vide a way to create exponential space. However, we store the number of objects
in binary thus we store it using space that is the logarithm of the number of
objects.

Our RAM algorithm operates in a deterministic way. To introduce determin-
ism we sort all lists of object multisets by object multiplicity, then lexicograph-
ically. We sort all equivalence classes by membrane multiplicity, then by label,
and then by object. We sort all rules by rules type, matching label, matching
object, and then by output object(s). The algorithm iterates through the equiv-
alence classes and applies all rules of type (a), (c), (d), and (es). It then checks
to see if any rules of type (b) are applicable. If so, it takes each object in its
sorted order and applies it to the relevant membranes in their sorted order.

Theorem 2. PMCS
EAM0

−a
⊆ P

The proof is in the remainder of this section. The result holds for both logspace
and polynomial time uniform membrane systems of type PMCS

EAM0
−a

.

3.1 Structure of RAM Registers

Our RAM uses a number of binary registers that is a polynomial (poly(n)) of
the length n of the input. The length of each register is bounded by a polynomial
of n. For convenience our registers are grouped together in a data structure (as
illustrated in Figure 2).
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equivalence class

h parent children copies used

object

v copies used

Rule
type

lhsObject

lhsLabel

rhsObject

rhsAObjects

Fig. 2. A representation of our polynomial sized registers as a data structure

Object registers. For each distinct object type vi, the following registers are
used to encode the object in an equivalence class ek ∈ E.

The register v represents the type of the object, vi ∈ V (see Definition 1).
Throughout the computation, the size of the set V is fixed so this register does
not grow beyond its initial size.

The copies register is the multiplicity of the distinct object vi encoded in
binary. At time 0 we have |vi| objects. At time 1 the worst case is that each
object evolves via a type (a) rule to give a number of objects that is poly(n).
This is an exponential growth function, however, since we store it using binary,
the register length does not grow beyond space that is poly(n).

The register used represents the multiplicity vi objects that have been used
already in this computation step. It is always the case that used ≤ copies for
each object type vi.

Equivalence class registers. The following registers are used to store in-
formation about each equivalence class. To conserve space complexity we only
explicitly store equivalence classes (rather than explicitly storing membranes);
the number of equivalence classes is denoted |E|.

The register h stores the label of equivalence class ek and is an element of
the set H (see Definition 1). The size of register h is fixed and is bounded by
poly(n).

The register parent stores a reference to the equivalence class (a single mem-
brane in this case) that contains this membrane. This value is bounded by the
polynomial depth of the membrane structure. Since the depth of the membrane
structure is fixed throughout a computation, the space required to store a parent
reference is never greater than a logarithm of the depth.

The children register references all of the child equivalence classes of ek at
depth one. Its size is bounded by poly(n) via Theorem 3.

The register copies stores the number, denoted |ek|, of membranes in the
equivalence class. We store this number in binary. In the worst case, the number
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that is stored in copies doubles at each timestep (due to type (es) rules). Since
we store this number in binary we use space that is poly(n).

The register used stores the number of membranes in the equivalence class
that have been used by some rule in the current timestep and so this value is
≤ |ek|.

Rules registers. The rules registers store the rules of the membrane system;
their number is bounded by the polynomial |R| and is fixed for all time t. The
rules registers can not change or grow during a computation. The type register
stores if the rule is of type (a), (b), (c), (d) or (es). The lhsObject register stores
the object on the left hand side of the rule. The lhsLabel register stores the
label on the left hand side of the rule. The rhsObject register stores the object
on the right hand side of the rule. The rhsAObjects register stores the multiset
of objects generated by the rule.

3.2 There Is a Computation Path That Uses Polynomially Many
Equivalence Classes

In Section 3.2 we prove Theorem 3. Before proceeding to this theorem we make
an important observation. Suppose we begin at an initial configuration of a
recogniser membrane system. Due to non-determinism in the choice of rules
and objects, after t timesteps we could be in any one of a large number of
possible configurations. However all computations are confluent. So if we are
only interested in whether the computation accepts or rejects, then it does not
matter which computation path we follow.

Theorem 3 asserts that after a polynomial number of timesteps, there is
at least one computation path where the number of equivalence classes of a
PMCS

EAM0
−a

system is polynomially bounded. This is shown by proving that
there is a computation path where the application of each rule type (a) to (es),
in a single timestep, leads to at most an additive polynomial increase in the
number of equivalence classes.

Theorem 3. Given an initial configuration of a PMCS
EAM0

−a
system Π with

|E0| equivalence classes and |V | distinct object types, then there is a computation
path such that at time t ∈ poly(n) the number of equivalence classes is |Et| =
O(|E0| + t|E0||V |) which is poly(n).

Proof. Base case: From Definition 3, |E0| is bounded above by the (polynomial)
number of membranes at time 0. Thus |E0| ∈ poly(n). Each of lemmata 1 to 5
gives an upper bound on the increase in the number of equivalence classes after
one timestep for rule types (a) to (es), respectively. Lemma 2 has an additive
increase of |E0||V | and the other four lemmata have an increase of 0. Thus at
time 1 there is a computation path where the number of equivalence classes is
|E1| ≤ |E0| + |E0||V |. (From Definitions 1 and 2, |V | ∈ poly(n) and |V | is fixed
for all t.)
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Inductive step: Assume that |Ei|, the number of equivalence classes at time i,
is polynomial in n. Then, while Lemmata 1 to 5, there exists a computation path
where |Ei+1| ≤ |Ei| + |E0||V |.

After t timesteps we have |Et| = O(|E0|+ t|E0||V |), which is polynomial in n
if t is. ��
The proofs of the following five lemmata assume some ordering on the set of
object types V and on the rules R. For the proof of Lemma 2, we give a specific
ordering, however for the other proofs any ordering is valid.

Lemma 1. Given a configuration Ci of a PMCS
EAM0

−a
system with |E| equiv-

alence classes. After a single timestep, where only rules of type (a) (object evo-
lution) are applied, there exists a configuration Ci+1 such that Ci � Ci+1 and
Ci+1 has ≤ |E| equivalence classes.

Proof. If a type (a) rule is applicable to an object in a membrane in equivalence
class ek, then the rule is also applicable in exactly the same way to all membranes
in ek. Due to non-determinism in the choice of rules and objects, it could be the
case that the membranes in ek evolve differently. However let us assume an
ordering on the object types V and on the rules R. We apply the type (a) rules
to objects using this ordering. Then all membranes in an equivalence class evolve
identically in a timestep, and no new equivalence classes are created. Thus there
is a computation path Ci � Ci+1 where there is no increase in the number of
equivalence classes. ��
Observe that type (b) rules have the potential to increase the number of equiv-
alence classes in one timestep by sending different object types into different
membranes from the same class. For example, if objects of type v1 are sent into
some of the membranes in an equivalence class, and v2 objects are sent into
the remainder, then we increase the number of equivalence classes by 1. The
following lemma gives an additive polynomial upper bound on this increase.

Lemma 2. Given a configuration Ci of a PMCS
EAM0

−a
system Π with |E| equiv-

alence classes. Let |E0| be the number of equivalence classes in the initial con-
figuration of Π. Let |V | be the number of distinct object types in Π. After a
single timestep, where only rules of type (b) (incoming objects) are applied, there
exists a configuration Ci+1 such that Ci � Ci+1 and Ci+1 has ≤ |E| + |E0||V |
equivalence classes.

Proof. Let ej be a parent equivalence class, thus ej represents one membrane (by
Definition 3). If the child membranes of ej are all parent membranes themselves,
then the type (b) communication rule occurs without any increase to the number
of equivalence classes. The remainder of the proof is concerned with the other
case, where ej contains a non-zero number of equivalence classes of elementary
membranes; by the lemma statement this number is ≤ |E|.

For the remainder of this proof let V ′ ⊆ V be the set of distinct object types
in the membrane defined by ej for which there are rules in R applicable for this



376 N. Murphy and D. Woods

timestep, let V be the total number of objects in the membrane defined by ej ,
let E′ ⊂ E be the set of equivalence classes that describe the children of the
membrane defined by ej, and let M be the total number of membranes that
are children of the membrane defined by ej (therefore M is the total number
of membranes in E′). Furthermore we assume that E′ is ordered by number of
membranes, i.e. we let E′ = (e1, e2, . . . , e|E′|) where |ek| is the number of mem-
branes in equivalence class ek and ∀k, |ek| ≤ |ek+1|. Similarly we assume that V ′

is ordered by the number of each object type, i.e. we let V ′ = (v1, v2, . . . , v|V ′|)
where |vk| is the multiplicity of objects of type vk and ∀ k, |vk| ≤ |vk+1|. This
ordering ensures that the same deterministic computation path is followed for
different instances of the same input configuration. We now consider the two
possible cases.

Case 1: V < M. Table 1 explicitly gives the proof for this case. The M mem-
branes, beginning with membranes from equivalence class e1, each receive one
object, beginning with available objects of type v1. We continue, following the
above orderings on V ′ and E′, until there are no more objects to communicate.
Thus after these type (b) rules have been applied, some number from the E′ has
received objects, leading to the E′ rows in the “Range” column of Table 1. If ob-
jects of one distinct type fill up an equivalence class exactly, that class cannot be
split into further equivalence classes in that time step. The “Sub-case” column
captures all possible (given our ordering on E′ and V ′) ways that objects can fill
increasing numbers of equivalence classes. The “Increase EC” column gives the
increase in the equivalence classes after one timestep each sub-case. The worst
case increase is caused by no equivalence class being exclusively filled up by a
distinct object, this means every distinct object communicated will create a new
equivalence class. The worst case increase in the total number of equivalence
classes after one timestep is |V ′|.
Case 2: V ≥ M. Table 2 explicitly gives the proof for this case. The M mem-
branes, beginning with membranes from equivalence class e1, each receive one
object, beginning with available objects of type v1. We continue, following the
above orderings on V ′ and E′, until there are no more available membranes to
communicate to. Thus after these type (b) rules have been applied, some number
from the V ′ have been communicated, leading to the V ′ rows in the “Range”
column of Table 2. If membranes from one equivalence class all receive objects of
the same distinct type, that class cannot be split into further equivalence classes
in that time step. The “Sub-case” column captures all possible (given our or-
dering on E′ and V ′) ways that equivalence classes can be filled by increasing
numbers of distinct objects. The “Increase EC” column gives the increase in the
equivalence classes after one timestep each sub-case. The worst case increase is
caused by no equivalence class being exclusively filled up by a distinct object,
this means every distinct object communicated will create a new equivalence
class. The worst case increase in the total number of equivalence classes after
one timestep is |V ′| − 1.
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This procedure is iterated over all parent membranes ej where type (b) rules
are applicable, by Definition 3 the number of such parent membranes ≤ |E0|.
For each parent it is the case that |V ′| ≤ |V |. Thus there is a computation path
Ci � Ci+1 where the increase in the number of equivalence classes is ≤ |E0||V ′| ≤
|E0||V |. ��
Lemma 3. Given a configuration Ci of a PMCS

EAM0
−a

system with |E| equiv-
alence classes. After a single timestep, where only rules of type (c) (outgoing
objects) are applied, there exists a configuration Ci+1 such that Ci � Ci+1 and
Ci+1 has ≤ |E| equivalence classes.

Proof. If a type (c) rule is applicable to an object in a membrane in equivalence
class ek, then the rule is also applicable in exactly the same way to all membranes
in ek. Due to non-determinism in the choice of rules and objects it could be
the case that membranes in ek eject different symbols. However lets assume
an ordering on the object types V and on the rules R. We apply the type (c)
rules to objects using this ordering. Then all membranes in an equivalence class
evolve identically in one (each membrane ejects the same symbol), and so no new
equivalence classes are created from ek. The single parent of all the membranes
in ek is in an equivalence class ej which, by Definition 3, contains exactly one
membrane and so no new equivalence classes are created from ej .

Thus there is a computation path Ci � Ci+1 where there is no increase in the
number of equivalence classes. ��
Interestingly, dissolution is the easiest rule to handle using our approach. The
following lemma actually proves something stronger than the other lemmata:
dissolution never leads to an increase in the number of equivalence classes.

Lemma 4. Given a configuration Ci of a PMCS
EAM0

−a
system with |E| equiv-

alence classes. After a single timestep, where only rules of type (d) (membrane
dissolution) are applied then for all Ci+1, such that Ci � Ci+1, Ci+1 has ≤ |E|
equivalence classes.

Proof. If there is at least one type (d) rule that is applicable to an object and
a membrane in equivalence class ek, then there is at least one rule that is also
applicable to all membranes in ek. Unlike previous proofs, we do not require an
ordering on the objects and rules: all membranes in ek dissolve and equivalence
class ek no longer exists. The single parent of all the membranes in ek is in an
equivalence class ej which, by Definition 3, contains exactly one membrane and
so no new equivalence classes are created from ej .

Thus for all Ci+1, where Ci � Ci+1, there is no increase in the number of
equivalence classes. ��
Lemma 5. Given a configuration Ci of a PMCS

EAM0
−a

system with |E| equiv-
alence classes. After a single timestep, where only rules of type (es) (symmet-
ric membrane division) are applied, there exists a configuration Ci+1 such that
Ci � Ci+1 and Ci+1 has ≤ |E| equivalence classes.
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Proof. If a type (es) rule is applicable to an object and membrane in equivalence
class ek, then the rule is also applicable in exactly the same way to all membranes
in ek. Due to non-determinism in the choice of rules and objects it could be
the case that membranes in ek divide using and/or creating different symbols.
However lets assume an ordering on the object types V and on the rules R.
We apply the type (es) rules to objects (and membranes) using this ordering.
Then all membranes in an equivalence class evolve identically in a timestep (each
membrane in ek divides using the same rule). The number of membranes in ek

doubles, but since each new membrane is identical, no new equivalence classes
are created from ek.

Thus there is a computation path Ci � Ci+1 where there is no increase in the
number of equivalence classes. ��

3.3 Polynomial Time RAM Algorithm

Here we outline a RAM algorithm that simulates the computation of any mem-
brane system of the class PMCS

EAM0
−a

in polynomial time (in input length n).
The algorithm operates on any valid initial configuration and successively applies
the evolution rules of the membrane system.

The algorithm makes explicit use of the polynomial size bounded registers
described in Section 3.1. It also relies on the confluent nature of recogniser mem-
brane systems and simulates only one of the set of valid computation paths. In
particular, using the results from Section 3.2, the algorithm chooses a compu-
tation path that uses polynomial space by sorting the membranes, objects and
rules of a configuration.

Our sort function runs in polynomial time (in input length n) and sorts lists
of
– object multisets by object multiplicity, then lexicographically.
– equivalence classes by membrane multiplicity, then by label, and then by

objects.
– rules by rules type, matching label, matching object, and then by output

object(s).

Since instances ofPMCS
EAM0

−a
are constructedbypolynomial time (or logspace)

deterministic Turing machines they are at most polynomial size. Also, since all in-
stances of PMCS

EAM0
−a

run in polynomial time, if our algorithm simulates it with
a polynomial time overhead we obtain a polynomial time upper bound.

Our algorithm begins with a configuration of PMCS
EAM0

−a
(see Algorithm 1).

The input configuration is encoded into the registers of the RAM in polynomial
time. The rules of the system are sorted and the algorithm then enters a loop.
At each iteration all available rules are applied, this simulates a single timestep
of the membrane systems computation. The loop terminates when the system
ejects a yes or no object, indicating that the computation has halted. Since all
instances of PMCS

EAM0
−a

run in polynomial time, this loop iterates a polynomial
number of times. The total time complexity for running the simulation for time
t is O(t|R||E|2|V |).
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Algorithm 1 The main body of the membrane simulation algorithm. The
rules of the system are sorted and then applied to the configuration at each
timestep until the system accepts or rejects its input.

Input a configuration of PMCS
EAM0

−a

Output The deciding configuration of the system
Initialise registers with input system;
sortedRules ← sort(rules);

O(t) repeat
/* evolve the membrane system one step */

O(|E|) forall equivalence class in membraneSystem do
O(|R||E||V |) ApplyRules(equivalence class);

until yes or no object is in skin membrane ;

.

.

.

Function ApplyRules(equivalence class) Applies all applicable rules for
an equivalence class for one timestep

Input equivalence class
Output equivalence class after one timestep of computation
b rules ← ∅;
b ecs ← ∅;
b objs ← ∅;

O(|R|) forall rule in sortedRules do
if rule.label matches equivalence class.label and rule is not type (b) then

O(|V |) forall object in sortedObjects do
if not all copies of object have been used then

if rule is type (a) then
O(|V |) Apply a rule(equivalence class, object, rule);

else if rule is type (c) then
O(1) Apply c rule(equivalence class, object, rule);

else if rule is type (d) then
O(|V |) Apply d rule(equivalence class, object, rule);

else if rule is type (es) then
O(1) Apply e rule(equivalence class, object, rule);

if rule is type (b) then
O(|E|) forall child c in equivalence class do

if child c.label = rule.lhsLabel and object.used ≥ 1 then
append child c to b ecs ;
append object to b objs ;

O(|V ||E|) Apply b rule(b ecs, b objs, rule)

O(|V | × |E|) reset all used counters to 0;

.

.
.
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Function Apply a rule(equivalence class, object, rule) applies a single
type (a) rule to instances of an object in an equivalence class. Total time
complexity O(|V |).

Input equivalence class, object, rule
Output equivalence class after a type (a) rule on an object has been applied

O(|V |) forall resultingObject in rule.outAobjects do
multiplicity of resultingObject in equivalence class + = the multiplicity of
matching object − the number of object.used × the
resultingObject.multiplicity ;
used number of resultingObject in the equivalence class + = the multiplicity
of resultingObject × object.multiplicity − object.used ;

decrement object.multiplicity ;
set object.used = object.multiplicity ;

.

.
.

Function Apply c rule(equivalence class, object, rule) applies a single
rule of type (c) to a membrane. Total time complexity O(1).

Input equivalence class
Output equivalence class after a (c) rule have been applied
decrement object.multiplicity ;
increment object.multiplicity in equivalence class.parent of the generated object;
increment object.used in equivalence class.parent of the generated object;
increment equivalence class.used ;

.

.
.

Function Apply d rule(equivalence class, object, rule). This function ap-
plies dissolution rules to an equivalence class. It calculates the total number
of each object in the equivalence class and adds it to the parent. It also
copies the child membranes from the dissolving membrane and adds them
to the parents child list. The total time complexity is O(|V |).

Input equivalence class
Output equivalence class after (d) rule has been applied
decrement object.multiplicity ;
increment object.multiplicity in equivalence class.parent from the rule;
increment object.used in equivalence class.parent from the rule;
/* move contents of the dissolved membrane to its parent */

O(|V |) forall move object in equivalence class objects do
add move object.multiplicity × equivalence class.multiplicity to
move object.multiplicity in equivalence class.parent ;
add move object.used × equivalence class.multiplicity to move object.used in
equivalence class.parent ;
move object.multiplicity ← 0;
move object.used ← 0;

equivalence class.parent.children ← equivalence class.parent.children ∪
equivalence class.children ;
equivalence class.multiplicity ← 0;
equivalence class ← ∅;

.

.
.
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Function Apply es rule(equivalence class, object, rule). Applies a single
rule of type (es) to a membrane. Total time complexity O(1).

Input equivalence class
Output equivalence class after (es) rule has been applied
decrement object.multiplicity ;
increment object.multiplicity from the rule;
increment object.used from the rule;
increment equivalence class.used ;
equivalence class.multiplicity ← equivalence class.multiplicity × 2;

.

.
.

Function Apply b rules(b equivalence classes, b objects, b rules). Total
time complexity O(|V ||E|).

Input membrane
Output membrane after (b) rules have been applied
b objects sorted ← sort(b objects);
b equivalence classes sorted ← sort(b equivalence classes);

O(|V |) forall object in b objects sorted do
O(|E|) forall equivalence class in b equivalence classes sorted do

if object.multiplicity < equivalence class.multiplicity then
copy equivalence class to new equiv class ;
subtract object.multiplicity from new equiv class.multiplicity ;
equivalence class.multiplicity ← object.multiplicity ;
equivalence class.used ← equivalence class.multiplicity ;
increment equivalence class.object.multiplicity ;
increment equivalence class.object.used ;

else if object.multiplicity ≥ equivalence class.multiplicity then
increment equivalence class.object.multiplicity ;
increment equivalence class.object.used ;
equivalence class.used ← equivalence class.multiplicity ;
subtract equivalence class.multiplicity from object.multiplicity ;

.

.
.

4 Conclusion

We have given a P upper bound on the computational power of one of a number
of membrane systems that fall under the so-called P-conjecture. In particular
we consider a variant of membrane systems that allows only symmetric devi-
sion. This variant can easily generate an exponential number of membranes and
objects in polynomial time. We restricted the uniformity condition to logspace,
making the P lower bound more meaningful. Our technique relies on being able
to find computation paths that use only polynomial space in polynomial time.
It seems that this technique is not näıvely applicable to the case of asymmetric
division: it is possible to find examples where all computation paths are forced
to use an exponential number of equivalence classes.

Furthermore the result seems interesting since before before now, all models
without dissolution rules were upper bounded by P and all those with dissolution
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rules characterised PSPACE. This result shows that despite having dissolution
rules, by using only symmetric elementary division we restrict the system so that
it does not create exponential space on all computation paths in polynomial time.

Acknowledgements

Niall Murphy is supported by the Irish Research Council for Science, Engineering
and Technology. Damien Woods is supported by Science Foundation Ireland
grant number 04/IN3/1524. We give a special thanks to Thomas J. Naughton
for interesting comments and ideas.

References

1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular
Biology of the Cell, 4th edn. Garland Science, New York (2002)
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